]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/t4_main.c
Pull down pjdfstest 0.1
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / t4_main.c
1 /*-
2  * Copyright (c) 2011 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_ddb.h"
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_rss.h"
35
36 #include <sys/param.h>
37 #include <sys/conf.h>
38 #include <sys/priv.h>
39 #include <sys/kernel.h>
40 #include <sys/bus.h>
41 #include <sys/module.h>
42 #include <sys/malloc.h>
43 #include <sys/queue.h>
44 #include <sys/taskqueue.h>
45 #include <sys/pciio.h>
46 #include <dev/pci/pcireg.h>
47 #include <dev/pci/pcivar.h>
48 #include <dev/pci/pci_private.h>
49 #include <sys/firmware.h>
50 #include <sys/sbuf.h>
51 #include <sys/smp.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <net/ethernet.h>
56 #include <net/if.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/if_vlan_var.h>
60 #ifdef RSS
61 #include <net/rss_config.h>
62 #endif
63 #if defined(__i386__) || defined(__amd64__)
64 #include <vm/vm.h>
65 #include <vm/pmap.h>
66 #endif
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #include <ddb/db_lex.h>
70 #endif
71
72 #include "common/common.h"
73 #include "common/t4_msg.h"
74 #include "common/t4_regs.h"
75 #include "common/t4_regs_values.h"
76 #include "t4_ioctl.h"
77 #include "t4_l2t.h"
78 #include "t4_mp_ring.h"
79 #include "t4_if.h"
80
81 /* T4 bus driver interface */
82 static int t4_probe(device_t);
83 static int t4_attach(device_t);
84 static int t4_detach(device_t);
85 static int t4_ready(device_t);
86 static int t4_read_port_device(device_t, int, device_t *);
87 static device_method_t t4_methods[] = {
88         DEVMETHOD(device_probe,         t4_probe),
89         DEVMETHOD(device_attach,        t4_attach),
90         DEVMETHOD(device_detach,        t4_detach),
91
92         DEVMETHOD(t4_is_main_ready,     t4_ready),
93         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
94
95         DEVMETHOD_END
96 };
97 static driver_t t4_driver = {
98         "t4nex",
99         t4_methods,
100         sizeof(struct adapter)
101 };
102
103
104 /* T4 port (cxgbe) interface */
105 static int cxgbe_probe(device_t);
106 static int cxgbe_attach(device_t);
107 static int cxgbe_detach(device_t);
108 device_method_t cxgbe_methods[] = {
109         DEVMETHOD(device_probe,         cxgbe_probe),
110         DEVMETHOD(device_attach,        cxgbe_attach),
111         DEVMETHOD(device_detach,        cxgbe_detach),
112         { 0, 0 }
113 };
114 static driver_t cxgbe_driver = {
115         "cxgbe",
116         cxgbe_methods,
117         sizeof(struct port_info)
118 };
119
120 /* T4 VI (vcxgbe) interface */
121 static int vcxgbe_probe(device_t);
122 static int vcxgbe_attach(device_t);
123 static int vcxgbe_detach(device_t);
124 static device_method_t vcxgbe_methods[] = {
125         DEVMETHOD(device_probe,         vcxgbe_probe),
126         DEVMETHOD(device_attach,        vcxgbe_attach),
127         DEVMETHOD(device_detach,        vcxgbe_detach),
128         { 0, 0 }
129 };
130 static driver_t vcxgbe_driver = {
131         "vcxgbe",
132         vcxgbe_methods,
133         sizeof(struct vi_info)
134 };
135
136 static d_ioctl_t t4_ioctl;
137
138 static struct cdevsw t4_cdevsw = {
139        .d_version = D_VERSION,
140        .d_ioctl = t4_ioctl,
141        .d_name = "t4nex",
142 };
143
144 /* T5 bus driver interface */
145 static int t5_probe(device_t);
146 static device_method_t t5_methods[] = {
147         DEVMETHOD(device_probe,         t5_probe),
148         DEVMETHOD(device_attach,        t4_attach),
149         DEVMETHOD(device_detach,        t4_detach),
150
151         DEVMETHOD(t4_is_main_ready,     t4_ready),
152         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
153
154         DEVMETHOD_END
155 };
156 static driver_t t5_driver = {
157         "t5nex",
158         t5_methods,
159         sizeof(struct adapter)
160 };
161
162
163 /* T5 port (cxl) interface */
164 static driver_t cxl_driver = {
165         "cxl",
166         cxgbe_methods,
167         sizeof(struct port_info)
168 };
169
170 /* T5 VI (vcxl) interface */
171 static driver_t vcxl_driver = {
172         "vcxl",
173         vcxgbe_methods,
174         sizeof(struct vi_info)
175 };
176
177 /* T6 bus driver interface */
178 static int t6_probe(device_t);
179 static device_method_t t6_methods[] = {
180         DEVMETHOD(device_probe,         t6_probe),
181         DEVMETHOD(device_attach,        t4_attach),
182         DEVMETHOD(device_detach,        t4_detach),
183
184         DEVMETHOD(t4_is_main_ready,     t4_ready),
185         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
186
187         DEVMETHOD_END
188 };
189 static driver_t t6_driver = {
190         "t6nex",
191         t6_methods,
192         sizeof(struct adapter)
193 };
194
195
196 /* T6 port (cc) interface */
197 static driver_t cc_driver = {
198         "cc",
199         cxgbe_methods,
200         sizeof(struct port_info)
201 };
202
203 /* T6 VI (vcc) interface */
204 static driver_t vcc_driver = {
205         "vcc",
206         vcxgbe_methods,
207         sizeof(struct vi_info)
208 };
209
210 /* ifnet + media interface */
211 static void cxgbe_init(void *);
212 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
213 static int cxgbe_transmit(struct ifnet *, struct mbuf *);
214 static void cxgbe_qflush(struct ifnet *);
215 static int cxgbe_media_change(struct ifnet *);
216 static void cxgbe_media_status(struct ifnet *, struct ifmediareq *);
217
218 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
219
220 /*
221  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
222  * then ADAPTER_LOCK, then t4_uld_list_lock.
223  */
224 static struct sx t4_list_lock;
225 SLIST_HEAD(, adapter) t4_list;
226 #ifdef TCP_OFFLOAD
227 static struct sx t4_uld_list_lock;
228 SLIST_HEAD(, uld_info) t4_uld_list;
229 #endif
230
231 /*
232  * Tunables.  See tweak_tunables() too.
233  *
234  * Each tunable is set to a default value here if it's known at compile-time.
235  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
236  * provide a reasonable default (upto n) when the driver is loaded.
237  *
238  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
239  * T5 are under hw.cxl.
240  */
241
242 /*
243  * Number of queues for tx and rx, 10G and 1G, NIC and offload.
244  */
245 #define NTXQ_10G 16
246 int t4_ntxq10g = -NTXQ_10G;
247 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq10g);
248
249 #define NRXQ_10G 8
250 int t4_nrxq10g = -NRXQ_10G;
251 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq10g);
252
253 #define NTXQ_1G 4
254 int t4_ntxq1g = -NTXQ_1G;
255 TUNABLE_INT("hw.cxgbe.ntxq1g", &t4_ntxq1g);
256
257 #define NRXQ_1G 2
258 int t4_nrxq1g = -NRXQ_1G;
259 TUNABLE_INT("hw.cxgbe.nrxq1g", &t4_nrxq1g);
260
261 #define NTXQ_VI 1
262 static int t4_ntxq_vi = -NTXQ_VI;
263 TUNABLE_INT("hw.cxgbe.ntxq_vi", &t4_ntxq_vi);
264
265 #define NRXQ_VI 1
266 static int t4_nrxq_vi = -NRXQ_VI;
267 TUNABLE_INT("hw.cxgbe.nrxq_vi", &t4_nrxq_vi);
268
269 static int t4_rsrv_noflowq = 0;
270 TUNABLE_INT("hw.cxgbe.rsrv_noflowq", &t4_rsrv_noflowq);
271
272 #ifdef TCP_OFFLOAD
273 #define NOFLDTXQ_10G 8
274 static int t4_nofldtxq10g = -NOFLDTXQ_10G;
275 TUNABLE_INT("hw.cxgbe.nofldtxq10g", &t4_nofldtxq10g);
276
277 #define NOFLDRXQ_10G 2
278 static int t4_nofldrxq10g = -NOFLDRXQ_10G;
279 TUNABLE_INT("hw.cxgbe.nofldrxq10g", &t4_nofldrxq10g);
280
281 #define NOFLDTXQ_1G 2
282 static int t4_nofldtxq1g = -NOFLDTXQ_1G;
283 TUNABLE_INT("hw.cxgbe.nofldtxq1g", &t4_nofldtxq1g);
284
285 #define NOFLDRXQ_1G 1
286 static int t4_nofldrxq1g = -NOFLDRXQ_1G;
287 TUNABLE_INT("hw.cxgbe.nofldrxq1g", &t4_nofldrxq1g);
288
289 #define NOFLDTXQ_VI 1
290 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
291 TUNABLE_INT("hw.cxgbe.nofldtxq_vi", &t4_nofldtxq_vi);
292
293 #define NOFLDRXQ_VI 1
294 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
295 TUNABLE_INT("hw.cxgbe.nofldrxq_vi", &t4_nofldrxq_vi);
296 #endif
297
298 #ifdef DEV_NETMAP
299 #define NNMTXQ_VI 2
300 static int t4_nnmtxq_vi = -NNMTXQ_VI;
301 TUNABLE_INT("hw.cxgbe.nnmtxq_vi", &t4_nnmtxq_vi);
302
303 #define NNMRXQ_VI 2
304 static int t4_nnmrxq_vi = -NNMRXQ_VI;
305 TUNABLE_INT("hw.cxgbe.nnmrxq_vi", &t4_nnmrxq_vi);
306 #endif
307
308 /*
309  * Holdoff parameters for 10G and 1G ports.
310  */
311 #define TMR_IDX_10G 1
312 int t4_tmr_idx_10g = TMR_IDX_10G;
313 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx_10g);
314
315 #define PKTC_IDX_10G (-1)
316 int t4_pktc_idx_10g = PKTC_IDX_10G;
317 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx_10g);
318
319 #define TMR_IDX_1G 1
320 int t4_tmr_idx_1g = TMR_IDX_1G;
321 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_1G", &t4_tmr_idx_1g);
322
323 #define PKTC_IDX_1G (-1)
324 int t4_pktc_idx_1g = PKTC_IDX_1G;
325 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_1G", &t4_pktc_idx_1g);
326
327 /*
328  * Size (# of entries) of each tx and rx queue.
329  */
330 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
331 TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq);
332
333 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
334 TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq);
335
336 /*
337  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
338  */
339 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
340 TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types);
341
342 /*
343  * Configuration file.
344  */
345 #define DEFAULT_CF      "default"
346 #define FLASH_CF        "flash"
347 #define UWIRE_CF        "uwire"
348 #define FPGA_CF         "fpga"
349 static char t4_cfg_file[32] = DEFAULT_CF;
350 TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file));
351
352 /*
353  * PAUSE settings (bit 0, 1 = rx_pause, tx_pause respectively).
354  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
355  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
356  *            mark or when signalled to do so, 0 to never emit PAUSE.
357  */
358 static int t4_pause_settings = PAUSE_TX | PAUSE_RX;
359 TUNABLE_INT("hw.cxgbe.pause_settings", &t4_pause_settings);
360
361 /*
362  * Forward Error Correction settings (bit 0, 1, 2 = FEC_RS, FEC_BASER_RS,
363  * FEC_RESERVED respectively).
364  * -1 to run with the firmware default.
365  *  0 to disable FEC.
366  */
367 static int t4_fec = -1;
368 TUNABLE_INT("hw.cxgbe.fec", &t4_fec);
369
370 /*
371  * Link autonegotiation.
372  * -1 to run with the firmware default.
373  *  0 to disable.
374  *  1 to enable.
375  */
376 static int t4_autoneg = -1;
377 TUNABLE_INT("hw.cxgbe.autoneg", &t4_autoneg);
378
379 /*
380  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
381  * encouraged respectively).
382  */
383 static unsigned int t4_fw_install = 1;
384 TUNABLE_INT("hw.cxgbe.fw_install", &t4_fw_install);
385
386 /*
387  * ASIC features that will be used.  Disable the ones you don't want so that the
388  * chip resources aren't wasted on features that will not be used.
389  */
390 static int t4_nbmcaps_allowed = 0;
391 TUNABLE_INT("hw.cxgbe.nbmcaps_allowed", &t4_nbmcaps_allowed);
392
393 static int t4_linkcaps_allowed = 0;     /* No DCBX, PPP, etc. by default */
394 TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed);
395
396 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
397     FW_CAPS_CONFIG_SWITCH_EGRESS;
398 TUNABLE_INT("hw.cxgbe.switchcaps_allowed", &t4_switchcaps_allowed);
399
400 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC;
401 TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed);
402
403 static int t4_toecaps_allowed = -1;
404 TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed);
405
406 static int t4_rdmacaps_allowed = -1;
407 TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed);
408
409 static int t4_cryptocaps_allowed = 0;
410 TUNABLE_INT("hw.cxgbe.cryptocaps_allowed", &t4_cryptocaps_allowed);
411
412 static int t4_iscsicaps_allowed = -1;
413 TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed);
414
415 static int t4_fcoecaps_allowed = 0;
416 TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed);
417
418 static int t5_write_combine = 0;
419 TUNABLE_INT("hw.cxl.write_combine", &t5_write_combine);
420
421 static int t4_num_vis = 1;
422 TUNABLE_INT("hw.cxgbe.num_vis", &t4_num_vis);
423
424 /* Functions used by extra VIs to obtain unique MAC addresses for each VI. */
425 static int vi_mac_funcs[] = {
426         FW_VI_FUNC_OFLD,
427         FW_VI_FUNC_IWARP,
428         FW_VI_FUNC_OPENISCSI,
429         FW_VI_FUNC_OPENFCOE,
430         FW_VI_FUNC_FOISCSI,
431         FW_VI_FUNC_FOFCOE,
432 };
433
434 struct intrs_and_queues {
435         uint16_t intr_type;     /* INTx, MSI, or MSI-X */
436         uint16_t nirq;          /* Total # of vectors */
437         uint16_t intr_flags_10g;/* Interrupt flags for each 10G port */
438         uint16_t intr_flags_1g; /* Interrupt flags for each 1G port */
439         uint16_t ntxq10g;       /* # of NIC txq's for each 10G port */
440         uint16_t nrxq10g;       /* # of NIC rxq's for each 10G port */
441         uint16_t ntxq1g;        /* # of NIC txq's for each 1G port */
442         uint16_t nrxq1g;        /* # of NIC rxq's for each 1G port */
443         uint16_t rsrv_noflowq;  /* Flag whether to reserve queue 0 */
444         uint16_t nofldtxq10g;   /* # of TOE txq's for each 10G port */
445         uint16_t nofldrxq10g;   /* # of TOE rxq's for each 10G port */
446         uint16_t nofldtxq1g;    /* # of TOE txq's for each 1G port */
447         uint16_t nofldrxq1g;    /* # of TOE rxq's for each 1G port */
448
449         /* The vcxgbe/vcxl interfaces use these and not the ones above. */
450         uint16_t ntxq_vi;       /* # of NIC txq's */
451         uint16_t nrxq_vi;       /* # of NIC rxq's */
452         uint16_t nofldtxq_vi;   /* # of TOE txq's */
453         uint16_t nofldrxq_vi;   /* # of TOE rxq's */
454         uint16_t nnmtxq_vi;     /* # of netmap txq's */
455         uint16_t nnmrxq_vi;     /* # of netmap rxq's */
456 };
457
458 struct filter_entry {
459         uint32_t valid:1;       /* filter allocated and valid */
460         uint32_t locked:1;      /* filter is administratively locked */
461         uint32_t pending:1;     /* filter action is pending firmware reply */
462         uint32_t smtidx:8;      /* Source MAC Table index for smac */
463         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
464
465         struct t4_filter_specification fs;
466 };
467
468 static void setup_memwin(struct adapter *);
469 static void position_memwin(struct adapter *, int, uint32_t);
470 static int rw_via_memwin(struct adapter *, int, uint32_t, uint32_t *, int, int);
471 static inline int read_via_memwin(struct adapter *, int, uint32_t, uint32_t *,
472     int);
473 static inline int write_via_memwin(struct adapter *, int, uint32_t,
474     const uint32_t *, int);
475 static int validate_mem_range(struct adapter *, uint32_t, int);
476 static int fwmtype_to_hwmtype(int);
477 static int validate_mt_off_len(struct adapter *, int, uint32_t, int,
478     uint32_t *);
479 static int fixup_devlog_params(struct adapter *);
480 static int cfg_itype_and_nqueues(struct adapter *, int, int, int,
481     struct intrs_and_queues *);
482 static int prep_firmware(struct adapter *);
483 static int partition_resources(struct adapter *, const struct firmware *,
484     const char *);
485 static int get_params__pre_init(struct adapter *);
486 static int get_params__post_init(struct adapter *);
487 static int set_params__post_init(struct adapter *);
488 static void t4_set_desc(struct adapter *);
489 static void build_medialist(struct port_info *, struct ifmedia *);
490 static int cxgbe_init_synchronized(struct vi_info *);
491 static int cxgbe_uninit_synchronized(struct vi_info *);
492 static void quiesce_txq(struct adapter *, struct sge_txq *);
493 static void quiesce_wrq(struct adapter *, struct sge_wrq *);
494 static void quiesce_iq(struct adapter *, struct sge_iq *);
495 static void quiesce_fl(struct adapter *, struct sge_fl *);
496 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
497     driver_intr_t *, void *, char *);
498 static int t4_free_irq(struct adapter *, struct irq *);
499 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
500 static void vi_refresh_stats(struct adapter *, struct vi_info *);
501 static void cxgbe_refresh_stats(struct adapter *, struct port_info *);
502 static void cxgbe_tick(void *);
503 static void cxgbe_vlan_config(void *, struct ifnet *, uint16_t);
504 static void cxgbe_sysctls(struct port_info *);
505 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
506 static int sysctl_bitfield(SYSCTL_HANDLER_ARGS);
507 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
508 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
509 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
510 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
511 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
512 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
513 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
514 static int sysctl_fec(SYSCTL_HANDLER_ARGS);
515 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
516 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
517 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
518 #ifdef SBUF_DRAIN
519 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
520 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
521 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
522 static int sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS);
523 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
524 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
525 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
526 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
527 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
528 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
529 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
530 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
531 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
532 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
533 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
534 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
535 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
536 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
537 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
538 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
539 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
540 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
541 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
542 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
543 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
544 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
545 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
546 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
547 static int sysctl_tc_params(SYSCTL_HANDLER_ARGS);
548 #endif
549 #ifdef TCP_OFFLOAD
550 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
551 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
552 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
553 #endif
554 static uint32_t fconf_iconf_to_mode(uint32_t, uint32_t);
555 static uint32_t mode_to_fconf(uint32_t);
556 static uint32_t mode_to_iconf(uint32_t);
557 static int check_fspec_against_fconf_iconf(struct adapter *,
558     struct t4_filter_specification *);
559 static int get_filter_mode(struct adapter *, uint32_t *);
560 static int set_filter_mode(struct adapter *, uint32_t);
561 static inline uint64_t get_filter_hits(struct adapter *, uint32_t);
562 static int get_filter(struct adapter *, struct t4_filter *);
563 static int set_filter(struct adapter *, struct t4_filter *);
564 static int del_filter(struct adapter *, struct t4_filter *);
565 static void clear_filter(struct filter_entry *);
566 static int set_filter_wr(struct adapter *, int);
567 static int del_filter_wr(struct adapter *, int);
568 static int set_tcb_rpl(struct sge_iq *, const struct rss_header *,
569     struct mbuf *);
570 static int get_sge_context(struct adapter *, struct t4_sge_context *);
571 static int load_fw(struct adapter *, struct t4_data *);
572 static int load_cfg(struct adapter *, struct t4_data *);
573 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
574 static int read_i2c(struct adapter *, struct t4_i2c_data *);
575 #ifdef TCP_OFFLOAD
576 static int toe_capability(struct vi_info *, int);
577 #endif
578 static int mod_event(module_t, int, void *);
579 static int notify_siblings(device_t, int);
580
581 struct {
582         uint16_t device;
583         char *desc;
584 } t4_pciids[] = {
585         {0xa000, "Chelsio Terminator 4 FPGA"},
586         {0x4400, "Chelsio T440-dbg"},
587         {0x4401, "Chelsio T420-CR"},
588         {0x4402, "Chelsio T422-CR"},
589         {0x4403, "Chelsio T440-CR"},
590         {0x4404, "Chelsio T420-BCH"},
591         {0x4405, "Chelsio T440-BCH"},
592         {0x4406, "Chelsio T440-CH"},
593         {0x4407, "Chelsio T420-SO"},
594         {0x4408, "Chelsio T420-CX"},
595         {0x4409, "Chelsio T420-BT"},
596         {0x440a, "Chelsio T404-BT"},
597         {0x440e, "Chelsio T440-LP-CR"},
598 }, t5_pciids[] = {
599         {0xb000, "Chelsio Terminator 5 FPGA"},
600         {0x5400, "Chelsio T580-dbg"},
601         {0x5401,  "Chelsio T520-CR"},           /* 2 x 10G */
602         {0x5402,  "Chelsio T522-CR"},           /* 2 x 10G, 2 X 1G */
603         {0x5403,  "Chelsio T540-CR"},           /* 4 x 10G */
604         {0x5407,  "Chelsio T520-SO"},           /* 2 x 10G, nomem */
605         {0x5409,  "Chelsio T520-BT"},           /* 2 x 10GBaseT */
606         {0x540a,  "Chelsio T504-BT"},           /* 4 x 1G */
607         {0x540d,  "Chelsio T580-CR"},           /* 2 x 40G */
608         {0x540e,  "Chelsio T540-LP-CR"},        /* 4 x 10G */
609         {0x5410,  "Chelsio T580-LP-CR"},        /* 2 x 40G */
610         {0x5411,  "Chelsio T520-LL-CR"},        /* 2 x 10G */
611         {0x5412,  "Chelsio T560-CR"},           /* 1 x 40G, 2 x 10G */
612         {0x5414,  "Chelsio T580-LP-SO-CR"},     /* 2 x 40G, nomem */
613         {0x5415,  "Chelsio T502-BT"},           /* 2 x 1G */
614 #ifdef notyet
615         {0x5404,  "Chelsio T520-BCH"},
616         {0x5405,  "Chelsio T540-BCH"},
617         {0x5406,  "Chelsio T540-CH"},
618         {0x5408,  "Chelsio T520-CX"},
619         {0x540b,  "Chelsio B520-SR"},
620         {0x540c,  "Chelsio B504-BT"},
621         {0x540f,  "Chelsio Amsterdam"},
622         {0x5413,  "Chelsio T580-CHR"},
623 #endif
624 }, t6_pciids[] = {
625         {0xc006, "Chelsio Terminator 6 FPGA"},  /* T6 PE10K6 FPGA (PF0) */
626         {0x6400, "Chelsio T6-DBG-25"},          /* 2 x 10/25G, debug */
627         {0x6401, "Chelsio T6225-CR"},           /* 2 x 10/25G */
628         {0x6402, "Chelsio T6225-SO-CR"},        /* 2 x 10/25G, nomem */
629         {0x6403, "Chelsio T6425-CR"},           /* 4 x 10/25G */
630         {0x6404, "Chelsio T6425-SO-CR"},        /* 4 x 10/25G, nomem */
631         {0x6405, "Chelsio T6225-OCP-SO"},       /* 2 x 10/25G, nomem */
632         {0x6406, "Chelsio T62100-OCP-SO"},      /* 2 x 40/50/100G, nomem */
633         {0x6407, "Chelsio T62100-LP-CR"},       /* 2 x 40/50/100G */
634         {0x6408, "Chelsio T62100-SO-CR"},       /* 2 x 40/50/100G, nomem */
635         {0x6409, "Chelsio T6210-BT"},           /* 2 x 10GBASE-T */
636         {0x640d, "Chelsio T62100-CR"},          /* 2 x 40/50/100G */
637         {0x6410, "Chelsio T6-DBG-100"},         /* 2 x 40/50/100G, debug */
638         {0x6411, "Chelsio T6225-LL-CR"},        /* 2 x 10/25G */
639         {0x6414, "Chelsio T61100-OCP-SO"},      /* 1 x 40/50/100G, nomem */
640         {0x6415, "Chelsio T6201-BT"},           /* 2 x 1000BASE-T */
641
642         /* Custom */
643         {0x6480, "Chelsio T6225 80"},
644         {0x6481, "Chelsio T62100 81"},
645 };
646
647 #ifdef TCP_OFFLOAD
648 /*
649  * service_iq() has an iq and needs the fl.  Offset of fl from the iq should be
650  * exactly the same for both rxq and ofld_rxq.
651  */
652 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
653 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
654 #endif
655 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
656
657 static int
658 t4_probe(device_t dev)
659 {
660         int i;
661         uint16_t v = pci_get_vendor(dev);
662         uint16_t d = pci_get_device(dev);
663         uint8_t f = pci_get_function(dev);
664
665         if (v != PCI_VENDOR_ID_CHELSIO)
666                 return (ENXIO);
667
668         /* Attach only to PF0 of the FPGA */
669         if (d == 0xa000 && f != 0)
670                 return (ENXIO);
671
672         for (i = 0; i < nitems(t4_pciids); i++) {
673                 if (d == t4_pciids[i].device) {
674                         device_set_desc(dev, t4_pciids[i].desc);
675                         return (BUS_PROBE_DEFAULT);
676                 }
677         }
678
679         return (ENXIO);
680 }
681
682 static int
683 t5_probe(device_t dev)
684 {
685         int i;
686         uint16_t v = pci_get_vendor(dev);
687         uint16_t d = pci_get_device(dev);
688         uint8_t f = pci_get_function(dev);
689
690         if (v != PCI_VENDOR_ID_CHELSIO)
691                 return (ENXIO);
692
693         /* Attach only to PF0 of the FPGA */
694         if (d == 0xb000 && f != 0)
695                 return (ENXIO);
696
697         for (i = 0; i < nitems(t5_pciids); i++) {
698                 if (d == t5_pciids[i].device) {
699                         device_set_desc(dev, t5_pciids[i].desc);
700                         return (BUS_PROBE_DEFAULT);
701                 }
702         }
703
704         return (ENXIO);
705 }
706
707 static int
708 t6_probe(device_t dev)
709 {
710         int i;
711         uint16_t v = pci_get_vendor(dev);
712         uint16_t d = pci_get_device(dev);
713
714         if (v != PCI_VENDOR_ID_CHELSIO)
715                 return (ENXIO);
716
717         for (i = 0; i < nitems(t6_pciids); i++) {
718                 if (d == t6_pciids[i].device) {
719                         device_set_desc(dev, t6_pciids[i].desc);
720                         return (BUS_PROBE_DEFAULT);
721                 }
722         }
723
724         return (ENXIO);
725 }
726
727 static void
728 t5_attribute_workaround(device_t dev)
729 {
730         device_t root_port;
731         uint32_t v;
732
733         /*
734          * The T5 chips do not properly echo the No Snoop and Relaxed
735          * Ordering attributes when replying to a TLP from a Root
736          * Port.  As a workaround, find the parent Root Port and
737          * disable No Snoop and Relaxed Ordering.  Note that this
738          * affects all devices under this root port.
739          */
740         root_port = pci_find_pcie_root_port(dev);
741         if (root_port == NULL) {
742                 device_printf(dev, "Unable to find parent root port\n");
743                 return;
744         }
745
746         v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
747             PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
748         if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
749             0)
750                 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
751                     device_get_nameunit(root_port));
752 }
753
754 static const struct devnames devnames[] = {
755         {
756                 .nexus_name = "t4nex",
757                 .ifnet_name = "cxgbe",
758                 .vi_ifnet_name = "vcxgbe",
759                 .pf03_drv_name = "t4iov",
760                 .vf_nexus_name = "t4vf",
761                 .vf_ifnet_name = "cxgbev"
762         }, {
763                 .nexus_name = "t5nex",
764                 .ifnet_name = "cxl",
765                 .vi_ifnet_name = "vcxl",
766                 .pf03_drv_name = "t5iov",
767                 .vf_nexus_name = "t5vf",
768                 .vf_ifnet_name = "cxlv"
769         }, {
770                 .nexus_name = "t6nex",
771                 .ifnet_name = "cc",
772                 .vi_ifnet_name = "vcc",
773                 .pf03_drv_name = "t6iov",
774                 .vf_nexus_name = "t6vf",
775                 .vf_ifnet_name = "ccv"
776         }
777 };
778
779 void
780 t4_init_devnames(struct adapter *sc)
781 {
782         int id;
783
784         id = chip_id(sc);
785         if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
786                 sc->names = &devnames[id - CHELSIO_T4];
787         else {
788                 device_printf(sc->dev, "chip id %d is not supported.\n", id);
789                 sc->names = NULL;
790         }
791 }
792
793 static int
794 t4_attach(device_t dev)
795 {
796         struct adapter *sc;
797         int rc = 0, i, j, n10g, n1g, rqidx, tqidx;
798         struct make_dev_args mda;
799         struct intrs_and_queues iaq;
800         struct sge *s;
801         uint8_t *buf;
802 #ifdef TCP_OFFLOAD
803         int ofld_rqidx, ofld_tqidx;
804 #endif
805 #ifdef DEV_NETMAP
806         int nm_rqidx, nm_tqidx;
807 #endif
808         int num_vis;
809
810         sc = device_get_softc(dev);
811         sc->dev = dev;
812         TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
813
814         if ((pci_get_device(dev) & 0xff00) == 0x5400)
815                 t5_attribute_workaround(dev);
816         pci_enable_busmaster(dev);
817         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
818                 uint32_t v;
819
820                 pci_set_max_read_req(dev, 4096);
821                 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
822                 v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
823                 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
824
825                 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
826         }
827
828         sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
829         sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
830         sc->traceq = -1;
831         mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
832         snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
833             device_get_nameunit(dev));
834
835         snprintf(sc->lockname, sizeof(sc->lockname), "%s",
836             device_get_nameunit(dev));
837         mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
838         t4_add_adapter(sc);
839
840         mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
841         TAILQ_INIT(&sc->sfl);
842         callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
843
844         mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
845
846         rc = t4_map_bars_0_and_4(sc);
847         if (rc != 0)
848                 goto done; /* error message displayed already */
849
850         memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
851
852         /* Prepare the adapter for operation. */
853         buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
854         rc = -t4_prep_adapter(sc, buf);
855         free(buf, M_CXGBE);
856         if (rc != 0) {
857                 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
858                 goto done;
859         }
860
861         /*
862          * This is the real PF# to which we're attaching.  Works from within PCI
863          * passthrough environments too, where pci_get_function() could return a
864          * different PF# depending on the passthrough configuration.  We need to
865          * use the real PF# in all our communication with the firmware.
866          */
867         j = t4_read_reg(sc, A_PL_WHOAMI);
868         sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
869         sc->mbox = sc->pf;
870
871         t4_init_devnames(sc);
872         if (sc->names == NULL) {
873                 rc = ENOTSUP;
874                 goto done; /* error message displayed already */
875         }
876
877         /*
878          * Do this really early, with the memory windows set up even before the
879          * character device.  The userland tool's register i/o and mem read
880          * will work even in "recovery mode".
881          */
882         setup_memwin(sc);
883         if (t4_init_devlog_params(sc, 0) == 0)
884                 fixup_devlog_params(sc);
885         make_dev_args_init(&mda);
886         mda.mda_devsw = &t4_cdevsw;
887         mda.mda_uid = UID_ROOT;
888         mda.mda_gid = GID_WHEEL;
889         mda.mda_mode = 0600;
890         mda.mda_si_drv1 = sc;
891         rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
892         if (rc != 0)
893                 device_printf(dev, "failed to create nexus char device: %d.\n",
894                     rc);
895
896         /* Go no further if recovery mode has been requested. */
897         if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
898                 device_printf(dev, "recovery mode.\n");
899                 goto done;
900         }
901
902 #if defined(__i386__)
903         if ((cpu_feature & CPUID_CX8) == 0) {
904                 device_printf(dev, "64 bit atomics not available.\n");
905                 rc = ENOTSUP;
906                 goto done;
907         }
908 #endif
909
910         /* Prepare the firmware for operation */
911         rc = prep_firmware(sc);
912         if (rc != 0)
913                 goto done; /* error message displayed already */
914
915         rc = get_params__post_init(sc);
916         if (rc != 0)
917                 goto done; /* error message displayed already */
918
919         rc = set_params__post_init(sc);
920         if (rc != 0)
921                 goto done; /* error message displayed already */
922
923         rc = t4_map_bar_2(sc);
924         if (rc != 0)
925                 goto done; /* error message displayed already */
926
927         rc = t4_create_dma_tag(sc);
928         if (rc != 0)
929                 goto done; /* error message displayed already */
930
931         /*
932          * Number of VIs to create per-port.  The first VI is the "main" regular
933          * VI for the port.  The rest are additional virtual interfaces on the
934          * same physical port.  Note that the main VI does not have native
935          * netmap support but the extra VIs do.
936          *
937          * Limit the number of VIs per port to the number of available
938          * MAC addresses per port.
939          */
940         if (t4_num_vis >= 1)
941                 num_vis = t4_num_vis;
942         else
943                 num_vis = 1;
944         if (num_vis > nitems(vi_mac_funcs)) {
945                 num_vis = nitems(vi_mac_funcs);
946                 device_printf(dev, "Number of VIs limited to %d\n", num_vis);
947         }
948
949         /*
950          * First pass over all the ports - allocate VIs and initialize some
951          * basic parameters like mac address, port type, etc.  We also figure
952          * out whether a port is 10G or 1G and use that information when
953          * calculating how many interrupts to attempt to allocate.
954          */
955         n10g = n1g = 0;
956         for_each_port(sc, i) {
957                 struct port_info *pi;
958                 struct link_config *lc;
959
960                 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
961                 sc->port[i] = pi;
962
963                 /* These must be set before t4_port_init */
964                 pi->adapter = sc;
965                 pi->port_id = i;
966                 /*
967                  * XXX: vi[0] is special so we can't delay this allocation until
968                  * pi->nvi's final value is known.
969                  */
970                 pi->vi = malloc(sizeof(struct vi_info) * num_vis, M_CXGBE,
971                     M_ZERO | M_WAITOK);
972
973                 /*
974                  * Allocate the "main" VI and initialize parameters
975                  * like mac addr.
976                  */
977                 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
978                 if (rc != 0) {
979                         device_printf(dev, "unable to initialize port %d: %d\n",
980                             i, rc);
981                         free(pi->vi, M_CXGBE);
982                         free(pi, M_CXGBE);
983                         sc->port[i] = NULL;
984                         goto done;
985                 }
986
987                 lc = &pi->link_cfg;
988                 lc->requested_fc &= ~(PAUSE_TX | PAUSE_RX);
989                 lc->requested_fc |= t4_pause_settings;
990                 if (t4_fec != -1) {
991                         lc->requested_fec = t4_fec &
992                             G_FW_PORT_CAP_FEC(lc->supported);
993                 }
994                 if (lc->supported & FW_PORT_CAP_ANEG && t4_autoneg != -1) {
995                         lc->autoneg = t4_autoneg ? AUTONEG_ENABLE :
996                             AUTONEG_DISABLE;
997                 }
998                 lc->requested_speed = port_top_speed_raw(pi);
999
1000                 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
1001                 if (rc != 0) {
1002                         device_printf(dev, "port %d l1cfg failed: %d\n", i, rc);
1003                         free(pi->vi, M_CXGBE);
1004                         free(pi, M_CXGBE);
1005                         sc->port[i] = NULL;
1006                         goto done;
1007                 }
1008
1009                 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1010                     device_get_nameunit(dev), i);
1011                 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1012                 sc->chan_map[pi->tx_chan] = i;
1013
1014                 if (port_top_speed(pi) >= 10) {
1015                         n10g++;
1016                 } else {
1017                         n1g++;
1018                 }
1019
1020                 pi->dev = device_add_child(dev, sc->names->ifnet_name, -1);
1021                 if (pi->dev == NULL) {
1022                         device_printf(dev,
1023                             "failed to add device for port %d.\n", i);
1024                         rc = ENXIO;
1025                         goto done;
1026                 }
1027                 pi->vi[0].dev = pi->dev;
1028                 device_set_softc(pi->dev, pi);
1029         }
1030
1031         /*
1032          * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1033          */
1034         rc = cfg_itype_and_nqueues(sc, n10g, n1g, num_vis, &iaq);
1035         if (rc != 0)
1036                 goto done; /* error message displayed already */
1037         if (iaq.nrxq_vi + iaq.nofldrxq_vi + iaq.nnmrxq_vi == 0)
1038                 num_vis = 1;
1039
1040         sc->intr_type = iaq.intr_type;
1041         sc->intr_count = iaq.nirq;
1042
1043         s = &sc->sge;
1044         s->nrxq = n10g * iaq.nrxq10g + n1g * iaq.nrxq1g;
1045         s->ntxq = n10g * iaq.ntxq10g + n1g * iaq.ntxq1g;
1046         if (num_vis > 1) {
1047                 s->nrxq += (n10g + n1g) * (num_vis - 1) * iaq.nrxq_vi;
1048                 s->ntxq += (n10g + n1g) * (num_vis - 1) * iaq.ntxq_vi;
1049         }
1050         s->neq = s->ntxq + s->nrxq;     /* the free list in an rxq is an eq */
1051         s->neq += sc->params.nports + 1;/* ctrl queues: 1 per port + 1 mgmt */
1052         s->niq = s->nrxq + 1;           /* 1 extra for firmware event queue */
1053 #ifdef TCP_OFFLOAD
1054         if (is_offload(sc)) {
1055                 s->nofldrxq = n10g * iaq.nofldrxq10g + n1g * iaq.nofldrxq1g;
1056                 s->nofldtxq = n10g * iaq.nofldtxq10g + n1g * iaq.nofldtxq1g;
1057                 if (num_vis > 1) {
1058                         s->nofldrxq += (n10g + n1g) * (num_vis - 1) *
1059                             iaq.nofldrxq_vi;
1060                         s->nofldtxq += (n10g + n1g) * (num_vis - 1) *
1061                             iaq.nofldtxq_vi;
1062                 }
1063                 s->neq += s->nofldtxq + s->nofldrxq;
1064                 s->niq += s->nofldrxq;
1065
1066                 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1067                     M_CXGBE, M_ZERO | M_WAITOK);
1068                 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq),
1069                     M_CXGBE, M_ZERO | M_WAITOK);
1070         }
1071 #endif
1072 #ifdef DEV_NETMAP
1073         if (num_vis > 1) {
1074                 s->nnmrxq = (n10g + n1g) * (num_vis - 1) * iaq.nnmrxq_vi;
1075                 s->nnmtxq = (n10g + n1g) * (num_vis - 1) * iaq.nnmtxq_vi;
1076         }
1077         s->neq += s->nnmtxq + s->nnmrxq;
1078         s->niq += s->nnmrxq;
1079
1080         s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1081             M_CXGBE, M_ZERO | M_WAITOK);
1082         s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1083             M_CXGBE, M_ZERO | M_WAITOK);
1084 #endif
1085
1086         s->ctrlq = malloc(sc->params.nports * sizeof(struct sge_wrq), M_CXGBE,
1087             M_ZERO | M_WAITOK);
1088         s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1089             M_ZERO | M_WAITOK);
1090         s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1091             M_ZERO | M_WAITOK);
1092         s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
1093             M_ZERO | M_WAITOK);
1094         s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
1095             M_ZERO | M_WAITOK);
1096
1097         sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1098             M_ZERO | M_WAITOK);
1099
1100         t4_init_l2t(sc, M_WAITOK);
1101         t4_init_tx_sched(sc);
1102
1103         /*
1104          * Second pass over the ports.  This time we know the number of rx and
1105          * tx queues that each port should get.
1106          */
1107         rqidx = tqidx = 0;
1108 #ifdef TCP_OFFLOAD
1109         ofld_rqidx = ofld_tqidx = 0;
1110 #endif
1111 #ifdef DEV_NETMAP
1112         nm_rqidx = nm_tqidx = 0;
1113 #endif
1114         for_each_port(sc, i) {
1115                 struct port_info *pi = sc->port[i];
1116                 struct vi_info *vi;
1117
1118                 if (pi == NULL)
1119                         continue;
1120
1121                 pi->nvi = num_vis;
1122                 for_each_vi(pi, j, vi) {
1123                         vi->pi = pi;
1124                         vi->qsize_rxq = t4_qsize_rxq;
1125                         vi->qsize_txq = t4_qsize_txq;
1126
1127                         vi->first_rxq = rqidx;
1128                         vi->first_txq = tqidx;
1129                         if (port_top_speed(pi) >= 10) {
1130                                 vi->tmr_idx = t4_tmr_idx_10g;
1131                                 vi->pktc_idx = t4_pktc_idx_10g;
1132                                 vi->flags |= iaq.intr_flags_10g & INTR_RXQ;
1133                                 vi->nrxq = j == 0 ? iaq.nrxq10g : iaq.nrxq_vi;
1134                                 vi->ntxq = j == 0 ? iaq.ntxq10g : iaq.ntxq_vi;
1135                         } else {
1136                                 vi->tmr_idx = t4_tmr_idx_1g;
1137                                 vi->pktc_idx = t4_pktc_idx_1g;
1138                                 vi->flags |= iaq.intr_flags_1g & INTR_RXQ;
1139                                 vi->nrxq = j == 0 ? iaq.nrxq1g : iaq.nrxq_vi;
1140                                 vi->ntxq = j == 0 ? iaq.ntxq1g : iaq.ntxq_vi;
1141                         }
1142                         rqidx += vi->nrxq;
1143                         tqidx += vi->ntxq;
1144
1145                         if (j == 0 && vi->ntxq > 1)
1146                                 vi->rsrv_noflowq = iaq.rsrv_noflowq ? 1 : 0;
1147                         else
1148                                 vi->rsrv_noflowq = 0;
1149
1150 #ifdef TCP_OFFLOAD
1151                         vi->first_ofld_rxq = ofld_rqidx;
1152                         vi->first_ofld_txq = ofld_tqidx;
1153                         if (port_top_speed(pi) >= 10) {
1154                                 vi->flags |= iaq.intr_flags_10g & INTR_OFLD_RXQ;
1155                                 vi->nofldrxq = j == 0 ? iaq.nofldrxq10g :
1156                                     iaq.nofldrxq_vi;
1157                                 vi->nofldtxq = j == 0 ? iaq.nofldtxq10g :
1158                                     iaq.nofldtxq_vi;
1159                         } else {
1160                                 vi->flags |= iaq.intr_flags_1g & INTR_OFLD_RXQ;
1161                                 vi->nofldrxq = j == 0 ? iaq.nofldrxq1g :
1162                                     iaq.nofldrxq_vi;
1163                                 vi->nofldtxq = j == 0 ? iaq.nofldtxq1g :
1164                                     iaq.nofldtxq_vi;
1165                         }
1166                         ofld_rqidx += vi->nofldrxq;
1167                         ofld_tqidx += vi->nofldtxq;
1168 #endif
1169 #ifdef DEV_NETMAP
1170                         if (j > 0) {
1171                                 vi->first_nm_rxq = nm_rqidx;
1172                                 vi->first_nm_txq = nm_tqidx;
1173                                 vi->nnmrxq = iaq.nnmrxq_vi;
1174                                 vi->nnmtxq = iaq.nnmtxq_vi;
1175                                 nm_rqidx += vi->nnmrxq;
1176                                 nm_tqidx += vi->nnmtxq;
1177                         }
1178 #endif
1179                 }
1180         }
1181
1182         rc = t4_setup_intr_handlers(sc);
1183         if (rc != 0) {
1184                 device_printf(dev,
1185                     "failed to setup interrupt handlers: %d\n", rc);
1186                 goto done;
1187         }
1188
1189         rc = bus_generic_probe(dev);
1190         if (rc != 0) {
1191                 device_printf(dev, "failed to probe child drivers: %d\n", rc);
1192                 goto done;
1193         }
1194
1195         rc = bus_generic_attach(dev);
1196         if (rc != 0) {
1197                 device_printf(dev,
1198                     "failed to attach all child ports: %d\n", rc);
1199                 goto done;
1200         }
1201
1202         device_printf(dev,
1203             "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1204             sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1205             sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1206             (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1207             sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1208
1209         t4_set_desc(sc);
1210
1211         notify_siblings(dev, 0);
1212
1213 done:
1214         if (rc != 0 && sc->cdev) {
1215                 /* cdev was created and so cxgbetool works; recover that way. */
1216                 device_printf(dev,
1217                     "error during attach, adapter is now in recovery mode.\n");
1218                 rc = 0;
1219         }
1220
1221         if (rc != 0)
1222                 t4_detach_common(dev);
1223         else
1224                 t4_sysctls(sc);
1225
1226         return (rc);
1227 }
1228
1229 static int
1230 t4_ready(device_t dev)
1231 {
1232         struct adapter *sc;
1233
1234         sc = device_get_softc(dev);
1235         if (sc->flags & FW_OK)
1236                 return (0);
1237         return (ENXIO);
1238 }
1239
1240 static int
1241 t4_read_port_device(device_t dev, int port, device_t *child)
1242 {
1243         struct adapter *sc;
1244         struct port_info *pi;
1245
1246         sc = device_get_softc(dev);
1247         if (port < 0 || port >= MAX_NPORTS)
1248                 return (EINVAL);
1249         pi = sc->port[port];
1250         if (pi == NULL || pi->dev == NULL)
1251                 return (ENXIO);
1252         *child = pi->dev;
1253         return (0);
1254 }
1255
1256 static int
1257 notify_siblings(device_t dev, int detaching)
1258 {
1259         device_t sibling;
1260         int error, i;
1261
1262         error = 0;
1263         for (i = 0; i < PCI_FUNCMAX; i++) {
1264                 if (i == pci_get_function(dev))
1265                         continue;
1266                 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1267                     pci_get_slot(dev), i);
1268                 if (sibling == NULL || !device_is_attached(sibling))
1269                         continue;
1270                 if (detaching)
1271                         error = T4_DETACH_CHILD(sibling);
1272                 else
1273                         (void)T4_ATTACH_CHILD(sibling);
1274                 if (error)
1275                         break;
1276         }
1277         return (error);
1278 }
1279
1280 /*
1281  * Idempotent
1282  */
1283 static int
1284 t4_detach(device_t dev)
1285 {
1286         struct adapter *sc;
1287         int rc;
1288
1289         sc = device_get_softc(dev);
1290
1291         rc = notify_siblings(dev, 1);
1292         if (rc) {
1293                 device_printf(dev,
1294                     "failed to detach sibling devices: %d\n", rc);
1295                 return (rc);
1296         }
1297
1298         return (t4_detach_common(dev));
1299 }
1300
1301 int
1302 t4_detach_common(device_t dev)
1303 {
1304         struct adapter *sc;
1305         struct port_info *pi;
1306         int i, rc;
1307
1308         sc = device_get_softc(dev);
1309
1310         if (sc->flags & FULL_INIT_DONE) {
1311                 if (!(sc->flags & IS_VF))
1312                         t4_intr_disable(sc);
1313         }
1314
1315         if (sc->cdev) {
1316                 destroy_dev(sc->cdev);
1317                 sc->cdev = NULL;
1318         }
1319
1320         if (device_is_attached(dev)) {
1321                 rc = bus_generic_detach(dev);
1322                 if (rc) {
1323                         device_printf(dev,
1324                             "failed to detach child devices: %d\n", rc);
1325                         return (rc);
1326                 }
1327         }
1328
1329         for (i = 0; i < sc->intr_count; i++)
1330                 t4_free_irq(sc, &sc->irq[i]);
1331
1332         if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1333                 t4_free_tx_sched(sc);
1334
1335         for (i = 0; i < MAX_NPORTS; i++) {
1336                 pi = sc->port[i];
1337                 if (pi) {
1338                         t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1339                         if (pi->dev)
1340                                 device_delete_child(dev, pi->dev);
1341
1342                         mtx_destroy(&pi->pi_lock);
1343                         free(pi->vi, M_CXGBE);
1344                         free(pi, M_CXGBE);
1345                 }
1346         }
1347
1348         device_delete_children(dev);
1349
1350         if (sc->flags & FULL_INIT_DONE)
1351                 adapter_full_uninit(sc);
1352
1353         if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1354                 t4_fw_bye(sc, sc->mbox);
1355
1356         if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1357                 pci_release_msi(dev);
1358
1359         if (sc->regs_res)
1360                 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1361                     sc->regs_res);
1362
1363         if (sc->udbs_res)
1364                 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1365                     sc->udbs_res);
1366
1367         if (sc->msix_res)
1368                 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1369                     sc->msix_res);
1370
1371         if (sc->l2t)
1372                 t4_free_l2t(sc->l2t);
1373
1374 #ifdef TCP_OFFLOAD
1375         free(sc->sge.ofld_rxq, M_CXGBE);
1376         free(sc->sge.ofld_txq, M_CXGBE);
1377 #endif
1378 #ifdef DEV_NETMAP
1379         free(sc->sge.nm_rxq, M_CXGBE);
1380         free(sc->sge.nm_txq, M_CXGBE);
1381 #endif
1382         free(sc->irq, M_CXGBE);
1383         free(sc->sge.rxq, M_CXGBE);
1384         free(sc->sge.txq, M_CXGBE);
1385         free(sc->sge.ctrlq, M_CXGBE);
1386         free(sc->sge.iqmap, M_CXGBE);
1387         free(sc->sge.eqmap, M_CXGBE);
1388         free(sc->tids.ftid_tab, M_CXGBE);
1389         t4_destroy_dma_tag(sc);
1390         if (mtx_initialized(&sc->sc_lock)) {
1391                 sx_xlock(&t4_list_lock);
1392                 SLIST_REMOVE(&t4_list, sc, adapter, link);
1393                 sx_xunlock(&t4_list_lock);
1394                 mtx_destroy(&sc->sc_lock);
1395         }
1396
1397         callout_drain(&sc->sfl_callout);
1398         if (mtx_initialized(&sc->tids.ftid_lock))
1399                 mtx_destroy(&sc->tids.ftid_lock);
1400         if (mtx_initialized(&sc->sfl_lock))
1401                 mtx_destroy(&sc->sfl_lock);
1402         if (mtx_initialized(&sc->ifp_lock))
1403                 mtx_destroy(&sc->ifp_lock);
1404         if (mtx_initialized(&sc->reg_lock))
1405                 mtx_destroy(&sc->reg_lock);
1406
1407         for (i = 0; i < NUM_MEMWIN; i++) {
1408                 struct memwin *mw = &sc->memwin[i];
1409
1410                 if (rw_initialized(&mw->mw_lock))
1411                         rw_destroy(&mw->mw_lock);
1412         }
1413
1414         bzero(sc, sizeof(*sc));
1415
1416         return (0);
1417 }
1418
1419 static int
1420 cxgbe_probe(device_t dev)
1421 {
1422         char buf[128];
1423         struct port_info *pi = device_get_softc(dev);
1424
1425         snprintf(buf, sizeof(buf), "port %d", pi->port_id);
1426         device_set_desc_copy(dev, buf);
1427
1428         return (BUS_PROBE_DEFAULT);
1429 }
1430
1431 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
1432     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
1433     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS)
1434 #define T4_CAP_ENABLE (T4_CAP)
1435
1436 static int
1437 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
1438 {
1439         struct ifnet *ifp;
1440         struct sbuf *sb;
1441
1442         vi->xact_addr_filt = -1;
1443         callout_init(&vi->tick, 1);
1444
1445         /* Allocate an ifnet and set it up */
1446         ifp = if_alloc(IFT_ETHER);
1447         if (ifp == NULL) {
1448                 device_printf(dev, "Cannot allocate ifnet\n");
1449                 return (ENOMEM);
1450         }
1451         vi->ifp = ifp;
1452         ifp->if_softc = vi;
1453
1454         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1455         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1456
1457         ifp->if_init = cxgbe_init;
1458         ifp->if_ioctl = cxgbe_ioctl;
1459         ifp->if_transmit = cxgbe_transmit;
1460         ifp->if_qflush = cxgbe_qflush;
1461         ifp->if_get_counter = cxgbe_get_counter;
1462
1463         ifp->if_capabilities = T4_CAP;
1464 #ifdef TCP_OFFLOAD
1465         if (vi->nofldrxq != 0)
1466                 ifp->if_capabilities |= IFCAP_TOE;
1467 #endif
1468 #ifdef DEV_NETMAP
1469         if (vi->nnmrxq != 0)
1470                 ifp->if_capabilities |= IFCAP_NETMAP;
1471 #endif
1472         ifp->if_capenable = T4_CAP_ENABLE;
1473         ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
1474             CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
1475
1476         ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
1477         ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS;
1478         ifp->if_hw_tsomaxsegsize = 65536;
1479
1480         /* Initialize ifmedia for this VI */
1481         ifmedia_init(&vi->media, IFM_IMASK, cxgbe_media_change,
1482             cxgbe_media_status);
1483         build_medialist(vi->pi, &vi->media);
1484
1485         vi->vlan_c = EVENTHANDLER_REGISTER(vlan_config, cxgbe_vlan_config, ifp,
1486             EVENTHANDLER_PRI_ANY);
1487
1488         ether_ifattach(ifp, vi->hw_addr);
1489 #ifdef DEV_NETMAP
1490         if (ifp->if_capabilities & IFCAP_NETMAP)
1491                 cxgbe_nm_attach(vi);
1492 #endif
1493         sb = sbuf_new_auto();
1494         sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
1495 #ifdef TCP_OFFLOAD
1496         if (ifp->if_capabilities & IFCAP_TOE)
1497                 sbuf_printf(sb, "; %d txq, %d rxq (TOE)",
1498                     vi->nofldtxq, vi->nofldrxq);
1499 #endif
1500 #ifdef DEV_NETMAP
1501         if (ifp->if_capabilities & IFCAP_NETMAP)
1502                 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
1503                     vi->nnmtxq, vi->nnmrxq);
1504 #endif
1505         sbuf_finish(sb);
1506         device_printf(dev, "%s\n", sbuf_data(sb));
1507         sbuf_delete(sb);
1508
1509         vi_sysctls(vi);
1510
1511         return (0);
1512 }
1513
1514 static int
1515 cxgbe_attach(device_t dev)
1516 {
1517         struct port_info *pi = device_get_softc(dev);
1518         struct adapter *sc = pi->adapter;
1519         struct vi_info *vi;
1520         int i, rc;
1521
1522         callout_init_mtx(&pi->tick, &pi->pi_lock, 0);
1523
1524         rc = cxgbe_vi_attach(dev, &pi->vi[0]);
1525         if (rc)
1526                 return (rc);
1527
1528         for_each_vi(pi, i, vi) {
1529                 if (i == 0)
1530                         continue;
1531                 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
1532                 if (vi->dev == NULL) {
1533                         device_printf(dev, "failed to add VI %d\n", i);
1534                         continue;
1535                 }
1536                 device_set_softc(vi->dev, vi);
1537         }
1538
1539         cxgbe_sysctls(pi);
1540
1541         bus_generic_attach(dev);
1542
1543         return (0);
1544 }
1545
1546 static void
1547 cxgbe_vi_detach(struct vi_info *vi)
1548 {
1549         struct ifnet *ifp = vi->ifp;
1550
1551         ether_ifdetach(ifp);
1552
1553         if (vi->vlan_c)
1554                 EVENTHANDLER_DEREGISTER(vlan_config, vi->vlan_c);
1555
1556         /* Let detach proceed even if these fail. */
1557 #ifdef DEV_NETMAP
1558         if (ifp->if_capabilities & IFCAP_NETMAP)
1559                 cxgbe_nm_detach(vi);
1560 #endif
1561         cxgbe_uninit_synchronized(vi);
1562         callout_drain(&vi->tick);
1563         vi_full_uninit(vi);
1564
1565         ifmedia_removeall(&vi->media);
1566         if_free(vi->ifp);
1567         vi->ifp = NULL;
1568 }
1569
1570 static int
1571 cxgbe_detach(device_t dev)
1572 {
1573         struct port_info *pi = device_get_softc(dev);
1574         struct adapter *sc = pi->adapter;
1575         int rc;
1576
1577         /* Detach the extra VIs first. */
1578         rc = bus_generic_detach(dev);
1579         if (rc)
1580                 return (rc);
1581         device_delete_children(dev);
1582
1583         doom_vi(sc, &pi->vi[0]);
1584
1585         if (pi->flags & HAS_TRACEQ) {
1586                 sc->traceq = -1;        /* cloner should not create ifnet */
1587                 t4_tracer_port_detach(sc);
1588         }
1589
1590         cxgbe_vi_detach(&pi->vi[0]);
1591         callout_drain(&pi->tick);
1592
1593         end_synchronized_op(sc, 0);
1594
1595         return (0);
1596 }
1597
1598 static void
1599 cxgbe_init(void *arg)
1600 {
1601         struct vi_info *vi = arg;
1602         struct adapter *sc = vi->pi->adapter;
1603
1604         if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
1605                 return;
1606         cxgbe_init_synchronized(vi);
1607         end_synchronized_op(sc, 0);
1608 }
1609
1610 static int
1611 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
1612 {
1613         int rc = 0, mtu, flags, can_sleep;
1614         struct vi_info *vi = ifp->if_softc;
1615         struct adapter *sc = vi->pi->adapter;
1616         struct ifreq *ifr = (struct ifreq *)data;
1617         uint32_t mask;
1618
1619         switch (cmd) {
1620         case SIOCSIFMTU:
1621                 mtu = ifr->ifr_mtu;
1622                 if (mtu < ETHERMIN || mtu > MAX_MTU)
1623                         return (EINVAL);
1624
1625                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
1626                 if (rc)
1627                         return (rc);
1628                 ifp->if_mtu = mtu;
1629                 if (vi->flags & VI_INIT_DONE) {
1630                         t4_update_fl_bufsize(ifp);
1631                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1632                                 rc = update_mac_settings(ifp, XGMAC_MTU);
1633                 }
1634                 end_synchronized_op(sc, 0);
1635                 break;
1636
1637         case SIOCSIFFLAGS:
1638                 can_sleep = 0;
1639 redo_sifflags:
1640                 rc = begin_synchronized_op(sc, vi,
1641                     can_sleep ? (SLEEP_OK | INTR_OK) : HOLD_LOCK, "t4flg");
1642                 if (rc)
1643                         return (rc);
1644
1645                 if (ifp->if_flags & IFF_UP) {
1646                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1647                                 flags = vi->if_flags;
1648                                 if ((ifp->if_flags ^ flags) &
1649                                     (IFF_PROMISC | IFF_ALLMULTI)) {
1650                                         if (can_sleep == 1) {
1651                                                 end_synchronized_op(sc, 0);
1652                                                 can_sleep = 0;
1653                                                 goto redo_sifflags;
1654                                         }
1655                                         rc = update_mac_settings(ifp,
1656                                             XGMAC_PROMISC | XGMAC_ALLMULTI);
1657                                 }
1658                         } else {
1659                                 if (can_sleep == 0) {
1660                                         end_synchronized_op(sc, LOCK_HELD);
1661                                         can_sleep = 1;
1662                                         goto redo_sifflags;
1663                                 }
1664                                 rc = cxgbe_init_synchronized(vi);
1665                         }
1666                         vi->if_flags = ifp->if_flags;
1667                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1668                         if (can_sleep == 0) {
1669                                 end_synchronized_op(sc, LOCK_HELD);
1670                                 can_sleep = 1;
1671                                 goto redo_sifflags;
1672                         }
1673                         rc = cxgbe_uninit_synchronized(vi);
1674                 }
1675                 end_synchronized_op(sc, can_sleep ? 0 : LOCK_HELD);
1676                 break;
1677
1678         case SIOCADDMULTI:
1679         case SIOCDELMULTI: /* these two are called with a mutex held :-( */
1680                 rc = begin_synchronized_op(sc, vi, HOLD_LOCK, "t4multi");
1681                 if (rc)
1682                         return (rc);
1683                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1684                         rc = update_mac_settings(ifp, XGMAC_MCADDRS);
1685                 end_synchronized_op(sc, LOCK_HELD);
1686                 break;
1687
1688         case SIOCSIFCAP:
1689                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
1690                 if (rc)
1691                         return (rc);
1692
1693                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1694                 if (mask & IFCAP_TXCSUM) {
1695                         ifp->if_capenable ^= IFCAP_TXCSUM;
1696                         ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
1697
1698                         if (IFCAP_TSO4 & ifp->if_capenable &&
1699                             !(IFCAP_TXCSUM & ifp->if_capenable)) {
1700                                 ifp->if_capenable &= ~IFCAP_TSO4;
1701                                 if_printf(ifp,
1702                                     "tso4 disabled due to -txcsum.\n");
1703                         }
1704                 }
1705                 if (mask & IFCAP_TXCSUM_IPV6) {
1706                         ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
1707                         ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
1708
1709                         if (IFCAP_TSO6 & ifp->if_capenable &&
1710                             !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1711                                 ifp->if_capenable &= ~IFCAP_TSO6;
1712                                 if_printf(ifp,
1713                                     "tso6 disabled due to -txcsum6.\n");
1714                         }
1715                 }
1716                 if (mask & IFCAP_RXCSUM)
1717                         ifp->if_capenable ^= IFCAP_RXCSUM;
1718                 if (mask & IFCAP_RXCSUM_IPV6)
1719                         ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
1720
1721                 /*
1722                  * Note that we leave CSUM_TSO alone (it is always set).  The
1723                  * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
1724                  * sending a TSO request our way, so it's sufficient to toggle
1725                  * IFCAP_TSOx only.
1726                  */
1727                 if (mask & IFCAP_TSO4) {
1728                         if (!(IFCAP_TSO4 & ifp->if_capenable) &&
1729                             !(IFCAP_TXCSUM & ifp->if_capenable)) {
1730                                 if_printf(ifp, "enable txcsum first.\n");
1731                                 rc = EAGAIN;
1732                                 goto fail;
1733                         }
1734                         ifp->if_capenable ^= IFCAP_TSO4;
1735                 }
1736                 if (mask & IFCAP_TSO6) {
1737                         if (!(IFCAP_TSO6 & ifp->if_capenable) &&
1738                             !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1739                                 if_printf(ifp, "enable txcsum6 first.\n");
1740                                 rc = EAGAIN;
1741                                 goto fail;
1742                         }
1743                         ifp->if_capenable ^= IFCAP_TSO6;
1744                 }
1745                 if (mask & IFCAP_LRO) {
1746 #if defined(INET) || defined(INET6)
1747                         int i;
1748                         struct sge_rxq *rxq;
1749
1750                         ifp->if_capenable ^= IFCAP_LRO;
1751                         for_each_rxq(vi, i, rxq) {
1752                                 if (ifp->if_capenable & IFCAP_LRO)
1753                                         rxq->iq.flags |= IQ_LRO_ENABLED;
1754                                 else
1755                                         rxq->iq.flags &= ~IQ_LRO_ENABLED;
1756                         }
1757 #endif
1758                 }
1759 #ifdef TCP_OFFLOAD
1760                 if (mask & IFCAP_TOE) {
1761                         int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
1762
1763                         rc = toe_capability(vi, enable);
1764                         if (rc != 0)
1765                                 goto fail;
1766
1767                         ifp->if_capenable ^= mask;
1768                 }
1769 #endif
1770                 if (mask & IFCAP_VLAN_HWTAGGING) {
1771                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1772                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1773                                 rc = update_mac_settings(ifp, XGMAC_VLANEX);
1774                 }
1775                 if (mask & IFCAP_VLAN_MTU) {
1776                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
1777
1778                         /* Need to find out how to disable auto-mtu-inflation */
1779                 }
1780                 if (mask & IFCAP_VLAN_HWTSO)
1781                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1782                 if (mask & IFCAP_VLAN_HWCSUM)
1783                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1784
1785 #ifdef VLAN_CAPABILITIES
1786                 VLAN_CAPABILITIES(ifp);
1787 #endif
1788 fail:
1789                 end_synchronized_op(sc, 0);
1790                 break;
1791
1792         case SIOCSIFMEDIA:
1793         case SIOCGIFMEDIA:
1794         case SIOCGIFXMEDIA:
1795                 ifmedia_ioctl(ifp, ifr, &vi->media, cmd);
1796                 break;
1797
1798         case SIOCGI2C: {
1799                 struct ifi2creq i2c;
1800
1801                 rc = copyin(ifr->ifr_data, &i2c, sizeof(i2c));
1802                 if (rc != 0)
1803                         break;
1804                 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
1805                         rc = EPERM;
1806                         break;
1807                 }
1808                 if (i2c.len > sizeof(i2c.data)) {
1809                         rc = EINVAL;
1810                         break;
1811                 }
1812                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
1813                 if (rc)
1814                         return (rc);
1815                 rc = -t4_i2c_rd(sc, sc->mbox, vi->pi->port_id, i2c.dev_addr,
1816                     i2c.offset, i2c.len, &i2c.data[0]);
1817                 end_synchronized_op(sc, 0);
1818                 if (rc == 0)
1819                         rc = copyout(&i2c, ifr->ifr_data, sizeof(i2c));
1820                 break;
1821         }
1822
1823         default:
1824                 rc = ether_ioctl(ifp, cmd, data);
1825         }
1826
1827         return (rc);
1828 }
1829
1830 static int
1831 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
1832 {
1833         struct vi_info *vi = ifp->if_softc;
1834         struct port_info *pi = vi->pi;
1835         struct adapter *sc = pi->adapter;
1836         struct sge_txq *txq;
1837         void *items[1];
1838         int rc;
1839
1840         M_ASSERTPKTHDR(m);
1841         MPASS(m->m_nextpkt == NULL);    /* not quite ready for this yet */
1842
1843         if (__predict_false(pi->link_cfg.link_ok == 0)) {
1844                 m_freem(m);
1845                 return (ENETDOWN);
1846         }
1847
1848         rc = parse_pkt(sc, &m);
1849         if (__predict_false(rc != 0)) {
1850                 MPASS(m == NULL);                       /* was freed already */
1851                 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
1852                 return (rc);
1853         }
1854
1855         /* Select a txq. */
1856         txq = &sc->sge.txq[vi->first_txq];
1857         if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
1858                 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
1859                     vi->rsrv_noflowq);
1860
1861         items[0] = m;
1862         rc = mp_ring_enqueue(txq->r, items, 1, 4096);
1863         if (__predict_false(rc != 0))
1864                 m_freem(m);
1865
1866         return (rc);
1867 }
1868
1869 static void
1870 cxgbe_qflush(struct ifnet *ifp)
1871 {
1872         struct vi_info *vi = ifp->if_softc;
1873         struct sge_txq *txq;
1874         int i;
1875
1876         /* queues do not exist if !VI_INIT_DONE. */
1877         if (vi->flags & VI_INIT_DONE) {
1878                 for_each_txq(vi, i, txq) {
1879                         TXQ_LOCK(txq);
1880                         txq->eq.flags |= EQ_QFLUSH;
1881                         TXQ_UNLOCK(txq);
1882                         while (!mp_ring_is_idle(txq->r)) {
1883                                 mp_ring_check_drainage(txq->r, 0);
1884                                 pause("qflush", 1);
1885                         }
1886                         TXQ_LOCK(txq);
1887                         txq->eq.flags &= ~EQ_QFLUSH;
1888                         TXQ_UNLOCK(txq);
1889                 }
1890         }
1891         if_qflush(ifp);
1892 }
1893
1894 static uint64_t
1895 vi_get_counter(struct ifnet *ifp, ift_counter c)
1896 {
1897         struct vi_info *vi = ifp->if_softc;
1898         struct fw_vi_stats_vf *s = &vi->stats;
1899
1900         vi_refresh_stats(vi->pi->adapter, vi);
1901
1902         switch (c) {
1903         case IFCOUNTER_IPACKETS:
1904                 return (s->rx_bcast_frames + s->rx_mcast_frames +
1905                     s->rx_ucast_frames);
1906         case IFCOUNTER_IERRORS:
1907                 return (s->rx_err_frames);
1908         case IFCOUNTER_OPACKETS:
1909                 return (s->tx_bcast_frames + s->tx_mcast_frames +
1910                     s->tx_ucast_frames + s->tx_offload_frames);
1911         case IFCOUNTER_OERRORS:
1912                 return (s->tx_drop_frames);
1913         case IFCOUNTER_IBYTES:
1914                 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
1915                     s->rx_ucast_bytes);
1916         case IFCOUNTER_OBYTES:
1917                 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
1918                     s->tx_ucast_bytes + s->tx_offload_bytes);
1919         case IFCOUNTER_IMCASTS:
1920                 return (s->rx_mcast_frames);
1921         case IFCOUNTER_OMCASTS:
1922                 return (s->tx_mcast_frames);
1923         case IFCOUNTER_OQDROPS: {
1924                 uint64_t drops;
1925
1926                 drops = 0;
1927                 if (vi->flags & VI_INIT_DONE) {
1928                         int i;
1929                         struct sge_txq *txq;
1930
1931                         for_each_txq(vi, i, txq)
1932                                 drops += counter_u64_fetch(txq->r->drops);
1933                 }
1934
1935                 return (drops);
1936
1937         }
1938
1939         default:
1940                 return (if_get_counter_default(ifp, c));
1941         }
1942 }
1943
1944 uint64_t
1945 cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
1946 {
1947         struct vi_info *vi = ifp->if_softc;
1948         struct port_info *pi = vi->pi;
1949         struct adapter *sc = pi->adapter;
1950         struct port_stats *s = &pi->stats;
1951
1952         if (pi->nvi > 1 || sc->flags & IS_VF)
1953                 return (vi_get_counter(ifp, c));
1954
1955         cxgbe_refresh_stats(sc, pi);
1956
1957         switch (c) {
1958         case IFCOUNTER_IPACKETS:
1959                 return (s->rx_frames);
1960
1961         case IFCOUNTER_IERRORS:
1962                 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
1963                     s->rx_fcs_err + s->rx_len_err);
1964
1965         case IFCOUNTER_OPACKETS:
1966                 return (s->tx_frames);
1967
1968         case IFCOUNTER_OERRORS:
1969                 return (s->tx_error_frames);
1970
1971         case IFCOUNTER_IBYTES:
1972                 return (s->rx_octets);
1973
1974         case IFCOUNTER_OBYTES:
1975                 return (s->tx_octets);
1976
1977         case IFCOUNTER_IMCASTS:
1978                 return (s->rx_mcast_frames);
1979
1980         case IFCOUNTER_OMCASTS:
1981                 return (s->tx_mcast_frames);
1982
1983         case IFCOUNTER_IQDROPS:
1984                 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
1985                     s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
1986                     s->rx_trunc3 + pi->tnl_cong_drops);
1987
1988         case IFCOUNTER_OQDROPS: {
1989                 uint64_t drops;
1990
1991                 drops = s->tx_drop;
1992                 if (vi->flags & VI_INIT_DONE) {
1993                         int i;
1994                         struct sge_txq *txq;
1995
1996                         for_each_txq(vi, i, txq)
1997                                 drops += counter_u64_fetch(txq->r->drops);
1998                 }
1999
2000                 return (drops);
2001
2002         }
2003
2004         default:
2005                 return (if_get_counter_default(ifp, c));
2006         }
2007 }
2008
2009 static int
2010 cxgbe_media_change(struct ifnet *ifp)
2011 {
2012         struct vi_info *vi = ifp->if_softc;
2013
2014         device_printf(vi->dev, "%s unimplemented.\n", __func__);
2015
2016         return (EOPNOTSUPP);
2017 }
2018
2019 static void
2020 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2021 {
2022         struct vi_info *vi = ifp->if_softc;
2023         struct port_info *pi = vi->pi;
2024         struct ifmedia_entry *cur;
2025         int speed = pi->link_cfg.speed;
2026
2027         cur = vi->media.ifm_cur;
2028
2029         ifmr->ifm_status = IFM_AVALID;
2030         if (!pi->link_cfg.link_ok)
2031                 return;
2032
2033         ifmr->ifm_status |= IFM_ACTIVE;
2034
2035         /* active and current will differ iff current media is autoselect. */
2036         if (IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO)
2037                 return;
2038
2039         ifmr->ifm_active = IFM_ETHER | IFM_FDX;
2040         if (speed == 10000)
2041                 ifmr->ifm_active |= IFM_10G_T;
2042         else if (speed == 1000)
2043                 ifmr->ifm_active |= IFM_1000_T;
2044         else if (speed == 100)
2045                 ifmr->ifm_active |= IFM_100_TX;
2046         else if (speed == 10)
2047                 ifmr->ifm_active |= IFM_10_T;
2048         else
2049                 KASSERT(0, ("%s: link up but speed unknown (%u)", __func__,
2050                             speed));
2051 }
2052
2053 static int
2054 vcxgbe_probe(device_t dev)
2055 {
2056         char buf[128];
2057         struct vi_info *vi = device_get_softc(dev);
2058
2059         snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
2060             vi - vi->pi->vi);
2061         device_set_desc_copy(dev, buf);
2062
2063         return (BUS_PROBE_DEFAULT);
2064 }
2065
2066 static int
2067 vcxgbe_attach(device_t dev)
2068 {
2069         struct vi_info *vi;
2070         struct port_info *pi;
2071         struct adapter *sc;
2072         int func, index, rc;
2073         u32 param, val;
2074
2075         vi = device_get_softc(dev);
2076         pi = vi->pi;
2077         sc = pi->adapter;
2078
2079         index = vi - pi->vi;
2080         KASSERT(index < nitems(vi_mac_funcs),
2081             ("%s: VI %s doesn't have a MAC func", __func__,
2082             device_get_nameunit(dev)));
2083         func = vi_mac_funcs[index];
2084         rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
2085             vi->hw_addr, &vi->rss_size, func, 0);
2086         if (rc < 0) {
2087                 device_printf(dev, "Failed to allocate virtual interface "
2088                     "for port %d: %d\n", pi->port_id, -rc);
2089                 return (-rc);
2090         }
2091         vi->viid = rc;
2092         if (chip_id(sc) <= CHELSIO_T5)
2093                 vi->smt_idx = (rc & 0x7f) << 1;
2094         else
2095                 vi->smt_idx = (rc & 0x7f);
2096
2097         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2098             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
2099             V_FW_PARAMS_PARAM_YZ(vi->viid);
2100         rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2101         if (rc)
2102                 vi->rss_base = 0xffff;
2103         else {
2104                 /* MPASS((val >> 16) == rss_size); */
2105                 vi->rss_base = val & 0xffff;
2106         }
2107
2108         rc = cxgbe_vi_attach(dev, vi);
2109         if (rc) {
2110                 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2111                 return (rc);
2112         }
2113         return (0);
2114 }
2115
2116 static int
2117 vcxgbe_detach(device_t dev)
2118 {
2119         struct vi_info *vi;
2120         struct adapter *sc;
2121
2122         vi = device_get_softc(dev);
2123         sc = vi->pi->adapter;
2124
2125         doom_vi(sc, vi);
2126
2127         cxgbe_vi_detach(vi);
2128         t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2129
2130         end_synchronized_op(sc, 0);
2131
2132         return (0);
2133 }
2134
2135 void
2136 t4_fatal_err(struct adapter *sc)
2137 {
2138         t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0);
2139         t4_intr_disable(sc);
2140         log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n",
2141             device_get_nameunit(sc->dev));
2142 }
2143
2144 void
2145 t4_add_adapter(struct adapter *sc)
2146 {
2147         sx_xlock(&t4_list_lock);
2148         SLIST_INSERT_HEAD(&t4_list, sc, link);
2149         sx_xunlock(&t4_list_lock);
2150 }
2151
2152 int
2153 t4_map_bars_0_and_4(struct adapter *sc)
2154 {
2155         sc->regs_rid = PCIR_BAR(0);
2156         sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2157             &sc->regs_rid, RF_ACTIVE);
2158         if (sc->regs_res == NULL) {
2159                 device_printf(sc->dev, "cannot map registers.\n");
2160                 return (ENXIO);
2161         }
2162         sc->bt = rman_get_bustag(sc->regs_res);
2163         sc->bh = rman_get_bushandle(sc->regs_res);
2164         sc->mmio_len = rman_get_size(sc->regs_res);
2165         setbit(&sc->doorbells, DOORBELL_KDB);
2166
2167         sc->msix_rid = PCIR_BAR(4);
2168         sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2169             &sc->msix_rid, RF_ACTIVE);
2170         if (sc->msix_res == NULL) {
2171                 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
2172                 return (ENXIO);
2173         }
2174
2175         return (0);
2176 }
2177
2178 int
2179 t4_map_bar_2(struct adapter *sc)
2180 {
2181
2182         /*
2183          * T4: only iWARP driver uses the userspace doorbells.  There is no need
2184          * to map it if RDMA is disabled.
2185          */
2186         if (is_t4(sc) && sc->rdmacaps == 0)
2187                 return (0);
2188
2189         sc->udbs_rid = PCIR_BAR(2);
2190         sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2191             &sc->udbs_rid, RF_ACTIVE);
2192         if (sc->udbs_res == NULL) {
2193                 device_printf(sc->dev, "cannot map doorbell BAR.\n");
2194                 return (ENXIO);
2195         }
2196         sc->udbs_base = rman_get_virtual(sc->udbs_res);
2197
2198         if (chip_id(sc) >= CHELSIO_T5) {
2199                 setbit(&sc->doorbells, DOORBELL_UDB);
2200 #if defined(__i386__) || defined(__amd64__)
2201                 if (t5_write_combine) {
2202                         int rc, mode;
2203
2204                         /*
2205                          * Enable write combining on BAR2.  This is the
2206                          * userspace doorbell BAR and is split into 128B
2207                          * (UDBS_SEG_SIZE) doorbell regions, each associated
2208                          * with an egress queue.  The first 64B has the doorbell
2209                          * and the second 64B can be used to submit a tx work
2210                          * request with an implicit doorbell.
2211                          */
2212
2213                         rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
2214                             rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
2215                         if (rc == 0) {
2216                                 clrbit(&sc->doorbells, DOORBELL_UDB);
2217                                 setbit(&sc->doorbells, DOORBELL_WCWR);
2218                                 setbit(&sc->doorbells, DOORBELL_UDBWC);
2219                         } else {
2220                                 device_printf(sc->dev,
2221                                     "couldn't enable write combining: %d\n",
2222                                     rc);
2223                         }
2224
2225                         mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
2226                         t4_write_reg(sc, A_SGE_STAT_CFG,
2227                             V_STATSOURCE_T5(7) | mode);
2228                 }
2229 #endif
2230         }
2231
2232         return (0);
2233 }
2234
2235 struct memwin_init {
2236         uint32_t base;
2237         uint32_t aperture;
2238 };
2239
2240 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
2241         { MEMWIN0_BASE, MEMWIN0_APERTURE },
2242         { MEMWIN1_BASE, MEMWIN1_APERTURE },
2243         { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
2244 };
2245
2246 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
2247         { MEMWIN0_BASE, MEMWIN0_APERTURE },
2248         { MEMWIN1_BASE, MEMWIN1_APERTURE },
2249         { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
2250 };
2251
2252 static void
2253 setup_memwin(struct adapter *sc)
2254 {
2255         const struct memwin_init *mw_init;
2256         struct memwin *mw;
2257         int i;
2258         uint32_t bar0;
2259
2260         if (is_t4(sc)) {
2261                 /*
2262                  * Read low 32b of bar0 indirectly via the hardware backdoor
2263                  * mechanism.  Works from within PCI passthrough environments
2264                  * too, where rman_get_start() can return a different value.  We
2265                  * need to program the T4 memory window decoders with the actual
2266                  * addresses that will be coming across the PCIe link.
2267                  */
2268                 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
2269                 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
2270
2271                 mw_init = &t4_memwin[0];
2272         } else {
2273                 /* T5+ use the relative offset inside the PCIe BAR */
2274                 bar0 = 0;
2275
2276                 mw_init = &t5_memwin[0];
2277         }
2278
2279         for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
2280                 rw_init(&mw->mw_lock, "memory window access");
2281                 mw->mw_base = mw_init->base;
2282                 mw->mw_aperture = mw_init->aperture;
2283                 mw->mw_curpos = 0;
2284                 t4_write_reg(sc,
2285                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
2286                     (mw->mw_base + bar0) | V_BIR(0) |
2287                     V_WINDOW(ilog2(mw->mw_aperture) - 10));
2288                 rw_wlock(&mw->mw_lock);
2289                 position_memwin(sc, i, 0);
2290                 rw_wunlock(&mw->mw_lock);
2291         }
2292
2293         /* flush */
2294         t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
2295 }
2296
2297 /*
2298  * Positions the memory window at the given address in the card's address space.
2299  * There are some alignment requirements and the actual position may be at an
2300  * address prior to the requested address.  mw->mw_curpos always has the actual
2301  * position of the window.
2302  */
2303 static void
2304 position_memwin(struct adapter *sc, int idx, uint32_t addr)
2305 {
2306         struct memwin *mw;
2307         uint32_t pf;
2308         uint32_t reg;
2309
2310         MPASS(idx >= 0 && idx < NUM_MEMWIN);
2311         mw = &sc->memwin[idx];
2312         rw_assert(&mw->mw_lock, RA_WLOCKED);
2313
2314         if (is_t4(sc)) {
2315                 pf = 0;
2316                 mw->mw_curpos = addr & ~0xf;    /* start must be 16B aligned */
2317         } else {
2318                 pf = V_PFNUM(sc->pf);
2319                 mw->mw_curpos = addr & ~0x7f;   /* start must be 128B aligned */
2320         }
2321         reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
2322         t4_write_reg(sc, reg, mw->mw_curpos | pf);
2323         t4_read_reg(sc, reg);   /* flush */
2324 }
2325
2326 static int
2327 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2328     int len, int rw)
2329 {
2330         struct memwin *mw;
2331         uint32_t mw_end, v;
2332
2333         MPASS(idx >= 0 && idx < NUM_MEMWIN);
2334
2335         /* Memory can only be accessed in naturally aligned 4 byte units */
2336         if (addr & 3 || len & 3 || len <= 0)
2337                 return (EINVAL);
2338
2339         mw = &sc->memwin[idx];
2340         while (len > 0) {
2341                 rw_rlock(&mw->mw_lock);
2342                 mw_end = mw->mw_curpos + mw->mw_aperture;
2343                 if (addr >= mw_end || addr < mw->mw_curpos) {
2344                         /* Will need to reposition the window */
2345                         if (!rw_try_upgrade(&mw->mw_lock)) {
2346                                 rw_runlock(&mw->mw_lock);
2347                                 rw_wlock(&mw->mw_lock);
2348                         }
2349                         rw_assert(&mw->mw_lock, RA_WLOCKED);
2350                         position_memwin(sc, idx, addr);
2351                         rw_downgrade(&mw->mw_lock);
2352                         mw_end = mw->mw_curpos + mw->mw_aperture;
2353                 }
2354                 rw_assert(&mw->mw_lock, RA_RLOCKED);
2355                 while (addr < mw_end && len > 0) {
2356                         if (rw == 0) {
2357                                 v = t4_read_reg(sc, mw->mw_base + addr -
2358                                     mw->mw_curpos);
2359                                 *val++ = le32toh(v);
2360                         } else {
2361                                 v = *val++;
2362                                 t4_write_reg(sc, mw->mw_base + addr -
2363                                     mw->mw_curpos, htole32(v));
2364                         }
2365                         addr += 4;
2366                         len -= 4;
2367                 }
2368                 rw_runlock(&mw->mw_lock);
2369         }
2370
2371         return (0);
2372 }
2373
2374 static inline int
2375 read_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2376     int len)
2377 {
2378
2379         return (rw_via_memwin(sc, idx, addr, val, len, 0));
2380 }
2381
2382 static inline int
2383 write_via_memwin(struct adapter *sc, int idx, uint32_t addr,
2384     const uint32_t *val, int len)
2385 {
2386
2387         return (rw_via_memwin(sc, idx, addr, (void *)(uintptr_t)val, len, 1));
2388 }
2389
2390 static int
2391 t4_range_cmp(const void *a, const void *b)
2392 {
2393         return ((const struct t4_range *)a)->start -
2394                ((const struct t4_range *)b)->start;
2395 }
2396
2397 /*
2398  * Verify that the memory range specified by the addr/len pair is valid within
2399  * the card's address space.
2400  */
2401 static int
2402 validate_mem_range(struct adapter *sc, uint32_t addr, int len)
2403 {
2404         struct t4_range mem_ranges[4], *r, *next;
2405         uint32_t em, addr_len;
2406         int i, n, remaining;
2407
2408         /* Memory can only be accessed in naturally aligned 4 byte units */
2409         if (addr & 3 || len & 3 || len <= 0)
2410                 return (EINVAL);
2411
2412         /* Enabled memories */
2413         em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2414
2415         r = &mem_ranges[0];
2416         n = 0;
2417         bzero(r, sizeof(mem_ranges));
2418         if (em & F_EDRAM0_ENABLE) {
2419                 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2420                 r->size = G_EDRAM0_SIZE(addr_len) << 20;
2421                 if (r->size > 0) {
2422                         r->start = G_EDRAM0_BASE(addr_len) << 20;
2423                         if (addr >= r->start &&
2424                             addr + len <= r->start + r->size)
2425                                 return (0);
2426                         r++;
2427                         n++;
2428                 }
2429         }
2430         if (em & F_EDRAM1_ENABLE) {
2431                 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2432                 r->size = G_EDRAM1_SIZE(addr_len) << 20;
2433                 if (r->size > 0) {
2434                         r->start = G_EDRAM1_BASE(addr_len) << 20;
2435                         if (addr >= r->start &&
2436                             addr + len <= r->start + r->size)
2437                                 return (0);
2438                         r++;
2439                         n++;
2440                 }
2441         }
2442         if (em & F_EXT_MEM_ENABLE) {
2443                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2444                 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
2445                 if (r->size > 0) {
2446                         r->start = G_EXT_MEM_BASE(addr_len) << 20;
2447                         if (addr >= r->start &&
2448                             addr + len <= r->start + r->size)
2449                                 return (0);
2450                         r++;
2451                         n++;
2452                 }
2453         }
2454         if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
2455                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2456                 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
2457                 if (r->size > 0) {
2458                         r->start = G_EXT_MEM1_BASE(addr_len) << 20;
2459                         if (addr >= r->start &&
2460                             addr + len <= r->start + r->size)
2461                                 return (0);
2462                         r++;
2463                         n++;
2464                 }
2465         }
2466         MPASS(n <= nitems(mem_ranges));
2467
2468         if (n > 1) {
2469                 /* Sort and merge the ranges. */
2470                 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
2471
2472                 /* Start from index 0 and examine the next n - 1 entries. */
2473                 r = &mem_ranges[0];
2474                 for (remaining = n - 1; remaining > 0; remaining--, r++) {
2475
2476                         MPASS(r->size > 0);     /* r is a valid entry. */
2477                         next = r + 1;
2478                         MPASS(next->size > 0);  /* and so is the next one. */
2479
2480                         while (r->start + r->size >= next->start) {
2481                                 /* Merge the next one into the current entry. */
2482                                 r->size = max(r->start + r->size,
2483                                     next->start + next->size) - r->start;
2484                                 n--;    /* One fewer entry in total. */
2485                                 if (--remaining == 0)
2486                                         goto done;      /* short circuit */
2487                                 next++;
2488                         }
2489                         if (next != r + 1) {
2490                                 /*
2491                                  * Some entries were merged into r and next
2492                                  * points to the first valid entry that couldn't
2493                                  * be merged.
2494                                  */
2495                                 MPASS(next->size > 0);  /* must be valid */
2496                                 memcpy(r + 1, next, remaining * sizeof(*r));
2497 #ifdef INVARIANTS
2498                                 /*
2499                                  * This so that the foo->size assertion in the
2500                                  * next iteration of the loop do the right
2501                                  * thing for entries that were pulled up and are
2502                                  * no longer valid.
2503                                  */
2504                                 MPASS(n < nitems(mem_ranges));
2505                                 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
2506                                     sizeof(struct t4_range));
2507 #endif
2508                         }
2509                 }
2510 done:
2511                 /* Done merging the ranges. */
2512                 MPASS(n > 0);
2513                 r = &mem_ranges[0];
2514                 for (i = 0; i < n; i++, r++) {
2515                         if (addr >= r->start &&
2516                             addr + len <= r->start + r->size)
2517                                 return (0);
2518                 }
2519         }
2520
2521         return (EFAULT);
2522 }
2523
2524 static int
2525 fwmtype_to_hwmtype(int mtype)
2526 {
2527
2528         switch (mtype) {
2529         case FW_MEMTYPE_EDC0:
2530                 return (MEM_EDC0);
2531         case FW_MEMTYPE_EDC1:
2532                 return (MEM_EDC1);
2533         case FW_MEMTYPE_EXTMEM:
2534                 return (MEM_MC0);
2535         case FW_MEMTYPE_EXTMEM1:
2536                 return (MEM_MC1);
2537         default:
2538                 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
2539         }
2540 }
2541
2542 /*
2543  * Verify that the memory range specified by the memtype/offset/len pair is
2544  * valid and lies entirely within the memtype specified.  The global address of
2545  * the start of the range is returned in addr.
2546  */
2547 static int
2548 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, int len,
2549     uint32_t *addr)
2550 {
2551         uint32_t em, addr_len, maddr;
2552
2553         /* Memory can only be accessed in naturally aligned 4 byte units */
2554         if (off & 3 || len & 3 || len == 0)
2555                 return (EINVAL);
2556
2557         em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2558         switch (fwmtype_to_hwmtype(mtype)) {
2559         case MEM_EDC0:
2560                 if (!(em & F_EDRAM0_ENABLE))
2561                         return (EINVAL);
2562                 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2563                 maddr = G_EDRAM0_BASE(addr_len) << 20;
2564                 break;
2565         case MEM_EDC1:
2566                 if (!(em & F_EDRAM1_ENABLE))
2567                         return (EINVAL);
2568                 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2569                 maddr = G_EDRAM1_BASE(addr_len) << 20;
2570                 break;
2571         case MEM_MC:
2572                 if (!(em & F_EXT_MEM_ENABLE))
2573                         return (EINVAL);
2574                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2575                 maddr = G_EXT_MEM_BASE(addr_len) << 20;
2576                 break;
2577         case MEM_MC1:
2578                 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
2579                         return (EINVAL);
2580                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2581                 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
2582                 break;
2583         default:
2584                 return (EINVAL);
2585         }
2586
2587         *addr = maddr + off;    /* global address */
2588         return (validate_mem_range(sc, *addr, len));
2589 }
2590
2591 static int
2592 fixup_devlog_params(struct adapter *sc)
2593 {
2594         struct devlog_params *dparams = &sc->params.devlog;
2595         int rc;
2596
2597         rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
2598             dparams->size, &dparams->addr);
2599
2600         return (rc);
2601 }
2602
2603 static int
2604 cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g, int num_vis,
2605     struct intrs_and_queues *iaq)
2606 {
2607         int rc, itype, navail, nrxq10g, nrxq1g, n;
2608         int nofldrxq10g = 0, nofldrxq1g = 0;
2609
2610         bzero(iaq, sizeof(*iaq));
2611
2612         iaq->ntxq10g = t4_ntxq10g;
2613         iaq->ntxq1g = t4_ntxq1g;
2614         iaq->ntxq_vi = t4_ntxq_vi;
2615         iaq->nrxq10g = nrxq10g = t4_nrxq10g;
2616         iaq->nrxq1g = nrxq1g = t4_nrxq1g;
2617         iaq->nrxq_vi = t4_nrxq_vi;
2618         iaq->rsrv_noflowq = t4_rsrv_noflowq;
2619 #ifdef TCP_OFFLOAD
2620         if (is_offload(sc)) {
2621                 iaq->nofldtxq10g = t4_nofldtxq10g;
2622                 iaq->nofldtxq1g = t4_nofldtxq1g;
2623                 iaq->nofldtxq_vi = t4_nofldtxq_vi;
2624                 iaq->nofldrxq10g = nofldrxq10g = t4_nofldrxq10g;
2625                 iaq->nofldrxq1g = nofldrxq1g = t4_nofldrxq1g;
2626                 iaq->nofldrxq_vi = t4_nofldrxq_vi;
2627         }
2628 #endif
2629 #ifdef DEV_NETMAP
2630         iaq->nnmtxq_vi = t4_nnmtxq_vi;
2631         iaq->nnmrxq_vi = t4_nnmrxq_vi;
2632 #endif
2633
2634         for (itype = INTR_MSIX; itype; itype >>= 1) {
2635
2636                 if ((itype & t4_intr_types) == 0)
2637                         continue;       /* not allowed */
2638
2639                 if (itype == INTR_MSIX)
2640                         navail = pci_msix_count(sc->dev);
2641                 else if (itype == INTR_MSI)
2642                         navail = pci_msi_count(sc->dev);
2643                 else
2644                         navail = 1;
2645 restart:
2646                 if (navail == 0)
2647                         continue;
2648
2649                 iaq->intr_type = itype;
2650                 iaq->intr_flags_10g = 0;
2651                 iaq->intr_flags_1g = 0;
2652
2653                 /*
2654                  * Best option: an interrupt vector for errors, one for the
2655                  * firmware event queue, and one for every rxq (NIC and TOE) of
2656                  * every VI.  The VIs that support netmap use the same
2657                  * interrupts for the NIC rx queues and the netmap rx queues
2658                  * because only one set of queues is active at a time.
2659                  */
2660                 iaq->nirq = T4_EXTRA_INTR;
2661                 iaq->nirq += n10g * (nrxq10g + nofldrxq10g);
2662                 iaq->nirq += n1g * (nrxq1g + nofldrxq1g);
2663                 iaq->nirq += (n10g + n1g) * (num_vis - 1) *
2664                     max(iaq->nrxq_vi, iaq->nnmrxq_vi);  /* See comment above. */
2665                 iaq->nirq += (n10g + n1g) * (num_vis - 1) * iaq->nofldrxq_vi;
2666                 if (iaq->nirq <= navail &&
2667                     (itype != INTR_MSI || powerof2(iaq->nirq))) {
2668                         iaq->intr_flags_10g = INTR_ALL;
2669                         iaq->intr_flags_1g = INTR_ALL;
2670                         goto allocate;
2671                 }
2672
2673                 /* Disable the VIs (and netmap) if there aren't enough intrs */
2674                 if (num_vis > 1) {
2675                         device_printf(sc->dev, "virtual interfaces disabled "
2676                             "because num_vis=%u with current settings "
2677                             "(nrxq10g=%u, nrxq1g=%u, nofldrxq10g=%u, "
2678                             "nofldrxq1g=%u, nrxq_vi=%u nofldrxq_vi=%u, "
2679                             "nnmrxq_vi=%u) would need %u interrupts but "
2680                             "only %u are available.\n", num_vis, nrxq10g,
2681                             nrxq1g, nofldrxq10g, nofldrxq1g, iaq->nrxq_vi,
2682                             iaq->nofldrxq_vi, iaq->nnmrxq_vi, iaq->nirq,
2683                             navail);
2684                         num_vis = 1;
2685                         iaq->ntxq_vi = iaq->nrxq_vi = 0;
2686                         iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
2687                         iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
2688                         goto restart;
2689                 }
2690
2691                 /*
2692                  * Second best option: a vector for errors, one for the firmware
2693                  * event queue, and vectors for either all the NIC rx queues or
2694                  * all the TOE rx queues.  The queues that don't get vectors
2695                  * will forward their interrupts to those that do.
2696                  */
2697                 iaq->nirq = T4_EXTRA_INTR;
2698                 if (nrxq10g >= nofldrxq10g) {
2699                         iaq->intr_flags_10g = INTR_RXQ;
2700                         iaq->nirq += n10g * nrxq10g;
2701                 } else {
2702                         iaq->intr_flags_10g = INTR_OFLD_RXQ;
2703                         iaq->nirq += n10g * nofldrxq10g;
2704                 }
2705                 if (nrxq1g >= nofldrxq1g) {
2706                         iaq->intr_flags_1g = INTR_RXQ;
2707                         iaq->nirq += n1g * nrxq1g;
2708                 } else {
2709                         iaq->intr_flags_1g = INTR_OFLD_RXQ;
2710                         iaq->nirq += n1g * nofldrxq1g;
2711                 }
2712                 if (iaq->nirq <= navail &&
2713                     (itype != INTR_MSI || powerof2(iaq->nirq)))
2714                         goto allocate;
2715
2716                 /*
2717                  * Next best option: an interrupt vector for errors, one for the
2718                  * firmware event queue, and at least one per main-VI.  At this
2719                  * point we know we'll have to downsize nrxq and/or nofldrxq to
2720                  * fit what's available to us.
2721                  */
2722                 iaq->nirq = T4_EXTRA_INTR;
2723                 iaq->nirq += n10g + n1g;
2724                 if (iaq->nirq <= navail) {
2725                         int leftover = navail - iaq->nirq;
2726
2727                         if (n10g > 0) {
2728                                 int target = max(nrxq10g, nofldrxq10g);
2729
2730                                 iaq->intr_flags_10g = nrxq10g >= nofldrxq10g ?
2731                                     INTR_RXQ : INTR_OFLD_RXQ;
2732
2733                                 n = 1;
2734                                 while (n < target && leftover >= n10g) {
2735                                         leftover -= n10g;
2736                                         iaq->nirq += n10g;
2737                                         n++;
2738                                 }
2739                                 iaq->nrxq10g = min(n, nrxq10g);
2740 #ifdef TCP_OFFLOAD
2741                                 iaq->nofldrxq10g = min(n, nofldrxq10g);
2742 #endif
2743                         }
2744
2745                         if (n1g > 0) {
2746                                 int target = max(nrxq1g, nofldrxq1g);
2747
2748                                 iaq->intr_flags_1g = nrxq1g >= nofldrxq1g ?
2749                                     INTR_RXQ : INTR_OFLD_RXQ;
2750
2751                                 n = 1;
2752                                 while (n < target && leftover >= n1g) {
2753                                         leftover -= n1g;
2754                                         iaq->nirq += n1g;
2755                                         n++;
2756                                 }
2757                                 iaq->nrxq1g = min(n, nrxq1g);
2758 #ifdef TCP_OFFLOAD
2759                                 iaq->nofldrxq1g = min(n, nofldrxq1g);
2760 #endif
2761                         }
2762
2763                         if (itype != INTR_MSI || powerof2(iaq->nirq))
2764                                 goto allocate;
2765                 }
2766
2767                 /*
2768                  * Least desirable option: one interrupt vector for everything.
2769                  */
2770                 iaq->nirq = iaq->nrxq10g = iaq->nrxq1g = 1;
2771                 iaq->intr_flags_10g = iaq->intr_flags_1g = 0;
2772 #ifdef TCP_OFFLOAD
2773                 if (is_offload(sc))
2774                         iaq->nofldrxq10g = iaq->nofldrxq1g = 1;
2775 #endif
2776 allocate:
2777                 navail = iaq->nirq;
2778                 rc = 0;
2779                 if (itype == INTR_MSIX)
2780                         rc = pci_alloc_msix(sc->dev, &navail);
2781                 else if (itype == INTR_MSI)
2782                         rc = pci_alloc_msi(sc->dev, &navail);
2783
2784                 if (rc == 0) {
2785                         if (navail == iaq->nirq)
2786                                 return (0);
2787
2788                         /*
2789                          * Didn't get the number requested.  Use whatever number
2790                          * the kernel is willing to allocate (it's in navail).
2791                          */
2792                         device_printf(sc->dev, "fewer vectors than requested, "
2793                             "type=%d, req=%d, rcvd=%d; will downshift req.\n",
2794                             itype, iaq->nirq, navail);
2795                         pci_release_msi(sc->dev);
2796                         goto restart;
2797                 }
2798
2799                 device_printf(sc->dev,
2800                     "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
2801                     itype, rc, iaq->nirq, navail);
2802         }
2803
2804         device_printf(sc->dev,
2805             "failed to find a usable interrupt type.  "
2806             "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
2807             pci_msix_count(sc->dev), pci_msi_count(sc->dev));
2808
2809         return (ENXIO);
2810 }
2811
2812 #define FW_VERSION(chip) ( \
2813     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
2814     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
2815     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
2816     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
2817 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
2818
2819 struct fw_info {
2820         uint8_t chip;
2821         char *kld_name;
2822         char *fw_mod_name;
2823         struct fw_hdr fw_hdr;   /* XXX: waste of space, need a sparse struct */
2824 } fw_info[] = {
2825         {
2826                 .chip = CHELSIO_T4,
2827                 .kld_name = "t4fw_cfg",
2828                 .fw_mod_name = "t4fw",
2829                 .fw_hdr = {
2830                         .chip = FW_HDR_CHIP_T4,
2831                         .fw_ver = htobe32_const(FW_VERSION(T4)),
2832                         .intfver_nic = FW_INTFVER(T4, NIC),
2833                         .intfver_vnic = FW_INTFVER(T4, VNIC),
2834                         .intfver_ofld = FW_INTFVER(T4, OFLD),
2835                         .intfver_ri = FW_INTFVER(T4, RI),
2836                         .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
2837                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
2838                         .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
2839                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
2840                 },
2841         }, {
2842                 .chip = CHELSIO_T5,
2843                 .kld_name = "t5fw_cfg",
2844                 .fw_mod_name = "t5fw",
2845                 .fw_hdr = {
2846                         .chip = FW_HDR_CHIP_T5,
2847                         .fw_ver = htobe32_const(FW_VERSION(T5)),
2848                         .intfver_nic = FW_INTFVER(T5, NIC),
2849                         .intfver_vnic = FW_INTFVER(T5, VNIC),
2850                         .intfver_ofld = FW_INTFVER(T5, OFLD),
2851                         .intfver_ri = FW_INTFVER(T5, RI),
2852                         .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
2853                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
2854                         .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
2855                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
2856                 },
2857         }, {
2858                 .chip = CHELSIO_T6,
2859                 .kld_name = "t6fw_cfg",
2860                 .fw_mod_name = "t6fw",
2861                 .fw_hdr = {
2862                         .chip = FW_HDR_CHIP_T6,
2863                         .fw_ver = htobe32_const(FW_VERSION(T6)),
2864                         .intfver_nic = FW_INTFVER(T6, NIC),
2865                         .intfver_vnic = FW_INTFVER(T6, VNIC),
2866                         .intfver_ofld = FW_INTFVER(T6, OFLD),
2867                         .intfver_ri = FW_INTFVER(T6, RI),
2868                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
2869                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
2870                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
2871                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
2872                 },
2873         }
2874 };
2875
2876 static struct fw_info *
2877 find_fw_info(int chip)
2878 {
2879         int i;
2880
2881         for (i = 0; i < nitems(fw_info); i++) {
2882                 if (fw_info[i].chip == chip)
2883                         return (&fw_info[i]);
2884         }
2885         return (NULL);
2886 }
2887
2888 /*
2889  * Is the given firmware API compatible with the one the driver was compiled
2890  * with?
2891  */
2892 static int
2893 fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2894 {
2895
2896         /* short circuit if it's the exact same firmware version */
2897         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2898                 return (1);
2899
2900         /*
2901          * XXX: Is this too conservative?  Perhaps I should limit this to the
2902          * features that are supported in the driver.
2903          */
2904 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2905         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2906             SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
2907             SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
2908                 return (1);
2909 #undef SAME_INTF
2910
2911         return (0);
2912 }
2913
2914 /*
2915  * The firmware in the KLD is usable, but should it be installed?  This routine
2916  * explains itself in detail if it indicates the KLD firmware should be
2917  * installed.
2918  */
2919 static int
2920 should_install_kld_fw(struct adapter *sc, int card_fw_usable, int k, int c)
2921 {
2922         const char *reason;
2923
2924         if (!card_fw_usable) {
2925                 reason = "incompatible or unusable";
2926                 goto install;
2927         }
2928
2929         if (k > c) {
2930                 reason = "older than the version bundled with this driver";
2931                 goto install;
2932         }
2933
2934         if (t4_fw_install == 2 && k != c) {
2935                 reason = "different than the version bundled with this driver";
2936                 goto install;
2937         }
2938
2939         return (0);
2940
2941 install:
2942         if (t4_fw_install == 0) {
2943                 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
2944                     "but the driver is prohibited from installing a different "
2945                     "firmware on the card.\n",
2946                     G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
2947                     G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
2948
2949                 return (0);
2950         }
2951
2952         device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
2953             "installing firmware %u.%u.%u.%u on card.\n",
2954             G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
2955             G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
2956             G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
2957             G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
2958
2959         return (1);
2960 }
2961 /*
2962  * Establish contact with the firmware and determine if we are the master driver
2963  * or not, and whether we are responsible for chip initialization.
2964  */
2965 static int
2966 prep_firmware(struct adapter *sc)
2967 {
2968         const struct firmware *fw = NULL, *default_cfg;
2969         int rc, pf, card_fw_usable, kld_fw_usable, need_fw_reset = 1;
2970         enum dev_state state;
2971         struct fw_info *fw_info;
2972         struct fw_hdr *card_fw;         /* fw on the card */
2973         const struct fw_hdr *kld_fw;    /* fw in the KLD */
2974         const struct fw_hdr *drv_fw;    /* fw header the driver was compiled
2975                                            against */
2976
2977         /* Contact firmware. */
2978         rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
2979         if (rc < 0 || state == DEV_STATE_ERR) {
2980                 rc = -rc;
2981                 device_printf(sc->dev,
2982                     "failed to connect to the firmware: %d, %d.\n", rc, state);
2983                 return (rc);
2984         }
2985         pf = rc;
2986         if (pf == sc->mbox)
2987                 sc->flags |= MASTER_PF;
2988         else if (state == DEV_STATE_UNINIT) {
2989                 /*
2990                  * We didn't get to be the master so we definitely won't be
2991                  * configuring the chip.  It's a bug if someone else hasn't
2992                  * configured it already.
2993                  */
2994                 device_printf(sc->dev, "couldn't be master(%d), "
2995                     "device not already initialized either(%d).\n", rc, state);
2996                 return (EDOOFUS);
2997         }
2998
2999         /* This is the firmware whose headers the driver was compiled against */
3000         fw_info = find_fw_info(chip_id(sc));
3001         if (fw_info == NULL) {
3002                 device_printf(sc->dev,
3003                     "unable to look up firmware information for chip %d.\n",
3004                     chip_id(sc));
3005                 return (EINVAL);
3006         }
3007         drv_fw = &fw_info->fw_hdr;
3008
3009         /*
3010          * The firmware KLD contains many modules.  The KLD name is also the
3011          * name of the module that contains the default config file.
3012          */
3013         default_cfg = firmware_get(fw_info->kld_name);
3014
3015         /* Read the header of the firmware on the card */
3016         card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
3017         rc = -t4_read_flash(sc, FLASH_FW_START,
3018             sizeof (*card_fw) / sizeof (uint32_t), (uint32_t *)card_fw, 1);
3019         if (rc == 0)
3020                 card_fw_usable = fw_compatible(drv_fw, (const void*)card_fw);
3021         else {
3022                 device_printf(sc->dev,
3023                     "Unable to read card's firmware header: %d\n", rc);
3024                 card_fw_usable = 0;
3025         }
3026
3027         /* This is the firmware in the KLD */
3028         fw = firmware_get(fw_info->fw_mod_name);
3029         if (fw != NULL) {
3030                 kld_fw = (const void *)fw->data;
3031                 kld_fw_usable = fw_compatible(drv_fw, kld_fw);
3032         } else {
3033                 kld_fw = NULL;
3034                 kld_fw_usable = 0;
3035         }
3036
3037         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3038             (!kld_fw_usable || kld_fw->fw_ver == drv_fw->fw_ver)) {
3039                 /*
3040                  * Common case: the firmware on the card is an exact match and
3041                  * the KLD is an exact match too, or the KLD is
3042                  * absent/incompatible.  Note that t4_fw_install = 2 is ignored
3043                  * here -- use cxgbetool loadfw if you want to reinstall the
3044                  * same firmware as the one on the card.
3045                  */
3046         } else if (kld_fw_usable && state == DEV_STATE_UNINIT &&
3047             should_install_kld_fw(sc, card_fw_usable, be32toh(kld_fw->fw_ver),
3048             be32toh(card_fw->fw_ver))) {
3049
3050                 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
3051                 if (rc != 0) {
3052                         device_printf(sc->dev,
3053                             "failed to install firmware: %d\n", rc);
3054                         goto done;
3055                 }
3056
3057                 /* Installed successfully, update the cached header too. */
3058                 memcpy(card_fw, kld_fw, sizeof(*card_fw));
3059                 card_fw_usable = 1;
3060                 need_fw_reset = 0;      /* already reset as part of load_fw */
3061         }
3062
3063         if (!card_fw_usable) {
3064                 uint32_t d, c, k;
3065
3066                 d = ntohl(drv_fw->fw_ver);
3067                 c = ntohl(card_fw->fw_ver);
3068                 k = kld_fw ? ntohl(kld_fw->fw_ver) : 0;
3069
3070                 device_printf(sc->dev, "Cannot find a usable firmware: "
3071                     "fw_install %d, chip state %d, "
3072                     "driver compiled with %d.%d.%d.%d, "
3073                     "card has %d.%d.%d.%d, KLD has %d.%d.%d.%d\n",
3074                     t4_fw_install, state,
3075                     G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3076                     G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d),
3077                     G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3078                     G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c),
3079                     G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3080                     G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
3081                 rc = EINVAL;
3082                 goto done;
3083         }
3084
3085         /* Reset device */
3086         if (need_fw_reset &&
3087             (rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST)) != 0) {
3088                 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
3089                 if (rc != ETIMEDOUT && rc != EIO)
3090                         t4_fw_bye(sc, sc->mbox);
3091                 goto done;
3092         }
3093         sc->flags |= FW_OK;
3094
3095         rc = get_params__pre_init(sc);
3096         if (rc != 0)
3097                 goto done; /* error message displayed already */
3098
3099         /* Partition adapter resources as specified in the config file. */
3100         if (state == DEV_STATE_UNINIT) {
3101
3102                 KASSERT(sc->flags & MASTER_PF,
3103                     ("%s: trying to change chip settings when not master.",
3104                     __func__));
3105
3106                 rc = partition_resources(sc, default_cfg, fw_info->kld_name);
3107                 if (rc != 0)
3108                         goto done;      /* error message displayed already */
3109
3110                 t4_tweak_chip_settings(sc);
3111
3112                 /* get basic stuff going */
3113                 rc = -t4_fw_initialize(sc, sc->mbox);
3114                 if (rc != 0) {
3115                         device_printf(sc->dev, "fw init failed: %d.\n", rc);
3116                         goto done;
3117                 }
3118         } else {
3119                 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", pf);
3120                 sc->cfcsum = 0;
3121         }
3122
3123 done:
3124         free(card_fw, M_CXGBE);
3125         if (fw != NULL)
3126                 firmware_put(fw, FIRMWARE_UNLOAD);
3127         if (default_cfg != NULL)
3128                 firmware_put(default_cfg, FIRMWARE_UNLOAD);
3129
3130         return (rc);
3131 }
3132
3133 #define FW_PARAM_DEV(param) \
3134         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
3135          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
3136 #define FW_PARAM_PFVF(param) \
3137         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3138          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
3139
3140 /*
3141  * Partition chip resources for use between various PFs, VFs, etc.
3142  */
3143 static int
3144 partition_resources(struct adapter *sc, const struct firmware *default_cfg,
3145     const char *name_prefix)
3146 {
3147         const struct firmware *cfg = NULL;
3148         int rc = 0;
3149         struct fw_caps_config_cmd caps;
3150         uint32_t mtype, moff, finicsum, cfcsum;
3151
3152         /*
3153          * Figure out what configuration file to use.  Pick the default config
3154          * file for the card if the user hasn't specified one explicitly.
3155          */
3156         snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", t4_cfg_file);
3157         if (strncmp(t4_cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3158                 /* Card specific overrides go here. */
3159                 if (pci_get_device(sc->dev) == 0x440a)
3160                         snprintf(sc->cfg_file, sizeof(sc->cfg_file), UWIRE_CF);
3161                 if (is_fpga(sc))
3162                         snprintf(sc->cfg_file, sizeof(sc->cfg_file), FPGA_CF);
3163         }
3164
3165         /*
3166          * We need to load another module if the profile is anything except
3167          * "default" or "flash".
3168          */
3169         if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) != 0 &&
3170             strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
3171                 char s[32];
3172
3173                 snprintf(s, sizeof(s), "%s_%s", name_prefix, sc->cfg_file);
3174                 cfg = firmware_get(s);
3175                 if (cfg == NULL) {
3176                         if (default_cfg != NULL) {
3177                                 device_printf(sc->dev,
3178                                     "unable to load module \"%s\" for "
3179                                     "configuration profile \"%s\", will use "
3180                                     "the default config file instead.\n",
3181                                     s, sc->cfg_file);
3182                                 snprintf(sc->cfg_file, sizeof(sc->cfg_file),
3183                                     "%s", DEFAULT_CF);
3184                         } else {
3185                                 device_printf(sc->dev,
3186                                     "unable to load module \"%s\" for "
3187                                     "configuration profile \"%s\", will use "
3188                                     "the config file on the card's flash "
3189                                     "instead.\n", s, sc->cfg_file);
3190                                 snprintf(sc->cfg_file, sizeof(sc->cfg_file),
3191                                     "%s", FLASH_CF);
3192                         }
3193                 }
3194         }
3195
3196         if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) == 0 &&
3197             default_cfg == NULL) {
3198                 device_printf(sc->dev,
3199                     "default config file not available, will use the config "
3200                     "file on the card's flash instead.\n");
3201                 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", FLASH_CF);
3202         }
3203
3204         if (strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
3205                 u_int cflen;
3206                 const uint32_t *cfdata;
3207                 uint32_t param, val, addr;
3208
3209                 KASSERT(cfg != NULL || default_cfg != NULL,
3210                     ("%s: no config to upload", __func__));
3211
3212                 /*
3213                  * Ask the firmware where it wants us to upload the config file.
3214                  */
3215                 param = FW_PARAM_DEV(CF);
3216                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3217                 if (rc != 0) {
3218                         /* No support for config file?  Shouldn't happen. */
3219                         device_printf(sc->dev,
3220                             "failed to query config file location: %d.\n", rc);
3221                         goto done;
3222                 }
3223                 mtype = G_FW_PARAMS_PARAM_Y(val);
3224                 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
3225
3226                 /*
3227                  * XXX: sheer laziness.  We deliberately added 4 bytes of
3228                  * useless stuffing/comments at the end of the config file so
3229                  * it's ok to simply throw away the last remaining bytes when
3230                  * the config file is not an exact multiple of 4.  This also
3231                  * helps with the validate_mt_off_len check.
3232                  */
3233                 if (cfg != NULL) {
3234                         cflen = cfg->datasize & ~3;
3235                         cfdata = cfg->data;
3236                 } else {
3237                         cflen = default_cfg->datasize & ~3;
3238                         cfdata = default_cfg->data;
3239                 }
3240
3241                 if (cflen > FLASH_CFG_MAX_SIZE) {
3242                         device_printf(sc->dev,
3243                             "config file too long (%d, max allowed is %d).  "
3244                             "Will try to use the config on the card, if any.\n",
3245                             cflen, FLASH_CFG_MAX_SIZE);
3246                         goto use_config_on_flash;
3247                 }
3248
3249                 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
3250                 if (rc != 0) {
3251                         device_printf(sc->dev,
3252                             "%s: addr (%d/0x%x) or len %d is not valid: %d.  "
3253                             "Will try to use the config on the card, if any.\n",
3254                             __func__, mtype, moff, cflen, rc);
3255                         goto use_config_on_flash;
3256                 }
3257                 write_via_memwin(sc, 2, addr, cfdata, cflen);
3258         } else {
3259 use_config_on_flash:
3260                 mtype = FW_MEMTYPE_FLASH;
3261                 moff = t4_flash_cfg_addr(sc);
3262         }
3263
3264         bzero(&caps, sizeof(caps));
3265         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3266             F_FW_CMD_REQUEST | F_FW_CMD_READ);
3267         caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
3268             V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
3269             V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps));
3270         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3271         if (rc != 0) {
3272                 device_printf(sc->dev,
3273                     "failed to pre-process config file: %d "
3274                     "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
3275                 goto done;
3276         }
3277
3278         finicsum = be32toh(caps.finicsum);
3279         cfcsum = be32toh(caps.cfcsum);
3280         if (finicsum != cfcsum) {
3281                 device_printf(sc->dev,
3282                     "WARNING: config file checksum mismatch: %08x %08x\n",
3283                     finicsum, cfcsum);
3284         }
3285         sc->cfcsum = cfcsum;
3286
3287 #define LIMIT_CAPS(x) do { \
3288         caps.x &= htobe16(t4_##x##_allowed); \
3289 } while (0)
3290
3291         /*
3292          * Let the firmware know what features will (not) be used so it can tune
3293          * things accordingly.
3294          */
3295         LIMIT_CAPS(nbmcaps);
3296         LIMIT_CAPS(linkcaps);
3297         LIMIT_CAPS(switchcaps);
3298         LIMIT_CAPS(niccaps);
3299         LIMIT_CAPS(toecaps);
3300         LIMIT_CAPS(rdmacaps);
3301         LIMIT_CAPS(cryptocaps);
3302         LIMIT_CAPS(iscsicaps);
3303         LIMIT_CAPS(fcoecaps);
3304 #undef LIMIT_CAPS
3305
3306         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3307             F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
3308         caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3309         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
3310         if (rc != 0) {
3311                 device_printf(sc->dev,
3312                     "failed to process config file: %d.\n", rc);
3313         }
3314 done:
3315         if (cfg != NULL)
3316                 firmware_put(cfg, FIRMWARE_UNLOAD);
3317         return (rc);
3318 }
3319
3320 /*
3321  * Retrieve parameters that are needed (or nice to have) very early.
3322  */
3323 static int
3324 get_params__pre_init(struct adapter *sc)
3325 {
3326         int rc;
3327         uint32_t param[2], val[2];
3328
3329         t4_get_version_info(sc);
3330
3331         snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
3332             G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
3333             G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
3334             G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
3335             G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
3336
3337         snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
3338             G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
3339             G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
3340             G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
3341             G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
3342
3343         snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
3344             G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
3345             G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
3346             G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
3347             G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
3348
3349         snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
3350             G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
3351             G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
3352             G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
3353             G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
3354
3355         param[0] = FW_PARAM_DEV(PORTVEC);
3356         param[1] = FW_PARAM_DEV(CCLK);
3357         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3358         if (rc != 0) {
3359                 device_printf(sc->dev,
3360                     "failed to query parameters (pre_init): %d.\n", rc);
3361                 return (rc);
3362         }
3363
3364         sc->params.portvec = val[0];
3365         sc->params.nports = bitcount32(val[0]);
3366         sc->params.vpd.cclk = val[1];
3367
3368         /* Read device log parameters. */
3369         rc = -t4_init_devlog_params(sc, 1);
3370         if (rc == 0)
3371                 fixup_devlog_params(sc);
3372         else {
3373                 device_printf(sc->dev,
3374                     "failed to get devlog parameters: %d.\n", rc);
3375                 rc = 0; /* devlog isn't critical for device operation */
3376         }
3377
3378         return (rc);
3379 }
3380
3381 /*
3382  * Retrieve various parameters that are of interest to the driver.  The device
3383  * has been initialized by the firmware at this point.
3384  */
3385 static int
3386 get_params__post_init(struct adapter *sc)
3387 {
3388         int rc;
3389         uint32_t param[7], val[7];
3390         struct fw_caps_config_cmd caps;
3391
3392         param[0] = FW_PARAM_PFVF(IQFLINT_START);
3393         param[1] = FW_PARAM_PFVF(EQ_START);
3394         param[2] = FW_PARAM_PFVF(FILTER_START);
3395         param[3] = FW_PARAM_PFVF(FILTER_END);
3396         param[4] = FW_PARAM_PFVF(L2T_START);
3397         param[5] = FW_PARAM_PFVF(L2T_END);
3398         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3399         if (rc != 0) {
3400                 device_printf(sc->dev,
3401                     "failed to query parameters (post_init): %d.\n", rc);
3402                 return (rc);
3403         }
3404
3405         sc->sge.iq_start = val[0];
3406         sc->sge.eq_start = val[1];
3407         sc->tids.ftid_base = val[2];
3408         sc->tids.nftids = val[3] - val[2] + 1;
3409         sc->params.ftid_min = val[2];
3410         sc->params.ftid_max = val[3];
3411         sc->vres.l2t.start = val[4];
3412         sc->vres.l2t.size = val[5] - val[4] + 1;
3413         KASSERT(sc->vres.l2t.size <= L2T_SIZE,
3414             ("%s: L2 table size (%u) larger than expected (%u)",
3415             __func__, sc->vres.l2t.size, L2T_SIZE));
3416
3417         /* get capabilites */
3418         bzero(&caps, sizeof(caps));
3419         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3420             F_FW_CMD_REQUEST | F_FW_CMD_READ);
3421         caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3422         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3423         if (rc != 0) {
3424                 device_printf(sc->dev,
3425                     "failed to get card capabilities: %d.\n", rc);
3426                 return (rc);
3427         }
3428
3429 #define READ_CAPS(x) do { \
3430         sc->x = htobe16(caps.x); \
3431 } while (0)
3432         READ_CAPS(nbmcaps);
3433         READ_CAPS(linkcaps);
3434         READ_CAPS(switchcaps);
3435         READ_CAPS(niccaps);
3436         READ_CAPS(toecaps);
3437         READ_CAPS(rdmacaps);
3438         READ_CAPS(cryptocaps);
3439         READ_CAPS(iscsicaps);
3440         READ_CAPS(fcoecaps);
3441
3442         if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
3443                 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
3444                 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
3445                 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3446                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
3447                 if (rc != 0) {
3448                         device_printf(sc->dev,
3449                             "failed to query NIC parameters: %d.\n", rc);
3450                         return (rc);
3451                 }
3452                 sc->tids.etid_base = val[0];
3453                 sc->params.etid_min = val[0];
3454                 sc->tids.netids = val[1] - val[0] + 1;
3455                 sc->params.netids = sc->tids.netids;
3456                 sc->params.eo_wr_cred = val[2];
3457                 sc->params.ethoffload = 1;
3458         }
3459
3460         if (sc->toecaps) {
3461                 /* query offload-related parameters */
3462                 param[0] = FW_PARAM_DEV(NTID);
3463                 param[1] = FW_PARAM_PFVF(SERVER_START);
3464                 param[2] = FW_PARAM_PFVF(SERVER_END);
3465                 param[3] = FW_PARAM_PFVF(TDDP_START);
3466                 param[4] = FW_PARAM_PFVF(TDDP_END);
3467                 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3468                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3469                 if (rc != 0) {
3470                         device_printf(sc->dev,
3471                             "failed to query TOE parameters: %d.\n", rc);
3472                         return (rc);
3473                 }
3474                 sc->tids.ntids = val[0];
3475                 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
3476                 sc->tids.stid_base = val[1];
3477                 sc->tids.nstids = val[2] - val[1] + 1;
3478                 sc->vres.ddp.start = val[3];
3479                 sc->vres.ddp.size = val[4] - val[3] + 1;
3480                 sc->params.ofldq_wr_cred = val[5];
3481                 sc->params.offload = 1;
3482         }
3483         if (sc->rdmacaps) {
3484                 param[0] = FW_PARAM_PFVF(STAG_START);
3485                 param[1] = FW_PARAM_PFVF(STAG_END);
3486                 param[2] = FW_PARAM_PFVF(RQ_START);
3487                 param[3] = FW_PARAM_PFVF(RQ_END);
3488                 param[4] = FW_PARAM_PFVF(PBL_START);
3489                 param[5] = FW_PARAM_PFVF(PBL_END);
3490                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3491                 if (rc != 0) {
3492                         device_printf(sc->dev,
3493                             "failed to query RDMA parameters(1): %d.\n", rc);
3494                         return (rc);
3495                 }
3496                 sc->vres.stag.start = val[0];
3497                 sc->vres.stag.size = val[1] - val[0] + 1;
3498                 sc->vres.rq.start = val[2];
3499                 sc->vres.rq.size = val[3] - val[2] + 1;
3500                 sc->vres.pbl.start = val[4];
3501                 sc->vres.pbl.size = val[5] - val[4] + 1;
3502
3503                 param[0] = FW_PARAM_PFVF(SQRQ_START);
3504                 param[1] = FW_PARAM_PFVF(SQRQ_END);
3505                 param[2] = FW_PARAM_PFVF(CQ_START);
3506                 param[3] = FW_PARAM_PFVF(CQ_END);
3507                 param[4] = FW_PARAM_PFVF(OCQ_START);
3508                 param[5] = FW_PARAM_PFVF(OCQ_END);
3509                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3510                 if (rc != 0) {
3511                         device_printf(sc->dev,
3512                             "failed to query RDMA parameters(2): %d.\n", rc);
3513                         return (rc);
3514                 }
3515                 sc->vres.qp.start = val[0];
3516                 sc->vres.qp.size = val[1] - val[0] + 1;
3517                 sc->vres.cq.start = val[2];
3518                 sc->vres.cq.size = val[3] - val[2] + 1;
3519                 sc->vres.ocq.start = val[4];
3520                 sc->vres.ocq.size = val[5] - val[4] + 1;
3521
3522                 param[0] = FW_PARAM_PFVF(SRQ_START);
3523                 param[1] = FW_PARAM_PFVF(SRQ_END);
3524                 param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
3525                 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3526                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
3527                 if (rc != 0) {
3528                         device_printf(sc->dev,
3529                             "failed to query RDMA parameters(3): %d.\n", rc);
3530                         return (rc);
3531                 }
3532                 sc->vres.srq.start = val[0];
3533                 sc->vres.srq.size = val[1] - val[0] + 1;
3534                 sc->params.max_ordird_qp = val[2];
3535                 sc->params.max_ird_adapter = val[3];
3536         }
3537         if (sc->iscsicaps) {
3538                 param[0] = FW_PARAM_PFVF(ISCSI_START);
3539                 param[1] = FW_PARAM_PFVF(ISCSI_END);
3540                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3541                 if (rc != 0) {
3542                         device_printf(sc->dev,
3543                             "failed to query iSCSI parameters: %d.\n", rc);
3544                         return (rc);
3545                 }
3546                 sc->vres.iscsi.start = val[0];
3547                 sc->vres.iscsi.size = val[1] - val[0] + 1;
3548         }
3549
3550         t4_init_sge_params(sc);
3551
3552         /*
3553          * We've got the params we wanted to query via the firmware.  Now grab
3554          * some others directly from the chip.
3555          */
3556         rc = t4_read_chip_settings(sc);
3557
3558         return (rc);
3559 }
3560
3561 static int
3562 set_params__post_init(struct adapter *sc)
3563 {
3564         uint32_t param, val;
3565
3566         /* ask for encapsulated CPLs */
3567         param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3568         val = 1;
3569         (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3570
3571         return (0);
3572 }
3573
3574 #undef FW_PARAM_PFVF
3575 #undef FW_PARAM_DEV
3576
3577 static void
3578 t4_set_desc(struct adapter *sc)
3579 {
3580         char buf[128];
3581         struct adapter_params *p = &sc->params;
3582
3583         snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
3584
3585         device_set_desc_copy(sc->dev, buf);
3586 }
3587
3588 static void
3589 build_medialist(struct port_info *pi, struct ifmedia *media)
3590 {
3591         int m;
3592
3593         PORT_LOCK(pi);
3594
3595         ifmedia_removeall(media);
3596
3597         m = IFM_ETHER | IFM_FDX;
3598
3599         switch(pi->port_type) {
3600         case FW_PORT_TYPE_BT_XFI:
3601         case FW_PORT_TYPE_BT_XAUI:
3602                 ifmedia_add(media, m | IFM_10G_T, 0, NULL);
3603                 /* fall through */
3604
3605         case FW_PORT_TYPE_BT_SGMII:
3606                 ifmedia_add(media, m | IFM_1000_T, 0, NULL);
3607                 ifmedia_add(media, m | IFM_100_TX, 0, NULL);
3608                 ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL);
3609                 ifmedia_set(media, IFM_ETHER | IFM_AUTO);
3610                 break;
3611
3612         case FW_PORT_TYPE_CX4:
3613                 ifmedia_add(media, m | IFM_10G_CX4, 0, NULL);
3614                 ifmedia_set(media, m | IFM_10G_CX4);
3615                 break;
3616
3617         case FW_PORT_TYPE_QSFP_10G:
3618         case FW_PORT_TYPE_SFP:
3619         case FW_PORT_TYPE_FIBER_XFI:
3620         case FW_PORT_TYPE_FIBER_XAUI:
3621                 switch (pi->mod_type) {
3622
3623                 case FW_PORT_MOD_TYPE_LR:
3624                         ifmedia_add(media, m | IFM_10G_LR, 0, NULL);
3625                         ifmedia_set(media, m | IFM_10G_LR);
3626                         break;
3627
3628                 case FW_PORT_MOD_TYPE_SR:
3629                         ifmedia_add(media, m | IFM_10G_SR, 0, NULL);
3630                         ifmedia_set(media, m | IFM_10G_SR);
3631                         break;
3632
3633                 case FW_PORT_MOD_TYPE_LRM:
3634                         ifmedia_add(media, m | IFM_10G_LRM, 0, NULL);
3635                         ifmedia_set(media, m | IFM_10G_LRM);
3636                         break;
3637
3638                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3639                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3640                         ifmedia_add(media, m | IFM_10G_TWINAX, 0, NULL);
3641                         ifmedia_set(media, m | IFM_10G_TWINAX);
3642                         break;
3643
3644                 case FW_PORT_MOD_TYPE_NONE:
3645                         m &= ~IFM_FDX;
3646                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3647                         ifmedia_set(media, m | IFM_NONE);
3648                         break;
3649
3650                 case FW_PORT_MOD_TYPE_NA:
3651                 case FW_PORT_MOD_TYPE_ER:
3652                 default:
3653                         device_printf(pi->dev,
3654                             "unknown port_type (%d), mod_type (%d)\n",
3655                             pi->port_type, pi->mod_type);
3656                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3657                         ifmedia_set(media, m | IFM_UNKNOWN);
3658                         break;
3659                 }
3660                 break;
3661
3662         case FW_PORT_TYPE_CR_QSFP:
3663         case FW_PORT_TYPE_SFP28:
3664         case FW_PORT_TYPE_KR_SFP28:
3665                 switch (pi->mod_type) {
3666
3667                 case FW_PORT_MOD_TYPE_SR:
3668                         ifmedia_add(media, m | IFM_25G_SR, 0, NULL);
3669                         ifmedia_set(media, m | IFM_25G_SR);
3670                         break;
3671
3672                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3673                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3674                         ifmedia_add(media, m | IFM_25G_CR, 0, NULL);
3675                         ifmedia_set(media, m | IFM_25G_CR);
3676                         break;
3677
3678                 case FW_PORT_MOD_TYPE_NONE:
3679                         m &= ~IFM_FDX;
3680                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3681                         ifmedia_set(media, m | IFM_NONE);
3682                         break;
3683
3684                 default:
3685                         device_printf(pi->dev,
3686                             "unknown port_type (%d), mod_type (%d)\n",
3687                             pi->port_type, pi->mod_type);
3688                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3689                         ifmedia_set(media, m | IFM_UNKNOWN);
3690                         break;
3691                 }
3692                 break;
3693
3694         case FW_PORT_TYPE_QSFP:
3695                 switch (pi->mod_type) {
3696
3697                 case FW_PORT_MOD_TYPE_LR:
3698                         ifmedia_add(media, m | IFM_40G_LR4, 0, NULL);
3699                         ifmedia_set(media, m | IFM_40G_LR4);
3700                         break;
3701
3702                 case FW_PORT_MOD_TYPE_SR:
3703                         ifmedia_add(media, m | IFM_40G_SR4, 0, NULL);
3704                         ifmedia_set(media, m | IFM_40G_SR4);
3705                         break;
3706
3707                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3708                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3709                         ifmedia_add(media, m | IFM_40G_CR4, 0, NULL);
3710                         ifmedia_set(media, m | IFM_40G_CR4);
3711                         break;
3712
3713                 case FW_PORT_MOD_TYPE_NONE:
3714                         m &= ~IFM_FDX;
3715                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3716                         ifmedia_set(media, m | IFM_NONE);
3717                         break;
3718
3719                 default:
3720                         device_printf(pi->dev,
3721                             "unknown port_type (%d), mod_type (%d)\n",
3722                             pi->port_type, pi->mod_type);
3723                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3724                         ifmedia_set(media, m | IFM_UNKNOWN);
3725                         break;
3726                 }
3727                 break;
3728
3729         case FW_PORT_TYPE_KR4_100G:
3730         case FW_PORT_TYPE_CR4_QSFP:
3731                 switch (pi->mod_type) {
3732
3733                 case FW_PORT_MOD_TYPE_LR:
3734                         ifmedia_add(media, m | IFM_100G_LR4, 0, NULL);
3735                         ifmedia_set(media, m | IFM_100G_LR4);
3736                         break;
3737
3738                 case FW_PORT_MOD_TYPE_SR:
3739                         ifmedia_add(media, m | IFM_100G_SR4, 0, NULL);
3740                         ifmedia_set(media, m | IFM_100G_SR4);
3741                         break;
3742
3743                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3744                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3745                         ifmedia_add(media, m | IFM_100G_CR4, 0, NULL);
3746                         ifmedia_set(media, m | IFM_100G_CR4);
3747                         break;
3748
3749                 case FW_PORT_MOD_TYPE_NONE:
3750                         m &= ~IFM_FDX;
3751                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3752                         ifmedia_set(media, m | IFM_NONE);
3753                         break;
3754
3755                 default:
3756                         device_printf(pi->dev,
3757                             "unknown port_type (%d), mod_type (%d)\n",
3758                             pi->port_type, pi->mod_type);
3759                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3760                         ifmedia_set(media, m | IFM_UNKNOWN);
3761                         break;
3762                 }
3763                 break;
3764
3765         default:
3766                 device_printf(pi->dev,
3767                     "unknown port_type (%d), mod_type (%d)\n", pi->port_type,
3768                     pi->mod_type);
3769                 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3770                 ifmedia_set(media, m | IFM_UNKNOWN);
3771                 break;
3772         }
3773
3774         PORT_UNLOCK(pi);
3775 }
3776
3777 #define FW_MAC_EXACT_CHUNK      7
3778
3779 /*
3780  * Program the port's XGMAC based on parameters in ifnet.  The caller also
3781  * indicates which parameters should be programmed (the rest are left alone).
3782  */
3783 int
3784 update_mac_settings(struct ifnet *ifp, int flags)
3785 {
3786         int rc = 0;
3787         struct vi_info *vi = ifp->if_softc;
3788         struct port_info *pi = vi->pi;
3789         struct adapter *sc = pi->adapter;
3790         int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
3791
3792         ASSERT_SYNCHRONIZED_OP(sc);
3793         KASSERT(flags, ("%s: not told what to update.", __func__));
3794
3795         if (flags & XGMAC_MTU)
3796                 mtu = ifp->if_mtu;
3797
3798         if (flags & XGMAC_PROMISC)
3799                 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
3800
3801         if (flags & XGMAC_ALLMULTI)
3802                 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
3803
3804         if (flags & XGMAC_VLANEX)
3805                 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
3806
3807         if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
3808                 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
3809                     allmulti, 1, vlanex, false);
3810                 if (rc) {
3811                         if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
3812                             rc);
3813                         return (rc);
3814                 }
3815         }
3816
3817         if (flags & XGMAC_UCADDR) {
3818                 uint8_t ucaddr[ETHER_ADDR_LEN];
3819
3820                 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
3821                 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
3822                     ucaddr, true, true);
3823                 if (rc < 0) {
3824                         rc = -rc;
3825                         if_printf(ifp, "change_mac failed: %d\n", rc);
3826                         return (rc);
3827                 } else {
3828                         vi->xact_addr_filt = rc;
3829                         rc = 0;
3830                 }
3831         }
3832
3833         if (flags & XGMAC_MCADDRS) {
3834                 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
3835                 int del = 1;
3836                 uint64_t hash = 0;
3837                 struct ifmultiaddr *ifma;
3838                 int i = 0, j;
3839
3840                 if_maddr_rlock(ifp);
3841                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3842                         if (ifma->ifma_addr->sa_family != AF_LINK)
3843                                 continue;
3844                         mcaddr[i] =
3845                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
3846                         MPASS(ETHER_IS_MULTICAST(mcaddr[i]));
3847                         i++;
3848
3849                         if (i == FW_MAC_EXACT_CHUNK) {
3850                                 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
3851                                     del, i, mcaddr, NULL, &hash, 0);
3852                                 if (rc < 0) {
3853                                         rc = -rc;
3854                                         for (j = 0; j < i; j++) {
3855                                                 if_printf(ifp,
3856                                                     "failed to add mc address"
3857                                                     " %02x:%02x:%02x:"
3858                                                     "%02x:%02x:%02x rc=%d\n",
3859                                                     mcaddr[j][0], mcaddr[j][1],
3860                                                     mcaddr[j][2], mcaddr[j][3],
3861                                                     mcaddr[j][4], mcaddr[j][5],
3862                                                     rc);
3863                                         }
3864                                         goto mcfail;
3865                                 }
3866                                 del = 0;
3867                                 i = 0;
3868                         }
3869                 }
3870                 if (i > 0) {
3871                         rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i,
3872                             mcaddr, NULL, &hash, 0);
3873                         if (rc < 0) {
3874                                 rc = -rc;
3875                                 for (j = 0; j < i; j++) {
3876                                         if_printf(ifp,
3877                                             "failed to add mc address"
3878                                             " %02x:%02x:%02x:"
3879                                             "%02x:%02x:%02x rc=%d\n",
3880                                             mcaddr[j][0], mcaddr[j][1],
3881                                             mcaddr[j][2], mcaddr[j][3],
3882                                             mcaddr[j][4], mcaddr[j][5],
3883                                             rc);
3884                                 }
3885                                 goto mcfail;
3886                         }
3887                 }
3888
3889                 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0);
3890                 if (rc != 0)
3891                         if_printf(ifp, "failed to set mc address hash: %d", rc);
3892 mcfail:
3893                 if_maddr_runlock(ifp);
3894         }
3895
3896         return (rc);
3897 }
3898
3899 /*
3900  * {begin|end}_synchronized_op must be called from the same thread.
3901  */
3902 int
3903 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
3904     char *wmesg)
3905 {
3906         int rc, pri;
3907
3908 #ifdef WITNESS
3909         /* the caller thinks it's ok to sleep, but is it really? */
3910         if (flags & SLEEP_OK)
3911                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
3912                     "begin_synchronized_op");
3913 #endif
3914
3915         if (INTR_OK)
3916                 pri = PCATCH;
3917         else
3918                 pri = 0;
3919
3920         ADAPTER_LOCK(sc);
3921         for (;;) {
3922
3923                 if (vi && IS_DOOMED(vi)) {
3924                         rc = ENXIO;
3925                         goto done;
3926                 }
3927
3928                 if (!IS_BUSY(sc)) {
3929                         rc = 0;
3930                         break;
3931                 }
3932
3933                 if (!(flags & SLEEP_OK)) {
3934                         rc = EBUSY;
3935                         goto done;
3936                 }
3937
3938                 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
3939                         rc = EINTR;
3940                         goto done;
3941                 }
3942         }
3943
3944         KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
3945         SET_BUSY(sc);
3946 #ifdef INVARIANTS
3947         sc->last_op = wmesg;
3948         sc->last_op_thr = curthread;
3949         sc->last_op_flags = flags;
3950 #endif
3951
3952 done:
3953         if (!(flags & HOLD_LOCK) || rc)
3954                 ADAPTER_UNLOCK(sc);
3955
3956         return (rc);
3957 }
3958
3959 /*
3960  * Tell if_ioctl and if_init that the VI is going away.  This is
3961  * special variant of begin_synchronized_op and must be paired with a
3962  * call to end_synchronized_op.
3963  */
3964 void
3965 doom_vi(struct adapter *sc, struct vi_info *vi)
3966 {
3967
3968         ADAPTER_LOCK(sc);
3969         SET_DOOMED(vi);
3970         wakeup(&sc->flags);
3971         while (IS_BUSY(sc))
3972                 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
3973         SET_BUSY(sc);
3974 #ifdef INVARIANTS
3975         sc->last_op = "t4detach";
3976         sc->last_op_thr = curthread;
3977         sc->last_op_flags = 0;
3978 #endif
3979         ADAPTER_UNLOCK(sc);
3980 }
3981
3982 /*
3983  * {begin|end}_synchronized_op must be called from the same thread.
3984  */
3985 void
3986 end_synchronized_op(struct adapter *sc, int flags)
3987 {
3988
3989         if (flags & LOCK_HELD)
3990                 ADAPTER_LOCK_ASSERT_OWNED(sc);
3991         else
3992                 ADAPTER_LOCK(sc);
3993
3994         KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
3995         CLR_BUSY(sc);
3996         wakeup(&sc->flags);
3997         ADAPTER_UNLOCK(sc);
3998 }
3999
4000 static int
4001 cxgbe_init_synchronized(struct vi_info *vi)
4002 {
4003         struct port_info *pi = vi->pi;
4004         struct adapter *sc = pi->adapter;
4005         struct ifnet *ifp = vi->ifp;
4006         int rc = 0, i;
4007         struct sge_txq *txq;
4008
4009         ASSERT_SYNCHRONIZED_OP(sc);
4010
4011         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4012                 return (0);     /* already running */
4013
4014         if (!(sc->flags & FULL_INIT_DONE) &&
4015             ((rc = adapter_full_init(sc)) != 0))
4016                 return (rc);    /* error message displayed already */
4017
4018         if (!(vi->flags & VI_INIT_DONE) &&
4019             ((rc = vi_full_init(vi)) != 0))
4020                 return (rc); /* error message displayed already */
4021
4022         rc = update_mac_settings(ifp, XGMAC_ALL);
4023         if (rc)
4024                 goto done;      /* error message displayed already */
4025
4026         rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
4027         if (rc != 0) {
4028                 if_printf(ifp, "enable_vi failed: %d\n", rc);
4029                 goto done;
4030         }
4031
4032         /*
4033          * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
4034          * if this changes.
4035          */
4036
4037         for_each_txq(vi, i, txq) {
4038                 TXQ_LOCK(txq);
4039                 txq->eq.flags |= EQ_ENABLED;
4040                 TXQ_UNLOCK(txq);
4041         }
4042
4043         /*
4044          * The first iq of the first port to come up is used for tracing.
4045          */
4046         if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
4047                 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
4048                 t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
4049                     A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
4050                     V_QUEUENUMBER(sc->traceq));
4051                 pi->flags |= HAS_TRACEQ;
4052         }
4053
4054         /* all ok */
4055         PORT_LOCK(pi);
4056         ifp->if_drv_flags |= IFF_DRV_RUNNING;
4057         pi->up_vis++;
4058
4059         if (pi->nvi > 1 || sc->flags & IS_VF)
4060                 callout_reset(&vi->tick, hz, vi_tick, vi);
4061         else
4062                 callout_reset(&pi->tick, hz, cxgbe_tick, pi);
4063         PORT_UNLOCK(pi);
4064 done:
4065         if (rc != 0)
4066                 cxgbe_uninit_synchronized(vi);
4067
4068         return (rc);
4069 }
4070
4071 /*
4072  * Idempotent.
4073  */
4074 static int
4075 cxgbe_uninit_synchronized(struct vi_info *vi)
4076 {
4077         struct port_info *pi = vi->pi;
4078         struct adapter *sc = pi->adapter;
4079         struct ifnet *ifp = vi->ifp;
4080         int rc, i;
4081         struct sge_txq *txq;
4082
4083         ASSERT_SYNCHRONIZED_OP(sc);
4084
4085         if (!(vi->flags & VI_INIT_DONE)) {
4086                 KASSERT(!(ifp->if_drv_flags & IFF_DRV_RUNNING),
4087                     ("uninited VI is running"));
4088                 return (0);
4089         }
4090
4091         /*
4092          * Disable the VI so that all its data in either direction is discarded
4093          * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
4094          * tick) intact as the TP can deliver negative advice or data that it's
4095          * holding in its RAM (for an offloaded connection) even after the VI is
4096          * disabled.
4097          */
4098         rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
4099         if (rc) {
4100                 if_printf(ifp, "disable_vi failed: %d\n", rc);
4101                 return (rc);
4102         }
4103
4104         for_each_txq(vi, i, txq) {
4105                 TXQ_LOCK(txq);
4106                 txq->eq.flags &= ~EQ_ENABLED;
4107                 TXQ_UNLOCK(txq);
4108         }
4109
4110         PORT_LOCK(pi);
4111         if (pi->nvi > 1 || sc->flags & IS_VF)
4112                 callout_stop(&vi->tick);
4113         else
4114                 callout_stop(&pi->tick);
4115         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4116                 PORT_UNLOCK(pi);
4117                 return (0);
4118         }
4119         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4120         pi->up_vis--;
4121         if (pi->up_vis > 0) {
4122                 PORT_UNLOCK(pi);
4123                 return (0);
4124         }
4125         PORT_UNLOCK(pi);
4126
4127         pi->link_cfg.link_ok = 0;
4128         pi->link_cfg.speed = 0;
4129         pi->link_cfg.link_down_rc = 255;
4130         t4_os_link_changed(sc, pi->port_id, 0);
4131
4132         return (0);
4133 }
4134
4135 /*
4136  * It is ok for this function to fail midway and return right away.  t4_detach
4137  * will walk the entire sc->irq list and clean up whatever is valid.
4138  */
4139 int
4140 t4_setup_intr_handlers(struct adapter *sc)
4141 {
4142         int rc, rid, p, q, v;
4143         char s[8];
4144         struct irq *irq;
4145         struct port_info *pi;
4146         struct vi_info *vi;
4147         struct sge *sge = &sc->sge;
4148         struct sge_rxq *rxq;
4149 #ifdef TCP_OFFLOAD
4150         struct sge_ofld_rxq *ofld_rxq;
4151 #endif
4152 #ifdef DEV_NETMAP
4153         struct sge_nm_rxq *nm_rxq;
4154 #endif
4155 #ifdef RSS
4156         int nbuckets = rss_getnumbuckets();
4157 #endif
4158
4159         /*
4160          * Setup interrupts.
4161          */
4162         irq = &sc->irq[0];
4163         rid = sc->intr_type == INTR_INTX ? 0 : 1;
4164         if (sc->intr_count == 1)
4165                 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
4166
4167         /* Multiple interrupts. */
4168         if (sc->flags & IS_VF)
4169                 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
4170                     ("%s: too few intr.", __func__));
4171         else
4172                 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
4173                     ("%s: too few intr.", __func__));
4174
4175         /* The first one is always error intr on PFs */
4176         if (!(sc->flags & IS_VF)) {
4177                 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
4178                 if (rc != 0)
4179                         return (rc);
4180                 irq++;
4181                 rid++;
4182         }
4183
4184         /* The second one is always the firmware event queue (first on VFs) */
4185         rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
4186         if (rc != 0)
4187                 return (rc);
4188         irq++;
4189         rid++;
4190
4191         for_each_port(sc, p) {
4192                 pi = sc->port[p];
4193                 for_each_vi(pi, v, vi) {
4194                         vi->first_intr = rid - 1;
4195
4196                         if (vi->nnmrxq > 0) {
4197                                 int n = max(vi->nrxq, vi->nnmrxq);
4198
4199                                 MPASS(vi->flags & INTR_RXQ);
4200
4201                                 rxq = &sge->rxq[vi->first_rxq];
4202 #ifdef DEV_NETMAP
4203                                 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
4204 #endif
4205                                 for (q = 0; q < n; q++) {
4206                                         snprintf(s, sizeof(s), "%x%c%x", p,
4207                                             'a' + v, q);
4208                                         if (q < vi->nrxq)
4209                                                 irq->rxq = rxq++;
4210 #ifdef DEV_NETMAP
4211                                         if (q < vi->nnmrxq)
4212                                                 irq->nm_rxq = nm_rxq++;
4213 #endif
4214                                         rc = t4_alloc_irq(sc, irq, rid,
4215                                             t4_vi_intr, irq, s);
4216                                         if (rc != 0)
4217                                                 return (rc);
4218                                         irq++;
4219                                         rid++;
4220                                         vi->nintr++;
4221                                 }
4222                         } else if (vi->flags & INTR_RXQ) {
4223                                 for_each_rxq(vi, q, rxq) {
4224                                         snprintf(s, sizeof(s), "%x%c%x", p,
4225                                             'a' + v, q);
4226                                         rc = t4_alloc_irq(sc, irq, rid,
4227                                             t4_intr, rxq, s);
4228                                         if (rc != 0)
4229                                                 return (rc);
4230 #ifdef RSS
4231                                         bus_bind_intr(sc->dev, irq->res,
4232                                             rss_getcpu(q % nbuckets));
4233 #endif
4234                                         irq++;
4235                                         rid++;
4236                                         vi->nintr++;
4237                                 }
4238                         }
4239 #ifdef TCP_OFFLOAD
4240                         if (vi->flags & INTR_OFLD_RXQ) {
4241                                 for_each_ofld_rxq(vi, q, ofld_rxq) {
4242                                         snprintf(s, sizeof(s), "%x%c%x", p,
4243                                             'A' + v, q);
4244                                         rc = t4_alloc_irq(sc, irq, rid,
4245                                             t4_intr, ofld_rxq, s);
4246                                         if (rc != 0)
4247                                                 return (rc);
4248                                         irq++;
4249                                         rid++;
4250                                         vi->nintr++;
4251                                 }
4252                         }
4253 #endif
4254                 }
4255         }
4256         MPASS(irq == &sc->irq[sc->intr_count]);
4257
4258         return (0);
4259 }
4260
4261 int
4262 adapter_full_init(struct adapter *sc)
4263 {
4264         int rc, i;
4265 #ifdef RSS
4266         uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
4267         uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
4268 #endif
4269
4270         ASSERT_SYNCHRONIZED_OP(sc);
4271         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
4272         KASSERT((sc->flags & FULL_INIT_DONE) == 0,
4273             ("%s: FULL_INIT_DONE already", __func__));
4274
4275         /*
4276          * queues that belong to the adapter (not any particular port).
4277          */
4278         rc = t4_setup_adapter_queues(sc);
4279         if (rc != 0)
4280                 goto done;
4281
4282         for (i = 0; i < nitems(sc->tq); i++) {
4283                 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
4284                     taskqueue_thread_enqueue, &sc->tq[i]);
4285                 if (sc->tq[i] == NULL) {
4286                         device_printf(sc->dev,
4287                             "failed to allocate task queue %d\n", i);
4288                         rc = ENOMEM;
4289                         goto done;
4290                 }
4291                 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
4292                     device_get_nameunit(sc->dev), i);
4293         }
4294 #ifdef RSS
4295         MPASS(RSS_KEYSIZE == 40);
4296         rss_getkey((void *)&raw_rss_key[0]);
4297         for (i = 0; i < nitems(rss_key); i++) {
4298                 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
4299         }
4300         t4_write_rss_key(sc, &rss_key[0], -1);
4301 #endif
4302
4303         if (!(sc->flags & IS_VF))
4304                 t4_intr_enable(sc);
4305         sc->flags |= FULL_INIT_DONE;
4306 done:
4307         if (rc != 0)
4308                 adapter_full_uninit(sc);
4309
4310         return (rc);
4311 }
4312
4313 int
4314 adapter_full_uninit(struct adapter *sc)
4315 {
4316         int i;
4317
4318         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
4319
4320         t4_teardown_adapter_queues(sc);
4321
4322         for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
4323                 taskqueue_free(sc->tq[i]);
4324                 sc->tq[i] = NULL;
4325         }
4326
4327         sc->flags &= ~FULL_INIT_DONE;
4328
4329         return (0);
4330 }
4331
4332 #ifdef RSS
4333 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
4334     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
4335     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
4336     RSS_HASHTYPE_RSS_UDP_IPV6)
4337
4338 /* Translates kernel hash types to hardware. */
4339 static int
4340 hashconfig_to_hashen(int hashconfig)
4341 {
4342         int hashen = 0;
4343
4344         if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
4345                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
4346         if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
4347                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
4348         if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
4349                 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
4350                     F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
4351         }
4352         if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
4353                 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
4354                     F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
4355         }
4356         if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
4357                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
4358         if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
4359                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
4360
4361         return (hashen);
4362 }
4363
4364 /* Translates hardware hash types to kernel. */
4365 static int
4366 hashen_to_hashconfig(int hashen)
4367 {
4368         int hashconfig = 0;
4369
4370         if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
4371                 /*
4372                  * If UDP hashing was enabled it must have been enabled for
4373                  * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
4374                  * enabling any 4-tuple hash is nonsense configuration.
4375                  */
4376                 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
4377                     F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
4378
4379                 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
4380                         hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
4381                 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
4382                         hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
4383         }
4384         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
4385                 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
4386         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
4387                 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
4388         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
4389                 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
4390         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
4391                 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
4392
4393         return (hashconfig);
4394 }
4395 #endif
4396
4397 int
4398 vi_full_init(struct vi_info *vi)
4399 {
4400         struct adapter *sc = vi->pi->adapter;
4401         struct ifnet *ifp = vi->ifp;
4402         uint16_t *rss;
4403         struct sge_rxq *rxq;
4404         int rc, i, j, hashen;
4405 #ifdef RSS
4406         int nbuckets = rss_getnumbuckets();
4407         int hashconfig = rss_gethashconfig();
4408         int extra;
4409 #endif
4410
4411         ASSERT_SYNCHRONIZED_OP(sc);
4412         KASSERT((vi->flags & VI_INIT_DONE) == 0,
4413             ("%s: VI_INIT_DONE already", __func__));
4414
4415         sysctl_ctx_init(&vi->ctx);
4416         vi->flags |= VI_SYSCTL_CTX;
4417
4418         /*
4419          * Allocate tx/rx/fl queues for this VI.
4420          */
4421         rc = t4_setup_vi_queues(vi);
4422         if (rc != 0)
4423                 goto done;      /* error message displayed already */
4424
4425         /*
4426          * Setup RSS for this VI.  Save a copy of the RSS table for later use.
4427          */
4428         if (vi->nrxq > vi->rss_size) {
4429                 if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); "
4430                     "some queues will never receive traffic.\n", vi->nrxq,
4431                     vi->rss_size);
4432         } else if (vi->rss_size % vi->nrxq) {
4433                 if_printf(ifp, "nrxq (%d), hw RSS table size (%d); "
4434                     "expect uneven traffic distribution.\n", vi->nrxq,
4435                     vi->rss_size);
4436         }
4437 #ifdef RSS
4438         if (vi->nrxq != nbuckets) {
4439                 if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);"
4440                     "performance will be impacted.\n", vi->nrxq, nbuckets);
4441         }
4442 #endif
4443         rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK);
4444         for (i = 0; i < vi->rss_size;) {
4445 #ifdef RSS
4446                 j = rss_get_indirection_to_bucket(i);
4447                 j %= vi->nrxq;
4448                 rxq = &sc->sge.rxq[vi->first_rxq + j];
4449                 rss[i++] = rxq->iq.abs_id;
4450 #else
4451                 for_each_rxq(vi, j, rxq) {
4452                         rss[i++] = rxq->iq.abs_id;
4453                         if (i == vi->rss_size)
4454                                 break;
4455                 }
4456 #endif
4457         }
4458
4459         rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss,
4460             vi->rss_size);
4461         if (rc != 0) {
4462                 if_printf(ifp, "rss_config failed: %d\n", rc);
4463                 goto done;
4464         }
4465
4466 #ifdef RSS
4467         hashen = hashconfig_to_hashen(hashconfig);
4468
4469         /*
4470          * We may have had to enable some hashes even though the global config
4471          * wants them disabled.  This is a potential problem that must be
4472          * reported to the user.
4473          */
4474         extra = hashen_to_hashconfig(hashen) ^ hashconfig;
4475
4476         /*
4477          * If we consider only the supported hash types, then the enabled hashes
4478          * are a superset of the requested hashes.  In other words, there cannot
4479          * be any supported hash that was requested but not enabled, but there
4480          * can be hashes that were not requested but had to be enabled.
4481          */
4482         extra &= SUPPORTED_RSS_HASHTYPES;
4483         MPASS((extra & hashconfig) == 0);
4484
4485         if (extra) {
4486                 if_printf(ifp,
4487                     "global RSS config (0x%x) cannot be accommodated.\n",
4488                     hashconfig);
4489         }
4490         if (extra & RSS_HASHTYPE_RSS_IPV4)
4491                 if_printf(ifp, "IPv4 2-tuple hashing forced on.\n");
4492         if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
4493                 if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n");
4494         if (extra & RSS_HASHTYPE_RSS_IPV6)
4495                 if_printf(ifp, "IPv6 2-tuple hashing forced on.\n");
4496         if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
4497                 if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n");
4498         if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
4499                 if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n");
4500         if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
4501                 if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n");
4502 #else
4503         hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
4504             F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
4505             F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
4506             F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
4507 #endif
4508         rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, hashen, rss[0], 0, 0);
4509         if (rc != 0) {
4510                 if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc);
4511                 goto done;
4512         }
4513
4514         vi->rss = rss;
4515         vi->flags |= VI_INIT_DONE;
4516 done:
4517         if (rc != 0)
4518                 vi_full_uninit(vi);
4519
4520         return (rc);
4521 }
4522
4523 /*
4524  * Idempotent.
4525  */
4526 int
4527 vi_full_uninit(struct vi_info *vi)
4528 {
4529         struct port_info *pi = vi->pi;
4530         struct adapter *sc = pi->adapter;
4531         int i;
4532         struct sge_rxq *rxq;
4533         struct sge_txq *txq;
4534 #ifdef TCP_OFFLOAD
4535         struct sge_ofld_rxq *ofld_rxq;
4536         struct sge_wrq *ofld_txq;
4537 #endif
4538
4539         if (vi->flags & VI_INIT_DONE) {
4540
4541                 /* Need to quiesce queues.  */
4542
4543                 /* XXX: Only for the first VI? */
4544                 if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
4545                         quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
4546
4547                 for_each_txq(vi, i, txq) {
4548                         quiesce_txq(sc, txq);
4549                 }
4550
4551 #ifdef TCP_OFFLOAD
4552                 for_each_ofld_txq(vi, i, ofld_txq) {
4553                         quiesce_wrq(sc, ofld_txq);
4554                 }
4555 #endif
4556
4557                 for_each_rxq(vi, i, rxq) {
4558                         quiesce_iq(sc, &rxq->iq);
4559                         quiesce_fl(sc, &rxq->fl);
4560                 }
4561
4562 #ifdef TCP_OFFLOAD
4563                 for_each_ofld_rxq(vi, i, ofld_rxq) {
4564                         quiesce_iq(sc, &ofld_rxq->iq);
4565                         quiesce_fl(sc, &ofld_rxq->fl);
4566                 }
4567 #endif
4568                 free(vi->rss, M_CXGBE);
4569                 free(vi->nm_rss, M_CXGBE);
4570         }
4571
4572         t4_teardown_vi_queues(vi);
4573         vi->flags &= ~VI_INIT_DONE;
4574
4575         return (0);
4576 }
4577
4578 static void
4579 quiesce_txq(struct adapter *sc, struct sge_txq *txq)
4580 {
4581         struct sge_eq *eq = &txq->eq;
4582         struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4583
4584         (void) sc;      /* unused */
4585
4586 #ifdef INVARIANTS
4587         TXQ_LOCK(txq);
4588         MPASS((eq->flags & EQ_ENABLED) == 0);
4589         TXQ_UNLOCK(txq);
4590 #endif
4591
4592         /* Wait for the mp_ring to empty. */
4593         while (!mp_ring_is_idle(txq->r)) {
4594                 mp_ring_check_drainage(txq->r, 0);
4595                 pause("rquiesce", 1);
4596         }
4597
4598         /* Then wait for the hardware to finish. */
4599         while (spg->cidx != htobe16(eq->pidx))
4600                 pause("equiesce", 1);
4601
4602         /* Finally, wait for the driver to reclaim all descriptors. */
4603         while (eq->cidx != eq->pidx)
4604                 pause("dquiesce", 1);
4605 }
4606
4607 static void
4608 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq)
4609 {
4610
4611         /* XXXTX */
4612 }
4613
4614 static void
4615 quiesce_iq(struct adapter *sc, struct sge_iq *iq)
4616 {
4617         (void) sc;      /* unused */
4618
4619         /* Synchronize with the interrupt handler */
4620         while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
4621                 pause("iqfree", 1);
4622 }
4623
4624 static void
4625 quiesce_fl(struct adapter *sc, struct sge_fl *fl)
4626 {
4627         mtx_lock(&sc->sfl_lock);
4628         FL_LOCK(fl);
4629         fl->flags |= FL_DOOMED;
4630         FL_UNLOCK(fl);
4631         callout_stop(&sc->sfl_callout);
4632         mtx_unlock(&sc->sfl_lock);
4633
4634         KASSERT((fl->flags & FL_STARVING) == 0,
4635             ("%s: still starving", __func__));
4636 }
4637
4638 static int
4639 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
4640     driver_intr_t *handler, void *arg, char *name)
4641 {
4642         int rc;
4643
4644         irq->rid = rid;
4645         irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
4646             RF_SHAREABLE | RF_ACTIVE);
4647         if (irq->res == NULL) {
4648                 device_printf(sc->dev,
4649                     "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
4650                 return (ENOMEM);
4651         }
4652
4653         rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
4654             NULL, handler, arg, &irq->tag);
4655         if (rc != 0) {
4656                 device_printf(sc->dev,
4657                     "failed to setup interrupt for rid %d, name %s: %d\n",
4658                     rid, name, rc);
4659         } else if (name)
4660                 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
4661
4662         return (rc);
4663 }
4664
4665 static int
4666 t4_free_irq(struct adapter *sc, struct irq *irq)
4667 {
4668         if (irq->tag)
4669                 bus_teardown_intr(sc->dev, irq->res, irq->tag);
4670         if (irq->res)
4671                 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
4672
4673         bzero(irq, sizeof(*irq));
4674
4675         return (0);
4676 }
4677
4678 static void
4679 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
4680 {
4681
4682         regs->version = chip_id(sc) | chip_rev(sc) << 10;
4683         t4_get_regs(sc, buf, regs->len);
4684 }
4685
4686 #define A_PL_INDIR_CMD  0x1f8
4687
4688 #define S_PL_AUTOINC    31
4689 #define M_PL_AUTOINC    0x1U
4690 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
4691 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
4692
4693 #define S_PL_VFID       20
4694 #define M_PL_VFID       0xffU
4695 #define V_PL_VFID(x)    ((x) << S_PL_VFID)
4696 #define G_PL_VFID(x)    (((x) >> S_PL_VFID) & M_PL_VFID)
4697
4698 #define S_PL_ADDR       0
4699 #define M_PL_ADDR       0xfffffU
4700 #define V_PL_ADDR(x)    ((x) << S_PL_ADDR)
4701 #define G_PL_ADDR(x)    (((x) >> S_PL_ADDR) & M_PL_ADDR)
4702
4703 #define A_PL_INDIR_DATA 0x1fc
4704
4705 static uint64_t
4706 read_vf_stat(struct adapter *sc, unsigned int viid, int reg)
4707 {
4708         u32 stats[2];
4709
4710         mtx_assert(&sc->reg_lock, MA_OWNED);
4711         if (sc->flags & IS_VF) {
4712                 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
4713                 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
4714         } else {
4715                 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
4716                     V_PL_VFID(G_FW_VIID_VIN(viid)) |
4717                     V_PL_ADDR(VF_MPS_REG(reg)));
4718                 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
4719                 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
4720         }
4721         return (((uint64_t)stats[1]) << 32 | stats[0]);
4722 }
4723
4724 static void
4725 t4_get_vi_stats(struct adapter *sc, unsigned int viid,
4726     struct fw_vi_stats_vf *stats)
4727 {
4728
4729 #define GET_STAT(name) \
4730         read_vf_stat(sc, viid, A_MPS_VF_STAT_##name##_L)
4731
4732         stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
4733         stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
4734         stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
4735         stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
4736         stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
4737         stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
4738         stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
4739         stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
4740         stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
4741         stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
4742         stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
4743         stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
4744         stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
4745         stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
4746         stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
4747         stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
4748
4749 #undef GET_STAT
4750 }
4751
4752 static void
4753 t4_clr_vi_stats(struct adapter *sc, unsigned int viid)
4754 {
4755         int reg;
4756
4757         t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
4758             V_PL_VFID(G_FW_VIID_VIN(viid)) |
4759             V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
4760         for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
4761              reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
4762                 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
4763 }
4764
4765 static void
4766 vi_refresh_stats(struct adapter *sc, struct vi_info *vi)
4767 {
4768         struct timeval tv;
4769         const struct timeval interval = {0, 250000};    /* 250ms */
4770
4771         if (!(vi->flags & VI_INIT_DONE))
4772                 return;
4773
4774         getmicrotime(&tv);
4775         timevalsub(&tv, &interval);
4776         if (timevalcmp(&tv, &vi->last_refreshed, <))
4777                 return;
4778
4779         mtx_lock(&sc->reg_lock);
4780         t4_get_vi_stats(sc, vi->viid, &vi->stats);
4781         getmicrotime(&vi->last_refreshed);
4782         mtx_unlock(&sc->reg_lock);
4783 }
4784
4785 static void
4786 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi)
4787 {
4788         int i;
4789         u_int v, tnl_cong_drops;
4790         struct timeval tv;
4791         const struct timeval interval = {0, 250000};    /* 250ms */
4792
4793         getmicrotime(&tv);
4794         timevalsub(&tv, &interval);
4795         if (timevalcmp(&tv, &pi->last_refreshed, <))
4796                 return;
4797
4798         tnl_cong_drops = 0;
4799         t4_get_port_stats(sc, pi->tx_chan, &pi->stats);
4800         for (i = 0; i < sc->chip_params->nchan; i++) {
4801                 if (pi->rx_chan_map & (1 << i)) {
4802                         mtx_lock(&sc->reg_lock);
4803                         t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
4804                             1, A_TP_MIB_TNL_CNG_DROP_0 + i);
4805                         mtx_unlock(&sc->reg_lock);
4806                         tnl_cong_drops += v;
4807                 }
4808         }
4809         pi->tnl_cong_drops = tnl_cong_drops;
4810         getmicrotime(&pi->last_refreshed);
4811 }
4812
4813 static void
4814 cxgbe_tick(void *arg)
4815 {
4816         struct port_info *pi = arg;
4817         struct adapter *sc = pi->adapter;
4818
4819         PORT_LOCK_ASSERT_OWNED(pi);
4820         cxgbe_refresh_stats(sc, pi);
4821
4822         callout_schedule(&pi->tick, hz);
4823 }
4824
4825 void
4826 vi_tick(void *arg)
4827 {
4828         struct vi_info *vi = arg;
4829         struct adapter *sc = vi->pi->adapter;
4830
4831         vi_refresh_stats(sc, vi);
4832
4833         callout_schedule(&vi->tick, hz);
4834 }
4835
4836 static void
4837 cxgbe_vlan_config(void *arg, struct ifnet *ifp, uint16_t vid)
4838 {
4839         struct ifnet *vlan;
4840
4841         if (arg != ifp || ifp->if_type != IFT_ETHER)
4842                 return;
4843
4844         vlan = VLAN_DEVAT(ifp, vid);
4845         VLAN_SETCOOKIE(vlan, ifp);
4846 }
4847
4848 /*
4849  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
4850  */
4851 static char *caps_decoder[] = {
4852         "\20\001IPMI\002NCSI",                          /* 0: NBM */
4853         "\20\001PPP\002QFC\003DCBX",                    /* 1: link */
4854         "\20\001INGRESS\002EGRESS",                     /* 2: switch */
4855         "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"      /* 3: NIC */
4856             "\006HASHFILTER\007ETHOFLD",
4857         "\20\001TOE",                                   /* 4: TOE */
4858         "\20\001RDDP\002RDMAC",                         /* 5: RDMA */
4859         "\20\001INITIATOR_PDU\002TARGET_PDU"            /* 6: iSCSI */
4860             "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
4861             "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
4862             "\007T10DIF"
4863             "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
4864         "\20\001LOOKASIDE\002TLSKEYS",                  /* 7: Crypto */
4865         "\20\001INITIATOR\002TARGET\003CTRL_OFLD"       /* 8: FCoE */
4866                     "\004PO_INITIATOR\005PO_TARGET",
4867 };
4868
4869 void
4870 t4_sysctls(struct adapter *sc)
4871 {
4872         struct sysctl_ctx_list *ctx;
4873         struct sysctl_oid *oid;
4874         struct sysctl_oid_list *children, *c0;
4875         static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
4876
4877         ctx = device_get_sysctl_ctx(sc->dev);
4878
4879         /*
4880          * dev.t4nex.X.
4881          */
4882         oid = device_get_sysctl_tree(sc->dev);
4883         c0 = children = SYSCTL_CHILDREN(oid);
4884
4885         sc->sc_do_rxcopy = 1;
4886         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
4887             &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
4888
4889         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
4890             sc->params.nports, "# of ports");
4891
4892         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
4893             CTLTYPE_STRING | CTLFLAG_RD, doorbells, sc->doorbells,
4894             sysctl_bitfield, "A", "available doorbells");
4895
4896         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
4897             sc->params.vpd.cclk, "core clock frequency (in KHz)");
4898
4899         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
4900             CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val,
4901             sizeof(sc->params.sge.timer_val), sysctl_int_array, "A",
4902             "interrupt holdoff timer values (us)");
4903
4904         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
4905             CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val,
4906             sizeof(sc->params.sge.counter_val), sysctl_int_array, "A",
4907             "interrupt holdoff packet counter values");
4908
4909         t4_sge_sysctls(sc, ctx, children);
4910
4911         sc->lro_timeout = 100;
4912         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
4913             &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
4914
4915         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
4916             &sc->debug_flags, 0, "flags to enable runtime debugging");
4917
4918         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
4919             CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
4920
4921         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
4922             CTLFLAG_RD, sc->fw_version, 0, "firmware version");
4923
4924         if (sc->flags & IS_VF)
4925                 return;
4926
4927         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
4928             NULL, chip_rev(sc), "chip hardware revision");
4929
4930         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
4931             CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
4932
4933         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
4934             CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
4935
4936         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
4937             CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
4938
4939         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
4940             CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
4941
4942         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
4943             sc->er_version, 0, "expansion ROM version");
4944
4945         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
4946             sc->bs_version, 0, "bootstrap firmware version");
4947
4948         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
4949             NULL, sc->params.scfg_vers, "serial config version");
4950
4951         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
4952             NULL, sc->params.vpd_vers, "VPD version");
4953
4954         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
4955             CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
4956
4957         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
4958             sc->cfcsum, "config file checksum");
4959
4960 #define SYSCTL_CAP(name, n, text) \
4961         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
4962             CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], sc->name, \
4963             sysctl_bitfield, "A", "available " text " capabilities")
4964
4965         SYSCTL_CAP(nbmcaps, 0, "NBM");
4966         SYSCTL_CAP(linkcaps, 1, "link");
4967         SYSCTL_CAP(switchcaps, 2, "switch");
4968         SYSCTL_CAP(niccaps, 3, "NIC");
4969         SYSCTL_CAP(toecaps, 4, "TCP offload");
4970         SYSCTL_CAP(rdmacaps, 5, "RDMA");
4971         SYSCTL_CAP(iscsicaps, 6, "iSCSI");
4972         SYSCTL_CAP(cryptocaps, 7, "crypto");
4973         SYSCTL_CAP(fcoecaps, 8, "FCoE");
4974 #undef SYSCTL_CAP
4975
4976         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
4977             NULL, sc->tids.nftids, "number of filters");
4978
4979         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT |
4980             CTLFLAG_RD, sc, 0, sysctl_temperature, "I",
4981             "chip temperature (in Celsius)");
4982
4983 #ifdef SBUF_DRAIN
4984         /*
4985          * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
4986          */
4987         oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
4988             CTLFLAG_RD | CTLFLAG_SKIP, NULL,
4989             "logs and miscellaneous information");
4990         children = SYSCTL_CHILDREN(oid);
4991
4992         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
4993             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
4994             sysctl_cctrl, "A", "congestion control");
4995
4996         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
4997             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
4998             sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
4999
5000         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
5001             CTLTYPE_STRING | CTLFLAG_RD, sc, 1,
5002             sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
5003
5004         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
5005             CTLTYPE_STRING | CTLFLAG_RD, sc, 2,
5006             sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
5007
5008         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
5009             CTLTYPE_STRING | CTLFLAG_RD, sc, 3,
5010             sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
5011
5012         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
5013             CTLTYPE_STRING | CTLFLAG_RD, sc, 4,
5014             sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
5015
5016         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
5017             CTLTYPE_STRING | CTLFLAG_RD, sc, 5,
5018             sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
5019
5020         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
5021             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5022             chip_id(sc) <= CHELSIO_T5 ? sysctl_cim_la : sysctl_cim_la_t6,
5023             "A", "CIM logic analyzer");
5024
5025         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
5026             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5027             sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
5028
5029         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
5030             CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ,
5031             sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
5032
5033         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
5034             CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ,
5035             sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
5036
5037         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
5038             CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ,
5039             sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
5040
5041         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
5042             CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ,
5043             sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
5044
5045         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
5046             CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ,
5047             sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
5048
5049         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
5050             CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ,
5051             sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
5052
5053         if (chip_id(sc) > CHELSIO_T4) {
5054                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
5055                     CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ,
5056                     sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)");
5057
5058                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
5059                     CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ,
5060                     sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)");
5061         }
5062
5063         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
5064             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5065             sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
5066
5067         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
5068             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5069             sysctl_cim_qcfg, "A", "CIM queue configuration");
5070
5071         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
5072             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5073             sysctl_cpl_stats, "A", "CPL statistics");
5074
5075         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
5076             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5077             sysctl_ddp_stats, "A", "non-TCP DDP statistics");
5078
5079         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
5080             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5081             sysctl_devlog, "A", "firmware's device log");
5082
5083         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
5084             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5085             sysctl_fcoe_stats, "A", "FCoE statistics");
5086
5087         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
5088             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5089             sysctl_hw_sched, "A", "hardware scheduler ");
5090
5091         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
5092             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5093             sysctl_l2t, "A", "hardware L2 table");
5094
5095         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
5096             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5097             sysctl_lb_stats, "A", "loopback statistics");
5098
5099         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
5100             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5101             sysctl_meminfo, "A", "memory regions");
5102
5103         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
5104             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5105             chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
5106             "A", "MPS TCAM entries");
5107
5108         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
5109             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5110             sysctl_path_mtus, "A", "path MTUs");
5111
5112         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
5113             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5114             sysctl_pm_stats, "A", "PM statistics");
5115
5116         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
5117             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5118             sysctl_rdma_stats, "A", "RDMA statistics");
5119
5120         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
5121             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5122             sysctl_tcp_stats, "A", "TCP statistics");
5123
5124         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
5125             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5126             sysctl_tids, "A", "TID information");
5127
5128         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
5129             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5130             sysctl_tp_err_stats, "A", "TP error statistics");
5131
5132         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
5133             CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I",
5134             "TP logic analyzer event capture mask");
5135
5136         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
5137             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5138             sysctl_tp_la, "A", "TP logic analyzer");
5139
5140         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
5141             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5142             sysctl_tx_rate, "A", "Tx rate");
5143
5144         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
5145             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5146             sysctl_ulprx_la, "A", "ULPRX logic analyzer");
5147
5148         if (chip_id(sc) >= CHELSIO_T5) {
5149                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
5150                     CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5151                     sysctl_wcwr_stats, "A", "write combined work requests");
5152         }
5153 #endif
5154
5155 #ifdef TCP_OFFLOAD
5156         if (is_offload(sc)) {
5157                 /*
5158                  * dev.t4nex.X.toe.
5159                  */
5160                 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD,
5161                     NULL, "TOE parameters");
5162                 children = SYSCTL_CHILDREN(oid);
5163
5164                 sc->tt.sndbuf = 256 * 1024;
5165                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
5166                     &sc->tt.sndbuf, 0, "max hardware send buffer size");
5167
5168                 sc->tt.ddp = 0;
5169                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW,
5170                     &sc->tt.ddp, 0, "DDP allowed");
5171
5172                 sc->tt.rx_coalesce = 1;
5173                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
5174                     CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
5175
5176                 sc->tt.tx_align = 1;
5177                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
5178                     CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
5179
5180                 sc->tt.tx_zcopy = 0;
5181                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
5182                     CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
5183                     "Enable zero-copy aio_write(2)");
5184
5185                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
5186                     CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A",
5187                     "TP timer tick (us)");
5188
5189                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
5190                     CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A",
5191                     "TCP timestamp tick (us)");
5192
5193                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
5194                     CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A",
5195                     "DACK tick (us)");
5196
5197                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
5198                     CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer,
5199                     "IU", "DACK timer (us)");
5200
5201                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
5202                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN,
5203                     sysctl_tp_timer, "LU", "Retransmit min (us)");
5204
5205                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
5206                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX,
5207                     sysctl_tp_timer, "LU", "Retransmit max (us)");
5208
5209                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
5210                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN,
5211                     sysctl_tp_timer, "LU", "Persist timer min (us)");
5212
5213                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
5214                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX,
5215                     sysctl_tp_timer, "LU", "Persist timer max (us)");
5216
5217                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
5218                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE,
5219                     sysctl_tp_timer, "LU", "Keepidle idle timer (us)");
5220
5221                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_intvl",
5222                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL,
5223                     sysctl_tp_timer, "LU", "Keepidle interval (us)");
5224
5225                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
5226                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT,
5227                     sysctl_tp_timer, "LU", "Initial SRTT (us)");
5228
5229                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
5230                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER,
5231                     sysctl_tp_timer, "LU", "FINWAIT2 timer (us)");
5232         }
5233 #endif
5234 }
5235
5236 void
5237 vi_sysctls(struct vi_info *vi)
5238 {
5239         struct sysctl_ctx_list *ctx;
5240         struct sysctl_oid *oid;
5241         struct sysctl_oid_list *children;
5242
5243         ctx = device_get_sysctl_ctx(vi->dev);
5244
5245         /*
5246          * dev.v?(cxgbe|cxl).X.
5247          */
5248         oid = device_get_sysctl_tree(vi->dev);
5249         children = SYSCTL_CHILDREN(oid);
5250
5251         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
5252             vi->viid, "VI identifer");
5253         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
5254             &vi->nrxq, 0, "# of rx queues");
5255         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
5256             &vi->ntxq, 0, "# of tx queues");
5257         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
5258             &vi->first_rxq, 0, "index of first rx queue");
5259         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
5260             &vi->first_txq, 0, "index of first tx queue");
5261         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
5262             vi->rss_size, "size of RSS indirection table");
5263
5264         if (IS_MAIN_VI(vi)) {
5265                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
5266                     CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU",
5267                     "Reserve queue 0 for non-flowid packets");
5268         }
5269
5270 #ifdef TCP_OFFLOAD
5271         if (vi->nofldrxq != 0) {
5272                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
5273                     &vi->nofldrxq, 0,
5274                     "# of rx queues for offloaded TCP connections");
5275                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
5276                     &vi->nofldtxq, 0,
5277                     "# of tx queues for offloaded TCP connections");
5278                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
5279                     CTLFLAG_RD, &vi->first_ofld_rxq, 0,
5280                     "index of first TOE rx queue");
5281                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
5282                     CTLFLAG_RD, &vi->first_ofld_txq, 0,
5283                     "index of first TOE tx queue");
5284         }
5285 #endif
5286 #ifdef DEV_NETMAP
5287         if (vi->nnmrxq != 0) {
5288                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
5289                     &vi->nnmrxq, 0, "# of netmap rx queues");
5290                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
5291                     &vi->nnmtxq, 0, "# of netmap tx queues");
5292                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
5293                     CTLFLAG_RD, &vi->first_nm_rxq, 0,
5294                     "index of first netmap rx queue");
5295                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
5296                     CTLFLAG_RD, &vi->first_nm_txq, 0,
5297                     "index of first netmap tx queue");
5298         }
5299 #endif
5300
5301         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
5302             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I",
5303             "holdoff timer index");
5304         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
5305             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I",
5306             "holdoff packet counter index");
5307
5308         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
5309             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I",
5310             "rx queue size");
5311         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
5312             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I",
5313             "tx queue size");
5314 }
5315
5316 static void
5317 cxgbe_sysctls(struct port_info *pi)
5318 {
5319         struct sysctl_ctx_list *ctx;
5320         struct sysctl_oid *oid;
5321         struct sysctl_oid_list *children, *children2;
5322         struct adapter *sc = pi->adapter;
5323         int i;
5324         char name[16];
5325
5326         ctx = device_get_sysctl_ctx(pi->dev);
5327
5328         /*
5329          * dev.cxgbe.X.
5330          */
5331         oid = device_get_sysctl_tree(pi->dev);
5332         children = SYSCTL_CHILDREN(oid);
5333
5334         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING |
5335            CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down");
5336         if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
5337                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
5338                     CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I",
5339                     "PHY temperature (in Celsius)");
5340                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
5341                     CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I",
5342                     "PHY firmware version");
5343         }
5344
5345         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
5346             CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A",
5347             "PAUSE settings (bit 0 = rx_pause, bit 1 = tx_pause)");
5348         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec",
5349             CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A",
5350             "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
5351         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
5352             CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I",
5353             "autonegotiation (-1 = not supported)");
5354
5355         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
5356             port_top_speed(pi), "max speed (in Gbps)");
5357
5358         if (sc->flags & IS_VF)
5359                 return;
5360
5361         /*
5362          * dev.(cxgbe|cxl).X.tc.
5363          */
5364         oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL,
5365             "Tx scheduler traffic classes (cl_rl)");
5366         for (i = 0; i < sc->chip_params->nsched_cls; i++) {
5367                 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
5368
5369                 snprintf(name, sizeof(name), "%d", i);
5370                 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
5371                     SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL,
5372                     "traffic class"));
5373                 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "flags", CTLFLAG_RD,
5374                     &tc->flags, 0, "flags");
5375                 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
5376                     CTLFLAG_RD, &tc->refcount, 0, "references to this class");
5377 #ifdef SBUF_DRAIN
5378                 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
5379                     CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i,
5380                     sysctl_tc_params, "A", "traffic class parameters");
5381 #endif
5382         }
5383
5384         /*
5385          * dev.cxgbe.X.stats.
5386          */
5387         oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
5388             NULL, "port statistics");
5389         children = SYSCTL_CHILDREN(oid);
5390         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
5391             &pi->tx_parse_error, 0,
5392             "# of tx packets with invalid length or # of segments");
5393
5394 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \
5395         SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \
5396             CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \
5397             sysctl_handle_t4_reg64, "QU", desc)
5398
5399         SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames",
5400             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L));
5401         SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames",
5402             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L));
5403         SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames",
5404             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L));
5405         SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames",
5406             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L));
5407         SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames",
5408             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L));
5409         SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames",
5410             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L));
5411         SYSCTL_ADD_T4_REG64(pi, "tx_frames_64",
5412             "# of tx frames in this range",
5413             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L));
5414         SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127",
5415             "# of tx frames in this range",
5416             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L));
5417         SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255",
5418             "# of tx frames in this range",
5419             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L));
5420         SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511",
5421             "# of tx frames in this range",
5422             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L));
5423         SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023",
5424             "# of tx frames in this range",
5425             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L));
5426         SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518",
5427             "# of tx frames in this range",
5428             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L));
5429         SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max",
5430             "# of tx frames in this range",
5431             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L));
5432         SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames",
5433             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L));
5434         SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted",
5435             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L));
5436         SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted",
5437             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L));
5438         SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted",
5439             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L));
5440         SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted",
5441             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L));
5442         SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted",
5443             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L));
5444         SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted",
5445             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L));
5446         SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted",
5447             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L));
5448         SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted",
5449             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L));
5450         SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted",
5451             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L));
5452
5453         SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames",
5454             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L));
5455         SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames",
5456             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L));
5457         SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames",
5458             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L));
5459         SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames",
5460             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L));
5461         SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames",
5462             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L));
5463         SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU",
5464             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L));
5465         SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames",
5466             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L));
5467         SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err",
5468             "# of frames received with bad FCS",
5469             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L));
5470         SYSCTL_ADD_T4_REG64(pi, "rx_len_err",
5471             "# of frames received with length error",
5472             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L));
5473         SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors",
5474             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L));
5475         SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received",
5476             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L));
5477         SYSCTL_ADD_T4_REG64(pi, "rx_frames_64",
5478             "# of rx frames in this range",
5479             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L));
5480         SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127",
5481             "# of rx frames in this range",
5482             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L));
5483         SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255",
5484             "# of rx frames in this range",
5485             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L));
5486         SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511",
5487             "# of rx frames in this range",
5488             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L));
5489         SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023",
5490             "# of rx frames in this range",
5491             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L));
5492         SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518",
5493             "# of rx frames in this range",
5494             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L));
5495         SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max",
5496             "# of rx frames in this range",
5497             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L));
5498         SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received",
5499             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L));
5500         SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received",
5501             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L));
5502         SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received",
5503             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L));
5504         SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received",
5505             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L));
5506         SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received",
5507             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L));
5508         SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received",
5509             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L));
5510         SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received",
5511             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L));
5512         SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received",
5513             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L));
5514         SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received",
5515             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L));
5516
5517 #undef SYSCTL_ADD_T4_REG64
5518
5519 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \
5520         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
5521             &pi->stats.name, desc)
5522
5523         /* We get these from port_stats and they may be stale by up to 1s */
5524         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0,
5525             "# drops due to buffer-group 0 overflows");
5526         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1,
5527             "# drops due to buffer-group 1 overflows");
5528         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2,
5529             "# drops due to buffer-group 2 overflows");
5530         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3,
5531             "# drops due to buffer-group 3 overflows");
5532         SYSCTL_ADD_T4_PORTSTAT(rx_trunc0,
5533             "# of buffer-group 0 truncated packets");
5534         SYSCTL_ADD_T4_PORTSTAT(rx_trunc1,
5535             "# of buffer-group 1 truncated packets");
5536         SYSCTL_ADD_T4_PORTSTAT(rx_trunc2,
5537             "# of buffer-group 2 truncated packets");
5538         SYSCTL_ADD_T4_PORTSTAT(rx_trunc3,
5539             "# of buffer-group 3 truncated packets");
5540
5541 #undef SYSCTL_ADD_T4_PORTSTAT
5542 }
5543
5544 static int
5545 sysctl_int_array(SYSCTL_HANDLER_ARGS)
5546 {
5547         int rc, *i, space = 0;
5548         struct sbuf sb;
5549
5550         sbuf_new_for_sysctl(&sb, NULL, 64, req);
5551         for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
5552                 if (space)
5553                         sbuf_printf(&sb, " ");
5554                 sbuf_printf(&sb, "%d", *i);
5555                 space = 1;
5556         }
5557         rc = sbuf_finish(&sb);
5558         sbuf_delete(&sb);
5559         return (rc);
5560 }
5561
5562 static int
5563 sysctl_bitfield(SYSCTL_HANDLER_ARGS)
5564 {
5565         int rc;
5566         struct sbuf *sb;
5567
5568         rc = sysctl_wire_old_buffer(req, 0);
5569         if (rc != 0)
5570                 return(rc);
5571
5572         sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5573         if (sb == NULL)
5574                 return (ENOMEM);
5575
5576         sbuf_printf(sb, "%b", (int)arg2, (char *)arg1);
5577         rc = sbuf_finish(sb);
5578         sbuf_delete(sb);
5579
5580         return (rc);
5581 }
5582
5583 static int
5584 sysctl_btphy(SYSCTL_HANDLER_ARGS)
5585 {
5586         struct port_info *pi = arg1;
5587         int op = arg2;
5588         struct adapter *sc = pi->adapter;
5589         u_int v;
5590         int rc;
5591
5592         rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
5593         if (rc)
5594                 return (rc);
5595         /* XXX: magic numbers */
5596         rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820,
5597             &v);
5598         end_synchronized_op(sc, 0);
5599         if (rc)
5600                 return (rc);
5601         if (op == 0)
5602                 v /= 256;
5603
5604         rc = sysctl_handle_int(oidp, &v, 0, req);
5605         return (rc);
5606 }
5607
5608 static int
5609 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
5610 {
5611         struct vi_info *vi = arg1;
5612         int rc, val;
5613
5614         val = vi->rsrv_noflowq;
5615         rc = sysctl_handle_int(oidp, &val, 0, req);
5616         if (rc != 0 || req->newptr == NULL)
5617                 return (rc);
5618
5619         if ((val >= 1) && (vi->ntxq > 1))
5620                 vi->rsrv_noflowq = 1;
5621         else
5622                 vi->rsrv_noflowq = 0;
5623
5624         return (rc);
5625 }
5626
5627 static int
5628 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
5629 {
5630         struct vi_info *vi = arg1;
5631         struct adapter *sc = vi->pi->adapter;
5632         int idx, rc, i;
5633         struct sge_rxq *rxq;
5634 #ifdef TCP_OFFLOAD
5635         struct sge_ofld_rxq *ofld_rxq;
5636 #endif
5637         uint8_t v;
5638
5639         idx = vi->tmr_idx;
5640
5641         rc = sysctl_handle_int(oidp, &idx, 0, req);
5642         if (rc != 0 || req->newptr == NULL)
5643                 return (rc);
5644
5645         if (idx < 0 || idx >= SGE_NTIMERS)
5646                 return (EINVAL);
5647
5648         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
5649             "t4tmr");
5650         if (rc)
5651                 return (rc);
5652
5653         v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
5654         for_each_rxq(vi, i, rxq) {
5655 #ifdef atomic_store_rel_8
5656                 atomic_store_rel_8(&rxq->iq.intr_params, v);
5657 #else
5658                 rxq->iq.intr_params = v;
5659 #endif
5660         }
5661 #ifdef TCP_OFFLOAD
5662         for_each_ofld_rxq(vi, i, ofld_rxq) {
5663 #ifdef atomic_store_rel_8
5664                 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
5665 #else
5666                 ofld_rxq->iq.intr_params = v;
5667 #endif
5668         }
5669 #endif
5670         vi->tmr_idx = idx;
5671
5672         end_synchronized_op(sc, LOCK_HELD);
5673         return (0);
5674 }
5675
5676 static int
5677 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
5678 {
5679         struct vi_info *vi = arg1;
5680         struct adapter *sc = vi->pi->adapter;
5681         int idx, rc;
5682
5683         idx = vi->pktc_idx;
5684
5685         rc = sysctl_handle_int(oidp, &idx, 0, req);
5686         if (rc != 0 || req->newptr == NULL)
5687                 return (rc);
5688
5689         if (idx < -1 || idx >= SGE_NCOUNTERS)
5690                 return (EINVAL);
5691
5692         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
5693             "t4pktc");
5694         if (rc)
5695                 return (rc);
5696
5697         if (vi->flags & VI_INIT_DONE)
5698                 rc = EBUSY; /* cannot be changed once the queues are created */
5699         else
5700                 vi->pktc_idx = idx;
5701
5702         end_synchronized_op(sc, LOCK_HELD);
5703         return (rc);
5704 }
5705
5706 static int
5707 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
5708 {
5709         struct vi_info *vi = arg1;
5710         struct adapter *sc = vi->pi->adapter;
5711         int qsize, rc;
5712
5713         qsize = vi->qsize_rxq;
5714
5715         rc = sysctl_handle_int(oidp, &qsize, 0, req);
5716         if (rc != 0 || req->newptr == NULL)
5717                 return (rc);
5718
5719         if (qsize < 128 || (qsize & 7))
5720                 return (EINVAL);
5721
5722         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
5723             "t4rxqs");
5724         if (rc)
5725                 return (rc);
5726
5727         if (vi->flags & VI_INIT_DONE)
5728                 rc = EBUSY; /* cannot be changed once the queues are created */
5729         else
5730                 vi->qsize_rxq = qsize;
5731
5732         end_synchronized_op(sc, LOCK_HELD);
5733         return (rc);
5734 }
5735
5736 static int
5737 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
5738 {
5739         struct vi_info *vi = arg1;
5740         struct adapter *sc = vi->pi->adapter;
5741         int qsize, rc;
5742
5743         qsize = vi->qsize_txq;
5744
5745         rc = sysctl_handle_int(oidp, &qsize, 0, req);
5746         if (rc != 0 || req->newptr == NULL)
5747                 return (rc);
5748
5749         if (qsize < 128 || qsize > 65536)
5750                 return (EINVAL);
5751
5752         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
5753             "t4txqs");
5754         if (rc)
5755                 return (rc);
5756
5757         if (vi->flags & VI_INIT_DONE)
5758                 rc = EBUSY; /* cannot be changed once the queues are created */
5759         else
5760                 vi->qsize_txq = qsize;
5761
5762         end_synchronized_op(sc, LOCK_HELD);
5763         return (rc);
5764 }
5765
5766 static int
5767 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
5768 {
5769         struct port_info *pi = arg1;
5770         struct adapter *sc = pi->adapter;
5771         struct link_config *lc = &pi->link_cfg;
5772         int rc;
5773
5774         if (req->newptr == NULL) {
5775                 struct sbuf *sb;
5776                 static char *bits = "\20\1PAUSE_RX\2PAUSE_TX";
5777
5778                 rc = sysctl_wire_old_buffer(req, 0);
5779                 if (rc != 0)
5780                         return(rc);
5781
5782                 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5783                 if (sb == NULL)
5784                         return (ENOMEM);
5785
5786                 sbuf_printf(sb, "%b", lc->fc & (PAUSE_TX | PAUSE_RX), bits);
5787                 rc = sbuf_finish(sb);
5788                 sbuf_delete(sb);
5789         } else {
5790                 char s[2];
5791                 int n;
5792
5793                 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX));
5794                 s[1] = 0;
5795
5796                 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
5797                 if (rc != 0)
5798                         return(rc);
5799
5800                 if (s[1] != 0)
5801                         return (EINVAL);
5802                 if (s[0] < '0' || s[0] > '9')
5803                         return (EINVAL);        /* not a number */
5804                 n = s[0] - '0';
5805                 if (n & ~(PAUSE_TX | PAUSE_RX))
5806                         return (EINVAL);        /* some other bit is set too */
5807
5808                 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
5809                     "t4PAUSE");
5810                 if (rc)
5811                         return (rc);
5812                 if ((lc->requested_fc & (PAUSE_TX | PAUSE_RX)) != n) {
5813                         lc->requested_fc &= ~(PAUSE_TX | PAUSE_RX);
5814                         lc->requested_fc |= n;
5815                         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
5816                 }
5817                 end_synchronized_op(sc, 0);
5818         }
5819
5820         return (rc);
5821 }
5822
5823 static int
5824 sysctl_fec(SYSCTL_HANDLER_ARGS)
5825 {
5826         struct port_info *pi = arg1;
5827         struct adapter *sc = pi->adapter;
5828         struct link_config *lc = &pi->link_cfg;
5829         int rc;
5830
5831         if (req->newptr == NULL) {
5832                 struct sbuf *sb;
5833                 static char *bits = "\20\1RS\2BASER_RS\3RESERVED";
5834
5835                 rc = sysctl_wire_old_buffer(req, 0);
5836                 if (rc != 0)
5837                         return(rc);
5838
5839                 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5840                 if (sb == NULL)
5841                         return (ENOMEM);
5842
5843                 sbuf_printf(sb, "%b", lc->fec & M_FW_PORT_CAP_FEC, bits);
5844                 rc = sbuf_finish(sb);
5845                 sbuf_delete(sb);
5846         } else {
5847                 char s[2];
5848                 int n;
5849
5850                 s[0] = '0' + (lc->requested_fec & M_FW_PORT_CAP_FEC);
5851                 s[1] = 0;
5852
5853                 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
5854                 if (rc != 0)
5855                         return(rc);
5856
5857                 if (s[1] != 0)
5858                         return (EINVAL);
5859                 if (s[0] < '0' || s[0] > '9')
5860                         return (EINVAL);        /* not a number */
5861                 n = s[0] - '0';
5862                 if (n & ~M_FW_PORT_CAP_FEC)
5863                         return (EINVAL);        /* some other bit is set too */
5864
5865                 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
5866                     "t4fec");
5867                 if (rc)
5868                         return (rc);
5869                 if ((lc->requested_fec & M_FW_PORT_CAP_FEC) != n) {
5870                         lc->requested_fec = n &
5871                             G_FW_PORT_CAP_FEC(lc->supported);
5872                         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
5873                 }
5874                 end_synchronized_op(sc, 0);
5875         }
5876
5877         return (rc);
5878 }
5879
5880 static int
5881 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
5882 {
5883         struct port_info *pi = arg1;
5884         struct adapter *sc = pi->adapter;
5885         struct link_config *lc = &pi->link_cfg;
5886         int rc, val, old;
5887
5888         if (lc->supported & FW_PORT_CAP_ANEG)
5889                 val = lc->autoneg == AUTONEG_ENABLE ? 1 : 0;
5890         else
5891                 val = -1;
5892         rc = sysctl_handle_int(oidp, &val, 0, req);
5893         if (rc != 0 || req->newptr == NULL)
5894                 return (rc);
5895         if ((lc->supported & FW_PORT_CAP_ANEG) == 0)
5896                 return (ENOTSUP);
5897
5898         if (val == 0)
5899                 val = AUTONEG_DISABLE;
5900         else if (val == 1)
5901                 val = AUTONEG_ENABLE;
5902         else
5903                 return (EINVAL);
5904         if (lc->autoneg == val)
5905                 return (0);     /* no change */
5906
5907         rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
5908             "t4aneg");
5909         if (rc)
5910                 return (rc);
5911         old = lc->autoneg;
5912         lc->autoneg = val;
5913         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
5914         if (rc != 0)
5915                 lc->autoneg = old;
5916         end_synchronized_op(sc, 0);
5917         return (rc);
5918 }
5919
5920 static int
5921 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
5922 {
5923         struct adapter *sc = arg1;
5924         int reg = arg2;
5925         uint64_t val;
5926
5927         val = t4_read_reg64(sc, reg);
5928
5929         return (sysctl_handle_64(oidp, &val, 0, req));
5930 }
5931
5932 static int
5933 sysctl_temperature(SYSCTL_HANDLER_ARGS)
5934 {
5935         struct adapter *sc = arg1;
5936         int rc, t;
5937         uint32_t param, val;
5938
5939         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
5940         if (rc)
5941                 return (rc);
5942         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5943             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5944             V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
5945         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5946         end_synchronized_op(sc, 0);
5947         if (rc)
5948                 return (rc);
5949
5950         /* unknown is returned as 0 but we display -1 in that case */
5951         t = val == 0 ? -1 : val;
5952
5953         rc = sysctl_handle_int(oidp, &t, 0, req);
5954         return (rc);
5955 }
5956
5957 #ifdef SBUF_DRAIN
5958 static int
5959 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
5960 {
5961         struct adapter *sc = arg1;
5962         struct sbuf *sb;
5963         int rc, i;
5964         uint16_t incr[NMTUS][NCCTRL_WIN];
5965         static const char *dec_fac[] = {
5966                 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
5967                 "0.9375"
5968         };
5969
5970         rc = sysctl_wire_old_buffer(req, 0);
5971         if (rc != 0)
5972                 return (rc);
5973
5974         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
5975         if (sb == NULL)
5976                 return (ENOMEM);
5977
5978         t4_read_cong_tbl(sc, incr);
5979
5980         for (i = 0; i < NCCTRL_WIN; ++i) {
5981                 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
5982                     incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
5983                     incr[5][i], incr[6][i], incr[7][i]);
5984                 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
5985                     incr[8][i], incr[9][i], incr[10][i], incr[11][i],
5986                     incr[12][i], incr[13][i], incr[14][i], incr[15][i],
5987                     sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
5988         }
5989
5990         rc = sbuf_finish(sb);
5991         sbuf_delete(sb);
5992
5993         return (rc);
5994 }
5995
5996 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
5997         "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",   /* ibq's */
5998         "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
5999         "SGE0-RX", "SGE1-RX"    /* additional obq's (T5 onwards) */
6000 };
6001
6002 static int
6003 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
6004 {
6005         struct adapter *sc = arg1;
6006         struct sbuf *sb;
6007         int rc, i, n, qid = arg2;
6008         uint32_t *buf, *p;
6009         char *qtype;
6010         u_int cim_num_obq = sc->chip_params->cim_num_obq;
6011
6012         KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
6013             ("%s: bad qid %d\n", __func__, qid));
6014
6015         if (qid < CIM_NUM_IBQ) {
6016                 /* inbound queue */
6017                 qtype = "IBQ";
6018                 n = 4 * CIM_IBQ_SIZE;
6019                 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
6020                 rc = t4_read_cim_ibq(sc, qid, buf, n);
6021         } else {
6022                 /* outbound queue */
6023                 qtype = "OBQ";
6024                 qid -= CIM_NUM_IBQ;
6025                 n = 4 * cim_num_obq * CIM_OBQ_SIZE;
6026                 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
6027                 rc = t4_read_cim_obq(sc, qid, buf, n);
6028         }
6029
6030         if (rc < 0) {
6031                 rc = -rc;
6032                 goto done;
6033         }
6034         n = rc * sizeof(uint32_t);      /* rc has # of words actually read */
6035
6036         rc = sysctl_wire_old_buffer(req, 0);
6037         if (rc != 0)
6038                 goto done;
6039
6040         sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
6041         if (sb == NULL) {
6042                 rc = ENOMEM;
6043                 goto done;
6044         }
6045
6046         sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
6047         for (i = 0, p = buf; i < n; i += 16, p += 4)
6048                 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
6049                     p[2], p[3]);
6050
6051         rc = sbuf_finish(sb);
6052         sbuf_delete(sb);
6053 done:
6054         free(buf, M_CXGBE);
6055         return (rc);
6056 }
6057
6058 static int
6059 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
6060 {
6061         struct adapter *sc = arg1;
6062         u_int cfg;
6063         struct sbuf *sb;
6064         uint32_t *buf, *p;
6065         int rc;
6066
6067         MPASS(chip_id(sc) <= CHELSIO_T5);
6068
6069         rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
6070         if (rc != 0)
6071                 return (rc);
6072
6073         rc = sysctl_wire_old_buffer(req, 0);
6074         if (rc != 0)
6075                 return (rc);
6076
6077         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6078         if (sb == NULL)
6079                 return (ENOMEM);
6080
6081         buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
6082             M_ZERO | M_WAITOK);
6083
6084         rc = -t4_cim_read_la(sc, buf, NULL);
6085         if (rc != 0)
6086                 goto done;
6087
6088         sbuf_printf(sb, "Status   Data      PC%s",
6089             cfg & F_UPDBGLACAPTPCONLY ? "" :
6090             "     LS0Stat  LS0Addr             LS0Data");
6091
6092         for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
6093                 if (cfg & F_UPDBGLACAPTPCONLY) {
6094                         sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
6095                             p[6], p[7]);
6096                         sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
6097                             (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
6098                             p[4] & 0xff, p[5] >> 8);
6099                         sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
6100                             (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
6101                             p[1] & 0xf, p[2] >> 4);
6102                 } else {
6103                         sbuf_printf(sb,
6104                             "\n  %02x   %x%07x %x%07x %08x %08x "
6105                             "%08x%08x%08x%08x",
6106                             (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
6107                             p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
6108                             p[6], p[7]);
6109                 }
6110         }
6111
6112         rc = sbuf_finish(sb);
6113         sbuf_delete(sb);
6114 done:
6115         free(buf, M_CXGBE);
6116         return (rc);
6117 }
6118
6119 static int
6120 sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS)
6121 {
6122         struct adapter *sc = arg1;
6123         u_int cfg;
6124         struct sbuf *sb;
6125         uint32_t *buf, *p;
6126         int rc;
6127
6128         MPASS(chip_id(sc) > CHELSIO_T5);
6129
6130         rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
6131         if (rc != 0)
6132                 return (rc);
6133
6134         rc = sysctl_wire_old_buffer(req, 0);
6135         if (rc != 0)
6136                 return (rc);
6137
6138         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6139         if (sb == NULL)
6140                 return (ENOMEM);
6141
6142         buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
6143             M_ZERO | M_WAITOK);
6144
6145         rc = -t4_cim_read_la(sc, buf, NULL);
6146         if (rc != 0)
6147                 goto done;
6148
6149         sbuf_printf(sb, "Status   Inst    Data      PC%s",
6150             cfg & F_UPDBGLACAPTPCONLY ? "" :
6151             "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
6152
6153         for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
6154                 if (cfg & F_UPDBGLACAPTPCONLY) {
6155                         sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
6156                             p[3] & 0xff, p[2], p[1], p[0]);
6157                         sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
6158                             (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
6159                             p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
6160                         sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
6161                             (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
6162                             p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
6163                             p[6] >> 16);
6164                 } else {
6165                         sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
6166                             "%08x %08x %08x %08x %08x %08x",
6167                             (p[9] >> 16) & 0xff,
6168                             p[9] & 0xffff, p[8] >> 16,
6169                             p[8] & 0xffff, p[7] >> 16,
6170                             p[7] & 0xffff, p[6] >> 16,
6171                             p[2], p[1], p[0], p[5], p[4], p[3]);
6172                 }
6173         }
6174
6175         rc = sbuf_finish(sb);
6176         sbuf_delete(sb);
6177 done:
6178         free(buf, M_CXGBE);
6179         return (rc);
6180 }
6181
6182 static int
6183 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
6184 {
6185         struct adapter *sc = arg1;
6186         u_int i;
6187         struct sbuf *sb;
6188         uint32_t *buf, *p;
6189         int rc;
6190
6191         rc = sysctl_wire_old_buffer(req, 0);
6192         if (rc != 0)
6193                 return (rc);
6194
6195         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6196         if (sb == NULL)
6197                 return (ENOMEM);
6198
6199         buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
6200             M_ZERO | M_WAITOK);
6201
6202         t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
6203         p = buf;
6204
6205         for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
6206                 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
6207                     p[1], p[0]);
6208         }
6209
6210         sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
6211         for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
6212                 sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
6213                     (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
6214                     (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
6215                     (p[1] >> 2) | ((p[2] & 3) << 30),
6216                     (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
6217                     p[0] & 1);
6218         }
6219
6220         rc = sbuf_finish(sb);
6221         sbuf_delete(sb);
6222         free(buf, M_CXGBE);
6223         return (rc);
6224 }
6225
6226 static int
6227 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
6228 {
6229         struct adapter *sc = arg1;
6230         u_int i;
6231         struct sbuf *sb;
6232         uint32_t *buf, *p;
6233         int rc;
6234
6235         rc = sysctl_wire_old_buffer(req, 0);
6236         if (rc != 0)
6237                 return (rc);
6238
6239         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6240         if (sb == NULL)
6241                 return (ENOMEM);
6242
6243         buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
6244             M_ZERO | M_WAITOK);
6245
6246         t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
6247         p = buf;
6248
6249         sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
6250         for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
6251                 sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
6252                     (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
6253                     p[4], p[3], p[2], p[1], p[0]);
6254         }
6255
6256         sbuf_printf(sb, "\n\nCntl ID               Data");
6257         for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
6258                 sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
6259                     (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
6260         }
6261
6262         rc = sbuf_finish(sb);
6263         sbuf_delete(sb);
6264         free(buf, M_CXGBE);
6265         return (rc);
6266 }
6267
6268 static int
6269 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
6270 {
6271         struct adapter *sc = arg1;
6272         struct sbuf *sb;
6273         int rc, i;
6274         uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
6275         uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
6276         uint16_t thres[CIM_NUM_IBQ];
6277         uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
6278         uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
6279         u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
6280
6281         cim_num_obq = sc->chip_params->cim_num_obq;
6282         if (is_t4(sc)) {
6283                 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
6284                 obq_rdaddr = A_UP_OBQ_0_REALADDR;
6285         } else {
6286                 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
6287                 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
6288         }
6289         nq = CIM_NUM_IBQ + cim_num_obq;
6290
6291         rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
6292         if (rc == 0)
6293                 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr);
6294         if (rc != 0)
6295                 return (rc);
6296
6297         t4_read_cimq_cfg(sc, base, size, thres);
6298
6299         rc = sysctl_wire_old_buffer(req, 0);
6300         if (rc != 0)
6301                 return (rc);
6302
6303         sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
6304         if (sb == NULL)
6305                 return (ENOMEM);
6306
6307         sbuf_printf(sb,
6308             "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
6309
6310         for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
6311                 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
6312                     qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
6313                     G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
6314                     G_QUEREMFLITS(p[2]) * 16);
6315         for ( ; i < nq; i++, p += 4, wr += 2)
6316                 sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
6317                     base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
6318                     wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
6319                     G_QUEREMFLITS(p[2]) * 16);
6320
6321         rc = sbuf_finish(sb);
6322         sbuf_delete(sb);
6323
6324         return (rc);
6325 }
6326
6327 static int
6328 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
6329 {
6330         struct adapter *sc = arg1;
6331         struct sbuf *sb;
6332         int rc;
6333         struct tp_cpl_stats stats;
6334
6335         rc = sysctl_wire_old_buffer(req, 0);
6336         if (rc != 0)
6337                 return (rc);
6338
6339         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6340         if (sb == NULL)
6341                 return (ENOMEM);
6342
6343         mtx_lock(&sc->reg_lock);
6344         t4_tp_get_cpl_stats(sc, &stats);
6345         mtx_unlock(&sc->reg_lock);
6346
6347         if (sc->chip_params->nchan > 2) {
6348                 sbuf_printf(sb, "                 channel 0  channel 1"
6349                     "  channel 2  channel 3");
6350                 sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
6351                     stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
6352                 sbuf_printf(sb, "\nCPL responses:   %10u %10u %10u %10u",
6353                     stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
6354         } else {
6355                 sbuf_printf(sb, "                 channel 0  channel 1");
6356                 sbuf_printf(sb, "\nCPL requests:   %10u %10u",
6357                     stats.req[0], stats.req[1]);
6358                 sbuf_printf(sb, "\nCPL responses:   %10u %10u",
6359                     stats.rsp[0], stats.rsp[1]);
6360         }
6361
6362         rc = sbuf_finish(sb);
6363         sbuf_delete(sb);
6364
6365         return (rc);
6366 }
6367
6368 static int
6369 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
6370 {
6371         struct adapter *sc = arg1;
6372         struct sbuf *sb;
6373         int rc;
6374         struct tp_usm_stats stats;
6375
6376         rc = sysctl_wire_old_buffer(req, 0);
6377         if (rc != 0)
6378                 return(rc);
6379
6380         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6381         if (sb == NULL)
6382                 return (ENOMEM);
6383
6384         t4_get_usm_stats(sc, &stats);
6385
6386         sbuf_printf(sb, "Frames: %u\n", stats.frames);
6387         sbuf_printf(sb, "Octets: %ju\n", stats.octets);
6388         sbuf_printf(sb, "Drops:  %u", stats.drops);
6389
6390         rc = sbuf_finish(sb);
6391         sbuf_delete(sb);
6392
6393         return (rc);
6394 }
6395
6396 static const char * const devlog_level_strings[] = {
6397         [FW_DEVLOG_LEVEL_EMERG]         = "EMERG",
6398         [FW_DEVLOG_LEVEL_CRIT]          = "CRIT",
6399         [FW_DEVLOG_LEVEL_ERR]           = "ERR",
6400         [FW_DEVLOG_LEVEL_NOTICE]        = "NOTICE",
6401         [FW_DEVLOG_LEVEL_INFO]          = "INFO",
6402         [FW_DEVLOG_LEVEL_DEBUG]         = "DEBUG"
6403 };
6404
6405 static const char * const devlog_facility_strings[] = {
6406         [FW_DEVLOG_FACILITY_CORE]       = "CORE",
6407         [FW_DEVLOG_FACILITY_CF]         = "CF",
6408         [FW_DEVLOG_FACILITY_SCHED]      = "SCHED",
6409         [FW_DEVLOG_FACILITY_TIMER]      = "TIMER",
6410         [FW_DEVLOG_FACILITY_RES]        = "RES",
6411         [FW_DEVLOG_FACILITY_HW]         = "HW",
6412         [FW_DEVLOG_FACILITY_FLR]        = "FLR",
6413         [FW_DEVLOG_FACILITY_DMAQ]       = "DMAQ",
6414         [FW_DEVLOG_FACILITY_PHY]        = "PHY",
6415         [FW_DEVLOG_FACILITY_MAC]        = "MAC",
6416         [FW_DEVLOG_FACILITY_PORT]       = "PORT",
6417         [FW_DEVLOG_FACILITY_VI]         = "VI",
6418         [FW_DEVLOG_FACILITY_FILTER]     = "FILTER",
6419         [FW_DEVLOG_FACILITY_ACL]        = "ACL",
6420         [FW_DEVLOG_FACILITY_TM]         = "TM",
6421         [FW_DEVLOG_FACILITY_QFC]        = "QFC",
6422         [FW_DEVLOG_FACILITY_DCB]        = "DCB",
6423         [FW_DEVLOG_FACILITY_ETH]        = "ETH",
6424         [FW_DEVLOG_FACILITY_OFLD]       = "OFLD",
6425         [FW_DEVLOG_FACILITY_RI]         = "RI",
6426         [FW_DEVLOG_FACILITY_ISCSI]      = "ISCSI",
6427         [FW_DEVLOG_FACILITY_FCOE]       = "FCOE",
6428         [FW_DEVLOG_FACILITY_FOISCSI]    = "FOISCSI",
6429         [FW_DEVLOG_FACILITY_FOFCOE]     = "FOFCOE",
6430         [FW_DEVLOG_FACILITY_CHNET]      = "CHNET",
6431 };
6432
6433 static int
6434 sysctl_devlog(SYSCTL_HANDLER_ARGS)
6435 {
6436         struct adapter *sc = arg1;
6437         struct devlog_params *dparams = &sc->params.devlog;
6438         struct fw_devlog_e *buf, *e;
6439         int i, j, rc, nentries, first = 0;
6440         struct sbuf *sb;
6441         uint64_t ftstamp = UINT64_MAX;
6442
6443         if (dparams->addr == 0)
6444                 return (ENXIO);
6445
6446         buf = malloc(dparams->size, M_CXGBE, M_NOWAIT);
6447         if (buf == NULL)
6448                 return (ENOMEM);
6449
6450         rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size);
6451         if (rc != 0)
6452                 goto done;
6453
6454         nentries = dparams->size / sizeof(struct fw_devlog_e);
6455         for (i = 0; i < nentries; i++) {
6456                 e = &buf[i];
6457
6458                 if (e->timestamp == 0)
6459                         break;  /* end */
6460
6461                 e->timestamp = be64toh(e->timestamp);
6462                 e->seqno = be32toh(e->seqno);
6463                 for (j = 0; j < 8; j++)
6464                         e->params[j] = be32toh(e->params[j]);
6465
6466                 if (e->timestamp < ftstamp) {
6467                         ftstamp = e->timestamp;
6468                         first = i;
6469                 }
6470         }
6471
6472         if (buf[first].timestamp == 0)
6473                 goto done;      /* nothing in the log */
6474
6475         rc = sysctl_wire_old_buffer(req, 0);
6476         if (rc != 0)
6477                 goto done;
6478
6479         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6480         if (sb == NULL) {
6481                 rc = ENOMEM;
6482                 goto done;
6483         }
6484         sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
6485             "Seq#", "Tstamp", "Level", "Facility", "Message");
6486
6487         i = first;
6488         do {
6489                 e = &buf[i];
6490                 if (e->timestamp == 0)
6491                         break;  /* end */
6492
6493                 sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
6494                     e->seqno, e->timestamp,
6495                     (e->level < nitems(devlog_level_strings) ?
6496                         devlog_level_strings[e->level] : "UNKNOWN"),
6497                     (e->facility < nitems(devlog_facility_strings) ?
6498                         devlog_facility_strings[e->facility] : "UNKNOWN"));
6499                 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
6500                     e->params[2], e->params[3], e->params[4],
6501                     e->params[5], e->params[6], e->params[7]);
6502
6503                 if (++i == nentries)
6504                         i = 0;
6505         } while (i != first);
6506
6507         rc = sbuf_finish(sb);
6508         sbuf_delete(sb);
6509 done:
6510         free(buf, M_CXGBE);
6511         return (rc);
6512 }
6513
6514 static int
6515 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
6516 {
6517         struct adapter *sc = arg1;
6518         struct sbuf *sb;
6519         int rc;
6520         struct tp_fcoe_stats stats[MAX_NCHAN];
6521         int i, nchan = sc->chip_params->nchan;
6522
6523         rc = sysctl_wire_old_buffer(req, 0);
6524         if (rc != 0)
6525                 return (rc);
6526
6527         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6528         if (sb == NULL)
6529                 return (ENOMEM);
6530
6531         for (i = 0; i < nchan; i++)
6532                 t4_get_fcoe_stats(sc, i, &stats[i]);
6533
6534         if (nchan > 2) {
6535                 sbuf_printf(sb, "                   channel 0        channel 1"
6536                     "        channel 2        channel 3");
6537                 sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
6538                     stats[0].octets_ddp, stats[1].octets_ddp,
6539                     stats[2].octets_ddp, stats[3].octets_ddp);
6540                 sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
6541                     stats[0].frames_ddp, stats[1].frames_ddp,
6542                     stats[2].frames_ddp, stats[3].frames_ddp);
6543                 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
6544                     stats[0].frames_drop, stats[1].frames_drop,
6545                     stats[2].frames_drop, stats[3].frames_drop);
6546         } else {
6547                 sbuf_printf(sb, "                   channel 0        channel 1");
6548                 sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
6549                     stats[0].octets_ddp, stats[1].octets_ddp);
6550                 sbuf_printf(sb, "\nframesDDP:  %16u %16u",
6551                     stats[0].frames_ddp, stats[1].frames_ddp);
6552                 sbuf_printf(sb, "\nframesDrop: %16u %16u",
6553                     stats[0].frames_drop, stats[1].frames_drop);
6554         }
6555
6556         rc = sbuf_finish(sb);
6557         sbuf_delete(sb);
6558
6559         return (rc);
6560 }
6561
6562 static int
6563 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
6564 {
6565         struct adapter *sc = arg1;
6566         struct sbuf *sb;
6567         int rc, i;
6568         unsigned int map, kbps, ipg, mode;
6569         unsigned int pace_tab[NTX_SCHED];
6570
6571         rc = sysctl_wire_old_buffer(req, 0);
6572         if (rc != 0)
6573                 return (rc);
6574
6575         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6576         if (sb == NULL)
6577                 return (ENOMEM);
6578
6579         map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
6580         mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
6581         t4_read_pace_tbl(sc, pace_tab);
6582
6583         sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
6584             "Class IPG (0.1 ns)   Flow IPG (us)");
6585
6586         for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
6587                 t4_get_tx_sched(sc, i, &kbps, &ipg);
6588                 sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
6589                     (mode & (1 << i)) ? "flow" : "class", map & 3);
6590                 if (kbps)
6591                         sbuf_printf(sb, "%9u     ", kbps);
6592                 else
6593                         sbuf_printf(sb, " disabled     ");
6594
6595                 if (ipg)
6596                         sbuf_printf(sb, "%13u        ", ipg);
6597                 else
6598                         sbuf_printf(sb, "     disabled        ");
6599
6600                 if (pace_tab[i])
6601                         sbuf_printf(sb, "%10u", pace_tab[i]);
6602                 else
6603                         sbuf_printf(sb, "  disabled");
6604         }
6605
6606         rc = sbuf_finish(sb);
6607         sbuf_delete(sb);
6608
6609         return (rc);
6610 }
6611
6612 static int
6613 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
6614 {
6615         struct adapter *sc = arg1;
6616         struct sbuf *sb;
6617         int rc, i, j;
6618         uint64_t *p0, *p1;
6619         struct lb_port_stats s[2];
6620         static const char *stat_name[] = {
6621                 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
6622                 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
6623                 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
6624                 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
6625                 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
6626                 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
6627                 "BG2FramesTrunc:", "BG3FramesTrunc:"
6628         };
6629
6630         rc = sysctl_wire_old_buffer(req, 0);
6631         if (rc != 0)
6632                 return (rc);
6633
6634         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6635         if (sb == NULL)
6636                 return (ENOMEM);
6637
6638         memset(s, 0, sizeof(s));
6639
6640         for (i = 0; i < sc->chip_params->nchan; i += 2) {
6641                 t4_get_lb_stats(sc, i, &s[0]);
6642                 t4_get_lb_stats(sc, i + 1, &s[1]);
6643
6644                 p0 = &s[0].octets;
6645                 p1 = &s[1].octets;
6646                 sbuf_printf(sb, "%s                       Loopback %u"
6647                     "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
6648
6649                 for (j = 0; j < nitems(stat_name); j++)
6650                         sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
6651                                    *p0++, *p1++);
6652         }
6653
6654         rc = sbuf_finish(sb);
6655         sbuf_delete(sb);
6656
6657         return (rc);
6658 }
6659
6660 static int
6661 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
6662 {
6663         int rc = 0;
6664         struct port_info *pi = arg1;
6665         struct link_config *lc = &pi->link_cfg;
6666         struct sbuf *sb;
6667
6668         rc = sysctl_wire_old_buffer(req, 0);
6669         if (rc != 0)
6670                 return(rc);
6671         sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
6672         if (sb == NULL)
6673                 return (ENOMEM);
6674
6675         if (lc->link_ok || lc->link_down_rc == 255)
6676                 sbuf_printf(sb, "n/a");
6677         else
6678                 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
6679
6680         rc = sbuf_finish(sb);
6681         sbuf_delete(sb);
6682
6683         return (rc);
6684 }
6685
6686 struct mem_desc {
6687         unsigned int base;
6688         unsigned int limit;
6689         unsigned int idx;
6690 };
6691
6692 static int
6693 mem_desc_cmp(const void *a, const void *b)
6694 {
6695         return ((const struct mem_desc *)a)->base -
6696                ((const struct mem_desc *)b)->base;
6697 }
6698
6699 static void
6700 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
6701     unsigned int to)
6702 {
6703         unsigned int size;
6704
6705         if (from == to)
6706                 return;
6707
6708         size = to - from + 1;
6709         if (size == 0)
6710                 return;
6711
6712         /* XXX: need humanize_number(3) in libkern for a more readable 'size' */
6713         sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
6714 }
6715
6716 static int
6717 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
6718 {
6719         struct adapter *sc = arg1;
6720         struct sbuf *sb;
6721         int rc, i, n;
6722         uint32_t lo, hi, used, alloc;
6723         static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"};
6724         static const char *region[] = {
6725                 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
6726                 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
6727                 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
6728                 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
6729                 "RQUDP region:", "PBL region:", "TXPBL region:",
6730                 "DBVFIFO region:", "ULPRX state:", "ULPTX state:",
6731                 "On-chip queues:"
6732         };
6733         struct mem_desc avail[4];
6734         struct mem_desc mem[nitems(region) + 3];        /* up to 3 holes */
6735         struct mem_desc *md = mem;
6736
6737         rc = sysctl_wire_old_buffer(req, 0);
6738         if (rc != 0)
6739                 return (rc);
6740
6741         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6742         if (sb == NULL)
6743                 return (ENOMEM);
6744
6745         for (i = 0; i < nitems(mem); i++) {
6746                 mem[i].limit = 0;
6747                 mem[i].idx = i;
6748         }
6749
6750         /* Find and sort the populated memory ranges */
6751         i = 0;
6752         lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
6753         if (lo & F_EDRAM0_ENABLE) {
6754                 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
6755                 avail[i].base = G_EDRAM0_BASE(hi) << 20;
6756                 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
6757                 avail[i].idx = 0;
6758                 i++;
6759         }
6760         if (lo & F_EDRAM1_ENABLE) {
6761                 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
6762                 avail[i].base = G_EDRAM1_BASE(hi) << 20;
6763                 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
6764                 avail[i].idx = 1;
6765                 i++;
6766         }
6767         if (lo & F_EXT_MEM_ENABLE) {
6768                 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
6769                 avail[i].base = G_EXT_MEM_BASE(hi) << 20;
6770                 avail[i].limit = avail[i].base +
6771                     (G_EXT_MEM_SIZE(hi) << 20);
6772                 avail[i].idx = is_t5(sc) ? 3 : 2;       /* Call it MC0 for T5 */
6773                 i++;
6774         }
6775         if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
6776                 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
6777                 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
6778                 avail[i].limit = avail[i].base +
6779                     (G_EXT_MEM1_SIZE(hi) << 20);
6780                 avail[i].idx = 4;
6781                 i++;
6782         }
6783         if (!i)                                    /* no memory available */
6784                 return 0;
6785         qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
6786
6787         (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
6788         (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
6789         (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
6790         (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
6791         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
6792         (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
6793         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
6794         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
6795         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
6796
6797         /* the next few have explicit upper bounds */
6798         md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
6799         md->limit = md->base - 1 +
6800                     t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
6801                     G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
6802         md++;
6803
6804         md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
6805         md->limit = md->base - 1 +
6806                     t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
6807                     G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
6808         md++;
6809
6810         if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
6811                 if (chip_id(sc) <= CHELSIO_T5)
6812                         md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
6813                 else
6814                         md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
6815                 md->limit = 0;
6816         } else {
6817                 md->base = 0;
6818                 md->idx = nitems(region);  /* hide it */
6819         }
6820         md++;
6821
6822 #define ulp_region(reg) \
6823         md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
6824         (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
6825
6826         ulp_region(RX_ISCSI);
6827         ulp_region(RX_TDDP);
6828         ulp_region(TX_TPT);
6829         ulp_region(RX_STAG);
6830         ulp_region(RX_RQ);
6831         ulp_region(RX_RQUDP);
6832         ulp_region(RX_PBL);
6833         ulp_region(TX_PBL);
6834 #undef ulp_region
6835
6836         md->base = 0;
6837         md->idx = nitems(region);
6838         if (!is_t4(sc)) {
6839                 uint32_t size = 0;
6840                 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
6841                 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
6842
6843                 if (is_t5(sc)) {
6844                         if (sge_ctrl & F_VFIFO_ENABLE)
6845                                 size = G_DBVFIFO_SIZE(fifo_size);
6846                 } else
6847                         size = G_T6_DBVFIFO_SIZE(fifo_size);
6848
6849                 if (size) {
6850                         md->base = G_BASEADDR(t4_read_reg(sc,
6851                             A_SGE_DBVFIFO_BADDR));
6852                         md->limit = md->base + (size << 2) - 1;
6853                 }
6854         }
6855         md++;
6856
6857         md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
6858         md->limit = 0;
6859         md++;
6860         md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
6861         md->limit = 0;
6862         md++;
6863
6864         md->base = sc->vres.ocq.start;
6865         if (sc->vres.ocq.size)
6866                 md->limit = md->base + sc->vres.ocq.size - 1;
6867         else
6868                 md->idx = nitems(region);  /* hide it */
6869         md++;
6870
6871         /* add any address-space holes, there can be up to 3 */
6872         for (n = 0; n < i - 1; n++)
6873                 if (avail[n].limit < avail[n + 1].base)
6874                         (md++)->base = avail[n].limit;
6875         if (avail[n].limit)
6876                 (md++)->base = avail[n].limit;
6877
6878         n = md - mem;
6879         qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
6880
6881         for (lo = 0; lo < i; lo++)
6882                 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
6883                                 avail[lo].limit - 1);
6884
6885         sbuf_printf(sb, "\n");
6886         for (i = 0; i < n; i++) {
6887                 if (mem[i].idx >= nitems(region))
6888                         continue;                        /* skip holes */
6889                 if (!mem[i].limit)
6890                         mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
6891                 mem_region_show(sb, region[mem[i].idx], mem[i].base,
6892                                 mem[i].limit);
6893         }
6894
6895         sbuf_printf(sb, "\n");
6896         lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
6897         hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
6898         mem_region_show(sb, "uP RAM:", lo, hi);
6899
6900         lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
6901         hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
6902         mem_region_show(sb, "uP Extmem2:", lo, hi);
6903
6904         lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
6905         sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
6906                    G_PMRXMAXPAGE(lo),
6907                    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
6908                    (lo & F_PMRXNUMCHN) ? 2 : 1);
6909
6910         lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
6911         hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
6912         sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
6913                    G_PMTXMAXPAGE(lo),
6914                    hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
6915                    hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
6916         sbuf_printf(sb, "%u p-structs\n",
6917                    t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
6918
6919         for (i = 0; i < 4; i++) {
6920                 if (chip_id(sc) > CHELSIO_T5)
6921                         lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
6922                 else
6923                         lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
6924                 if (is_t5(sc)) {
6925                         used = G_T5_USED(lo);
6926                         alloc = G_T5_ALLOC(lo);
6927                 } else {
6928                         used = G_USED(lo);
6929                         alloc = G_ALLOC(lo);
6930                 }
6931                 /* For T6 these are MAC buffer groups */
6932                 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
6933                     i, used, alloc);
6934         }
6935         for (i = 0; i < sc->chip_params->nchan; i++) {
6936                 if (chip_id(sc) > CHELSIO_T5)
6937                         lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
6938                 else
6939                         lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
6940                 if (is_t5(sc)) {
6941                         used = G_T5_USED(lo);
6942                         alloc = G_T5_ALLOC(lo);
6943                 } else {
6944                         used = G_USED(lo);
6945                         alloc = G_ALLOC(lo);
6946                 }
6947                 /* For T6 these are MAC buffer groups */
6948                 sbuf_printf(sb,
6949                     "\nLoopback %d using %u pages out of %u allocated",
6950                     i, used, alloc);
6951         }
6952
6953         rc = sbuf_finish(sb);
6954         sbuf_delete(sb);
6955
6956         return (rc);
6957 }
6958
6959 static inline void
6960 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
6961 {
6962         *mask = x | y;
6963         y = htobe64(y);
6964         memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
6965 }
6966
6967 static int
6968 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
6969 {
6970         struct adapter *sc = arg1;
6971         struct sbuf *sb;
6972         int rc, i;
6973
6974         MPASS(chip_id(sc) <= CHELSIO_T5);
6975
6976         rc = sysctl_wire_old_buffer(req, 0);
6977         if (rc != 0)
6978                 return (rc);
6979
6980         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6981         if (sb == NULL)
6982                 return (ENOMEM);
6983
6984         sbuf_printf(sb,
6985             "Idx  Ethernet address     Mask     Vld Ports PF"
6986             "  VF              Replication             P0 P1 P2 P3  ML");
6987         for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
6988                 uint64_t tcamx, tcamy, mask;
6989                 uint32_t cls_lo, cls_hi;
6990                 uint8_t addr[ETHER_ADDR_LEN];
6991
6992                 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
6993                 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
6994                 if (tcamx & tcamy)
6995                         continue;
6996                 tcamxy2valmask(tcamx, tcamy, addr, &mask);
6997                 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
6998                 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
6999                 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
7000                            "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
7001                            addr[3], addr[4], addr[5], (uintmax_t)mask,
7002                            (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
7003                            G_PORTMAP(cls_hi), G_PF(cls_lo),
7004                            (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
7005
7006                 if (cls_lo & F_REPLICATE) {
7007                         struct fw_ldst_cmd ldst_cmd;
7008
7009                         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
7010                         ldst_cmd.op_to_addrspace =
7011                             htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
7012                                 F_FW_CMD_REQUEST | F_FW_CMD_READ |
7013                                 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
7014                         ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
7015                         ldst_cmd.u.mps.rplc.fid_idx =
7016                             htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
7017                                 V_FW_LDST_CMD_IDX(i));
7018
7019                         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
7020                             "t4mps");
7021                         if (rc)
7022                                 break;
7023                         rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
7024                             sizeof(ldst_cmd), &ldst_cmd);
7025                         end_synchronized_op(sc, 0);
7026
7027                         if (rc != 0) {
7028                                 sbuf_printf(sb, "%36d", rc);
7029                                 rc = 0;
7030                         } else {
7031                                 sbuf_printf(sb, " %08x %08x %08x %08x",
7032                                     be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
7033                                     be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
7034                                     be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
7035                                     be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
7036                         }
7037                 } else
7038                         sbuf_printf(sb, "%36s", "");
7039
7040                 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
7041                     G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
7042                     G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
7043         }
7044
7045         if (rc)
7046                 (void) sbuf_finish(sb);
7047         else
7048                 rc = sbuf_finish(sb);
7049         sbuf_delete(sb);
7050
7051         return (rc);
7052 }
7053
7054 static int
7055 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
7056 {
7057         struct adapter *sc = arg1;
7058         struct sbuf *sb;
7059         int rc, i;
7060
7061         MPASS(chip_id(sc) > CHELSIO_T5);
7062
7063         rc = sysctl_wire_old_buffer(req, 0);
7064         if (rc != 0)
7065                 return (rc);
7066
7067         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7068         if (sb == NULL)
7069                 return (ENOMEM);
7070
7071         sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
7072             "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
7073             "                           Replication"
7074             "                                    P0 P1 P2 P3  ML\n");
7075
7076         for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
7077                 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
7078                 uint16_t ivlan;
7079                 uint64_t tcamx, tcamy, val, mask;
7080                 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
7081                 uint8_t addr[ETHER_ADDR_LEN];
7082
7083                 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
7084                 if (i < 256)
7085                         ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
7086                 else
7087                         ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
7088                 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
7089                 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
7090                 tcamy = G_DMACH(val) << 32;
7091                 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
7092                 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
7093                 lookup_type = G_DATALKPTYPE(data2);
7094                 port_num = G_DATAPORTNUM(data2);
7095                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
7096                         /* Inner header VNI */
7097                         vniy = ((data2 & F_DATAVIDH2) << 23) |
7098                                        (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
7099                         dip_hit = data2 & F_DATADIPHIT;
7100                         vlan_vld = 0;
7101                 } else {
7102                         vniy = 0;
7103                         dip_hit = 0;
7104                         vlan_vld = data2 & F_DATAVIDH2;
7105                         ivlan = G_VIDL(val);
7106                 }
7107
7108                 ctl |= V_CTLXYBITSEL(1);
7109                 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
7110                 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
7111                 tcamx = G_DMACH(val) << 32;
7112                 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
7113                 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
7114                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
7115                         /* Inner header VNI mask */
7116                         vnix = ((data2 & F_DATAVIDH2) << 23) |
7117                                (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
7118                 } else
7119                         vnix = 0;
7120
7121                 if (tcamx & tcamy)
7122                         continue;
7123                 tcamxy2valmask(tcamx, tcamy, addr, &mask);
7124
7125                 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
7126                 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
7127
7128                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
7129                         sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
7130                             "%012jx %06x %06x    -    -   %3c"
7131                             "      'I'  %4x   %3c   %#x%4u%4d", i, addr[0],
7132                             addr[1], addr[2], addr[3], addr[4], addr[5],
7133                             (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
7134                             port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
7135                             G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
7136                             cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
7137                 } else {
7138                         sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
7139                             "%012jx    -       -   ", i, addr[0], addr[1],
7140                             addr[2], addr[3], addr[4], addr[5],
7141                             (uintmax_t)mask);
7142
7143                         if (vlan_vld)
7144                                 sbuf_printf(sb, "%4u   Y     ", ivlan);
7145                         else
7146                                 sbuf_printf(sb, "  -    N     ");
7147
7148                         sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
7149                             lookup_type ? 'I' : 'O', port_num,
7150                             cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
7151                             G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
7152                             cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
7153                 }
7154
7155
7156                 if (cls_lo & F_T6_REPLICATE) {
7157                         struct fw_ldst_cmd ldst_cmd;
7158
7159                         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
7160                         ldst_cmd.op_to_addrspace =
7161                             htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
7162                                 F_FW_CMD_REQUEST | F_FW_CMD_READ |
7163                                 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
7164                         ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
7165                         ldst_cmd.u.mps.rplc.fid_idx =
7166                             htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
7167                                 V_FW_LDST_CMD_IDX(i));
7168
7169                         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
7170                             "t6mps");
7171                         if (rc)
7172                                 break;
7173                         rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
7174                             sizeof(ldst_cmd), &ldst_cmd);
7175                         end_synchronized_op(sc, 0);
7176
7177                         if (rc != 0) {
7178                                 sbuf_printf(sb, "%72d", rc);
7179                                 rc = 0;
7180                         } else {
7181                                 sbuf_printf(sb, " %08x %08x %08x %08x"
7182                                     " %08x %08x %08x %08x",
7183                                     be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
7184                                     be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
7185                                     be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
7186                                     be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
7187                                     be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
7188                                     be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
7189                                     be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
7190                                     be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
7191                         }
7192                 } else
7193                         sbuf_printf(sb, "%72s", "");
7194
7195                 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
7196                     G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
7197                     G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
7198                     (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
7199         }
7200
7201         if (rc)
7202                 (void) sbuf_finish(sb);
7203         else
7204                 rc = sbuf_finish(sb);
7205         sbuf_delete(sb);
7206
7207         return (rc);
7208 }
7209
7210 static int
7211 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
7212 {
7213         struct adapter *sc = arg1;
7214         struct sbuf *sb;
7215         int rc;
7216         uint16_t mtus[NMTUS];
7217
7218         rc = sysctl_wire_old_buffer(req, 0);
7219         if (rc != 0)
7220                 return (rc);
7221
7222         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7223         if (sb == NULL)
7224                 return (ENOMEM);
7225
7226         t4_read_mtu_tbl(sc, mtus, NULL);
7227
7228         sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
7229             mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
7230             mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
7231             mtus[14], mtus[15]);
7232
7233         rc = sbuf_finish(sb);
7234         sbuf_delete(sb);
7235
7236         return (rc);
7237 }
7238
7239 static int
7240 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
7241 {
7242         struct adapter *sc = arg1;
7243         struct sbuf *sb;
7244         int rc, i;
7245         uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
7246         uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
7247         static const char *tx_stats[MAX_PM_NSTATS] = {
7248                 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
7249                 "Tx FIFO wait", NULL, "Tx latency"
7250         };
7251         static const char *rx_stats[MAX_PM_NSTATS] = {
7252                 "Read:", "Write bypass:", "Write mem:", "Flush:",
7253                 "Rx FIFO wait", NULL, "Rx latency"
7254         };
7255
7256         rc = sysctl_wire_old_buffer(req, 0);
7257         if (rc != 0)
7258                 return (rc);
7259
7260         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7261         if (sb == NULL)
7262                 return (ENOMEM);
7263
7264         t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
7265         t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
7266
7267         sbuf_printf(sb, "                Tx pcmds             Tx bytes");
7268         for (i = 0; i < 4; i++) {
7269                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7270                     tx_cyc[i]);
7271         }
7272
7273         sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
7274         for (i = 0; i < 4; i++) {
7275                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7276                     rx_cyc[i]);
7277         }
7278
7279         if (chip_id(sc) > CHELSIO_T5) {
7280                 sbuf_printf(sb,
7281                     "\n              Total wait      Total occupancy");
7282                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7283                     tx_cyc[i]);
7284                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7285                     rx_cyc[i]);
7286
7287                 i += 2;
7288                 MPASS(i < nitems(tx_stats));
7289
7290                 sbuf_printf(sb,
7291                     "\n                   Reads           Total wait");
7292                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7293                     tx_cyc[i]);
7294                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7295                     rx_cyc[i]);
7296         }
7297
7298         rc = sbuf_finish(sb);
7299         sbuf_delete(sb);
7300
7301         return (rc);
7302 }
7303
7304 static int
7305 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
7306 {
7307         struct adapter *sc = arg1;
7308         struct sbuf *sb;
7309         int rc;
7310         struct tp_rdma_stats stats;
7311
7312         rc = sysctl_wire_old_buffer(req, 0);
7313         if (rc != 0)
7314                 return (rc);
7315
7316         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7317         if (sb == NULL)
7318                 return (ENOMEM);
7319
7320         mtx_lock(&sc->reg_lock);
7321         t4_tp_get_rdma_stats(sc, &stats);
7322         mtx_unlock(&sc->reg_lock);
7323
7324         sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
7325         sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
7326
7327         rc = sbuf_finish(sb);
7328         sbuf_delete(sb);
7329
7330         return (rc);
7331 }
7332
7333 static int
7334 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
7335 {
7336         struct adapter *sc = arg1;
7337         struct sbuf *sb;
7338         int rc;
7339         struct tp_tcp_stats v4, v6;
7340
7341         rc = sysctl_wire_old_buffer(req, 0);
7342         if (rc != 0)
7343                 return (rc);
7344
7345         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7346         if (sb == NULL)
7347                 return (ENOMEM);
7348
7349         mtx_lock(&sc->reg_lock);
7350         t4_tp_get_tcp_stats(sc, &v4, &v6);
7351         mtx_unlock(&sc->reg_lock);
7352
7353         sbuf_printf(sb,
7354             "                                IP                 IPv6\n");
7355         sbuf_printf(sb, "OutRsts:      %20u %20u\n",
7356             v4.tcp_out_rsts, v6.tcp_out_rsts);
7357         sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
7358             v4.tcp_in_segs, v6.tcp_in_segs);
7359         sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
7360             v4.tcp_out_segs, v6.tcp_out_segs);
7361         sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
7362             v4.tcp_retrans_segs, v6.tcp_retrans_segs);
7363
7364         rc = sbuf_finish(sb);
7365         sbuf_delete(sb);
7366
7367         return (rc);
7368 }
7369
7370 static int
7371 sysctl_tids(SYSCTL_HANDLER_ARGS)
7372 {
7373         struct adapter *sc = arg1;
7374         struct sbuf *sb;
7375         int rc;
7376         struct tid_info *t = &sc->tids;
7377
7378         rc = sysctl_wire_old_buffer(req, 0);
7379         if (rc != 0)
7380                 return (rc);
7381
7382         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7383         if (sb == NULL)
7384                 return (ENOMEM);
7385
7386         if (t->natids) {
7387                 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
7388                     t->atids_in_use);
7389         }
7390
7391         if (t->ntids) {
7392                 sbuf_printf(sb, "TID range: ");
7393                 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
7394                         uint32_t b, hb;
7395
7396                         if (chip_id(sc) <= CHELSIO_T5) {
7397                                 b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
7398                                 hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
7399                         } else {
7400                                 b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
7401                                 hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
7402                         }
7403
7404                         if (b)
7405                                 sbuf_printf(sb, "0-%u, ", b - 1);
7406                         sbuf_printf(sb, "%u-%u", hb, t->ntids - 1);
7407                 } else
7408                         sbuf_printf(sb, "0-%u", t->ntids - 1);
7409                 sbuf_printf(sb, ", in use: %u\n",
7410                     atomic_load_acq_int(&t->tids_in_use));
7411         }
7412
7413         if (t->nstids) {
7414                 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
7415                     t->stid_base + t->nstids - 1, t->stids_in_use);
7416         }
7417
7418         if (t->nftids) {
7419                 sbuf_printf(sb, "FTID range: %u-%u\n", t->ftid_base,
7420                     t->ftid_base + t->nftids - 1);
7421         }
7422
7423         if (t->netids) {
7424                 sbuf_printf(sb, "ETID range: %u-%u\n", t->etid_base,
7425                     t->etid_base + t->netids - 1);
7426         }
7427
7428         sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users",
7429             t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4),
7430             t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6));
7431
7432         rc = sbuf_finish(sb);
7433         sbuf_delete(sb);
7434
7435         return (rc);
7436 }
7437
7438 static int
7439 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
7440 {
7441         struct adapter *sc = arg1;
7442         struct sbuf *sb;
7443         int rc;
7444         struct tp_err_stats stats;
7445
7446         rc = sysctl_wire_old_buffer(req, 0);
7447         if (rc != 0)
7448                 return (rc);
7449
7450         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7451         if (sb == NULL)
7452                 return (ENOMEM);
7453
7454         mtx_lock(&sc->reg_lock);
7455         t4_tp_get_err_stats(sc, &stats);
7456         mtx_unlock(&sc->reg_lock);
7457
7458         if (sc->chip_params->nchan > 2) {
7459                 sbuf_printf(sb, "                 channel 0  channel 1"
7460                     "  channel 2  channel 3\n");
7461                 sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
7462                     stats.mac_in_errs[0], stats.mac_in_errs[1],
7463                     stats.mac_in_errs[2], stats.mac_in_errs[3]);
7464                 sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
7465                     stats.hdr_in_errs[0], stats.hdr_in_errs[1],
7466                     stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
7467                 sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
7468                     stats.tcp_in_errs[0], stats.tcp_in_errs[1],
7469                     stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
7470                 sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
7471                     stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
7472                     stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
7473                 sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
7474                     stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
7475                     stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
7476                 sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
7477                     stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
7478                     stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
7479                 sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
7480                     stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
7481                     stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
7482                 sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
7483                     stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
7484                     stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
7485         } else {
7486                 sbuf_printf(sb, "                 channel 0  channel 1\n");
7487                 sbuf_printf(sb, "macInErrs:      %10u %10u\n",
7488                     stats.mac_in_errs[0], stats.mac_in_errs[1]);
7489                 sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
7490                     stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
7491                 sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
7492                     stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
7493                 sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
7494                     stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
7495                 sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
7496                     stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
7497                 sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
7498                     stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
7499                 sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
7500                     stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
7501                 sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
7502                     stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
7503         }
7504
7505         sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
7506             stats.ofld_no_neigh, stats.ofld_cong_defer);
7507
7508         rc = sbuf_finish(sb);
7509         sbuf_delete(sb);
7510
7511         return (rc);
7512 }
7513
7514 static int
7515 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
7516 {
7517         struct adapter *sc = arg1;
7518         struct tp_params *tpp = &sc->params.tp;
7519         u_int mask;
7520         int rc;
7521
7522         mask = tpp->la_mask >> 16;
7523         rc = sysctl_handle_int(oidp, &mask, 0, req);
7524         if (rc != 0 || req->newptr == NULL)
7525                 return (rc);
7526         if (mask > 0xffff)
7527                 return (EINVAL);
7528         tpp->la_mask = mask << 16;
7529         t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask);
7530
7531         return (0);
7532 }
7533
7534 struct field_desc {
7535         const char *name;
7536         u_int start;
7537         u_int width;
7538 };
7539
7540 static void
7541 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
7542 {
7543         char buf[32];
7544         int line_size = 0;
7545
7546         while (f->name) {
7547                 uint64_t mask = (1ULL << f->width) - 1;
7548                 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
7549                     ((uintmax_t)v >> f->start) & mask);
7550
7551                 if (line_size + len >= 79) {
7552                         line_size = 8;
7553                         sbuf_printf(sb, "\n        ");
7554                 }
7555                 sbuf_printf(sb, "%s ", buf);
7556                 line_size += len + 1;
7557                 f++;
7558         }
7559         sbuf_printf(sb, "\n");
7560 }
7561
7562 static const struct field_desc tp_la0[] = {
7563         { "RcfOpCodeOut", 60, 4 },
7564         { "State", 56, 4 },
7565         { "WcfState", 52, 4 },
7566         { "RcfOpcSrcOut", 50, 2 },
7567         { "CRxError", 49, 1 },
7568         { "ERxError", 48, 1 },
7569         { "SanityFailed", 47, 1 },
7570         { "SpuriousMsg", 46, 1 },
7571         { "FlushInputMsg", 45, 1 },
7572         { "FlushInputCpl", 44, 1 },
7573         { "RssUpBit", 43, 1 },
7574         { "RssFilterHit", 42, 1 },
7575         { "Tid", 32, 10 },
7576         { "InitTcb", 31, 1 },
7577         { "LineNumber", 24, 7 },
7578         { "Emsg", 23, 1 },
7579         { "EdataOut", 22, 1 },
7580         { "Cmsg", 21, 1 },
7581         { "CdataOut", 20, 1 },
7582         { "EreadPdu", 19, 1 },
7583         { "CreadPdu", 18, 1 },
7584         { "TunnelPkt", 17, 1 },
7585         { "RcfPeerFin", 16, 1 },
7586         { "RcfReasonOut", 12, 4 },
7587         { "TxCchannel", 10, 2 },
7588         { "RcfTxChannel", 8, 2 },
7589         { "RxEchannel", 6, 2 },
7590         { "RcfRxChannel", 5, 1 },
7591         { "RcfDataOutSrdy", 4, 1 },
7592         { "RxDvld", 3, 1 },
7593         { "RxOoDvld", 2, 1 },
7594         { "RxCongestion", 1, 1 },
7595         { "TxCongestion", 0, 1 },
7596         { NULL }
7597 };
7598
7599 static const struct field_desc tp_la1[] = {
7600         { "CplCmdIn", 56, 8 },
7601         { "CplCmdOut", 48, 8 },
7602         { "ESynOut", 47, 1 },
7603         { "EAckOut", 46, 1 },
7604         { "EFinOut", 45, 1 },
7605         { "ERstOut", 44, 1 },
7606         { "SynIn", 43, 1 },
7607         { "AckIn", 42, 1 },
7608         { "FinIn", 41, 1 },
7609         { "RstIn", 40, 1 },
7610         { "DataIn", 39, 1 },
7611         { "DataInVld", 38, 1 },
7612         { "PadIn", 37, 1 },
7613         { "RxBufEmpty", 36, 1 },
7614         { "RxDdp", 35, 1 },
7615         { "RxFbCongestion", 34, 1 },
7616         { "TxFbCongestion", 33, 1 },
7617         { "TxPktSumSrdy", 32, 1 },
7618         { "RcfUlpType", 28, 4 },
7619         { "Eread", 27, 1 },
7620         { "Ebypass", 26, 1 },
7621         { "Esave", 25, 1 },
7622         { "Static0", 24, 1 },
7623         { "Cread", 23, 1 },
7624         { "Cbypass", 22, 1 },
7625         { "Csave", 21, 1 },
7626         { "CPktOut", 20, 1 },
7627         { "RxPagePoolFull", 18, 2 },
7628         { "RxLpbkPkt", 17, 1 },
7629         { "TxLpbkPkt", 16, 1 },
7630         { "RxVfValid", 15, 1 },
7631         { "SynLearned", 14, 1 },
7632         { "SetDelEntry", 13, 1 },
7633         { "SetInvEntry", 12, 1 },
7634         { "CpcmdDvld", 11, 1 },
7635         { "CpcmdSave", 10, 1 },
7636         { "RxPstructsFull", 8, 2 },
7637         { "EpcmdDvld", 7, 1 },
7638         { "EpcmdFlush", 6, 1 },
7639         { "EpcmdTrimPrefix", 5, 1 },
7640         { "EpcmdTrimPostfix", 4, 1 },
7641         { "ERssIp4Pkt", 3, 1 },
7642         { "ERssIp6Pkt", 2, 1 },
7643         { "ERssTcpUdpPkt", 1, 1 },
7644         { "ERssFceFipPkt", 0, 1 },
7645         { NULL }
7646 };
7647
7648 static const struct field_desc tp_la2[] = {
7649         { "CplCmdIn", 56, 8 },
7650         { "MpsVfVld", 55, 1 },
7651         { "MpsPf", 52, 3 },
7652         { "MpsVf", 44, 8 },
7653         { "SynIn", 43, 1 },
7654         { "AckIn", 42, 1 },
7655         { "FinIn", 41, 1 },
7656         { "RstIn", 40, 1 },
7657         { "DataIn", 39, 1 },
7658         { "DataInVld", 38, 1 },
7659         { "PadIn", 37, 1 },
7660         { "RxBufEmpty", 36, 1 },
7661         { "RxDdp", 35, 1 },
7662         { "RxFbCongestion", 34, 1 },
7663         { "TxFbCongestion", 33, 1 },
7664         { "TxPktSumSrdy", 32, 1 },
7665         { "RcfUlpType", 28, 4 },
7666         { "Eread", 27, 1 },
7667         { "Ebypass", 26, 1 },
7668         { "Esave", 25, 1 },
7669         { "Static0", 24, 1 },
7670         { "Cread", 23, 1 },
7671         { "Cbypass", 22, 1 },
7672         { "Csave", 21, 1 },
7673         { "CPktOut", 20, 1 },
7674         { "RxPagePoolFull", 18, 2 },
7675         { "RxLpbkPkt", 17, 1 },
7676         { "TxLpbkPkt", 16, 1 },
7677         { "RxVfValid", 15, 1 },
7678         { "SynLearned", 14, 1 },
7679         { "SetDelEntry", 13, 1 },
7680         { "SetInvEntry", 12, 1 },
7681         { "CpcmdDvld", 11, 1 },
7682         { "CpcmdSave", 10, 1 },
7683         { "RxPstructsFull", 8, 2 },
7684         { "EpcmdDvld", 7, 1 },
7685         { "EpcmdFlush", 6, 1 },
7686         { "EpcmdTrimPrefix", 5, 1 },
7687         { "EpcmdTrimPostfix", 4, 1 },
7688         { "ERssIp4Pkt", 3, 1 },
7689         { "ERssIp6Pkt", 2, 1 },
7690         { "ERssTcpUdpPkt", 1, 1 },
7691         { "ERssFceFipPkt", 0, 1 },
7692         { NULL }
7693 };
7694
7695 static void
7696 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
7697 {
7698
7699         field_desc_show(sb, *p, tp_la0);
7700 }
7701
7702 static void
7703 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
7704 {
7705
7706         if (idx)
7707                 sbuf_printf(sb, "\n");
7708         field_desc_show(sb, p[0], tp_la0);
7709         if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
7710                 field_desc_show(sb, p[1], tp_la0);
7711 }
7712
7713 static void
7714 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
7715 {
7716
7717         if (idx)
7718                 sbuf_printf(sb, "\n");
7719         field_desc_show(sb, p[0], tp_la0);
7720         if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
7721                 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
7722 }
7723
7724 static int
7725 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
7726 {
7727         struct adapter *sc = arg1;
7728         struct sbuf *sb;
7729         uint64_t *buf, *p;
7730         int rc;
7731         u_int i, inc;
7732         void (*show_func)(struct sbuf *, uint64_t *, int);
7733
7734         rc = sysctl_wire_old_buffer(req, 0);
7735         if (rc != 0)
7736                 return (rc);
7737
7738         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7739         if (sb == NULL)
7740                 return (ENOMEM);
7741
7742         buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
7743
7744         t4_tp_read_la(sc, buf, NULL);
7745         p = buf;
7746
7747         switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
7748         case 2:
7749                 inc = 2;
7750                 show_func = tp_la_show2;
7751                 break;
7752         case 3:
7753                 inc = 2;
7754                 show_func = tp_la_show3;
7755                 break;
7756         default:
7757                 inc = 1;
7758                 show_func = tp_la_show;
7759         }
7760
7761         for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
7762                 (*show_func)(sb, p, i);
7763
7764         rc = sbuf_finish(sb);
7765         sbuf_delete(sb);
7766         free(buf, M_CXGBE);
7767         return (rc);
7768 }
7769
7770 static int
7771 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
7772 {
7773         struct adapter *sc = arg1;
7774         struct sbuf *sb;
7775         int rc;
7776         u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
7777
7778         rc = sysctl_wire_old_buffer(req, 0);
7779         if (rc != 0)
7780                 return (rc);
7781
7782         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7783         if (sb == NULL)
7784                 return (ENOMEM);
7785
7786         t4_get_chan_txrate(sc, nrate, orate);
7787
7788         if (sc->chip_params->nchan > 2) {
7789                 sbuf_printf(sb, "              channel 0   channel 1"
7790                     "   channel 2   channel 3\n");
7791                 sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
7792                     nrate[0], nrate[1], nrate[2], nrate[3]);
7793                 sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
7794                     orate[0], orate[1], orate[2], orate[3]);
7795         } else {
7796                 sbuf_printf(sb, "              channel 0   channel 1\n");
7797                 sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
7798                     nrate[0], nrate[1]);
7799                 sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
7800                     orate[0], orate[1]);
7801         }
7802
7803         rc = sbuf_finish(sb);
7804         sbuf_delete(sb);
7805
7806         return (rc);
7807 }
7808
7809 static int
7810 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
7811 {
7812         struct adapter *sc = arg1;
7813         struct sbuf *sb;
7814         uint32_t *buf, *p;
7815         int rc, i;
7816
7817         rc = sysctl_wire_old_buffer(req, 0);
7818         if (rc != 0)
7819                 return (rc);
7820
7821         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7822         if (sb == NULL)
7823                 return (ENOMEM);
7824
7825         buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
7826             M_ZERO | M_WAITOK);
7827
7828         t4_ulprx_read_la(sc, buf);
7829         p = buf;
7830
7831         sbuf_printf(sb, "      Pcmd        Type   Message"
7832             "                Data");
7833         for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
7834                 sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
7835                     p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
7836         }
7837
7838         rc = sbuf_finish(sb);
7839         sbuf_delete(sb);
7840         free(buf, M_CXGBE);
7841         return (rc);
7842 }
7843
7844 static int
7845 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
7846 {
7847         struct adapter *sc = arg1;
7848         struct sbuf *sb;
7849         int rc, v;
7850
7851         MPASS(chip_id(sc) >= CHELSIO_T5);
7852
7853         rc = sysctl_wire_old_buffer(req, 0);
7854         if (rc != 0)
7855                 return (rc);
7856
7857         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7858         if (sb == NULL)
7859                 return (ENOMEM);
7860
7861         v = t4_read_reg(sc, A_SGE_STAT_CFG);
7862         if (G_STATSOURCE_T5(v) == 7) {
7863                 int mode;
7864
7865                 mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v);
7866                 if (mode == 0) {
7867                         sbuf_printf(sb, "total %d, incomplete %d",
7868                             t4_read_reg(sc, A_SGE_STAT_TOTAL),
7869                             t4_read_reg(sc, A_SGE_STAT_MATCH));
7870                 } else if (mode == 1) {
7871                         sbuf_printf(sb, "total %d, data overflow %d",
7872                             t4_read_reg(sc, A_SGE_STAT_TOTAL),
7873                             t4_read_reg(sc, A_SGE_STAT_MATCH));
7874                 } else {
7875                         sbuf_printf(sb, "unknown mode %d", mode);
7876                 }
7877         }
7878         rc = sbuf_finish(sb);
7879         sbuf_delete(sb);
7880
7881         return (rc);
7882 }
7883
7884 static int
7885 sysctl_tc_params(SYSCTL_HANDLER_ARGS)
7886 {
7887         struct adapter *sc = arg1;
7888         struct tx_cl_rl_params tc;
7889         struct sbuf *sb;
7890         int i, rc, port_id, mbps, gbps;
7891
7892         rc = sysctl_wire_old_buffer(req, 0);
7893         if (rc != 0)
7894                 return (rc);
7895
7896         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7897         if (sb == NULL)
7898                 return (ENOMEM);
7899
7900         port_id = arg2 >> 16;
7901         MPASS(port_id < sc->params.nports);
7902         MPASS(sc->port[port_id] != NULL);
7903         i = arg2 & 0xffff;
7904         MPASS(i < sc->chip_params->nsched_cls);
7905
7906         mtx_lock(&sc->tc_lock);
7907         tc = sc->port[port_id]->sched_params->cl_rl[i];
7908         mtx_unlock(&sc->tc_lock);
7909
7910         if (tc.flags & TX_CLRL_ERROR) {
7911                 sbuf_printf(sb, "error");
7912                 goto done;
7913         }
7914
7915         if (tc.ratemode == SCHED_CLASS_RATEMODE_REL) {
7916                 /* XXX: top speed or actual link speed? */
7917                 gbps = port_top_speed(sc->port[port_id]);
7918                 sbuf_printf(sb, " %u%% of %uGbps", tc.maxrate, gbps);
7919         } else if (tc.ratemode == SCHED_CLASS_RATEMODE_ABS) {
7920                 switch (tc.rateunit) {
7921                 case SCHED_CLASS_RATEUNIT_BITS:
7922                         mbps = tc.maxrate / 1000;
7923                         gbps = tc.maxrate / 1000000;
7924                         if (tc.maxrate == gbps * 1000000)
7925                                 sbuf_printf(sb, " %uGbps", gbps);
7926                         else if (tc.maxrate == mbps * 1000)
7927                                 sbuf_printf(sb, " %uMbps", mbps);
7928                         else
7929                                 sbuf_printf(sb, " %uKbps", tc.maxrate);
7930                         break;
7931                 case SCHED_CLASS_RATEUNIT_PKTS:
7932                         sbuf_printf(sb, " %upps", tc.maxrate);
7933                         break;
7934                 default:
7935                         rc = ENXIO;
7936                         goto done;
7937                 }
7938         }
7939
7940         switch (tc.mode) {
7941         case SCHED_CLASS_MODE_CLASS:
7942                 sbuf_printf(sb, " aggregate");
7943                 break;
7944         case SCHED_CLASS_MODE_FLOW:
7945                 sbuf_printf(sb, " per-flow");
7946                 break;
7947         default:
7948                 rc = ENXIO;
7949                 goto done;
7950         }
7951
7952 done:
7953         if (rc == 0)
7954                 rc = sbuf_finish(sb);
7955         sbuf_delete(sb);
7956
7957         return (rc);
7958 }
7959 #endif
7960
7961 #ifdef TCP_OFFLOAD
7962 static void
7963 unit_conv(char *buf, size_t len, u_int val, u_int factor)
7964 {
7965         u_int rem = val % factor;
7966
7967         if (rem == 0)
7968                 snprintf(buf, len, "%u", val / factor);
7969         else {
7970                 while (rem % 10 == 0)
7971                         rem /= 10;
7972                 snprintf(buf, len, "%u.%u", val / factor, rem);
7973         }
7974 }
7975
7976 static int
7977 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
7978 {
7979         struct adapter *sc = arg1;
7980         char buf[16];
7981         u_int res, re;
7982         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
7983
7984         res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
7985         switch (arg2) {
7986         case 0:
7987                 /* timer_tick */
7988                 re = G_TIMERRESOLUTION(res);
7989                 break;
7990         case 1:
7991                 /* TCP timestamp tick */
7992                 re = G_TIMESTAMPRESOLUTION(res);
7993                 break;
7994         case 2:
7995                 /* DACK tick */
7996                 re = G_DELAYEDACKRESOLUTION(res);
7997                 break;
7998         default:
7999                 return (EDOOFUS);
8000         }
8001
8002         unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
8003
8004         return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
8005 }
8006
8007 static int
8008 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
8009 {
8010         struct adapter *sc = arg1;
8011         u_int res, dack_re, v;
8012         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8013
8014         res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
8015         dack_re = G_DELAYEDACKRESOLUTION(res);
8016         v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER);
8017
8018         return (sysctl_handle_int(oidp, &v, 0, req));
8019 }
8020
8021 static int
8022 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
8023 {
8024         struct adapter *sc = arg1;
8025         int reg = arg2;
8026         u_int tre;
8027         u_long tp_tick_us, v;
8028         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8029
8030         MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
8031             reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
8032             reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
8033             reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
8034
8035         tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
8036         tp_tick_us = (cclk_ps << tre) / 1000000;
8037
8038         if (reg == A_TP_INIT_SRTT)
8039                 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
8040         else
8041                 v = tp_tick_us * t4_read_reg(sc, reg);
8042
8043         return (sysctl_handle_long(oidp, &v, 0, req));
8044 }
8045 #endif
8046
8047 static uint32_t
8048 fconf_iconf_to_mode(uint32_t fconf, uint32_t iconf)
8049 {
8050         uint32_t mode;
8051
8052         mode = T4_FILTER_IPv4 | T4_FILTER_IPv6 | T4_FILTER_IP_SADDR |
8053             T4_FILTER_IP_DADDR | T4_FILTER_IP_SPORT | T4_FILTER_IP_DPORT;
8054
8055         if (fconf & F_FRAGMENTATION)
8056                 mode |= T4_FILTER_IP_FRAGMENT;
8057
8058         if (fconf & F_MPSHITTYPE)
8059                 mode |= T4_FILTER_MPS_HIT_TYPE;
8060
8061         if (fconf & F_MACMATCH)
8062                 mode |= T4_FILTER_MAC_IDX;
8063
8064         if (fconf & F_ETHERTYPE)
8065                 mode |= T4_FILTER_ETH_TYPE;
8066
8067         if (fconf & F_PROTOCOL)
8068                 mode |= T4_FILTER_IP_PROTO;
8069
8070         if (fconf & F_TOS)
8071                 mode |= T4_FILTER_IP_TOS;
8072
8073         if (fconf & F_VLAN)
8074                 mode |= T4_FILTER_VLAN;
8075
8076         if (fconf & F_VNIC_ID) {
8077                 mode |= T4_FILTER_VNIC;
8078                 if (iconf & F_VNIC)
8079                         mode |= T4_FILTER_IC_VNIC;
8080         }
8081
8082         if (fconf & F_PORT)
8083                 mode |= T4_FILTER_PORT;
8084
8085         if (fconf & F_FCOE)
8086                 mode |= T4_FILTER_FCoE;
8087
8088         return (mode);
8089 }
8090
8091 static uint32_t
8092 mode_to_fconf(uint32_t mode)
8093 {
8094         uint32_t fconf = 0;
8095
8096         if (mode & T4_FILTER_IP_FRAGMENT)
8097                 fconf |= F_FRAGMENTATION;
8098
8099         if (mode & T4_FILTER_MPS_HIT_TYPE)
8100                 fconf |= F_MPSHITTYPE;
8101
8102         if (mode & T4_FILTER_MAC_IDX)
8103                 fconf |= F_MACMATCH;
8104
8105         if (mode & T4_FILTER_ETH_TYPE)
8106                 fconf |= F_ETHERTYPE;
8107
8108         if (mode & T4_FILTER_IP_PROTO)
8109                 fconf |= F_PROTOCOL;
8110
8111         if (mode & T4_FILTER_IP_TOS)
8112                 fconf |= F_TOS;
8113
8114         if (mode & T4_FILTER_VLAN)
8115                 fconf |= F_VLAN;
8116
8117         if (mode & T4_FILTER_VNIC)
8118                 fconf |= F_VNIC_ID;
8119
8120         if (mode & T4_FILTER_PORT)
8121                 fconf |= F_PORT;
8122
8123         if (mode & T4_FILTER_FCoE)
8124                 fconf |= F_FCOE;
8125
8126         return (fconf);
8127 }
8128
8129 static uint32_t
8130 mode_to_iconf(uint32_t mode)
8131 {
8132
8133         if (mode & T4_FILTER_IC_VNIC)
8134                 return (F_VNIC);
8135         return (0);
8136 }
8137
8138 static int check_fspec_against_fconf_iconf(struct adapter *sc,
8139     struct t4_filter_specification *fs)
8140 {
8141         struct tp_params *tpp = &sc->params.tp;
8142         uint32_t fconf = 0;
8143
8144         if (fs->val.frag || fs->mask.frag)
8145                 fconf |= F_FRAGMENTATION;
8146
8147         if (fs->val.matchtype || fs->mask.matchtype)
8148                 fconf |= F_MPSHITTYPE;
8149
8150         if (fs->val.macidx || fs->mask.macidx)
8151                 fconf |= F_MACMATCH;
8152
8153         if (fs->val.ethtype || fs->mask.ethtype)
8154                 fconf |= F_ETHERTYPE;
8155
8156         if (fs->val.proto || fs->mask.proto)
8157                 fconf |= F_PROTOCOL;
8158
8159         if (fs->val.tos || fs->mask.tos)
8160                 fconf |= F_TOS;
8161
8162         if (fs->val.vlan_vld || fs->mask.vlan_vld)
8163                 fconf |= F_VLAN;
8164
8165         if (fs->val.ovlan_vld || fs->mask.ovlan_vld) {
8166                 fconf |= F_VNIC_ID;
8167                 if (tpp->ingress_config & F_VNIC)
8168                         return (EINVAL);
8169         }
8170
8171         if (fs->val.pfvf_vld || fs->mask.pfvf_vld) {
8172                 fconf |= F_VNIC_ID;
8173                 if ((tpp->ingress_config & F_VNIC) == 0)
8174                         return (EINVAL);
8175         }
8176
8177         if (fs->val.iport || fs->mask.iport)
8178                 fconf |= F_PORT;
8179
8180         if (fs->val.fcoe || fs->mask.fcoe)
8181                 fconf |= F_FCOE;
8182
8183         if ((tpp->vlan_pri_map | fconf) != tpp->vlan_pri_map)
8184                 return (E2BIG);
8185
8186         return (0);
8187 }
8188
8189 static int
8190 get_filter_mode(struct adapter *sc, uint32_t *mode)
8191 {
8192         struct tp_params *tpp = &sc->params.tp;
8193
8194         /*
8195          * We trust the cached values of the relevant TP registers.  This means
8196          * things work reliably only if writes to those registers are always via
8197          * t4_set_filter_mode.
8198          */
8199         *mode = fconf_iconf_to_mode(tpp->vlan_pri_map, tpp->ingress_config);
8200
8201         return (0);
8202 }
8203
8204 static int
8205 set_filter_mode(struct adapter *sc, uint32_t mode)
8206 {
8207         struct tp_params *tpp = &sc->params.tp;
8208         uint32_t fconf, iconf;
8209         int rc;
8210
8211         iconf = mode_to_iconf(mode);
8212         if ((iconf ^ tpp->ingress_config) & F_VNIC) {
8213                 /*
8214                  * For now we just complain if A_TP_INGRESS_CONFIG is not
8215                  * already set to the correct value for the requested filter
8216                  * mode.  It's not clear if it's safe to write to this register
8217                  * on the fly.  (And we trust the cached value of the register).
8218                  */
8219                 return (EBUSY);
8220         }
8221
8222         fconf = mode_to_fconf(mode);
8223
8224         rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK,
8225             "t4setfm");
8226         if (rc)
8227                 return (rc);
8228
8229         if (sc->tids.ftids_in_use > 0) {
8230                 rc = EBUSY;
8231                 goto done;
8232         }
8233
8234 #ifdef TCP_OFFLOAD
8235         if (uld_active(sc, ULD_TOM)) {
8236                 rc = EBUSY;
8237                 goto done;
8238         }
8239 #endif
8240
8241         rc = -t4_set_filter_mode(sc, fconf);
8242 done:
8243         end_synchronized_op(sc, LOCK_HELD);
8244         return (rc);
8245 }
8246
8247 static inline uint64_t
8248 get_filter_hits(struct adapter *sc, uint32_t fid)
8249 {
8250         uint32_t tcb_addr;
8251
8252         tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) +
8253             (fid + sc->tids.ftid_base) * TCB_SIZE;
8254
8255         if (is_t4(sc)) {
8256                 uint64_t hits;
8257
8258                 read_via_memwin(sc, 0, tcb_addr + 16, (uint32_t *)&hits, 8);
8259                 return (be64toh(hits));
8260         } else {
8261                 uint32_t hits;
8262
8263                 read_via_memwin(sc, 0, tcb_addr + 24, &hits, 4);
8264                 return (be32toh(hits));
8265         }
8266 }
8267
8268 static int
8269 get_filter(struct adapter *sc, struct t4_filter *t)
8270 {
8271         int i, rc, nfilters = sc->tids.nftids;
8272         struct filter_entry *f;
8273
8274         rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK,
8275             "t4getf");
8276         if (rc)
8277                 return (rc);
8278
8279         if (sc->tids.ftids_in_use == 0 || sc->tids.ftid_tab == NULL ||
8280             t->idx >= nfilters) {
8281                 t->idx = 0xffffffff;
8282                 goto done;
8283         }
8284
8285         f = &sc->tids.ftid_tab[t->idx];
8286         for (i = t->idx; i < nfilters; i++, f++) {
8287                 if (f->valid) {
8288                         t->idx = i;
8289                         t->l2tidx = f->l2t ? f->l2t->idx : 0;
8290                         t->smtidx = f->smtidx;
8291                         if (f->fs.hitcnts)
8292                                 t->hits = get_filter_hits(sc, t->idx);
8293                         else
8294                                 t->hits = UINT64_MAX;
8295                         t->fs = f->fs;
8296
8297                         goto done;
8298                 }
8299         }
8300
8301         t->idx = 0xffffffff;
8302 done:
8303         end_synchronized_op(sc, LOCK_HELD);
8304         return (0);
8305 }
8306
8307 static int
8308 set_filter(struct adapter *sc, struct t4_filter *t)
8309 {
8310         unsigned int nfilters, nports;
8311         struct filter_entry *f;
8312         int i, rc;
8313
8314         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4setf");
8315         if (rc)
8316                 return (rc);
8317
8318         nfilters = sc->tids.nftids;
8319         nports = sc->params.nports;
8320
8321         if (nfilters == 0) {
8322                 rc = ENOTSUP;
8323                 goto done;
8324         }
8325
8326         if (t->idx >= nfilters) {
8327                 rc = EINVAL;
8328                 goto done;
8329         }
8330
8331         /* Validate against the global filter mode and ingress config */
8332         rc = check_fspec_against_fconf_iconf(sc, &t->fs);
8333         if (rc != 0)
8334                 goto done;
8335
8336         if (t->fs.action == FILTER_SWITCH && t->fs.eport >= nports) {
8337                 rc = EINVAL;
8338                 goto done;
8339         }
8340
8341         if (t->fs.val.iport >= nports) {
8342                 rc = EINVAL;
8343                 goto done;
8344         }
8345
8346         /* Can't specify an iq if not steering to it */
8347         if (!t->fs.dirsteer && t->fs.iq) {
8348                 rc = EINVAL;
8349                 goto done;
8350         }
8351
8352         /* IPv6 filter idx must be 4 aligned */
8353         if (t->fs.type == 1 &&
8354             ((t->idx & 0x3) || t->idx + 4 >= nfilters)) {
8355                 rc = EINVAL;
8356                 goto done;
8357         }
8358
8359         if (!(sc->flags & FULL_INIT_DONE) &&
8360             ((rc = adapter_full_init(sc)) != 0))
8361                 goto done;
8362
8363         if (sc->tids.ftid_tab == NULL) {
8364                 KASSERT(sc->tids.ftids_in_use == 0,
8365                     ("%s: no memory allocated but filters_in_use > 0",
8366                     __func__));
8367
8368                 sc->tids.ftid_tab = malloc(sizeof (struct filter_entry) *
8369                     nfilters, M_CXGBE, M_NOWAIT | M_ZERO);
8370                 if (sc->tids.ftid_tab == NULL) {
8371                         rc = ENOMEM;
8372                         goto done;
8373                 }
8374                 mtx_init(&sc->tids.ftid_lock, "T4 filters", 0, MTX_DEF);
8375         }
8376
8377         for (i = 0; i < 4; i++) {
8378                 f = &sc->tids.ftid_tab[t->idx + i];
8379
8380                 if (f->pending || f->valid) {
8381                         rc = EBUSY;
8382                         goto done;
8383                 }
8384                 if (f->locked) {
8385                         rc = EPERM;
8386                         goto done;
8387                 }
8388
8389                 if (t->fs.type == 0)
8390                         break;
8391         }
8392
8393         f = &sc->tids.ftid_tab[t->idx];
8394         f->fs = t->fs;
8395
8396         rc = set_filter_wr(sc, t->idx);
8397 done:
8398         end_synchronized_op(sc, 0);
8399
8400         if (rc == 0) {
8401                 mtx_lock(&sc->tids.ftid_lock);
8402                 for (;;) {
8403                         if (f->pending == 0) {
8404                                 rc = f->valid ? 0 : EIO;
8405                                 break;
8406                         }
8407
8408                         if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock,
8409                             PCATCH, "t4setfw", 0)) {
8410                                 rc = EINPROGRESS;
8411                                 break;
8412                         }
8413                 }
8414                 mtx_unlock(&sc->tids.ftid_lock);
8415         }
8416         return (rc);
8417 }
8418
8419 static int
8420 del_filter(struct adapter *sc, struct t4_filter *t)
8421 {
8422         unsigned int nfilters;
8423         struct filter_entry *f;
8424         int rc;
8425
8426         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4delf");
8427         if (rc)
8428                 return (rc);
8429
8430         nfilters = sc->tids.nftids;
8431
8432         if (nfilters == 0) {
8433                 rc = ENOTSUP;
8434                 goto done;
8435         }
8436
8437         if (sc->tids.ftid_tab == NULL || sc->tids.ftids_in_use == 0 ||
8438             t->idx >= nfilters) {
8439                 rc = EINVAL;
8440                 goto done;
8441         }
8442
8443         if (!(sc->flags & FULL_INIT_DONE)) {
8444                 rc = EAGAIN;
8445                 goto done;
8446         }
8447
8448         f = &sc->tids.ftid_tab[t->idx];
8449
8450         if (f->pending) {
8451                 rc = EBUSY;
8452                 goto done;
8453         }
8454         if (f->locked) {
8455                 rc = EPERM;
8456                 goto done;
8457         }
8458
8459         if (f->valid) {
8460                 t->fs = f->fs;  /* extra info for the caller */
8461                 rc = del_filter_wr(sc, t->idx);
8462         }
8463
8464 done:
8465         end_synchronized_op(sc, 0);
8466
8467         if (rc == 0) {
8468                 mtx_lock(&sc->tids.ftid_lock);
8469                 for (;;) {
8470                         if (f->pending == 0) {
8471                                 rc = f->valid ? EIO : 0;
8472                                 break;
8473                         }
8474
8475                         if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock,
8476                             PCATCH, "t4delfw", 0)) {
8477                                 rc = EINPROGRESS;
8478                                 break;
8479                         }
8480                 }
8481                 mtx_unlock(&sc->tids.ftid_lock);
8482         }
8483
8484         return (rc);
8485 }
8486
8487 static void
8488 clear_filter(struct filter_entry *f)
8489 {
8490         if (f->l2t)
8491                 t4_l2t_release(f->l2t);
8492
8493         bzero(f, sizeof (*f));
8494 }
8495
8496 static int
8497 set_filter_wr(struct adapter *sc, int fidx)
8498 {
8499         struct filter_entry *f = &sc->tids.ftid_tab[fidx];
8500         struct fw_filter_wr *fwr;
8501         unsigned int ftid, vnic_vld, vnic_vld_mask;
8502         struct wrq_cookie cookie;
8503
8504         ASSERT_SYNCHRONIZED_OP(sc);
8505
8506         if (f->fs.newdmac || f->fs.newvlan) {
8507                 /* This filter needs an L2T entry; allocate one. */
8508                 f->l2t = t4_l2t_alloc_switching(sc->l2t);
8509                 if (f->l2t == NULL)
8510                         return (EAGAIN);
8511                 if (t4_l2t_set_switching(sc, f->l2t, f->fs.vlan, f->fs.eport,
8512                     f->fs.dmac)) {
8513                         t4_l2t_release(f->l2t);
8514                         f->l2t = NULL;
8515                         return (ENOMEM);
8516                 }
8517         }
8518
8519         /* Already validated against fconf, iconf */
8520         MPASS((f->fs.val.pfvf_vld & f->fs.val.ovlan_vld) == 0);
8521         MPASS((f->fs.mask.pfvf_vld & f->fs.mask.ovlan_vld) == 0);
8522         if (f->fs.val.pfvf_vld || f->fs.val.ovlan_vld)
8523                 vnic_vld = 1;
8524         else
8525                 vnic_vld = 0;
8526         if (f->fs.mask.pfvf_vld || f->fs.mask.ovlan_vld)
8527                 vnic_vld_mask = 1;
8528         else
8529                 vnic_vld_mask = 0;
8530
8531         ftid = sc->tids.ftid_base + fidx;
8532
8533         fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie);
8534         if (fwr == NULL)
8535                 return (ENOMEM);
8536         bzero(fwr, sizeof(*fwr));
8537
8538         fwr->op_pkd = htobe32(V_FW_WR_OP(FW_FILTER_WR));
8539         fwr->len16_pkd = htobe32(FW_LEN16(*fwr));
8540         fwr->tid_to_iq =
8541             htobe32(V_FW_FILTER_WR_TID(ftid) |
8542                 V_FW_FILTER_WR_RQTYPE(f->fs.type) |
8543                 V_FW_FILTER_WR_NOREPLY(0) |
8544                 V_FW_FILTER_WR_IQ(f->fs.iq));
8545         fwr->del_filter_to_l2tix =
8546             htobe32(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
8547                 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
8548                 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
8549                 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
8550                 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
8551                 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
8552                 V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
8553                 V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
8554                 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
8555                     f->fs.newvlan == VLAN_REWRITE) |
8556                 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
8557                     f->fs.newvlan == VLAN_REWRITE) |
8558                 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
8559                 V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
8560                 V_FW_FILTER_WR_PRIO(f->fs.prio) |
8561                 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
8562         fwr->ethtype = htobe16(f->fs.val.ethtype);
8563         fwr->ethtypem = htobe16(f->fs.mask.ethtype);
8564         fwr->frag_to_ovlan_vldm =
8565             (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
8566                 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
8567                 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.vlan_vld) |
8568                 V_FW_FILTER_WR_OVLAN_VLD(vnic_vld) |
8569                 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.vlan_vld) |
8570                 V_FW_FILTER_WR_OVLAN_VLDM(vnic_vld_mask));
8571         fwr->smac_sel = 0;
8572         fwr->rx_chan_rx_rpl_iq = htobe16(V_FW_FILTER_WR_RX_CHAN(0) |
8573             V_FW_FILTER_WR_RX_RPL_IQ(sc->sge.fwq.abs_id));
8574         fwr->maci_to_matchtypem =
8575             htobe32(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
8576                 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
8577                 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
8578                 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
8579                 V_FW_FILTER_WR_PORT(f->fs.val.iport) |
8580                 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
8581                 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
8582                 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
8583         fwr->ptcl = f->fs.val.proto;
8584         fwr->ptclm = f->fs.mask.proto;
8585         fwr->ttyp = f->fs.val.tos;
8586         fwr->ttypm = f->fs.mask.tos;
8587         fwr->ivlan = htobe16(f->fs.val.vlan);
8588         fwr->ivlanm = htobe16(f->fs.mask.vlan);
8589         fwr->ovlan = htobe16(f->fs.val.vnic);
8590         fwr->ovlanm = htobe16(f->fs.mask.vnic);
8591         bcopy(f->fs.val.dip, fwr->lip, sizeof (fwr->lip));
8592         bcopy(f->fs.mask.dip, fwr->lipm, sizeof (fwr->lipm));
8593         bcopy(f->fs.val.sip, fwr->fip, sizeof (fwr->fip));
8594         bcopy(f->fs.mask.sip, fwr->fipm, sizeof (fwr->fipm));
8595         fwr->lp = htobe16(f->fs.val.dport);
8596         fwr->lpm = htobe16(f->fs.mask.dport);
8597         fwr->fp = htobe16(f->fs.val.sport);
8598         fwr->fpm = htobe16(f->fs.mask.sport);
8599         if (f->fs.newsmac)
8600                 bcopy(f->fs.smac, fwr->sma, sizeof (fwr->sma));
8601
8602         f->pending = 1;
8603         sc->tids.ftids_in_use++;
8604
8605         commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie);
8606         return (0);
8607 }
8608
8609 static int
8610 del_filter_wr(struct adapter *sc, int fidx)
8611 {
8612         struct filter_entry *f = &sc->tids.ftid_tab[fidx];
8613         struct fw_filter_wr *fwr;
8614         unsigned int ftid;
8615         struct wrq_cookie cookie;
8616
8617         ftid = sc->tids.ftid_base + fidx;
8618
8619         fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie);
8620         if (fwr == NULL)
8621                 return (ENOMEM);
8622         bzero(fwr, sizeof (*fwr));
8623
8624         t4_mk_filtdelwr(ftid, fwr, sc->sge.fwq.abs_id);
8625
8626         f->pending = 1;
8627         commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie);
8628         return (0);
8629 }
8630
8631 int
8632 t4_filter_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
8633 {
8634         struct adapter *sc = iq->adapter;
8635         const struct cpl_set_tcb_rpl *rpl = (const void *)(rss + 1);
8636         unsigned int idx = GET_TID(rpl);
8637         unsigned int rc;
8638         struct filter_entry *f;
8639
8640         KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
8641             rss->opcode));
8642         MPASS(iq == &sc->sge.fwq);
8643         MPASS(is_ftid(sc, idx));
8644
8645         idx -= sc->tids.ftid_base;
8646         f = &sc->tids.ftid_tab[idx];
8647         rc = G_COOKIE(rpl->cookie);
8648
8649         mtx_lock(&sc->tids.ftid_lock);
8650         if (rc == FW_FILTER_WR_FLT_ADDED) {
8651                 KASSERT(f->pending, ("%s: filter[%u] isn't pending.",
8652                     __func__, idx));
8653                 f->smtidx = (be64toh(rpl->oldval) >> 24) & 0xff;
8654                 f->pending = 0;  /* asynchronous setup completed */
8655                 f->valid = 1;
8656         } else {
8657                 if (rc != FW_FILTER_WR_FLT_DELETED) {
8658                         /* Add or delete failed, display an error */
8659                         log(LOG_ERR,
8660                             "filter %u setup failed with error %u\n",
8661                             idx, rc);
8662                 }
8663
8664                 clear_filter(f);
8665                 sc->tids.ftids_in_use--;
8666         }
8667         wakeup(&sc->tids.ftid_tab);
8668         mtx_unlock(&sc->tids.ftid_lock);
8669
8670         return (0);
8671 }
8672
8673 static int
8674 set_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
8675 {
8676
8677         MPASS(iq->set_tcb_rpl != NULL);
8678         return (iq->set_tcb_rpl(iq, rss, m));
8679 }
8680
8681 static int
8682 l2t_write_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
8683 {
8684
8685         MPASS(iq->l2t_write_rpl != NULL);
8686         return (iq->l2t_write_rpl(iq, rss, m));
8687 }
8688
8689 static int
8690 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
8691 {
8692         int rc;
8693
8694         if (cntxt->cid > M_CTXTQID)
8695                 return (EINVAL);
8696
8697         if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
8698             cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
8699                 return (EINVAL);
8700
8701         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
8702         if (rc)
8703                 return (rc);
8704
8705         if (sc->flags & FW_OK) {
8706                 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
8707                     &cntxt->data[0]);
8708                 if (rc == 0)
8709                         goto done;
8710         }
8711
8712         /*
8713          * Read via firmware failed or wasn't even attempted.  Read directly via
8714          * the backdoor.
8715          */
8716         rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
8717 done:
8718         end_synchronized_op(sc, 0);
8719         return (rc);
8720 }
8721
8722 static int
8723 load_fw(struct adapter *sc, struct t4_data *fw)
8724 {
8725         int rc;
8726         uint8_t *fw_data;
8727
8728         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
8729         if (rc)
8730                 return (rc);
8731
8732         if (sc->flags & FULL_INIT_DONE) {
8733                 rc = EBUSY;
8734                 goto done;
8735         }
8736
8737         fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
8738         if (fw_data == NULL) {
8739                 rc = ENOMEM;
8740                 goto done;
8741         }
8742
8743         rc = copyin(fw->data, fw_data, fw->len);
8744         if (rc == 0)
8745                 rc = -t4_load_fw(sc, fw_data, fw->len);
8746
8747         free(fw_data, M_CXGBE);
8748 done:
8749         end_synchronized_op(sc, 0);
8750         return (rc);
8751 }
8752
8753 static int
8754 load_cfg(struct adapter *sc, struct t4_data *cfg)
8755 {
8756         int rc;
8757         uint8_t *cfg_data = NULL;
8758
8759         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
8760         if (rc)
8761                 return (rc);
8762
8763         if (cfg->len == 0) {
8764                 /* clear */
8765                 rc = -t4_load_cfg(sc, NULL, 0);
8766                 goto done;
8767         }
8768
8769         cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
8770         if (cfg_data == NULL) {
8771                 rc = ENOMEM;
8772                 goto done;
8773         }
8774
8775         rc = copyin(cfg->data, cfg_data, cfg->len);
8776         if (rc == 0)
8777                 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
8778
8779         free(cfg_data, M_CXGBE);
8780 done:
8781         end_synchronized_op(sc, 0);
8782         return (rc);
8783 }
8784
8785 #define MAX_READ_BUF_SIZE (128 * 1024)
8786 static int
8787 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
8788 {
8789         uint32_t addr, remaining, n;
8790         uint32_t *buf;
8791         int rc;
8792         uint8_t *dst;
8793
8794         rc = validate_mem_range(sc, mr->addr, mr->len);
8795         if (rc != 0)
8796                 return (rc);
8797
8798         buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
8799         addr = mr->addr;
8800         remaining = mr->len;
8801         dst = (void *)mr->data;
8802
8803         while (remaining) {
8804                 n = min(remaining, MAX_READ_BUF_SIZE);
8805                 read_via_memwin(sc, 2, addr, buf, n);
8806
8807                 rc = copyout(buf, dst, n);
8808                 if (rc != 0)
8809                         break;
8810
8811                 dst += n;
8812                 remaining -= n;
8813                 addr += n;
8814         }
8815
8816         free(buf, M_CXGBE);
8817         return (rc);
8818 }
8819 #undef MAX_READ_BUF_SIZE
8820
8821 static int
8822 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
8823 {
8824         int rc;
8825
8826         if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
8827                 return (EINVAL);
8828
8829         if (i2cd->len > sizeof(i2cd->data))
8830                 return (EFBIG);
8831
8832         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
8833         if (rc)
8834                 return (rc);
8835         rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
8836             i2cd->offset, i2cd->len, &i2cd->data[0]);
8837         end_synchronized_op(sc, 0);
8838
8839         return (rc);
8840 }
8841
8842 int
8843 t4_os_find_pci_capability(struct adapter *sc, int cap)
8844 {
8845         int i;
8846
8847         return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
8848 }
8849
8850 int
8851 t4_os_pci_save_state(struct adapter *sc)
8852 {
8853         device_t dev;
8854         struct pci_devinfo *dinfo;
8855
8856         dev = sc->dev;
8857         dinfo = device_get_ivars(dev);
8858
8859         pci_cfg_save(dev, dinfo, 0);
8860         return (0);
8861 }
8862
8863 int
8864 t4_os_pci_restore_state(struct adapter *sc)
8865 {
8866         device_t dev;
8867         struct pci_devinfo *dinfo;
8868
8869         dev = sc->dev;
8870         dinfo = device_get_ivars(dev);
8871
8872         pci_cfg_restore(dev, dinfo);
8873         return (0);
8874 }
8875
8876 void
8877 t4_os_portmod_changed(const struct adapter *sc, int idx)
8878 {
8879         struct port_info *pi = sc->port[idx];
8880         struct vi_info *vi;
8881         struct ifnet *ifp;
8882         int v;
8883         static const char *mod_str[] = {
8884                 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
8885         };
8886
8887         for_each_vi(pi, v, vi) {
8888                 build_medialist(pi, &vi->media);
8889         }
8890
8891         ifp = pi->vi[0].ifp;
8892         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
8893                 if_printf(ifp, "transceiver unplugged.\n");
8894         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
8895                 if_printf(ifp, "unknown transceiver inserted.\n");
8896         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
8897                 if_printf(ifp, "unsupported transceiver inserted.\n");
8898         else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
8899                 if_printf(ifp, "%s transceiver inserted.\n",
8900                     mod_str[pi->mod_type]);
8901         } else {
8902                 if_printf(ifp, "transceiver (type %d) inserted.\n",
8903                     pi->mod_type);
8904         }
8905 }
8906
8907 void
8908 t4_os_link_changed(struct adapter *sc, int idx, int link_stat)
8909 {
8910         struct port_info *pi = sc->port[idx];
8911         struct vi_info *vi;
8912         struct ifnet *ifp;
8913         int v;
8914
8915         for_each_vi(pi, v, vi) {
8916                 ifp = vi->ifp;
8917                 if (ifp == NULL)
8918                         continue;
8919
8920                 if (link_stat) {
8921                         ifp->if_baudrate = IF_Mbps(pi->link_cfg.speed);
8922                         if_link_state_change(ifp, LINK_STATE_UP);
8923                 } else {
8924                         if_link_state_change(ifp, LINK_STATE_DOWN);
8925                 }
8926         }
8927 }
8928
8929 void
8930 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
8931 {
8932         struct adapter *sc;
8933
8934         sx_slock(&t4_list_lock);
8935         SLIST_FOREACH(sc, &t4_list, link) {
8936                 /*
8937                  * func should not make any assumptions about what state sc is
8938                  * in - the only guarantee is that sc->sc_lock is a valid lock.
8939                  */
8940                 func(sc, arg);
8941         }
8942         sx_sunlock(&t4_list_lock);
8943 }
8944
8945 static int
8946 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
8947     struct thread *td)
8948 {
8949         int rc;
8950         struct adapter *sc = dev->si_drv1;
8951
8952         rc = priv_check(td, PRIV_DRIVER);
8953         if (rc != 0)
8954                 return (rc);
8955
8956         switch (cmd) {
8957         case CHELSIO_T4_GETREG: {
8958                 struct t4_reg *edata = (struct t4_reg *)data;
8959
8960                 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
8961                         return (EFAULT);
8962
8963                 if (edata->size == 4)
8964                         edata->val = t4_read_reg(sc, edata->addr);
8965                 else if (edata->size == 8)
8966                         edata->val = t4_read_reg64(sc, edata->addr);
8967                 else
8968                         return (EINVAL);
8969
8970                 break;
8971         }
8972         case CHELSIO_T4_SETREG: {
8973                 struct t4_reg *edata = (struct t4_reg *)data;
8974
8975                 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
8976                         return (EFAULT);
8977
8978                 if (edata->size == 4) {
8979                         if (edata->val & 0xffffffff00000000)
8980                                 return (EINVAL);
8981                         t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
8982                 } else if (edata->size == 8)
8983                         t4_write_reg64(sc, edata->addr, edata->val);
8984                 else
8985                         return (EINVAL);
8986                 break;
8987         }
8988         case CHELSIO_T4_REGDUMP: {
8989                 struct t4_regdump *regs = (struct t4_regdump *)data;
8990                 int reglen = t4_get_regs_len(sc);
8991                 uint8_t *buf;
8992
8993                 if (regs->len < reglen) {
8994                         regs->len = reglen; /* hint to the caller */
8995                         return (ENOBUFS);
8996                 }
8997
8998                 regs->len = reglen;
8999                 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
9000                 get_regs(sc, regs, buf);
9001                 rc = copyout(buf, regs->data, reglen);
9002                 free(buf, M_CXGBE);
9003                 break;
9004         }
9005         case CHELSIO_T4_GET_FILTER_MODE:
9006                 rc = get_filter_mode(sc, (uint32_t *)data);
9007                 break;
9008         case CHELSIO_T4_SET_FILTER_MODE:
9009                 rc = set_filter_mode(sc, *(uint32_t *)data);
9010                 break;
9011         case CHELSIO_T4_GET_FILTER:
9012                 rc = get_filter(sc, (struct t4_filter *)data);
9013                 break;
9014         case CHELSIO_T4_SET_FILTER:
9015                 rc = set_filter(sc, (struct t4_filter *)data);
9016                 break;
9017         case CHELSIO_T4_DEL_FILTER:
9018                 rc = del_filter(sc, (struct t4_filter *)data);
9019                 break;
9020         case CHELSIO_T4_GET_SGE_CONTEXT:
9021                 rc = get_sge_context(sc, (struct t4_sge_context *)data);
9022                 break;
9023         case CHELSIO_T4_LOAD_FW:
9024                 rc = load_fw(sc, (struct t4_data *)data);
9025                 break;
9026         case CHELSIO_T4_GET_MEM:
9027                 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
9028                 break;
9029         case CHELSIO_T4_GET_I2C:
9030                 rc = read_i2c(sc, (struct t4_i2c_data *)data);
9031                 break;
9032         case CHELSIO_T4_CLEAR_STATS: {
9033                 int i, v;
9034                 u_int port_id = *(uint32_t *)data;
9035                 struct port_info *pi;
9036                 struct vi_info *vi;
9037
9038                 if (port_id >= sc->params.nports)
9039                         return (EINVAL);
9040                 pi = sc->port[port_id];
9041                 if (pi == NULL)
9042                         return (EIO);
9043
9044                 /* MAC stats */
9045                 t4_clr_port_stats(sc, pi->tx_chan);
9046                 pi->tx_parse_error = 0;
9047                 mtx_lock(&sc->reg_lock);
9048                 for_each_vi(pi, v, vi) {
9049                         if (vi->flags & VI_INIT_DONE)
9050                                 t4_clr_vi_stats(sc, vi->viid);
9051                 }
9052                 mtx_unlock(&sc->reg_lock);
9053
9054                 /*
9055                  * Since this command accepts a port, clear stats for
9056                  * all VIs on this port.
9057                  */
9058                 for_each_vi(pi, v, vi) {
9059                         if (vi->flags & VI_INIT_DONE) {
9060                                 struct sge_rxq *rxq;
9061                                 struct sge_txq *txq;
9062                                 struct sge_wrq *wrq;
9063
9064                                 for_each_rxq(vi, i, rxq) {
9065 #if defined(INET) || defined(INET6)
9066                                         rxq->lro.lro_queued = 0;
9067                                         rxq->lro.lro_flushed = 0;
9068 #endif
9069                                         rxq->rxcsum = 0;
9070                                         rxq->vlan_extraction = 0;
9071                                 }
9072
9073                                 for_each_txq(vi, i, txq) {
9074                                         txq->txcsum = 0;
9075                                         txq->tso_wrs = 0;
9076                                         txq->vlan_insertion = 0;
9077                                         txq->imm_wrs = 0;
9078                                         txq->sgl_wrs = 0;
9079                                         txq->txpkt_wrs = 0;
9080                                         txq->txpkts0_wrs = 0;
9081                                         txq->txpkts1_wrs = 0;
9082                                         txq->txpkts0_pkts = 0;
9083                                         txq->txpkts1_pkts = 0;
9084                                         mp_ring_reset_stats(txq->r);
9085                                 }
9086
9087 #ifdef TCP_OFFLOAD
9088                                 /* nothing to clear for each ofld_rxq */
9089
9090                                 for_each_ofld_txq(vi, i, wrq) {
9091                                         wrq->tx_wrs_direct = 0;
9092                                         wrq->tx_wrs_copied = 0;
9093                                 }
9094 #endif
9095
9096                                 if (IS_MAIN_VI(vi)) {
9097                                         wrq = &sc->sge.ctrlq[pi->port_id];
9098                                         wrq->tx_wrs_direct = 0;
9099                                         wrq->tx_wrs_copied = 0;
9100                                 }
9101                         }
9102                 }
9103                 break;
9104         }
9105         case CHELSIO_T4_SCHED_CLASS:
9106                 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
9107                 break;
9108         case CHELSIO_T4_SCHED_QUEUE:
9109                 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
9110                 break;
9111         case CHELSIO_T4_GET_TRACER:
9112                 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
9113                 break;
9114         case CHELSIO_T4_SET_TRACER:
9115                 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
9116                 break;
9117         case CHELSIO_T4_LOAD_CFG:
9118                 rc = load_cfg(sc, (struct t4_data *)data);
9119                 break;
9120         default:
9121                 rc = ENOTTY;
9122         }
9123
9124         return (rc);
9125 }
9126
9127 void
9128 t4_db_full(struct adapter *sc)
9129 {
9130
9131         CXGBE_UNIMPLEMENTED(__func__);
9132 }
9133
9134 void
9135 t4_db_dropped(struct adapter *sc)
9136 {
9137
9138         CXGBE_UNIMPLEMENTED(__func__);
9139 }
9140
9141 #ifdef TCP_OFFLOAD
9142 static int
9143 toe_capability(struct vi_info *vi, int enable)
9144 {
9145         int rc;
9146         struct port_info *pi = vi->pi;
9147         struct adapter *sc = pi->adapter;
9148
9149         ASSERT_SYNCHRONIZED_OP(sc);
9150
9151         if (!is_offload(sc))
9152                 return (ENODEV);
9153
9154         if (enable) {
9155                 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
9156                         /* TOE is already enabled. */
9157                         return (0);
9158                 }
9159
9160                 /*
9161                  * We need the port's queues around so that we're able to send
9162                  * and receive CPLs to/from the TOE even if the ifnet for this
9163                  * port has never been UP'd administratively.
9164                  */
9165                 if (!(vi->flags & VI_INIT_DONE)) {
9166                         rc = vi_full_init(vi);
9167                         if (rc)
9168                                 return (rc);
9169                 }
9170                 if (!(pi->vi[0].flags & VI_INIT_DONE)) {
9171                         rc = vi_full_init(&pi->vi[0]);
9172                         if (rc)
9173                                 return (rc);
9174                 }
9175
9176                 if (isset(&sc->offload_map, pi->port_id)) {
9177                         /* TOE is enabled on another VI of this port. */
9178                         pi->uld_vis++;
9179                         return (0);
9180                 }
9181
9182                 if (!uld_active(sc, ULD_TOM)) {
9183                         rc = t4_activate_uld(sc, ULD_TOM);
9184                         if (rc == EAGAIN) {
9185                                 log(LOG_WARNING,
9186                                     "You must kldload t4_tom.ko before trying "
9187                                     "to enable TOE on a cxgbe interface.\n");
9188                         }
9189                         if (rc != 0)
9190                                 return (rc);
9191                         KASSERT(sc->tom_softc != NULL,
9192                             ("%s: TOM activated but softc NULL", __func__));
9193                         KASSERT(uld_active(sc, ULD_TOM),
9194                             ("%s: TOM activated but flag not set", __func__));
9195                 }
9196
9197                 /* Activate iWARP and iSCSI too, if the modules are loaded. */
9198                 if (!uld_active(sc, ULD_IWARP))
9199                         (void) t4_activate_uld(sc, ULD_IWARP);
9200                 if (!uld_active(sc, ULD_ISCSI))
9201                         (void) t4_activate_uld(sc, ULD_ISCSI);
9202
9203                 pi->uld_vis++;
9204                 setbit(&sc->offload_map, pi->port_id);
9205         } else {
9206                 pi->uld_vis--;
9207
9208                 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
9209                         return (0);
9210
9211                 KASSERT(uld_active(sc, ULD_TOM),
9212                     ("%s: TOM never initialized?", __func__));
9213                 clrbit(&sc->offload_map, pi->port_id);
9214         }
9215
9216         return (0);
9217 }
9218
9219 /*
9220  * Add an upper layer driver to the global list.
9221  */
9222 int
9223 t4_register_uld(struct uld_info *ui)
9224 {
9225         int rc = 0;
9226         struct uld_info *u;
9227
9228         sx_xlock(&t4_uld_list_lock);
9229         SLIST_FOREACH(u, &t4_uld_list, link) {
9230             if (u->uld_id == ui->uld_id) {
9231                     rc = EEXIST;
9232                     goto done;
9233             }
9234         }
9235
9236         SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
9237         ui->refcount = 0;
9238 done:
9239         sx_xunlock(&t4_uld_list_lock);
9240         return (rc);
9241 }
9242
9243 int
9244 t4_unregister_uld(struct uld_info *ui)
9245 {
9246         int rc = EINVAL;
9247         struct uld_info *u;
9248
9249         sx_xlock(&t4_uld_list_lock);
9250
9251         SLIST_FOREACH(u, &t4_uld_list, link) {
9252             if (u == ui) {
9253                     if (ui->refcount > 0) {
9254                             rc = EBUSY;
9255                             goto done;
9256                     }
9257
9258                     SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
9259                     rc = 0;
9260                     goto done;
9261             }
9262         }
9263 done:
9264         sx_xunlock(&t4_uld_list_lock);
9265         return (rc);
9266 }
9267
9268 int
9269 t4_activate_uld(struct adapter *sc, int id)
9270 {
9271         int rc;
9272         struct uld_info *ui;
9273
9274         ASSERT_SYNCHRONIZED_OP(sc);
9275
9276         if (id < 0 || id > ULD_MAX)
9277                 return (EINVAL);
9278         rc = EAGAIN;    /* kldoad the module with this ULD and try again. */
9279
9280         sx_slock(&t4_uld_list_lock);
9281
9282         SLIST_FOREACH(ui, &t4_uld_list, link) {
9283                 if (ui->uld_id == id) {
9284                         if (!(sc->flags & FULL_INIT_DONE)) {
9285                                 rc = adapter_full_init(sc);
9286                                 if (rc != 0)
9287                                         break;
9288                         }
9289
9290                         rc = ui->activate(sc);
9291                         if (rc == 0) {
9292                                 setbit(&sc->active_ulds, id);
9293                                 ui->refcount++;
9294                         }
9295                         break;
9296                 }
9297         }
9298
9299         sx_sunlock(&t4_uld_list_lock);
9300
9301         return (rc);
9302 }
9303
9304 int
9305 t4_deactivate_uld(struct adapter *sc, int id)
9306 {
9307         int rc;
9308         struct uld_info *ui;
9309
9310         ASSERT_SYNCHRONIZED_OP(sc);
9311
9312         if (id < 0 || id > ULD_MAX)
9313                 return (EINVAL);
9314         rc = ENXIO;
9315
9316         sx_slock(&t4_uld_list_lock);
9317
9318         SLIST_FOREACH(ui, &t4_uld_list, link) {
9319                 if (ui->uld_id == id) {
9320                         rc = ui->deactivate(sc);
9321                         if (rc == 0) {
9322                                 clrbit(&sc->active_ulds, id);
9323                                 ui->refcount--;
9324                         }
9325                         break;
9326                 }
9327         }
9328
9329         sx_sunlock(&t4_uld_list_lock);
9330
9331         return (rc);
9332 }
9333
9334 int
9335 uld_active(struct adapter *sc, int uld_id)
9336 {
9337
9338         MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
9339
9340         return (isset(&sc->active_ulds, uld_id));
9341 }
9342 #endif
9343
9344 /*
9345  * t  = ptr to tunable.
9346  * nc = number of CPUs.
9347  * c  = compiled in default for that tunable.
9348  */
9349 static void
9350 calculate_nqueues(int *t, int nc, const int c)
9351 {
9352         int nq;
9353
9354         if (*t > 0)
9355                 return;
9356         nq = *t < 0 ? -*t : c;
9357         *t = min(nc, nq);
9358 }
9359
9360 /*
9361  * Come up with reasonable defaults for some of the tunables, provided they're
9362  * not set by the user (in which case we'll use the values as is).
9363  */
9364 static void
9365 tweak_tunables(void)
9366 {
9367         int nc = mp_ncpus;      /* our snapshot of the number of CPUs */
9368
9369         if (t4_ntxq10g < 1) {
9370 #ifdef RSS
9371                 t4_ntxq10g = rss_getnumbuckets();
9372 #else
9373                 calculate_nqueues(&t4_ntxq10g, nc, NTXQ_10G);
9374 #endif
9375         }
9376
9377         if (t4_ntxq1g < 1) {
9378 #ifdef RSS
9379                 /* XXX: way too many for 1GbE? */
9380                 t4_ntxq1g = rss_getnumbuckets();
9381 #else
9382                 calculate_nqueues(&t4_ntxq1g, nc, NTXQ_1G);
9383 #endif
9384         }
9385
9386         calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
9387
9388         if (t4_nrxq10g < 1) {
9389 #ifdef RSS
9390                 t4_nrxq10g = rss_getnumbuckets();
9391 #else
9392                 calculate_nqueues(&t4_nrxq10g, nc, NRXQ_10G);
9393 #endif
9394         }
9395
9396         if (t4_nrxq1g < 1) {
9397 #ifdef RSS
9398                 /* XXX: way too many for 1GbE? */
9399                 t4_nrxq1g = rss_getnumbuckets();
9400 #else
9401                 calculate_nqueues(&t4_nrxq1g, nc, NRXQ_1G);
9402 #endif
9403         }
9404
9405         calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
9406
9407 #ifdef TCP_OFFLOAD
9408         calculate_nqueues(&t4_nofldtxq10g, nc, NOFLDTXQ_10G);
9409         calculate_nqueues(&t4_nofldtxq1g, nc, NOFLDTXQ_1G);
9410         calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
9411         calculate_nqueues(&t4_nofldrxq10g, nc, NOFLDRXQ_10G);
9412         calculate_nqueues(&t4_nofldrxq1g, nc, NOFLDRXQ_1G);
9413         calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
9414
9415         if (t4_toecaps_allowed == -1)
9416                 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
9417
9418         if (t4_rdmacaps_allowed == -1) {
9419                 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
9420                     FW_CAPS_CONFIG_RDMA_RDMAC;
9421         }
9422
9423         if (t4_iscsicaps_allowed == -1) {
9424                 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
9425                     FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
9426                     FW_CAPS_CONFIG_ISCSI_T10DIF;
9427         }
9428 #else
9429         if (t4_toecaps_allowed == -1)
9430                 t4_toecaps_allowed = 0;
9431
9432         if (t4_rdmacaps_allowed == -1)
9433                 t4_rdmacaps_allowed = 0;
9434
9435         if (t4_iscsicaps_allowed == -1)
9436                 t4_iscsicaps_allowed = 0;
9437 #endif
9438
9439 #ifdef DEV_NETMAP
9440         calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
9441         calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
9442 #endif
9443
9444         if (t4_tmr_idx_10g < 0 || t4_tmr_idx_10g >= SGE_NTIMERS)
9445                 t4_tmr_idx_10g = TMR_IDX_10G;
9446
9447         if (t4_pktc_idx_10g < -1 || t4_pktc_idx_10g >= SGE_NCOUNTERS)
9448                 t4_pktc_idx_10g = PKTC_IDX_10G;
9449
9450         if (t4_tmr_idx_1g < 0 || t4_tmr_idx_1g >= SGE_NTIMERS)
9451                 t4_tmr_idx_1g = TMR_IDX_1G;
9452
9453         if (t4_pktc_idx_1g < -1 || t4_pktc_idx_1g >= SGE_NCOUNTERS)
9454                 t4_pktc_idx_1g = PKTC_IDX_1G;
9455
9456         if (t4_qsize_txq < 128)
9457                 t4_qsize_txq = 128;
9458
9459         if (t4_qsize_rxq < 128)
9460                 t4_qsize_rxq = 128;
9461         while (t4_qsize_rxq & 7)
9462                 t4_qsize_rxq++;
9463
9464         t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
9465 }
9466
9467 #ifdef DDB
9468 static void
9469 t4_dump_tcb(struct adapter *sc, int tid)
9470 {
9471         uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
9472
9473         reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
9474         save = t4_read_reg(sc, reg);
9475         base = sc->memwin[2].mw_base;
9476
9477         /* Dump TCB for the tid */
9478         tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9479         tcb_addr += tid * TCB_SIZE;
9480
9481         if (is_t4(sc)) {
9482                 pf = 0;
9483                 win_pos = tcb_addr & ~0xf;      /* start must be 16B aligned */
9484         } else {
9485                 pf = V_PFNUM(sc->pf);
9486                 win_pos = tcb_addr & ~0x7f;     /* start must be 128B aligned */
9487         }
9488         t4_write_reg(sc, reg, win_pos | pf);
9489         t4_read_reg(sc, reg);
9490
9491         off = tcb_addr - win_pos;
9492         for (i = 0; i < 4; i++) {
9493                 uint32_t buf[8];
9494                 for (j = 0; j < 8; j++, off += 4)
9495                         buf[j] = htonl(t4_read_reg(sc, base + off));
9496
9497                 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
9498                     buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
9499                     buf[7]);
9500         }
9501
9502         t4_write_reg(sc, reg, save);
9503         t4_read_reg(sc, reg);
9504 }
9505
9506 static void
9507 t4_dump_devlog(struct adapter *sc)
9508 {
9509         struct devlog_params *dparams = &sc->params.devlog;
9510         struct fw_devlog_e e;
9511         int i, first, j, m, nentries, rc;
9512         uint64_t ftstamp = UINT64_MAX;
9513
9514         if (dparams->start == 0) {
9515                 db_printf("devlog params not valid\n");
9516                 return;
9517         }
9518
9519         nentries = dparams->size / sizeof(struct fw_devlog_e);
9520         m = fwmtype_to_hwmtype(dparams->memtype);
9521
9522         /* Find the first entry. */
9523         first = -1;
9524         for (i = 0; i < nentries && !db_pager_quit; i++) {
9525                 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
9526                     sizeof(e), (void *)&e);
9527                 if (rc != 0)
9528                         break;
9529
9530                 if (e.timestamp == 0)
9531                         break;
9532
9533                 e.timestamp = be64toh(e.timestamp);
9534                 if (e.timestamp < ftstamp) {
9535                         ftstamp = e.timestamp;
9536                         first = i;
9537                 }
9538         }
9539
9540         if (first == -1)
9541                 return;
9542
9543         i = first;
9544         do {
9545                 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
9546                     sizeof(e), (void *)&e);
9547                 if (rc != 0)
9548                         return;
9549
9550                 if (e.timestamp == 0)
9551                         return;
9552
9553                 e.timestamp = be64toh(e.timestamp);
9554                 e.seqno = be32toh(e.seqno);
9555                 for (j = 0; j < 8; j++)
9556                         e.params[j] = be32toh(e.params[j]);
9557
9558                 db_printf("%10d  %15ju  %8s  %8s  ",
9559                     e.seqno, e.timestamp,
9560                     (e.level < nitems(devlog_level_strings) ?
9561                         devlog_level_strings[e.level] : "UNKNOWN"),
9562                     (e.facility < nitems(devlog_facility_strings) ?
9563                         devlog_facility_strings[e.facility] : "UNKNOWN"));
9564                 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
9565                     e.params[3], e.params[4], e.params[5], e.params[6],
9566                     e.params[7]);
9567
9568                 if (++i == nentries)
9569                         i = 0;
9570         } while (i != first && !db_pager_quit);
9571 }
9572
9573 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
9574 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
9575
9576 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
9577 {
9578         device_t dev;
9579         int t;
9580         bool valid;
9581
9582         valid = false;
9583         t = db_read_token();
9584         if (t == tIDENT) {
9585                 dev = device_lookup_by_name(db_tok_string);
9586                 valid = true;
9587         }
9588         db_skip_to_eol();
9589         if (!valid) {
9590                 db_printf("usage: show t4 devlog <nexus>\n");
9591                 return;
9592         }
9593
9594         if (dev == NULL) {
9595                 db_printf("device not found\n");
9596                 return;
9597         }
9598
9599         t4_dump_devlog(device_get_softc(dev));
9600 }
9601
9602 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
9603 {
9604         device_t dev;
9605         int radix, tid, t;
9606         bool valid;
9607
9608         valid = false;
9609         radix = db_radix;
9610         db_radix = 10;
9611         t = db_read_token();
9612         if (t == tIDENT) {
9613                 dev = device_lookup_by_name(db_tok_string);
9614                 t = db_read_token();
9615                 if (t == tNUMBER) {
9616                         tid = db_tok_number;
9617                         valid = true;
9618                 }
9619         }       
9620         db_radix = radix;
9621         db_skip_to_eol();
9622         if (!valid) {
9623                 db_printf("usage: show t4 tcb <nexus> <tid>\n");
9624                 return;
9625         }
9626
9627         if (dev == NULL) {
9628                 db_printf("device not found\n");
9629                 return;
9630         }
9631         if (tid < 0) {
9632                 db_printf("invalid tid\n");
9633                 return;
9634         }
9635
9636         t4_dump_tcb(device_get_softc(dev), tid);
9637 }
9638 #endif
9639
9640 static struct sx mlu;   /* mod load unload */
9641 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
9642
9643 static int
9644 mod_event(module_t mod, int cmd, void *arg)
9645 {
9646         int rc = 0;
9647         static int loaded = 0;
9648
9649         switch (cmd) {
9650         case MOD_LOAD:
9651                 sx_xlock(&mlu);
9652                 if (loaded++ == 0) {
9653                         t4_sge_modload();
9654                         t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl);
9655                         t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl);
9656                         t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
9657                         t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
9658                         sx_init(&t4_list_lock, "T4/T5 adapters");
9659                         SLIST_INIT(&t4_list);
9660 #ifdef TCP_OFFLOAD
9661                         sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
9662                         SLIST_INIT(&t4_uld_list);
9663 #endif
9664                         t4_tracer_modload();
9665                         tweak_tunables();
9666                 }
9667                 sx_xunlock(&mlu);
9668                 break;
9669
9670         case MOD_UNLOAD:
9671                 sx_xlock(&mlu);
9672                 if (--loaded == 0) {
9673                         int tries;
9674
9675                         sx_slock(&t4_list_lock);
9676                         if (!SLIST_EMPTY(&t4_list)) {
9677                                 rc = EBUSY;
9678                                 sx_sunlock(&t4_list_lock);
9679                                 goto done_unload;
9680                         }
9681 #ifdef TCP_OFFLOAD
9682                         sx_slock(&t4_uld_list_lock);
9683                         if (!SLIST_EMPTY(&t4_uld_list)) {
9684                                 rc = EBUSY;
9685                                 sx_sunlock(&t4_uld_list_lock);
9686                                 sx_sunlock(&t4_list_lock);
9687                                 goto done_unload;
9688                         }
9689 #endif
9690                         tries = 0;
9691                         while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
9692                                 uprintf("%ju clusters with custom free routine "
9693                                     "still is use.\n", t4_sge_extfree_refs());
9694                                 pause("t4unload", 2 * hz);
9695                         }
9696 #ifdef TCP_OFFLOAD
9697                         sx_sunlock(&t4_uld_list_lock);
9698 #endif
9699                         sx_sunlock(&t4_list_lock);
9700
9701                         if (t4_sge_extfree_refs() == 0) {
9702                                 t4_tracer_modunload();
9703 #ifdef TCP_OFFLOAD
9704                                 sx_destroy(&t4_uld_list_lock);
9705 #endif
9706                                 sx_destroy(&t4_list_lock);
9707                                 t4_sge_modunload();
9708                                 loaded = 0;
9709                         } else {
9710                                 rc = EBUSY;
9711                                 loaded++;       /* undo earlier decrement */
9712                         }
9713                 }
9714 done_unload:
9715                 sx_xunlock(&mlu);
9716                 break;
9717         }
9718
9719         return (rc);
9720 }
9721
9722 static devclass_t t4_devclass, t5_devclass, t6_devclass;
9723 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass;
9724 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass;
9725
9726 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
9727 MODULE_VERSION(t4nex, 1);
9728 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
9729 #ifdef DEV_NETMAP
9730 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
9731 #endif /* DEV_NETMAP */
9732
9733 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
9734 MODULE_VERSION(t5nex, 1);
9735 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
9736 #ifdef DEV_NETMAP
9737 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
9738 #endif /* DEV_NETMAP */
9739
9740 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0);
9741 MODULE_VERSION(t6nex, 1);
9742 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
9743 #ifdef DEV_NETMAP
9744 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
9745 #endif /* DEV_NETMAP */
9746
9747 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
9748 MODULE_VERSION(cxgbe, 1);
9749
9750 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
9751 MODULE_VERSION(cxl, 1);
9752
9753 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0);
9754 MODULE_VERSION(cc, 1);
9755
9756 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
9757 MODULE_VERSION(vcxgbe, 1);
9758
9759 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
9760 MODULE_VERSION(vcxl, 1);
9761
9762 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0);
9763 MODULE_VERSION(vcc, 1);