]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/t4_main.c
Update to bmake-201802222
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / t4_main.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "opt_ddb.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_rss.h"
37
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/priv.h>
41 #include <sys/kernel.h>
42 #include <sys/bus.h>
43 #include <sys/module.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/taskqueue.h>
47 #include <sys/pciio.h>
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pci_private.h>
51 #include <sys/firmware.h>
52 #include <sys/sbuf.h>
53 #include <sys/smp.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_types.h>
60 #include <net/if_dl.h>
61 #include <net/if_vlan_var.h>
62 #ifdef RSS
63 #include <net/rss_config.h>
64 #endif
65 #if defined(__i386__) || defined(__amd64__)
66 #include <machine/md_var.h>
67 #include <machine/cputypes.h>
68 #include <vm/vm.h>
69 #include <vm/pmap.h>
70 #endif
71 #include <crypto/rijndael/rijndael.h>
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #include <ddb/db_lex.h>
75 #endif
76
77 #include "common/common.h"
78 #include "common/t4_msg.h"
79 #include "common/t4_regs.h"
80 #include "common/t4_regs_values.h"
81 #include "cudbg/cudbg.h"
82 #include "t4_ioctl.h"
83 #include "t4_l2t.h"
84 #include "t4_mp_ring.h"
85 #include "t4_if.h"
86
87 /* T4 bus driver interface */
88 static int t4_probe(device_t);
89 static int t4_attach(device_t);
90 static int t4_detach(device_t);
91 static int t4_ready(device_t);
92 static int t4_read_port_device(device_t, int, device_t *);
93 static device_method_t t4_methods[] = {
94         DEVMETHOD(device_probe,         t4_probe),
95         DEVMETHOD(device_attach,        t4_attach),
96         DEVMETHOD(device_detach,        t4_detach),
97
98         DEVMETHOD(t4_is_main_ready,     t4_ready),
99         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
100
101         DEVMETHOD_END
102 };
103 static driver_t t4_driver = {
104         "t4nex",
105         t4_methods,
106         sizeof(struct adapter)
107 };
108
109
110 /* T4 port (cxgbe) interface */
111 static int cxgbe_probe(device_t);
112 static int cxgbe_attach(device_t);
113 static int cxgbe_detach(device_t);
114 device_method_t cxgbe_methods[] = {
115         DEVMETHOD(device_probe,         cxgbe_probe),
116         DEVMETHOD(device_attach,        cxgbe_attach),
117         DEVMETHOD(device_detach,        cxgbe_detach),
118         { 0, 0 }
119 };
120 static driver_t cxgbe_driver = {
121         "cxgbe",
122         cxgbe_methods,
123         sizeof(struct port_info)
124 };
125
126 /* T4 VI (vcxgbe) interface */
127 static int vcxgbe_probe(device_t);
128 static int vcxgbe_attach(device_t);
129 static int vcxgbe_detach(device_t);
130 static device_method_t vcxgbe_methods[] = {
131         DEVMETHOD(device_probe,         vcxgbe_probe),
132         DEVMETHOD(device_attach,        vcxgbe_attach),
133         DEVMETHOD(device_detach,        vcxgbe_detach),
134         { 0, 0 }
135 };
136 static driver_t vcxgbe_driver = {
137         "vcxgbe",
138         vcxgbe_methods,
139         sizeof(struct vi_info)
140 };
141
142 static d_ioctl_t t4_ioctl;
143
144 static struct cdevsw t4_cdevsw = {
145        .d_version = D_VERSION,
146        .d_ioctl = t4_ioctl,
147        .d_name = "t4nex",
148 };
149
150 /* T5 bus driver interface */
151 static int t5_probe(device_t);
152 static device_method_t t5_methods[] = {
153         DEVMETHOD(device_probe,         t5_probe),
154         DEVMETHOD(device_attach,        t4_attach),
155         DEVMETHOD(device_detach,        t4_detach),
156
157         DEVMETHOD(t4_is_main_ready,     t4_ready),
158         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
159
160         DEVMETHOD_END
161 };
162 static driver_t t5_driver = {
163         "t5nex",
164         t5_methods,
165         sizeof(struct adapter)
166 };
167
168
169 /* T5 port (cxl) interface */
170 static driver_t cxl_driver = {
171         "cxl",
172         cxgbe_methods,
173         sizeof(struct port_info)
174 };
175
176 /* T5 VI (vcxl) interface */
177 static driver_t vcxl_driver = {
178         "vcxl",
179         vcxgbe_methods,
180         sizeof(struct vi_info)
181 };
182
183 /* T6 bus driver interface */
184 static int t6_probe(device_t);
185 static device_method_t t6_methods[] = {
186         DEVMETHOD(device_probe,         t6_probe),
187         DEVMETHOD(device_attach,        t4_attach),
188         DEVMETHOD(device_detach,        t4_detach),
189
190         DEVMETHOD(t4_is_main_ready,     t4_ready),
191         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
192
193         DEVMETHOD_END
194 };
195 static driver_t t6_driver = {
196         "t6nex",
197         t6_methods,
198         sizeof(struct adapter)
199 };
200
201
202 /* T6 port (cc) interface */
203 static driver_t cc_driver = {
204         "cc",
205         cxgbe_methods,
206         sizeof(struct port_info)
207 };
208
209 /* T6 VI (vcc) interface */
210 static driver_t vcc_driver = {
211         "vcc",
212         vcxgbe_methods,
213         sizeof(struct vi_info)
214 };
215
216 /* ifnet + media interface */
217 static void cxgbe_init(void *);
218 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
219 static int cxgbe_transmit(struct ifnet *, struct mbuf *);
220 static void cxgbe_qflush(struct ifnet *);
221 static int cxgbe_media_change(struct ifnet *);
222 static void cxgbe_media_status(struct ifnet *, struct ifmediareq *);
223
224 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
225
226 /*
227  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
228  * then ADAPTER_LOCK, then t4_uld_list_lock.
229  */
230 static struct sx t4_list_lock;
231 SLIST_HEAD(, adapter) t4_list;
232 #ifdef TCP_OFFLOAD
233 static struct sx t4_uld_list_lock;
234 SLIST_HEAD(, uld_info) t4_uld_list;
235 #endif
236
237 /*
238  * Tunables.  See tweak_tunables() too.
239  *
240  * Each tunable is set to a default value here if it's known at compile-time.
241  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
242  * provide a reasonable default (upto n) when the driver is loaded.
243  *
244  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
245  * T5 are under hw.cxl.
246  */
247
248 /*
249  * Number of queues for tx and rx, NIC and offload.
250  */
251 #define NTXQ 16
252 int t4_ntxq = -NTXQ;
253 TUNABLE_INT("hw.cxgbe.ntxq", &t4_ntxq);
254 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);      /* Old name, undocumented */
255
256 #define NRXQ 8
257 int t4_nrxq = -NRXQ;
258 TUNABLE_INT("hw.cxgbe.nrxq", &t4_nrxq);
259 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);      /* Old name, undocumented */
260
261 #define NTXQ_VI 1
262 static int t4_ntxq_vi = -NTXQ_VI;
263 TUNABLE_INT("hw.cxgbe.ntxq_vi", &t4_ntxq_vi);
264
265 #define NRXQ_VI 1
266 static int t4_nrxq_vi = -NRXQ_VI;
267 TUNABLE_INT("hw.cxgbe.nrxq_vi", &t4_nrxq_vi);
268
269 static int t4_rsrv_noflowq = 0;
270 TUNABLE_INT("hw.cxgbe.rsrv_noflowq", &t4_rsrv_noflowq);
271
272 #ifdef TCP_OFFLOAD
273 #define NOFLDTXQ 8
274 static int t4_nofldtxq = -NOFLDTXQ;
275 TUNABLE_INT("hw.cxgbe.nofldtxq", &t4_nofldtxq);
276
277 #define NOFLDRXQ 2
278 static int t4_nofldrxq = -NOFLDRXQ;
279 TUNABLE_INT("hw.cxgbe.nofldrxq", &t4_nofldrxq);
280
281 #define NOFLDTXQ_VI 1
282 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
283 TUNABLE_INT("hw.cxgbe.nofldtxq_vi", &t4_nofldtxq_vi);
284
285 #define NOFLDRXQ_VI 1
286 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
287 TUNABLE_INT("hw.cxgbe.nofldrxq_vi", &t4_nofldrxq_vi);
288
289 #define TMR_IDX_OFLD 1
290 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
291 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_ofld", &t4_tmr_idx_ofld);
292
293 #define PKTC_IDX_OFLD (-1)
294 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
295 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_ofld", &t4_pktc_idx_ofld);
296
297 /* 0 means chip/fw default, non-zero number is value in microseconds */
298 static u_long t4_toe_keepalive_idle = 0;
299 TUNABLE_ULONG("hw.cxgbe.toe.keepalive_idle", &t4_toe_keepalive_idle);
300
301 /* 0 means chip/fw default, non-zero number is value in microseconds */
302 static u_long t4_toe_keepalive_interval = 0;
303 TUNABLE_ULONG("hw.cxgbe.toe.keepalive_interval", &t4_toe_keepalive_interval);
304
305 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
306 static int t4_toe_keepalive_count = 0;
307 TUNABLE_INT("hw.cxgbe.toe.keepalive_count", &t4_toe_keepalive_count);
308
309 /* 0 means chip/fw default, non-zero number is value in microseconds */
310 static u_long t4_toe_rexmt_min = 0;
311 TUNABLE_ULONG("hw.cxgbe.toe.rexmt_min", &t4_toe_rexmt_min);
312
313 /* 0 means chip/fw default, non-zero number is value in microseconds */
314 static u_long t4_toe_rexmt_max = 0;
315 TUNABLE_ULONG("hw.cxgbe.toe.rexmt_max", &t4_toe_rexmt_max);
316
317 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
318 static int t4_toe_rexmt_count = 0;
319 TUNABLE_INT("hw.cxgbe.toe.rexmt_count", &t4_toe_rexmt_count);
320
321 /* -1 means chip/fw default, other values are raw backoff values to use */
322 static int t4_toe_rexmt_backoff[16] = {
323         -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
324 };
325 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.0", &t4_toe_rexmt_backoff[0]);
326 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.1", &t4_toe_rexmt_backoff[1]);
327 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.2", &t4_toe_rexmt_backoff[2]);
328 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.3", &t4_toe_rexmt_backoff[3]);
329 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.4", &t4_toe_rexmt_backoff[4]);
330 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.5", &t4_toe_rexmt_backoff[5]);
331 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.6", &t4_toe_rexmt_backoff[6]);
332 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.7", &t4_toe_rexmt_backoff[7]);
333 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.8", &t4_toe_rexmt_backoff[8]);
334 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.9", &t4_toe_rexmt_backoff[9]);
335 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.10", &t4_toe_rexmt_backoff[10]);
336 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.11", &t4_toe_rexmt_backoff[11]);
337 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.12", &t4_toe_rexmt_backoff[12]);
338 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.13", &t4_toe_rexmt_backoff[13]);
339 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.14", &t4_toe_rexmt_backoff[14]);
340 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.15", &t4_toe_rexmt_backoff[15]);
341 #endif
342
343 #ifdef DEV_NETMAP
344 #define NNMTXQ_VI 2
345 static int t4_nnmtxq_vi = -NNMTXQ_VI;
346 TUNABLE_INT("hw.cxgbe.nnmtxq_vi", &t4_nnmtxq_vi);
347
348 #define NNMRXQ_VI 2
349 static int t4_nnmrxq_vi = -NNMRXQ_VI;
350 TUNABLE_INT("hw.cxgbe.nnmrxq_vi", &t4_nnmrxq_vi);
351 #endif
352
353 /*
354  * Holdoff parameters for ports.
355  */
356 #define TMR_IDX 1
357 int t4_tmr_idx = TMR_IDX;
358 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx", &t4_tmr_idx);
359 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);     /* Old name */
360
361 #define PKTC_IDX (-1)
362 int t4_pktc_idx = PKTC_IDX;
363 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx", &t4_pktc_idx);
364 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);     /* Old name */
365
366 /*
367  * Size (# of entries) of each tx and rx queue.
368  */
369 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
370 TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq);
371
372 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
373 TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq);
374
375 /*
376  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
377  */
378 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
379 TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types);
380
381 /*
382  * Configuration file.
383  */
384 #define DEFAULT_CF      "default"
385 #define FLASH_CF        "flash"
386 #define UWIRE_CF        "uwire"
387 #define FPGA_CF         "fpga"
388 static char t4_cfg_file[32] = DEFAULT_CF;
389 TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file));
390
391 /*
392  * PAUSE settings (bit 0, 1 = rx_pause, tx_pause respectively).
393  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
394  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
395  *            mark or when signalled to do so, 0 to never emit PAUSE.
396  */
397 static int t4_pause_settings = PAUSE_TX | PAUSE_RX;
398 TUNABLE_INT("hw.cxgbe.pause_settings", &t4_pause_settings);
399
400 /*
401  * Forward Error Correction settings (bit 0, 1, 2 = FEC_RS, FEC_BASER_RS,
402  * FEC_RESERVED respectively).
403  * -1 to run with the firmware default.
404  *  0 to disable FEC.
405  */
406 static int t4_fec = -1;
407 TUNABLE_INT("hw.cxgbe.fec", &t4_fec);
408
409 /*
410  * Link autonegotiation.
411  * -1 to run with the firmware default.
412  *  0 to disable.
413  *  1 to enable.
414  */
415 static int t4_autoneg = -1;
416 TUNABLE_INT("hw.cxgbe.autoneg", &t4_autoneg);
417
418 /*
419  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
420  * encouraged respectively).
421  */
422 static unsigned int t4_fw_install = 1;
423 TUNABLE_INT("hw.cxgbe.fw_install", &t4_fw_install);
424
425 /*
426  * ASIC features that will be used.  Disable the ones you don't want so that the
427  * chip resources aren't wasted on features that will not be used.
428  */
429 static int t4_nbmcaps_allowed = 0;
430 TUNABLE_INT("hw.cxgbe.nbmcaps_allowed", &t4_nbmcaps_allowed);
431
432 static int t4_linkcaps_allowed = 0;     /* No DCBX, PPP, etc. by default */
433 TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed);
434
435 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
436     FW_CAPS_CONFIG_SWITCH_EGRESS;
437 TUNABLE_INT("hw.cxgbe.switchcaps_allowed", &t4_switchcaps_allowed);
438
439 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC;
440 TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed);
441
442 static int t4_toecaps_allowed = -1;
443 TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed);
444
445 static int t4_rdmacaps_allowed = -1;
446 TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed);
447
448 static int t4_cryptocaps_allowed = -1;
449 TUNABLE_INT("hw.cxgbe.cryptocaps_allowed", &t4_cryptocaps_allowed);
450
451 static int t4_iscsicaps_allowed = -1;
452 TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed);
453
454 static int t4_fcoecaps_allowed = 0;
455 TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed);
456
457 static int t5_write_combine = 1;
458 TUNABLE_INT("hw.cxl.write_combine", &t5_write_combine);
459
460 static int t4_num_vis = 1;
461 TUNABLE_INT("hw.cxgbe.num_vis", &t4_num_vis);
462 /*
463  * PCIe Relaxed Ordering.
464  * -1: driver should figure out a good value.
465  * 0: disable RO.
466  * 1: enable RO.
467  * 2: leave RO alone.
468  */
469 static int pcie_relaxed_ordering = -1;
470 TUNABLE_INT("hw.cxgbe.pcie_relaxed_ordering", &pcie_relaxed_ordering);
471
472
473 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
474 static int vi_mac_funcs[] = {
475         FW_VI_FUNC_ETH,
476         FW_VI_FUNC_OFLD,
477         FW_VI_FUNC_IWARP,
478         FW_VI_FUNC_OPENISCSI,
479         FW_VI_FUNC_OPENFCOE,
480         FW_VI_FUNC_FOISCSI,
481         FW_VI_FUNC_FOFCOE,
482 };
483
484 struct intrs_and_queues {
485         uint16_t intr_type;     /* INTx, MSI, or MSI-X */
486         uint16_t num_vis;       /* number of VIs for each port */
487         uint16_t nirq;          /* Total # of vectors */
488         uint16_t ntxq;          /* # of NIC txq's for each port */
489         uint16_t nrxq;          /* # of NIC rxq's for each port */
490         uint16_t nofldtxq;      /* # of TOE txq's for each port */
491         uint16_t nofldrxq;      /* # of TOE rxq's for each port */
492
493         /* The vcxgbe/vcxl interfaces use these and not the ones above. */
494         uint16_t ntxq_vi;       /* # of NIC txq's */
495         uint16_t nrxq_vi;       /* # of NIC rxq's */
496         uint16_t nofldtxq_vi;   /* # of TOE txq's */
497         uint16_t nofldrxq_vi;   /* # of TOE rxq's */
498         uint16_t nnmtxq_vi;     /* # of netmap txq's */
499         uint16_t nnmrxq_vi;     /* # of netmap rxq's */
500 };
501
502 struct filter_entry {
503         uint32_t valid:1;       /* filter allocated and valid */
504         uint32_t locked:1;      /* filter is administratively locked */
505         uint32_t pending:1;     /* filter action is pending firmware reply */
506         uint32_t smtidx:8;      /* Source MAC Table index for smac */
507         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
508
509         struct t4_filter_specification fs;
510 };
511
512 static void setup_memwin(struct adapter *);
513 static void position_memwin(struct adapter *, int, uint32_t);
514 static int rw_via_memwin(struct adapter *, int, uint32_t, uint32_t *, int, int);
515 static inline int read_via_memwin(struct adapter *, int, uint32_t, uint32_t *,
516     int);
517 static inline int write_via_memwin(struct adapter *, int, uint32_t,
518     const uint32_t *, int);
519 static int validate_mem_range(struct adapter *, uint32_t, int);
520 static int fwmtype_to_hwmtype(int);
521 static int validate_mt_off_len(struct adapter *, int, uint32_t, int,
522     uint32_t *);
523 static int fixup_devlog_params(struct adapter *);
524 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
525 static int prep_firmware(struct adapter *);
526 static int partition_resources(struct adapter *, const struct firmware *,
527     const char *);
528 static int get_params__pre_init(struct adapter *);
529 static int get_params__post_init(struct adapter *);
530 static int set_params__post_init(struct adapter *);
531 static void t4_set_desc(struct adapter *);
532 static void build_medialist(struct port_info *, struct ifmedia *);
533 static void init_l1cfg(struct port_info *);
534 static int cxgbe_init_synchronized(struct vi_info *);
535 static int cxgbe_uninit_synchronized(struct vi_info *);
536 static void quiesce_txq(struct adapter *, struct sge_txq *);
537 static void quiesce_wrq(struct adapter *, struct sge_wrq *);
538 static void quiesce_iq(struct adapter *, struct sge_iq *);
539 static void quiesce_fl(struct adapter *, struct sge_fl *);
540 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
541     driver_intr_t *, void *, char *);
542 static int t4_free_irq(struct adapter *, struct irq *);
543 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
544 static void vi_refresh_stats(struct adapter *, struct vi_info *);
545 static void cxgbe_refresh_stats(struct adapter *, struct port_info *);
546 static void cxgbe_tick(void *);
547 static void cxgbe_vlan_config(void *, struct ifnet *, uint16_t);
548 static void cxgbe_sysctls(struct port_info *);
549 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
550 static int sysctl_bitfield(SYSCTL_HANDLER_ARGS);
551 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
552 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
553 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
554 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
555 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
556 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
557 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
558 static int sysctl_fec(SYSCTL_HANDLER_ARGS);
559 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
560 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
561 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
562 #ifdef SBUF_DRAIN
563 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
564 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
565 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
566 static int sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS);
567 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
568 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
569 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
570 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
571 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
572 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
573 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
574 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
575 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
576 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
577 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
578 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
579 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
580 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
581 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
582 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
583 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
584 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
585 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
586 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
587 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
588 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
589 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
590 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
591 static int sysctl_tc_params(SYSCTL_HANDLER_ARGS);
592 #endif
593 #ifdef TCP_OFFLOAD
594 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
595 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
596 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
597 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
598 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
599 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
600 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
601 #endif
602 static uint32_t fconf_iconf_to_mode(uint32_t, uint32_t);
603 static uint32_t mode_to_fconf(uint32_t);
604 static uint32_t mode_to_iconf(uint32_t);
605 static int check_fspec_against_fconf_iconf(struct adapter *,
606     struct t4_filter_specification *);
607 static int get_filter_mode(struct adapter *, uint32_t *);
608 static int set_filter_mode(struct adapter *, uint32_t);
609 static inline uint64_t get_filter_hits(struct adapter *, uint32_t);
610 static int get_filter(struct adapter *, struct t4_filter *);
611 static int set_filter(struct adapter *, struct t4_filter *);
612 static int del_filter(struct adapter *, struct t4_filter *);
613 static void clear_filter(struct filter_entry *);
614 static int set_filter_wr(struct adapter *, int);
615 static int del_filter_wr(struct adapter *, int);
616 static int set_tcb_rpl(struct sge_iq *, const struct rss_header *,
617     struct mbuf *);
618 static int get_sge_context(struct adapter *, struct t4_sge_context *);
619 static int load_fw(struct adapter *, struct t4_data *);
620 static int load_cfg(struct adapter *, struct t4_data *);
621 static int load_boot(struct adapter *, struct t4_bootrom *);
622 static int load_bootcfg(struct adapter *, struct t4_data *);
623 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
624 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
625 static int read_i2c(struct adapter *, struct t4_i2c_data *);
626 #ifdef TCP_OFFLOAD
627 static int toe_capability(struct vi_info *, int);
628 #endif
629 static int mod_event(module_t, int, void *);
630 static int notify_siblings(device_t, int);
631
632 struct {
633         uint16_t device;
634         char *desc;
635 } t4_pciids[] = {
636         {0xa000, "Chelsio Terminator 4 FPGA"},
637         {0x4400, "Chelsio T440-dbg"},
638         {0x4401, "Chelsio T420-CR"},
639         {0x4402, "Chelsio T422-CR"},
640         {0x4403, "Chelsio T440-CR"},
641         {0x4404, "Chelsio T420-BCH"},
642         {0x4405, "Chelsio T440-BCH"},
643         {0x4406, "Chelsio T440-CH"},
644         {0x4407, "Chelsio T420-SO"},
645         {0x4408, "Chelsio T420-CX"},
646         {0x4409, "Chelsio T420-BT"},
647         {0x440a, "Chelsio T404-BT"},
648         {0x440e, "Chelsio T440-LP-CR"},
649 }, t5_pciids[] = {
650         {0xb000, "Chelsio Terminator 5 FPGA"},
651         {0x5400, "Chelsio T580-dbg"},
652         {0x5401,  "Chelsio T520-CR"},           /* 2 x 10G */
653         {0x5402,  "Chelsio T522-CR"},           /* 2 x 10G, 2 X 1G */
654         {0x5403,  "Chelsio T540-CR"},           /* 4 x 10G */
655         {0x5407,  "Chelsio T520-SO"},           /* 2 x 10G, nomem */
656         {0x5409,  "Chelsio T520-BT"},           /* 2 x 10GBaseT */
657         {0x540a,  "Chelsio T504-BT"},           /* 4 x 1G */
658         {0x540d,  "Chelsio T580-CR"},           /* 2 x 40G */
659         {0x540e,  "Chelsio T540-LP-CR"},        /* 4 x 10G */
660         {0x5410,  "Chelsio T580-LP-CR"},        /* 2 x 40G */
661         {0x5411,  "Chelsio T520-LL-CR"},        /* 2 x 10G */
662         {0x5412,  "Chelsio T560-CR"},           /* 1 x 40G, 2 x 10G */
663         {0x5414,  "Chelsio T580-LP-SO-CR"},     /* 2 x 40G, nomem */
664         {0x5415,  "Chelsio T502-BT"},           /* 2 x 1G */
665 #ifdef notyet
666         {0x5404,  "Chelsio T520-BCH"},
667         {0x5405,  "Chelsio T540-BCH"},
668         {0x5406,  "Chelsio T540-CH"},
669         {0x5408,  "Chelsio T520-CX"},
670         {0x540b,  "Chelsio B520-SR"},
671         {0x540c,  "Chelsio B504-BT"},
672         {0x540f,  "Chelsio Amsterdam"},
673         {0x5413,  "Chelsio T580-CHR"},
674 #endif
675 }, t6_pciids[] = {
676         {0xc006, "Chelsio Terminator 6 FPGA"},  /* T6 PE10K6 FPGA (PF0) */
677         {0x6400, "Chelsio T6-DBG-25"},          /* 2 x 10/25G, debug */
678         {0x6401, "Chelsio T6225-CR"},           /* 2 x 10/25G */
679         {0x6402, "Chelsio T6225-SO-CR"},        /* 2 x 10/25G, nomem */
680         {0x6403, "Chelsio T6425-CR"},           /* 4 x 10/25G */
681         {0x6404, "Chelsio T6425-SO-CR"},        /* 4 x 10/25G, nomem */
682         {0x6405, "Chelsio T6225-OCP-SO"},       /* 2 x 10/25G, nomem */
683         {0x6406, "Chelsio T62100-OCP-SO"},      /* 2 x 40/50/100G, nomem */
684         {0x6407, "Chelsio T62100-LP-CR"},       /* 2 x 40/50/100G */
685         {0x6408, "Chelsio T62100-SO-CR"},       /* 2 x 40/50/100G, nomem */
686         {0x6409, "Chelsio T6210-BT"},           /* 2 x 10GBASE-T */
687         {0x640d, "Chelsio T62100-CR"},          /* 2 x 40/50/100G */
688         {0x6410, "Chelsio T6-DBG-100"},         /* 2 x 40/50/100G, debug */
689         {0x6411, "Chelsio T6225-LL-CR"},        /* 2 x 10/25G */
690         {0x6414, "Chelsio T61100-OCP-SO"},      /* 1 x 40/50/100G, nomem */
691         {0x6415, "Chelsio T6201-BT"},           /* 2 x 1000BASE-T */
692
693         /* Custom */
694         {0x6480, "Chelsio T6225 80"},
695         {0x6481, "Chelsio T62100 81"},
696         {0x6484, "Chelsio T62100 84"},
697 };
698
699 #ifdef TCP_OFFLOAD
700 /*
701  * service_iq() has an iq and needs the fl.  Offset of fl from the iq should be
702  * exactly the same for both rxq and ofld_rxq.
703  */
704 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
705 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
706 #endif
707 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
708
709 static int
710 t4_probe(device_t dev)
711 {
712         int i;
713         uint16_t v = pci_get_vendor(dev);
714         uint16_t d = pci_get_device(dev);
715         uint8_t f = pci_get_function(dev);
716
717         if (v != PCI_VENDOR_ID_CHELSIO)
718                 return (ENXIO);
719
720         /* Attach only to PF0 of the FPGA */
721         if (d == 0xa000 && f != 0)
722                 return (ENXIO);
723
724         for (i = 0; i < nitems(t4_pciids); i++) {
725                 if (d == t4_pciids[i].device) {
726                         device_set_desc(dev, t4_pciids[i].desc);
727                         return (BUS_PROBE_DEFAULT);
728                 }
729         }
730
731         return (ENXIO);
732 }
733
734 static int
735 t5_probe(device_t dev)
736 {
737         int i;
738         uint16_t v = pci_get_vendor(dev);
739         uint16_t d = pci_get_device(dev);
740         uint8_t f = pci_get_function(dev);
741
742         if (v != PCI_VENDOR_ID_CHELSIO)
743                 return (ENXIO);
744
745         /* Attach only to PF0 of the FPGA */
746         if (d == 0xb000 && f != 0)
747                 return (ENXIO);
748
749         for (i = 0; i < nitems(t5_pciids); i++) {
750                 if (d == t5_pciids[i].device) {
751                         device_set_desc(dev, t5_pciids[i].desc);
752                         return (BUS_PROBE_DEFAULT);
753                 }
754         }
755
756         return (ENXIO);
757 }
758
759 static int
760 t6_probe(device_t dev)
761 {
762         int i;
763         uint16_t v = pci_get_vendor(dev);
764         uint16_t d = pci_get_device(dev);
765
766         if (v != PCI_VENDOR_ID_CHELSIO)
767                 return (ENXIO);
768
769         for (i = 0; i < nitems(t6_pciids); i++) {
770                 if (d == t6_pciids[i].device) {
771                         device_set_desc(dev, t6_pciids[i].desc);
772                         return (BUS_PROBE_DEFAULT);
773                 }
774         }
775
776         return (ENXIO);
777 }
778
779 static void
780 t5_attribute_workaround(device_t dev)
781 {
782         device_t root_port;
783         uint32_t v;
784
785         /*
786          * The T5 chips do not properly echo the No Snoop and Relaxed
787          * Ordering attributes when replying to a TLP from a Root
788          * Port.  As a workaround, find the parent Root Port and
789          * disable No Snoop and Relaxed Ordering.  Note that this
790          * affects all devices under this root port.
791          */
792         root_port = pci_find_pcie_root_port(dev);
793         if (root_port == NULL) {
794                 device_printf(dev, "Unable to find parent root port\n");
795                 return;
796         }
797
798         v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
799             PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
800         if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
801             0)
802                 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
803                     device_get_nameunit(root_port));
804 }
805
806 static const struct devnames devnames[] = {
807         {
808                 .nexus_name = "t4nex",
809                 .ifnet_name = "cxgbe",
810                 .vi_ifnet_name = "vcxgbe",
811                 .pf03_drv_name = "t4iov",
812                 .vf_nexus_name = "t4vf",
813                 .vf_ifnet_name = "cxgbev"
814         }, {
815                 .nexus_name = "t5nex",
816                 .ifnet_name = "cxl",
817                 .vi_ifnet_name = "vcxl",
818                 .pf03_drv_name = "t5iov",
819                 .vf_nexus_name = "t5vf",
820                 .vf_ifnet_name = "cxlv"
821         }, {
822                 .nexus_name = "t6nex",
823                 .ifnet_name = "cc",
824                 .vi_ifnet_name = "vcc",
825                 .pf03_drv_name = "t6iov",
826                 .vf_nexus_name = "t6vf",
827                 .vf_ifnet_name = "ccv"
828         }
829 };
830
831 void
832 t4_init_devnames(struct adapter *sc)
833 {
834         int id;
835
836         id = chip_id(sc);
837         if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
838                 sc->names = &devnames[id - CHELSIO_T4];
839         else {
840                 device_printf(sc->dev, "chip id %d is not supported.\n", id);
841                 sc->names = NULL;
842         }
843 }
844
845 static int
846 t4_attach(device_t dev)
847 {
848         struct adapter *sc;
849         int rc = 0, i, j, rqidx, tqidx, nports;
850         struct make_dev_args mda;
851         struct intrs_and_queues iaq;
852         struct sge *s;
853         uint32_t *buf;
854 #ifdef TCP_OFFLOAD
855         int ofld_rqidx, ofld_tqidx;
856 #endif
857 #ifdef DEV_NETMAP
858         int nm_rqidx, nm_tqidx;
859 #endif
860         int num_vis;
861
862         sc = device_get_softc(dev);
863         sc->dev = dev;
864         TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
865
866         if ((pci_get_device(dev) & 0xff00) == 0x5400)
867                 t5_attribute_workaround(dev);
868         pci_enable_busmaster(dev);
869         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
870                 uint32_t v;
871
872                 pci_set_max_read_req(dev, 4096);
873                 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
874                 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
875                 if (pcie_relaxed_ordering == 0 &&
876                     (v | PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
877                         v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
878                         pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
879                 } else if (pcie_relaxed_ordering == 1 &&
880                     (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
881                         v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
882                         pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
883                 }
884         }
885
886         sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
887         sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
888         sc->traceq = -1;
889         mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
890         snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
891             device_get_nameunit(dev));
892
893         snprintf(sc->lockname, sizeof(sc->lockname), "%s",
894             device_get_nameunit(dev));
895         mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
896         t4_add_adapter(sc);
897
898         mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
899         TAILQ_INIT(&sc->sfl);
900         callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
901
902         mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
903
904         rc = t4_map_bars_0_and_4(sc);
905         if (rc != 0)
906                 goto done; /* error message displayed already */
907
908         memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
909
910         /* Prepare the adapter for operation. */
911         buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
912         rc = -t4_prep_adapter(sc, buf);
913         free(buf, M_CXGBE);
914         if (rc != 0) {
915                 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
916                 goto done;
917         }
918
919         /*
920          * This is the real PF# to which we're attaching.  Works from within PCI
921          * passthrough environments too, where pci_get_function() could return a
922          * different PF# depending on the passthrough configuration.  We need to
923          * use the real PF# in all our communication with the firmware.
924          */
925         j = t4_read_reg(sc, A_PL_WHOAMI);
926         sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
927         sc->mbox = sc->pf;
928
929         t4_init_devnames(sc);
930         if (sc->names == NULL) {
931                 rc = ENOTSUP;
932                 goto done; /* error message displayed already */
933         }
934
935         /*
936          * Do this really early, with the memory windows set up even before the
937          * character device.  The userland tool's register i/o and mem read
938          * will work even in "recovery mode".
939          */
940         setup_memwin(sc);
941         if (t4_init_devlog_params(sc, 0) == 0)
942                 fixup_devlog_params(sc);
943         make_dev_args_init(&mda);
944         mda.mda_devsw = &t4_cdevsw;
945         mda.mda_uid = UID_ROOT;
946         mda.mda_gid = GID_WHEEL;
947         mda.mda_mode = 0600;
948         mda.mda_si_drv1 = sc;
949         rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
950         if (rc != 0)
951                 device_printf(dev, "failed to create nexus char device: %d.\n",
952                     rc);
953
954         /* Go no further if recovery mode has been requested. */
955         if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
956                 device_printf(dev, "recovery mode.\n");
957                 goto done;
958         }
959
960 #if defined(__i386__)
961         if ((cpu_feature & CPUID_CX8) == 0) {
962                 device_printf(dev, "64 bit atomics not available.\n");
963                 rc = ENOTSUP;
964                 goto done;
965         }
966 #endif
967
968         /* Prepare the firmware for operation */
969         rc = prep_firmware(sc);
970         if (rc != 0)
971                 goto done; /* error message displayed already */
972
973         rc = get_params__post_init(sc);
974         if (rc != 0)
975                 goto done; /* error message displayed already */
976
977         rc = set_params__post_init(sc);
978         if (rc != 0)
979                 goto done; /* error message displayed already */
980
981         rc = t4_map_bar_2(sc);
982         if (rc != 0)
983                 goto done; /* error message displayed already */
984
985         rc = t4_create_dma_tag(sc);
986         if (rc != 0)
987                 goto done; /* error message displayed already */
988
989         /*
990          * First pass over all the ports - allocate VIs and initialize some
991          * basic parameters like mac address, port type, etc.
992          */
993         for_each_port(sc, i) {
994                 struct port_info *pi;
995
996                 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
997                 sc->port[i] = pi;
998
999                 /* These must be set before t4_port_init */
1000                 pi->adapter = sc;
1001                 pi->port_id = i;
1002                 /*
1003                  * XXX: vi[0] is special so we can't delay this allocation until
1004                  * pi->nvi's final value is known.
1005                  */
1006                 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1007                     M_ZERO | M_WAITOK);
1008
1009                 /*
1010                  * Allocate the "main" VI and initialize parameters
1011                  * like mac addr.
1012                  */
1013                 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1014                 if (rc != 0) {
1015                         device_printf(dev, "unable to initialize port %d: %d\n",
1016                             i, rc);
1017                         free(pi->vi, M_CXGBE);
1018                         free(pi, M_CXGBE);
1019                         sc->port[i] = NULL;
1020                         goto done;
1021                 }
1022
1023                 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1024                     device_get_nameunit(dev), i);
1025                 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1026                 sc->chan_map[pi->tx_chan] = i;
1027
1028                 /* All VIs on this port share this media. */
1029                 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1030                     cxgbe_media_status);
1031
1032                 pi->dev = device_add_child(dev, sc->names->ifnet_name, -1);
1033                 if (pi->dev == NULL) {
1034                         device_printf(dev,
1035                             "failed to add device for port %d.\n", i);
1036                         rc = ENXIO;
1037                         goto done;
1038                 }
1039                 pi->vi[0].dev = pi->dev;
1040                 device_set_softc(pi->dev, pi);
1041         }
1042
1043         /*
1044          * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1045          */
1046         nports = sc->params.nports;
1047         rc = cfg_itype_and_nqueues(sc, &iaq);
1048         if (rc != 0)
1049                 goto done; /* error message displayed already */
1050
1051         num_vis = iaq.num_vis;
1052         sc->intr_type = iaq.intr_type;
1053         sc->intr_count = iaq.nirq;
1054
1055         s = &sc->sge;
1056         s->nrxq = nports * iaq.nrxq;
1057         s->ntxq = nports * iaq.ntxq;
1058         if (num_vis > 1) {
1059                 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1060                 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1061         }
1062         s->neq = s->ntxq + s->nrxq;     /* the free list in an rxq is an eq */
1063         s->neq += nports + 1;/* ctrl queues: 1 per port + 1 mgmt */
1064         s->niq = s->nrxq + 1;           /* 1 extra for firmware event queue */
1065 #ifdef TCP_OFFLOAD
1066         if (is_offload(sc)) {
1067                 s->nofldrxq = nports * iaq.nofldrxq;
1068                 s->nofldtxq = nports * iaq.nofldtxq;
1069                 if (num_vis > 1) {
1070                         s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1071                         s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1072                 }
1073                 s->neq += s->nofldtxq + s->nofldrxq;
1074                 s->niq += s->nofldrxq;
1075
1076                 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1077                     M_CXGBE, M_ZERO | M_WAITOK);
1078                 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq),
1079                     M_CXGBE, M_ZERO | M_WAITOK);
1080         }
1081 #endif
1082 #ifdef DEV_NETMAP
1083         if (num_vis > 1) {
1084                 s->nnmrxq = nports * (num_vis - 1) * iaq.nnmrxq_vi;
1085                 s->nnmtxq = nports * (num_vis - 1) * iaq.nnmtxq_vi;
1086         }
1087         s->neq += s->nnmtxq + s->nnmrxq;
1088         s->niq += s->nnmrxq;
1089
1090         s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1091             M_CXGBE, M_ZERO | M_WAITOK);
1092         s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1093             M_CXGBE, M_ZERO | M_WAITOK);
1094 #endif
1095
1096         s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1097             M_ZERO | M_WAITOK);
1098         s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1099             M_ZERO | M_WAITOK);
1100         s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1101             M_ZERO | M_WAITOK);
1102         s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
1103             M_ZERO | M_WAITOK);
1104         s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
1105             M_ZERO | M_WAITOK);
1106
1107         sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1108             M_ZERO | M_WAITOK);
1109
1110         t4_init_l2t(sc, M_WAITOK);
1111         t4_init_tx_sched(sc);
1112
1113         /*
1114          * Second pass over the ports.  This time we know the number of rx and
1115          * tx queues that each port should get.
1116          */
1117         rqidx = tqidx = 0;
1118 #ifdef TCP_OFFLOAD
1119         ofld_rqidx = ofld_tqidx = 0;
1120 #endif
1121 #ifdef DEV_NETMAP
1122         nm_rqidx = nm_tqidx = 0;
1123 #endif
1124         for_each_port(sc, i) {
1125                 struct port_info *pi = sc->port[i];
1126                 struct vi_info *vi;
1127
1128                 if (pi == NULL)
1129                         continue;
1130
1131                 pi->nvi = num_vis;
1132                 for_each_vi(pi, j, vi) {
1133                         vi->pi = pi;
1134                         vi->qsize_rxq = t4_qsize_rxq;
1135                         vi->qsize_txq = t4_qsize_txq;
1136
1137                         vi->first_rxq = rqidx;
1138                         vi->first_txq = tqidx;
1139                         vi->tmr_idx = t4_tmr_idx;
1140                         vi->pktc_idx = t4_pktc_idx;
1141                         vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1142                         vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1143
1144                         rqidx += vi->nrxq;
1145                         tqidx += vi->ntxq;
1146
1147                         if (j == 0 && vi->ntxq > 1)
1148                                 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1149                         else
1150                                 vi->rsrv_noflowq = 0;
1151
1152 #ifdef TCP_OFFLOAD
1153                         vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1154                         vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1155                         vi->first_ofld_rxq = ofld_rqidx;
1156                         vi->first_ofld_txq = ofld_tqidx;
1157                         vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1158                         vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1159
1160                         ofld_rqidx += vi->nofldrxq;
1161                         ofld_tqidx += vi->nofldtxq;
1162 #endif
1163 #ifdef DEV_NETMAP
1164                         if (j > 0) {
1165                                 vi->first_nm_rxq = nm_rqidx;
1166                                 vi->first_nm_txq = nm_tqidx;
1167                                 vi->nnmrxq = iaq.nnmrxq_vi;
1168                                 vi->nnmtxq = iaq.nnmtxq_vi;
1169                                 nm_rqidx += vi->nnmrxq;
1170                                 nm_tqidx += vi->nnmtxq;
1171                         }
1172 #endif
1173                 }
1174         }
1175
1176         rc = t4_setup_intr_handlers(sc);
1177         if (rc != 0) {
1178                 device_printf(dev,
1179                     "failed to setup interrupt handlers: %d\n", rc);
1180                 goto done;
1181         }
1182
1183         rc = bus_generic_probe(dev);
1184         if (rc != 0) {
1185                 device_printf(dev, "failed to probe child drivers: %d\n", rc);
1186                 goto done;
1187         }
1188
1189         /*
1190          * Ensure thread-safe mailbox access (in debug builds).
1191          *
1192          * So far this was the only thread accessing the mailbox but various
1193          * ifnets and sysctls are about to be created and their handlers/ioctls
1194          * will access the mailbox from different threads.
1195          */
1196         sc->flags |= CHK_MBOX_ACCESS;
1197
1198         rc = bus_generic_attach(dev);
1199         if (rc != 0) {
1200                 device_printf(dev,
1201                     "failed to attach all child ports: %d\n", rc);
1202                 goto done;
1203         }
1204
1205         device_printf(dev,
1206             "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1207             sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1208             sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1209             (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1210             sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1211
1212         t4_set_desc(sc);
1213
1214         notify_siblings(dev, 0);
1215
1216 done:
1217         if (rc != 0 && sc->cdev) {
1218                 /* cdev was created and so cxgbetool works; recover that way. */
1219                 device_printf(dev,
1220                     "error during attach, adapter is now in recovery mode.\n");
1221                 rc = 0;
1222         }
1223
1224         if (rc != 0)
1225                 t4_detach_common(dev);
1226         else
1227                 t4_sysctls(sc);
1228
1229         return (rc);
1230 }
1231
1232 static int
1233 t4_ready(device_t dev)
1234 {
1235         struct adapter *sc;
1236
1237         sc = device_get_softc(dev);
1238         if (sc->flags & FW_OK)
1239                 return (0);
1240         return (ENXIO);
1241 }
1242
1243 static int
1244 t4_read_port_device(device_t dev, int port, device_t *child)
1245 {
1246         struct adapter *sc;
1247         struct port_info *pi;
1248
1249         sc = device_get_softc(dev);
1250         if (port < 0 || port >= MAX_NPORTS)
1251                 return (EINVAL);
1252         pi = sc->port[port];
1253         if (pi == NULL || pi->dev == NULL)
1254                 return (ENXIO);
1255         *child = pi->dev;
1256         return (0);
1257 }
1258
1259 static int
1260 notify_siblings(device_t dev, int detaching)
1261 {
1262         device_t sibling;
1263         int error, i;
1264
1265         error = 0;
1266         for (i = 0; i < PCI_FUNCMAX; i++) {
1267                 if (i == pci_get_function(dev))
1268                         continue;
1269                 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1270                     pci_get_slot(dev), i);
1271                 if (sibling == NULL || !device_is_attached(sibling))
1272                         continue;
1273                 if (detaching)
1274                         error = T4_DETACH_CHILD(sibling);
1275                 else
1276                         (void)T4_ATTACH_CHILD(sibling);
1277                 if (error)
1278                         break;
1279         }
1280         return (error);
1281 }
1282
1283 /*
1284  * Idempotent
1285  */
1286 static int
1287 t4_detach(device_t dev)
1288 {
1289         struct adapter *sc;
1290         int rc;
1291
1292         sc = device_get_softc(dev);
1293
1294         rc = notify_siblings(dev, 1);
1295         if (rc) {
1296                 device_printf(dev,
1297                     "failed to detach sibling devices: %d\n", rc);
1298                 return (rc);
1299         }
1300
1301         return (t4_detach_common(dev));
1302 }
1303
1304 int
1305 t4_detach_common(device_t dev)
1306 {
1307         struct adapter *sc;
1308         struct port_info *pi;
1309         int i, rc;
1310
1311         sc = device_get_softc(dev);
1312
1313         sc->flags &= ~CHK_MBOX_ACCESS;
1314         if (sc->flags & FULL_INIT_DONE) {
1315                 if (!(sc->flags & IS_VF))
1316                         t4_intr_disable(sc);
1317         }
1318
1319         if (sc->cdev) {
1320                 destroy_dev(sc->cdev);
1321                 sc->cdev = NULL;
1322         }
1323
1324         if (device_is_attached(dev)) {
1325                 rc = bus_generic_detach(dev);
1326                 if (rc) {
1327                         device_printf(dev,
1328                             "failed to detach child devices: %d\n", rc);
1329                         return (rc);
1330                 }
1331         }
1332
1333         for (i = 0; i < sc->intr_count; i++)
1334                 t4_free_irq(sc, &sc->irq[i]);
1335
1336         if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1337                 t4_free_tx_sched(sc);
1338
1339         for (i = 0; i < MAX_NPORTS; i++) {
1340                 pi = sc->port[i];
1341                 if (pi) {
1342                         t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1343                         if (pi->dev)
1344                                 device_delete_child(dev, pi->dev);
1345
1346                         mtx_destroy(&pi->pi_lock);
1347                         free(pi->vi, M_CXGBE);
1348                         free(pi, M_CXGBE);
1349                 }
1350         }
1351
1352         device_delete_children(dev);
1353
1354         if (sc->flags & FULL_INIT_DONE)
1355                 adapter_full_uninit(sc);
1356
1357         if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1358                 t4_fw_bye(sc, sc->mbox);
1359
1360         if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1361                 pci_release_msi(dev);
1362
1363         if (sc->regs_res)
1364                 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1365                     sc->regs_res);
1366
1367         if (sc->udbs_res)
1368                 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1369                     sc->udbs_res);
1370
1371         if (sc->msix_res)
1372                 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1373                     sc->msix_res);
1374
1375         if (sc->l2t)
1376                 t4_free_l2t(sc->l2t);
1377
1378 #ifdef TCP_OFFLOAD
1379         free(sc->sge.ofld_rxq, M_CXGBE);
1380         free(sc->sge.ofld_txq, M_CXGBE);
1381 #endif
1382 #ifdef DEV_NETMAP
1383         free(sc->sge.nm_rxq, M_CXGBE);
1384         free(sc->sge.nm_txq, M_CXGBE);
1385 #endif
1386         free(sc->irq, M_CXGBE);
1387         free(sc->sge.rxq, M_CXGBE);
1388         free(sc->sge.txq, M_CXGBE);
1389         free(sc->sge.ctrlq, M_CXGBE);
1390         free(sc->sge.iqmap, M_CXGBE);
1391         free(sc->sge.eqmap, M_CXGBE);
1392         free(sc->tids.ftid_tab, M_CXGBE);
1393         t4_destroy_dma_tag(sc);
1394         if (mtx_initialized(&sc->sc_lock)) {
1395                 sx_xlock(&t4_list_lock);
1396                 SLIST_REMOVE(&t4_list, sc, adapter, link);
1397                 sx_xunlock(&t4_list_lock);
1398                 mtx_destroy(&sc->sc_lock);
1399         }
1400
1401         callout_drain(&sc->sfl_callout);
1402         if (mtx_initialized(&sc->tids.ftid_lock))
1403                 mtx_destroy(&sc->tids.ftid_lock);
1404         if (mtx_initialized(&sc->sfl_lock))
1405                 mtx_destroy(&sc->sfl_lock);
1406         if (mtx_initialized(&sc->ifp_lock))
1407                 mtx_destroy(&sc->ifp_lock);
1408         if (mtx_initialized(&sc->reg_lock))
1409                 mtx_destroy(&sc->reg_lock);
1410
1411         for (i = 0; i < NUM_MEMWIN; i++) {
1412                 struct memwin *mw = &sc->memwin[i];
1413
1414                 if (rw_initialized(&mw->mw_lock))
1415                         rw_destroy(&mw->mw_lock);
1416         }
1417
1418         bzero(sc, sizeof(*sc));
1419
1420         return (0);
1421 }
1422
1423 static int
1424 cxgbe_probe(device_t dev)
1425 {
1426         char buf[128];
1427         struct port_info *pi = device_get_softc(dev);
1428
1429         snprintf(buf, sizeof(buf), "port %d", pi->port_id);
1430         device_set_desc_copy(dev, buf);
1431
1432         return (BUS_PROBE_DEFAULT);
1433 }
1434
1435 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
1436     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
1437     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS)
1438 #define T4_CAP_ENABLE (T4_CAP)
1439
1440 static int
1441 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
1442 {
1443         struct ifnet *ifp;
1444         struct sbuf *sb;
1445
1446         vi->xact_addr_filt = -1;
1447         callout_init(&vi->tick, 1);
1448
1449         /* Allocate an ifnet and set it up */
1450         ifp = if_alloc(IFT_ETHER);
1451         if (ifp == NULL) {
1452                 device_printf(dev, "Cannot allocate ifnet\n");
1453                 return (ENOMEM);
1454         }
1455         vi->ifp = ifp;
1456         ifp->if_softc = vi;
1457
1458         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1459         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1460
1461         ifp->if_init = cxgbe_init;
1462         ifp->if_ioctl = cxgbe_ioctl;
1463         ifp->if_transmit = cxgbe_transmit;
1464         ifp->if_qflush = cxgbe_qflush;
1465         ifp->if_get_counter = cxgbe_get_counter;
1466
1467         ifp->if_capabilities = T4_CAP;
1468 #ifdef TCP_OFFLOAD
1469         if (vi->nofldrxq != 0)
1470                 ifp->if_capabilities |= IFCAP_TOE;
1471 #endif
1472 #ifdef DEV_NETMAP
1473         if (vi->nnmrxq != 0)
1474                 ifp->if_capabilities |= IFCAP_NETMAP;
1475 #endif
1476         ifp->if_capenable = T4_CAP_ENABLE;
1477         ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
1478             CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
1479
1480         ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
1481         ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS;
1482         ifp->if_hw_tsomaxsegsize = 65536;
1483
1484         vi->vlan_c = EVENTHANDLER_REGISTER(vlan_config, cxgbe_vlan_config, ifp,
1485             EVENTHANDLER_PRI_ANY);
1486
1487         ether_ifattach(ifp, vi->hw_addr);
1488 #ifdef DEV_NETMAP
1489         if (ifp->if_capabilities & IFCAP_NETMAP)
1490                 cxgbe_nm_attach(vi);
1491 #endif
1492         sb = sbuf_new_auto();
1493         sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
1494 #ifdef TCP_OFFLOAD
1495         if (ifp->if_capabilities & IFCAP_TOE)
1496                 sbuf_printf(sb, "; %d txq, %d rxq (TOE)",
1497                     vi->nofldtxq, vi->nofldrxq);
1498 #endif
1499 #ifdef DEV_NETMAP
1500         if (ifp->if_capabilities & IFCAP_NETMAP)
1501                 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
1502                     vi->nnmtxq, vi->nnmrxq);
1503 #endif
1504         sbuf_finish(sb);
1505         device_printf(dev, "%s\n", sbuf_data(sb));
1506         sbuf_delete(sb);
1507
1508         vi_sysctls(vi);
1509
1510         return (0);
1511 }
1512
1513 static int
1514 cxgbe_attach(device_t dev)
1515 {
1516         struct port_info *pi = device_get_softc(dev);
1517         struct adapter *sc = pi->adapter;
1518         struct vi_info *vi;
1519         int i, rc;
1520
1521         callout_init_mtx(&pi->tick, &pi->pi_lock, 0);
1522
1523         rc = cxgbe_vi_attach(dev, &pi->vi[0]);
1524         if (rc)
1525                 return (rc);
1526
1527         for_each_vi(pi, i, vi) {
1528                 if (i == 0)
1529                         continue;
1530                 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
1531                 if (vi->dev == NULL) {
1532                         device_printf(dev, "failed to add VI %d\n", i);
1533                         continue;
1534                 }
1535                 device_set_softc(vi->dev, vi);
1536         }
1537
1538         cxgbe_sysctls(pi);
1539
1540         bus_generic_attach(dev);
1541
1542         return (0);
1543 }
1544
1545 static void
1546 cxgbe_vi_detach(struct vi_info *vi)
1547 {
1548         struct ifnet *ifp = vi->ifp;
1549
1550         ether_ifdetach(ifp);
1551
1552         if (vi->vlan_c)
1553                 EVENTHANDLER_DEREGISTER(vlan_config, vi->vlan_c);
1554
1555         /* Let detach proceed even if these fail. */
1556 #ifdef DEV_NETMAP
1557         if (ifp->if_capabilities & IFCAP_NETMAP)
1558                 cxgbe_nm_detach(vi);
1559 #endif
1560         cxgbe_uninit_synchronized(vi);
1561         callout_drain(&vi->tick);
1562         vi_full_uninit(vi);
1563
1564         if_free(vi->ifp);
1565         vi->ifp = NULL;
1566 }
1567
1568 static int
1569 cxgbe_detach(device_t dev)
1570 {
1571         struct port_info *pi = device_get_softc(dev);
1572         struct adapter *sc = pi->adapter;
1573         int rc;
1574
1575         /* Detach the extra VIs first. */
1576         rc = bus_generic_detach(dev);
1577         if (rc)
1578                 return (rc);
1579         device_delete_children(dev);
1580
1581         doom_vi(sc, &pi->vi[0]);
1582
1583         if (pi->flags & HAS_TRACEQ) {
1584                 sc->traceq = -1;        /* cloner should not create ifnet */
1585                 t4_tracer_port_detach(sc);
1586         }
1587
1588         cxgbe_vi_detach(&pi->vi[0]);
1589         callout_drain(&pi->tick);
1590         ifmedia_removeall(&pi->media);
1591
1592         end_synchronized_op(sc, 0);
1593
1594         return (0);
1595 }
1596
1597 static void
1598 cxgbe_init(void *arg)
1599 {
1600         struct vi_info *vi = arg;
1601         struct adapter *sc = vi->pi->adapter;
1602
1603         if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
1604                 return;
1605         cxgbe_init_synchronized(vi);
1606         end_synchronized_op(sc, 0);
1607 }
1608
1609 static int
1610 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
1611 {
1612         int rc = 0, mtu, flags, can_sleep;
1613         struct vi_info *vi = ifp->if_softc;
1614         struct port_info *pi = vi->pi;
1615         struct adapter *sc = pi->adapter;
1616         struct ifreq *ifr = (struct ifreq *)data;
1617         uint32_t mask;
1618
1619         switch (cmd) {
1620         case SIOCSIFMTU:
1621                 mtu = ifr->ifr_mtu;
1622                 if (mtu < ETHERMIN || mtu > MAX_MTU)
1623                         return (EINVAL);
1624
1625                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
1626                 if (rc)
1627                         return (rc);
1628                 ifp->if_mtu = mtu;
1629                 if (vi->flags & VI_INIT_DONE) {
1630                         t4_update_fl_bufsize(ifp);
1631                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1632                                 rc = update_mac_settings(ifp, XGMAC_MTU);
1633                 }
1634                 end_synchronized_op(sc, 0);
1635                 break;
1636
1637         case SIOCSIFFLAGS:
1638                 can_sleep = 0;
1639 redo_sifflags:
1640                 rc = begin_synchronized_op(sc, vi,
1641                     can_sleep ? (SLEEP_OK | INTR_OK) : HOLD_LOCK, "t4flg");
1642                 if (rc)
1643                         return (rc);
1644
1645                 if (ifp->if_flags & IFF_UP) {
1646                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1647                                 flags = vi->if_flags;
1648                                 if ((ifp->if_flags ^ flags) &
1649                                     (IFF_PROMISC | IFF_ALLMULTI)) {
1650                                         if (can_sleep == 1) {
1651                                                 end_synchronized_op(sc, 0);
1652                                                 can_sleep = 0;
1653                                                 goto redo_sifflags;
1654                                         }
1655                                         rc = update_mac_settings(ifp,
1656                                             XGMAC_PROMISC | XGMAC_ALLMULTI);
1657                                 }
1658                         } else {
1659                                 if (can_sleep == 0) {
1660                                         end_synchronized_op(sc, LOCK_HELD);
1661                                         can_sleep = 1;
1662                                         goto redo_sifflags;
1663                                 }
1664                                 rc = cxgbe_init_synchronized(vi);
1665                         }
1666                         vi->if_flags = ifp->if_flags;
1667                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1668                         if (can_sleep == 0) {
1669                                 end_synchronized_op(sc, LOCK_HELD);
1670                                 can_sleep = 1;
1671                                 goto redo_sifflags;
1672                         }
1673                         rc = cxgbe_uninit_synchronized(vi);
1674                 }
1675                 end_synchronized_op(sc, can_sleep ? 0 : LOCK_HELD);
1676                 break;
1677
1678         case SIOCADDMULTI:
1679         case SIOCDELMULTI: /* these two are called with a mutex held :-( */
1680                 rc = begin_synchronized_op(sc, vi, HOLD_LOCK, "t4multi");
1681                 if (rc)
1682                         return (rc);
1683                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1684                         rc = update_mac_settings(ifp, XGMAC_MCADDRS);
1685                 end_synchronized_op(sc, LOCK_HELD);
1686                 break;
1687
1688         case SIOCSIFCAP:
1689                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
1690                 if (rc)
1691                         return (rc);
1692
1693                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1694                 if (mask & IFCAP_TXCSUM) {
1695                         ifp->if_capenable ^= IFCAP_TXCSUM;
1696                         ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
1697
1698                         if (IFCAP_TSO4 & ifp->if_capenable &&
1699                             !(IFCAP_TXCSUM & ifp->if_capenable)) {
1700                                 ifp->if_capenable &= ~IFCAP_TSO4;
1701                                 if_printf(ifp,
1702                                     "tso4 disabled due to -txcsum.\n");
1703                         }
1704                 }
1705                 if (mask & IFCAP_TXCSUM_IPV6) {
1706                         ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
1707                         ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
1708
1709                         if (IFCAP_TSO6 & ifp->if_capenable &&
1710                             !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1711                                 ifp->if_capenable &= ~IFCAP_TSO6;
1712                                 if_printf(ifp,
1713                                     "tso6 disabled due to -txcsum6.\n");
1714                         }
1715                 }
1716                 if (mask & IFCAP_RXCSUM)
1717                         ifp->if_capenable ^= IFCAP_RXCSUM;
1718                 if (mask & IFCAP_RXCSUM_IPV6)
1719                         ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
1720
1721                 /*
1722                  * Note that we leave CSUM_TSO alone (it is always set).  The
1723                  * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
1724                  * sending a TSO request our way, so it's sufficient to toggle
1725                  * IFCAP_TSOx only.
1726                  */
1727                 if (mask & IFCAP_TSO4) {
1728                         if (!(IFCAP_TSO4 & ifp->if_capenable) &&
1729                             !(IFCAP_TXCSUM & ifp->if_capenable)) {
1730                                 if_printf(ifp, "enable txcsum first.\n");
1731                                 rc = EAGAIN;
1732                                 goto fail;
1733                         }
1734                         ifp->if_capenable ^= IFCAP_TSO4;
1735                 }
1736                 if (mask & IFCAP_TSO6) {
1737                         if (!(IFCAP_TSO6 & ifp->if_capenable) &&
1738                             !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1739                                 if_printf(ifp, "enable txcsum6 first.\n");
1740                                 rc = EAGAIN;
1741                                 goto fail;
1742                         }
1743                         ifp->if_capenable ^= IFCAP_TSO6;
1744                 }
1745                 if (mask & IFCAP_LRO) {
1746 #if defined(INET) || defined(INET6)
1747                         int i;
1748                         struct sge_rxq *rxq;
1749
1750                         ifp->if_capenable ^= IFCAP_LRO;
1751                         for_each_rxq(vi, i, rxq) {
1752                                 if (ifp->if_capenable & IFCAP_LRO)
1753                                         rxq->iq.flags |= IQ_LRO_ENABLED;
1754                                 else
1755                                         rxq->iq.flags &= ~IQ_LRO_ENABLED;
1756                         }
1757 #endif
1758                 }
1759 #ifdef TCP_OFFLOAD
1760                 if (mask & IFCAP_TOE) {
1761                         int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
1762
1763                         rc = toe_capability(vi, enable);
1764                         if (rc != 0)
1765                                 goto fail;
1766
1767                         ifp->if_capenable ^= mask;
1768                 }
1769 #endif
1770                 if (mask & IFCAP_VLAN_HWTAGGING) {
1771                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1772                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1773                                 rc = update_mac_settings(ifp, XGMAC_VLANEX);
1774                 }
1775                 if (mask & IFCAP_VLAN_MTU) {
1776                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
1777
1778                         /* Need to find out how to disable auto-mtu-inflation */
1779                 }
1780                 if (mask & IFCAP_VLAN_HWTSO)
1781                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1782                 if (mask & IFCAP_VLAN_HWCSUM)
1783                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1784
1785 #ifdef VLAN_CAPABILITIES
1786                 VLAN_CAPABILITIES(ifp);
1787 #endif
1788 fail:
1789                 end_synchronized_op(sc, 0);
1790                 break;
1791
1792         case SIOCSIFMEDIA:
1793         case SIOCGIFMEDIA:
1794         case SIOCGIFXMEDIA:
1795                 ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
1796                 break;
1797
1798         case SIOCGI2C: {
1799                 struct ifi2creq i2c;
1800
1801                 rc = copyin(ifr->ifr_data, &i2c, sizeof(i2c));
1802                 if (rc != 0)
1803                         break;
1804                 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
1805                         rc = EPERM;
1806                         break;
1807                 }
1808                 if (i2c.len > sizeof(i2c.data)) {
1809                         rc = EINVAL;
1810                         break;
1811                 }
1812                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
1813                 if (rc)
1814                         return (rc);
1815                 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
1816                     i2c.offset, i2c.len, &i2c.data[0]);
1817                 end_synchronized_op(sc, 0);
1818                 if (rc == 0)
1819                         rc = copyout(&i2c, ifr->ifr_data, sizeof(i2c));
1820                 break;
1821         }
1822
1823         default:
1824                 rc = ether_ioctl(ifp, cmd, data);
1825         }
1826
1827         return (rc);
1828 }
1829
1830 static int
1831 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
1832 {
1833         struct vi_info *vi = ifp->if_softc;
1834         struct port_info *pi = vi->pi;
1835         struct adapter *sc = pi->adapter;
1836         struct sge_txq *txq;
1837         void *items[1];
1838         int rc;
1839
1840         M_ASSERTPKTHDR(m);
1841         MPASS(m->m_nextpkt == NULL);    /* not quite ready for this yet */
1842
1843         if (__predict_false(pi->link_cfg.link_ok == 0)) {
1844                 m_freem(m);
1845                 return (ENETDOWN);
1846         }
1847
1848         rc = parse_pkt(sc, &m);
1849         if (__predict_false(rc != 0)) {
1850                 MPASS(m == NULL);                       /* was freed already */
1851                 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
1852                 return (rc);
1853         }
1854
1855         /* Select a txq. */
1856         txq = &sc->sge.txq[vi->first_txq];
1857         if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
1858                 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
1859                     vi->rsrv_noflowq);
1860
1861         items[0] = m;
1862         rc = mp_ring_enqueue(txq->r, items, 1, 4096);
1863         if (__predict_false(rc != 0))
1864                 m_freem(m);
1865
1866         return (rc);
1867 }
1868
1869 static void
1870 cxgbe_qflush(struct ifnet *ifp)
1871 {
1872         struct vi_info *vi = ifp->if_softc;
1873         struct sge_txq *txq;
1874         int i;
1875
1876         /* queues do not exist if !VI_INIT_DONE. */
1877         if (vi->flags & VI_INIT_DONE) {
1878                 for_each_txq(vi, i, txq) {
1879                         TXQ_LOCK(txq);
1880                         txq->eq.flags |= EQ_QFLUSH;
1881                         TXQ_UNLOCK(txq);
1882                         while (!mp_ring_is_idle(txq->r)) {
1883                                 mp_ring_check_drainage(txq->r, 0);
1884                                 pause("qflush", 1);
1885                         }
1886                         TXQ_LOCK(txq);
1887                         txq->eq.flags &= ~EQ_QFLUSH;
1888                         TXQ_UNLOCK(txq);
1889                 }
1890         }
1891         if_qflush(ifp);
1892 }
1893
1894 static uint64_t
1895 vi_get_counter(struct ifnet *ifp, ift_counter c)
1896 {
1897         struct vi_info *vi = ifp->if_softc;
1898         struct fw_vi_stats_vf *s = &vi->stats;
1899
1900         vi_refresh_stats(vi->pi->adapter, vi);
1901
1902         switch (c) {
1903         case IFCOUNTER_IPACKETS:
1904                 return (s->rx_bcast_frames + s->rx_mcast_frames +
1905                     s->rx_ucast_frames);
1906         case IFCOUNTER_IERRORS:
1907                 return (s->rx_err_frames);
1908         case IFCOUNTER_OPACKETS:
1909                 return (s->tx_bcast_frames + s->tx_mcast_frames +
1910                     s->tx_ucast_frames + s->tx_offload_frames);
1911         case IFCOUNTER_OERRORS:
1912                 return (s->tx_drop_frames);
1913         case IFCOUNTER_IBYTES:
1914                 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
1915                     s->rx_ucast_bytes);
1916         case IFCOUNTER_OBYTES:
1917                 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
1918                     s->tx_ucast_bytes + s->tx_offload_bytes);
1919         case IFCOUNTER_IMCASTS:
1920                 return (s->rx_mcast_frames);
1921         case IFCOUNTER_OMCASTS:
1922                 return (s->tx_mcast_frames);
1923         case IFCOUNTER_OQDROPS: {
1924                 uint64_t drops;
1925
1926                 drops = 0;
1927                 if (vi->flags & VI_INIT_DONE) {
1928                         int i;
1929                         struct sge_txq *txq;
1930
1931                         for_each_txq(vi, i, txq)
1932                                 drops += counter_u64_fetch(txq->r->drops);
1933                 }
1934
1935                 return (drops);
1936
1937         }
1938
1939         default:
1940                 return (if_get_counter_default(ifp, c));
1941         }
1942 }
1943
1944 uint64_t
1945 cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
1946 {
1947         struct vi_info *vi = ifp->if_softc;
1948         struct port_info *pi = vi->pi;
1949         struct adapter *sc = pi->adapter;
1950         struct port_stats *s = &pi->stats;
1951
1952         if (pi->nvi > 1 || sc->flags & IS_VF)
1953                 return (vi_get_counter(ifp, c));
1954
1955         cxgbe_refresh_stats(sc, pi);
1956
1957         switch (c) {
1958         case IFCOUNTER_IPACKETS:
1959                 return (s->rx_frames);
1960
1961         case IFCOUNTER_IERRORS:
1962                 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
1963                     s->rx_fcs_err + s->rx_len_err);
1964
1965         case IFCOUNTER_OPACKETS:
1966                 return (s->tx_frames);
1967
1968         case IFCOUNTER_OERRORS:
1969                 return (s->tx_error_frames);
1970
1971         case IFCOUNTER_IBYTES:
1972                 return (s->rx_octets);
1973
1974         case IFCOUNTER_OBYTES:
1975                 return (s->tx_octets);
1976
1977         case IFCOUNTER_IMCASTS:
1978                 return (s->rx_mcast_frames);
1979
1980         case IFCOUNTER_OMCASTS:
1981                 return (s->tx_mcast_frames);
1982
1983         case IFCOUNTER_IQDROPS:
1984                 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
1985                     s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
1986                     s->rx_trunc3 + pi->tnl_cong_drops);
1987
1988         case IFCOUNTER_OQDROPS: {
1989                 uint64_t drops;
1990
1991                 drops = s->tx_drop;
1992                 if (vi->flags & VI_INIT_DONE) {
1993                         int i;
1994                         struct sge_txq *txq;
1995
1996                         for_each_txq(vi, i, txq)
1997                                 drops += counter_u64_fetch(txq->r->drops);
1998                 }
1999
2000                 return (drops);
2001
2002         }
2003
2004         default:
2005                 return (if_get_counter_default(ifp, c));
2006         }
2007 }
2008
2009 static int
2010 cxgbe_media_change(struct ifnet *ifp)
2011 {
2012         struct vi_info *vi = ifp->if_softc;
2013
2014         device_printf(vi->dev, "%s unimplemented.\n", __func__);
2015
2016         return (EOPNOTSUPP);
2017 }
2018
2019 static void
2020 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2021 {
2022         struct vi_info *vi = ifp->if_softc;
2023         struct port_info *pi = vi->pi;
2024         struct ifmedia_entry *cur;
2025         struct link_config *lc = &pi->link_cfg;
2026
2027         /*
2028          * If all the interfaces are administratively down the firmware does not
2029          * report transceiver changes.  Refresh port info here so that ifconfig
2030          * displays accurate information at all times.
2031          */
2032         if (begin_synchronized_op(pi->adapter, NULL, SLEEP_OK | INTR_OK,
2033             "t4med") == 0) {
2034                 PORT_LOCK(pi);
2035                 if (pi->up_vis == 0) {
2036                         t4_update_port_info(pi);
2037                         build_medialist(pi, &pi->media);
2038                 }
2039                 PORT_UNLOCK(pi);
2040                 end_synchronized_op(pi->adapter, 0);
2041         }
2042
2043         ifmr->ifm_status = IFM_AVALID;
2044         if (lc->link_ok == 0)
2045                 return;
2046
2047         ifmr->ifm_status |= IFM_ACTIVE;
2048         ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
2049         if (lc->fc & PAUSE_RX)
2050                 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2051         if (lc->fc & PAUSE_TX)
2052                 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2053
2054         /* active and current will differ iff current media is autoselect. */
2055         cur = pi->media.ifm_cur;
2056         if (cur != NULL && IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO)
2057                 return;
2058
2059         ifmr->ifm_active = IFM_ETHER | IFM_FDX;
2060         if (lc->fc & PAUSE_RX)
2061                 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2062         if (lc->fc & PAUSE_TX)
2063                 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2064         switch (lc->speed) {
2065         case 10000:
2066                 ifmr->ifm_active |= IFM_10G_T;
2067                 break;
2068         case 1000:
2069                 ifmr->ifm_active |= IFM_1000_T;
2070                 break;
2071         case 100:
2072                 ifmr->ifm_active |= IFM_100_TX;
2073                 break;
2074         case 10:
2075                 ifmr->ifm_active |= IFM_10_T;
2076                 break;
2077         default:
2078                 device_printf(vi->dev, "link up but speed unknown (%u)\n",
2079                     lc->speed);
2080         }
2081 }
2082
2083 static int
2084 vcxgbe_probe(device_t dev)
2085 {
2086         char buf[128];
2087         struct vi_info *vi = device_get_softc(dev);
2088
2089         snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
2090             vi - vi->pi->vi);
2091         device_set_desc_copy(dev, buf);
2092
2093         return (BUS_PROBE_DEFAULT);
2094 }
2095
2096 static int
2097 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
2098 {
2099         int func, index, rc;
2100         uint32_t param, val;
2101
2102         ASSERT_SYNCHRONIZED_OP(sc);
2103
2104         index = vi - pi->vi;
2105         MPASS(index > 0);       /* This function deals with _extra_ VIs only */
2106         KASSERT(index < nitems(vi_mac_funcs),
2107             ("%s: VI %s doesn't have a MAC func", __func__,
2108             device_get_nameunit(vi->dev)));
2109         func = vi_mac_funcs[index];
2110         rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
2111             vi->hw_addr, &vi->rss_size, func, 0);
2112         if (rc < 0) {
2113                 device_printf(vi->dev, "failed to allocate virtual interface %d"
2114                     "for port %d: %d\n", index, pi->port_id, -rc);
2115                 return (-rc);
2116         }
2117         vi->viid = rc;
2118         if (chip_id(sc) <= CHELSIO_T5)
2119                 vi->smt_idx = (rc & 0x7f) << 1;
2120         else
2121                 vi->smt_idx = (rc & 0x7f);
2122
2123         if (vi->rss_size == 1) {
2124                 /*
2125                  * This VI didn't get a slice of the RSS table.  Reduce the
2126                  * number of VIs being created (hw.cxgbe.num_vis) or modify the
2127                  * configuration file (nvi, rssnvi for this PF) if this is a
2128                  * problem.
2129                  */
2130                 device_printf(vi->dev, "RSS table not available.\n");
2131                 vi->rss_base = 0xffff;
2132
2133                 return (0);
2134         }
2135
2136         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2137             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
2138             V_FW_PARAMS_PARAM_YZ(vi->viid);
2139         rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2140         if (rc)
2141                 vi->rss_base = 0xffff;
2142         else {
2143                 MPASS((val >> 16) == vi->rss_size);
2144                 vi->rss_base = val & 0xffff;
2145         }
2146
2147         return (0);
2148 }
2149
2150 static int
2151 vcxgbe_attach(device_t dev)
2152 {
2153         struct vi_info *vi;
2154         struct port_info *pi;
2155         struct adapter *sc;
2156         int rc;
2157
2158         vi = device_get_softc(dev);
2159         pi = vi->pi;
2160         sc = pi->adapter;
2161
2162         rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
2163         if (rc)
2164                 return (rc);
2165         rc = alloc_extra_vi(sc, pi, vi);
2166         end_synchronized_op(sc, 0);
2167         if (rc)
2168                 return (rc);
2169
2170         rc = cxgbe_vi_attach(dev, vi);
2171         if (rc) {
2172                 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2173                 return (rc);
2174         }
2175         return (0);
2176 }
2177
2178 static int
2179 vcxgbe_detach(device_t dev)
2180 {
2181         struct vi_info *vi;
2182         struct adapter *sc;
2183
2184         vi = device_get_softc(dev);
2185         sc = vi->pi->adapter;
2186
2187         doom_vi(sc, vi);
2188
2189         cxgbe_vi_detach(vi);
2190         t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2191
2192         end_synchronized_op(sc, 0);
2193
2194         return (0);
2195 }
2196
2197 void
2198 t4_fatal_err(struct adapter *sc)
2199 {
2200         t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0);
2201         t4_intr_disable(sc);
2202         log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n",
2203             device_get_nameunit(sc->dev));
2204 }
2205
2206 void
2207 t4_add_adapter(struct adapter *sc)
2208 {
2209         sx_xlock(&t4_list_lock);
2210         SLIST_INSERT_HEAD(&t4_list, sc, link);
2211         sx_xunlock(&t4_list_lock);
2212 }
2213
2214 int
2215 t4_map_bars_0_and_4(struct adapter *sc)
2216 {
2217         sc->regs_rid = PCIR_BAR(0);
2218         sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2219             &sc->regs_rid, RF_ACTIVE);
2220         if (sc->regs_res == NULL) {
2221                 device_printf(sc->dev, "cannot map registers.\n");
2222                 return (ENXIO);
2223         }
2224         sc->bt = rman_get_bustag(sc->regs_res);
2225         sc->bh = rman_get_bushandle(sc->regs_res);
2226         sc->mmio_len = rman_get_size(sc->regs_res);
2227         setbit(&sc->doorbells, DOORBELL_KDB);
2228
2229         sc->msix_rid = PCIR_BAR(4);
2230         sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2231             &sc->msix_rid, RF_ACTIVE);
2232         if (sc->msix_res == NULL) {
2233                 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
2234                 return (ENXIO);
2235         }
2236
2237         return (0);
2238 }
2239
2240 int
2241 t4_map_bar_2(struct adapter *sc)
2242 {
2243
2244         /*
2245          * T4: only iWARP driver uses the userspace doorbells.  There is no need
2246          * to map it if RDMA is disabled.
2247          */
2248         if (is_t4(sc) && sc->rdmacaps == 0)
2249                 return (0);
2250
2251         sc->udbs_rid = PCIR_BAR(2);
2252         sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2253             &sc->udbs_rid, RF_ACTIVE);
2254         if (sc->udbs_res == NULL) {
2255                 device_printf(sc->dev, "cannot map doorbell BAR.\n");
2256                 return (ENXIO);
2257         }
2258         sc->udbs_base = rman_get_virtual(sc->udbs_res);
2259
2260         if (chip_id(sc) >= CHELSIO_T5) {
2261                 setbit(&sc->doorbells, DOORBELL_UDB);
2262 #if defined(__i386__) || defined(__amd64__)
2263                 if (t5_write_combine) {
2264                         int rc, mode;
2265
2266                         /*
2267                          * Enable write combining on BAR2.  This is the
2268                          * userspace doorbell BAR and is split into 128B
2269                          * (UDBS_SEG_SIZE) doorbell regions, each associated
2270                          * with an egress queue.  The first 64B has the doorbell
2271                          * and the second 64B can be used to submit a tx work
2272                          * request with an implicit doorbell.
2273                          */
2274
2275                         rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
2276                             rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
2277                         if (rc == 0) {
2278                                 clrbit(&sc->doorbells, DOORBELL_UDB);
2279                                 setbit(&sc->doorbells, DOORBELL_WCWR);
2280                                 setbit(&sc->doorbells, DOORBELL_UDBWC);
2281                         } else {
2282                                 t5_write_combine = 0;
2283                                 device_printf(sc->dev,
2284                                     "couldn't enable write combining: %d\n",
2285                                     rc);
2286                         }
2287
2288                         mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
2289                         t4_write_reg(sc, A_SGE_STAT_CFG,
2290                             V_STATSOURCE_T5(7) | mode);
2291                 }
2292 #else
2293                 t5_write_combine = 0;
2294 #endif
2295                 sc->iwt.wc_en = t5_write_combine;
2296         }
2297
2298         return (0);
2299 }
2300
2301 struct memwin_init {
2302         uint32_t base;
2303         uint32_t aperture;
2304 };
2305
2306 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
2307         { MEMWIN0_BASE, MEMWIN0_APERTURE },
2308         { MEMWIN1_BASE, MEMWIN1_APERTURE },
2309         { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
2310 };
2311
2312 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
2313         { MEMWIN0_BASE, MEMWIN0_APERTURE },
2314         { MEMWIN1_BASE, MEMWIN1_APERTURE },
2315         { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
2316 };
2317
2318 static void
2319 setup_memwin(struct adapter *sc)
2320 {
2321         const struct memwin_init *mw_init;
2322         struct memwin *mw;
2323         int i;
2324         uint32_t bar0;
2325
2326         if (is_t4(sc)) {
2327                 /*
2328                  * Read low 32b of bar0 indirectly via the hardware backdoor
2329                  * mechanism.  Works from within PCI passthrough environments
2330                  * too, where rman_get_start() can return a different value.  We
2331                  * need to program the T4 memory window decoders with the actual
2332                  * addresses that will be coming across the PCIe link.
2333                  */
2334                 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
2335                 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
2336
2337                 mw_init = &t4_memwin[0];
2338         } else {
2339                 /* T5+ use the relative offset inside the PCIe BAR */
2340                 bar0 = 0;
2341
2342                 mw_init = &t5_memwin[0];
2343         }
2344
2345         for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
2346                 rw_init(&mw->mw_lock, "memory window access");
2347                 mw->mw_base = mw_init->base;
2348                 mw->mw_aperture = mw_init->aperture;
2349                 mw->mw_curpos = 0;
2350                 t4_write_reg(sc,
2351                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
2352                     (mw->mw_base + bar0) | V_BIR(0) |
2353                     V_WINDOW(ilog2(mw->mw_aperture) - 10));
2354                 rw_wlock(&mw->mw_lock);
2355                 position_memwin(sc, i, 0);
2356                 rw_wunlock(&mw->mw_lock);
2357         }
2358
2359         /* flush */
2360         t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
2361 }
2362
2363 /*
2364  * Positions the memory window at the given address in the card's address space.
2365  * There are some alignment requirements and the actual position may be at an
2366  * address prior to the requested address.  mw->mw_curpos always has the actual
2367  * position of the window.
2368  */
2369 static void
2370 position_memwin(struct adapter *sc, int idx, uint32_t addr)
2371 {
2372         struct memwin *mw;
2373         uint32_t pf;
2374         uint32_t reg;
2375
2376         MPASS(idx >= 0 && idx < NUM_MEMWIN);
2377         mw = &sc->memwin[idx];
2378         rw_assert(&mw->mw_lock, RA_WLOCKED);
2379
2380         if (is_t4(sc)) {
2381                 pf = 0;
2382                 mw->mw_curpos = addr & ~0xf;    /* start must be 16B aligned */
2383         } else {
2384                 pf = V_PFNUM(sc->pf);
2385                 mw->mw_curpos = addr & ~0x7f;   /* start must be 128B aligned */
2386         }
2387         reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
2388         t4_write_reg(sc, reg, mw->mw_curpos | pf);
2389         t4_read_reg(sc, reg);   /* flush */
2390 }
2391
2392 static int
2393 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2394     int len, int rw)
2395 {
2396         struct memwin *mw;
2397         uint32_t mw_end, v;
2398
2399         MPASS(idx >= 0 && idx < NUM_MEMWIN);
2400
2401         /* Memory can only be accessed in naturally aligned 4 byte units */
2402         if (addr & 3 || len & 3 || len <= 0)
2403                 return (EINVAL);
2404
2405         mw = &sc->memwin[idx];
2406         while (len > 0) {
2407                 rw_rlock(&mw->mw_lock);
2408                 mw_end = mw->mw_curpos + mw->mw_aperture;
2409                 if (addr >= mw_end || addr < mw->mw_curpos) {
2410                         /* Will need to reposition the window */
2411                         if (!rw_try_upgrade(&mw->mw_lock)) {
2412                                 rw_runlock(&mw->mw_lock);
2413                                 rw_wlock(&mw->mw_lock);
2414                         }
2415                         rw_assert(&mw->mw_lock, RA_WLOCKED);
2416                         position_memwin(sc, idx, addr);
2417                         rw_downgrade(&mw->mw_lock);
2418                         mw_end = mw->mw_curpos + mw->mw_aperture;
2419                 }
2420                 rw_assert(&mw->mw_lock, RA_RLOCKED);
2421                 while (addr < mw_end && len > 0) {
2422                         if (rw == 0) {
2423                                 v = t4_read_reg(sc, mw->mw_base + addr -
2424                                     mw->mw_curpos);
2425                                 *val++ = le32toh(v);
2426                         } else {
2427                                 v = *val++;
2428                                 t4_write_reg(sc, mw->mw_base + addr -
2429                                     mw->mw_curpos, htole32(v));
2430                         }
2431                         addr += 4;
2432                         len -= 4;
2433                 }
2434                 rw_runlock(&mw->mw_lock);
2435         }
2436
2437         return (0);
2438 }
2439
2440 static inline int
2441 read_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2442     int len)
2443 {
2444
2445         return (rw_via_memwin(sc, idx, addr, val, len, 0));
2446 }
2447
2448 static inline int
2449 write_via_memwin(struct adapter *sc, int idx, uint32_t addr,
2450     const uint32_t *val, int len)
2451 {
2452
2453         return (rw_via_memwin(sc, idx, addr, (void *)(uintptr_t)val, len, 1));
2454 }
2455
2456 static int
2457 t4_range_cmp(const void *a, const void *b)
2458 {
2459         return ((const struct t4_range *)a)->start -
2460                ((const struct t4_range *)b)->start;
2461 }
2462
2463 /*
2464  * Verify that the memory range specified by the addr/len pair is valid within
2465  * the card's address space.
2466  */
2467 static int
2468 validate_mem_range(struct adapter *sc, uint32_t addr, int len)
2469 {
2470         struct t4_range mem_ranges[4], *r, *next;
2471         uint32_t em, addr_len;
2472         int i, n, remaining;
2473
2474         /* Memory can only be accessed in naturally aligned 4 byte units */
2475         if (addr & 3 || len & 3 || len <= 0)
2476                 return (EINVAL);
2477
2478         /* Enabled memories */
2479         em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2480
2481         r = &mem_ranges[0];
2482         n = 0;
2483         bzero(r, sizeof(mem_ranges));
2484         if (em & F_EDRAM0_ENABLE) {
2485                 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2486                 r->size = G_EDRAM0_SIZE(addr_len) << 20;
2487                 if (r->size > 0) {
2488                         r->start = G_EDRAM0_BASE(addr_len) << 20;
2489                         if (addr >= r->start &&
2490                             addr + len <= r->start + r->size)
2491                                 return (0);
2492                         r++;
2493                         n++;
2494                 }
2495         }
2496         if (em & F_EDRAM1_ENABLE) {
2497                 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2498                 r->size = G_EDRAM1_SIZE(addr_len) << 20;
2499                 if (r->size > 0) {
2500                         r->start = G_EDRAM1_BASE(addr_len) << 20;
2501                         if (addr >= r->start &&
2502                             addr + len <= r->start + r->size)
2503                                 return (0);
2504                         r++;
2505                         n++;
2506                 }
2507         }
2508         if (em & F_EXT_MEM_ENABLE) {
2509                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2510                 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
2511                 if (r->size > 0) {
2512                         r->start = G_EXT_MEM_BASE(addr_len) << 20;
2513                         if (addr >= r->start &&
2514                             addr + len <= r->start + r->size)
2515                                 return (0);
2516                         r++;
2517                         n++;
2518                 }
2519         }
2520         if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
2521                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2522                 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
2523                 if (r->size > 0) {
2524                         r->start = G_EXT_MEM1_BASE(addr_len) << 20;
2525                         if (addr >= r->start &&
2526                             addr + len <= r->start + r->size)
2527                                 return (0);
2528                         r++;
2529                         n++;
2530                 }
2531         }
2532         MPASS(n <= nitems(mem_ranges));
2533
2534         if (n > 1) {
2535                 /* Sort and merge the ranges. */
2536                 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
2537
2538                 /* Start from index 0 and examine the next n - 1 entries. */
2539                 r = &mem_ranges[0];
2540                 for (remaining = n - 1; remaining > 0; remaining--, r++) {
2541
2542                         MPASS(r->size > 0);     /* r is a valid entry. */
2543                         next = r + 1;
2544                         MPASS(next->size > 0);  /* and so is the next one. */
2545
2546                         while (r->start + r->size >= next->start) {
2547                                 /* Merge the next one into the current entry. */
2548                                 r->size = max(r->start + r->size,
2549                                     next->start + next->size) - r->start;
2550                                 n--;    /* One fewer entry in total. */
2551                                 if (--remaining == 0)
2552                                         goto done;      /* short circuit */
2553                                 next++;
2554                         }
2555                         if (next != r + 1) {
2556                                 /*
2557                                  * Some entries were merged into r and next
2558                                  * points to the first valid entry that couldn't
2559                                  * be merged.
2560                                  */
2561                                 MPASS(next->size > 0);  /* must be valid */
2562                                 memcpy(r + 1, next, remaining * sizeof(*r));
2563 #ifdef INVARIANTS
2564                                 /*
2565                                  * This so that the foo->size assertion in the
2566                                  * next iteration of the loop do the right
2567                                  * thing for entries that were pulled up and are
2568                                  * no longer valid.
2569                                  */
2570                                 MPASS(n < nitems(mem_ranges));
2571                                 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
2572                                     sizeof(struct t4_range));
2573 #endif
2574                         }
2575                 }
2576 done:
2577                 /* Done merging the ranges. */
2578                 MPASS(n > 0);
2579                 r = &mem_ranges[0];
2580                 for (i = 0; i < n; i++, r++) {
2581                         if (addr >= r->start &&
2582                             addr + len <= r->start + r->size)
2583                                 return (0);
2584                 }
2585         }
2586
2587         return (EFAULT);
2588 }
2589
2590 static int
2591 fwmtype_to_hwmtype(int mtype)
2592 {
2593
2594         switch (mtype) {
2595         case FW_MEMTYPE_EDC0:
2596                 return (MEM_EDC0);
2597         case FW_MEMTYPE_EDC1:
2598                 return (MEM_EDC1);
2599         case FW_MEMTYPE_EXTMEM:
2600                 return (MEM_MC0);
2601         case FW_MEMTYPE_EXTMEM1:
2602                 return (MEM_MC1);
2603         default:
2604                 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
2605         }
2606 }
2607
2608 /*
2609  * Verify that the memory range specified by the memtype/offset/len pair is
2610  * valid and lies entirely within the memtype specified.  The global address of
2611  * the start of the range is returned in addr.
2612  */
2613 static int
2614 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, int len,
2615     uint32_t *addr)
2616 {
2617         uint32_t em, addr_len, maddr;
2618
2619         /* Memory can only be accessed in naturally aligned 4 byte units */
2620         if (off & 3 || len & 3 || len == 0)
2621                 return (EINVAL);
2622
2623         em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2624         switch (fwmtype_to_hwmtype(mtype)) {
2625         case MEM_EDC0:
2626                 if (!(em & F_EDRAM0_ENABLE))
2627                         return (EINVAL);
2628                 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2629                 maddr = G_EDRAM0_BASE(addr_len) << 20;
2630                 break;
2631         case MEM_EDC1:
2632                 if (!(em & F_EDRAM1_ENABLE))
2633                         return (EINVAL);
2634                 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2635                 maddr = G_EDRAM1_BASE(addr_len) << 20;
2636                 break;
2637         case MEM_MC:
2638                 if (!(em & F_EXT_MEM_ENABLE))
2639                         return (EINVAL);
2640                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2641                 maddr = G_EXT_MEM_BASE(addr_len) << 20;
2642                 break;
2643         case MEM_MC1:
2644                 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
2645                         return (EINVAL);
2646                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2647                 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
2648                 break;
2649         default:
2650                 return (EINVAL);
2651         }
2652
2653         *addr = maddr + off;    /* global address */
2654         return (validate_mem_range(sc, *addr, len));
2655 }
2656
2657 static int
2658 fixup_devlog_params(struct adapter *sc)
2659 {
2660         struct devlog_params *dparams = &sc->params.devlog;
2661         int rc;
2662
2663         rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
2664             dparams->size, &dparams->addr);
2665
2666         return (rc);
2667 }
2668
2669 static void
2670 update_nirq(struct intrs_and_queues *iaq, int nports)
2671 {
2672         int extra = T4_EXTRA_INTR;
2673
2674         iaq->nirq = extra;
2675         iaq->nirq += nports * (iaq->nrxq + iaq->nofldrxq);
2676         iaq->nirq += nports * (iaq->num_vis - 1) *
2677             max(iaq->nrxq_vi, iaq->nnmrxq_vi);
2678         iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
2679 }
2680
2681 /*
2682  * Adjust requirements to fit the number of interrupts available.
2683  */
2684 static void
2685 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
2686     int navail)
2687 {
2688         int old_nirq;
2689         const int nports = sc->params.nports;
2690
2691         MPASS(nports > 0);
2692         MPASS(navail > 0);
2693
2694         bzero(iaq, sizeof(*iaq));
2695         iaq->intr_type = itype;
2696         iaq->num_vis = t4_num_vis;
2697         iaq->ntxq = t4_ntxq;
2698         iaq->ntxq_vi = t4_ntxq_vi;
2699         iaq->nrxq = t4_nrxq;
2700         iaq->nrxq_vi = t4_nrxq_vi;
2701 #ifdef TCP_OFFLOAD
2702         if (is_offload(sc)) {
2703                 iaq->nofldtxq = t4_nofldtxq;
2704                 iaq->nofldtxq_vi = t4_nofldtxq_vi;
2705                 iaq->nofldrxq = t4_nofldrxq;
2706                 iaq->nofldrxq_vi = t4_nofldrxq_vi;
2707         }
2708 #endif
2709 #ifdef DEV_NETMAP
2710         iaq->nnmtxq_vi = t4_nnmtxq_vi;
2711         iaq->nnmrxq_vi = t4_nnmrxq_vi;
2712 #endif
2713
2714         update_nirq(iaq, nports);
2715         if (iaq->nirq <= navail &&
2716             (itype != INTR_MSI || powerof2(iaq->nirq))) {
2717                 /*
2718                  * This is the normal case -- there are enough interrupts for
2719                  * everything.
2720                  */
2721                 goto done;
2722         }
2723
2724         /*
2725          * If extra VIs have been configured try reducing their count and see if
2726          * that works.
2727          */
2728         while (iaq->num_vis > 1) {
2729                 iaq->num_vis--;
2730                 update_nirq(iaq, nports);
2731                 if (iaq->nirq <= navail &&
2732                     (itype != INTR_MSI || powerof2(iaq->nirq))) {
2733                         device_printf(sc->dev, "virtual interfaces per port "
2734                             "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
2735                             "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
2736                             "itype %d, navail %u, nirq %d.\n",
2737                             iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
2738                             iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
2739                             itype, navail, iaq->nirq);
2740                         goto done;
2741                 }
2742         }
2743
2744         /*
2745          * Extra VIs will not be created.  Log a message if they were requested.
2746          */
2747         MPASS(iaq->num_vis == 1);
2748         iaq->ntxq_vi = iaq->nrxq_vi = 0;
2749         iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
2750         iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
2751         if (iaq->num_vis != t4_num_vis) {
2752                 device_printf(sc->dev, "extra virtual interfaces disabled.  "
2753                     "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
2754                     "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
2755                     iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
2756                     iaq->nnmrxq_vi, itype, navail, iaq->nirq);
2757         }
2758
2759         /*
2760          * Keep reducing the number of NIC rx queues to the next lower power of
2761          * 2 (for even RSS distribution) and halving the TOE rx queues and see
2762          * if that works.
2763          */
2764         do {
2765                 if (iaq->nrxq > 1) {
2766                         do {
2767                                 iaq->nrxq--;
2768                         } while (!powerof2(iaq->nrxq));
2769                 }
2770                 if (iaq->nofldrxq > 1)
2771                         iaq->nofldrxq >>= 1;
2772
2773                 old_nirq = iaq->nirq;
2774                 update_nirq(iaq, nports);
2775                 if (iaq->nirq <= navail &&
2776                     (itype != INTR_MSI || powerof2(iaq->nirq))) {
2777                         device_printf(sc->dev, "running with reduced number of "
2778                             "rx queues because of shortage of interrupts.  "
2779                             "nrxq=%u, nofldrxq=%u.  "
2780                             "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
2781                             iaq->nofldrxq, itype, navail, iaq->nirq);
2782                         goto done;
2783                 }
2784         } while (old_nirq != iaq->nirq);
2785
2786         /* One interrupt for everything.  Ugh. */
2787         device_printf(sc->dev, "running with minimal number of queues.  "
2788             "itype %d, navail %u.\n", itype, navail);
2789         iaq->nirq = 1;
2790         MPASS(iaq->nrxq == 1);
2791         iaq->ntxq = 1;
2792         if (iaq->nofldrxq > 1)
2793                 iaq->nofldtxq = 1;
2794 done:
2795         MPASS(iaq->num_vis > 0);
2796         if (iaq->num_vis > 1) {
2797                 MPASS(iaq->nrxq_vi > 0);
2798                 MPASS(iaq->ntxq_vi > 0);
2799         }
2800         MPASS(iaq->nirq > 0);
2801         MPASS(iaq->nrxq > 0);
2802         MPASS(iaq->ntxq > 0);
2803         if (itype == INTR_MSI) {
2804                 MPASS(powerof2(iaq->nirq));
2805         }
2806 }
2807
2808 static int
2809 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
2810 {
2811         int rc, itype, navail, nalloc;
2812
2813         for (itype = INTR_MSIX; itype; itype >>= 1) {
2814
2815                 if ((itype & t4_intr_types) == 0)
2816                         continue;       /* not allowed */
2817
2818                 if (itype == INTR_MSIX)
2819                         navail = pci_msix_count(sc->dev);
2820                 else if (itype == INTR_MSI)
2821                         navail = pci_msi_count(sc->dev);
2822                 else
2823                         navail = 1;
2824 restart:
2825                 if (navail == 0)
2826                         continue;
2827
2828                 calculate_iaq(sc, iaq, itype, navail);
2829                 nalloc = iaq->nirq;
2830                 rc = 0;
2831                 if (itype == INTR_MSIX)
2832                         rc = pci_alloc_msix(sc->dev, &nalloc);
2833                 else if (itype == INTR_MSI)
2834                         rc = pci_alloc_msi(sc->dev, &nalloc);
2835
2836                 if (rc == 0 && nalloc > 0) {
2837                         if (nalloc == iaq->nirq)
2838                                 return (0);
2839
2840                         /*
2841                          * Didn't get the number requested.  Use whatever number
2842                          * the kernel is willing to allocate.
2843                          */
2844                         device_printf(sc->dev, "fewer vectors than requested, "
2845                             "type=%d, req=%d, rcvd=%d; will downshift req.\n",
2846                             itype, iaq->nirq, nalloc);
2847                         pci_release_msi(sc->dev);
2848                         navail = nalloc;
2849                         goto restart;
2850                 }
2851
2852                 device_printf(sc->dev,
2853                     "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
2854                     itype, rc, iaq->nirq, nalloc);
2855         }
2856
2857         device_printf(sc->dev,
2858             "failed to find a usable interrupt type.  "
2859             "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
2860             pci_msix_count(sc->dev), pci_msi_count(sc->dev));
2861
2862         return (ENXIO);
2863 }
2864
2865 #define FW_VERSION(chip) ( \
2866     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
2867     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
2868     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
2869     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
2870 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
2871
2872 struct fw_info {
2873         uint8_t chip;
2874         char *kld_name;
2875         char *fw_mod_name;
2876         struct fw_hdr fw_hdr;   /* XXX: waste of space, need a sparse struct */
2877 } fw_info[] = {
2878         {
2879                 .chip = CHELSIO_T4,
2880                 .kld_name = "t4fw_cfg",
2881                 .fw_mod_name = "t4fw",
2882                 .fw_hdr = {
2883                         .chip = FW_HDR_CHIP_T4,
2884                         .fw_ver = htobe32_const(FW_VERSION(T4)),
2885                         .intfver_nic = FW_INTFVER(T4, NIC),
2886                         .intfver_vnic = FW_INTFVER(T4, VNIC),
2887                         .intfver_ofld = FW_INTFVER(T4, OFLD),
2888                         .intfver_ri = FW_INTFVER(T4, RI),
2889                         .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
2890                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
2891                         .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
2892                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
2893                 },
2894         }, {
2895                 .chip = CHELSIO_T5,
2896                 .kld_name = "t5fw_cfg",
2897                 .fw_mod_name = "t5fw",
2898                 .fw_hdr = {
2899                         .chip = FW_HDR_CHIP_T5,
2900                         .fw_ver = htobe32_const(FW_VERSION(T5)),
2901                         .intfver_nic = FW_INTFVER(T5, NIC),
2902                         .intfver_vnic = FW_INTFVER(T5, VNIC),
2903                         .intfver_ofld = FW_INTFVER(T5, OFLD),
2904                         .intfver_ri = FW_INTFVER(T5, RI),
2905                         .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
2906                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
2907                         .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
2908                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
2909                 },
2910         }, {
2911                 .chip = CHELSIO_T6,
2912                 .kld_name = "t6fw_cfg",
2913                 .fw_mod_name = "t6fw",
2914                 .fw_hdr = {
2915                         .chip = FW_HDR_CHIP_T6,
2916                         .fw_ver = htobe32_const(FW_VERSION(T6)),
2917                         .intfver_nic = FW_INTFVER(T6, NIC),
2918                         .intfver_vnic = FW_INTFVER(T6, VNIC),
2919                         .intfver_ofld = FW_INTFVER(T6, OFLD),
2920                         .intfver_ri = FW_INTFVER(T6, RI),
2921                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
2922                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
2923                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
2924                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
2925                 },
2926         }
2927 };
2928
2929 static struct fw_info *
2930 find_fw_info(int chip)
2931 {
2932         int i;
2933
2934         for (i = 0; i < nitems(fw_info); i++) {
2935                 if (fw_info[i].chip == chip)
2936                         return (&fw_info[i]);
2937         }
2938         return (NULL);
2939 }
2940
2941 /*
2942  * Is the given firmware API compatible with the one the driver was compiled
2943  * with?
2944  */
2945 static int
2946 fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2947 {
2948
2949         /* short circuit if it's the exact same firmware version */
2950         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2951                 return (1);
2952
2953         /*
2954          * XXX: Is this too conservative?  Perhaps I should limit this to the
2955          * features that are supported in the driver.
2956          */
2957 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2958         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2959             SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
2960             SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
2961                 return (1);
2962 #undef SAME_INTF
2963
2964         return (0);
2965 }
2966
2967 /*
2968  * The firmware in the KLD is usable, but should it be installed?  This routine
2969  * explains itself in detail if it indicates the KLD firmware should be
2970  * installed.
2971  */
2972 static int
2973 should_install_kld_fw(struct adapter *sc, int card_fw_usable, int k, int c)
2974 {
2975         const char *reason;
2976
2977         if (!card_fw_usable) {
2978                 reason = "incompatible or unusable";
2979                 goto install;
2980         }
2981
2982         if (k > c) {
2983                 reason = "older than the version bundled with this driver";
2984                 goto install;
2985         }
2986
2987         if (t4_fw_install == 2 && k != c) {
2988                 reason = "different than the version bundled with this driver";
2989                 goto install;
2990         }
2991
2992         return (0);
2993
2994 install:
2995         if (t4_fw_install == 0) {
2996                 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
2997                     "but the driver is prohibited from installing a different "
2998                     "firmware on the card.\n",
2999                     G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3000                     G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
3001
3002                 return (0);
3003         }
3004
3005         device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3006             "installing firmware %u.%u.%u.%u on card.\n",
3007             G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3008             G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
3009             G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3010             G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
3011
3012         return (1);
3013 }
3014
3015 /*
3016  * Establish contact with the firmware and determine if we are the master driver
3017  * or not, and whether we are responsible for chip initialization.
3018  */
3019 static int
3020 prep_firmware(struct adapter *sc)
3021 {
3022         const struct firmware *fw = NULL, *default_cfg;
3023         int rc, pf, card_fw_usable, kld_fw_usable, need_fw_reset = 1;
3024         enum dev_state state;
3025         struct fw_info *fw_info;
3026         struct fw_hdr *card_fw;         /* fw on the card */
3027         const struct fw_hdr *kld_fw;    /* fw in the KLD */
3028         const struct fw_hdr *drv_fw;    /* fw header the driver was compiled
3029                                            against */
3030
3031         /* This is the firmware whose headers the driver was compiled against */
3032         fw_info = find_fw_info(chip_id(sc));
3033         if (fw_info == NULL) {
3034                 device_printf(sc->dev,
3035                     "unable to look up firmware information for chip %d.\n",
3036                     chip_id(sc));
3037                 return (EINVAL);
3038         }
3039         drv_fw = &fw_info->fw_hdr;
3040
3041         /*
3042          * The firmware KLD contains many modules.  The KLD name is also the
3043          * name of the module that contains the default config file.
3044          */
3045         default_cfg = firmware_get(fw_info->kld_name);
3046
3047         /* This is the firmware in the KLD */
3048         fw = firmware_get(fw_info->fw_mod_name);
3049         if (fw != NULL) {
3050                 kld_fw = (const void *)fw->data;
3051                 kld_fw_usable = fw_compatible(drv_fw, kld_fw);
3052         } else {
3053                 kld_fw = NULL;
3054                 kld_fw_usable = 0;
3055         }
3056
3057         /* Read the header of the firmware on the card */
3058         card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
3059         rc = -t4_read_flash(sc, FLASH_FW_START,
3060             sizeof (*card_fw) / sizeof (uint32_t), (uint32_t *)card_fw, 1);
3061         if (rc == 0) {
3062                 card_fw_usable = fw_compatible(drv_fw, (const void*)card_fw);
3063                 if (card_fw->fw_ver == be32toh(0xffffffff)) {
3064                         uint32_t d = be32toh(kld_fw->fw_ver);
3065
3066                         if (!kld_fw_usable) {
3067                                 device_printf(sc->dev,
3068                                     "no firmware on the card and no usable "
3069                                     "firmware bundled with the driver.\n");
3070                                 rc = EIO;
3071                                 goto done;
3072                         } else if (t4_fw_install == 0) {
3073                                 device_printf(sc->dev,
3074                                     "no firmware on the card and the driver "
3075                                     "is prohibited from installing new "
3076                                     "firmware.\n");
3077                                 rc = EIO;
3078                                 goto done;
3079                         }
3080
3081                         device_printf(sc->dev, "no firmware on the card, "
3082                             "installing firmware %d.%d.%d.%d\n",
3083                             G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3084                             G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
3085                         rc = t4_fw_forceinstall(sc, fw->data, fw->datasize);
3086                         if (rc < 0) {
3087                                 rc = -rc;
3088                                 device_printf(sc->dev,
3089                                     "firmware install failed: %d.\n", rc);
3090                                 goto done;
3091                         }
3092                         memcpy(card_fw, kld_fw, sizeof(*card_fw));
3093                         card_fw_usable = 1;
3094                         need_fw_reset = 0;
3095                 }
3096         } else {
3097                 device_printf(sc->dev,
3098                     "Unable to read card's firmware header: %d\n", rc);
3099                 card_fw_usable = 0;
3100         }
3101
3102         /* Contact firmware. */
3103         rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
3104         if (rc < 0 || state == DEV_STATE_ERR) {
3105                 rc = -rc;
3106                 device_printf(sc->dev,
3107                     "failed to connect to the firmware: %d, %d.\n", rc, state);
3108                 goto done;
3109         }
3110         pf = rc;
3111         if (pf == sc->mbox)
3112                 sc->flags |= MASTER_PF;
3113         else if (state == DEV_STATE_UNINIT) {
3114                 /*
3115                  * We didn't get to be the master so we definitely won't be
3116                  * configuring the chip.  It's a bug if someone else hasn't
3117                  * configured it already.
3118                  */
3119                 device_printf(sc->dev, "couldn't be master(%d), "
3120                     "device not already initialized either(%d).\n", rc, state);
3121                 rc = EPROTO;
3122                 goto done;
3123         }
3124
3125         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3126             (!kld_fw_usable || kld_fw->fw_ver == drv_fw->fw_ver)) {
3127                 /*
3128                  * Common case: the firmware on the card is an exact match and
3129                  * the KLD is an exact match too, or the KLD is
3130                  * absent/incompatible.  Note that t4_fw_install = 2 is ignored
3131                  * here -- use cxgbetool loadfw if you want to reinstall the
3132                  * same firmware as the one on the card.
3133                  */
3134         } else if (kld_fw_usable && state == DEV_STATE_UNINIT &&
3135             should_install_kld_fw(sc, card_fw_usable, be32toh(kld_fw->fw_ver),
3136             be32toh(card_fw->fw_ver))) {
3137
3138                 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
3139                 if (rc != 0) {
3140                         device_printf(sc->dev,
3141                             "failed to install firmware: %d\n", rc);
3142                         goto done;
3143                 }
3144
3145                 /* Installed successfully, update the cached header too. */
3146                 memcpy(card_fw, kld_fw, sizeof(*card_fw));
3147                 card_fw_usable = 1;
3148                 need_fw_reset = 0;      /* already reset as part of load_fw */
3149         }
3150
3151         if (!card_fw_usable) {
3152                 uint32_t d, c, k;
3153
3154                 d = ntohl(drv_fw->fw_ver);
3155                 c = ntohl(card_fw->fw_ver);
3156                 k = kld_fw ? ntohl(kld_fw->fw_ver) : 0;
3157
3158                 device_printf(sc->dev, "Cannot find a usable firmware: "
3159                     "fw_install %d, chip state %d, "
3160                     "driver compiled with %d.%d.%d.%d, "
3161                     "card has %d.%d.%d.%d, KLD has %d.%d.%d.%d\n",
3162                     t4_fw_install, state,
3163                     G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3164                     G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d),
3165                     G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3166                     G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c),
3167                     G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3168                     G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
3169                 rc = EINVAL;
3170                 goto done;
3171         }
3172
3173         /* Reset device */
3174         if (need_fw_reset &&
3175             (rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST)) != 0) {
3176                 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
3177                 if (rc != ETIMEDOUT && rc != EIO)
3178                         t4_fw_bye(sc, sc->mbox);
3179                 goto done;
3180         }
3181         sc->flags |= FW_OK;
3182
3183         rc = get_params__pre_init(sc);
3184         if (rc != 0)
3185                 goto done; /* error message displayed already */
3186
3187         /* Partition adapter resources as specified in the config file. */
3188         if (state == DEV_STATE_UNINIT) {
3189
3190                 KASSERT(sc->flags & MASTER_PF,
3191                     ("%s: trying to change chip settings when not master.",
3192                     __func__));
3193
3194                 rc = partition_resources(sc, default_cfg, fw_info->kld_name);
3195                 if (rc != 0)
3196                         goto done;      /* error message displayed already */
3197
3198                 t4_tweak_chip_settings(sc);
3199
3200                 /* get basic stuff going */
3201                 rc = -t4_fw_initialize(sc, sc->mbox);
3202                 if (rc != 0) {
3203                         device_printf(sc->dev, "fw init failed: %d.\n", rc);
3204                         goto done;
3205                 }
3206         } else {
3207                 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", pf);
3208                 sc->cfcsum = 0;
3209         }
3210
3211 done:
3212         free(card_fw, M_CXGBE);
3213         if (fw != NULL)
3214                 firmware_put(fw, FIRMWARE_UNLOAD);
3215         if (default_cfg != NULL)
3216                 firmware_put(default_cfg, FIRMWARE_UNLOAD);
3217
3218         return (rc);
3219 }
3220
3221 #define FW_PARAM_DEV(param) \
3222         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
3223          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
3224 #define FW_PARAM_PFVF(param) \
3225         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3226          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
3227
3228 /*
3229  * Partition chip resources for use between various PFs, VFs, etc.
3230  */
3231 static int
3232 partition_resources(struct adapter *sc, const struct firmware *default_cfg,
3233     const char *name_prefix)
3234 {
3235         const struct firmware *cfg = NULL;
3236         int rc = 0;
3237         struct fw_caps_config_cmd caps;
3238         uint32_t mtype, moff, finicsum, cfcsum;
3239
3240         /*
3241          * Figure out what configuration file to use.  Pick the default config
3242          * file for the card if the user hasn't specified one explicitly.
3243          */
3244         snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", t4_cfg_file);
3245         if (strncmp(t4_cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3246                 /* Card specific overrides go here. */
3247                 if (pci_get_device(sc->dev) == 0x440a)
3248                         snprintf(sc->cfg_file, sizeof(sc->cfg_file), UWIRE_CF);
3249                 if (is_fpga(sc))
3250                         snprintf(sc->cfg_file, sizeof(sc->cfg_file), FPGA_CF);
3251         }
3252
3253         /*
3254          * We need to load another module if the profile is anything except
3255          * "default" or "flash".
3256          */
3257         if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) != 0 &&
3258             strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
3259                 char s[32];
3260
3261                 snprintf(s, sizeof(s), "%s_%s", name_prefix, sc->cfg_file);
3262                 cfg = firmware_get(s);
3263                 if (cfg == NULL) {
3264                         if (default_cfg != NULL) {
3265                                 device_printf(sc->dev,
3266                                     "unable to load module \"%s\" for "
3267                                     "configuration profile \"%s\", will use "
3268                                     "the default config file instead.\n",
3269                                     s, sc->cfg_file);
3270                                 snprintf(sc->cfg_file, sizeof(sc->cfg_file),
3271                                     "%s", DEFAULT_CF);
3272                         } else {
3273                                 device_printf(sc->dev,
3274                                     "unable to load module \"%s\" for "
3275                                     "configuration profile \"%s\", will use "
3276                                     "the config file on the card's flash "
3277                                     "instead.\n", s, sc->cfg_file);
3278                                 snprintf(sc->cfg_file, sizeof(sc->cfg_file),
3279                                     "%s", FLASH_CF);
3280                         }
3281                 }
3282         }
3283
3284         if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) == 0 &&
3285             default_cfg == NULL) {
3286                 device_printf(sc->dev,
3287                     "default config file not available, will use the config "
3288                     "file on the card's flash instead.\n");
3289                 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", FLASH_CF);
3290         }
3291
3292         if (strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
3293                 u_int cflen;
3294                 const uint32_t *cfdata;
3295                 uint32_t param, val, addr;
3296
3297                 KASSERT(cfg != NULL || default_cfg != NULL,
3298                     ("%s: no config to upload", __func__));
3299
3300                 /*
3301                  * Ask the firmware where it wants us to upload the config file.
3302                  */
3303                 param = FW_PARAM_DEV(CF);
3304                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3305                 if (rc != 0) {
3306                         /* No support for config file?  Shouldn't happen. */
3307                         device_printf(sc->dev,
3308                             "failed to query config file location: %d.\n", rc);
3309                         goto done;
3310                 }
3311                 mtype = G_FW_PARAMS_PARAM_Y(val);
3312                 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
3313
3314                 /*
3315                  * XXX: sheer laziness.  We deliberately added 4 bytes of
3316                  * useless stuffing/comments at the end of the config file so
3317                  * it's ok to simply throw away the last remaining bytes when
3318                  * the config file is not an exact multiple of 4.  This also
3319                  * helps with the validate_mt_off_len check.
3320                  */
3321                 if (cfg != NULL) {
3322                         cflen = cfg->datasize & ~3;
3323                         cfdata = cfg->data;
3324                 } else {
3325                         cflen = default_cfg->datasize & ~3;
3326                         cfdata = default_cfg->data;
3327                 }
3328
3329                 if (cflen > FLASH_CFG_MAX_SIZE) {
3330                         device_printf(sc->dev,
3331                             "config file too long (%d, max allowed is %d).  "
3332                             "Will try to use the config on the card, if any.\n",
3333                             cflen, FLASH_CFG_MAX_SIZE);
3334                         goto use_config_on_flash;
3335                 }
3336
3337                 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
3338                 if (rc != 0) {
3339                         device_printf(sc->dev,
3340                             "%s: addr (%d/0x%x) or len %d is not valid: %d.  "
3341                             "Will try to use the config on the card, if any.\n",
3342                             __func__, mtype, moff, cflen, rc);
3343                         goto use_config_on_flash;
3344                 }
3345                 write_via_memwin(sc, 2, addr, cfdata, cflen);
3346         } else {
3347 use_config_on_flash:
3348                 mtype = FW_MEMTYPE_FLASH;
3349                 moff = t4_flash_cfg_addr(sc);
3350         }
3351
3352         bzero(&caps, sizeof(caps));
3353         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3354             F_FW_CMD_REQUEST | F_FW_CMD_READ);
3355         caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
3356             V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
3357             V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps));
3358         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3359         if (rc != 0) {
3360                 device_printf(sc->dev,
3361                     "failed to pre-process config file: %d "
3362                     "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
3363                 goto done;
3364         }
3365
3366         finicsum = be32toh(caps.finicsum);
3367         cfcsum = be32toh(caps.cfcsum);
3368         if (finicsum != cfcsum) {
3369                 device_printf(sc->dev,
3370                     "WARNING: config file checksum mismatch: %08x %08x\n",
3371                     finicsum, cfcsum);
3372         }
3373         sc->cfcsum = cfcsum;
3374
3375 #define LIMIT_CAPS(x) do { \
3376         caps.x &= htobe16(t4_##x##_allowed); \
3377 } while (0)
3378
3379         /*
3380          * Let the firmware know what features will (not) be used so it can tune
3381          * things accordingly.
3382          */
3383         LIMIT_CAPS(nbmcaps);
3384         LIMIT_CAPS(linkcaps);
3385         LIMIT_CAPS(switchcaps);
3386         LIMIT_CAPS(niccaps);
3387         LIMIT_CAPS(toecaps);
3388         LIMIT_CAPS(rdmacaps);
3389         LIMIT_CAPS(cryptocaps);
3390         LIMIT_CAPS(iscsicaps);
3391         LIMIT_CAPS(fcoecaps);
3392 #undef LIMIT_CAPS
3393
3394         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3395             F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
3396         caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3397         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
3398         if (rc != 0) {
3399                 device_printf(sc->dev,
3400                     "failed to process config file: %d.\n", rc);
3401         }
3402 done:
3403         if (cfg != NULL)
3404                 firmware_put(cfg, FIRMWARE_UNLOAD);
3405         return (rc);
3406 }
3407
3408 /*
3409  * Retrieve parameters that are needed (or nice to have) very early.
3410  */
3411 static int
3412 get_params__pre_init(struct adapter *sc)
3413 {
3414         int rc;
3415         uint32_t param[2], val[2];
3416
3417         t4_get_version_info(sc);
3418
3419         snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
3420             G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
3421             G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
3422             G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
3423             G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
3424
3425         snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
3426             G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
3427             G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
3428             G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
3429             G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
3430
3431         snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
3432             G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
3433             G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
3434             G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
3435             G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
3436
3437         snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
3438             G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
3439             G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
3440             G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
3441             G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
3442
3443         param[0] = FW_PARAM_DEV(PORTVEC);
3444         param[1] = FW_PARAM_DEV(CCLK);
3445         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3446         if (rc != 0) {
3447                 device_printf(sc->dev,
3448                     "failed to query parameters (pre_init): %d.\n", rc);
3449                 return (rc);
3450         }
3451
3452         sc->params.portvec = val[0];
3453         sc->params.nports = bitcount32(val[0]);
3454         sc->params.vpd.cclk = val[1];
3455
3456         /* Read device log parameters. */
3457         rc = -t4_init_devlog_params(sc, 1);
3458         if (rc == 0)
3459                 fixup_devlog_params(sc);
3460         else {
3461                 device_printf(sc->dev,
3462                     "failed to get devlog parameters: %d.\n", rc);
3463                 rc = 0; /* devlog isn't critical for device operation */
3464         }
3465
3466         return (rc);
3467 }
3468
3469 /*
3470  * Retrieve various parameters that are of interest to the driver.  The device
3471  * has been initialized by the firmware at this point.
3472  */
3473 static int
3474 get_params__post_init(struct adapter *sc)
3475 {
3476         int rc;
3477         uint32_t param[7], val[7];
3478         struct fw_caps_config_cmd caps;
3479
3480         param[0] = FW_PARAM_PFVF(IQFLINT_START);
3481         param[1] = FW_PARAM_PFVF(EQ_START);
3482         param[2] = FW_PARAM_PFVF(FILTER_START);
3483         param[3] = FW_PARAM_PFVF(FILTER_END);
3484         param[4] = FW_PARAM_PFVF(L2T_START);
3485         param[5] = FW_PARAM_PFVF(L2T_END);
3486         param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3487             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
3488             V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
3489         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
3490         if (rc != 0) {
3491                 device_printf(sc->dev,
3492                     "failed to query parameters (post_init): %d.\n", rc);
3493                 return (rc);
3494         }
3495
3496         sc->sge.iq_start = val[0];
3497         sc->sge.eq_start = val[1];
3498         sc->tids.ftid_base = val[2];
3499         sc->tids.nftids = val[3] - val[2] + 1;
3500         sc->params.ftid_min = val[2];
3501         sc->params.ftid_max = val[3];
3502         sc->vres.l2t.start = val[4];
3503         sc->vres.l2t.size = val[5] - val[4] + 1;
3504         KASSERT(sc->vres.l2t.size <= L2T_SIZE,
3505             ("%s: L2 table size (%u) larger than expected (%u)",
3506             __func__, sc->vres.l2t.size, L2T_SIZE));
3507         sc->params.core_vdd = val[6];
3508
3509         /*
3510          * MPSBGMAP is queried separately because only recent firmwares support
3511          * it as a parameter and we don't want the compound query above to fail
3512          * on older firmwares.
3513          */
3514         param[0] = FW_PARAM_DEV(MPSBGMAP);
3515         val[0] = 0;
3516         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
3517         if (rc == 0)
3518                 sc->params.mps_bg_map = val[0];
3519         else
3520                 sc->params.mps_bg_map = 0;
3521
3522         /* get capabilites */
3523         bzero(&caps, sizeof(caps));
3524         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3525             F_FW_CMD_REQUEST | F_FW_CMD_READ);
3526         caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3527         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3528         if (rc != 0) {
3529                 device_printf(sc->dev,
3530                     "failed to get card capabilities: %d.\n", rc);
3531                 return (rc);
3532         }
3533
3534 #define READ_CAPS(x) do { \
3535         sc->x = htobe16(caps.x); \
3536 } while (0)
3537         READ_CAPS(nbmcaps);
3538         READ_CAPS(linkcaps);
3539         READ_CAPS(switchcaps);
3540         READ_CAPS(niccaps);
3541         READ_CAPS(toecaps);
3542         READ_CAPS(rdmacaps);
3543         READ_CAPS(cryptocaps);
3544         READ_CAPS(iscsicaps);
3545         READ_CAPS(fcoecaps);
3546
3547         /*
3548          * The firmware attempts memfree TOE configuration for -SO cards and
3549          * will report toecaps=0 if it runs out of resources (this depends on
3550          * the config file).  It may not report 0 for other capabilities
3551          * dependent on the TOE in this case.  Set them to 0 here so that the
3552          * driver doesn't bother tracking resources that will never be used.
3553          */
3554         if (sc->toecaps == 0) {
3555                 sc->iscsicaps = 0;
3556                 sc->rdmacaps = 0;
3557         }
3558
3559         if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
3560                 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
3561                 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
3562                 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3563                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
3564                 if (rc != 0) {
3565                         device_printf(sc->dev,
3566                             "failed to query NIC parameters: %d.\n", rc);
3567                         return (rc);
3568                 }
3569                 sc->tids.etid_base = val[0];
3570                 sc->params.etid_min = val[0];
3571                 sc->tids.netids = val[1] - val[0] + 1;
3572                 sc->params.netids = sc->tids.netids;
3573                 sc->params.eo_wr_cred = val[2];
3574                 sc->params.ethoffload = 1;
3575         }
3576
3577         if (sc->toecaps) {
3578                 /* query offload-related parameters */
3579                 param[0] = FW_PARAM_DEV(NTID);
3580                 param[1] = FW_PARAM_PFVF(SERVER_START);
3581                 param[2] = FW_PARAM_PFVF(SERVER_END);
3582                 param[3] = FW_PARAM_PFVF(TDDP_START);
3583                 param[4] = FW_PARAM_PFVF(TDDP_END);
3584                 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3585                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3586                 if (rc != 0) {
3587                         device_printf(sc->dev,
3588                             "failed to query TOE parameters: %d.\n", rc);
3589                         return (rc);
3590                 }
3591                 sc->tids.ntids = val[0];
3592                 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
3593                 sc->tids.stid_base = val[1];
3594                 sc->tids.nstids = val[2] - val[1] + 1;
3595                 sc->vres.ddp.start = val[3];
3596                 sc->vres.ddp.size = val[4] - val[3] + 1;
3597                 sc->params.ofldq_wr_cred = val[5];
3598                 sc->params.offload = 1;
3599         }
3600         if (sc->rdmacaps) {
3601                 param[0] = FW_PARAM_PFVF(STAG_START);
3602                 param[1] = FW_PARAM_PFVF(STAG_END);
3603                 param[2] = FW_PARAM_PFVF(RQ_START);
3604                 param[3] = FW_PARAM_PFVF(RQ_END);
3605                 param[4] = FW_PARAM_PFVF(PBL_START);
3606                 param[5] = FW_PARAM_PFVF(PBL_END);
3607                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3608                 if (rc != 0) {
3609                         device_printf(sc->dev,
3610                             "failed to query RDMA parameters(1): %d.\n", rc);
3611                         return (rc);
3612                 }
3613                 sc->vres.stag.start = val[0];
3614                 sc->vres.stag.size = val[1] - val[0] + 1;
3615                 sc->vres.rq.start = val[2];
3616                 sc->vres.rq.size = val[3] - val[2] + 1;
3617                 sc->vres.pbl.start = val[4];
3618                 sc->vres.pbl.size = val[5] - val[4] + 1;
3619
3620                 param[0] = FW_PARAM_PFVF(SQRQ_START);
3621                 param[1] = FW_PARAM_PFVF(SQRQ_END);
3622                 param[2] = FW_PARAM_PFVF(CQ_START);
3623                 param[3] = FW_PARAM_PFVF(CQ_END);
3624                 param[4] = FW_PARAM_PFVF(OCQ_START);
3625                 param[5] = FW_PARAM_PFVF(OCQ_END);
3626                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3627                 if (rc != 0) {
3628                         device_printf(sc->dev,
3629                             "failed to query RDMA parameters(2): %d.\n", rc);
3630                         return (rc);
3631                 }
3632                 sc->vres.qp.start = val[0];
3633                 sc->vres.qp.size = val[1] - val[0] + 1;
3634                 sc->vres.cq.start = val[2];
3635                 sc->vres.cq.size = val[3] - val[2] + 1;
3636                 sc->vres.ocq.start = val[4];
3637                 sc->vres.ocq.size = val[5] - val[4] + 1;
3638
3639                 param[0] = FW_PARAM_PFVF(SRQ_START);
3640                 param[1] = FW_PARAM_PFVF(SRQ_END);
3641                 param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
3642                 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3643                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
3644                 if (rc != 0) {
3645                         device_printf(sc->dev,
3646                             "failed to query RDMA parameters(3): %d.\n", rc);
3647                         return (rc);
3648                 }
3649                 sc->vres.srq.start = val[0];
3650                 sc->vres.srq.size = val[1] - val[0] + 1;
3651                 sc->params.max_ordird_qp = val[2];
3652                 sc->params.max_ird_adapter = val[3];
3653         }
3654         if (sc->iscsicaps) {
3655                 param[0] = FW_PARAM_PFVF(ISCSI_START);
3656                 param[1] = FW_PARAM_PFVF(ISCSI_END);
3657                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3658                 if (rc != 0) {
3659                         device_printf(sc->dev,
3660                             "failed to query iSCSI parameters: %d.\n", rc);
3661                         return (rc);
3662                 }
3663                 sc->vres.iscsi.start = val[0];
3664                 sc->vres.iscsi.size = val[1] - val[0] + 1;
3665         }
3666         if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
3667                 param[0] = FW_PARAM_PFVF(TLS_START);
3668                 param[1] = FW_PARAM_PFVF(TLS_END);
3669                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3670                 if (rc != 0) {
3671                         device_printf(sc->dev,
3672                             "failed to query TLS parameters: %d.\n", rc);
3673                         return (rc);
3674                 }
3675                 sc->vres.key.start = val[0];
3676                 sc->vres.key.size = val[1] - val[0] + 1;
3677         }
3678
3679         t4_init_sge_params(sc);
3680
3681         /*
3682          * We've got the params we wanted to query via the firmware.  Now grab
3683          * some others directly from the chip.
3684          */
3685         rc = t4_read_chip_settings(sc);
3686
3687         return (rc);
3688 }
3689
3690 static int
3691 set_params__post_init(struct adapter *sc)
3692 {
3693         uint32_t param, val;
3694 #ifdef TCP_OFFLOAD
3695         int i, v, shift;
3696 #endif
3697
3698         /* ask for encapsulated CPLs */
3699         param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3700         val = 1;
3701         (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3702
3703 #ifdef TCP_OFFLOAD
3704         /*
3705          * Override the TOE timers with user provided tunables.  This is not the
3706          * recommended way to change the timers (the firmware config file is) so
3707          * these tunables are not documented.
3708          *
3709          * All the timer tunables are in microseconds.
3710          */
3711         if (t4_toe_keepalive_idle != 0) {
3712                 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
3713                 v &= M_KEEPALIVEIDLE;
3714                 t4_set_reg_field(sc, A_TP_KEEP_IDLE,
3715                     V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
3716         }
3717         if (t4_toe_keepalive_interval != 0) {
3718                 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
3719                 v &= M_KEEPALIVEINTVL;
3720                 t4_set_reg_field(sc, A_TP_KEEP_INTVL,
3721                     V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
3722         }
3723         if (t4_toe_keepalive_count != 0) {
3724                 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
3725                 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
3726                     V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
3727                     V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
3728                     V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
3729         }
3730         if (t4_toe_rexmt_min != 0) {
3731                 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
3732                 v &= M_RXTMIN;
3733                 t4_set_reg_field(sc, A_TP_RXT_MIN,
3734                     V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
3735         }
3736         if (t4_toe_rexmt_max != 0) {
3737                 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
3738                 v &= M_RXTMAX;
3739                 t4_set_reg_field(sc, A_TP_RXT_MAX,
3740                     V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
3741         }
3742         if (t4_toe_rexmt_count != 0) {
3743                 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
3744                 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
3745                     V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
3746                     V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
3747                     V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
3748         }
3749         for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
3750                 if (t4_toe_rexmt_backoff[i] != -1) {
3751                         v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
3752                         shift = (i & 3) << 3;
3753                         t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
3754                             M_TIMERBACKOFFINDEX0 << shift, v << shift);
3755                 }
3756         }
3757 #endif
3758         return (0);
3759 }
3760
3761 #undef FW_PARAM_PFVF
3762 #undef FW_PARAM_DEV
3763
3764 static void
3765 t4_set_desc(struct adapter *sc)
3766 {
3767         char buf[128];
3768         struct adapter_params *p = &sc->params;
3769
3770         snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
3771
3772         device_set_desc_copy(sc->dev, buf);
3773 }
3774
3775 static void
3776 build_medialist(struct port_info *pi, struct ifmedia *media)
3777 {
3778         int m;
3779
3780         PORT_LOCK_ASSERT_OWNED(pi);
3781
3782         ifmedia_removeall(media);
3783
3784         /*
3785          * XXX: Would it be better to ifmedia_add all 4 combinations of pause
3786          * settings for every speed instead of just txpause|rxpause?  ifconfig
3787          * media display looks much better if autoselect is the only case where
3788          * ifm_current is different from ifm_active.  If the user picks anything
3789          * except txpause|rxpause the display is ugly.
3790          */
3791         m = IFM_ETHER | IFM_FDX | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
3792
3793         switch(pi->port_type) {
3794         case FW_PORT_TYPE_BT_XFI:
3795         case FW_PORT_TYPE_BT_XAUI:
3796                 ifmedia_add(media, m | IFM_10G_T, 0, NULL);
3797                 /* fall through */
3798
3799         case FW_PORT_TYPE_BT_SGMII:
3800                 ifmedia_add(media, m | IFM_1000_T, 0, NULL);
3801                 ifmedia_add(media, m | IFM_100_TX, 0, NULL);
3802                 ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL);
3803                 ifmedia_set(media, IFM_ETHER | IFM_AUTO);
3804                 break;
3805
3806         case FW_PORT_TYPE_CX4:
3807                 ifmedia_add(media, m | IFM_10G_CX4, 0, NULL);
3808                 ifmedia_set(media, m | IFM_10G_CX4);
3809                 break;
3810
3811         case FW_PORT_TYPE_QSFP_10G:
3812         case FW_PORT_TYPE_SFP:
3813         case FW_PORT_TYPE_FIBER_XFI:
3814         case FW_PORT_TYPE_FIBER_XAUI:
3815                 switch (pi->mod_type) {
3816
3817                 case FW_PORT_MOD_TYPE_LR:
3818                         ifmedia_add(media, m | IFM_10G_LR, 0, NULL);
3819                         ifmedia_set(media, m | IFM_10G_LR);
3820                         break;
3821
3822                 case FW_PORT_MOD_TYPE_SR:
3823                         ifmedia_add(media, m | IFM_10G_SR, 0, NULL);
3824                         ifmedia_set(media, m | IFM_10G_SR);
3825                         break;
3826
3827                 case FW_PORT_MOD_TYPE_LRM:
3828                         ifmedia_add(media, m | IFM_10G_LRM, 0, NULL);
3829                         ifmedia_set(media, m | IFM_10G_LRM);
3830                         break;
3831
3832                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3833                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3834                         ifmedia_add(media, m | IFM_10G_TWINAX, 0, NULL);
3835                         ifmedia_set(media, m | IFM_10G_TWINAX);
3836                         break;
3837
3838                 case FW_PORT_MOD_TYPE_NONE:
3839                         m &= ~IFM_FDX;
3840                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3841                         ifmedia_set(media, m | IFM_NONE);
3842                         break;
3843
3844                 case FW_PORT_MOD_TYPE_NA:
3845                 case FW_PORT_MOD_TYPE_ER:
3846                 default:
3847                         device_printf(pi->dev,
3848                             "unknown port_type (%d), mod_type (%d)\n",
3849                             pi->port_type, pi->mod_type);
3850                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3851                         ifmedia_set(media, m | IFM_UNKNOWN);
3852                         break;
3853                 }
3854                 break;
3855
3856         case FW_PORT_TYPE_CR_QSFP:
3857         case FW_PORT_TYPE_SFP28:
3858         case FW_PORT_TYPE_KR_SFP28:
3859                 switch (pi->mod_type) {
3860
3861                 case FW_PORT_MOD_TYPE_SR:
3862                         ifmedia_add(media, m | IFM_25G_SR, 0, NULL);
3863                         ifmedia_set(media, m | IFM_25G_SR);
3864                         break;
3865
3866                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3867                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3868                         ifmedia_add(media, m | IFM_25G_CR, 0, NULL);
3869                         ifmedia_set(media, m | IFM_25G_CR);
3870                         break;
3871
3872                 case FW_PORT_MOD_TYPE_NONE:
3873                         m &= ~IFM_FDX;
3874                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3875                         ifmedia_set(media, m | IFM_NONE);
3876                         break;
3877
3878                 default:
3879                         device_printf(pi->dev,
3880                             "unknown port_type (%d), mod_type (%d)\n",
3881                             pi->port_type, pi->mod_type);
3882                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3883                         ifmedia_set(media, m | IFM_UNKNOWN);
3884                         break;
3885                 }
3886                 break;
3887
3888         case FW_PORT_TYPE_QSFP:
3889                 switch (pi->mod_type) {
3890
3891                 case FW_PORT_MOD_TYPE_LR:
3892                         ifmedia_add(media, m | IFM_40G_LR4, 0, NULL);
3893                         ifmedia_set(media, m | IFM_40G_LR4);
3894                         break;
3895
3896                 case FW_PORT_MOD_TYPE_SR:
3897                         ifmedia_add(media, m | IFM_40G_SR4, 0, NULL);
3898                         ifmedia_set(media, m | IFM_40G_SR4);
3899                         break;
3900
3901                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3902                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3903                         ifmedia_add(media, m | IFM_40G_CR4, 0, NULL);
3904                         ifmedia_set(media, m | IFM_40G_CR4);
3905                         break;
3906
3907                 case FW_PORT_MOD_TYPE_NONE:
3908                         m &= ~IFM_FDX;
3909                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3910                         ifmedia_set(media, m | IFM_NONE);
3911                         break;
3912
3913                 default:
3914                         device_printf(pi->dev,
3915                             "unknown port_type (%d), mod_type (%d)\n",
3916                             pi->port_type, pi->mod_type);
3917                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3918                         ifmedia_set(media, m | IFM_UNKNOWN);
3919                         break;
3920                 }
3921                 break;
3922
3923         case FW_PORT_TYPE_KR4_100G:
3924         case FW_PORT_TYPE_CR4_QSFP:
3925                 switch (pi->mod_type) {
3926
3927                 case FW_PORT_MOD_TYPE_LR:
3928                         ifmedia_add(media, m | IFM_100G_LR4, 0, NULL);
3929                         ifmedia_set(media, m | IFM_100G_LR4);
3930                         break;
3931
3932                 case FW_PORT_MOD_TYPE_SR:
3933                         ifmedia_add(media, m | IFM_100G_SR4, 0, NULL);
3934                         ifmedia_set(media, m | IFM_100G_SR4);
3935                         break;
3936
3937                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3938                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3939                         ifmedia_add(media, m | IFM_100G_CR4, 0, NULL);
3940                         ifmedia_set(media, m | IFM_100G_CR4);
3941                         break;
3942
3943                 case FW_PORT_MOD_TYPE_NONE:
3944                         m &= ~IFM_FDX;
3945                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3946                         ifmedia_set(media, m | IFM_NONE);
3947                         break;
3948
3949                 default:
3950                         device_printf(pi->dev,
3951                             "unknown port_type (%d), mod_type (%d)\n",
3952                             pi->port_type, pi->mod_type);
3953                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3954                         ifmedia_set(media, m | IFM_UNKNOWN);
3955                         break;
3956                 }
3957                 break;
3958
3959         default:
3960                 device_printf(pi->dev,
3961                     "unknown port_type (%d), mod_type (%d)\n", pi->port_type,
3962                     pi->mod_type);
3963                 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3964                 ifmedia_set(media, m | IFM_UNKNOWN);
3965                 break;
3966         }
3967 }
3968
3969 /*
3970  * Update all the requested_* fields in the link config and then send a mailbox
3971  * command to apply the settings.
3972  */
3973 static void
3974 init_l1cfg(struct port_info *pi)
3975 {
3976         struct adapter *sc = pi->adapter;
3977         struct link_config *lc = &pi->link_cfg;
3978         int rc;
3979
3980         ASSERT_SYNCHRONIZED_OP(sc);
3981
3982         if (t4_autoneg != 0 && lc->supported & FW_PORT_CAP_ANEG) {
3983                 lc->requested_aneg = AUTONEG_ENABLE;
3984                 lc->requested_speed = 0;
3985         } else {
3986                 lc->requested_aneg = AUTONEG_DISABLE;
3987                 lc->requested_speed = port_top_speed(pi);       /* in Gbps */
3988         }
3989
3990         lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX);
3991
3992         if (t4_fec != -1) {
3993                 lc->requested_fec = t4_fec & (FEC_RS | FEC_BASER_RS |
3994                     FEC_RESERVED);
3995         } else {
3996                 /* Use the suggested value provided by the firmware in acaps */
3997                 if (lc->advertising & FW_PORT_CAP_FEC_RS)
3998                         lc->requested_fec = FEC_RS;
3999                 else if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
4000                         lc->requested_fec = FEC_BASER_RS;
4001                 else if (lc->advertising & FW_PORT_CAP_FEC_RESERVED)
4002                         lc->requested_fec = FEC_RESERVED;
4003                 else
4004                         lc->requested_fec = 0;
4005         }
4006
4007         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
4008         if (rc != 0) {
4009                 device_printf(pi->dev, "l1cfg failed: %d\n", rc);
4010         } else {
4011                 lc->fc = lc->requested_fc;
4012                 lc->fec = lc->requested_fec;
4013         }
4014 }
4015
4016 #define FW_MAC_EXACT_CHUNK      7
4017
4018 /*
4019  * Program the port's XGMAC based on parameters in ifnet.  The caller also
4020  * indicates which parameters should be programmed (the rest are left alone).
4021  */
4022 int
4023 update_mac_settings(struct ifnet *ifp, int flags)
4024 {
4025         int rc = 0;
4026         struct vi_info *vi = ifp->if_softc;
4027         struct port_info *pi = vi->pi;
4028         struct adapter *sc = pi->adapter;
4029         int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
4030
4031         ASSERT_SYNCHRONIZED_OP(sc);
4032         KASSERT(flags, ("%s: not told what to update.", __func__));
4033
4034         if (flags & XGMAC_MTU)
4035                 mtu = ifp->if_mtu;
4036
4037         if (flags & XGMAC_PROMISC)
4038                 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
4039
4040         if (flags & XGMAC_ALLMULTI)
4041                 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
4042
4043         if (flags & XGMAC_VLANEX)
4044                 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
4045
4046         if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
4047                 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
4048                     allmulti, 1, vlanex, false);
4049                 if (rc) {
4050                         if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
4051                             rc);
4052                         return (rc);
4053                 }
4054         }
4055
4056         if (flags & XGMAC_UCADDR) {
4057                 uint8_t ucaddr[ETHER_ADDR_LEN];
4058
4059                 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
4060                 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
4061                     ucaddr, true, true);
4062                 if (rc < 0) {
4063                         rc = -rc;
4064                         if_printf(ifp, "change_mac failed: %d\n", rc);
4065                         return (rc);
4066                 } else {
4067                         vi->xact_addr_filt = rc;
4068                         rc = 0;
4069                 }
4070         }
4071
4072         if (flags & XGMAC_MCADDRS) {
4073                 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
4074                 int del = 1;
4075                 uint64_t hash = 0;
4076                 struct ifmultiaddr *ifma;
4077                 int i = 0, j;
4078
4079                 if_maddr_rlock(ifp);
4080                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
4081                         if (ifma->ifma_addr->sa_family != AF_LINK)
4082                                 continue;
4083                         mcaddr[i] =
4084                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
4085                         MPASS(ETHER_IS_MULTICAST(mcaddr[i]));
4086                         i++;
4087
4088                         if (i == FW_MAC_EXACT_CHUNK) {
4089                                 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
4090                                     del, i, mcaddr, NULL, &hash, 0);
4091                                 if (rc < 0) {
4092                                         rc = -rc;
4093                                         for (j = 0; j < i; j++) {
4094                                                 if_printf(ifp,
4095                                                     "failed to add mc address"
4096                                                     " %02x:%02x:%02x:"
4097                                                     "%02x:%02x:%02x rc=%d\n",
4098                                                     mcaddr[j][0], mcaddr[j][1],
4099                                                     mcaddr[j][2], mcaddr[j][3],
4100                                                     mcaddr[j][4], mcaddr[j][5],
4101                                                     rc);
4102                                         }
4103                                         goto mcfail;
4104                                 }
4105                                 del = 0;
4106                                 i = 0;
4107                         }
4108                 }
4109                 if (i > 0) {
4110                         rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i,
4111                             mcaddr, NULL, &hash, 0);
4112                         if (rc < 0) {
4113                                 rc = -rc;
4114                                 for (j = 0; j < i; j++) {
4115                                         if_printf(ifp,
4116                                             "failed to add mc address"
4117                                             " %02x:%02x:%02x:"
4118                                             "%02x:%02x:%02x rc=%d\n",
4119                                             mcaddr[j][0], mcaddr[j][1],
4120                                             mcaddr[j][2], mcaddr[j][3],
4121                                             mcaddr[j][4], mcaddr[j][5],
4122                                             rc);
4123                                 }
4124                                 goto mcfail;
4125                         }
4126                 }
4127
4128                 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0);
4129                 if (rc != 0)
4130                         if_printf(ifp, "failed to set mc address hash: %d", rc);
4131 mcfail:
4132                 if_maddr_runlock(ifp);
4133         }
4134
4135         return (rc);
4136 }
4137
4138 /*
4139  * {begin|end}_synchronized_op must be called from the same thread.
4140  */
4141 int
4142 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
4143     char *wmesg)
4144 {
4145         int rc, pri;
4146
4147 #ifdef WITNESS
4148         /* the caller thinks it's ok to sleep, but is it really? */
4149         if (flags & SLEEP_OK)
4150                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
4151                     "begin_synchronized_op");
4152 #endif
4153
4154         if (INTR_OK)
4155                 pri = PCATCH;
4156         else
4157                 pri = 0;
4158
4159         ADAPTER_LOCK(sc);
4160         for (;;) {
4161
4162                 if (vi && IS_DOOMED(vi)) {
4163                         rc = ENXIO;
4164                         goto done;
4165                 }
4166
4167                 if (!IS_BUSY(sc)) {
4168                         rc = 0;
4169                         break;
4170                 }
4171
4172                 if (!(flags & SLEEP_OK)) {
4173                         rc = EBUSY;
4174                         goto done;
4175                 }
4176
4177                 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
4178                         rc = EINTR;
4179                         goto done;
4180                 }
4181         }
4182
4183         KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
4184         SET_BUSY(sc);
4185 #ifdef INVARIANTS
4186         sc->last_op = wmesg;
4187         sc->last_op_thr = curthread;
4188         sc->last_op_flags = flags;
4189 #endif
4190
4191 done:
4192         if (!(flags & HOLD_LOCK) || rc)
4193                 ADAPTER_UNLOCK(sc);
4194
4195         return (rc);
4196 }
4197
4198 /*
4199  * Tell if_ioctl and if_init that the VI is going away.  This is
4200  * special variant of begin_synchronized_op and must be paired with a
4201  * call to end_synchronized_op.
4202  */
4203 void
4204 doom_vi(struct adapter *sc, struct vi_info *vi)
4205 {
4206
4207         ADAPTER_LOCK(sc);
4208         SET_DOOMED(vi);
4209         wakeup(&sc->flags);
4210         while (IS_BUSY(sc))
4211                 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
4212         SET_BUSY(sc);
4213 #ifdef INVARIANTS
4214         sc->last_op = "t4detach";
4215         sc->last_op_thr = curthread;
4216         sc->last_op_flags = 0;
4217 #endif
4218         ADAPTER_UNLOCK(sc);
4219 }
4220
4221 /*
4222  * {begin|end}_synchronized_op must be called from the same thread.
4223  */
4224 void
4225 end_synchronized_op(struct adapter *sc, int flags)
4226 {
4227
4228         if (flags & LOCK_HELD)
4229                 ADAPTER_LOCK_ASSERT_OWNED(sc);
4230         else
4231                 ADAPTER_LOCK(sc);
4232
4233         KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
4234         CLR_BUSY(sc);
4235         wakeup(&sc->flags);
4236         ADAPTER_UNLOCK(sc);
4237 }
4238
4239 static int
4240 cxgbe_init_synchronized(struct vi_info *vi)
4241 {
4242         struct port_info *pi = vi->pi;
4243         struct adapter *sc = pi->adapter;
4244         struct ifnet *ifp = vi->ifp;
4245         int rc = 0, i;
4246         struct sge_txq *txq;
4247
4248         ASSERT_SYNCHRONIZED_OP(sc);
4249
4250         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4251                 return (0);     /* already running */
4252
4253         if (!(sc->flags & FULL_INIT_DONE) &&
4254             ((rc = adapter_full_init(sc)) != 0))
4255                 return (rc);    /* error message displayed already */
4256
4257         if (!(vi->flags & VI_INIT_DONE) &&
4258             ((rc = vi_full_init(vi)) != 0))
4259                 return (rc); /* error message displayed already */
4260
4261         rc = update_mac_settings(ifp, XGMAC_ALL);
4262         if (rc)
4263                 goto done;      /* error message displayed already */
4264
4265         rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
4266         if (rc != 0) {
4267                 if_printf(ifp, "enable_vi failed: %d\n", rc);
4268                 goto done;
4269         }
4270
4271         /*
4272          * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
4273          * if this changes.
4274          */
4275
4276         for_each_txq(vi, i, txq) {
4277                 TXQ_LOCK(txq);
4278                 txq->eq.flags |= EQ_ENABLED;
4279                 TXQ_UNLOCK(txq);
4280         }
4281
4282         /*
4283          * The first iq of the first port to come up is used for tracing.
4284          */
4285         if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
4286                 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
4287                 t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
4288                     A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
4289                     V_QUEUENUMBER(sc->traceq));
4290                 pi->flags |= HAS_TRACEQ;
4291         }
4292
4293         /* all ok */
4294         PORT_LOCK(pi);
4295         if (pi->up_vis++ == 0) {
4296                 t4_update_port_info(pi);
4297                 build_medialist(pi, &pi->media);
4298                 init_l1cfg(pi);
4299         }
4300         ifp->if_drv_flags |= IFF_DRV_RUNNING;
4301
4302         if (pi->nvi > 1 || sc->flags & IS_VF)
4303                 callout_reset(&vi->tick, hz, vi_tick, vi);
4304         else
4305                 callout_reset(&pi->tick, hz, cxgbe_tick, pi);
4306         PORT_UNLOCK(pi);
4307 done:
4308         if (rc != 0)
4309                 cxgbe_uninit_synchronized(vi);
4310
4311         return (rc);
4312 }
4313
4314 /*
4315  * Idempotent.
4316  */
4317 static int
4318 cxgbe_uninit_synchronized(struct vi_info *vi)
4319 {
4320         struct port_info *pi = vi->pi;
4321         struct adapter *sc = pi->adapter;
4322         struct ifnet *ifp = vi->ifp;
4323         int rc, i;
4324         struct sge_txq *txq;
4325
4326         ASSERT_SYNCHRONIZED_OP(sc);
4327
4328         if (!(vi->flags & VI_INIT_DONE)) {
4329                 KASSERT(!(ifp->if_drv_flags & IFF_DRV_RUNNING),
4330                     ("uninited VI is running"));
4331                 return (0);
4332         }
4333
4334         /*
4335          * Disable the VI so that all its data in either direction is discarded
4336          * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
4337          * tick) intact as the TP can deliver negative advice or data that it's
4338          * holding in its RAM (for an offloaded connection) even after the VI is
4339          * disabled.
4340          */
4341         rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
4342         if (rc) {
4343                 if_printf(ifp, "disable_vi failed: %d\n", rc);
4344                 return (rc);
4345         }
4346
4347         for_each_txq(vi, i, txq) {
4348                 TXQ_LOCK(txq);
4349                 txq->eq.flags &= ~EQ_ENABLED;
4350                 TXQ_UNLOCK(txq);
4351         }
4352
4353         PORT_LOCK(pi);
4354         if (pi->nvi > 1 || sc->flags & IS_VF)
4355                 callout_stop(&vi->tick);
4356         else
4357                 callout_stop(&pi->tick);
4358         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4359                 PORT_UNLOCK(pi);
4360                 return (0);
4361         }
4362         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4363         pi->up_vis--;
4364         if (pi->up_vis > 0) {
4365                 PORT_UNLOCK(pi);
4366                 return (0);
4367         }
4368         PORT_UNLOCK(pi);
4369
4370         pi->link_cfg.link_ok = 0;
4371         pi->link_cfg.speed = 0;
4372         pi->link_cfg.link_down_rc = 255;
4373         t4_os_link_changed(pi);
4374         pi->old_link_cfg = pi->link_cfg;
4375
4376         return (0);
4377 }
4378
4379 /*
4380  * It is ok for this function to fail midway and return right away.  t4_detach
4381  * will walk the entire sc->irq list and clean up whatever is valid.
4382  */
4383 int
4384 t4_setup_intr_handlers(struct adapter *sc)
4385 {
4386         int rc, rid, p, q, v;
4387         char s[8];
4388         struct irq *irq;
4389         struct port_info *pi;
4390         struct vi_info *vi;
4391         struct sge *sge = &sc->sge;
4392         struct sge_rxq *rxq;
4393 #ifdef TCP_OFFLOAD
4394         struct sge_ofld_rxq *ofld_rxq;
4395 #endif
4396 #ifdef DEV_NETMAP
4397         struct sge_nm_rxq *nm_rxq;
4398 #endif
4399 #ifdef RSS
4400         int nbuckets = rss_getnumbuckets();
4401 #endif
4402
4403         /*
4404          * Setup interrupts.
4405          */
4406         irq = &sc->irq[0];
4407         rid = sc->intr_type == INTR_INTX ? 0 : 1;
4408         if (forwarding_intr_to_fwq(sc))
4409                 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
4410
4411         /* Multiple interrupts. */
4412         if (sc->flags & IS_VF)
4413                 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
4414                     ("%s: too few intr.", __func__));
4415         else
4416                 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
4417                     ("%s: too few intr.", __func__));
4418
4419         /* The first one is always error intr on PFs */
4420         if (!(sc->flags & IS_VF)) {
4421                 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
4422                 if (rc != 0)
4423                         return (rc);
4424                 irq++;
4425                 rid++;
4426         }
4427
4428         /* The second one is always the firmware event queue (first on VFs) */
4429         rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
4430         if (rc != 0)
4431                 return (rc);
4432         irq++;
4433         rid++;
4434
4435         for_each_port(sc, p) {
4436                 pi = sc->port[p];
4437                 for_each_vi(pi, v, vi) {
4438                         vi->first_intr = rid - 1;
4439
4440                         if (vi->nnmrxq > 0) {
4441                                 int n = max(vi->nrxq, vi->nnmrxq);
4442
4443                                 rxq = &sge->rxq[vi->first_rxq];
4444 #ifdef DEV_NETMAP
4445                                 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
4446 #endif
4447                                 for (q = 0; q < n; q++) {
4448                                         snprintf(s, sizeof(s), "%x%c%x", p,
4449                                             'a' + v, q);
4450                                         if (q < vi->nrxq)
4451                                                 irq->rxq = rxq++;
4452 #ifdef DEV_NETMAP
4453                                         if (q < vi->nnmrxq)
4454                                                 irq->nm_rxq = nm_rxq++;
4455 #endif
4456                                         rc = t4_alloc_irq(sc, irq, rid,
4457                                             t4_vi_intr, irq, s);
4458                                         if (rc != 0)
4459                                                 return (rc);
4460 #ifdef RSS
4461                                         if (q < vi->nrxq) {
4462                                                 bus_bind_intr(sc->dev, irq->res,
4463                                                     rss_getcpu(q % nbuckets));
4464                                         }
4465 #endif
4466                                         irq++;
4467                                         rid++;
4468                                         vi->nintr++;
4469                                 }
4470                         } else {
4471                                 for_each_rxq(vi, q, rxq) {
4472                                         snprintf(s, sizeof(s), "%x%c%x", p,
4473                                             'a' + v, q);
4474                                         rc = t4_alloc_irq(sc, irq, rid,
4475                                             t4_intr, rxq, s);
4476                                         if (rc != 0)
4477                                                 return (rc);
4478 #ifdef RSS
4479                                         bus_bind_intr(sc->dev, irq->res,
4480                                             rss_getcpu(q % nbuckets));
4481 #endif
4482                                         irq++;
4483                                         rid++;
4484                                         vi->nintr++;
4485                                 }
4486                         }
4487 #ifdef TCP_OFFLOAD
4488                         for_each_ofld_rxq(vi, q, ofld_rxq) {
4489                                 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
4490                                 rc = t4_alloc_irq(sc, irq, rid, t4_intr,
4491                                     ofld_rxq, s);
4492                                 if (rc != 0)
4493                                         return (rc);
4494                                 irq++;
4495                                 rid++;
4496                                 vi->nintr++;
4497                         }
4498 #endif
4499                 }
4500         }
4501         MPASS(irq == &sc->irq[sc->intr_count]);
4502
4503         return (0);
4504 }
4505
4506 int
4507 adapter_full_init(struct adapter *sc)
4508 {
4509         int rc, i;
4510 #ifdef RSS
4511         uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
4512         uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
4513 #endif
4514
4515         ASSERT_SYNCHRONIZED_OP(sc);
4516         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
4517         KASSERT((sc->flags & FULL_INIT_DONE) == 0,
4518             ("%s: FULL_INIT_DONE already", __func__));
4519
4520         /*
4521          * queues that belong to the adapter (not any particular port).
4522          */
4523         rc = t4_setup_adapter_queues(sc);
4524         if (rc != 0)
4525                 goto done;
4526
4527         for (i = 0; i < nitems(sc->tq); i++) {
4528                 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
4529                     taskqueue_thread_enqueue, &sc->tq[i]);
4530                 if (sc->tq[i] == NULL) {
4531                         device_printf(sc->dev,
4532                             "failed to allocate task queue %d\n", i);
4533                         rc = ENOMEM;
4534                         goto done;
4535                 }
4536                 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
4537                     device_get_nameunit(sc->dev), i);
4538         }
4539 #ifdef RSS
4540         MPASS(RSS_KEYSIZE == 40);
4541         rss_getkey((void *)&raw_rss_key[0]);
4542         for (i = 0; i < nitems(rss_key); i++) {
4543                 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
4544         }
4545         t4_write_rss_key(sc, &rss_key[0], -1, 1);
4546 #endif
4547
4548         if (!(sc->flags & IS_VF))
4549                 t4_intr_enable(sc);
4550         sc->flags |= FULL_INIT_DONE;
4551 done:
4552         if (rc != 0)
4553                 adapter_full_uninit(sc);
4554
4555         return (rc);
4556 }
4557
4558 int
4559 adapter_full_uninit(struct adapter *sc)
4560 {
4561         int i;
4562
4563         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
4564
4565         t4_teardown_adapter_queues(sc);
4566
4567         for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
4568                 taskqueue_free(sc->tq[i]);
4569                 sc->tq[i] = NULL;
4570         }
4571
4572         sc->flags &= ~FULL_INIT_DONE;
4573
4574         return (0);
4575 }
4576
4577 #ifdef RSS
4578 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
4579     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
4580     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
4581     RSS_HASHTYPE_RSS_UDP_IPV6)
4582
4583 /* Translates kernel hash types to hardware. */
4584 static int
4585 hashconfig_to_hashen(int hashconfig)
4586 {
4587         int hashen = 0;
4588
4589         if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
4590                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
4591         if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
4592                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
4593         if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
4594                 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
4595                     F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
4596         }
4597         if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
4598                 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
4599                     F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
4600         }
4601         if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
4602                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
4603         if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
4604                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
4605
4606         return (hashen);
4607 }
4608
4609 /* Translates hardware hash types to kernel. */
4610 static int
4611 hashen_to_hashconfig(int hashen)
4612 {
4613         int hashconfig = 0;
4614
4615         if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
4616                 /*
4617                  * If UDP hashing was enabled it must have been enabled for
4618                  * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
4619                  * enabling any 4-tuple hash is nonsense configuration.
4620                  */
4621                 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
4622                     F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
4623
4624                 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
4625                         hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
4626                 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
4627                         hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
4628         }
4629         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
4630                 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
4631         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
4632                 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
4633         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
4634                 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
4635         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
4636                 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
4637
4638         return (hashconfig);
4639 }
4640 #endif
4641
4642 int
4643 vi_full_init(struct vi_info *vi)
4644 {
4645         struct adapter *sc = vi->pi->adapter;
4646         struct ifnet *ifp = vi->ifp;
4647         uint16_t *rss;
4648         struct sge_rxq *rxq;
4649         int rc, i, j, hashen;
4650 #ifdef RSS
4651         int nbuckets = rss_getnumbuckets();
4652         int hashconfig = rss_gethashconfig();
4653         int extra;
4654 #endif
4655
4656         ASSERT_SYNCHRONIZED_OP(sc);
4657         KASSERT((vi->flags & VI_INIT_DONE) == 0,
4658             ("%s: VI_INIT_DONE already", __func__));
4659
4660         sysctl_ctx_init(&vi->ctx);
4661         vi->flags |= VI_SYSCTL_CTX;
4662
4663         /*
4664          * Allocate tx/rx/fl queues for this VI.
4665          */
4666         rc = t4_setup_vi_queues(vi);
4667         if (rc != 0)
4668                 goto done;      /* error message displayed already */
4669
4670         /*
4671          * Setup RSS for this VI.  Save a copy of the RSS table for later use.
4672          */
4673         if (vi->nrxq > vi->rss_size) {
4674                 if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); "
4675                     "some queues will never receive traffic.\n", vi->nrxq,
4676                     vi->rss_size);
4677         } else if (vi->rss_size % vi->nrxq) {
4678                 if_printf(ifp, "nrxq (%d), hw RSS table size (%d); "
4679                     "expect uneven traffic distribution.\n", vi->nrxq,
4680                     vi->rss_size);
4681         }
4682 #ifdef RSS
4683         if (vi->nrxq != nbuckets) {
4684                 if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);"
4685                     "performance will be impacted.\n", vi->nrxq, nbuckets);
4686         }
4687 #endif
4688         rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK);
4689         for (i = 0; i < vi->rss_size;) {
4690 #ifdef RSS
4691                 j = rss_get_indirection_to_bucket(i);
4692                 j %= vi->nrxq;
4693                 rxq = &sc->sge.rxq[vi->first_rxq + j];
4694                 rss[i++] = rxq->iq.abs_id;
4695 #else
4696                 for_each_rxq(vi, j, rxq) {
4697                         rss[i++] = rxq->iq.abs_id;
4698                         if (i == vi->rss_size)
4699                                 break;
4700                 }
4701 #endif
4702         }
4703
4704         rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss,
4705             vi->rss_size);
4706         if (rc != 0) {
4707                 if_printf(ifp, "rss_config failed: %d\n", rc);
4708                 goto done;
4709         }
4710
4711 #ifdef RSS
4712         hashen = hashconfig_to_hashen(hashconfig);
4713
4714         /*
4715          * We may have had to enable some hashes even though the global config
4716          * wants them disabled.  This is a potential problem that must be
4717          * reported to the user.
4718          */
4719         extra = hashen_to_hashconfig(hashen) ^ hashconfig;
4720
4721         /*
4722          * If we consider only the supported hash types, then the enabled hashes
4723          * are a superset of the requested hashes.  In other words, there cannot
4724          * be any supported hash that was requested but not enabled, but there
4725          * can be hashes that were not requested but had to be enabled.
4726          */
4727         extra &= SUPPORTED_RSS_HASHTYPES;
4728         MPASS((extra & hashconfig) == 0);
4729
4730         if (extra) {
4731                 if_printf(ifp,
4732                     "global RSS config (0x%x) cannot be accommodated.\n",
4733                     hashconfig);
4734         }
4735         if (extra & RSS_HASHTYPE_RSS_IPV4)
4736                 if_printf(ifp, "IPv4 2-tuple hashing forced on.\n");
4737         if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
4738                 if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n");
4739         if (extra & RSS_HASHTYPE_RSS_IPV6)
4740                 if_printf(ifp, "IPv6 2-tuple hashing forced on.\n");
4741         if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
4742                 if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n");
4743         if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
4744                 if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n");
4745         if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
4746                 if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n");
4747 #else
4748         hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
4749             F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
4750             F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
4751             F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
4752 #endif
4753         rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, hashen, rss[0], 0, 0);
4754         if (rc != 0) {
4755                 if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc);
4756                 goto done;
4757         }
4758
4759         vi->rss = rss;
4760         vi->flags |= VI_INIT_DONE;
4761 done:
4762         if (rc != 0)
4763                 vi_full_uninit(vi);
4764
4765         return (rc);
4766 }
4767
4768 /*
4769  * Idempotent.
4770  */
4771 int
4772 vi_full_uninit(struct vi_info *vi)
4773 {
4774         struct port_info *pi = vi->pi;
4775         struct adapter *sc = pi->adapter;
4776         int i;
4777         struct sge_rxq *rxq;
4778         struct sge_txq *txq;
4779 #ifdef TCP_OFFLOAD
4780         struct sge_ofld_rxq *ofld_rxq;
4781         struct sge_wrq *ofld_txq;
4782 #endif
4783
4784         if (vi->flags & VI_INIT_DONE) {
4785
4786                 /* Need to quiesce queues.  */
4787
4788                 /* XXX: Only for the first VI? */
4789                 if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
4790                         quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
4791
4792                 for_each_txq(vi, i, txq) {
4793                         quiesce_txq(sc, txq);
4794                 }
4795
4796 #ifdef TCP_OFFLOAD
4797                 for_each_ofld_txq(vi, i, ofld_txq) {
4798                         quiesce_wrq(sc, ofld_txq);
4799                 }
4800 #endif
4801
4802                 for_each_rxq(vi, i, rxq) {
4803                         quiesce_iq(sc, &rxq->iq);
4804                         quiesce_fl(sc, &rxq->fl);
4805                 }
4806
4807 #ifdef TCP_OFFLOAD
4808                 for_each_ofld_rxq(vi, i, ofld_rxq) {
4809                         quiesce_iq(sc, &ofld_rxq->iq);
4810                         quiesce_fl(sc, &ofld_rxq->fl);
4811                 }
4812 #endif
4813                 free(vi->rss, M_CXGBE);
4814                 free(vi->nm_rss, M_CXGBE);
4815         }
4816
4817         t4_teardown_vi_queues(vi);
4818         vi->flags &= ~VI_INIT_DONE;
4819
4820         return (0);
4821 }
4822
4823 static void
4824 quiesce_txq(struct adapter *sc, struct sge_txq *txq)
4825 {
4826         struct sge_eq *eq = &txq->eq;
4827         struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4828
4829         (void) sc;      /* unused */
4830
4831 #ifdef INVARIANTS
4832         TXQ_LOCK(txq);
4833         MPASS((eq->flags & EQ_ENABLED) == 0);
4834         TXQ_UNLOCK(txq);
4835 #endif
4836
4837         /* Wait for the mp_ring to empty. */
4838         while (!mp_ring_is_idle(txq->r)) {
4839                 mp_ring_check_drainage(txq->r, 0);
4840                 pause("rquiesce", 1);
4841         }
4842
4843         /* Then wait for the hardware to finish. */
4844         while (spg->cidx != htobe16(eq->pidx))
4845                 pause("equiesce", 1);
4846
4847         /* Finally, wait for the driver to reclaim all descriptors. */
4848         while (eq->cidx != eq->pidx)
4849                 pause("dquiesce", 1);
4850 }
4851
4852 static void
4853 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq)
4854 {
4855
4856         /* XXXTX */
4857 }
4858
4859 static void
4860 quiesce_iq(struct adapter *sc, struct sge_iq *iq)
4861 {
4862         (void) sc;      /* unused */
4863
4864         /* Synchronize with the interrupt handler */
4865         while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
4866                 pause("iqfree", 1);
4867 }
4868
4869 static void
4870 quiesce_fl(struct adapter *sc, struct sge_fl *fl)
4871 {
4872         mtx_lock(&sc->sfl_lock);
4873         FL_LOCK(fl);
4874         fl->flags |= FL_DOOMED;
4875         FL_UNLOCK(fl);
4876         callout_stop(&sc->sfl_callout);
4877         mtx_unlock(&sc->sfl_lock);
4878
4879         KASSERT((fl->flags & FL_STARVING) == 0,
4880             ("%s: still starving", __func__));
4881 }
4882
4883 static int
4884 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
4885     driver_intr_t *handler, void *arg, char *name)
4886 {
4887         int rc;
4888
4889         irq->rid = rid;
4890         irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
4891             RF_SHAREABLE | RF_ACTIVE);
4892         if (irq->res == NULL) {
4893                 device_printf(sc->dev,
4894                     "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
4895                 return (ENOMEM);
4896         }
4897
4898         rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
4899             NULL, handler, arg, &irq->tag);
4900         if (rc != 0) {
4901                 device_printf(sc->dev,
4902                     "failed to setup interrupt for rid %d, name %s: %d\n",
4903                     rid, name, rc);
4904         } else if (name)
4905                 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
4906
4907         return (rc);
4908 }
4909
4910 static int
4911 t4_free_irq(struct adapter *sc, struct irq *irq)
4912 {
4913         if (irq->tag)
4914                 bus_teardown_intr(sc->dev, irq->res, irq->tag);
4915         if (irq->res)
4916                 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
4917
4918         bzero(irq, sizeof(*irq));
4919
4920         return (0);
4921 }
4922
4923 static void
4924 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
4925 {
4926
4927         regs->version = chip_id(sc) | chip_rev(sc) << 10;
4928         t4_get_regs(sc, buf, regs->len);
4929 }
4930
4931 #define A_PL_INDIR_CMD  0x1f8
4932
4933 #define S_PL_AUTOINC    31
4934 #define M_PL_AUTOINC    0x1U
4935 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
4936 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
4937
4938 #define S_PL_VFID       20
4939 #define M_PL_VFID       0xffU
4940 #define V_PL_VFID(x)    ((x) << S_PL_VFID)
4941 #define G_PL_VFID(x)    (((x) >> S_PL_VFID) & M_PL_VFID)
4942
4943 #define S_PL_ADDR       0
4944 #define M_PL_ADDR       0xfffffU
4945 #define V_PL_ADDR(x)    ((x) << S_PL_ADDR)
4946 #define G_PL_ADDR(x)    (((x) >> S_PL_ADDR) & M_PL_ADDR)
4947
4948 #define A_PL_INDIR_DATA 0x1fc
4949
4950 static uint64_t
4951 read_vf_stat(struct adapter *sc, unsigned int viid, int reg)
4952 {
4953         u32 stats[2];
4954
4955         mtx_assert(&sc->reg_lock, MA_OWNED);
4956         if (sc->flags & IS_VF) {
4957                 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
4958                 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
4959         } else {
4960                 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
4961                     V_PL_VFID(G_FW_VIID_VIN(viid)) |
4962                     V_PL_ADDR(VF_MPS_REG(reg)));
4963                 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
4964                 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
4965         }
4966         return (((uint64_t)stats[1]) << 32 | stats[0]);
4967 }
4968
4969 static void
4970 t4_get_vi_stats(struct adapter *sc, unsigned int viid,
4971     struct fw_vi_stats_vf *stats)
4972 {
4973
4974 #define GET_STAT(name) \
4975         read_vf_stat(sc, viid, A_MPS_VF_STAT_##name##_L)
4976
4977         stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
4978         stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
4979         stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
4980         stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
4981         stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
4982         stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
4983         stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
4984         stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
4985         stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
4986         stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
4987         stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
4988         stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
4989         stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
4990         stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
4991         stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
4992         stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
4993
4994 #undef GET_STAT
4995 }
4996
4997 static void
4998 t4_clr_vi_stats(struct adapter *sc, unsigned int viid)
4999 {
5000         int reg;
5001
5002         t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
5003             V_PL_VFID(G_FW_VIID_VIN(viid)) |
5004             V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
5005         for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
5006              reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
5007                 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
5008 }
5009
5010 static void
5011 vi_refresh_stats(struct adapter *sc, struct vi_info *vi)
5012 {
5013         struct timeval tv;
5014         const struct timeval interval = {0, 250000};    /* 250ms */
5015
5016         if (!(vi->flags & VI_INIT_DONE))
5017                 return;
5018
5019         getmicrotime(&tv);
5020         timevalsub(&tv, &interval);
5021         if (timevalcmp(&tv, &vi->last_refreshed, <))
5022                 return;
5023
5024         mtx_lock(&sc->reg_lock);
5025         t4_get_vi_stats(sc, vi->viid, &vi->stats);
5026         getmicrotime(&vi->last_refreshed);
5027         mtx_unlock(&sc->reg_lock);
5028 }
5029
5030 static void
5031 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi)
5032 {
5033         u_int i, v, tnl_cong_drops, bg_map;
5034         struct timeval tv;
5035         const struct timeval interval = {0, 250000};    /* 250ms */
5036
5037         getmicrotime(&tv);
5038         timevalsub(&tv, &interval);
5039         if (timevalcmp(&tv, &pi->last_refreshed, <))
5040                 return;
5041
5042         tnl_cong_drops = 0;
5043         t4_get_port_stats(sc, pi->tx_chan, &pi->stats);
5044         bg_map = pi->mps_bg_map;
5045         while (bg_map) {
5046                 i = ffs(bg_map) - 1;
5047                 mtx_lock(&sc->reg_lock);
5048                 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
5049                     A_TP_MIB_TNL_CNG_DROP_0 + i);
5050                 mtx_unlock(&sc->reg_lock);
5051                 tnl_cong_drops += v;
5052                 bg_map &= ~(1 << i);
5053         }
5054         pi->tnl_cong_drops = tnl_cong_drops;
5055         getmicrotime(&pi->last_refreshed);
5056 }
5057
5058 static void
5059 cxgbe_tick(void *arg)
5060 {
5061         struct port_info *pi = arg;
5062         struct adapter *sc = pi->adapter;
5063
5064         PORT_LOCK_ASSERT_OWNED(pi);
5065         cxgbe_refresh_stats(sc, pi);
5066
5067         callout_schedule(&pi->tick, hz);
5068 }
5069
5070 void
5071 vi_tick(void *arg)
5072 {
5073         struct vi_info *vi = arg;
5074         struct adapter *sc = vi->pi->adapter;
5075
5076         vi_refresh_stats(sc, vi);
5077
5078         callout_schedule(&vi->tick, hz);
5079 }
5080
5081 static void
5082 cxgbe_vlan_config(void *arg, struct ifnet *ifp, uint16_t vid)
5083 {
5084         struct ifnet *vlan;
5085
5086         if (arg != ifp || ifp->if_type != IFT_ETHER)
5087                 return;
5088
5089         vlan = VLAN_DEVAT(ifp, vid);
5090         VLAN_SETCOOKIE(vlan, ifp);
5091 }
5092
5093 /*
5094  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
5095  */
5096 static char *caps_decoder[] = {
5097         "\20\001IPMI\002NCSI",                          /* 0: NBM */
5098         "\20\001PPP\002QFC\003DCBX",                    /* 1: link */
5099         "\20\001INGRESS\002EGRESS",                     /* 2: switch */
5100         "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"      /* 3: NIC */
5101             "\006HASHFILTER\007ETHOFLD",
5102         "\20\001TOE",                                   /* 4: TOE */
5103         "\20\001RDDP\002RDMAC",                         /* 5: RDMA */
5104         "\20\001INITIATOR_PDU\002TARGET_PDU"            /* 6: iSCSI */
5105             "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
5106             "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
5107             "\007T10DIF"
5108             "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
5109         "\20\001LOOKASIDE\002TLSKEYS",                  /* 7: Crypto */
5110         "\20\001INITIATOR\002TARGET\003CTRL_OFLD"       /* 8: FCoE */
5111                     "\004PO_INITIATOR\005PO_TARGET",
5112 };
5113
5114 void
5115 t4_sysctls(struct adapter *sc)
5116 {
5117         struct sysctl_ctx_list *ctx;
5118         struct sysctl_oid *oid;
5119         struct sysctl_oid_list *children, *c0;
5120         static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
5121
5122         ctx = device_get_sysctl_ctx(sc->dev);
5123
5124         /*
5125          * dev.t4nex.X.
5126          */
5127         oid = device_get_sysctl_tree(sc->dev);
5128         c0 = children = SYSCTL_CHILDREN(oid);
5129
5130         sc->sc_do_rxcopy = 1;
5131         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
5132             &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
5133
5134         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
5135             sc->params.nports, "# of ports");
5136
5137         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
5138             CTLTYPE_STRING | CTLFLAG_RD, doorbells, sc->doorbells,
5139             sysctl_bitfield, "A", "available doorbells");
5140
5141         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
5142             sc->params.vpd.cclk, "core clock frequency (in KHz)");
5143
5144         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
5145             CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val,
5146             sizeof(sc->params.sge.timer_val), sysctl_int_array, "A",
5147             "interrupt holdoff timer values (us)");
5148
5149         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
5150             CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val,
5151             sizeof(sc->params.sge.counter_val), sysctl_int_array, "A",
5152             "interrupt holdoff packet counter values");
5153
5154         t4_sge_sysctls(sc, ctx, children);
5155
5156         sc->lro_timeout = 100;
5157         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
5158             &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
5159
5160         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
5161             &sc->debug_flags, 0, "flags to enable runtime debugging");
5162
5163         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
5164             CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
5165
5166         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
5167             CTLFLAG_RD, sc->fw_version, 0, "firmware version");
5168
5169         if (sc->flags & IS_VF)
5170                 return;
5171
5172         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
5173             NULL, chip_rev(sc), "chip hardware revision");
5174
5175         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
5176             CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
5177
5178         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
5179             CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
5180
5181         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
5182             CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
5183
5184         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
5185             CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
5186
5187         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
5188             CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
5189
5190         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
5191             sc->er_version, 0, "expansion ROM version");
5192
5193         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
5194             sc->bs_version, 0, "bootstrap firmware version");
5195
5196         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
5197             NULL, sc->params.scfg_vers, "serial config version");
5198
5199         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
5200             NULL, sc->params.vpd_vers, "VPD version");
5201
5202         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
5203             CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
5204
5205         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
5206             sc->cfcsum, "config file checksum");
5207
5208 #define SYSCTL_CAP(name, n, text) \
5209         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
5210             CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], sc->name, \
5211             sysctl_bitfield, "A", "available " text " capabilities")
5212
5213         SYSCTL_CAP(nbmcaps, 0, "NBM");
5214         SYSCTL_CAP(linkcaps, 1, "link");
5215         SYSCTL_CAP(switchcaps, 2, "switch");
5216         SYSCTL_CAP(niccaps, 3, "NIC");
5217         SYSCTL_CAP(toecaps, 4, "TCP offload");
5218         SYSCTL_CAP(rdmacaps, 5, "RDMA");
5219         SYSCTL_CAP(iscsicaps, 6, "iSCSI");
5220         SYSCTL_CAP(cryptocaps, 7, "crypto");
5221         SYSCTL_CAP(fcoecaps, 8, "FCoE");
5222 #undef SYSCTL_CAP
5223
5224         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
5225             NULL, sc->tids.nftids, "number of filters");
5226
5227         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT |
5228             CTLFLAG_RD, sc, 0, sysctl_temperature, "I",
5229             "chip temperature (in Celsius)");
5230
5231         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_vdd", CTLFLAG_RD,
5232             &sc->params.core_vdd, 0, "core Vdd (in mV)");
5233
5234 #ifdef SBUF_DRAIN
5235         /*
5236          * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
5237          */
5238         oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
5239             CTLFLAG_RD | CTLFLAG_SKIP, NULL,
5240             "logs and miscellaneous information");
5241         children = SYSCTL_CHILDREN(oid);
5242
5243         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
5244             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5245             sysctl_cctrl, "A", "congestion control");
5246
5247         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
5248             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5249             sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
5250
5251         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
5252             CTLTYPE_STRING | CTLFLAG_RD, sc, 1,
5253             sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
5254
5255         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
5256             CTLTYPE_STRING | CTLFLAG_RD, sc, 2,
5257             sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
5258
5259         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
5260             CTLTYPE_STRING | CTLFLAG_RD, sc, 3,
5261             sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
5262
5263         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
5264             CTLTYPE_STRING | CTLFLAG_RD, sc, 4,
5265             sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
5266
5267         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
5268             CTLTYPE_STRING | CTLFLAG_RD, sc, 5,
5269             sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
5270
5271         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
5272             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5273             chip_id(sc) <= CHELSIO_T5 ? sysctl_cim_la : sysctl_cim_la_t6,
5274             "A", "CIM logic analyzer");
5275
5276         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
5277             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5278             sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
5279
5280         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
5281             CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ,
5282             sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
5283
5284         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
5285             CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ,
5286             sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
5287
5288         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
5289             CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ,
5290             sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
5291
5292         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
5293             CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ,
5294             sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
5295
5296         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
5297             CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ,
5298             sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
5299
5300         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
5301             CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ,
5302             sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
5303
5304         if (chip_id(sc) > CHELSIO_T4) {
5305                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
5306                     CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ,
5307                     sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)");
5308
5309                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
5310                     CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ,
5311                     sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)");
5312         }
5313
5314         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
5315             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5316             sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
5317
5318         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
5319             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5320             sysctl_cim_qcfg, "A", "CIM queue configuration");
5321
5322         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
5323             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5324             sysctl_cpl_stats, "A", "CPL statistics");
5325
5326         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
5327             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5328             sysctl_ddp_stats, "A", "non-TCP DDP statistics");
5329
5330         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
5331             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5332             sysctl_devlog, "A", "firmware's device log");
5333
5334         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
5335             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5336             sysctl_fcoe_stats, "A", "FCoE statistics");
5337
5338         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
5339             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5340             sysctl_hw_sched, "A", "hardware scheduler ");
5341
5342         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
5343             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5344             sysctl_l2t, "A", "hardware L2 table");
5345
5346         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
5347             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5348             sysctl_lb_stats, "A", "loopback statistics");
5349
5350         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
5351             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5352             sysctl_meminfo, "A", "memory regions");
5353
5354         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
5355             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5356             chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
5357             "A", "MPS TCAM entries");
5358
5359         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
5360             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5361             sysctl_path_mtus, "A", "path MTUs");
5362
5363         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
5364             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5365             sysctl_pm_stats, "A", "PM statistics");
5366
5367         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
5368             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5369             sysctl_rdma_stats, "A", "RDMA statistics");
5370
5371         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
5372             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5373             sysctl_tcp_stats, "A", "TCP statistics");
5374
5375         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
5376             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5377             sysctl_tids, "A", "TID information");
5378
5379         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
5380             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5381             sysctl_tp_err_stats, "A", "TP error statistics");
5382
5383         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
5384             CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I",
5385             "TP logic analyzer event capture mask");
5386
5387         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
5388             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5389             sysctl_tp_la, "A", "TP logic analyzer");
5390
5391         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
5392             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5393             sysctl_tx_rate, "A", "Tx rate");
5394
5395         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
5396             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5397             sysctl_ulprx_la, "A", "ULPRX logic analyzer");
5398
5399         if (chip_id(sc) >= CHELSIO_T5) {
5400                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
5401                     CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5402                     sysctl_wcwr_stats, "A", "write combined work requests");
5403         }
5404 #endif
5405
5406 #ifdef TCP_OFFLOAD
5407         if (is_offload(sc)) {
5408                 int i;
5409                 char s[4];
5410
5411                 /*
5412                  * dev.t4nex.X.toe.
5413                  */
5414                 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD,
5415                     NULL, "TOE parameters");
5416                 children = SYSCTL_CHILDREN(oid);
5417
5418                 sc->tt.cong_algorithm = -1;
5419                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
5420                     CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
5421                     "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
5422                     "3 = highspeed)");
5423
5424                 sc->tt.sndbuf = 256 * 1024;
5425                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
5426                     &sc->tt.sndbuf, 0, "max hardware send buffer size");
5427
5428                 sc->tt.ddp = 0;
5429                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW,
5430                     &sc->tt.ddp, 0, "DDP allowed");
5431
5432                 sc->tt.rx_coalesce = 1;
5433                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
5434                     CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
5435
5436                 sc->tt.tx_align = 1;
5437                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
5438                     CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
5439
5440                 sc->tt.tx_zcopy = 0;
5441                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
5442                     CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
5443                     "Enable zero-copy aio_write(2)");
5444
5445                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
5446                     CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A",
5447                     "TP timer tick (us)");
5448
5449                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
5450                     CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A",
5451                     "TCP timestamp tick (us)");
5452
5453                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
5454                     CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A",
5455                     "DACK tick (us)");
5456
5457                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
5458                     CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer,
5459                     "IU", "DACK timer (us)");
5460
5461                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
5462                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN,
5463                     sysctl_tp_timer, "LU", "Minimum retransmit interval (us)");
5464
5465                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
5466                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX,
5467                     sysctl_tp_timer, "LU", "Maximum retransmit interval (us)");
5468
5469                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
5470                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN,
5471                     sysctl_tp_timer, "LU", "Persist timer min (us)");
5472
5473                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
5474                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX,
5475                     sysctl_tp_timer, "LU", "Persist timer max (us)");
5476
5477                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
5478                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE,
5479                     sysctl_tp_timer, "LU", "Keepalive idle timer (us)");
5480
5481                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
5482                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL,
5483                     sysctl_tp_timer, "LU", "Keepalive interval timer (us)");
5484
5485                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
5486                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT,
5487                     sysctl_tp_timer, "LU", "Initial SRTT (us)");
5488
5489                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
5490                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER,
5491                     sysctl_tp_timer, "LU", "FINWAIT2 timer (us)");
5492
5493                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
5494                     CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX,
5495                     sysctl_tp_shift_cnt, "IU",
5496                     "Number of SYN retransmissions before abort");
5497
5498                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
5499                     CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2,
5500                     sysctl_tp_shift_cnt, "IU",
5501                     "Number of retransmissions before abort");
5502
5503                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
5504                     CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2,
5505                     sysctl_tp_shift_cnt, "IU",
5506                     "Number of keepalive probes before abort");
5507
5508                 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
5509                     CTLFLAG_RD, NULL, "TOE retransmit backoffs");
5510                 children = SYSCTL_CHILDREN(oid);
5511                 for (i = 0; i < 16; i++) {
5512                         snprintf(s, sizeof(s), "%u", i);
5513                         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
5514                             CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff,
5515                             "IU", "TOE retransmit backoff");
5516                 }
5517         }
5518 #endif
5519 }
5520
5521 void
5522 vi_sysctls(struct vi_info *vi)
5523 {
5524         struct sysctl_ctx_list *ctx;
5525         struct sysctl_oid *oid;
5526         struct sysctl_oid_list *children;
5527
5528         ctx = device_get_sysctl_ctx(vi->dev);
5529
5530         /*
5531          * dev.v?(cxgbe|cxl).X.
5532          */
5533         oid = device_get_sysctl_tree(vi->dev);
5534         children = SYSCTL_CHILDREN(oid);
5535
5536         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
5537             vi->viid, "VI identifer");
5538         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
5539             &vi->nrxq, 0, "# of rx queues");
5540         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
5541             &vi->ntxq, 0, "# of tx queues");
5542         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
5543             &vi->first_rxq, 0, "index of first rx queue");
5544         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
5545             &vi->first_txq, 0, "index of first tx queue");
5546         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
5547             vi->rss_size, "size of RSS indirection table");
5548
5549         if (IS_MAIN_VI(vi)) {
5550                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
5551                     CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU",
5552                     "Reserve queue 0 for non-flowid packets");
5553         }
5554
5555 #ifdef TCP_OFFLOAD
5556         if (vi->nofldrxq != 0) {
5557                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
5558                     &vi->nofldrxq, 0,
5559                     "# of rx queues for offloaded TCP connections");
5560                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
5561                     &vi->nofldtxq, 0,
5562                     "# of tx queues for offloaded TCP connections");
5563                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
5564                     CTLFLAG_RD, &vi->first_ofld_rxq, 0,
5565                     "index of first TOE rx queue");
5566                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
5567                     CTLFLAG_RD, &vi->first_ofld_txq, 0,
5568                     "index of first TOE tx queue");
5569                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
5570                     CTLTYPE_INT | CTLFLAG_RW, vi, 0,
5571                     sysctl_holdoff_tmr_idx_ofld, "I",
5572                     "holdoff timer index for TOE queues");
5573                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
5574                     CTLTYPE_INT | CTLFLAG_RW, vi, 0,
5575                     sysctl_holdoff_pktc_idx_ofld, "I",
5576                     "holdoff packet counter index for TOE queues");
5577         }
5578 #endif
5579 #ifdef DEV_NETMAP
5580         if (vi->nnmrxq != 0) {
5581                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
5582                     &vi->nnmrxq, 0, "# of netmap rx queues");
5583                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
5584                     &vi->nnmtxq, 0, "# of netmap tx queues");
5585                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
5586                     CTLFLAG_RD, &vi->first_nm_rxq, 0,
5587                     "index of first netmap rx queue");
5588                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
5589                     CTLFLAG_RD, &vi->first_nm_txq, 0,
5590                     "index of first netmap tx queue");
5591         }
5592 #endif
5593
5594         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
5595             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I",
5596             "holdoff timer index");
5597         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
5598             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I",
5599             "holdoff packet counter index");
5600
5601         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
5602             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I",
5603             "rx queue size");
5604         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
5605             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I",
5606             "tx queue size");
5607 }
5608
5609 static void
5610 cxgbe_sysctls(struct port_info *pi)
5611 {
5612         struct sysctl_ctx_list *ctx;
5613         struct sysctl_oid *oid;
5614         struct sysctl_oid_list *children, *children2;
5615         struct adapter *sc = pi->adapter;
5616         int i;
5617         char name[16];
5618
5619         ctx = device_get_sysctl_ctx(pi->dev);
5620
5621         /*
5622          * dev.cxgbe.X.
5623          */
5624         oid = device_get_sysctl_tree(pi->dev);
5625         children = SYSCTL_CHILDREN(oid);
5626
5627         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING |
5628            CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down");
5629         if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
5630                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
5631                     CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I",
5632                     "PHY temperature (in Celsius)");
5633                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
5634                     CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I",
5635                     "PHY firmware version");
5636         }
5637
5638         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
5639             CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A",
5640             "PAUSE settings (bit 0 = rx_pause, bit 1 = tx_pause)");
5641         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec",
5642             CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A",
5643             "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
5644         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
5645             CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I",
5646             "autonegotiation (-1 = not supported)");
5647
5648         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
5649             port_top_speed(pi), "max speed (in Gbps)");
5650         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
5651             pi->mps_bg_map, "MPS buffer group map");
5652         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
5653             NULL, pi->rx_e_chan_map, "TP rx e-channel map");
5654
5655         if (sc->flags & IS_VF)
5656                 return;
5657
5658         /*
5659          * dev.(cxgbe|cxl).X.tc.
5660          */
5661         oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL,
5662             "Tx scheduler traffic classes (cl_rl)");
5663         for (i = 0; i < sc->chip_params->nsched_cls; i++) {
5664                 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
5665
5666                 snprintf(name, sizeof(name), "%d", i);
5667                 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
5668                     SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL,
5669                     "traffic class"));
5670                 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "flags", CTLFLAG_RD,
5671                     &tc->flags, 0, "flags");
5672                 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
5673                     CTLFLAG_RD, &tc->refcount, 0, "references to this class");
5674 #ifdef SBUF_DRAIN
5675                 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
5676                     CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i,
5677                     sysctl_tc_params, "A", "traffic class parameters");
5678 #endif
5679         }
5680
5681         /*
5682          * dev.cxgbe.X.stats.
5683          */
5684         oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
5685             NULL, "port statistics");
5686         children = SYSCTL_CHILDREN(oid);
5687         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
5688             &pi->tx_parse_error, 0,
5689             "# of tx packets with invalid length or # of segments");
5690
5691 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \
5692         SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \
5693             CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \
5694             sysctl_handle_t4_reg64, "QU", desc)
5695
5696         SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames",
5697             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L));
5698         SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames",
5699             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L));
5700         SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames",
5701             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L));
5702         SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames",
5703             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L));
5704         SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames",
5705             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L));
5706         SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames",
5707             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L));
5708         SYSCTL_ADD_T4_REG64(pi, "tx_frames_64",
5709             "# of tx frames in this range",
5710             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L));
5711         SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127",
5712             "# of tx frames in this range",
5713             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L));
5714         SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255",
5715             "# of tx frames in this range",
5716             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L));
5717         SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511",
5718             "# of tx frames in this range",
5719             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L));
5720         SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023",
5721             "# of tx frames in this range",
5722             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L));
5723         SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518",
5724             "# of tx frames in this range",
5725             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L));
5726         SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max",
5727             "# of tx frames in this range",
5728             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L));
5729         SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames",
5730             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L));
5731         SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted",
5732             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L));
5733         SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted",
5734             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L));
5735         SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted",
5736             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L));
5737         SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted",
5738             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L));
5739         SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted",
5740             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L));
5741         SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted",
5742             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L));
5743         SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted",
5744             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L));
5745         SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted",
5746             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L));
5747         SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted",
5748             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L));
5749
5750         SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames",
5751             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L));
5752         SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames",
5753             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L));
5754         SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames",
5755             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L));
5756         SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames",
5757             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L));
5758         SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames",
5759             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L));
5760         SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU",
5761             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L));
5762         SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames",
5763             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L));
5764         SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err",
5765             "# of frames received with bad FCS",
5766             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L));
5767         SYSCTL_ADD_T4_REG64(pi, "rx_len_err",
5768             "# of frames received with length error",
5769             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L));
5770         SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors",
5771             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L));
5772         SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received",
5773             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L));
5774         SYSCTL_ADD_T4_REG64(pi, "rx_frames_64",
5775             "# of rx frames in this range",
5776             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L));
5777         SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127",
5778             "# of rx frames in this range",
5779             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L));
5780         SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255",
5781             "# of rx frames in this range",
5782             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L));
5783         SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511",
5784             "# of rx frames in this range",
5785             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L));
5786         SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023",
5787             "# of rx frames in this range",
5788             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L));
5789         SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518",
5790             "# of rx frames in this range",
5791             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L));
5792         SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max",
5793             "# of rx frames in this range",
5794             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L));
5795         SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received",
5796             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L));
5797         SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received",
5798             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L));
5799         SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received",
5800             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L));
5801         SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received",
5802             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L));
5803         SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received",
5804             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L));
5805         SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received",
5806             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L));
5807         SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received",
5808             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L));
5809         SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received",
5810             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L));
5811         SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received",
5812             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L));
5813
5814 #undef SYSCTL_ADD_T4_REG64
5815
5816 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \
5817         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
5818             &pi->stats.name, desc)
5819
5820         /* We get these from port_stats and they may be stale by up to 1s */
5821         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0,
5822             "# drops due to buffer-group 0 overflows");
5823         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1,
5824             "# drops due to buffer-group 1 overflows");
5825         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2,
5826             "# drops due to buffer-group 2 overflows");
5827         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3,
5828             "# drops due to buffer-group 3 overflows");
5829         SYSCTL_ADD_T4_PORTSTAT(rx_trunc0,
5830             "# of buffer-group 0 truncated packets");
5831         SYSCTL_ADD_T4_PORTSTAT(rx_trunc1,
5832             "# of buffer-group 1 truncated packets");
5833         SYSCTL_ADD_T4_PORTSTAT(rx_trunc2,
5834             "# of buffer-group 2 truncated packets");
5835         SYSCTL_ADD_T4_PORTSTAT(rx_trunc3,
5836             "# of buffer-group 3 truncated packets");
5837
5838 #undef SYSCTL_ADD_T4_PORTSTAT
5839 }
5840
5841 static int
5842 sysctl_int_array(SYSCTL_HANDLER_ARGS)
5843 {
5844         int rc, *i, space = 0;
5845         struct sbuf sb;
5846
5847         sbuf_new_for_sysctl(&sb, NULL, 64, req);
5848         for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
5849                 if (space)
5850                         sbuf_printf(&sb, " ");
5851                 sbuf_printf(&sb, "%d", *i);
5852                 space = 1;
5853         }
5854         rc = sbuf_finish(&sb);
5855         sbuf_delete(&sb);
5856         return (rc);
5857 }
5858
5859 static int
5860 sysctl_bitfield(SYSCTL_HANDLER_ARGS)
5861 {
5862         int rc;
5863         struct sbuf *sb;
5864
5865         rc = sysctl_wire_old_buffer(req, 0);
5866         if (rc != 0)
5867                 return(rc);
5868
5869         sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5870         if (sb == NULL)
5871                 return (ENOMEM);
5872
5873         sbuf_printf(sb, "%b", (int)arg2, (char *)arg1);
5874         rc = sbuf_finish(sb);
5875         sbuf_delete(sb);
5876
5877         return (rc);
5878 }
5879
5880 static int
5881 sysctl_btphy(SYSCTL_HANDLER_ARGS)
5882 {
5883         struct port_info *pi = arg1;
5884         int op = arg2;
5885         struct adapter *sc = pi->adapter;
5886         u_int v;
5887         int rc;
5888
5889         rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
5890         if (rc)
5891                 return (rc);
5892         /* XXX: magic numbers */
5893         rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820,
5894             &v);
5895         end_synchronized_op(sc, 0);
5896         if (rc)
5897                 return (rc);
5898         if (op == 0)
5899                 v /= 256;
5900
5901         rc = sysctl_handle_int(oidp, &v, 0, req);
5902         return (rc);
5903 }
5904
5905 static int
5906 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
5907 {
5908         struct vi_info *vi = arg1;
5909         int rc, val;
5910
5911         val = vi->rsrv_noflowq;
5912         rc = sysctl_handle_int(oidp, &val, 0, req);
5913         if (rc != 0 || req->newptr == NULL)
5914                 return (rc);
5915
5916         if ((val >= 1) && (vi->ntxq > 1))
5917                 vi->rsrv_noflowq = 1;
5918         else
5919                 vi->rsrv_noflowq = 0;
5920
5921         return (rc);
5922 }
5923
5924 static int
5925 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
5926 {
5927         struct vi_info *vi = arg1;
5928         struct adapter *sc = vi->pi->adapter;
5929         int idx, rc, i;
5930         struct sge_rxq *rxq;
5931         uint8_t v;
5932
5933         idx = vi->tmr_idx;
5934
5935         rc = sysctl_handle_int(oidp, &idx, 0, req);
5936         if (rc != 0 || req->newptr == NULL)
5937                 return (rc);
5938
5939         if (idx < 0 || idx >= SGE_NTIMERS)
5940                 return (EINVAL);
5941
5942         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
5943             "t4tmr");
5944         if (rc)
5945                 return (rc);
5946
5947         v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
5948         for_each_rxq(vi, i, rxq) {
5949 #ifdef atomic_store_rel_8
5950                 atomic_store_rel_8(&rxq->iq.intr_params, v);
5951 #else
5952                 rxq->iq.intr_params = v;
5953 #endif
5954         }
5955         vi->tmr_idx = idx;
5956
5957         end_synchronized_op(sc, LOCK_HELD);
5958         return (0);
5959 }
5960
5961 static int
5962 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
5963 {
5964         struct vi_info *vi = arg1;
5965         struct adapter *sc = vi->pi->adapter;
5966         int idx, rc;
5967
5968         idx = vi->pktc_idx;
5969
5970         rc = sysctl_handle_int(oidp, &idx, 0, req);
5971         if (rc != 0 || req->newptr == NULL)
5972                 return (rc);
5973
5974         if (idx < -1 || idx >= SGE_NCOUNTERS)
5975                 return (EINVAL);
5976
5977         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
5978             "t4pktc");
5979         if (rc)
5980                 return (rc);
5981
5982         if (vi->flags & VI_INIT_DONE)
5983                 rc = EBUSY; /* cannot be changed once the queues are created */
5984         else
5985                 vi->pktc_idx = idx;
5986
5987         end_synchronized_op(sc, LOCK_HELD);
5988         return (rc);
5989 }
5990
5991 static int
5992 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
5993 {
5994         struct vi_info *vi = arg1;
5995         struct adapter *sc = vi->pi->adapter;
5996         int qsize, rc;
5997
5998         qsize = vi->qsize_rxq;
5999
6000         rc = sysctl_handle_int(oidp, &qsize, 0, req);
6001         if (rc != 0 || req->newptr == NULL)
6002                 return (rc);
6003
6004         if (qsize < 128 || (qsize & 7))
6005                 return (EINVAL);
6006
6007         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6008             "t4rxqs");
6009         if (rc)
6010                 return (rc);
6011
6012         if (vi->flags & VI_INIT_DONE)
6013                 rc = EBUSY; /* cannot be changed once the queues are created */
6014         else
6015                 vi->qsize_rxq = qsize;
6016
6017         end_synchronized_op(sc, LOCK_HELD);
6018         return (rc);
6019 }
6020
6021 static int
6022 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
6023 {
6024         struct vi_info *vi = arg1;
6025         struct adapter *sc = vi->pi->adapter;
6026         int qsize, rc;
6027
6028         qsize = vi->qsize_txq;
6029
6030         rc = sysctl_handle_int(oidp, &qsize, 0, req);
6031         if (rc != 0 || req->newptr == NULL)
6032                 return (rc);
6033
6034         if (qsize < 128 || qsize > 65536)
6035                 return (EINVAL);
6036
6037         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6038             "t4txqs");
6039         if (rc)
6040                 return (rc);
6041
6042         if (vi->flags & VI_INIT_DONE)
6043                 rc = EBUSY; /* cannot be changed once the queues are created */
6044         else
6045                 vi->qsize_txq = qsize;
6046
6047         end_synchronized_op(sc, LOCK_HELD);
6048         return (rc);
6049 }
6050
6051 static int
6052 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
6053 {
6054         struct port_info *pi = arg1;
6055         struct adapter *sc = pi->adapter;
6056         struct link_config *lc = &pi->link_cfg;
6057         int rc;
6058
6059         if (req->newptr == NULL) {
6060                 struct sbuf *sb;
6061                 static char *bits = "\20\1PAUSE_RX\2PAUSE_TX";
6062
6063                 rc = sysctl_wire_old_buffer(req, 0);
6064                 if (rc != 0)
6065                         return(rc);
6066
6067                 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6068                 if (sb == NULL)
6069                         return (ENOMEM);
6070
6071                 sbuf_printf(sb, "%b", lc->fc & (PAUSE_TX | PAUSE_RX), bits);
6072                 rc = sbuf_finish(sb);
6073                 sbuf_delete(sb);
6074         } else {
6075                 char s[2];
6076                 int n;
6077
6078                 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX));
6079                 s[1] = 0;
6080
6081                 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
6082                 if (rc != 0)
6083                         return(rc);
6084
6085                 if (s[1] != 0)
6086                         return (EINVAL);
6087                 if (s[0] < '0' || s[0] > '9')
6088                         return (EINVAL);        /* not a number */
6089                 n = s[0] - '0';
6090                 if (n & ~(PAUSE_TX | PAUSE_RX))
6091                         return (EINVAL);        /* some other bit is set too */
6092
6093                 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6094                     "t4PAUSE");
6095                 if (rc)
6096                         return (rc);
6097                 if ((lc->requested_fc & (PAUSE_TX | PAUSE_RX)) != n) {
6098                         lc->requested_fc &= ~(PAUSE_TX | PAUSE_RX);
6099                         lc->requested_fc |= n;
6100                         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6101                         if (rc == 0) {
6102                                 lc->fc = lc->requested_fc;
6103                         }
6104                 }
6105                 end_synchronized_op(sc, 0);
6106         }
6107
6108         return (rc);
6109 }
6110
6111 static int
6112 sysctl_fec(SYSCTL_HANDLER_ARGS)
6113 {
6114         struct port_info *pi = arg1;
6115         struct adapter *sc = pi->adapter;
6116         struct link_config *lc = &pi->link_cfg;
6117         int rc;
6118
6119         if (req->newptr == NULL) {
6120                 struct sbuf *sb;
6121                 static char *bits = "\20\1RS\2BASER_RS\3RESERVED";
6122
6123                 rc = sysctl_wire_old_buffer(req, 0);
6124                 if (rc != 0)
6125                         return(rc);
6126
6127                 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6128                 if (sb == NULL)
6129                         return (ENOMEM);
6130
6131                 sbuf_printf(sb, "%b", lc->fec & M_FW_PORT_CAP_FEC, bits);
6132                 rc = sbuf_finish(sb);
6133                 sbuf_delete(sb);
6134         } else {
6135                 char s[2];
6136                 int n;
6137
6138                 s[0] = '0' + (lc->requested_fec & M_FW_PORT_CAP_FEC);
6139                 s[1] = 0;
6140
6141                 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
6142                 if (rc != 0)
6143                         return(rc);
6144
6145                 if (s[1] != 0)
6146                         return (EINVAL);
6147                 if (s[0] < '0' || s[0] > '9')
6148                         return (EINVAL);        /* not a number */
6149                 n = s[0] - '0';
6150                 if (n & ~M_FW_PORT_CAP_FEC)
6151                         return (EINVAL);        /* some other bit is set too */
6152
6153                 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6154                     "t4fec");
6155                 if (rc)
6156                         return (rc);
6157                 if ((lc->requested_fec & M_FW_PORT_CAP_FEC) != n) {
6158                         lc->requested_fec = n &
6159                             G_FW_PORT_CAP_FEC(lc->supported);
6160                         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6161                         if (rc == 0) {
6162                                 lc->fec = lc->requested_fec;
6163                         }
6164                 }
6165                 end_synchronized_op(sc, 0);
6166         }
6167
6168         return (rc);
6169 }
6170
6171 static int
6172 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
6173 {
6174         struct port_info *pi = arg1;
6175         struct adapter *sc = pi->adapter;
6176         struct link_config *lc = &pi->link_cfg;
6177         int rc, val, old;
6178
6179         if (lc->supported & FW_PORT_CAP_ANEG)
6180                 val = lc->requested_aneg == AUTONEG_ENABLE ? 1 : 0;
6181         else
6182                 val = -1;
6183         rc = sysctl_handle_int(oidp, &val, 0, req);
6184         if (rc != 0 || req->newptr == NULL)
6185                 return (rc);
6186         if ((lc->supported & FW_PORT_CAP_ANEG) == 0)
6187                 return (ENOTSUP);
6188
6189         if (val == 0)
6190                 val = AUTONEG_DISABLE;
6191         else if (val == 1)
6192                 val = AUTONEG_ENABLE;
6193         else
6194                 return (EINVAL);
6195         if (lc->requested_aneg == val)
6196                 return (0);     /* no change */
6197
6198         rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6199             "t4aneg");
6200         if (rc)
6201                 return (rc);
6202         old = lc->requested_aneg;
6203         lc->requested_aneg = val;
6204         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6205         if (rc != 0)
6206                 lc->requested_aneg = old;
6207         end_synchronized_op(sc, 0);
6208         return (rc);
6209 }
6210
6211 static int
6212 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
6213 {
6214         struct adapter *sc = arg1;
6215         int reg = arg2;
6216         uint64_t val;
6217
6218         val = t4_read_reg64(sc, reg);
6219
6220         return (sysctl_handle_64(oidp, &val, 0, req));
6221 }
6222
6223 static int
6224 sysctl_temperature(SYSCTL_HANDLER_ARGS)
6225 {
6226         struct adapter *sc = arg1;
6227         int rc, t;
6228         uint32_t param, val;
6229
6230         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
6231         if (rc)
6232                 return (rc);
6233         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6234             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
6235             V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
6236         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
6237         end_synchronized_op(sc, 0);
6238         if (rc)
6239                 return (rc);
6240
6241         /* unknown is returned as 0 but we display -1 in that case */
6242         t = val == 0 ? -1 : val;
6243
6244         rc = sysctl_handle_int(oidp, &t, 0, req);
6245         return (rc);
6246 }
6247
6248 #ifdef SBUF_DRAIN
6249 static int
6250 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
6251 {
6252         struct adapter *sc = arg1;
6253         struct sbuf *sb;
6254         int rc, i;
6255         uint16_t incr[NMTUS][NCCTRL_WIN];
6256         static const char *dec_fac[] = {
6257                 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
6258                 "0.9375"
6259         };
6260
6261         rc = sysctl_wire_old_buffer(req, 0);
6262         if (rc != 0)
6263                 return (rc);
6264
6265         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6266         if (sb == NULL)
6267                 return (ENOMEM);
6268
6269         t4_read_cong_tbl(sc, incr);
6270
6271         for (i = 0; i < NCCTRL_WIN; ++i) {
6272                 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
6273                     incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
6274                     incr[5][i], incr[6][i], incr[7][i]);
6275                 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
6276                     incr[8][i], incr[9][i], incr[10][i], incr[11][i],
6277                     incr[12][i], incr[13][i], incr[14][i], incr[15][i],
6278                     sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
6279         }
6280
6281         rc = sbuf_finish(sb);
6282         sbuf_delete(sb);
6283
6284         return (rc);
6285 }
6286
6287 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
6288         "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",   /* ibq's */
6289         "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
6290         "SGE0-RX", "SGE1-RX"    /* additional obq's (T5 onwards) */
6291 };
6292
6293 static int
6294 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
6295 {
6296         struct adapter *sc = arg1;
6297         struct sbuf *sb;
6298         int rc, i, n, qid = arg2;
6299         uint32_t *buf, *p;
6300         char *qtype;
6301         u_int cim_num_obq = sc->chip_params->cim_num_obq;
6302
6303         KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
6304             ("%s: bad qid %d\n", __func__, qid));
6305
6306         if (qid < CIM_NUM_IBQ) {
6307                 /* inbound queue */
6308                 qtype = "IBQ";
6309                 n = 4 * CIM_IBQ_SIZE;
6310                 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
6311                 rc = t4_read_cim_ibq(sc, qid, buf, n);
6312         } else {
6313                 /* outbound queue */
6314                 qtype = "OBQ";
6315                 qid -= CIM_NUM_IBQ;
6316                 n = 4 * cim_num_obq * CIM_OBQ_SIZE;
6317                 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
6318                 rc = t4_read_cim_obq(sc, qid, buf, n);
6319         }
6320
6321         if (rc < 0) {
6322                 rc = -rc;
6323                 goto done;
6324         }
6325         n = rc * sizeof(uint32_t);      /* rc has # of words actually read */
6326
6327         rc = sysctl_wire_old_buffer(req, 0);
6328         if (rc != 0)
6329                 goto done;
6330
6331         sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
6332         if (sb == NULL) {
6333                 rc = ENOMEM;
6334                 goto done;
6335         }
6336
6337         sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
6338         for (i = 0, p = buf; i < n; i += 16, p += 4)
6339                 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
6340                     p[2], p[3]);
6341
6342         rc = sbuf_finish(sb);
6343         sbuf_delete(sb);
6344 done:
6345         free(buf, M_CXGBE);
6346         return (rc);
6347 }
6348
6349 static int
6350 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
6351 {
6352         struct adapter *sc = arg1;
6353         u_int cfg;
6354         struct sbuf *sb;
6355         uint32_t *buf, *p;
6356         int rc;
6357
6358         MPASS(chip_id(sc) <= CHELSIO_T5);
6359
6360         rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
6361         if (rc != 0)
6362                 return (rc);
6363
6364         rc = sysctl_wire_old_buffer(req, 0);
6365         if (rc != 0)
6366                 return (rc);
6367
6368         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6369         if (sb == NULL)
6370                 return (ENOMEM);
6371
6372         buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
6373             M_ZERO | M_WAITOK);
6374
6375         rc = -t4_cim_read_la(sc, buf, NULL);
6376         if (rc != 0)
6377                 goto done;
6378
6379         sbuf_printf(sb, "Status   Data      PC%s",
6380             cfg & F_UPDBGLACAPTPCONLY ? "" :
6381             "     LS0Stat  LS0Addr             LS0Data");
6382
6383         for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
6384                 if (cfg & F_UPDBGLACAPTPCONLY) {
6385                         sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
6386                             p[6], p[7]);
6387                         sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
6388                             (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
6389                             p[4] & 0xff, p[5] >> 8);
6390                         sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
6391                             (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
6392                             p[1] & 0xf, p[2] >> 4);
6393                 } else {
6394                         sbuf_printf(sb,
6395                             "\n  %02x   %x%07x %x%07x %08x %08x "
6396                             "%08x%08x%08x%08x",
6397                             (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
6398                             p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
6399                             p[6], p[7]);
6400                 }
6401         }
6402
6403         rc = sbuf_finish(sb);
6404         sbuf_delete(sb);
6405 done:
6406         free(buf, M_CXGBE);
6407         return (rc);
6408 }
6409
6410 static int
6411 sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS)
6412 {
6413         struct adapter *sc = arg1;
6414         u_int cfg;
6415         struct sbuf *sb;
6416         uint32_t *buf, *p;
6417         int rc;
6418
6419         MPASS(chip_id(sc) > CHELSIO_T5);
6420
6421         rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
6422         if (rc != 0)
6423                 return (rc);
6424
6425         rc = sysctl_wire_old_buffer(req, 0);
6426         if (rc != 0)
6427                 return (rc);
6428
6429         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6430         if (sb == NULL)
6431                 return (ENOMEM);
6432
6433         buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
6434             M_ZERO | M_WAITOK);
6435
6436         rc = -t4_cim_read_la(sc, buf, NULL);
6437         if (rc != 0)
6438                 goto done;
6439
6440         sbuf_printf(sb, "Status   Inst    Data      PC%s",
6441             cfg & F_UPDBGLACAPTPCONLY ? "" :
6442             "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
6443
6444         for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
6445                 if (cfg & F_UPDBGLACAPTPCONLY) {
6446                         sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
6447                             p[3] & 0xff, p[2], p[1], p[0]);
6448                         sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
6449                             (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
6450                             p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
6451                         sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
6452                             (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
6453                             p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
6454                             p[6] >> 16);
6455                 } else {
6456                         sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
6457                             "%08x %08x %08x %08x %08x %08x",
6458                             (p[9] >> 16) & 0xff,
6459                             p[9] & 0xffff, p[8] >> 16,
6460                             p[8] & 0xffff, p[7] >> 16,
6461                             p[7] & 0xffff, p[6] >> 16,
6462                             p[2], p[1], p[0], p[5], p[4], p[3]);
6463                 }
6464         }
6465
6466         rc = sbuf_finish(sb);
6467         sbuf_delete(sb);
6468 done:
6469         free(buf, M_CXGBE);
6470         return (rc);
6471 }
6472
6473 static int
6474 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
6475 {
6476         struct adapter *sc = arg1;
6477         u_int i;
6478         struct sbuf *sb;
6479         uint32_t *buf, *p;
6480         int rc;
6481
6482         rc = sysctl_wire_old_buffer(req, 0);
6483         if (rc != 0)
6484                 return (rc);
6485
6486         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6487         if (sb == NULL)
6488                 return (ENOMEM);
6489
6490         buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
6491             M_ZERO | M_WAITOK);
6492
6493         t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
6494         p = buf;
6495
6496         for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
6497                 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
6498                     p[1], p[0]);
6499         }
6500
6501         sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
6502         for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
6503                 sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
6504                     (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
6505                     (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
6506                     (p[1] >> 2) | ((p[2] & 3) << 30),
6507                     (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
6508                     p[0] & 1);
6509         }
6510
6511         rc = sbuf_finish(sb);
6512         sbuf_delete(sb);
6513         free(buf, M_CXGBE);
6514         return (rc);
6515 }
6516
6517 static int
6518 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
6519 {
6520         struct adapter *sc = arg1;
6521         u_int i;
6522         struct sbuf *sb;
6523         uint32_t *buf, *p;
6524         int rc;
6525
6526         rc = sysctl_wire_old_buffer(req, 0);
6527         if (rc != 0)
6528                 return (rc);
6529
6530         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6531         if (sb == NULL)
6532                 return (ENOMEM);
6533
6534         buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
6535             M_ZERO | M_WAITOK);
6536
6537         t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
6538         p = buf;
6539
6540         sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
6541         for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
6542                 sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
6543                     (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
6544                     p[4], p[3], p[2], p[1], p[0]);
6545         }
6546
6547         sbuf_printf(sb, "\n\nCntl ID               Data");
6548         for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
6549                 sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
6550                     (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
6551         }
6552
6553         rc = sbuf_finish(sb);
6554         sbuf_delete(sb);
6555         free(buf, M_CXGBE);
6556         return (rc);
6557 }
6558
6559 static int
6560 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
6561 {
6562         struct adapter *sc = arg1;
6563         struct sbuf *sb;
6564         int rc, i;
6565         uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
6566         uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
6567         uint16_t thres[CIM_NUM_IBQ];
6568         uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
6569         uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
6570         u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
6571
6572         cim_num_obq = sc->chip_params->cim_num_obq;
6573         if (is_t4(sc)) {
6574                 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
6575                 obq_rdaddr = A_UP_OBQ_0_REALADDR;
6576         } else {
6577                 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
6578                 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
6579         }
6580         nq = CIM_NUM_IBQ + cim_num_obq;
6581
6582         rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
6583         if (rc == 0)
6584                 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr);
6585         if (rc != 0)
6586                 return (rc);
6587
6588         t4_read_cimq_cfg(sc, base, size, thres);
6589
6590         rc = sysctl_wire_old_buffer(req, 0);
6591         if (rc != 0)
6592                 return (rc);
6593
6594         sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
6595         if (sb == NULL)
6596                 return (ENOMEM);
6597
6598         sbuf_printf(sb,
6599             "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
6600
6601         for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
6602                 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
6603                     qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
6604                     G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
6605                     G_QUEREMFLITS(p[2]) * 16);
6606         for ( ; i < nq; i++, p += 4, wr += 2)
6607                 sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
6608                     base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
6609                     wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
6610                     G_QUEREMFLITS(p[2]) * 16);
6611
6612         rc = sbuf_finish(sb);
6613         sbuf_delete(sb);
6614
6615         return (rc);
6616 }
6617
6618 static int
6619 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
6620 {
6621         struct adapter *sc = arg1;
6622         struct sbuf *sb;
6623         int rc;
6624         struct tp_cpl_stats stats;
6625
6626         rc = sysctl_wire_old_buffer(req, 0);
6627         if (rc != 0)
6628                 return (rc);
6629
6630         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6631         if (sb == NULL)
6632                 return (ENOMEM);
6633
6634         mtx_lock(&sc->reg_lock);
6635         t4_tp_get_cpl_stats(sc, &stats, 0);
6636         mtx_unlock(&sc->reg_lock);
6637
6638         if (sc->chip_params->nchan > 2) {
6639                 sbuf_printf(sb, "                 channel 0  channel 1"
6640                     "  channel 2  channel 3");
6641                 sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
6642                     stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
6643                 sbuf_printf(sb, "\nCPL responses:   %10u %10u %10u %10u",
6644                     stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
6645         } else {
6646                 sbuf_printf(sb, "                 channel 0  channel 1");
6647                 sbuf_printf(sb, "\nCPL requests:   %10u %10u",
6648                     stats.req[0], stats.req[1]);
6649                 sbuf_printf(sb, "\nCPL responses:   %10u %10u",
6650                     stats.rsp[0], stats.rsp[1]);
6651         }
6652
6653         rc = sbuf_finish(sb);
6654         sbuf_delete(sb);
6655
6656         return (rc);
6657 }
6658
6659 static int
6660 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
6661 {
6662         struct adapter *sc = arg1;
6663         struct sbuf *sb;
6664         int rc;
6665         struct tp_usm_stats stats;
6666
6667         rc = sysctl_wire_old_buffer(req, 0);
6668         if (rc != 0)
6669                 return(rc);
6670
6671         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6672         if (sb == NULL)
6673                 return (ENOMEM);
6674
6675         t4_get_usm_stats(sc, &stats, 1);
6676
6677         sbuf_printf(sb, "Frames: %u\n", stats.frames);
6678         sbuf_printf(sb, "Octets: %ju\n", stats.octets);
6679         sbuf_printf(sb, "Drops:  %u", stats.drops);
6680
6681         rc = sbuf_finish(sb);
6682         sbuf_delete(sb);
6683
6684         return (rc);
6685 }
6686
6687 static const char * const devlog_level_strings[] = {
6688         [FW_DEVLOG_LEVEL_EMERG]         = "EMERG",
6689         [FW_DEVLOG_LEVEL_CRIT]          = "CRIT",
6690         [FW_DEVLOG_LEVEL_ERR]           = "ERR",
6691         [FW_DEVLOG_LEVEL_NOTICE]        = "NOTICE",
6692         [FW_DEVLOG_LEVEL_INFO]          = "INFO",
6693         [FW_DEVLOG_LEVEL_DEBUG]         = "DEBUG"
6694 };
6695
6696 static const char * const devlog_facility_strings[] = {
6697         [FW_DEVLOG_FACILITY_CORE]       = "CORE",
6698         [FW_DEVLOG_FACILITY_CF]         = "CF",
6699         [FW_DEVLOG_FACILITY_SCHED]      = "SCHED",
6700         [FW_DEVLOG_FACILITY_TIMER]      = "TIMER",
6701         [FW_DEVLOG_FACILITY_RES]        = "RES",
6702         [FW_DEVLOG_FACILITY_HW]         = "HW",
6703         [FW_DEVLOG_FACILITY_FLR]        = "FLR",
6704         [FW_DEVLOG_FACILITY_DMAQ]       = "DMAQ",
6705         [FW_DEVLOG_FACILITY_PHY]        = "PHY",
6706         [FW_DEVLOG_FACILITY_MAC]        = "MAC",
6707         [FW_DEVLOG_FACILITY_PORT]       = "PORT",
6708         [FW_DEVLOG_FACILITY_VI]         = "VI",
6709         [FW_DEVLOG_FACILITY_FILTER]     = "FILTER",
6710         [FW_DEVLOG_FACILITY_ACL]        = "ACL",
6711         [FW_DEVLOG_FACILITY_TM]         = "TM",
6712         [FW_DEVLOG_FACILITY_QFC]        = "QFC",
6713         [FW_DEVLOG_FACILITY_DCB]        = "DCB",
6714         [FW_DEVLOG_FACILITY_ETH]        = "ETH",
6715         [FW_DEVLOG_FACILITY_OFLD]       = "OFLD",
6716         [FW_DEVLOG_FACILITY_RI]         = "RI",
6717         [FW_DEVLOG_FACILITY_ISCSI]      = "ISCSI",
6718         [FW_DEVLOG_FACILITY_FCOE]       = "FCOE",
6719         [FW_DEVLOG_FACILITY_FOISCSI]    = "FOISCSI",
6720         [FW_DEVLOG_FACILITY_FOFCOE]     = "FOFCOE",
6721         [FW_DEVLOG_FACILITY_CHNET]      = "CHNET",
6722 };
6723
6724 static int
6725 sysctl_devlog(SYSCTL_HANDLER_ARGS)
6726 {
6727         struct adapter *sc = arg1;
6728         struct devlog_params *dparams = &sc->params.devlog;
6729         struct fw_devlog_e *buf, *e;
6730         int i, j, rc, nentries, first = 0;
6731         struct sbuf *sb;
6732         uint64_t ftstamp = UINT64_MAX;
6733
6734         if (dparams->addr == 0)
6735                 return (ENXIO);
6736
6737         buf = malloc(dparams->size, M_CXGBE, M_NOWAIT);
6738         if (buf == NULL)
6739                 return (ENOMEM);
6740
6741         rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size);
6742         if (rc != 0)
6743                 goto done;
6744
6745         nentries = dparams->size / sizeof(struct fw_devlog_e);
6746         for (i = 0; i < nentries; i++) {
6747                 e = &buf[i];
6748
6749                 if (e->timestamp == 0)
6750                         break;  /* end */
6751
6752                 e->timestamp = be64toh(e->timestamp);
6753                 e->seqno = be32toh(e->seqno);
6754                 for (j = 0; j < 8; j++)
6755                         e->params[j] = be32toh(e->params[j]);
6756
6757                 if (e->timestamp < ftstamp) {
6758                         ftstamp = e->timestamp;
6759                         first = i;
6760                 }
6761         }
6762
6763         if (buf[first].timestamp == 0)
6764                 goto done;      /* nothing in the log */
6765
6766         rc = sysctl_wire_old_buffer(req, 0);
6767         if (rc != 0)
6768                 goto done;
6769
6770         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6771         if (sb == NULL) {
6772                 rc = ENOMEM;
6773                 goto done;
6774         }
6775         sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
6776             "Seq#", "Tstamp", "Level", "Facility", "Message");
6777
6778         i = first;
6779         do {
6780                 e = &buf[i];
6781                 if (e->timestamp == 0)
6782                         break;  /* end */
6783
6784                 sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
6785                     e->seqno, e->timestamp,
6786                     (e->level < nitems(devlog_level_strings) ?
6787                         devlog_level_strings[e->level] : "UNKNOWN"),
6788                     (e->facility < nitems(devlog_facility_strings) ?
6789                         devlog_facility_strings[e->facility] : "UNKNOWN"));
6790                 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
6791                     e->params[2], e->params[3], e->params[4],
6792                     e->params[5], e->params[6], e->params[7]);
6793
6794                 if (++i == nentries)
6795                         i = 0;
6796         } while (i != first);
6797
6798         rc = sbuf_finish(sb);
6799         sbuf_delete(sb);
6800 done:
6801         free(buf, M_CXGBE);
6802         return (rc);
6803 }
6804
6805 static int
6806 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
6807 {
6808         struct adapter *sc = arg1;
6809         struct sbuf *sb;
6810         int rc;
6811         struct tp_fcoe_stats stats[MAX_NCHAN];
6812         int i, nchan = sc->chip_params->nchan;
6813
6814         rc = sysctl_wire_old_buffer(req, 0);
6815         if (rc != 0)
6816                 return (rc);
6817
6818         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6819         if (sb == NULL)
6820                 return (ENOMEM);
6821
6822         for (i = 0; i < nchan; i++)
6823                 t4_get_fcoe_stats(sc, i, &stats[i], 1);
6824
6825         if (nchan > 2) {
6826                 sbuf_printf(sb, "                   channel 0        channel 1"
6827                     "        channel 2        channel 3");
6828                 sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
6829                     stats[0].octets_ddp, stats[1].octets_ddp,
6830                     stats[2].octets_ddp, stats[3].octets_ddp);
6831                 sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
6832                     stats[0].frames_ddp, stats[1].frames_ddp,
6833                     stats[2].frames_ddp, stats[3].frames_ddp);
6834                 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
6835                     stats[0].frames_drop, stats[1].frames_drop,
6836                     stats[2].frames_drop, stats[3].frames_drop);
6837         } else {
6838                 sbuf_printf(sb, "                   channel 0        channel 1");
6839                 sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
6840                     stats[0].octets_ddp, stats[1].octets_ddp);
6841                 sbuf_printf(sb, "\nframesDDP:  %16u %16u",
6842                     stats[0].frames_ddp, stats[1].frames_ddp);
6843                 sbuf_printf(sb, "\nframesDrop: %16u %16u",
6844                     stats[0].frames_drop, stats[1].frames_drop);
6845         }
6846
6847         rc = sbuf_finish(sb);
6848         sbuf_delete(sb);
6849
6850         return (rc);
6851 }
6852
6853 static int
6854 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
6855 {
6856         struct adapter *sc = arg1;
6857         struct sbuf *sb;
6858         int rc, i;
6859         unsigned int map, kbps, ipg, mode;
6860         unsigned int pace_tab[NTX_SCHED];
6861
6862         rc = sysctl_wire_old_buffer(req, 0);
6863         if (rc != 0)
6864                 return (rc);
6865
6866         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6867         if (sb == NULL)
6868                 return (ENOMEM);
6869
6870         map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
6871         mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
6872         t4_read_pace_tbl(sc, pace_tab);
6873
6874         sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
6875             "Class IPG (0.1 ns)   Flow IPG (us)");
6876
6877         for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
6878                 t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
6879                 sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
6880                     (mode & (1 << i)) ? "flow" : "class", map & 3);
6881                 if (kbps)
6882                         sbuf_printf(sb, "%9u     ", kbps);
6883                 else
6884                         sbuf_printf(sb, " disabled     ");
6885
6886                 if (ipg)
6887                         sbuf_printf(sb, "%13u        ", ipg);
6888                 else
6889                         sbuf_printf(sb, "     disabled        ");
6890
6891                 if (pace_tab[i])
6892                         sbuf_printf(sb, "%10u", pace_tab[i]);
6893                 else
6894                         sbuf_printf(sb, "  disabled");
6895         }
6896
6897         rc = sbuf_finish(sb);
6898         sbuf_delete(sb);
6899
6900         return (rc);
6901 }
6902
6903 static int
6904 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
6905 {
6906         struct adapter *sc = arg1;
6907         struct sbuf *sb;
6908         int rc, i, j;
6909         uint64_t *p0, *p1;
6910         struct lb_port_stats s[2];
6911         static const char *stat_name[] = {
6912                 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
6913                 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
6914                 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
6915                 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
6916                 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
6917                 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
6918                 "BG2FramesTrunc:", "BG3FramesTrunc:"
6919         };
6920
6921         rc = sysctl_wire_old_buffer(req, 0);
6922         if (rc != 0)
6923                 return (rc);
6924
6925         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6926         if (sb == NULL)
6927                 return (ENOMEM);
6928
6929         memset(s, 0, sizeof(s));
6930
6931         for (i = 0; i < sc->chip_params->nchan; i += 2) {
6932                 t4_get_lb_stats(sc, i, &s[0]);
6933                 t4_get_lb_stats(sc, i + 1, &s[1]);
6934
6935                 p0 = &s[0].octets;
6936                 p1 = &s[1].octets;
6937                 sbuf_printf(sb, "%s                       Loopback %u"
6938                     "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
6939
6940                 for (j = 0; j < nitems(stat_name); j++)
6941                         sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
6942                                    *p0++, *p1++);
6943         }
6944
6945         rc = sbuf_finish(sb);
6946         sbuf_delete(sb);
6947
6948         return (rc);
6949 }
6950
6951 static int
6952 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
6953 {
6954         int rc = 0;
6955         struct port_info *pi = arg1;
6956         struct link_config *lc = &pi->link_cfg;
6957         struct sbuf *sb;
6958
6959         rc = sysctl_wire_old_buffer(req, 0);
6960         if (rc != 0)
6961                 return(rc);
6962         sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
6963         if (sb == NULL)
6964                 return (ENOMEM);
6965
6966         if (lc->link_ok || lc->link_down_rc == 255)
6967                 sbuf_printf(sb, "n/a");
6968         else
6969                 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
6970
6971         rc = sbuf_finish(sb);
6972         sbuf_delete(sb);
6973
6974         return (rc);
6975 }
6976
6977 struct mem_desc {
6978         unsigned int base;
6979         unsigned int limit;
6980         unsigned int idx;
6981 };
6982
6983 static int
6984 mem_desc_cmp(const void *a, const void *b)
6985 {
6986         return ((const struct mem_desc *)a)->base -
6987                ((const struct mem_desc *)b)->base;
6988 }
6989
6990 static void
6991 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
6992     unsigned int to)
6993 {
6994         unsigned int size;
6995
6996         if (from == to)
6997                 return;
6998
6999         size = to - from + 1;
7000         if (size == 0)
7001                 return;
7002
7003         /* XXX: need humanize_number(3) in libkern for a more readable 'size' */
7004         sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
7005 }
7006
7007 static int
7008 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
7009 {
7010         struct adapter *sc = arg1;
7011         struct sbuf *sb;
7012         int rc, i, n;
7013         uint32_t lo, hi, used, alloc;
7014         static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"};
7015         static const char *region[] = {
7016                 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
7017                 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
7018                 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
7019                 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
7020                 "RQUDP region:", "PBL region:", "TXPBL region:",
7021                 "DBVFIFO region:", "ULPRX state:", "ULPTX state:",
7022                 "On-chip queues:", "TLS keys:",
7023         };
7024         struct mem_desc avail[4];
7025         struct mem_desc mem[nitems(region) + 3];        /* up to 3 holes */
7026         struct mem_desc *md = mem;
7027
7028         rc = sysctl_wire_old_buffer(req, 0);
7029         if (rc != 0)
7030                 return (rc);
7031
7032         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7033         if (sb == NULL)
7034                 return (ENOMEM);
7035
7036         for (i = 0; i < nitems(mem); i++) {
7037                 mem[i].limit = 0;
7038                 mem[i].idx = i;
7039         }
7040
7041         /* Find and sort the populated memory ranges */
7042         i = 0;
7043         lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
7044         if (lo & F_EDRAM0_ENABLE) {
7045                 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
7046                 avail[i].base = G_EDRAM0_BASE(hi) << 20;
7047                 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
7048                 avail[i].idx = 0;
7049                 i++;
7050         }
7051         if (lo & F_EDRAM1_ENABLE) {
7052                 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
7053                 avail[i].base = G_EDRAM1_BASE(hi) << 20;
7054                 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
7055                 avail[i].idx = 1;
7056                 i++;
7057         }
7058         if (lo & F_EXT_MEM_ENABLE) {
7059                 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
7060                 avail[i].base = G_EXT_MEM_BASE(hi) << 20;
7061                 avail[i].limit = avail[i].base +
7062                     (G_EXT_MEM_SIZE(hi) << 20);
7063                 avail[i].idx = is_t5(sc) ? 3 : 2;       /* Call it MC0 for T5 */
7064                 i++;
7065         }
7066         if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
7067                 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
7068                 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
7069                 avail[i].limit = avail[i].base +
7070                     (G_EXT_MEM1_SIZE(hi) << 20);
7071                 avail[i].idx = 4;
7072                 i++;
7073         }
7074         if (!i)                                    /* no memory available */
7075                 return 0;
7076         qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
7077
7078         (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
7079         (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
7080         (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
7081         (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
7082         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
7083         (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
7084         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
7085         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
7086         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
7087
7088         /* the next few have explicit upper bounds */
7089         md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
7090         md->limit = md->base - 1 +
7091                     t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
7092                     G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
7093         md++;
7094
7095         md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
7096         md->limit = md->base - 1 +
7097                     t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
7098                     G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
7099         md++;
7100
7101         if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
7102                 if (chip_id(sc) <= CHELSIO_T5)
7103                         md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
7104                 else
7105                         md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
7106                 md->limit = 0;
7107         } else {
7108                 md->base = 0;
7109                 md->idx = nitems(region);  /* hide it */
7110         }
7111         md++;
7112
7113 #define ulp_region(reg) \
7114         md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
7115         (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
7116
7117         ulp_region(RX_ISCSI);
7118         ulp_region(RX_TDDP);
7119         ulp_region(TX_TPT);
7120         ulp_region(RX_STAG);
7121         ulp_region(RX_RQ);
7122         ulp_region(RX_RQUDP);
7123         ulp_region(RX_PBL);
7124         ulp_region(TX_PBL);
7125 #undef ulp_region
7126
7127         md->base = 0;
7128         md->idx = nitems(region);
7129         if (!is_t4(sc)) {
7130                 uint32_t size = 0;
7131                 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
7132                 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
7133
7134                 if (is_t5(sc)) {
7135                         if (sge_ctrl & F_VFIFO_ENABLE)
7136                                 size = G_DBVFIFO_SIZE(fifo_size);
7137                 } else
7138                         size = G_T6_DBVFIFO_SIZE(fifo_size);
7139
7140                 if (size) {
7141                         md->base = G_BASEADDR(t4_read_reg(sc,
7142                             A_SGE_DBVFIFO_BADDR));
7143                         md->limit = md->base + (size << 2) - 1;
7144                 }
7145         }
7146         md++;
7147
7148         md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
7149         md->limit = 0;
7150         md++;
7151         md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
7152         md->limit = 0;
7153         md++;
7154
7155         md->base = sc->vres.ocq.start;
7156         if (sc->vres.ocq.size)
7157                 md->limit = md->base + sc->vres.ocq.size - 1;
7158         else
7159                 md->idx = nitems(region);  /* hide it */
7160         md++;
7161
7162         md->base = sc->vres.key.start;
7163         if (sc->vres.key.size)
7164                 md->limit = md->base + sc->vres.key.size - 1;
7165         else
7166                 md->idx = nitems(region);  /* hide it */
7167         md++;
7168
7169         /* add any address-space holes, there can be up to 3 */
7170         for (n = 0; n < i - 1; n++)
7171                 if (avail[n].limit < avail[n + 1].base)
7172                         (md++)->base = avail[n].limit;
7173         if (avail[n].limit)
7174                 (md++)->base = avail[n].limit;
7175
7176         n = md - mem;
7177         qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
7178
7179         for (lo = 0; lo < i; lo++)
7180                 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
7181                                 avail[lo].limit - 1);
7182
7183         sbuf_printf(sb, "\n");
7184         for (i = 0; i < n; i++) {
7185                 if (mem[i].idx >= nitems(region))
7186                         continue;                        /* skip holes */
7187                 if (!mem[i].limit)
7188                         mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
7189                 mem_region_show(sb, region[mem[i].idx], mem[i].base,
7190                                 mem[i].limit);
7191         }
7192
7193         sbuf_printf(sb, "\n");
7194         lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
7195         hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
7196         mem_region_show(sb, "uP RAM:", lo, hi);
7197
7198         lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
7199         hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
7200         mem_region_show(sb, "uP Extmem2:", lo, hi);
7201
7202         lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
7203         sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
7204                    G_PMRXMAXPAGE(lo),
7205                    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
7206                    (lo & F_PMRXNUMCHN) ? 2 : 1);
7207
7208         lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
7209         hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
7210         sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
7211                    G_PMTXMAXPAGE(lo),
7212                    hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
7213                    hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
7214         sbuf_printf(sb, "%u p-structs\n",
7215                    t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
7216
7217         for (i = 0; i < 4; i++) {
7218                 if (chip_id(sc) > CHELSIO_T5)
7219                         lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
7220                 else
7221                         lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
7222                 if (is_t5(sc)) {
7223                         used = G_T5_USED(lo);
7224                         alloc = G_T5_ALLOC(lo);
7225                 } else {
7226                         used = G_USED(lo);
7227                         alloc = G_ALLOC(lo);
7228                 }
7229                 /* For T6 these are MAC buffer groups */
7230                 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
7231                     i, used, alloc);
7232         }
7233         for (i = 0; i < sc->chip_params->nchan; i++) {
7234                 if (chip_id(sc) > CHELSIO_T5)
7235                         lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
7236                 else
7237                         lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
7238                 if (is_t5(sc)) {
7239                         used = G_T5_USED(lo);
7240                         alloc = G_T5_ALLOC(lo);
7241                 } else {
7242                         used = G_USED(lo);
7243                         alloc = G_ALLOC(lo);
7244                 }
7245                 /* For T6 these are MAC buffer groups */
7246                 sbuf_printf(sb,
7247                     "\nLoopback %d using %u pages out of %u allocated",
7248                     i, used, alloc);
7249         }
7250
7251         rc = sbuf_finish(sb);
7252         sbuf_delete(sb);
7253
7254         return (rc);
7255 }
7256
7257 static inline void
7258 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
7259 {
7260         *mask = x | y;
7261         y = htobe64(y);
7262         memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
7263 }
7264
7265 static int
7266 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
7267 {
7268         struct adapter *sc = arg1;
7269         struct sbuf *sb;
7270         int rc, i;
7271
7272         MPASS(chip_id(sc) <= CHELSIO_T5);
7273
7274         rc = sysctl_wire_old_buffer(req, 0);
7275         if (rc != 0)
7276                 return (rc);
7277
7278         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7279         if (sb == NULL)
7280                 return (ENOMEM);
7281
7282         sbuf_printf(sb,
7283             "Idx  Ethernet address     Mask     Vld Ports PF"
7284             "  VF              Replication             P0 P1 P2 P3  ML");
7285         for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
7286                 uint64_t tcamx, tcamy, mask;
7287                 uint32_t cls_lo, cls_hi;
7288                 uint8_t addr[ETHER_ADDR_LEN];
7289
7290                 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
7291                 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
7292                 if (tcamx & tcamy)
7293                         continue;
7294                 tcamxy2valmask(tcamx, tcamy, addr, &mask);
7295                 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
7296                 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
7297                 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
7298                            "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
7299                            addr[3], addr[4], addr[5], (uintmax_t)mask,
7300                            (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
7301                            G_PORTMAP(cls_hi), G_PF(cls_lo),
7302                            (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
7303
7304                 if (cls_lo & F_REPLICATE) {
7305                         struct fw_ldst_cmd ldst_cmd;
7306
7307                         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
7308                         ldst_cmd.op_to_addrspace =
7309                             htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
7310                                 F_FW_CMD_REQUEST | F_FW_CMD_READ |
7311                                 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
7312                         ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
7313                         ldst_cmd.u.mps.rplc.fid_idx =
7314                             htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
7315                                 V_FW_LDST_CMD_IDX(i));
7316
7317                         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
7318                             "t4mps");
7319                         if (rc)
7320                                 break;
7321                         rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
7322                             sizeof(ldst_cmd), &ldst_cmd);
7323                         end_synchronized_op(sc, 0);
7324
7325                         if (rc != 0) {
7326                                 sbuf_printf(sb, "%36d", rc);
7327                                 rc = 0;
7328                         } else {
7329                                 sbuf_printf(sb, " %08x %08x %08x %08x",
7330                                     be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
7331                                     be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
7332                                     be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
7333                                     be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
7334                         }
7335                 } else
7336                         sbuf_printf(sb, "%36s", "");
7337
7338                 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
7339                     G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
7340                     G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
7341         }
7342
7343         if (rc)
7344                 (void) sbuf_finish(sb);
7345         else
7346                 rc = sbuf_finish(sb);
7347         sbuf_delete(sb);
7348
7349         return (rc);
7350 }
7351
7352 static int
7353 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
7354 {
7355         struct adapter *sc = arg1;
7356         struct sbuf *sb;
7357         int rc, i;
7358
7359         MPASS(chip_id(sc) > CHELSIO_T5);
7360
7361         rc = sysctl_wire_old_buffer(req, 0);
7362         if (rc != 0)
7363                 return (rc);
7364
7365         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7366         if (sb == NULL)
7367                 return (ENOMEM);
7368
7369         sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
7370             "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
7371             "                           Replication"
7372             "                                    P0 P1 P2 P3  ML\n");
7373
7374         for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
7375                 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
7376                 uint16_t ivlan;
7377                 uint64_t tcamx, tcamy, val, mask;
7378                 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
7379                 uint8_t addr[ETHER_ADDR_LEN];
7380
7381                 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
7382                 if (i < 256)
7383                         ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
7384                 else
7385                         ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
7386                 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
7387                 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
7388                 tcamy = G_DMACH(val) << 32;
7389                 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
7390                 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
7391                 lookup_type = G_DATALKPTYPE(data2);
7392                 port_num = G_DATAPORTNUM(data2);
7393                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
7394                         /* Inner header VNI */
7395                         vniy = ((data2 & F_DATAVIDH2) << 23) |
7396                                        (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
7397                         dip_hit = data2 & F_DATADIPHIT;
7398                         vlan_vld = 0;
7399                 } else {
7400                         vniy = 0;
7401                         dip_hit = 0;
7402                         vlan_vld = data2 & F_DATAVIDH2;
7403                         ivlan = G_VIDL(val);
7404                 }
7405
7406                 ctl |= V_CTLXYBITSEL(1);
7407                 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
7408                 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
7409                 tcamx = G_DMACH(val) << 32;
7410                 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
7411                 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
7412                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
7413                         /* Inner header VNI mask */
7414                         vnix = ((data2 & F_DATAVIDH2) << 23) |
7415                                (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
7416                 } else
7417                         vnix = 0;
7418
7419                 if (tcamx & tcamy)
7420                         continue;
7421                 tcamxy2valmask(tcamx, tcamy, addr, &mask);
7422
7423                 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
7424                 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
7425
7426                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
7427                         sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
7428                             "%012jx %06x %06x    -    -   %3c"
7429                             "      'I'  %4x   %3c   %#x%4u%4d", i, addr[0],
7430                             addr[1], addr[2], addr[3], addr[4], addr[5],
7431                             (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
7432                             port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
7433                             G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
7434                             cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
7435                 } else {
7436                         sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
7437                             "%012jx    -       -   ", i, addr[0], addr[1],
7438                             addr[2], addr[3], addr[4], addr[5],
7439                             (uintmax_t)mask);
7440
7441                         if (vlan_vld)
7442                                 sbuf_printf(sb, "%4u   Y     ", ivlan);
7443                         else
7444                                 sbuf_printf(sb, "  -    N     ");
7445
7446                         sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
7447                             lookup_type ? 'I' : 'O', port_num,
7448                             cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
7449                             G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
7450                             cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
7451                 }
7452
7453
7454                 if (cls_lo & F_T6_REPLICATE) {
7455                         struct fw_ldst_cmd ldst_cmd;
7456
7457                         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
7458                         ldst_cmd.op_to_addrspace =
7459                             htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
7460                                 F_FW_CMD_REQUEST | F_FW_CMD_READ |
7461                                 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
7462                         ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
7463                         ldst_cmd.u.mps.rplc.fid_idx =
7464                             htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
7465                                 V_FW_LDST_CMD_IDX(i));
7466
7467                         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
7468                             "t6mps");
7469                         if (rc)
7470                                 break;
7471                         rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
7472                             sizeof(ldst_cmd), &ldst_cmd);
7473                         end_synchronized_op(sc, 0);
7474
7475                         if (rc != 0) {
7476                                 sbuf_printf(sb, "%72d", rc);
7477                                 rc = 0;
7478                         } else {
7479                                 sbuf_printf(sb, " %08x %08x %08x %08x"
7480                                     " %08x %08x %08x %08x",
7481                                     be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
7482                                     be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
7483                                     be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
7484                                     be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
7485                                     be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
7486                                     be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
7487                                     be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
7488                                     be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
7489                         }
7490                 } else
7491                         sbuf_printf(sb, "%72s", "");
7492
7493                 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
7494                     G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
7495                     G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
7496                     (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
7497         }
7498
7499         if (rc)
7500                 (void) sbuf_finish(sb);
7501         else
7502                 rc = sbuf_finish(sb);
7503         sbuf_delete(sb);
7504
7505         return (rc);
7506 }
7507
7508 static int
7509 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
7510 {
7511         struct adapter *sc = arg1;
7512         struct sbuf *sb;
7513         int rc;
7514         uint16_t mtus[NMTUS];
7515
7516         rc = sysctl_wire_old_buffer(req, 0);
7517         if (rc != 0)
7518                 return (rc);
7519
7520         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7521         if (sb == NULL)
7522                 return (ENOMEM);
7523
7524         t4_read_mtu_tbl(sc, mtus, NULL);
7525
7526         sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
7527             mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
7528             mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
7529             mtus[14], mtus[15]);
7530
7531         rc = sbuf_finish(sb);
7532         sbuf_delete(sb);
7533
7534         return (rc);
7535 }
7536
7537 static int
7538 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
7539 {
7540         struct adapter *sc = arg1;
7541         struct sbuf *sb;
7542         int rc, i;
7543         uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
7544         uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
7545         static const char *tx_stats[MAX_PM_NSTATS] = {
7546                 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
7547                 "Tx FIFO wait", NULL, "Tx latency"
7548         };
7549         static const char *rx_stats[MAX_PM_NSTATS] = {
7550                 "Read:", "Write bypass:", "Write mem:", "Flush:",
7551                 "Rx FIFO wait", NULL, "Rx latency"
7552         };
7553
7554         rc = sysctl_wire_old_buffer(req, 0);
7555         if (rc != 0)
7556                 return (rc);
7557
7558         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7559         if (sb == NULL)
7560                 return (ENOMEM);
7561
7562         t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
7563         t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
7564
7565         sbuf_printf(sb, "                Tx pcmds             Tx bytes");
7566         for (i = 0; i < 4; i++) {
7567                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7568                     tx_cyc[i]);
7569         }
7570
7571         sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
7572         for (i = 0; i < 4; i++) {
7573                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7574                     rx_cyc[i]);
7575         }
7576
7577         if (chip_id(sc) > CHELSIO_T5) {
7578                 sbuf_printf(sb,
7579                     "\n              Total wait      Total occupancy");
7580                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7581                     tx_cyc[i]);
7582                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7583                     rx_cyc[i]);
7584
7585                 i += 2;
7586                 MPASS(i < nitems(tx_stats));
7587
7588                 sbuf_printf(sb,
7589                     "\n                   Reads           Total wait");
7590                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7591                     tx_cyc[i]);
7592                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7593                     rx_cyc[i]);
7594         }
7595
7596         rc = sbuf_finish(sb);
7597         sbuf_delete(sb);
7598
7599         return (rc);
7600 }
7601
7602 static int
7603 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
7604 {
7605         struct adapter *sc = arg1;
7606         struct sbuf *sb;
7607         int rc;
7608         struct tp_rdma_stats stats;
7609
7610         rc = sysctl_wire_old_buffer(req, 0);
7611         if (rc != 0)
7612                 return (rc);
7613
7614         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7615         if (sb == NULL)
7616                 return (ENOMEM);
7617
7618         mtx_lock(&sc->reg_lock);
7619         t4_tp_get_rdma_stats(sc, &stats, 0);
7620         mtx_unlock(&sc->reg_lock);
7621
7622         sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
7623         sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
7624
7625         rc = sbuf_finish(sb);
7626         sbuf_delete(sb);
7627
7628         return (rc);
7629 }
7630
7631 static int
7632 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
7633 {
7634         struct adapter *sc = arg1;
7635         struct sbuf *sb;
7636         int rc;
7637         struct tp_tcp_stats v4, v6;
7638
7639         rc = sysctl_wire_old_buffer(req, 0);
7640         if (rc != 0)
7641                 return (rc);
7642
7643         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7644         if (sb == NULL)
7645                 return (ENOMEM);
7646
7647         mtx_lock(&sc->reg_lock);
7648         t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
7649         mtx_unlock(&sc->reg_lock);
7650
7651         sbuf_printf(sb,
7652             "                                IP                 IPv6\n");
7653         sbuf_printf(sb, "OutRsts:      %20u %20u\n",
7654             v4.tcp_out_rsts, v6.tcp_out_rsts);
7655         sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
7656             v4.tcp_in_segs, v6.tcp_in_segs);
7657         sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
7658             v4.tcp_out_segs, v6.tcp_out_segs);
7659         sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
7660             v4.tcp_retrans_segs, v6.tcp_retrans_segs);
7661
7662         rc = sbuf_finish(sb);
7663         sbuf_delete(sb);
7664
7665         return (rc);
7666 }
7667
7668 static int
7669 sysctl_tids(SYSCTL_HANDLER_ARGS)
7670 {
7671         struct adapter *sc = arg1;
7672         struct sbuf *sb;
7673         int rc;
7674         struct tid_info *t = &sc->tids;
7675
7676         rc = sysctl_wire_old_buffer(req, 0);
7677         if (rc != 0)
7678                 return (rc);
7679
7680         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7681         if (sb == NULL)
7682                 return (ENOMEM);
7683
7684         if (t->natids) {
7685                 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
7686                     t->atids_in_use);
7687         }
7688
7689         if (t->ntids) {
7690                 sbuf_printf(sb, "TID range: ");
7691                 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
7692                         uint32_t b, hb;
7693
7694                         if (chip_id(sc) <= CHELSIO_T5) {
7695                                 b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
7696                                 hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
7697                         } else {
7698                                 b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
7699                                 hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
7700                         }
7701
7702                         if (b)
7703                                 sbuf_printf(sb, "0-%u, ", b - 1);
7704                         sbuf_printf(sb, "%u-%u", hb, t->ntids - 1);
7705                 } else
7706                         sbuf_printf(sb, "0-%u", t->ntids - 1);
7707                 sbuf_printf(sb, ", in use: %u\n",
7708                     atomic_load_acq_int(&t->tids_in_use));
7709         }
7710
7711         if (t->nstids) {
7712                 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
7713                     t->stid_base + t->nstids - 1, t->stids_in_use);
7714         }
7715
7716         if (t->nftids) {
7717                 sbuf_printf(sb, "FTID range: %u-%u\n", t->ftid_base,
7718                     t->ftid_base + t->nftids - 1);
7719         }
7720
7721         if (t->netids) {
7722                 sbuf_printf(sb, "ETID range: %u-%u\n", t->etid_base,
7723                     t->etid_base + t->netids - 1);
7724         }
7725
7726         sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users",
7727             t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4),
7728             t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6));
7729
7730         rc = sbuf_finish(sb);
7731         sbuf_delete(sb);
7732
7733         return (rc);
7734 }
7735
7736 static int
7737 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
7738 {
7739         struct adapter *sc = arg1;
7740         struct sbuf *sb;
7741         int rc;
7742         struct tp_err_stats stats;
7743
7744         rc = sysctl_wire_old_buffer(req, 0);
7745         if (rc != 0)
7746                 return (rc);
7747
7748         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7749         if (sb == NULL)
7750                 return (ENOMEM);
7751
7752         mtx_lock(&sc->reg_lock);
7753         t4_tp_get_err_stats(sc, &stats, 0);
7754         mtx_unlock(&sc->reg_lock);
7755
7756         if (sc->chip_params->nchan > 2) {
7757                 sbuf_printf(sb, "                 channel 0  channel 1"
7758                     "  channel 2  channel 3\n");
7759                 sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
7760                     stats.mac_in_errs[0], stats.mac_in_errs[1],
7761                     stats.mac_in_errs[2], stats.mac_in_errs[3]);
7762                 sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
7763                     stats.hdr_in_errs[0], stats.hdr_in_errs[1],
7764                     stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
7765                 sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
7766                     stats.tcp_in_errs[0], stats.tcp_in_errs[1],
7767                     stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
7768                 sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
7769                     stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
7770                     stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
7771                 sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
7772                     stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
7773                     stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
7774                 sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
7775                     stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
7776                     stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
7777                 sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
7778                     stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
7779                     stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
7780                 sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
7781                     stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
7782                     stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
7783         } else {
7784                 sbuf_printf(sb, "                 channel 0  channel 1\n");
7785                 sbuf_printf(sb, "macInErrs:      %10u %10u\n",
7786                     stats.mac_in_errs[0], stats.mac_in_errs[1]);
7787                 sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
7788                     stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
7789                 sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
7790                     stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
7791                 sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
7792                     stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
7793                 sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
7794                     stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
7795                 sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
7796                     stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
7797                 sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
7798                     stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
7799                 sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
7800                     stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
7801         }
7802
7803         sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
7804             stats.ofld_no_neigh, stats.ofld_cong_defer);
7805
7806         rc = sbuf_finish(sb);
7807         sbuf_delete(sb);
7808
7809         return (rc);
7810 }
7811
7812 static int
7813 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
7814 {
7815         struct adapter *sc = arg1;
7816         struct tp_params *tpp = &sc->params.tp;
7817         u_int mask;
7818         int rc;
7819
7820         mask = tpp->la_mask >> 16;
7821         rc = sysctl_handle_int(oidp, &mask, 0, req);
7822         if (rc != 0 || req->newptr == NULL)
7823                 return (rc);
7824         if (mask > 0xffff)
7825                 return (EINVAL);
7826         tpp->la_mask = mask << 16;
7827         t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask);
7828
7829         return (0);
7830 }
7831
7832 struct field_desc {
7833         const char *name;
7834         u_int start;
7835         u_int width;
7836 };
7837
7838 static void
7839 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
7840 {
7841         char buf[32];
7842         int line_size = 0;
7843
7844         while (f->name) {
7845                 uint64_t mask = (1ULL << f->width) - 1;
7846                 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
7847                     ((uintmax_t)v >> f->start) & mask);
7848
7849                 if (line_size + len >= 79) {
7850                         line_size = 8;
7851                         sbuf_printf(sb, "\n        ");
7852                 }
7853                 sbuf_printf(sb, "%s ", buf);
7854                 line_size += len + 1;
7855                 f++;
7856         }
7857         sbuf_printf(sb, "\n");
7858 }
7859
7860 static const struct field_desc tp_la0[] = {
7861         { "RcfOpCodeOut", 60, 4 },
7862         { "State", 56, 4 },
7863         { "WcfState", 52, 4 },
7864         { "RcfOpcSrcOut", 50, 2 },
7865         { "CRxError", 49, 1 },
7866         { "ERxError", 48, 1 },
7867         { "SanityFailed", 47, 1 },
7868         { "SpuriousMsg", 46, 1 },
7869         { "FlushInputMsg", 45, 1 },
7870         { "FlushInputCpl", 44, 1 },
7871         { "RssUpBit", 43, 1 },
7872         { "RssFilterHit", 42, 1 },
7873         { "Tid", 32, 10 },
7874         { "InitTcb", 31, 1 },
7875         { "LineNumber", 24, 7 },
7876         { "Emsg", 23, 1 },
7877         { "EdataOut", 22, 1 },
7878         { "Cmsg", 21, 1 },
7879         { "CdataOut", 20, 1 },
7880         { "EreadPdu", 19, 1 },
7881         { "CreadPdu", 18, 1 },
7882         { "TunnelPkt", 17, 1 },
7883         { "RcfPeerFin", 16, 1 },
7884         { "RcfReasonOut", 12, 4 },
7885         { "TxCchannel", 10, 2 },
7886         { "RcfTxChannel", 8, 2 },
7887         { "RxEchannel", 6, 2 },
7888         { "RcfRxChannel", 5, 1 },
7889         { "RcfDataOutSrdy", 4, 1 },
7890         { "RxDvld", 3, 1 },
7891         { "RxOoDvld", 2, 1 },
7892         { "RxCongestion", 1, 1 },
7893         { "TxCongestion", 0, 1 },
7894         { NULL }
7895 };
7896
7897 static const struct field_desc tp_la1[] = {
7898         { "CplCmdIn", 56, 8 },
7899         { "CplCmdOut", 48, 8 },
7900         { "ESynOut", 47, 1 },
7901         { "EAckOut", 46, 1 },
7902         { "EFinOut", 45, 1 },
7903         { "ERstOut", 44, 1 },
7904         { "SynIn", 43, 1 },
7905         { "AckIn", 42, 1 },
7906         { "FinIn", 41, 1 },
7907         { "RstIn", 40, 1 },
7908         { "DataIn", 39, 1 },
7909         { "DataInVld", 38, 1 },
7910         { "PadIn", 37, 1 },
7911         { "RxBufEmpty", 36, 1 },
7912         { "RxDdp", 35, 1 },
7913         { "RxFbCongestion", 34, 1 },
7914         { "TxFbCongestion", 33, 1 },
7915         { "TxPktSumSrdy", 32, 1 },
7916         { "RcfUlpType", 28, 4 },
7917         { "Eread", 27, 1 },
7918         { "Ebypass", 26, 1 },
7919         { "Esave", 25, 1 },
7920         { "Static0", 24, 1 },
7921         { "Cread", 23, 1 },
7922         { "Cbypass", 22, 1 },
7923         { "Csave", 21, 1 },
7924         { "CPktOut", 20, 1 },
7925         { "RxPagePoolFull", 18, 2 },
7926         { "RxLpbkPkt", 17, 1 },
7927         { "TxLpbkPkt", 16, 1 },
7928         { "RxVfValid", 15, 1 },
7929         { "SynLearned", 14, 1 },
7930         { "SetDelEntry", 13, 1 },
7931         { "SetInvEntry", 12, 1 },
7932         { "CpcmdDvld", 11, 1 },
7933         { "CpcmdSave", 10, 1 },
7934         { "RxPstructsFull", 8, 2 },
7935         { "EpcmdDvld", 7, 1 },
7936         { "EpcmdFlush", 6, 1 },
7937         { "EpcmdTrimPrefix", 5, 1 },
7938         { "EpcmdTrimPostfix", 4, 1 },
7939         { "ERssIp4Pkt", 3, 1 },
7940         { "ERssIp6Pkt", 2, 1 },
7941         { "ERssTcpUdpPkt", 1, 1 },
7942         { "ERssFceFipPkt", 0, 1 },
7943         { NULL }
7944 };
7945
7946 static const struct field_desc tp_la2[] = {
7947         { "CplCmdIn", 56, 8 },
7948         { "MpsVfVld", 55, 1 },
7949         { "MpsPf", 52, 3 },
7950         { "MpsVf", 44, 8 },
7951         { "SynIn", 43, 1 },
7952         { "AckIn", 42, 1 },
7953         { "FinIn", 41, 1 },
7954         { "RstIn", 40, 1 },
7955         { "DataIn", 39, 1 },
7956         { "DataInVld", 38, 1 },
7957         { "PadIn", 37, 1 },
7958         { "RxBufEmpty", 36, 1 },
7959         { "RxDdp", 35, 1 },
7960         { "RxFbCongestion", 34, 1 },
7961         { "TxFbCongestion", 33, 1 },
7962         { "TxPktSumSrdy", 32, 1 },
7963         { "RcfUlpType", 28, 4 },
7964         { "Eread", 27, 1 },
7965         { "Ebypass", 26, 1 },
7966         { "Esave", 25, 1 },
7967         { "Static0", 24, 1 },
7968         { "Cread", 23, 1 },
7969         { "Cbypass", 22, 1 },
7970         { "Csave", 21, 1 },
7971         { "CPktOut", 20, 1 },
7972         { "RxPagePoolFull", 18, 2 },
7973         { "RxLpbkPkt", 17, 1 },
7974         { "TxLpbkPkt", 16, 1 },
7975         { "RxVfValid", 15, 1 },
7976         { "SynLearned", 14, 1 },
7977         { "SetDelEntry", 13, 1 },
7978         { "SetInvEntry", 12, 1 },
7979         { "CpcmdDvld", 11, 1 },
7980         { "CpcmdSave", 10, 1 },
7981         { "RxPstructsFull", 8, 2 },
7982         { "EpcmdDvld", 7, 1 },
7983         { "EpcmdFlush", 6, 1 },
7984         { "EpcmdTrimPrefix", 5, 1 },
7985         { "EpcmdTrimPostfix", 4, 1 },
7986         { "ERssIp4Pkt", 3, 1 },
7987         { "ERssIp6Pkt", 2, 1 },
7988         { "ERssTcpUdpPkt", 1, 1 },
7989         { "ERssFceFipPkt", 0, 1 },
7990         { NULL }
7991 };
7992
7993 static void
7994 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
7995 {
7996
7997         field_desc_show(sb, *p, tp_la0);
7998 }
7999
8000 static void
8001 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
8002 {
8003
8004         if (idx)
8005                 sbuf_printf(sb, "\n");
8006         field_desc_show(sb, p[0], tp_la0);
8007         if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
8008                 field_desc_show(sb, p[1], tp_la0);
8009 }
8010
8011 static void
8012 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
8013 {
8014
8015         if (idx)
8016                 sbuf_printf(sb, "\n");
8017         field_desc_show(sb, p[0], tp_la0);
8018         if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
8019                 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
8020 }
8021
8022 static int
8023 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
8024 {
8025         struct adapter *sc = arg1;
8026         struct sbuf *sb;
8027         uint64_t *buf, *p;
8028         int rc;
8029         u_int i, inc;
8030         void (*show_func)(struct sbuf *, uint64_t *, int);
8031
8032         rc = sysctl_wire_old_buffer(req, 0);
8033         if (rc != 0)
8034                 return (rc);
8035
8036         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8037         if (sb == NULL)
8038                 return (ENOMEM);
8039
8040         buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
8041
8042         t4_tp_read_la(sc, buf, NULL);
8043         p = buf;
8044
8045         switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
8046         case 2:
8047                 inc = 2;
8048                 show_func = tp_la_show2;
8049                 break;
8050         case 3:
8051                 inc = 2;
8052                 show_func = tp_la_show3;
8053                 break;
8054         default:
8055                 inc = 1;
8056                 show_func = tp_la_show;
8057         }
8058
8059         for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
8060                 (*show_func)(sb, p, i);
8061
8062         rc = sbuf_finish(sb);
8063         sbuf_delete(sb);
8064         free(buf, M_CXGBE);
8065         return (rc);
8066 }
8067
8068 static int
8069 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
8070 {
8071         struct adapter *sc = arg1;
8072         struct sbuf *sb;
8073         int rc;
8074         u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
8075
8076         rc = sysctl_wire_old_buffer(req, 0);
8077         if (rc != 0)
8078                 return (rc);
8079
8080         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8081         if (sb == NULL)
8082                 return (ENOMEM);
8083
8084         t4_get_chan_txrate(sc, nrate, orate);
8085
8086         if (sc->chip_params->nchan > 2) {
8087                 sbuf_printf(sb, "              channel 0   channel 1"
8088                     "   channel 2   channel 3\n");
8089                 sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
8090                     nrate[0], nrate[1], nrate[2], nrate[3]);
8091                 sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
8092                     orate[0], orate[1], orate[2], orate[3]);
8093         } else {
8094                 sbuf_printf(sb, "              channel 0   channel 1\n");
8095                 sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
8096                     nrate[0], nrate[1]);
8097                 sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
8098                     orate[0], orate[1]);
8099         }
8100
8101         rc = sbuf_finish(sb);
8102         sbuf_delete(sb);
8103
8104         return (rc);
8105 }
8106
8107 static int
8108 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
8109 {
8110         struct adapter *sc = arg1;
8111         struct sbuf *sb;
8112         uint32_t *buf, *p;
8113         int rc, i;
8114
8115         rc = sysctl_wire_old_buffer(req, 0);
8116         if (rc != 0)
8117                 return (rc);
8118
8119         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8120         if (sb == NULL)
8121                 return (ENOMEM);
8122
8123         buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
8124             M_ZERO | M_WAITOK);
8125
8126         t4_ulprx_read_la(sc, buf);
8127         p = buf;
8128
8129         sbuf_printf(sb, "      Pcmd        Type   Message"
8130             "                Data");
8131         for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
8132                 sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
8133                     p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
8134         }
8135
8136         rc = sbuf_finish(sb);
8137         sbuf_delete(sb);
8138         free(buf, M_CXGBE);
8139         return (rc);
8140 }
8141
8142 static int
8143 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
8144 {
8145         struct adapter *sc = arg1;
8146         struct sbuf *sb;
8147         int rc, v;
8148
8149         MPASS(chip_id(sc) >= CHELSIO_T5);
8150
8151         rc = sysctl_wire_old_buffer(req, 0);
8152         if (rc != 0)
8153                 return (rc);
8154
8155         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8156         if (sb == NULL)
8157                 return (ENOMEM);
8158
8159         v = t4_read_reg(sc, A_SGE_STAT_CFG);
8160         if (G_STATSOURCE_T5(v) == 7) {
8161                 int mode;
8162
8163                 mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v);
8164                 if (mode == 0) {
8165                         sbuf_printf(sb, "total %d, incomplete %d",
8166                             t4_read_reg(sc, A_SGE_STAT_TOTAL),
8167                             t4_read_reg(sc, A_SGE_STAT_MATCH));
8168                 } else if (mode == 1) {
8169                         sbuf_printf(sb, "total %d, data overflow %d",
8170                             t4_read_reg(sc, A_SGE_STAT_TOTAL),
8171                             t4_read_reg(sc, A_SGE_STAT_MATCH));
8172                 } else {
8173                         sbuf_printf(sb, "unknown mode %d", mode);
8174                 }
8175         }
8176         rc = sbuf_finish(sb);
8177         sbuf_delete(sb);
8178
8179         return (rc);
8180 }
8181
8182 static int
8183 sysctl_tc_params(SYSCTL_HANDLER_ARGS)
8184 {
8185         struct adapter *sc = arg1;
8186         struct tx_cl_rl_params tc;
8187         struct sbuf *sb;
8188         int i, rc, port_id, mbps, gbps;
8189
8190         rc = sysctl_wire_old_buffer(req, 0);
8191         if (rc != 0)
8192                 return (rc);
8193
8194         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8195         if (sb == NULL)
8196                 return (ENOMEM);
8197
8198         port_id = arg2 >> 16;
8199         MPASS(port_id < sc->params.nports);
8200         MPASS(sc->port[port_id] != NULL);
8201         i = arg2 & 0xffff;
8202         MPASS(i < sc->chip_params->nsched_cls);
8203
8204         mtx_lock(&sc->tc_lock);
8205         tc = sc->port[port_id]->sched_params->cl_rl[i];
8206         mtx_unlock(&sc->tc_lock);
8207
8208         if (tc.flags & TX_CLRL_ERROR) {
8209                 sbuf_printf(sb, "error");
8210                 goto done;
8211         }
8212
8213         if (tc.ratemode == SCHED_CLASS_RATEMODE_REL) {
8214                 /* XXX: top speed or actual link speed? */
8215                 gbps = port_top_speed(sc->port[port_id]);
8216                 sbuf_printf(sb, " %u%% of %uGbps", tc.maxrate, gbps);
8217         } else if (tc.ratemode == SCHED_CLASS_RATEMODE_ABS) {
8218                 switch (tc.rateunit) {
8219                 case SCHED_CLASS_RATEUNIT_BITS:
8220                         mbps = tc.maxrate / 1000;
8221                         gbps = tc.maxrate / 1000000;
8222                         if (tc.maxrate == gbps * 1000000)
8223                                 sbuf_printf(sb, " %uGbps", gbps);
8224                         else if (tc.maxrate == mbps * 1000)
8225                                 sbuf_printf(sb, " %uMbps", mbps);
8226                         else
8227                                 sbuf_printf(sb, " %uKbps", tc.maxrate);
8228                         break;
8229                 case SCHED_CLASS_RATEUNIT_PKTS:
8230                         sbuf_printf(sb, " %upps", tc.maxrate);
8231                         break;
8232                 default:
8233                         rc = ENXIO;
8234                         goto done;
8235                 }
8236         }
8237
8238         switch (tc.mode) {
8239         case SCHED_CLASS_MODE_CLASS:
8240                 sbuf_printf(sb, " aggregate");
8241                 break;
8242         case SCHED_CLASS_MODE_FLOW:
8243                 sbuf_printf(sb, " per-flow");
8244                 break;
8245         default:
8246                 rc = ENXIO;
8247                 goto done;
8248         }
8249
8250 done:
8251         if (rc == 0)
8252                 rc = sbuf_finish(sb);
8253         sbuf_delete(sb);
8254
8255         return (rc);
8256 }
8257 #endif
8258
8259 #ifdef TCP_OFFLOAD
8260 static void
8261 unit_conv(char *buf, size_t len, u_int val, u_int factor)
8262 {
8263         u_int rem = val % factor;
8264
8265         if (rem == 0)
8266                 snprintf(buf, len, "%u", val / factor);
8267         else {
8268                 while (rem % 10 == 0)
8269                         rem /= 10;
8270                 snprintf(buf, len, "%u.%u", val / factor, rem);
8271         }
8272 }
8273
8274 static int
8275 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
8276 {
8277         struct adapter *sc = arg1;
8278         char buf[16];
8279         u_int res, re;
8280         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8281
8282         res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
8283         switch (arg2) {
8284         case 0:
8285                 /* timer_tick */
8286                 re = G_TIMERRESOLUTION(res);
8287                 break;
8288         case 1:
8289                 /* TCP timestamp tick */
8290                 re = G_TIMESTAMPRESOLUTION(res);
8291                 break;
8292         case 2:
8293                 /* DACK tick */
8294                 re = G_DELAYEDACKRESOLUTION(res);
8295                 break;
8296         default:
8297                 return (EDOOFUS);
8298         }
8299
8300         unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
8301
8302         return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
8303 }
8304
8305 static int
8306 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
8307 {
8308         struct adapter *sc = arg1;
8309         u_int res, dack_re, v;
8310         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8311
8312         res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
8313         dack_re = G_DELAYEDACKRESOLUTION(res);
8314         v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER);
8315
8316         return (sysctl_handle_int(oidp, &v, 0, req));
8317 }
8318
8319 static int
8320 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
8321 {
8322         struct adapter *sc = arg1;
8323         int reg = arg2;
8324         u_int tre;
8325         u_long tp_tick_us, v;
8326         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8327
8328         MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
8329             reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
8330             reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
8331             reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
8332
8333         tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
8334         tp_tick_us = (cclk_ps << tre) / 1000000;
8335
8336         if (reg == A_TP_INIT_SRTT)
8337                 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
8338         else
8339                 v = tp_tick_us * t4_read_reg(sc, reg);
8340
8341         return (sysctl_handle_long(oidp, &v, 0, req));
8342 }
8343
8344 /*
8345  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
8346  * passed to this function.
8347  */
8348 static int
8349 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
8350 {
8351         struct adapter *sc = arg1;
8352         int idx = arg2;
8353         u_int v;
8354
8355         MPASS(idx >= 0 && idx <= 24);
8356
8357         v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
8358
8359         return (sysctl_handle_int(oidp, &v, 0, req));
8360 }
8361
8362 static int
8363 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
8364 {
8365         struct adapter *sc = arg1;
8366         int idx = arg2;
8367         u_int shift, v, r;
8368
8369         MPASS(idx >= 0 && idx < 16);
8370
8371         r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
8372         shift = (idx & 3) << 3;
8373         v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
8374
8375         return (sysctl_handle_int(oidp, &v, 0, req));
8376 }
8377
8378 static int
8379 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
8380 {
8381         struct vi_info *vi = arg1;
8382         struct adapter *sc = vi->pi->adapter;
8383         int idx, rc, i;
8384         struct sge_ofld_rxq *ofld_rxq;
8385         uint8_t v;
8386
8387         idx = vi->ofld_tmr_idx;
8388
8389         rc = sysctl_handle_int(oidp, &idx, 0, req);
8390         if (rc != 0 || req->newptr == NULL)
8391                 return (rc);
8392
8393         if (idx < 0 || idx >= SGE_NTIMERS)
8394                 return (EINVAL);
8395
8396         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8397             "t4otmr");
8398         if (rc)
8399                 return (rc);
8400
8401         v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
8402         for_each_ofld_rxq(vi, i, ofld_rxq) {
8403 #ifdef atomic_store_rel_8
8404                 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
8405 #else
8406                 ofld_rxq->iq.intr_params = v;
8407 #endif
8408         }
8409         vi->ofld_tmr_idx = idx;
8410
8411         end_synchronized_op(sc, LOCK_HELD);
8412         return (0);
8413 }
8414
8415 static int
8416 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
8417 {
8418         struct vi_info *vi = arg1;
8419         struct adapter *sc = vi->pi->adapter;
8420         int idx, rc;
8421
8422         idx = vi->ofld_pktc_idx;
8423
8424         rc = sysctl_handle_int(oidp, &idx, 0, req);
8425         if (rc != 0 || req->newptr == NULL)
8426                 return (rc);
8427
8428         if (idx < -1 || idx >= SGE_NCOUNTERS)
8429                 return (EINVAL);
8430
8431         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8432             "t4opktc");
8433         if (rc)
8434                 return (rc);
8435
8436         if (vi->flags & VI_INIT_DONE)
8437                 rc = EBUSY; /* cannot be changed once the queues are created */
8438         else
8439                 vi->ofld_pktc_idx = idx;
8440
8441         end_synchronized_op(sc, LOCK_HELD);
8442         return (rc);
8443 }
8444 #endif
8445
8446 static uint32_t
8447 fconf_iconf_to_mode(uint32_t fconf, uint32_t iconf)
8448 {
8449         uint32_t mode;
8450
8451         mode = T4_FILTER_IPv4 | T4_FILTER_IPv6 | T4_FILTER_IP_SADDR |
8452             T4_FILTER_IP_DADDR | T4_FILTER_IP_SPORT | T4_FILTER_IP_DPORT;
8453
8454         if (fconf & F_FRAGMENTATION)
8455                 mode |= T4_FILTER_IP_FRAGMENT;
8456
8457         if (fconf & F_MPSHITTYPE)
8458                 mode |= T4_FILTER_MPS_HIT_TYPE;
8459
8460         if (fconf & F_MACMATCH)
8461                 mode |= T4_FILTER_MAC_IDX;
8462
8463         if (fconf & F_ETHERTYPE)
8464                 mode |= T4_FILTER_ETH_TYPE;
8465
8466         if (fconf & F_PROTOCOL)
8467                 mode |= T4_FILTER_IP_PROTO;
8468
8469         if (fconf & F_TOS)
8470                 mode |= T4_FILTER_IP_TOS;
8471
8472         if (fconf & F_VLAN)
8473                 mode |= T4_FILTER_VLAN;
8474
8475         if (fconf & F_VNIC_ID) {
8476                 mode |= T4_FILTER_VNIC;
8477                 if (iconf & F_VNIC)
8478                         mode |= T4_FILTER_IC_VNIC;
8479         }
8480
8481         if (fconf & F_PORT)
8482                 mode |= T4_FILTER_PORT;
8483
8484         if (fconf & F_FCOE)
8485                 mode |= T4_FILTER_FCoE;
8486
8487         return (mode);
8488 }
8489
8490 static uint32_t
8491 mode_to_fconf(uint32_t mode)
8492 {
8493         uint32_t fconf = 0;
8494
8495         if (mode & T4_FILTER_IP_FRAGMENT)
8496                 fconf |= F_FRAGMENTATION;
8497
8498         if (mode & T4_FILTER_MPS_HIT_TYPE)
8499                 fconf |= F_MPSHITTYPE;
8500
8501         if (mode & T4_FILTER_MAC_IDX)
8502                 fconf |= F_MACMATCH;
8503
8504         if (mode & T4_FILTER_ETH_TYPE)
8505                 fconf |= F_ETHERTYPE;
8506
8507         if (mode & T4_FILTER_IP_PROTO)
8508                 fconf |= F_PROTOCOL;
8509
8510         if (mode & T4_FILTER_IP_TOS)
8511                 fconf |= F_TOS;
8512
8513         if (mode & T4_FILTER_VLAN)
8514                 fconf |= F_VLAN;
8515
8516         if (mode & T4_FILTER_VNIC)
8517                 fconf |= F_VNIC_ID;
8518
8519         if (mode & T4_FILTER_PORT)
8520                 fconf |= F_PORT;
8521
8522         if (mode & T4_FILTER_FCoE)
8523                 fconf |= F_FCOE;
8524
8525         return (fconf);
8526 }
8527
8528 static uint32_t
8529 mode_to_iconf(uint32_t mode)
8530 {
8531
8532         if (mode & T4_FILTER_IC_VNIC)
8533                 return (F_VNIC);
8534         return (0);
8535 }
8536
8537 static int check_fspec_against_fconf_iconf(struct adapter *sc,
8538     struct t4_filter_specification *fs)
8539 {
8540         struct tp_params *tpp = &sc->params.tp;
8541         uint32_t fconf = 0;
8542
8543         if (fs->val.frag || fs->mask.frag)
8544                 fconf |= F_FRAGMENTATION;
8545
8546         if (fs->val.matchtype || fs->mask.matchtype)
8547                 fconf |= F_MPSHITTYPE;
8548
8549         if (fs->val.macidx || fs->mask.macidx)
8550                 fconf |= F_MACMATCH;
8551
8552         if (fs->val.ethtype || fs->mask.ethtype)
8553                 fconf |= F_ETHERTYPE;
8554
8555         if (fs->val.proto || fs->mask.proto)
8556                 fconf |= F_PROTOCOL;
8557
8558         if (fs->val.tos || fs->mask.tos)
8559                 fconf |= F_TOS;
8560
8561         if (fs->val.vlan_vld || fs->mask.vlan_vld)
8562                 fconf |= F_VLAN;
8563
8564         if (fs->val.ovlan_vld || fs->mask.ovlan_vld) {
8565                 fconf |= F_VNIC_ID;
8566                 if (tpp->ingress_config & F_VNIC)
8567                         return (EINVAL);
8568         }
8569
8570         if (fs->val.pfvf_vld || fs->mask.pfvf_vld) {
8571                 fconf |= F_VNIC_ID;
8572                 if ((tpp->ingress_config & F_VNIC) == 0)
8573                         return (EINVAL);
8574         }
8575
8576         if (fs->val.iport || fs->mask.iport)
8577                 fconf |= F_PORT;
8578
8579         if (fs->val.fcoe || fs->mask.fcoe)
8580                 fconf |= F_FCOE;
8581
8582         if ((tpp->vlan_pri_map | fconf) != tpp->vlan_pri_map)
8583                 return (E2BIG);
8584
8585         return (0);
8586 }
8587
8588 static int
8589 get_filter_mode(struct adapter *sc, uint32_t *mode)
8590 {
8591         struct tp_params *tpp = &sc->params.tp;
8592
8593         /*
8594          * We trust the cached values of the relevant TP registers.  This means
8595          * things work reliably only if writes to those registers are always via
8596          * t4_set_filter_mode.
8597          */
8598         *mode = fconf_iconf_to_mode(tpp->vlan_pri_map, tpp->ingress_config);
8599
8600         return (0);
8601 }
8602
8603 static int
8604 set_filter_mode(struct adapter *sc, uint32_t mode)
8605 {
8606         struct tp_params *tpp = &sc->params.tp;
8607         uint32_t fconf, iconf;
8608         int rc;
8609
8610         iconf = mode_to_iconf(mode);
8611         if ((iconf ^ tpp->ingress_config) & F_VNIC) {
8612                 /*
8613                  * For now we just complain if A_TP_INGRESS_CONFIG is not
8614                  * already set to the correct value for the requested filter
8615                  * mode.  It's not clear if it's safe to write to this register
8616                  * on the fly.  (And we trust the cached value of the register).
8617                  */
8618                 return (EBUSY);
8619         }
8620
8621         fconf = mode_to_fconf(mode);
8622
8623         rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK,
8624             "t4setfm");
8625         if (rc)
8626                 return (rc);
8627
8628         if (sc->tids.ftids_in_use > 0) {
8629                 rc = EBUSY;
8630                 goto done;
8631         }
8632
8633 #ifdef TCP_OFFLOAD
8634         if (uld_active(sc, ULD_TOM)) {
8635                 rc = EBUSY;
8636                 goto done;
8637         }
8638 #endif
8639
8640         rc = -t4_set_filter_mode(sc, fconf, true);
8641 done:
8642         end_synchronized_op(sc, LOCK_HELD);
8643         return (rc);
8644 }
8645
8646 static inline uint64_t
8647 get_filter_hits(struct adapter *sc, uint32_t fid)
8648 {
8649         uint32_t tcb_addr;
8650
8651         tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) +
8652             (fid + sc->tids.ftid_base) * TCB_SIZE;
8653
8654         if (is_t4(sc)) {
8655                 uint64_t hits;
8656
8657                 read_via_memwin(sc, 0, tcb_addr + 16, (uint32_t *)&hits, 8);
8658                 return (be64toh(hits));
8659         } else {
8660                 uint32_t hits;
8661
8662                 read_via_memwin(sc, 0, tcb_addr + 24, &hits, 4);
8663                 return (be32toh(hits));
8664         }
8665 }
8666
8667 static int
8668 get_filter(struct adapter *sc, struct t4_filter *t)
8669 {
8670         int i, rc, nfilters = sc->tids.nftids;
8671         struct filter_entry *f;
8672
8673         rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK,
8674             "t4getf");
8675         if (rc)
8676                 return (rc);
8677
8678         if (sc->tids.ftids_in_use == 0 || sc->tids.ftid_tab == NULL ||
8679             t->idx >= nfilters) {
8680                 t->idx = 0xffffffff;
8681                 goto done;
8682         }
8683
8684         f = &sc->tids.ftid_tab[t->idx];
8685         for (i = t->idx; i < nfilters; i++, f++) {
8686                 if (f->valid) {
8687                         t->idx = i;
8688                         t->l2tidx = f->l2t ? f->l2t->idx : 0;
8689                         t->smtidx = f->smtidx;
8690                         if (f->fs.hitcnts)
8691                                 t->hits = get_filter_hits(sc, t->idx);
8692                         else
8693                                 t->hits = UINT64_MAX;
8694                         t->fs = f->fs;
8695
8696                         goto done;
8697                 }
8698         }
8699
8700         t->idx = 0xffffffff;
8701 done:
8702         end_synchronized_op(sc, LOCK_HELD);
8703         return (0);
8704 }
8705
8706 static int
8707 set_filter(struct adapter *sc, struct t4_filter *t)
8708 {
8709         unsigned int nfilters, nports;
8710         struct filter_entry *f;
8711         int i, rc;
8712
8713         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4setf");
8714         if (rc)
8715                 return (rc);
8716
8717         nfilters = sc->tids.nftids;
8718         nports = sc->params.nports;
8719
8720         if (nfilters == 0) {
8721                 rc = ENOTSUP;
8722                 goto done;
8723         }
8724
8725         if (t->idx >= nfilters) {
8726                 rc = EINVAL;
8727                 goto done;
8728         }
8729
8730         /* Validate against the global filter mode and ingress config */
8731         rc = check_fspec_against_fconf_iconf(sc, &t->fs);
8732         if (rc != 0)
8733                 goto done;
8734
8735         if (t->fs.action == FILTER_SWITCH && t->fs.eport >= nports) {
8736                 rc = EINVAL;
8737                 goto done;
8738         }
8739
8740         if (t->fs.val.iport >= nports) {
8741                 rc = EINVAL;
8742                 goto done;
8743         }
8744
8745         /* Can't specify an iq if not steering to it */
8746         if (!t->fs.dirsteer && t->fs.iq) {
8747                 rc = EINVAL;
8748                 goto done;
8749         }
8750
8751         /* IPv6 filter idx must be 4 aligned */
8752         if (t->fs.type == 1 &&
8753             ((t->idx & 0x3) || t->idx + 4 >= nfilters)) {
8754                 rc = EINVAL;
8755                 goto done;
8756         }
8757
8758         if (!(sc->flags & FULL_INIT_DONE) &&
8759             ((rc = adapter_full_init(sc)) != 0))
8760                 goto done;
8761
8762         if (sc->tids.ftid_tab == NULL) {
8763                 KASSERT(sc->tids.ftids_in_use == 0,
8764                     ("%s: no memory allocated but filters_in_use > 0",
8765                     __func__));
8766
8767                 sc->tids.ftid_tab = malloc(sizeof (struct filter_entry) *
8768                     nfilters, M_CXGBE, M_NOWAIT | M_ZERO);
8769                 if (sc->tids.ftid_tab == NULL) {
8770                         rc = ENOMEM;
8771                         goto done;
8772                 }
8773                 mtx_init(&sc->tids.ftid_lock, "T4 filters", 0, MTX_DEF);
8774         }
8775
8776         for (i = 0; i < 4; i++) {
8777                 f = &sc->tids.ftid_tab[t->idx + i];
8778
8779                 if (f->pending || f->valid) {
8780                         rc = EBUSY;
8781                         goto done;
8782                 }
8783                 if (f->locked) {
8784                         rc = EPERM;
8785                         goto done;
8786                 }
8787
8788                 if (t->fs.type == 0)
8789                         break;
8790         }
8791
8792         f = &sc->tids.ftid_tab[t->idx];
8793         f->fs = t->fs;
8794
8795         rc = set_filter_wr(sc, t->idx);
8796 done:
8797         end_synchronized_op(sc, 0);
8798
8799         if (rc == 0) {
8800                 mtx_lock(&sc->tids.ftid_lock);
8801                 for (;;) {
8802                         if (f->pending == 0) {
8803                                 rc = f->valid ? 0 : EIO;
8804                                 break;
8805                         }
8806
8807                         if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock,
8808                             PCATCH, "t4setfw", 0)) {
8809                                 rc = EINPROGRESS;
8810                                 break;
8811                         }
8812                 }
8813                 mtx_unlock(&sc->tids.ftid_lock);
8814         }
8815         return (rc);
8816 }
8817
8818 static int
8819 del_filter(struct adapter *sc, struct t4_filter *t)
8820 {
8821         unsigned int nfilters;
8822         struct filter_entry *f;
8823         int rc;
8824
8825         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4delf");
8826         if (rc)
8827                 return (rc);
8828
8829         nfilters = sc->tids.nftids;
8830
8831         if (nfilters == 0) {
8832                 rc = ENOTSUP;
8833                 goto done;
8834         }
8835
8836         if (sc->tids.ftid_tab == NULL || sc->tids.ftids_in_use == 0 ||
8837             t->idx >= nfilters) {
8838                 rc = EINVAL;
8839                 goto done;
8840         }
8841
8842         if (!(sc->flags & FULL_INIT_DONE)) {
8843                 rc = EAGAIN;
8844                 goto done;
8845         }
8846
8847         f = &sc->tids.ftid_tab[t->idx];
8848
8849         if (f->pending) {
8850                 rc = EBUSY;
8851                 goto done;
8852         }
8853         if (f->locked) {
8854                 rc = EPERM;
8855                 goto done;
8856         }
8857
8858         if (f->valid) {
8859                 t->fs = f->fs;  /* extra info for the caller */
8860                 rc = del_filter_wr(sc, t->idx);
8861         }
8862
8863 done:
8864         end_synchronized_op(sc, 0);
8865
8866         if (rc == 0) {
8867                 mtx_lock(&sc->tids.ftid_lock);
8868                 for (;;) {
8869                         if (f->pending == 0) {
8870                                 rc = f->valid ? EIO : 0;
8871                                 break;
8872                         }
8873
8874                         if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock,
8875                             PCATCH, "t4delfw", 0)) {
8876                                 rc = EINPROGRESS;
8877                                 break;
8878                         }
8879                 }
8880                 mtx_unlock(&sc->tids.ftid_lock);
8881         }
8882
8883         return (rc);
8884 }
8885
8886 static void
8887 clear_filter(struct filter_entry *f)
8888 {
8889         if (f->l2t)
8890                 t4_l2t_release(f->l2t);
8891
8892         bzero(f, sizeof (*f));
8893 }
8894
8895 static int
8896 set_filter_wr(struct adapter *sc, int fidx)
8897 {
8898         struct filter_entry *f = &sc->tids.ftid_tab[fidx];
8899         struct fw_filter_wr *fwr;
8900         unsigned int ftid, vnic_vld, vnic_vld_mask;
8901         struct wrq_cookie cookie;
8902
8903         ASSERT_SYNCHRONIZED_OP(sc);
8904
8905         if (f->fs.newdmac || f->fs.newvlan) {
8906                 /* This filter needs an L2T entry; allocate one. */
8907                 f->l2t = t4_l2t_alloc_switching(sc->l2t);
8908                 if (f->l2t == NULL)
8909                         return (EAGAIN);
8910                 if (t4_l2t_set_switching(sc, f->l2t, f->fs.vlan, f->fs.eport,
8911                     f->fs.dmac)) {
8912                         t4_l2t_release(f->l2t);
8913                         f->l2t = NULL;
8914                         return (ENOMEM);
8915                 }
8916         }
8917
8918         /* Already validated against fconf, iconf */
8919         MPASS((f->fs.val.pfvf_vld & f->fs.val.ovlan_vld) == 0);
8920         MPASS((f->fs.mask.pfvf_vld & f->fs.mask.ovlan_vld) == 0);
8921         if (f->fs.val.pfvf_vld || f->fs.val.ovlan_vld)
8922                 vnic_vld = 1;
8923         else
8924                 vnic_vld = 0;
8925         if (f->fs.mask.pfvf_vld || f->fs.mask.ovlan_vld)
8926                 vnic_vld_mask = 1;
8927         else
8928                 vnic_vld_mask = 0;
8929
8930         ftid = sc->tids.ftid_base + fidx;
8931
8932         fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie);
8933         if (fwr == NULL)
8934                 return (ENOMEM);
8935         bzero(fwr, sizeof(*fwr));
8936
8937         fwr->op_pkd = htobe32(V_FW_WR_OP(FW_FILTER_WR));
8938         fwr->len16_pkd = htobe32(FW_LEN16(*fwr));
8939         fwr->tid_to_iq =
8940             htobe32(V_FW_FILTER_WR_TID(ftid) |
8941                 V_FW_FILTER_WR_RQTYPE(f->fs.type) |
8942                 V_FW_FILTER_WR_NOREPLY(0) |
8943                 V_FW_FILTER_WR_IQ(f->fs.iq));
8944         fwr->del_filter_to_l2tix =
8945             htobe32(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
8946                 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
8947                 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
8948                 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
8949                 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
8950                 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
8951                 V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
8952                 V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
8953                 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
8954                     f->fs.newvlan == VLAN_REWRITE) |
8955                 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
8956                     f->fs.newvlan == VLAN_REWRITE) |
8957                 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
8958                 V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
8959                 V_FW_FILTER_WR_PRIO(f->fs.prio) |
8960                 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
8961         fwr->ethtype = htobe16(f->fs.val.ethtype);
8962         fwr->ethtypem = htobe16(f->fs.mask.ethtype);
8963         fwr->frag_to_ovlan_vldm =
8964             (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
8965                 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
8966                 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.vlan_vld) |
8967                 V_FW_FILTER_WR_OVLAN_VLD(vnic_vld) |
8968                 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.vlan_vld) |
8969                 V_FW_FILTER_WR_OVLAN_VLDM(vnic_vld_mask));
8970         fwr->smac_sel = 0;
8971         fwr->rx_chan_rx_rpl_iq = htobe16(V_FW_FILTER_WR_RX_CHAN(0) |
8972             V_FW_FILTER_WR_RX_RPL_IQ(sc->sge.fwq.abs_id));
8973         fwr->maci_to_matchtypem =
8974             htobe32(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
8975                 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
8976                 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
8977                 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
8978                 V_FW_FILTER_WR_PORT(f->fs.val.iport) |
8979                 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
8980                 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
8981                 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
8982         fwr->ptcl = f->fs.val.proto;
8983         fwr->ptclm = f->fs.mask.proto;
8984         fwr->ttyp = f->fs.val.tos;
8985         fwr->ttypm = f->fs.mask.tos;
8986         fwr->ivlan = htobe16(f->fs.val.vlan);
8987         fwr->ivlanm = htobe16(f->fs.mask.vlan);
8988         fwr->ovlan = htobe16(f->fs.val.vnic);
8989         fwr->ovlanm = htobe16(f->fs.mask.vnic);
8990         bcopy(f->fs.val.dip, fwr->lip, sizeof (fwr->lip));
8991         bcopy(f->fs.mask.dip, fwr->lipm, sizeof (fwr->lipm));
8992         bcopy(f->fs.val.sip, fwr->fip, sizeof (fwr->fip));
8993         bcopy(f->fs.mask.sip, fwr->fipm, sizeof (fwr->fipm));
8994         fwr->lp = htobe16(f->fs.val.dport);
8995         fwr->lpm = htobe16(f->fs.mask.dport);
8996         fwr->fp = htobe16(f->fs.val.sport);
8997         fwr->fpm = htobe16(f->fs.mask.sport);
8998         if (f->fs.newsmac)
8999                 bcopy(f->fs.smac, fwr->sma, sizeof (fwr->sma));
9000
9001         f->pending = 1;
9002         sc->tids.ftids_in_use++;
9003
9004         commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie);
9005         return (0);
9006 }
9007
9008 static int
9009 del_filter_wr(struct adapter *sc, int fidx)
9010 {
9011         struct filter_entry *f = &sc->tids.ftid_tab[fidx];
9012         struct fw_filter_wr *fwr;
9013         unsigned int ftid;
9014         struct wrq_cookie cookie;
9015
9016         ftid = sc->tids.ftid_base + fidx;
9017
9018         fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie);
9019         if (fwr == NULL)
9020                 return (ENOMEM);
9021         bzero(fwr, sizeof (*fwr));
9022
9023         t4_mk_filtdelwr(ftid, fwr, sc->sge.fwq.abs_id);
9024
9025         f->pending = 1;
9026         commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie);
9027         return (0);
9028 }
9029
9030 int
9031 t4_filter_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
9032 {
9033         struct adapter *sc = iq->adapter;
9034         const struct cpl_set_tcb_rpl *rpl = (const void *)(rss + 1);
9035         unsigned int idx = GET_TID(rpl);
9036         unsigned int rc;
9037         struct filter_entry *f;
9038
9039         KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
9040             rss->opcode));
9041         MPASS(iq == &sc->sge.fwq);
9042         MPASS(is_ftid(sc, idx));
9043
9044         idx -= sc->tids.ftid_base;
9045         f = &sc->tids.ftid_tab[idx];
9046         rc = G_COOKIE(rpl->cookie);
9047
9048         mtx_lock(&sc->tids.ftid_lock);
9049         if (rc == FW_FILTER_WR_FLT_ADDED) {
9050                 KASSERT(f->pending, ("%s: filter[%u] isn't pending.",
9051                     __func__, idx));
9052                 f->smtidx = (be64toh(rpl->oldval) >> 24) & 0xff;
9053                 f->pending = 0;  /* asynchronous setup completed */
9054                 f->valid = 1;
9055         } else {
9056                 if (rc != FW_FILTER_WR_FLT_DELETED) {
9057                         /* Add or delete failed, display an error */
9058                         log(LOG_ERR,
9059                             "filter %u setup failed with error %u\n",
9060                             idx, rc);
9061                 }
9062
9063                 clear_filter(f);
9064                 sc->tids.ftids_in_use--;
9065         }
9066         wakeup(&sc->tids.ftid_tab);
9067         mtx_unlock(&sc->tids.ftid_lock);
9068
9069         return (0);
9070 }
9071
9072 static int
9073 set_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
9074 {
9075
9076         MPASS(iq->set_tcb_rpl != NULL);
9077         return (iq->set_tcb_rpl(iq, rss, m));
9078 }
9079
9080 static int
9081 l2t_write_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
9082 {
9083
9084         MPASS(iq->l2t_write_rpl != NULL);
9085         return (iq->l2t_write_rpl(iq, rss, m));
9086 }
9087
9088 static int
9089 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
9090 {
9091         int rc;
9092
9093         if (cntxt->cid > M_CTXTQID)
9094                 return (EINVAL);
9095
9096         if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
9097             cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
9098                 return (EINVAL);
9099
9100         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
9101         if (rc)
9102                 return (rc);
9103
9104         if (sc->flags & FW_OK) {
9105                 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
9106                     &cntxt->data[0]);
9107                 if (rc == 0)
9108                         goto done;
9109         }
9110
9111         /*
9112          * Read via firmware failed or wasn't even attempted.  Read directly via
9113          * the backdoor.
9114          */
9115         rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
9116 done:
9117         end_synchronized_op(sc, 0);
9118         return (rc);
9119 }
9120
9121 static int
9122 load_fw(struct adapter *sc, struct t4_data *fw)
9123 {
9124         int rc;
9125         uint8_t *fw_data;
9126
9127         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
9128         if (rc)
9129                 return (rc);
9130
9131         /*
9132          * The firmware, with the sole exception of the memory parity error
9133          * handler, runs from memory and not flash.  It is almost always safe to
9134          * install a new firmware on a running system.  Just set bit 1 in
9135          * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
9136          */
9137         if (sc->flags & FULL_INIT_DONE &&
9138             (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
9139                 rc = EBUSY;
9140                 goto done;
9141         }
9142
9143         fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
9144         if (fw_data == NULL) {
9145                 rc = ENOMEM;
9146                 goto done;
9147         }
9148
9149         rc = copyin(fw->data, fw_data, fw->len);
9150         if (rc == 0)
9151                 rc = -t4_load_fw(sc, fw_data, fw->len);
9152
9153         free(fw_data, M_CXGBE);
9154 done:
9155         end_synchronized_op(sc, 0);
9156         return (rc);
9157 }
9158
9159 static int
9160 load_cfg(struct adapter *sc, struct t4_data *cfg)
9161 {
9162         int rc;
9163         uint8_t *cfg_data = NULL;
9164
9165         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9166         if (rc)
9167                 return (rc);
9168
9169         if (cfg->len == 0) {
9170                 /* clear */
9171                 rc = -t4_load_cfg(sc, NULL, 0);
9172                 goto done;
9173         }
9174
9175         cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
9176         if (cfg_data == NULL) {
9177                 rc = ENOMEM;
9178                 goto done;
9179         }
9180
9181         rc = copyin(cfg->data, cfg_data, cfg->len);
9182         if (rc == 0)
9183                 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
9184
9185         free(cfg_data, M_CXGBE);
9186 done:
9187         end_synchronized_op(sc, 0);
9188         return (rc);
9189 }
9190
9191 static int
9192 load_boot(struct adapter *sc, struct t4_bootrom *br)
9193 {
9194         int rc;
9195         uint8_t *br_data = NULL;
9196         u_int offset;
9197
9198         if (br->len > 1024 * 1024)
9199                 return (EFBIG);
9200
9201         if (br->pf_offset == 0) {
9202                 /* pfidx */
9203                 if (br->pfidx_addr > 7)
9204                         return (EINVAL);
9205                 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
9206                     A_PCIE_PF_EXPROM_OFST)));
9207         } else if (br->pf_offset == 1) {
9208                 /* offset */
9209                 offset = G_OFFSET(br->pfidx_addr);
9210         } else {
9211                 return (EINVAL);
9212         }
9213
9214         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
9215         if (rc)
9216                 return (rc);
9217
9218         if (br->len == 0) {
9219                 /* clear */
9220                 rc = -t4_load_boot(sc, NULL, offset, 0);
9221                 goto done;
9222         }
9223
9224         br_data = malloc(br->len, M_CXGBE, M_WAITOK);
9225         if (br_data == NULL) {
9226                 rc = ENOMEM;
9227                 goto done;
9228         }
9229
9230         rc = copyin(br->data, br_data, br->len);
9231         if (rc == 0)
9232                 rc = -t4_load_boot(sc, br_data, offset, br->len);
9233
9234         free(br_data, M_CXGBE);
9235 done:
9236         end_synchronized_op(sc, 0);
9237         return (rc);
9238 }
9239
9240 static int
9241 load_bootcfg(struct adapter *sc, struct t4_data *bc)
9242 {
9243         int rc;
9244         uint8_t *bc_data = NULL;
9245
9246         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9247         if (rc)
9248                 return (rc);
9249
9250         if (bc->len == 0) {
9251                 /* clear */
9252                 rc = -t4_load_bootcfg(sc, NULL, 0);
9253                 goto done;
9254         }
9255
9256         bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
9257         if (bc_data == NULL) {
9258                 rc = ENOMEM;
9259                 goto done;
9260         }
9261
9262         rc = copyin(bc->data, bc_data, bc->len);
9263         if (rc == 0)
9264                 rc = -t4_load_bootcfg(sc, bc_data, bc->len);
9265
9266         free(bc_data, M_CXGBE);
9267 done:
9268         end_synchronized_op(sc, 0);
9269         return (rc);
9270 }
9271
9272 static int
9273 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
9274 {
9275         int rc;
9276         struct cudbg_init *cudbg;
9277         void *handle, *buf;
9278
9279         /* buf is large, don't block if no memory is available */
9280         buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
9281         if (buf == NULL)
9282                 return (ENOMEM);
9283
9284         handle = cudbg_alloc_handle();
9285         if (handle == NULL) {
9286                 rc = ENOMEM;
9287                 goto done;
9288         }
9289
9290         cudbg = cudbg_get_init(handle);
9291         cudbg->adap = sc;
9292         cudbg->print = (cudbg_print_cb)printf;
9293
9294 #ifndef notyet
9295         device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
9296             __func__, dump->wr_flash, dump->len, dump->data);
9297 #endif
9298
9299         if (dump->wr_flash)
9300                 cudbg->use_flash = 1;
9301         MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
9302         memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
9303
9304         rc = cudbg_collect(handle, buf, &dump->len);
9305         if (rc != 0)
9306                 goto done;
9307
9308         rc = copyout(buf, dump->data, dump->len);
9309 done:
9310         cudbg_free_handle(handle);
9311         free(buf, M_CXGBE);
9312         return (rc);
9313 }
9314
9315 #define MAX_READ_BUF_SIZE (128 * 1024)
9316 static int
9317 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
9318 {
9319         uint32_t addr, remaining, n;
9320         uint32_t *buf;
9321         int rc;
9322         uint8_t *dst;
9323
9324         rc = validate_mem_range(sc, mr->addr, mr->len);
9325         if (rc != 0)
9326                 return (rc);
9327
9328         buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
9329         addr = mr->addr;
9330         remaining = mr->len;
9331         dst = (void *)mr->data;
9332
9333         while (remaining) {
9334                 n = min(remaining, MAX_READ_BUF_SIZE);
9335                 read_via_memwin(sc, 2, addr, buf, n);
9336
9337                 rc = copyout(buf, dst, n);
9338                 if (rc != 0)
9339                         break;
9340
9341                 dst += n;
9342                 remaining -= n;
9343                 addr += n;
9344         }
9345
9346         free(buf, M_CXGBE);
9347         return (rc);
9348 }
9349 #undef MAX_READ_BUF_SIZE
9350
9351 static int
9352 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
9353 {
9354         int rc;
9355
9356         if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
9357                 return (EINVAL);
9358
9359         if (i2cd->len > sizeof(i2cd->data))
9360                 return (EFBIG);
9361
9362         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
9363         if (rc)
9364                 return (rc);
9365         rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
9366             i2cd->offset, i2cd->len, &i2cd->data[0]);
9367         end_synchronized_op(sc, 0);
9368
9369         return (rc);
9370 }
9371
9372 int
9373 t4_os_find_pci_capability(struct adapter *sc, int cap)
9374 {
9375         int i;
9376
9377         return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
9378 }
9379
9380 int
9381 t4_os_pci_save_state(struct adapter *sc)
9382 {
9383         device_t dev;
9384         struct pci_devinfo *dinfo;
9385
9386         dev = sc->dev;
9387         dinfo = device_get_ivars(dev);
9388
9389         pci_cfg_save(dev, dinfo, 0);
9390         return (0);
9391 }
9392
9393 int
9394 t4_os_pci_restore_state(struct adapter *sc)
9395 {
9396         device_t dev;
9397         struct pci_devinfo *dinfo;
9398
9399         dev = sc->dev;
9400         dinfo = device_get_ivars(dev);
9401
9402         pci_cfg_restore(dev, dinfo);
9403         return (0);
9404 }
9405
9406 void
9407 t4_os_portmod_changed(struct port_info *pi)
9408 {
9409         struct adapter *sc = pi->adapter;
9410         struct vi_info *vi;
9411         struct ifnet *ifp;
9412         static const char *mod_str[] = {
9413                 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
9414         };
9415
9416         PORT_LOCK(pi);
9417         build_medialist(pi, &pi->media);
9418         PORT_UNLOCK(pi);
9419         vi = &pi->vi[0];
9420         if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
9421                 init_l1cfg(pi);
9422                 end_synchronized_op(sc, LOCK_HELD);
9423         }
9424
9425         ifp = vi->ifp;
9426         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
9427                 if_printf(ifp, "transceiver unplugged.\n");
9428         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
9429                 if_printf(ifp, "unknown transceiver inserted.\n");
9430         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
9431                 if_printf(ifp, "unsupported transceiver inserted.\n");
9432         else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
9433                 if_printf(ifp, "%dGbps %s transceiver inserted.\n",
9434                     port_top_speed(pi), mod_str[pi->mod_type]);
9435         } else {
9436                 if_printf(ifp, "transceiver (type %d) inserted.\n",
9437                     pi->mod_type);
9438         }
9439 }
9440
9441 void
9442 t4_os_link_changed(struct port_info *pi)
9443 {
9444         struct vi_info *vi;
9445         struct ifnet *ifp;
9446         struct link_config *lc;
9447         int v;
9448
9449         for_each_vi(pi, v, vi) {
9450                 ifp = vi->ifp;
9451                 if (ifp == NULL)
9452                         continue;
9453
9454                 lc = &pi->link_cfg;
9455                 if (lc->link_ok) {
9456                         ifp->if_baudrate = IF_Mbps(lc->speed);
9457                         if_link_state_change(ifp, LINK_STATE_UP);
9458                 } else {
9459                         if_link_state_change(ifp, LINK_STATE_DOWN);
9460                 }
9461         }
9462 }
9463
9464 void
9465 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
9466 {
9467         struct adapter *sc;
9468
9469         sx_slock(&t4_list_lock);
9470         SLIST_FOREACH(sc, &t4_list, link) {
9471                 /*
9472                  * func should not make any assumptions about what state sc is
9473                  * in - the only guarantee is that sc->sc_lock is a valid lock.
9474                  */
9475                 func(sc, arg);
9476         }
9477         sx_sunlock(&t4_list_lock);
9478 }
9479
9480 static int
9481 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
9482     struct thread *td)
9483 {
9484         int rc;
9485         struct adapter *sc = dev->si_drv1;
9486
9487         rc = priv_check(td, PRIV_DRIVER);
9488         if (rc != 0)
9489                 return (rc);
9490
9491         switch (cmd) {
9492         case CHELSIO_T4_GETREG: {
9493                 struct t4_reg *edata = (struct t4_reg *)data;
9494
9495                 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
9496                         return (EFAULT);
9497
9498                 if (edata->size == 4)
9499                         edata->val = t4_read_reg(sc, edata->addr);
9500                 else if (edata->size == 8)
9501                         edata->val = t4_read_reg64(sc, edata->addr);
9502                 else
9503                         return (EINVAL);
9504
9505                 break;
9506         }
9507         case CHELSIO_T4_SETREG: {
9508                 struct t4_reg *edata = (struct t4_reg *)data;
9509
9510                 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
9511                         return (EFAULT);
9512
9513                 if (edata->size == 4) {
9514                         if (edata->val & 0xffffffff00000000)
9515                                 return (EINVAL);
9516                         t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
9517                 } else if (edata->size == 8)
9518                         t4_write_reg64(sc, edata->addr, edata->val);
9519                 else
9520                         return (EINVAL);
9521                 break;
9522         }
9523         case CHELSIO_T4_REGDUMP: {
9524                 struct t4_regdump *regs = (struct t4_regdump *)data;
9525                 int reglen = t4_get_regs_len(sc);
9526                 uint8_t *buf;
9527
9528                 if (regs->len < reglen) {
9529                         regs->len = reglen; /* hint to the caller */
9530                         return (ENOBUFS);
9531                 }
9532
9533                 regs->len = reglen;
9534                 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
9535                 get_regs(sc, regs, buf);
9536                 rc = copyout(buf, regs->data, reglen);
9537                 free(buf, M_CXGBE);
9538                 break;
9539         }
9540         case CHELSIO_T4_GET_FILTER_MODE:
9541                 rc = get_filter_mode(sc, (uint32_t *)data);
9542                 break;
9543         case CHELSIO_T4_SET_FILTER_MODE:
9544                 rc = set_filter_mode(sc, *(uint32_t *)data);
9545                 break;
9546         case CHELSIO_T4_GET_FILTER:
9547                 rc = get_filter(sc, (struct t4_filter *)data);
9548                 break;
9549         case CHELSIO_T4_SET_FILTER:
9550                 rc = set_filter(sc, (struct t4_filter *)data);
9551                 break;
9552         case CHELSIO_T4_DEL_FILTER:
9553                 rc = del_filter(sc, (struct t4_filter *)data);
9554                 break;
9555         case CHELSIO_T4_GET_SGE_CONTEXT:
9556                 rc = get_sge_context(sc, (struct t4_sge_context *)data);
9557                 break;
9558         case CHELSIO_T4_LOAD_FW:
9559                 rc = load_fw(sc, (struct t4_data *)data);
9560                 break;
9561         case CHELSIO_T4_GET_MEM:
9562                 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
9563                 break;
9564         case CHELSIO_T4_GET_I2C:
9565                 rc = read_i2c(sc, (struct t4_i2c_data *)data);
9566                 break;
9567         case CHELSIO_T4_CLEAR_STATS: {
9568                 int i, v;
9569                 u_int port_id = *(uint32_t *)data;
9570                 struct port_info *pi;
9571                 struct vi_info *vi;
9572
9573                 if (port_id >= sc->params.nports)
9574                         return (EINVAL);
9575                 pi = sc->port[port_id];
9576                 if (pi == NULL)
9577                         return (EIO);
9578
9579                 /* MAC stats */
9580                 t4_clr_port_stats(sc, pi->tx_chan);
9581                 pi->tx_parse_error = 0;
9582                 mtx_lock(&sc->reg_lock);
9583                 for_each_vi(pi, v, vi) {
9584                         if (vi->flags & VI_INIT_DONE)
9585                                 t4_clr_vi_stats(sc, vi->viid);
9586                 }
9587                 mtx_unlock(&sc->reg_lock);
9588
9589                 /*
9590                  * Since this command accepts a port, clear stats for
9591                  * all VIs on this port.
9592                  */
9593                 for_each_vi(pi, v, vi) {
9594                         if (vi->flags & VI_INIT_DONE) {
9595                                 struct sge_rxq *rxq;
9596                                 struct sge_txq *txq;
9597                                 struct sge_wrq *wrq;
9598
9599                                 for_each_rxq(vi, i, rxq) {
9600 #if defined(INET) || defined(INET6)
9601                                         rxq->lro.lro_queued = 0;
9602                                         rxq->lro.lro_flushed = 0;
9603 #endif
9604                                         rxq->rxcsum = 0;
9605                                         rxq->vlan_extraction = 0;
9606                                 }
9607
9608                                 for_each_txq(vi, i, txq) {
9609                                         txq->txcsum = 0;
9610                                         txq->tso_wrs = 0;
9611                                         txq->vlan_insertion = 0;
9612                                         txq->imm_wrs = 0;
9613                                         txq->sgl_wrs = 0;
9614                                         txq->txpkt_wrs = 0;
9615                                         txq->txpkts0_wrs = 0;
9616                                         txq->txpkts1_wrs = 0;
9617                                         txq->txpkts0_pkts = 0;
9618                                         txq->txpkts1_pkts = 0;
9619                                         mp_ring_reset_stats(txq->r);
9620                                 }
9621
9622 #ifdef TCP_OFFLOAD
9623                                 /* nothing to clear for each ofld_rxq */
9624
9625                                 for_each_ofld_txq(vi, i, wrq) {
9626                                         wrq->tx_wrs_direct = 0;
9627                                         wrq->tx_wrs_copied = 0;
9628                                 }
9629 #endif
9630
9631                                 if (IS_MAIN_VI(vi)) {
9632                                         wrq = &sc->sge.ctrlq[pi->port_id];
9633                                         wrq->tx_wrs_direct = 0;
9634                                         wrq->tx_wrs_copied = 0;
9635                                 }
9636                         }
9637                 }
9638                 break;
9639         }
9640         case CHELSIO_T4_SCHED_CLASS:
9641                 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
9642                 break;
9643         case CHELSIO_T4_SCHED_QUEUE:
9644                 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
9645                 break;
9646         case CHELSIO_T4_GET_TRACER:
9647                 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
9648                 break;
9649         case CHELSIO_T4_SET_TRACER:
9650                 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
9651                 break;
9652         case CHELSIO_T4_LOAD_CFG:
9653                 rc = load_cfg(sc, (struct t4_data *)data);
9654                 break;
9655         case CHELSIO_T4_LOAD_BOOT:
9656                 rc = load_boot(sc, (struct t4_bootrom *)data);
9657                 break;
9658         case CHELSIO_T4_LOAD_BOOTCFG:
9659                 rc = load_bootcfg(sc, (struct t4_data *)data);
9660                 break;
9661         case CHELSIO_T4_CUDBG_DUMP:
9662                 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
9663                 break;
9664         default:
9665                 rc = ENOTTY;
9666         }
9667
9668         return (rc);
9669 }
9670
9671 void
9672 t4_db_full(struct adapter *sc)
9673 {
9674
9675         CXGBE_UNIMPLEMENTED(__func__);
9676 }
9677
9678 void
9679 t4_db_dropped(struct adapter *sc)
9680 {
9681
9682         CXGBE_UNIMPLEMENTED(__func__);
9683 }
9684
9685 #ifdef TCP_OFFLOAD
9686 static int
9687 toe_capability(struct vi_info *vi, int enable)
9688 {
9689         int rc;
9690         struct port_info *pi = vi->pi;
9691         struct adapter *sc = pi->adapter;
9692
9693         ASSERT_SYNCHRONIZED_OP(sc);
9694
9695         if (!is_offload(sc))
9696                 return (ENODEV);
9697
9698         if (enable) {
9699                 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
9700                         /* TOE is already enabled. */
9701                         return (0);
9702                 }
9703
9704                 /*
9705                  * We need the port's queues around so that we're able to send
9706                  * and receive CPLs to/from the TOE even if the ifnet for this
9707                  * port has never been UP'd administratively.
9708                  */
9709                 if (!(vi->flags & VI_INIT_DONE)) {
9710                         rc = vi_full_init(vi);
9711                         if (rc)
9712                                 return (rc);
9713                 }
9714                 if (!(pi->vi[0].flags & VI_INIT_DONE)) {
9715                         rc = vi_full_init(&pi->vi[0]);
9716                         if (rc)
9717                                 return (rc);
9718                 }
9719
9720                 if (isset(&sc->offload_map, pi->port_id)) {
9721                         /* TOE is enabled on another VI of this port. */
9722                         pi->uld_vis++;
9723                         return (0);
9724                 }
9725
9726                 if (!uld_active(sc, ULD_TOM)) {
9727                         rc = t4_activate_uld(sc, ULD_TOM);
9728                         if (rc == EAGAIN) {
9729                                 log(LOG_WARNING,
9730                                     "You must kldload t4_tom.ko before trying "
9731                                     "to enable TOE on a cxgbe interface.\n");
9732                         }
9733                         if (rc != 0)
9734                                 return (rc);
9735                         KASSERT(sc->tom_softc != NULL,
9736                             ("%s: TOM activated but softc NULL", __func__));
9737                         KASSERT(uld_active(sc, ULD_TOM),
9738                             ("%s: TOM activated but flag not set", __func__));
9739                 }
9740
9741                 /* Activate iWARP and iSCSI too, if the modules are loaded. */
9742                 if (!uld_active(sc, ULD_IWARP))
9743                         (void) t4_activate_uld(sc, ULD_IWARP);
9744                 if (!uld_active(sc, ULD_ISCSI))
9745                         (void) t4_activate_uld(sc, ULD_ISCSI);
9746
9747                 pi->uld_vis++;
9748                 setbit(&sc->offload_map, pi->port_id);
9749         } else {
9750                 pi->uld_vis--;
9751
9752                 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
9753                         return (0);
9754
9755                 KASSERT(uld_active(sc, ULD_TOM),
9756                     ("%s: TOM never initialized?", __func__));
9757                 clrbit(&sc->offload_map, pi->port_id);
9758         }
9759
9760         return (0);
9761 }
9762
9763 /*
9764  * Add an upper layer driver to the global list.
9765  */
9766 int
9767 t4_register_uld(struct uld_info *ui)
9768 {
9769         int rc = 0;
9770         struct uld_info *u;
9771
9772         sx_xlock(&t4_uld_list_lock);
9773         SLIST_FOREACH(u, &t4_uld_list, link) {
9774             if (u->uld_id == ui->uld_id) {
9775                     rc = EEXIST;
9776                     goto done;
9777             }
9778         }
9779
9780         SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
9781         ui->refcount = 0;
9782 done:
9783         sx_xunlock(&t4_uld_list_lock);
9784         return (rc);
9785 }
9786
9787 int
9788 t4_unregister_uld(struct uld_info *ui)
9789 {
9790         int rc = EINVAL;
9791         struct uld_info *u;
9792
9793         sx_xlock(&t4_uld_list_lock);
9794
9795         SLIST_FOREACH(u, &t4_uld_list, link) {
9796             if (u == ui) {
9797                     if (ui->refcount > 0) {
9798                             rc = EBUSY;
9799                             goto done;
9800                     }
9801
9802                     SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
9803                     rc = 0;
9804                     goto done;
9805             }
9806         }
9807 done:
9808         sx_xunlock(&t4_uld_list_lock);
9809         return (rc);
9810 }
9811
9812 int
9813 t4_activate_uld(struct adapter *sc, int id)
9814 {
9815         int rc;
9816         struct uld_info *ui;
9817
9818         ASSERT_SYNCHRONIZED_OP(sc);
9819
9820         if (id < 0 || id > ULD_MAX)
9821                 return (EINVAL);
9822         rc = EAGAIN;    /* kldoad the module with this ULD and try again. */
9823
9824         sx_slock(&t4_uld_list_lock);
9825
9826         SLIST_FOREACH(ui, &t4_uld_list, link) {
9827                 if (ui->uld_id == id) {
9828                         if (!(sc->flags & FULL_INIT_DONE)) {
9829                                 rc = adapter_full_init(sc);
9830                                 if (rc != 0)
9831                                         break;
9832                         }
9833
9834                         rc = ui->activate(sc);
9835                         if (rc == 0) {
9836                                 setbit(&sc->active_ulds, id);
9837                                 ui->refcount++;
9838                         }
9839                         break;
9840                 }
9841         }
9842
9843         sx_sunlock(&t4_uld_list_lock);
9844
9845         return (rc);
9846 }
9847
9848 int
9849 t4_deactivate_uld(struct adapter *sc, int id)
9850 {
9851         int rc;
9852         struct uld_info *ui;
9853
9854         ASSERT_SYNCHRONIZED_OP(sc);
9855
9856         if (id < 0 || id > ULD_MAX)
9857                 return (EINVAL);
9858         rc = ENXIO;
9859
9860         sx_slock(&t4_uld_list_lock);
9861
9862         SLIST_FOREACH(ui, &t4_uld_list, link) {
9863                 if (ui->uld_id == id) {
9864                         rc = ui->deactivate(sc);
9865                         if (rc == 0) {
9866                                 clrbit(&sc->active_ulds, id);
9867                                 ui->refcount--;
9868                         }
9869                         break;
9870                 }
9871         }
9872
9873         sx_sunlock(&t4_uld_list_lock);
9874
9875         return (rc);
9876 }
9877
9878 int
9879 uld_active(struct adapter *sc, int uld_id)
9880 {
9881
9882         MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
9883
9884         return (isset(&sc->active_ulds, uld_id));
9885 }
9886 #endif
9887
9888 /*
9889  * t  = ptr to tunable.
9890  * nc = number of CPUs.
9891  * c  = compiled in default for that tunable.
9892  */
9893 static void
9894 calculate_nqueues(int *t, int nc, const int c)
9895 {
9896         int nq;
9897
9898         if (*t > 0)
9899                 return;
9900         nq = *t < 0 ? -*t : c;
9901         *t = min(nc, nq);
9902 }
9903
9904 /*
9905  * Come up with reasonable defaults for some of the tunables, provided they're
9906  * not set by the user (in which case we'll use the values as is).
9907  */
9908 static void
9909 tweak_tunables(void)
9910 {
9911         int nc = mp_ncpus;      /* our snapshot of the number of CPUs */
9912
9913         if (t4_ntxq < 1) {
9914 #ifdef RSS
9915                 t4_ntxq = rss_getnumbuckets();
9916 #else
9917                 calculate_nqueues(&t4_ntxq, nc, NTXQ);
9918 #endif
9919         }
9920
9921         calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
9922
9923         if (t4_nrxq < 1) {
9924 #ifdef RSS
9925                 t4_nrxq = rss_getnumbuckets();
9926 #else
9927                 calculate_nqueues(&t4_nrxq, nc, NRXQ);
9928 #endif
9929         }
9930
9931         calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
9932
9933 #ifdef TCP_OFFLOAD
9934         calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
9935         calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
9936         calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
9937         calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
9938
9939         if (t4_toecaps_allowed == -1)
9940                 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
9941
9942         if (t4_rdmacaps_allowed == -1) {
9943                 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
9944                     FW_CAPS_CONFIG_RDMA_RDMAC;
9945         }
9946
9947         if (t4_iscsicaps_allowed == -1) {
9948                 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
9949                     FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
9950                     FW_CAPS_CONFIG_ISCSI_T10DIF;
9951         }
9952
9953         if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
9954                 t4_tmr_idx_ofld = TMR_IDX_OFLD;
9955
9956         if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
9957                 t4_pktc_idx_ofld = PKTC_IDX_OFLD;
9958 #else
9959         if (t4_toecaps_allowed == -1)
9960                 t4_toecaps_allowed = 0;
9961
9962         if (t4_rdmacaps_allowed == -1)
9963                 t4_rdmacaps_allowed = 0;
9964
9965         if (t4_iscsicaps_allowed == -1)
9966                 t4_iscsicaps_allowed = 0;
9967 #endif
9968
9969 #ifdef DEV_NETMAP
9970         calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
9971         calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
9972 #endif
9973
9974         if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
9975                 t4_tmr_idx = TMR_IDX;
9976
9977         if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
9978                 t4_pktc_idx = PKTC_IDX;
9979
9980         if (t4_qsize_txq < 128)
9981                 t4_qsize_txq = 128;
9982
9983         if (t4_qsize_rxq < 128)
9984                 t4_qsize_rxq = 128;
9985         while (t4_qsize_rxq & 7)
9986                 t4_qsize_rxq++;
9987
9988         t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
9989
9990         /*
9991          * Number of VIs to create per-port.  The first VI is the "main" regular
9992          * VI for the port.  The rest are additional virtual interfaces on the
9993          * same physical port.  Note that the main VI does not have native
9994          * netmap support but the extra VIs do.
9995          *
9996          * Limit the number of VIs per port to the number of available
9997          * MAC addresses per port.
9998          */
9999         if (t4_num_vis < 1)
10000                 t4_num_vis = 1;
10001         if (t4_num_vis > nitems(vi_mac_funcs)) {
10002                 t4_num_vis = nitems(vi_mac_funcs);
10003                 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
10004         }
10005
10006         if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
10007                 pcie_relaxed_ordering = 1;
10008 #if defined(__i386__) || defined(__amd64__)
10009                 if (cpu_vendor_id == CPU_VENDOR_INTEL)
10010                         pcie_relaxed_ordering = 0;
10011 #endif
10012         }
10013 }
10014
10015 #ifdef DDB
10016 static void
10017 t4_dump_tcb(struct adapter *sc, int tid)
10018 {
10019         uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
10020
10021         reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
10022         save = t4_read_reg(sc, reg);
10023         base = sc->memwin[2].mw_base;
10024
10025         /* Dump TCB for the tid */
10026         tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10027         tcb_addr += tid * TCB_SIZE;
10028
10029         if (is_t4(sc)) {
10030                 pf = 0;
10031                 win_pos = tcb_addr & ~0xf;      /* start must be 16B aligned */
10032         } else {
10033                 pf = V_PFNUM(sc->pf);
10034                 win_pos = tcb_addr & ~0x7f;     /* start must be 128B aligned */
10035         }
10036         t4_write_reg(sc, reg, win_pos | pf);
10037         t4_read_reg(sc, reg);
10038
10039         off = tcb_addr - win_pos;
10040         for (i = 0; i < 4; i++) {
10041                 uint32_t buf[8];
10042                 for (j = 0; j < 8; j++, off += 4)
10043                         buf[j] = htonl(t4_read_reg(sc, base + off));
10044
10045                 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
10046                     buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
10047                     buf[7]);
10048         }
10049
10050         t4_write_reg(sc, reg, save);
10051         t4_read_reg(sc, reg);
10052 }
10053
10054 static void
10055 t4_dump_devlog(struct adapter *sc)
10056 {
10057         struct devlog_params *dparams = &sc->params.devlog;
10058         struct fw_devlog_e e;
10059         int i, first, j, m, nentries, rc;
10060         uint64_t ftstamp = UINT64_MAX;
10061
10062         if (dparams->start == 0) {
10063                 db_printf("devlog params not valid\n");
10064                 return;
10065         }
10066
10067         nentries = dparams->size / sizeof(struct fw_devlog_e);
10068         m = fwmtype_to_hwmtype(dparams->memtype);
10069
10070         /* Find the first entry. */
10071         first = -1;
10072         for (i = 0; i < nentries && !db_pager_quit; i++) {
10073                 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10074                     sizeof(e), (void *)&e);
10075                 if (rc != 0)
10076                         break;
10077
10078                 if (e.timestamp == 0)
10079                         break;
10080
10081                 e.timestamp = be64toh(e.timestamp);
10082                 if (e.timestamp < ftstamp) {
10083                         ftstamp = e.timestamp;
10084                         first = i;
10085                 }
10086         }
10087
10088         if (first == -1)
10089                 return;
10090
10091         i = first;
10092         do {
10093                 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10094                     sizeof(e), (void *)&e);
10095                 if (rc != 0)
10096                         return;
10097
10098                 if (e.timestamp == 0)
10099                         return;
10100
10101                 e.timestamp = be64toh(e.timestamp);
10102                 e.seqno = be32toh(e.seqno);
10103                 for (j = 0; j < 8; j++)
10104                         e.params[j] = be32toh(e.params[j]);
10105
10106                 db_printf("%10d  %15ju  %8s  %8s  ",
10107                     e.seqno, e.timestamp,
10108                     (e.level < nitems(devlog_level_strings) ?
10109                         devlog_level_strings[e.level] : "UNKNOWN"),
10110                     (e.facility < nitems(devlog_facility_strings) ?
10111                         devlog_facility_strings[e.facility] : "UNKNOWN"));
10112                 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
10113                     e.params[3], e.params[4], e.params[5], e.params[6],
10114                     e.params[7]);
10115
10116                 if (++i == nentries)
10117                         i = 0;
10118         } while (i != first && !db_pager_quit);
10119 }
10120
10121 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
10122 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
10123
10124 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
10125 {
10126         device_t dev;
10127         int t;
10128         bool valid;
10129
10130         valid = false;
10131         t = db_read_token();
10132         if (t == tIDENT) {
10133                 dev = device_lookup_by_name(db_tok_string);
10134                 valid = true;
10135         }
10136         db_skip_to_eol();
10137         if (!valid) {
10138                 db_printf("usage: show t4 devlog <nexus>\n");
10139                 return;
10140         }
10141
10142         if (dev == NULL) {
10143                 db_printf("device not found\n");
10144                 return;
10145         }
10146
10147         t4_dump_devlog(device_get_softc(dev));
10148 }
10149
10150 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
10151 {
10152         device_t dev;
10153         int radix, tid, t;
10154         bool valid;
10155
10156         valid = false;
10157         radix = db_radix;
10158         db_radix = 10;
10159         t = db_read_token();
10160         if (t == tIDENT) {
10161                 dev = device_lookup_by_name(db_tok_string);
10162                 t = db_read_token();
10163                 if (t == tNUMBER) {
10164                         tid = db_tok_number;
10165                         valid = true;
10166                 }
10167         }       
10168         db_radix = radix;
10169         db_skip_to_eol();
10170         if (!valid) {
10171                 db_printf("usage: show t4 tcb <nexus> <tid>\n");
10172                 return;
10173         }
10174
10175         if (dev == NULL) {
10176                 db_printf("device not found\n");
10177                 return;
10178         }
10179         if (tid < 0) {
10180                 db_printf("invalid tid\n");
10181                 return;
10182         }
10183
10184         t4_dump_tcb(device_get_softc(dev), tid);
10185 }
10186 #endif
10187
10188 /*
10189  * Borrowed from cesa_prep_aes_key().
10190  *
10191  * NB: The crypto engine wants the words in the decryption key in reverse
10192  * order.
10193  */
10194 void
10195 t4_aes_getdeckey(void *dec_key, const void *enc_key, unsigned int kbits)
10196 {
10197         uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
10198         uint32_t *dkey;
10199         int i;
10200
10201         rijndaelKeySetupEnc(ek, enc_key, kbits);
10202         dkey = dec_key;
10203         dkey += (kbits / 8) / 4;
10204
10205         switch (kbits) {
10206         case 128:
10207                 for (i = 0; i < 4; i++)
10208                         *--dkey = htobe32(ek[4 * 10 + i]);
10209                 break;
10210         case 192:
10211                 for (i = 0; i < 2; i++)
10212                         *--dkey = htobe32(ek[4 * 11 + 2 + i]);
10213                 for (i = 0; i < 4; i++)
10214                         *--dkey = htobe32(ek[4 * 12 + i]);
10215                 break;
10216         case 256:
10217                 for (i = 0; i < 4; i++)
10218                         *--dkey = htobe32(ek[4 * 13 + i]);
10219                 for (i = 0; i < 4; i++)
10220                         *--dkey = htobe32(ek[4 * 14 + i]);
10221                 break;
10222         }
10223         MPASS(dkey == dec_key);
10224 }
10225
10226 static struct sx mlu;   /* mod load unload */
10227 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
10228
10229 static int
10230 mod_event(module_t mod, int cmd, void *arg)
10231 {
10232         int rc = 0;
10233         static int loaded = 0;
10234
10235         switch (cmd) {
10236         case MOD_LOAD:
10237                 sx_xlock(&mlu);
10238                 if (loaded++ == 0) {
10239                         t4_sge_modload();
10240                         t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl);
10241                         t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl);
10242                         t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
10243                         t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
10244                         sx_init(&t4_list_lock, "T4/T5 adapters");
10245                         SLIST_INIT(&t4_list);
10246 #ifdef TCP_OFFLOAD
10247                         sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
10248                         SLIST_INIT(&t4_uld_list);
10249 #endif
10250                         t4_tracer_modload();
10251                         tweak_tunables();
10252                 }
10253                 sx_xunlock(&mlu);
10254                 break;
10255
10256         case MOD_UNLOAD:
10257                 sx_xlock(&mlu);
10258                 if (--loaded == 0) {
10259                         int tries;
10260
10261                         sx_slock(&t4_list_lock);
10262                         if (!SLIST_EMPTY(&t4_list)) {
10263                                 rc = EBUSY;
10264                                 sx_sunlock(&t4_list_lock);
10265                                 goto done_unload;
10266                         }
10267 #ifdef TCP_OFFLOAD
10268                         sx_slock(&t4_uld_list_lock);
10269                         if (!SLIST_EMPTY(&t4_uld_list)) {
10270                                 rc = EBUSY;
10271                                 sx_sunlock(&t4_uld_list_lock);
10272                                 sx_sunlock(&t4_list_lock);
10273                                 goto done_unload;
10274                         }
10275 #endif
10276                         tries = 0;
10277                         while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
10278                                 uprintf("%ju clusters with custom free routine "
10279                                     "still is use.\n", t4_sge_extfree_refs());
10280                                 pause("t4unload", 2 * hz);
10281                         }
10282 #ifdef TCP_OFFLOAD
10283                         sx_sunlock(&t4_uld_list_lock);
10284 #endif
10285                         sx_sunlock(&t4_list_lock);
10286
10287                         if (t4_sge_extfree_refs() == 0) {
10288                                 t4_tracer_modunload();
10289 #ifdef TCP_OFFLOAD
10290                                 sx_destroy(&t4_uld_list_lock);
10291 #endif
10292                                 sx_destroy(&t4_list_lock);
10293                                 t4_sge_modunload();
10294                                 loaded = 0;
10295                         } else {
10296                                 rc = EBUSY;
10297                                 loaded++;       /* undo earlier decrement */
10298                         }
10299                 }
10300 done_unload:
10301                 sx_xunlock(&mlu);
10302                 break;
10303         }
10304
10305         return (rc);
10306 }
10307
10308 static devclass_t t4_devclass, t5_devclass, t6_devclass;
10309 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass;
10310 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass;
10311
10312 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
10313 MODULE_VERSION(t4nex, 1);
10314 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
10315 #ifdef DEV_NETMAP
10316 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
10317 #endif /* DEV_NETMAP */
10318
10319 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
10320 MODULE_VERSION(t5nex, 1);
10321 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
10322 #ifdef DEV_NETMAP
10323 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
10324 #endif /* DEV_NETMAP */
10325
10326 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0);
10327 MODULE_VERSION(t6nex, 1);
10328 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
10329 #ifdef DEV_NETMAP
10330 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
10331 #endif /* DEV_NETMAP */
10332
10333 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
10334 MODULE_VERSION(cxgbe, 1);
10335
10336 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
10337 MODULE_VERSION(cxl, 1);
10338
10339 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0);
10340 MODULE_VERSION(cc, 1);
10341
10342 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
10343 MODULE_VERSION(vcxgbe, 1);
10344
10345 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
10346 MODULE_VERSION(vcxl, 1);
10347
10348 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0);
10349 MODULE_VERSION(vcc, 1);