]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/t4_main.c
MFV r328247: 8959 Add notifications when a scrub is paused or resumed
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / t4_main.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "opt_ddb.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_rss.h"
37
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/priv.h>
41 #include <sys/kernel.h>
42 #include <sys/bus.h>
43 #include <sys/module.h>
44 #include <sys/malloc.h>
45 #include <sys/queue.h>
46 #include <sys/taskqueue.h>
47 #include <sys/pciio.h>
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pci_private.h>
51 #include <sys/firmware.h>
52 #include <sys/sbuf.h>
53 #include <sys/smp.h>
54 #include <sys/socket.h>
55 #include <sys/sockio.h>
56 #include <sys/sysctl.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_types.h>
60 #include <net/if_dl.h>
61 #include <net/if_vlan_var.h>
62 #ifdef RSS
63 #include <net/rss_config.h>
64 #endif
65 #if defined(__i386__) || defined(__amd64__)
66 #include <machine/md_var.h>
67 #include <machine/cputypes.h>
68 #include <vm/vm.h>
69 #include <vm/pmap.h>
70 #endif
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #include <ddb/db_lex.h>
74 #endif
75
76 #include "common/common.h"
77 #include "common/t4_msg.h"
78 #include "common/t4_regs.h"
79 #include "common/t4_regs_values.h"
80 #include "cudbg/cudbg.h"
81 #include "t4_ioctl.h"
82 #include "t4_l2t.h"
83 #include "t4_mp_ring.h"
84 #include "t4_if.h"
85
86 /* T4 bus driver interface */
87 static int t4_probe(device_t);
88 static int t4_attach(device_t);
89 static int t4_detach(device_t);
90 static int t4_ready(device_t);
91 static int t4_read_port_device(device_t, int, device_t *);
92 static device_method_t t4_methods[] = {
93         DEVMETHOD(device_probe,         t4_probe),
94         DEVMETHOD(device_attach,        t4_attach),
95         DEVMETHOD(device_detach,        t4_detach),
96
97         DEVMETHOD(t4_is_main_ready,     t4_ready),
98         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
99
100         DEVMETHOD_END
101 };
102 static driver_t t4_driver = {
103         "t4nex",
104         t4_methods,
105         sizeof(struct adapter)
106 };
107
108
109 /* T4 port (cxgbe) interface */
110 static int cxgbe_probe(device_t);
111 static int cxgbe_attach(device_t);
112 static int cxgbe_detach(device_t);
113 device_method_t cxgbe_methods[] = {
114         DEVMETHOD(device_probe,         cxgbe_probe),
115         DEVMETHOD(device_attach,        cxgbe_attach),
116         DEVMETHOD(device_detach,        cxgbe_detach),
117         { 0, 0 }
118 };
119 static driver_t cxgbe_driver = {
120         "cxgbe",
121         cxgbe_methods,
122         sizeof(struct port_info)
123 };
124
125 /* T4 VI (vcxgbe) interface */
126 static int vcxgbe_probe(device_t);
127 static int vcxgbe_attach(device_t);
128 static int vcxgbe_detach(device_t);
129 static device_method_t vcxgbe_methods[] = {
130         DEVMETHOD(device_probe,         vcxgbe_probe),
131         DEVMETHOD(device_attach,        vcxgbe_attach),
132         DEVMETHOD(device_detach,        vcxgbe_detach),
133         { 0, 0 }
134 };
135 static driver_t vcxgbe_driver = {
136         "vcxgbe",
137         vcxgbe_methods,
138         sizeof(struct vi_info)
139 };
140
141 static d_ioctl_t t4_ioctl;
142
143 static struct cdevsw t4_cdevsw = {
144        .d_version = D_VERSION,
145        .d_ioctl = t4_ioctl,
146        .d_name = "t4nex",
147 };
148
149 /* T5 bus driver interface */
150 static int t5_probe(device_t);
151 static device_method_t t5_methods[] = {
152         DEVMETHOD(device_probe,         t5_probe),
153         DEVMETHOD(device_attach,        t4_attach),
154         DEVMETHOD(device_detach,        t4_detach),
155
156         DEVMETHOD(t4_is_main_ready,     t4_ready),
157         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
158
159         DEVMETHOD_END
160 };
161 static driver_t t5_driver = {
162         "t5nex",
163         t5_methods,
164         sizeof(struct adapter)
165 };
166
167
168 /* T5 port (cxl) interface */
169 static driver_t cxl_driver = {
170         "cxl",
171         cxgbe_methods,
172         sizeof(struct port_info)
173 };
174
175 /* T5 VI (vcxl) interface */
176 static driver_t vcxl_driver = {
177         "vcxl",
178         vcxgbe_methods,
179         sizeof(struct vi_info)
180 };
181
182 /* T6 bus driver interface */
183 static int t6_probe(device_t);
184 static device_method_t t6_methods[] = {
185         DEVMETHOD(device_probe,         t6_probe),
186         DEVMETHOD(device_attach,        t4_attach),
187         DEVMETHOD(device_detach,        t4_detach),
188
189         DEVMETHOD(t4_is_main_ready,     t4_ready),
190         DEVMETHOD(t4_read_port_device,  t4_read_port_device),
191
192         DEVMETHOD_END
193 };
194 static driver_t t6_driver = {
195         "t6nex",
196         t6_methods,
197         sizeof(struct adapter)
198 };
199
200
201 /* T6 port (cc) interface */
202 static driver_t cc_driver = {
203         "cc",
204         cxgbe_methods,
205         sizeof(struct port_info)
206 };
207
208 /* T6 VI (vcc) interface */
209 static driver_t vcc_driver = {
210         "vcc",
211         vcxgbe_methods,
212         sizeof(struct vi_info)
213 };
214
215 /* ifnet + media interface */
216 static void cxgbe_init(void *);
217 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
218 static int cxgbe_transmit(struct ifnet *, struct mbuf *);
219 static void cxgbe_qflush(struct ifnet *);
220 static int cxgbe_media_change(struct ifnet *);
221 static void cxgbe_media_status(struct ifnet *, struct ifmediareq *);
222
223 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
224
225 /*
226  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
227  * then ADAPTER_LOCK, then t4_uld_list_lock.
228  */
229 static struct sx t4_list_lock;
230 SLIST_HEAD(, adapter) t4_list;
231 #ifdef TCP_OFFLOAD
232 static struct sx t4_uld_list_lock;
233 SLIST_HEAD(, uld_info) t4_uld_list;
234 #endif
235
236 /*
237  * Tunables.  See tweak_tunables() too.
238  *
239  * Each tunable is set to a default value here if it's known at compile-time.
240  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
241  * provide a reasonable default (upto n) when the driver is loaded.
242  *
243  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
244  * T5 are under hw.cxl.
245  */
246
247 /*
248  * Number of queues for tx and rx, NIC and offload.
249  */
250 #define NTXQ 16
251 int t4_ntxq = -NTXQ;
252 TUNABLE_INT("hw.cxgbe.ntxq", &t4_ntxq);
253 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);      /* Old name, undocumented */
254
255 #define NRXQ 8
256 int t4_nrxq = -NRXQ;
257 TUNABLE_INT("hw.cxgbe.nrxq", &t4_nrxq);
258 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);      /* Old name, undocumented */
259
260 #define NTXQ_VI 1
261 static int t4_ntxq_vi = -NTXQ_VI;
262 TUNABLE_INT("hw.cxgbe.ntxq_vi", &t4_ntxq_vi);
263
264 #define NRXQ_VI 1
265 static int t4_nrxq_vi = -NRXQ_VI;
266 TUNABLE_INT("hw.cxgbe.nrxq_vi", &t4_nrxq_vi);
267
268 static int t4_rsrv_noflowq = 0;
269 TUNABLE_INT("hw.cxgbe.rsrv_noflowq", &t4_rsrv_noflowq);
270
271 #ifdef TCP_OFFLOAD
272 #define NOFLDTXQ 8
273 static int t4_nofldtxq = -NOFLDTXQ;
274 TUNABLE_INT("hw.cxgbe.nofldtxq", &t4_nofldtxq);
275
276 #define NOFLDRXQ 2
277 static int t4_nofldrxq = -NOFLDRXQ;
278 TUNABLE_INT("hw.cxgbe.nofldrxq", &t4_nofldrxq);
279
280 #define NOFLDTXQ_VI 1
281 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
282 TUNABLE_INT("hw.cxgbe.nofldtxq_vi", &t4_nofldtxq_vi);
283
284 #define NOFLDRXQ_VI 1
285 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
286 TUNABLE_INT("hw.cxgbe.nofldrxq_vi", &t4_nofldrxq_vi);
287
288 #define TMR_IDX_OFLD 1
289 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
290 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_ofld", &t4_tmr_idx_ofld);
291
292 #define PKTC_IDX_OFLD (-1)
293 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
294 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_ofld", &t4_pktc_idx_ofld);
295
296 /* 0 means chip/fw default, non-zero number is value in microseconds */
297 static u_long t4_toe_keepalive_idle = 0;
298 TUNABLE_ULONG("hw.cxgbe.toe.keepalive_idle", &t4_toe_keepalive_idle);
299
300 /* 0 means chip/fw default, non-zero number is value in microseconds */
301 static u_long t4_toe_keepalive_interval = 0;
302 TUNABLE_ULONG("hw.cxgbe.toe.keepalive_interval", &t4_toe_keepalive_interval);
303
304 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
305 static int t4_toe_keepalive_count = 0;
306 TUNABLE_INT("hw.cxgbe.toe.keepalive_count", &t4_toe_keepalive_count);
307
308 /* 0 means chip/fw default, non-zero number is value in microseconds */
309 static u_long t4_toe_rexmt_min = 0;
310 TUNABLE_ULONG("hw.cxgbe.toe.rexmt_min", &t4_toe_rexmt_min);
311
312 /* 0 means chip/fw default, non-zero number is value in microseconds */
313 static u_long t4_toe_rexmt_max = 0;
314 TUNABLE_ULONG("hw.cxgbe.toe.rexmt_max", &t4_toe_rexmt_max);
315
316 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
317 static int t4_toe_rexmt_count = 0;
318 TUNABLE_INT("hw.cxgbe.toe.rexmt_count", &t4_toe_rexmt_count);
319
320 /* -1 means chip/fw default, other values are raw backoff values to use */
321 static int t4_toe_rexmt_backoff[16] = {
322         -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
323 };
324 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.0", &t4_toe_rexmt_backoff[0]);
325 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.1", &t4_toe_rexmt_backoff[1]);
326 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.2", &t4_toe_rexmt_backoff[2]);
327 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.3", &t4_toe_rexmt_backoff[3]);
328 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.4", &t4_toe_rexmt_backoff[4]);
329 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.5", &t4_toe_rexmt_backoff[5]);
330 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.6", &t4_toe_rexmt_backoff[6]);
331 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.7", &t4_toe_rexmt_backoff[7]);
332 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.8", &t4_toe_rexmt_backoff[8]);
333 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.9", &t4_toe_rexmt_backoff[9]);
334 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.10", &t4_toe_rexmt_backoff[10]);
335 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.11", &t4_toe_rexmt_backoff[11]);
336 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.12", &t4_toe_rexmt_backoff[12]);
337 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.13", &t4_toe_rexmt_backoff[13]);
338 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.14", &t4_toe_rexmt_backoff[14]);
339 TUNABLE_INT("hw.cxgbe.toe.rexmt_backoff.15", &t4_toe_rexmt_backoff[15]);
340 #endif
341
342 #ifdef DEV_NETMAP
343 #define NNMTXQ_VI 2
344 static int t4_nnmtxq_vi = -NNMTXQ_VI;
345 TUNABLE_INT("hw.cxgbe.nnmtxq_vi", &t4_nnmtxq_vi);
346
347 #define NNMRXQ_VI 2
348 static int t4_nnmrxq_vi = -NNMRXQ_VI;
349 TUNABLE_INT("hw.cxgbe.nnmrxq_vi", &t4_nnmrxq_vi);
350 #endif
351
352 /*
353  * Holdoff parameters for ports.
354  */
355 #define TMR_IDX 1
356 int t4_tmr_idx = TMR_IDX;
357 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx", &t4_tmr_idx);
358
359 #define PKTC_IDX (-1)
360 int t4_pktc_idx = PKTC_IDX;
361 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx", &t4_pktc_idx);
362
363 /*
364  * Size (# of entries) of each tx and rx queue.
365  */
366 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
367 TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq);
368
369 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
370 TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq);
371
372 /*
373  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
374  */
375 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
376 TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types);
377
378 /*
379  * Configuration file.
380  */
381 #define DEFAULT_CF      "default"
382 #define FLASH_CF        "flash"
383 #define UWIRE_CF        "uwire"
384 #define FPGA_CF         "fpga"
385 static char t4_cfg_file[32] = DEFAULT_CF;
386 TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file));
387
388 /*
389  * PAUSE settings (bit 0, 1 = rx_pause, tx_pause respectively).
390  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
391  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
392  *            mark or when signalled to do so, 0 to never emit PAUSE.
393  */
394 static int t4_pause_settings = PAUSE_TX | PAUSE_RX;
395 TUNABLE_INT("hw.cxgbe.pause_settings", &t4_pause_settings);
396
397 /*
398  * Forward Error Correction settings (bit 0, 1, 2 = FEC_RS, FEC_BASER_RS,
399  * FEC_RESERVED respectively).
400  * -1 to run with the firmware default.
401  *  0 to disable FEC.
402  */
403 static int t4_fec = -1;
404 TUNABLE_INT("hw.cxgbe.fec", &t4_fec);
405
406 /*
407  * Link autonegotiation.
408  * -1 to run with the firmware default.
409  *  0 to disable.
410  *  1 to enable.
411  */
412 static int t4_autoneg = -1;
413 TUNABLE_INT("hw.cxgbe.autoneg", &t4_autoneg);
414
415 /*
416  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
417  * encouraged respectively).
418  */
419 static unsigned int t4_fw_install = 1;
420 TUNABLE_INT("hw.cxgbe.fw_install", &t4_fw_install);
421
422 /*
423  * ASIC features that will be used.  Disable the ones you don't want so that the
424  * chip resources aren't wasted on features that will not be used.
425  */
426 static int t4_nbmcaps_allowed = 0;
427 TUNABLE_INT("hw.cxgbe.nbmcaps_allowed", &t4_nbmcaps_allowed);
428
429 static int t4_linkcaps_allowed = 0;     /* No DCBX, PPP, etc. by default */
430 TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed);
431
432 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
433     FW_CAPS_CONFIG_SWITCH_EGRESS;
434 TUNABLE_INT("hw.cxgbe.switchcaps_allowed", &t4_switchcaps_allowed);
435
436 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC;
437 TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed);
438
439 static int t4_toecaps_allowed = -1;
440 TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed);
441
442 static int t4_rdmacaps_allowed = -1;
443 TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed);
444
445 static int t4_cryptocaps_allowed = -1;
446 TUNABLE_INT("hw.cxgbe.cryptocaps_allowed", &t4_cryptocaps_allowed);
447
448 static int t4_iscsicaps_allowed = -1;
449 TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed);
450
451 static int t4_fcoecaps_allowed = 0;
452 TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed);
453
454 static int t5_write_combine = 1;
455 TUNABLE_INT("hw.cxl.write_combine", &t5_write_combine);
456
457 static int t4_num_vis = 1;
458 TUNABLE_INT("hw.cxgbe.num_vis", &t4_num_vis);
459 /*
460  * PCIe Relaxed Ordering.
461  * -1: driver should figure out a good value.
462  * 0: disable RO.
463  * 1: enable RO.
464  * 2: leave RO alone.
465  */
466 static int pcie_relaxed_ordering = -1;
467 TUNABLE_INT("hw.cxgbe.pcie_relaxed_ordering", &pcie_relaxed_ordering);
468
469
470 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
471 static int vi_mac_funcs[] = {
472         FW_VI_FUNC_ETH,
473         FW_VI_FUNC_OFLD,
474         FW_VI_FUNC_IWARP,
475         FW_VI_FUNC_OPENISCSI,
476         FW_VI_FUNC_OPENFCOE,
477         FW_VI_FUNC_FOISCSI,
478         FW_VI_FUNC_FOFCOE,
479 };
480
481 struct intrs_and_queues {
482         uint16_t intr_type;     /* INTx, MSI, or MSI-X */
483         uint16_t num_vis;       /* number of VIs for each port */
484         uint16_t nirq;          /* Total # of vectors */
485         uint16_t ntxq;          /* # of NIC txq's for each port */
486         uint16_t nrxq;          /* # of NIC rxq's for each port */
487         uint16_t nofldtxq;      /* # of TOE txq's for each port */
488         uint16_t nofldrxq;      /* # of TOE rxq's for each port */
489
490         /* The vcxgbe/vcxl interfaces use these and not the ones above. */
491         uint16_t ntxq_vi;       /* # of NIC txq's */
492         uint16_t nrxq_vi;       /* # of NIC rxq's */
493         uint16_t nofldtxq_vi;   /* # of TOE txq's */
494         uint16_t nofldrxq_vi;   /* # of TOE rxq's */
495         uint16_t nnmtxq_vi;     /* # of netmap txq's */
496         uint16_t nnmrxq_vi;     /* # of netmap rxq's */
497 };
498
499 struct filter_entry {
500         uint32_t valid:1;       /* filter allocated and valid */
501         uint32_t locked:1;      /* filter is administratively locked */
502         uint32_t pending:1;     /* filter action is pending firmware reply */
503         uint32_t smtidx:8;      /* Source MAC Table index for smac */
504         struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
505
506         struct t4_filter_specification fs;
507 };
508
509 static void setup_memwin(struct adapter *);
510 static void position_memwin(struct adapter *, int, uint32_t);
511 static int rw_via_memwin(struct adapter *, int, uint32_t, uint32_t *, int, int);
512 static inline int read_via_memwin(struct adapter *, int, uint32_t, uint32_t *,
513     int);
514 static inline int write_via_memwin(struct adapter *, int, uint32_t,
515     const uint32_t *, int);
516 static int validate_mem_range(struct adapter *, uint32_t, int);
517 static int fwmtype_to_hwmtype(int);
518 static int validate_mt_off_len(struct adapter *, int, uint32_t, int,
519     uint32_t *);
520 static int fixup_devlog_params(struct adapter *);
521 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
522 static int prep_firmware(struct adapter *);
523 static int partition_resources(struct adapter *, const struct firmware *,
524     const char *);
525 static int get_params__pre_init(struct adapter *);
526 static int get_params__post_init(struct adapter *);
527 static int set_params__post_init(struct adapter *);
528 static void t4_set_desc(struct adapter *);
529 static void build_medialist(struct port_info *, struct ifmedia *);
530 static void init_l1cfg(struct port_info *);
531 static int cxgbe_init_synchronized(struct vi_info *);
532 static int cxgbe_uninit_synchronized(struct vi_info *);
533 static void quiesce_txq(struct adapter *, struct sge_txq *);
534 static void quiesce_wrq(struct adapter *, struct sge_wrq *);
535 static void quiesce_iq(struct adapter *, struct sge_iq *);
536 static void quiesce_fl(struct adapter *, struct sge_fl *);
537 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
538     driver_intr_t *, void *, char *);
539 static int t4_free_irq(struct adapter *, struct irq *);
540 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
541 static void vi_refresh_stats(struct adapter *, struct vi_info *);
542 static void cxgbe_refresh_stats(struct adapter *, struct port_info *);
543 static void cxgbe_tick(void *);
544 static void cxgbe_vlan_config(void *, struct ifnet *, uint16_t);
545 static void cxgbe_sysctls(struct port_info *);
546 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
547 static int sysctl_bitfield(SYSCTL_HANDLER_ARGS);
548 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
549 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
550 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
551 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
552 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
553 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
554 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
555 static int sysctl_fec(SYSCTL_HANDLER_ARGS);
556 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
557 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
558 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
559 #ifdef SBUF_DRAIN
560 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
561 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
562 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
563 static int sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS);
564 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
565 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
566 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
567 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
568 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
569 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
570 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
571 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
572 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
573 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
574 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
575 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
576 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
577 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
578 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
579 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
580 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
581 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
582 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
583 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
584 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
585 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
586 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
587 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
588 static int sysctl_tc_params(SYSCTL_HANDLER_ARGS);
589 #endif
590 #ifdef TCP_OFFLOAD
591 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
592 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
593 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
594 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
595 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
596 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
597 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
598 #endif
599 static uint32_t fconf_iconf_to_mode(uint32_t, uint32_t);
600 static uint32_t mode_to_fconf(uint32_t);
601 static uint32_t mode_to_iconf(uint32_t);
602 static int check_fspec_against_fconf_iconf(struct adapter *,
603     struct t4_filter_specification *);
604 static int get_filter_mode(struct adapter *, uint32_t *);
605 static int set_filter_mode(struct adapter *, uint32_t);
606 static inline uint64_t get_filter_hits(struct adapter *, uint32_t);
607 static int get_filter(struct adapter *, struct t4_filter *);
608 static int set_filter(struct adapter *, struct t4_filter *);
609 static int del_filter(struct adapter *, struct t4_filter *);
610 static void clear_filter(struct filter_entry *);
611 static int set_filter_wr(struct adapter *, int);
612 static int del_filter_wr(struct adapter *, int);
613 static int set_tcb_rpl(struct sge_iq *, const struct rss_header *,
614     struct mbuf *);
615 static int get_sge_context(struct adapter *, struct t4_sge_context *);
616 static int load_fw(struct adapter *, struct t4_data *);
617 static int load_cfg(struct adapter *, struct t4_data *);
618 static int load_boot(struct adapter *, struct t4_bootrom *);
619 static int load_bootcfg(struct adapter *, struct t4_data *);
620 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
621 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
622 static int read_i2c(struct adapter *, struct t4_i2c_data *);
623 #ifdef TCP_OFFLOAD
624 static int toe_capability(struct vi_info *, int);
625 #endif
626 static int mod_event(module_t, int, void *);
627 static int notify_siblings(device_t, int);
628
629 struct {
630         uint16_t device;
631         char *desc;
632 } t4_pciids[] = {
633         {0xa000, "Chelsio Terminator 4 FPGA"},
634         {0x4400, "Chelsio T440-dbg"},
635         {0x4401, "Chelsio T420-CR"},
636         {0x4402, "Chelsio T422-CR"},
637         {0x4403, "Chelsio T440-CR"},
638         {0x4404, "Chelsio T420-BCH"},
639         {0x4405, "Chelsio T440-BCH"},
640         {0x4406, "Chelsio T440-CH"},
641         {0x4407, "Chelsio T420-SO"},
642         {0x4408, "Chelsio T420-CX"},
643         {0x4409, "Chelsio T420-BT"},
644         {0x440a, "Chelsio T404-BT"},
645         {0x440e, "Chelsio T440-LP-CR"},
646 }, t5_pciids[] = {
647         {0xb000, "Chelsio Terminator 5 FPGA"},
648         {0x5400, "Chelsio T580-dbg"},
649         {0x5401,  "Chelsio T520-CR"},           /* 2 x 10G */
650         {0x5402,  "Chelsio T522-CR"},           /* 2 x 10G, 2 X 1G */
651         {0x5403,  "Chelsio T540-CR"},           /* 4 x 10G */
652         {0x5407,  "Chelsio T520-SO"},           /* 2 x 10G, nomem */
653         {0x5409,  "Chelsio T520-BT"},           /* 2 x 10GBaseT */
654         {0x540a,  "Chelsio T504-BT"},           /* 4 x 1G */
655         {0x540d,  "Chelsio T580-CR"},           /* 2 x 40G */
656         {0x540e,  "Chelsio T540-LP-CR"},        /* 4 x 10G */
657         {0x5410,  "Chelsio T580-LP-CR"},        /* 2 x 40G */
658         {0x5411,  "Chelsio T520-LL-CR"},        /* 2 x 10G */
659         {0x5412,  "Chelsio T560-CR"},           /* 1 x 40G, 2 x 10G */
660         {0x5414,  "Chelsio T580-LP-SO-CR"},     /* 2 x 40G, nomem */
661         {0x5415,  "Chelsio T502-BT"},           /* 2 x 1G */
662 #ifdef notyet
663         {0x5404,  "Chelsio T520-BCH"},
664         {0x5405,  "Chelsio T540-BCH"},
665         {0x5406,  "Chelsio T540-CH"},
666         {0x5408,  "Chelsio T520-CX"},
667         {0x540b,  "Chelsio B520-SR"},
668         {0x540c,  "Chelsio B504-BT"},
669         {0x540f,  "Chelsio Amsterdam"},
670         {0x5413,  "Chelsio T580-CHR"},
671 #endif
672 }, t6_pciids[] = {
673         {0xc006, "Chelsio Terminator 6 FPGA"},  /* T6 PE10K6 FPGA (PF0) */
674         {0x6400, "Chelsio T6-DBG-25"},          /* 2 x 10/25G, debug */
675         {0x6401, "Chelsio T6225-CR"},           /* 2 x 10/25G */
676         {0x6402, "Chelsio T6225-SO-CR"},        /* 2 x 10/25G, nomem */
677         {0x6403, "Chelsio T6425-CR"},           /* 4 x 10/25G */
678         {0x6404, "Chelsio T6425-SO-CR"},        /* 4 x 10/25G, nomem */
679         {0x6405, "Chelsio T6225-OCP-SO"},       /* 2 x 10/25G, nomem */
680         {0x6406, "Chelsio T62100-OCP-SO"},      /* 2 x 40/50/100G, nomem */
681         {0x6407, "Chelsio T62100-LP-CR"},       /* 2 x 40/50/100G */
682         {0x6408, "Chelsio T62100-SO-CR"},       /* 2 x 40/50/100G, nomem */
683         {0x6409, "Chelsio T6210-BT"},           /* 2 x 10GBASE-T */
684         {0x640d, "Chelsio T62100-CR"},          /* 2 x 40/50/100G */
685         {0x6410, "Chelsio T6-DBG-100"},         /* 2 x 40/50/100G, debug */
686         {0x6411, "Chelsio T6225-LL-CR"},        /* 2 x 10/25G */
687         {0x6414, "Chelsio T61100-OCP-SO"},      /* 1 x 40/50/100G, nomem */
688         {0x6415, "Chelsio T6201-BT"},           /* 2 x 1000BASE-T */
689
690         /* Custom */
691         {0x6480, "Chelsio T6225 80"},
692         {0x6481, "Chelsio T62100 81"},
693         {0x6484, "Chelsio T62100 84"},
694 };
695
696 #ifdef TCP_OFFLOAD
697 /*
698  * service_iq() has an iq and needs the fl.  Offset of fl from the iq should be
699  * exactly the same for both rxq and ofld_rxq.
700  */
701 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
702 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
703 #endif
704 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
705
706 static int
707 t4_probe(device_t dev)
708 {
709         int i;
710         uint16_t v = pci_get_vendor(dev);
711         uint16_t d = pci_get_device(dev);
712         uint8_t f = pci_get_function(dev);
713
714         if (v != PCI_VENDOR_ID_CHELSIO)
715                 return (ENXIO);
716
717         /* Attach only to PF0 of the FPGA */
718         if (d == 0xa000 && f != 0)
719                 return (ENXIO);
720
721         for (i = 0; i < nitems(t4_pciids); i++) {
722                 if (d == t4_pciids[i].device) {
723                         device_set_desc(dev, t4_pciids[i].desc);
724                         return (BUS_PROBE_DEFAULT);
725                 }
726         }
727
728         return (ENXIO);
729 }
730
731 static int
732 t5_probe(device_t dev)
733 {
734         int i;
735         uint16_t v = pci_get_vendor(dev);
736         uint16_t d = pci_get_device(dev);
737         uint8_t f = pci_get_function(dev);
738
739         if (v != PCI_VENDOR_ID_CHELSIO)
740                 return (ENXIO);
741
742         /* Attach only to PF0 of the FPGA */
743         if (d == 0xb000 && f != 0)
744                 return (ENXIO);
745
746         for (i = 0; i < nitems(t5_pciids); i++) {
747                 if (d == t5_pciids[i].device) {
748                         device_set_desc(dev, t5_pciids[i].desc);
749                         return (BUS_PROBE_DEFAULT);
750                 }
751         }
752
753         return (ENXIO);
754 }
755
756 static int
757 t6_probe(device_t dev)
758 {
759         int i;
760         uint16_t v = pci_get_vendor(dev);
761         uint16_t d = pci_get_device(dev);
762
763         if (v != PCI_VENDOR_ID_CHELSIO)
764                 return (ENXIO);
765
766         for (i = 0; i < nitems(t6_pciids); i++) {
767                 if (d == t6_pciids[i].device) {
768                         device_set_desc(dev, t6_pciids[i].desc);
769                         return (BUS_PROBE_DEFAULT);
770                 }
771         }
772
773         return (ENXIO);
774 }
775
776 static void
777 t5_attribute_workaround(device_t dev)
778 {
779         device_t root_port;
780         uint32_t v;
781
782         /*
783          * The T5 chips do not properly echo the No Snoop and Relaxed
784          * Ordering attributes when replying to a TLP from a Root
785          * Port.  As a workaround, find the parent Root Port and
786          * disable No Snoop and Relaxed Ordering.  Note that this
787          * affects all devices under this root port.
788          */
789         root_port = pci_find_pcie_root_port(dev);
790         if (root_port == NULL) {
791                 device_printf(dev, "Unable to find parent root port\n");
792                 return;
793         }
794
795         v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
796             PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
797         if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
798             0)
799                 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
800                     device_get_nameunit(root_port));
801 }
802
803 static const struct devnames devnames[] = {
804         {
805                 .nexus_name = "t4nex",
806                 .ifnet_name = "cxgbe",
807                 .vi_ifnet_name = "vcxgbe",
808                 .pf03_drv_name = "t4iov",
809                 .vf_nexus_name = "t4vf",
810                 .vf_ifnet_name = "cxgbev"
811         }, {
812                 .nexus_name = "t5nex",
813                 .ifnet_name = "cxl",
814                 .vi_ifnet_name = "vcxl",
815                 .pf03_drv_name = "t5iov",
816                 .vf_nexus_name = "t5vf",
817                 .vf_ifnet_name = "cxlv"
818         }, {
819                 .nexus_name = "t6nex",
820                 .ifnet_name = "cc",
821                 .vi_ifnet_name = "vcc",
822                 .pf03_drv_name = "t6iov",
823                 .vf_nexus_name = "t6vf",
824                 .vf_ifnet_name = "ccv"
825         }
826 };
827
828 void
829 t4_init_devnames(struct adapter *sc)
830 {
831         int id;
832
833         id = chip_id(sc);
834         if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
835                 sc->names = &devnames[id - CHELSIO_T4];
836         else {
837                 device_printf(sc->dev, "chip id %d is not supported.\n", id);
838                 sc->names = NULL;
839         }
840 }
841
842 static int
843 t4_attach(device_t dev)
844 {
845         struct adapter *sc;
846         int rc = 0, i, j, rqidx, tqidx, nports;
847         struct make_dev_args mda;
848         struct intrs_and_queues iaq;
849         struct sge *s;
850         uint32_t *buf;
851 #ifdef TCP_OFFLOAD
852         int ofld_rqidx, ofld_tqidx;
853 #endif
854 #ifdef DEV_NETMAP
855         int nm_rqidx, nm_tqidx;
856 #endif
857         int num_vis;
858
859         sc = device_get_softc(dev);
860         sc->dev = dev;
861         TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
862
863         if ((pci_get_device(dev) & 0xff00) == 0x5400)
864                 t5_attribute_workaround(dev);
865         pci_enable_busmaster(dev);
866         if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
867                 uint32_t v;
868
869                 pci_set_max_read_req(dev, 4096);
870                 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
871                 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
872                 if (pcie_relaxed_ordering == 0 &&
873                     (v | PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
874                         v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
875                         pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
876                 } else if (pcie_relaxed_ordering == 1 &&
877                     (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
878                         v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
879                         pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
880                 }
881         }
882
883         sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
884         sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
885         sc->traceq = -1;
886         mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
887         snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
888             device_get_nameunit(dev));
889
890         snprintf(sc->lockname, sizeof(sc->lockname), "%s",
891             device_get_nameunit(dev));
892         mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
893         t4_add_adapter(sc);
894
895         mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
896         TAILQ_INIT(&sc->sfl);
897         callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
898
899         mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
900
901         rc = t4_map_bars_0_and_4(sc);
902         if (rc != 0)
903                 goto done; /* error message displayed already */
904
905         memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
906
907         /* Prepare the adapter for operation. */
908         buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
909         rc = -t4_prep_adapter(sc, buf);
910         free(buf, M_CXGBE);
911         if (rc != 0) {
912                 device_printf(dev, "failed to prepare adapter: %d.\n", rc);
913                 goto done;
914         }
915
916         /*
917          * This is the real PF# to which we're attaching.  Works from within PCI
918          * passthrough environments too, where pci_get_function() could return a
919          * different PF# depending on the passthrough configuration.  We need to
920          * use the real PF# in all our communication with the firmware.
921          */
922         j = t4_read_reg(sc, A_PL_WHOAMI);
923         sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
924         sc->mbox = sc->pf;
925
926         t4_init_devnames(sc);
927         if (sc->names == NULL) {
928                 rc = ENOTSUP;
929                 goto done; /* error message displayed already */
930         }
931
932         /*
933          * Do this really early, with the memory windows set up even before the
934          * character device.  The userland tool's register i/o and mem read
935          * will work even in "recovery mode".
936          */
937         setup_memwin(sc);
938         if (t4_init_devlog_params(sc, 0) == 0)
939                 fixup_devlog_params(sc);
940         make_dev_args_init(&mda);
941         mda.mda_devsw = &t4_cdevsw;
942         mda.mda_uid = UID_ROOT;
943         mda.mda_gid = GID_WHEEL;
944         mda.mda_mode = 0600;
945         mda.mda_si_drv1 = sc;
946         rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
947         if (rc != 0)
948                 device_printf(dev, "failed to create nexus char device: %d.\n",
949                     rc);
950
951         /* Go no further if recovery mode has been requested. */
952         if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
953                 device_printf(dev, "recovery mode.\n");
954                 goto done;
955         }
956
957 #if defined(__i386__)
958         if ((cpu_feature & CPUID_CX8) == 0) {
959                 device_printf(dev, "64 bit atomics not available.\n");
960                 rc = ENOTSUP;
961                 goto done;
962         }
963 #endif
964
965         /* Prepare the firmware for operation */
966         rc = prep_firmware(sc);
967         if (rc != 0)
968                 goto done; /* error message displayed already */
969
970         rc = get_params__post_init(sc);
971         if (rc != 0)
972                 goto done; /* error message displayed already */
973
974         rc = set_params__post_init(sc);
975         if (rc != 0)
976                 goto done; /* error message displayed already */
977
978         rc = t4_map_bar_2(sc);
979         if (rc != 0)
980                 goto done; /* error message displayed already */
981
982         rc = t4_create_dma_tag(sc);
983         if (rc != 0)
984                 goto done; /* error message displayed already */
985
986         /*
987          * First pass over all the ports - allocate VIs and initialize some
988          * basic parameters like mac address, port type, etc.
989          */
990         for_each_port(sc, i) {
991                 struct port_info *pi;
992
993                 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
994                 sc->port[i] = pi;
995
996                 /* These must be set before t4_port_init */
997                 pi->adapter = sc;
998                 pi->port_id = i;
999                 /*
1000                  * XXX: vi[0] is special so we can't delay this allocation until
1001                  * pi->nvi's final value is known.
1002                  */
1003                 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1004                     M_ZERO | M_WAITOK);
1005
1006                 /*
1007                  * Allocate the "main" VI and initialize parameters
1008                  * like mac addr.
1009                  */
1010                 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1011                 if (rc != 0) {
1012                         device_printf(dev, "unable to initialize port %d: %d\n",
1013                             i, rc);
1014                         free(pi->vi, M_CXGBE);
1015                         free(pi, M_CXGBE);
1016                         sc->port[i] = NULL;
1017                         goto done;
1018                 }
1019
1020                 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1021                     device_get_nameunit(dev), i);
1022                 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1023                 sc->chan_map[pi->tx_chan] = i;
1024
1025                 /* All VIs on this port share this media. */
1026                 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1027                     cxgbe_media_status);
1028
1029                 pi->dev = device_add_child(dev, sc->names->ifnet_name, -1);
1030                 if (pi->dev == NULL) {
1031                         device_printf(dev,
1032                             "failed to add device for port %d.\n", i);
1033                         rc = ENXIO;
1034                         goto done;
1035                 }
1036                 pi->vi[0].dev = pi->dev;
1037                 device_set_softc(pi->dev, pi);
1038         }
1039
1040         /*
1041          * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1042          */
1043         nports = sc->params.nports;
1044         rc = cfg_itype_and_nqueues(sc, &iaq);
1045         if (rc != 0)
1046                 goto done; /* error message displayed already */
1047
1048         num_vis = iaq.num_vis;
1049         sc->intr_type = iaq.intr_type;
1050         sc->intr_count = iaq.nirq;
1051
1052         s = &sc->sge;
1053         s->nrxq = nports * iaq.nrxq;
1054         s->ntxq = nports * iaq.ntxq;
1055         if (num_vis > 1) {
1056                 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1057                 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1058         }
1059         s->neq = s->ntxq + s->nrxq;     /* the free list in an rxq is an eq */
1060         s->neq += nports + 1;/* ctrl queues: 1 per port + 1 mgmt */
1061         s->niq = s->nrxq + 1;           /* 1 extra for firmware event queue */
1062 #ifdef TCP_OFFLOAD
1063         if (is_offload(sc)) {
1064                 s->nofldrxq = nports * iaq.nofldrxq;
1065                 s->nofldtxq = nports * iaq.nofldtxq;
1066                 if (num_vis > 1) {
1067                         s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1068                         s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1069                 }
1070                 s->neq += s->nofldtxq + s->nofldrxq;
1071                 s->niq += s->nofldrxq;
1072
1073                 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1074                     M_CXGBE, M_ZERO | M_WAITOK);
1075                 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq),
1076                     M_CXGBE, M_ZERO | M_WAITOK);
1077         }
1078 #endif
1079 #ifdef DEV_NETMAP
1080         if (num_vis > 1) {
1081                 s->nnmrxq = nports * (num_vis - 1) * iaq.nnmrxq_vi;
1082                 s->nnmtxq = nports * (num_vis - 1) * iaq.nnmtxq_vi;
1083         }
1084         s->neq += s->nnmtxq + s->nnmrxq;
1085         s->niq += s->nnmrxq;
1086
1087         s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1088             M_CXGBE, M_ZERO | M_WAITOK);
1089         s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1090             M_CXGBE, M_ZERO | M_WAITOK);
1091 #endif
1092
1093         s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1094             M_ZERO | M_WAITOK);
1095         s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1096             M_ZERO | M_WAITOK);
1097         s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1098             M_ZERO | M_WAITOK);
1099         s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
1100             M_ZERO | M_WAITOK);
1101         s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
1102             M_ZERO | M_WAITOK);
1103
1104         sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1105             M_ZERO | M_WAITOK);
1106
1107         t4_init_l2t(sc, M_WAITOK);
1108         t4_init_tx_sched(sc);
1109
1110         /*
1111          * Second pass over the ports.  This time we know the number of rx and
1112          * tx queues that each port should get.
1113          */
1114         rqidx = tqidx = 0;
1115 #ifdef TCP_OFFLOAD
1116         ofld_rqidx = ofld_tqidx = 0;
1117 #endif
1118 #ifdef DEV_NETMAP
1119         nm_rqidx = nm_tqidx = 0;
1120 #endif
1121         for_each_port(sc, i) {
1122                 struct port_info *pi = sc->port[i];
1123                 struct vi_info *vi;
1124
1125                 if (pi == NULL)
1126                         continue;
1127
1128                 pi->nvi = num_vis;
1129                 for_each_vi(pi, j, vi) {
1130                         vi->pi = pi;
1131                         vi->qsize_rxq = t4_qsize_rxq;
1132                         vi->qsize_txq = t4_qsize_txq;
1133
1134                         vi->first_rxq = rqidx;
1135                         vi->first_txq = tqidx;
1136                         vi->tmr_idx = t4_tmr_idx;
1137                         vi->pktc_idx = t4_pktc_idx;
1138                         vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1139                         vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1140
1141                         rqidx += vi->nrxq;
1142                         tqidx += vi->ntxq;
1143
1144                         if (j == 0 && vi->ntxq > 1)
1145                                 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1146                         else
1147                                 vi->rsrv_noflowq = 0;
1148
1149 #ifdef TCP_OFFLOAD
1150                         vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1151                         vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1152                         vi->first_ofld_rxq = ofld_rqidx;
1153                         vi->first_ofld_txq = ofld_tqidx;
1154                         vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1155                         vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1156
1157                         ofld_rqidx += vi->nofldrxq;
1158                         ofld_tqidx += vi->nofldtxq;
1159 #endif
1160 #ifdef DEV_NETMAP
1161                         if (j > 0) {
1162                                 vi->first_nm_rxq = nm_rqidx;
1163                                 vi->first_nm_txq = nm_tqidx;
1164                                 vi->nnmrxq = iaq.nnmrxq_vi;
1165                                 vi->nnmtxq = iaq.nnmtxq_vi;
1166                                 nm_rqidx += vi->nnmrxq;
1167                                 nm_tqidx += vi->nnmtxq;
1168                         }
1169 #endif
1170                 }
1171         }
1172
1173         rc = t4_setup_intr_handlers(sc);
1174         if (rc != 0) {
1175                 device_printf(dev,
1176                     "failed to setup interrupt handlers: %d\n", rc);
1177                 goto done;
1178         }
1179
1180         rc = bus_generic_probe(dev);
1181         if (rc != 0) {
1182                 device_printf(dev, "failed to probe child drivers: %d\n", rc);
1183                 goto done;
1184         }
1185
1186         /*
1187          * Ensure thread-safe mailbox access (in debug builds).
1188          *
1189          * So far this was the only thread accessing the mailbox but various
1190          * ifnets and sysctls are about to be created and their handlers/ioctls
1191          * will access the mailbox from different threads.
1192          */
1193         sc->flags |= CHK_MBOX_ACCESS;
1194
1195         rc = bus_generic_attach(dev);
1196         if (rc != 0) {
1197                 device_printf(dev,
1198                     "failed to attach all child ports: %d\n", rc);
1199                 goto done;
1200         }
1201
1202         device_printf(dev,
1203             "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1204             sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1205             sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1206             (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1207             sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1208
1209         t4_set_desc(sc);
1210
1211         notify_siblings(dev, 0);
1212
1213 done:
1214         if (rc != 0 && sc->cdev) {
1215                 /* cdev was created and so cxgbetool works; recover that way. */
1216                 device_printf(dev,
1217                     "error during attach, adapter is now in recovery mode.\n");
1218                 rc = 0;
1219         }
1220
1221         if (rc != 0)
1222                 t4_detach_common(dev);
1223         else
1224                 t4_sysctls(sc);
1225
1226         return (rc);
1227 }
1228
1229 static int
1230 t4_ready(device_t dev)
1231 {
1232         struct adapter *sc;
1233
1234         sc = device_get_softc(dev);
1235         if (sc->flags & FW_OK)
1236                 return (0);
1237         return (ENXIO);
1238 }
1239
1240 static int
1241 t4_read_port_device(device_t dev, int port, device_t *child)
1242 {
1243         struct adapter *sc;
1244         struct port_info *pi;
1245
1246         sc = device_get_softc(dev);
1247         if (port < 0 || port >= MAX_NPORTS)
1248                 return (EINVAL);
1249         pi = sc->port[port];
1250         if (pi == NULL || pi->dev == NULL)
1251                 return (ENXIO);
1252         *child = pi->dev;
1253         return (0);
1254 }
1255
1256 static int
1257 notify_siblings(device_t dev, int detaching)
1258 {
1259         device_t sibling;
1260         int error, i;
1261
1262         error = 0;
1263         for (i = 0; i < PCI_FUNCMAX; i++) {
1264                 if (i == pci_get_function(dev))
1265                         continue;
1266                 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1267                     pci_get_slot(dev), i);
1268                 if (sibling == NULL || !device_is_attached(sibling))
1269                         continue;
1270                 if (detaching)
1271                         error = T4_DETACH_CHILD(sibling);
1272                 else
1273                         (void)T4_ATTACH_CHILD(sibling);
1274                 if (error)
1275                         break;
1276         }
1277         return (error);
1278 }
1279
1280 /*
1281  * Idempotent
1282  */
1283 static int
1284 t4_detach(device_t dev)
1285 {
1286         struct adapter *sc;
1287         int rc;
1288
1289         sc = device_get_softc(dev);
1290
1291         rc = notify_siblings(dev, 1);
1292         if (rc) {
1293                 device_printf(dev,
1294                     "failed to detach sibling devices: %d\n", rc);
1295                 return (rc);
1296         }
1297
1298         return (t4_detach_common(dev));
1299 }
1300
1301 int
1302 t4_detach_common(device_t dev)
1303 {
1304         struct adapter *sc;
1305         struct port_info *pi;
1306         int i, rc;
1307
1308         sc = device_get_softc(dev);
1309
1310         sc->flags &= ~CHK_MBOX_ACCESS;
1311         if (sc->flags & FULL_INIT_DONE) {
1312                 if (!(sc->flags & IS_VF))
1313                         t4_intr_disable(sc);
1314         }
1315
1316         if (sc->cdev) {
1317                 destroy_dev(sc->cdev);
1318                 sc->cdev = NULL;
1319         }
1320
1321         if (device_is_attached(dev)) {
1322                 rc = bus_generic_detach(dev);
1323                 if (rc) {
1324                         device_printf(dev,
1325                             "failed to detach child devices: %d\n", rc);
1326                         return (rc);
1327                 }
1328         }
1329
1330         for (i = 0; i < sc->intr_count; i++)
1331                 t4_free_irq(sc, &sc->irq[i]);
1332
1333         if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1334                 t4_free_tx_sched(sc);
1335
1336         for (i = 0; i < MAX_NPORTS; i++) {
1337                 pi = sc->port[i];
1338                 if (pi) {
1339                         t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1340                         if (pi->dev)
1341                                 device_delete_child(dev, pi->dev);
1342
1343                         mtx_destroy(&pi->pi_lock);
1344                         free(pi->vi, M_CXGBE);
1345                         free(pi, M_CXGBE);
1346                 }
1347         }
1348
1349         device_delete_children(dev);
1350
1351         if (sc->flags & FULL_INIT_DONE)
1352                 adapter_full_uninit(sc);
1353
1354         if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1355                 t4_fw_bye(sc, sc->mbox);
1356
1357         if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1358                 pci_release_msi(dev);
1359
1360         if (sc->regs_res)
1361                 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1362                     sc->regs_res);
1363
1364         if (sc->udbs_res)
1365                 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1366                     sc->udbs_res);
1367
1368         if (sc->msix_res)
1369                 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1370                     sc->msix_res);
1371
1372         if (sc->l2t)
1373                 t4_free_l2t(sc->l2t);
1374
1375 #ifdef TCP_OFFLOAD
1376         free(sc->sge.ofld_rxq, M_CXGBE);
1377         free(sc->sge.ofld_txq, M_CXGBE);
1378 #endif
1379 #ifdef DEV_NETMAP
1380         free(sc->sge.nm_rxq, M_CXGBE);
1381         free(sc->sge.nm_txq, M_CXGBE);
1382 #endif
1383         free(sc->irq, M_CXGBE);
1384         free(sc->sge.rxq, M_CXGBE);
1385         free(sc->sge.txq, M_CXGBE);
1386         free(sc->sge.ctrlq, M_CXGBE);
1387         free(sc->sge.iqmap, M_CXGBE);
1388         free(sc->sge.eqmap, M_CXGBE);
1389         free(sc->tids.ftid_tab, M_CXGBE);
1390         t4_destroy_dma_tag(sc);
1391         if (mtx_initialized(&sc->sc_lock)) {
1392                 sx_xlock(&t4_list_lock);
1393                 SLIST_REMOVE(&t4_list, sc, adapter, link);
1394                 sx_xunlock(&t4_list_lock);
1395                 mtx_destroy(&sc->sc_lock);
1396         }
1397
1398         callout_drain(&sc->sfl_callout);
1399         if (mtx_initialized(&sc->tids.ftid_lock))
1400                 mtx_destroy(&sc->tids.ftid_lock);
1401         if (mtx_initialized(&sc->sfl_lock))
1402                 mtx_destroy(&sc->sfl_lock);
1403         if (mtx_initialized(&sc->ifp_lock))
1404                 mtx_destroy(&sc->ifp_lock);
1405         if (mtx_initialized(&sc->reg_lock))
1406                 mtx_destroy(&sc->reg_lock);
1407
1408         for (i = 0; i < NUM_MEMWIN; i++) {
1409                 struct memwin *mw = &sc->memwin[i];
1410
1411                 if (rw_initialized(&mw->mw_lock))
1412                         rw_destroy(&mw->mw_lock);
1413         }
1414
1415         bzero(sc, sizeof(*sc));
1416
1417         return (0);
1418 }
1419
1420 static int
1421 cxgbe_probe(device_t dev)
1422 {
1423         char buf[128];
1424         struct port_info *pi = device_get_softc(dev);
1425
1426         snprintf(buf, sizeof(buf), "port %d", pi->port_id);
1427         device_set_desc_copy(dev, buf);
1428
1429         return (BUS_PROBE_DEFAULT);
1430 }
1431
1432 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
1433     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
1434     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS)
1435 #define T4_CAP_ENABLE (T4_CAP)
1436
1437 static int
1438 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
1439 {
1440         struct ifnet *ifp;
1441         struct sbuf *sb;
1442
1443         vi->xact_addr_filt = -1;
1444         callout_init(&vi->tick, 1);
1445
1446         /* Allocate an ifnet and set it up */
1447         ifp = if_alloc(IFT_ETHER);
1448         if (ifp == NULL) {
1449                 device_printf(dev, "Cannot allocate ifnet\n");
1450                 return (ENOMEM);
1451         }
1452         vi->ifp = ifp;
1453         ifp->if_softc = vi;
1454
1455         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1456         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1457
1458         ifp->if_init = cxgbe_init;
1459         ifp->if_ioctl = cxgbe_ioctl;
1460         ifp->if_transmit = cxgbe_transmit;
1461         ifp->if_qflush = cxgbe_qflush;
1462         ifp->if_get_counter = cxgbe_get_counter;
1463
1464         ifp->if_capabilities = T4_CAP;
1465 #ifdef TCP_OFFLOAD
1466         if (vi->nofldrxq != 0)
1467                 ifp->if_capabilities |= IFCAP_TOE;
1468 #endif
1469 #ifdef DEV_NETMAP
1470         if (vi->nnmrxq != 0)
1471                 ifp->if_capabilities |= IFCAP_NETMAP;
1472 #endif
1473         ifp->if_capenable = T4_CAP_ENABLE;
1474         ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
1475             CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
1476
1477         ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
1478         ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS;
1479         ifp->if_hw_tsomaxsegsize = 65536;
1480
1481         vi->vlan_c = EVENTHANDLER_REGISTER(vlan_config, cxgbe_vlan_config, ifp,
1482             EVENTHANDLER_PRI_ANY);
1483
1484         ether_ifattach(ifp, vi->hw_addr);
1485 #ifdef DEV_NETMAP
1486         if (ifp->if_capabilities & IFCAP_NETMAP)
1487                 cxgbe_nm_attach(vi);
1488 #endif
1489         sb = sbuf_new_auto();
1490         sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
1491 #ifdef TCP_OFFLOAD
1492         if (ifp->if_capabilities & IFCAP_TOE)
1493                 sbuf_printf(sb, "; %d txq, %d rxq (TOE)",
1494                     vi->nofldtxq, vi->nofldrxq);
1495 #endif
1496 #ifdef DEV_NETMAP
1497         if (ifp->if_capabilities & IFCAP_NETMAP)
1498                 sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
1499                     vi->nnmtxq, vi->nnmrxq);
1500 #endif
1501         sbuf_finish(sb);
1502         device_printf(dev, "%s\n", sbuf_data(sb));
1503         sbuf_delete(sb);
1504
1505         vi_sysctls(vi);
1506
1507         return (0);
1508 }
1509
1510 static int
1511 cxgbe_attach(device_t dev)
1512 {
1513         struct port_info *pi = device_get_softc(dev);
1514         struct adapter *sc = pi->adapter;
1515         struct vi_info *vi;
1516         int i, rc;
1517
1518         callout_init_mtx(&pi->tick, &pi->pi_lock, 0);
1519
1520         rc = cxgbe_vi_attach(dev, &pi->vi[0]);
1521         if (rc)
1522                 return (rc);
1523
1524         for_each_vi(pi, i, vi) {
1525                 if (i == 0)
1526                         continue;
1527                 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
1528                 if (vi->dev == NULL) {
1529                         device_printf(dev, "failed to add VI %d\n", i);
1530                         continue;
1531                 }
1532                 device_set_softc(vi->dev, vi);
1533         }
1534
1535         cxgbe_sysctls(pi);
1536
1537         bus_generic_attach(dev);
1538
1539         return (0);
1540 }
1541
1542 static void
1543 cxgbe_vi_detach(struct vi_info *vi)
1544 {
1545         struct ifnet *ifp = vi->ifp;
1546
1547         ether_ifdetach(ifp);
1548
1549         if (vi->vlan_c)
1550                 EVENTHANDLER_DEREGISTER(vlan_config, vi->vlan_c);
1551
1552         /* Let detach proceed even if these fail. */
1553 #ifdef DEV_NETMAP
1554         if (ifp->if_capabilities & IFCAP_NETMAP)
1555                 cxgbe_nm_detach(vi);
1556 #endif
1557         cxgbe_uninit_synchronized(vi);
1558         callout_drain(&vi->tick);
1559         vi_full_uninit(vi);
1560
1561         if_free(vi->ifp);
1562         vi->ifp = NULL;
1563 }
1564
1565 static int
1566 cxgbe_detach(device_t dev)
1567 {
1568         struct port_info *pi = device_get_softc(dev);
1569         struct adapter *sc = pi->adapter;
1570         int rc;
1571
1572         /* Detach the extra VIs first. */
1573         rc = bus_generic_detach(dev);
1574         if (rc)
1575                 return (rc);
1576         device_delete_children(dev);
1577
1578         doom_vi(sc, &pi->vi[0]);
1579
1580         if (pi->flags & HAS_TRACEQ) {
1581                 sc->traceq = -1;        /* cloner should not create ifnet */
1582                 t4_tracer_port_detach(sc);
1583         }
1584
1585         cxgbe_vi_detach(&pi->vi[0]);
1586         callout_drain(&pi->tick);
1587         ifmedia_removeall(&pi->media);
1588
1589         end_synchronized_op(sc, 0);
1590
1591         return (0);
1592 }
1593
1594 static void
1595 cxgbe_init(void *arg)
1596 {
1597         struct vi_info *vi = arg;
1598         struct adapter *sc = vi->pi->adapter;
1599
1600         if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
1601                 return;
1602         cxgbe_init_synchronized(vi);
1603         end_synchronized_op(sc, 0);
1604 }
1605
1606 static int
1607 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
1608 {
1609         int rc = 0, mtu, flags, can_sleep;
1610         struct vi_info *vi = ifp->if_softc;
1611         struct port_info *pi = vi->pi;
1612         struct adapter *sc = pi->adapter;
1613         struct ifreq *ifr = (struct ifreq *)data;
1614         uint32_t mask;
1615
1616         switch (cmd) {
1617         case SIOCSIFMTU:
1618                 mtu = ifr->ifr_mtu;
1619                 if (mtu < ETHERMIN || mtu > MAX_MTU)
1620                         return (EINVAL);
1621
1622                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
1623                 if (rc)
1624                         return (rc);
1625                 ifp->if_mtu = mtu;
1626                 if (vi->flags & VI_INIT_DONE) {
1627                         t4_update_fl_bufsize(ifp);
1628                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1629                                 rc = update_mac_settings(ifp, XGMAC_MTU);
1630                 }
1631                 end_synchronized_op(sc, 0);
1632                 break;
1633
1634         case SIOCSIFFLAGS:
1635                 can_sleep = 0;
1636 redo_sifflags:
1637                 rc = begin_synchronized_op(sc, vi,
1638                     can_sleep ? (SLEEP_OK | INTR_OK) : HOLD_LOCK, "t4flg");
1639                 if (rc)
1640                         return (rc);
1641
1642                 if (ifp->if_flags & IFF_UP) {
1643                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1644                                 flags = vi->if_flags;
1645                                 if ((ifp->if_flags ^ flags) &
1646                                     (IFF_PROMISC | IFF_ALLMULTI)) {
1647                                         if (can_sleep == 1) {
1648                                                 end_synchronized_op(sc, 0);
1649                                                 can_sleep = 0;
1650                                                 goto redo_sifflags;
1651                                         }
1652                                         rc = update_mac_settings(ifp,
1653                                             XGMAC_PROMISC | XGMAC_ALLMULTI);
1654                                 }
1655                         } else {
1656                                 if (can_sleep == 0) {
1657                                         end_synchronized_op(sc, LOCK_HELD);
1658                                         can_sleep = 1;
1659                                         goto redo_sifflags;
1660                                 }
1661                                 rc = cxgbe_init_synchronized(vi);
1662                         }
1663                         vi->if_flags = ifp->if_flags;
1664                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1665                         if (can_sleep == 0) {
1666                                 end_synchronized_op(sc, LOCK_HELD);
1667                                 can_sleep = 1;
1668                                 goto redo_sifflags;
1669                         }
1670                         rc = cxgbe_uninit_synchronized(vi);
1671                 }
1672                 end_synchronized_op(sc, can_sleep ? 0 : LOCK_HELD);
1673                 break;
1674
1675         case SIOCADDMULTI:
1676         case SIOCDELMULTI: /* these two are called with a mutex held :-( */
1677                 rc = begin_synchronized_op(sc, vi, HOLD_LOCK, "t4multi");
1678                 if (rc)
1679                         return (rc);
1680                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1681                         rc = update_mac_settings(ifp, XGMAC_MCADDRS);
1682                 end_synchronized_op(sc, LOCK_HELD);
1683                 break;
1684
1685         case SIOCSIFCAP:
1686                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
1687                 if (rc)
1688                         return (rc);
1689
1690                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1691                 if (mask & IFCAP_TXCSUM) {
1692                         ifp->if_capenable ^= IFCAP_TXCSUM;
1693                         ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
1694
1695                         if (IFCAP_TSO4 & ifp->if_capenable &&
1696                             !(IFCAP_TXCSUM & ifp->if_capenable)) {
1697                                 ifp->if_capenable &= ~IFCAP_TSO4;
1698                                 if_printf(ifp,
1699                                     "tso4 disabled due to -txcsum.\n");
1700                         }
1701                 }
1702                 if (mask & IFCAP_TXCSUM_IPV6) {
1703                         ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
1704                         ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
1705
1706                         if (IFCAP_TSO6 & ifp->if_capenable &&
1707                             !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1708                                 ifp->if_capenable &= ~IFCAP_TSO6;
1709                                 if_printf(ifp,
1710                                     "tso6 disabled due to -txcsum6.\n");
1711                         }
1712                 }
1713                 if (mask & IFCAP_RXCSUM)
1714                         ifp->if_capenable ^= IFCAP_RXCSUM;
1715                 if (mask & IFCAP_RXCSUM_IPV6)
1716                         ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
1717
1718                 /*
1719                  * Note that we leave CSUM_TSO alone (it is always set).  The
1720                  * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
1721                  * sending a TSO request our way, so it's sufficient to toggle
1722                  * IFCAP_TSOx only.
1723                  */
1724                 if (mask & IFCAP_TSO4) {
1725                         if (!(IFCAP_TSO4 & ifp->if_capenable) &&
1726                             !(IFCAP_TXCSUM & ifp->if_capenable)) {
1727                                 if_printf(ifp, "enable txcsum first.\n");
1728                                 rc = EAGAIN;
1729                                 goto fail;
1730                         }
1731                         ifp->if_capenable ^= IFCAP_TSO4;
1732                 }
1733                 if (mask & IFCAP_TSO6) {
1734                         if (!(IFCAP_TSO6 & ifp->if_capenable) &&
1735                             !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1736                                 if_printf(ifp, "enable txcsum6 first.\n");
1737                                 rc = EAGAIN;
1738                                 goto fail;
1739                         }
1740                         ifp->if_capenable ^= IFCAP_TSO6;
1741                 }
1742                 if (mask & IFCAP_LRO) {
1743 #if defined(INET) || defined(INET6)
1744                         int i;
1745                         struct sge_rxq *rxq;
1746
1747                         ifp->if_capenable ^= IFCAP_LRO;
1748                         for_each_rxq(vi, i, rxq) {
1749                                 if (ifp->if_capenable & IFCAP_LRO)
1750                                         rxq->iq.flags |= IQ_LRO_ENABLED;
1751                                 else
1752                                         rxq->iq.flags &= ~IQ_LRO_ENABLED;
1753                         }
1754 #endif
1755                 }
1756 #ifdef TCP_OFFLOAD
1757                 if (mask & IFCAP_TOE) {
1758                         int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
1759
1760                         rc = toe_capability(vi, enable);
1761                         if (rc != 0)
1762                                 goto fail;
1763
1764                         ifp->if_capenable ^= mask;
1765                 }
1766 #endif
1767                 if (mask & IFCAP_VLAN_HWTAGGING) {
1768                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1769                         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1770                                 rc = update_mac_settings(ifp, XGMAC_VLANEX);
1771                 }
1772                 if (mask & IFCAP_VLAN_MTU) {
1773                         ifp->if_capenable ^= IFCAP_VLAN_MTU;
1774
1775                         /* Need to find out how to disable auto-mtu-inflation */
1776                 }
1777                 if (mask & IFCAP_VLAN_HWTSO)
1778                         ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1779                 if (mask & IFCAP_VLAN_HWCSUM)
1780                         ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1781
1782 #ifdef VLAN_CAPABILITIES
1783                 VLAN_CAPABILITIES(ifp);
1784 #endif
1785 fail:
1786                 end_synchronized_op(sc, 0);
1787                 break;
1788
1789         case SIOCSIFMEDIA:
1790         case SIOCGIFMEDIA:
1791         case SIOCGIFXMEDIA:
1792                 ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
1793                 break;
1794
1795         case SIOCGI2C: {
1796                 struct ifi2creq i2c;
1797
1798                 rc = copyin(ifr->ifr_data, &i2c, sizeof(i2c));
1799                 if (rc != 0)
1800                         break;
1801                 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
1802                         rc = EPERM;
1803                         break;
1804                 }
1805                 if (i2c.len > sizeof(i2c.data)) {
1806                         rc = EINVAL;
1807                         break;
1808                 }
1809                 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
1810                 if (rc)
1811                         return (rc);
1812                 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
1813                     i2c.offset, i2c.len, &i2c.data[0]);
1814                 end_synchronized_op(sc, 0);
1815                 if (rc == 0)
1816                         rc = copyout(&i2c, ifr->ifr_data, sizeof(i2c));
1817                 break;
1818         }
1819
1820         default:
1821                 rc = ether_ioctl(ifp, cmd, data);
1822         }
1823
1824         return (rc);
1825 }
1826
1827 static int
1828 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
1829 {
1830         struct vi_info *vi = ifp->if_softc;
1831         struct port_info *pi = vi->pi;
1832         struct adapter *sc = pi->adapter;
1833         struct sge_txq *txq;
1834         void *items[1];
1835         int rc;
1836
1837         M_ASSERTPKTHDR(m);
1838         MPASS(m->m_nextpkt == NULL);    /* not quite ready for this yet */
1839
1840         if (__predict_false(pi->link_cfg.link_ok == 0)) {
1841                 m_freem(m);
1842                 return (ENETDOWN);
1843         }
1844
1845         rc = parse_pkt(sc, &m);
1846         if (__predict_false(rc != 0)) {
1847                 MPASS(m == NULL);                       /* was freed already */
1848                 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
1849                 return (rc);
1850         }
1851
1852         /* Select a txq. */
1853         txq = &sc->sge.txq[vi->first_txq];
1854         if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
1855                 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
1856                     vi->rsrv_noflowq);
1857
1858         items[0] = m;
1859         rc = mp_ring_enqueue(txq->r, items, 1, 4096);
1860         if (__predict_false(rc != 0))
1861                 m_freem(m);
1862
1863         return (rc);
1864 }
1865
1866 static void
1867 cxgbe_qflush(struct ifnet *ifp)
1868 {
1869         struct vi_info *vi = ifp->if_softc;
1870         struct sge_txq *txq;
1871         int i;
1872
1873         /* queues do not exist if !VI_INIT_DONE. */
1874         if (vi->flags & VI_INIT_DONE) {
1875                 for_each_txq(vi, i, txq) {
1876                         TXQ_LOCK(txq);
1877                         txq->eq.flags |= EQ_QFLUSH;
1878                         TXQ_UNLOCK(txq);
1879                         while (!mp_ring_is_idle(txq->r)) {
1880                                 mp_ring_check_drainage(txq->r, 0);
1881                                 pause("qflush", 1);
1882                         }
1883                         TXQ_LOCK(txq);
1884                         txq->eq.flags &= ~EQ_QFLUSH;
1885                         TXQ_UNLOCK(txq);
1886                 }
1887         }
1888         if_qflush(ifp);
1889 }
1890
1891 static uint64_t
1892 vi_get_counter(struct ifnet *ifp, ift_counter c)
1893 {
1894         struct vi_info *vi = ifp->if_softc;
1895         struct fw_vi_stats_vf *s = &vi->stats;
1896
1897         vi_refresh_stats(vi->pi->adapter, vi);
1898
1899         switch (c) {
1900         case IFCOUNTER_IPACKETS:
1901                 return (s->rx_bcast_frames + s->rx_mcast_frames +
1902                     s->rx_ucast_frames);
1903         case IFCOUNTER_IERRORS:
1904                 return (s->rx_err_frames);
1905         case IFCOUNTER_OPACKETS:
1906                 return (s->tx_bcast_frames + s->tx_mcast_frames +
1907                     s->tx_ucast_frames + s->tx_offload_frames);
1908         case IFCOUNTER_OERRORS:
1909                 return (s->tx_drop_frames);
1910         case IFCOUNTER_IBYTES:
1911                 return (s->rx_bcast_bytes + s->rx_mcast_bytes +
1912                     s->rx_ucast_bytes);
1913         case IFCOUNTER_OBYTES:
1914                 return (s->tx_bcast_bytes + s->tx_mcast_bytes +
1915                     s->tx_ucast_bytes + s->tx_offload_bytes);
1916         case IFCOUNTER_IMCASTS:
1917                 return (s->rx_mcast_frames);
1918         case IFCOUNTER_OMCASTS:
1919                 return (s->tx_mcast_frames);
1920         case IFCOUNTER_OQDROPS: {
1921                 uint64_t drops;
1922
1923                 drops = 0;
1924                 if (vi->flags & VI_INIT_DONE) {
1925                         int i;
1926                         struct sge_txq *txq;
1927
1928                         for_each_txq(vi, i, txq)
1929                                 drops += counter_u64_fetch(txq->r->drops);
1930                 }
1931
1932                 return (drops);
1933
1934         }
1935
1936         default:
1937                 return (if_get_counter_default(ifp, c));
1938         }
1939 }
1940
1941 uint64_t
1942 cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
1943 {
1944         struct vi_info *vi = ifp->if_softc;
1945         struct port_info *pi = vi->pi;
1946         struct adapter *sc = pi->adapter;
1947         struct port_stats *s = &pi->stats;
1948
1949         if (pi->nvi > 1 || sc->flags & IS_VF)
1950                 return (vi_get_counter(ifp, c));
1951
1952         cxgbe_refresh_stats(sc, pi);
1953
1954         switch (c) {
1955         case IFCOUNTER_IPACKETS:
1956                 return (s->rx_frames);
1957
1958         case IFCOUNTER_IERRORS:
1959                 return (s->rx_jabber + s->rx_runt + s->rx_too_long +
1960                     s->rx_fcs_err + s->rx_len_err);
1961
1962         case IFCOUNTER_OPACKETS:
1963                 return (s->tx_frames);
1964
1965         case IFCOUNTER_OERRORS:
1966                 return (s->tx_error_frames);
1967
1968         case IFCOUNTER_IBYTES:
1969                 return (s->rx_octets);
1970
1971         case IFCOUNTER_OBYTES:
1972                 return (s->tx_octets);
1973
1974         case IFCOUNTER_IMCASTS:
1975                 return (s->rx_mcast_frames);
1976
1977         case IFCOUNTER_OMCASTS:
1978                 return (s->tx_mcast_frames);
1979
1980         case IFCOUNTER_IQDROPS:
1981                 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
1982                     s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
1983                     s->rx_trunc3 + pi->tnl_cong_drops);
1984
1985         case IFCOUNTER_OQDROPS: {
1986                 uint64_t drops;
1987
1988                 drops = s->tx_drop;
1989                 if (vi->flags & VI_INIT_DONE) {
1990                         int i;
1991                         struct sge_txq *txq;
1992
1993                         for_each_txq(vi, i, txq)
1994                                 drops += counter_u64_fetch(txq->r->drops);
1995                 }
1996
1997                 return (drops);
1998
1999         }
2000
2001         default:
2002                 return (if_get_counter_default(ifp, c));
2003         }
2004 }
2005
2006 static int
2007 cxgbe_media_change(struct ifnet *ifp)
2008 {
2009         struct vi_info *vi = ifp->if_softc;
2010
2011         device_printf(vi->dev, "%s unimplemented.\n", __func__);
2012
2013         return (EOPNOTSUPP);
2014 }
2015
2016 static void
2017 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2018 {
2019         struct vi_info *vi = ifp->if_softc;
2020         struct port_info *pi = vi->pi;
2021         struct ifmedia_entry *cur;
2022         struct link_config *lc = &pi->link_cfg;
2023
2024         /*
2025          * If all the interfaces are administratively down the firmware does not
2026          * report transceiver changes.  Refresh port info here so that ifconfig
2027          * displays accurate information at all times.
2028          */
2029         if (begin_synchronized_op(pi->adapter, NULL, SLEEP_OK | INTR_OK,
2030             "t4med") == 0) {
2031                 PORT_LOCK(pi);
2032                 if (pi->up_vis == 0) {
2033                         t4_update_port_info(pi);
2034                         build_medialist(pi, &pi->media);
2035                 }
2036                 PORT_UNLOCK(pi);
2037                 end_synchronized_op(pi->adapter, 0);
2038         }
2039
2040         ifmr->ifm_status = IFM_AVALID;
2041         if (lc->link_ok == 0)
2042                 return;
2043
2044         ifmr->ifm_status |= IFM_ACTIVE;
2045         ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
2046         if (lc->fc & PAUSE_RX)
2047                 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2048         if (lc->fc & PAUSE_TX)
2049                 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2050
2051         /* active and current will differ iff current media is autoselect. */
2052         cur = pi->media.ifm_cur;
2053         if (cur != NULL && IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO)
2054                 return;
2055
2056         ifmr->ifm_active = IFM_ETHER | IFM_FDX;
2057         if (lc->fc & PAUSE_RX)
2058                 ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2059         if (lc->fc & PAUSE_TX)
2060                 ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2061         switch (lc->speed) {
2062         case 10000:
2063                 ifmr->ifm_active |= IFM_10G_T;
2064                 break;
2065         case 1000:
2066                 ifmr->ifm_active |= IFM_1000_T;
2067                 break;
2068         case 100:
2069                 ifmr->ifm_active |= IFM_100_TX;
2070                 break;
2071         case 10:
2072                 ifmr->ifm_active |= IFM_10_T;
2073                 break;
2074         default:
2075                 device_printf(vi->dev, "link up but speed unknown (%u)\n",
2076                     lc->speed);
2077         }
2078 }
2079
2080 static int
2081 vcxgbe_probe(device_t dev)
2082 {
2083         char buf[128];
2084         struct vi_info *vi = device_get_softc(dev);
2085
2086         snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
2087             vi - vi->pi->vi);
2088         device_set_desc_copy(dev, buf);
2089
2090         return (BUS_PROBE_DEFAULT);
2091 }
2092
2093 static int
2094 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
2095 {
2096         int func, index, rc;
2097         uint32_t param, val;
2098
2099         ASSERT_SYNCHRONIZED_OP(sc);
2100
2101         index = vi - pi->vi;
2102         MPASS(index > 0);       /* This function deals with _extra_ VIs only */
2103         KASSERT(index < nitems(vi_mac_funcs),
2104             ("%s: VI %s doesn't have a MAC func", __func__,
2105             device_get_nameunit(vi->dev)));
2106         func = vi_mac_funcs[index];
2107         rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
2108             vi->hw_addr, &vi->rss_size, func, 0);
2109         if (rc < 0) {
2110                 device_printf(vi->dev, "failed to allocate virtual interface %d"
2111                     "for port %d: %d\n", index, pi->port_id, -rc);
2112                 return (-rc);
2113         }
2114         vi->viid = rc;
2115         if (chip_id(sc) <= CHELSIO_T5)
2116                 vi->smt_idx = (rc & 0x7f) << 1;
2117         else
2118                 vi->smt_idx = (rc & 0x7f);
2119
2120         if (vi->rss_size == 1) {
2121                 /*
2122                  * This VI didn't get a slice of the RSS table.  Reduce the
2123                  * number of VIs being created (hw.cxgbe.num_vis) or modify the
2124                  * configuration file (nvi, rssnvi for this PF) if this is a
2125                  * problem.
2126                  */
2127                 device_printf(vi->dev, "RSS table not available.\n");
2128                 vi->rss_base = 0xffff;
2129
2130                 return (0);
2131         }
2132
2133         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2134             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
2135             V_FW_PARAMS_PARAM_YZ(vi->viid);
2136         rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2137         if (rc)
2138                 vi->rss_base = 0xffff;
2139         else {
2140                 MPASS((val >> 16) == vi->rss_size);
2141                 vi->rss_base = val & 0xffff;
2142         }
2143
2144         return (0);
2145 }
2146
2147 static int
2148 vcxgbe_attach(device_t dev)
2149 {
2150         struct vi_info *vi;
2151         struct port_info *pi;
2152         struct adapter *sc;
2153         int rc;
2154
2155         vi = device_get_softc(dev);
2156         pi = vi->pi;
2157         sc = pi->adapter;
2158
2159         rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
2160         if (rc)
2161                 return (rc);
2162         rc = alloc_extra_vi(sc, pi, vi);
2163         end_synchronized_op(sc, 0);
2164         if (rc)
2165                 return (rc);
2166
2167         rc = cxgbe_vi_attach(dev, vi);
2168         if (rc) {
2169                 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2170                 return (rc);
2171         }
2172         return (0);
2173 }
2174
2175 static int
2176 vcxgbe_detach(device_t dev)
2177 {
2178         struct vi_info *vi;
2179         struct adapter *sc;
2180
2181         vi = device_get_softc(dev);
2182         sc = vi->pi->adapter;
2183
2184         doom_vi(sc, vi);
2185
2186         cxgbe_vi_detach(vi);
2187         t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2188
2189         end_synchronized_op(sc, 0);
2190
2191         return (0);
2192 }
2193
2194 void
2195 t4_fatal_err(struct adapter *sc)
2196 {
2197         t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0);
2198         t4_intr_disable(sc);
2199         log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n",
2200             device_get_nameunit(sc->dev));
2201 }
2202
2203 void
2204 t4_add_adapter(struct adapter *sc)
2205 {
2206         sx_xlock(&t4_list_lock);
2207         SLIST_INSERT_HEAD(&t4_list, sc, link);
2208         sx_xunlock(&t4_list_lock);
2209 }
2210
2211 int
2212 t4_map_bars_0_and_4(struct adapter *sc)
2213 {
2214         sc->regs_rid = PCIR_BAR(0);
2215         sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2216             &sc->regs_rid, RF_ACTIVE);
2217         if (sc->regs_res == NULL) {
2218                 device_printf(sc->dev, "cannot map registers.\n");
2219                 return (ENXIO);
2220         }
2221         sc->bt = rman_get_bustag(sc->regs_res);
2222         sc->bh = rman_get_bushandle(sc->regs_res);
2223         sc->mmio_len = rman_get_size(sc->regs_res);
2224         setbit(&sc->doorbells, DOORBELL_KDB);
2225
2226         sc->msix_rid = PCIR_BAR(4);
2227         sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2228             &sc->msix_rid, RF_ACTIVE);
2229         if (sc->msix_res == NULL) {
2230                 device_printf(sc->dev, "cannot map MSI-X BAR.\n");
2231                 return (ENXIO);
2232         }
2233
2234         return (0);
2235 }
2236
2237 int
2238 t4_map_bar_2(struct adapter *sc)
2239 {
2240
2241         /*
2242          * T4: only iWARP driver uses the userspace doorbells.  There is no need
2243          * to map it if RDMA is disabled.
2244          */
2245         if (is_t4(sc) && sc->rdmacaps == 0)
2246                 return (0);
2247
2248         sc->udbs_rid = PCIR_BAR(2);
2249         sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2250             &sc->udbs_rid, RF_ACTIVE);
2251         if (sc->udbs_res == NULL) {
2252                 device_printf(sc->dev, "cannot map doorbell BAR.\n");
2253                 return (ENXIO);
2254         }
2255         sc->udbs_base = rman_get_virtual(sc->udbs_res);
2256
2257         if (chip_id(sc) >= CHELSIO_T5) {
2258                 setbit(&sc->doorbells, DOORBELL_UDB);
2259 #if defined(__i386__) || defined(__amd64__)
2260                 if (t5_write_combine) {
2261                         int rc, mode;
2262
2263                         /*
2264                          * Enable write combining on BAR2.  This is the
2265                          * userspace doorbell BAR and is split into 128B
2266                          * (UDBS_SEG_SIZE) doorbell regions, each associated
2267                          * with an egress queue.  The first 64B has the doorbell
2268                          * and the second 64B can be used to submit a tx work
2269                          * request with an implicit doorbell.
2270                          */
2271
2272                         rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
2273                             rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
2274                         if (rc == 0) {
2275                                 clrbit(&sc->doorbells, DOORBELL_UDB);
2276                                 setbit(&sc->doorbells, DOORBELL_WCWR);
2277                                 setbit(&sc->doorbells, DOORBELL_UDBWC);
2278                         } else {
2279                                 t5_write_combine = 0;
2280                                 device_printf(sc->dev,
2281                                     "couldn't enable write combining: %d\n",
2282                                     rc);
2283                         }
2284
2285                         mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
2286                         t4_write_reg(sc, A_SGE_STAT_CFG,
2287                             V_STATSOURCE_T5(7) | mode);
2288                 }
2289 #else
2290                 t5_write_combine = 0;
2291 #endif
2292                 sc->iwt.wc_en = t5_write_combine;
2293         }
2294
2295         return (0);
2296 }
2297
2298 struct memwin_init {
2299         uint32_t base;
2300         uint32_t aperture;
2301 };
2302
2303 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
2304         { MEMWIN0_BASE, MEMWIN0_APERTURE },
2305         { MEMWIN1_BASE, MEMWIN1_APERTURE },
2306         { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
2307 };
2308
2309 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
2310         { MEMWIN0_BASE, MEMWIN0_APERTURE },
2311         { MEMWIN1_BASE, MEMWIN1_APERTURE },
2312         { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
2313 };
2314
2315 static void
2316 setup_memwin(struct adapter *sc)
2317 {
2318         const struct memwin_init *mw_init;
2319         struct memwin *mw;
2320         int i;
2321         uint32_t bar0;
2322
2323         if (is_t4(sc)) {
2324                 /*
2325                  * Read low 32b of bar0 indirectly via the hardware backdoor
2326                  * mechanism.  Works from within PCI passthrough environments
2327                  * too, where rman_get_start() can return a different value.  We
2328                  * need to program the T4 memory window decoders with the actual
2329                  * addresses that will be coming across the PCIe link.
2330                  */
2331                 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
2332                 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
2333
2334                 mw_init = &t4_memwin[0];
2335         } else {
2336                 /* T5+ use the relative offset inside the PCIe BAR */
2337                 bar0 = 0;
2338
2339                 mw_init = &t5_memwin[0];
2340         }
2341
2342         for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
2343                 rw_init(&mw->mw_lock, "memory window access");
2344                 mw->mw_base = mw_init->base;
2345                 mw->mw_aperture = mw_init->aperture;
2346                 mw->mw_curpos = 0;
2347                 t4_write_reg(sc,
2348                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
2349                     (mw->mw_base + bar0) | V_BIR(0) |
2350                     V_WINDOW(ilog2(mw->mw_aperture) - 10));
2351                 rw_wlock(&mw->mw_lock);
2352                 position_memwin(sc, i, 0);
2353                 rw_wunlock(&mw->mw_lock);
2354         }
2355
2356         /* flush */
2357         t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
2358 }
2359
2360 /*
2361  * Positions the memory window at the given address in the card's address space.
2362  * There are some alignment requirements and the actual position may be at an
2363  * address prior to the requested address.  mw->mw_curpos always has the actual
2364  * position of the window.
2365  */
2366 static void
2367 position_memwin(struct adapter *sc, int idx, uint32_t addr)
2368 {
2369         struct memwin *mw;
2370         uint32_t pf;
2371         uint32_t reg;
2372
2373         MPASS(idx >= 0 && idx < NUM_MEMWIN);
2374         mw = &sc->memwin[idx];
2375         rw_assert(&mw->mw_lock, RA_WLOCKED);
2376
2377         if (is_t4(sc)) {
2378                 pf = 0;
2379                 mw->mw_curpos = addr & ~0xf;    /* start must be 16B aligned */
2380         } else {
2381                 pf = V_PFNUM(sc->pf);
2382                 mw->mw_curpos = addr & ~0x7f;   /* start must be 128B aligned */
2383         }
2384         reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
2385         t4_write_reg(sc, reg, mw->mw_curpos | pf);
2386         t4_read_reg(sc, reg);   /* flush */
2387 }
2388
2389 static int
2390 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2391     int len, int rw)
2392 {
2393         struct memwin *mw;
2394         uint32_t mw_end, v;
2395
2396         MPASS(idx >= 0 && idx < NUM_MEMWIN);
2397
2398         /* Memory can only be accessed in naturally aligned 4 byte units */
2399         if (addr & 3 || len & 3 || len <= 0)
2400                 return (EINVAL);
2401
2402         mw = &sc->memwin[idx];
2403         while (len > 0) {
2404                 rw_rlock(&mw->mw_lock);
2405                 mw_end = mw->mw_curpos + mw->mw_aperture;
2406                 if (addr >= mw_end || addr < mw->mw_curpos) {
2407                         /* Will need to reposition the window */
2408                         if (!rw_try_upgrade(&mw->mw_lock)) {
2409                                 rw_runlock(&mw->mw_lock);
2410                                 rw_wlock(&mw->mw_lock);
2411                         }
2412                         rw_assert(&mw->mw_lock, RA_WLOCKED);
2413                         position_memwin(sc, idx, addr);
2414                         rw_downgrade(&mw->mw_lock);
2415                         mw_end = mw->mw_curpos + mw->mw_aperture;
2416                 }
2417                 rw_assert(&mw->mw_lock, RA_RLOCKED);
2418                 while (addr < mw_end && len > 0) {
2419                         if (rw == 0) {
2420                                 v = t4_read_reg(sc, mw->mw_base + addr -
2421                                     mw->mw_curpos);
2422                                 *val++ = le32toh(v);
2423                         } else {
2424                                 v = *val++;
2425                                 t4_write_reg(sc, mw->mw_base + addr -
2426                                     mw->mw_curpos, htole32(v));
2427                         }
2428                         addr += 4;
2429                         len -= 4;
2430                 }
2431                 rw_runlock(&mw->mw_lock);
2432         }
2433
2434         return (0);
2435 }
2436
2437 static inline int
2438 read_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2439     int len)
2440 {
2441
2442         return (rw_via_memwin(sc, idx, addr, val, len, 0));
2443 }
2444
2445 static inline int
2446 write_via_memwin(struct adapter *sc, int idx, uint32_t addr,
2447     const uint32_t *val, int len)
2448 {
2449
2450         return (rw_via_memwin(sc, idx, addr, (void *)(uintptr_t)val, len, 1));
2451 }
2452
2453 static int
2454 t4_range_cmp(const void *a, const void *b)
2455 {
2456         return ((const struct t4_range *)a)->start -
2457                ((const struct t4_range *)b)->start;
2458 }
2459
2460 /*
2461  * Verify that the memory range specified by the addr/len pair is valid within
2462  * the card's address space.
2463  */
2464 static int
2465 validate_mem_range(struct adapter *sc, uint32_t addr, int len)
2466 {
2467         struct t4_range mem_ranges[4], *r, *next;
2468         uint32_t em, addr_len;
2469         int i, n, remaining;
2470
2471         /* Memory can only be accessed in naturally aligned 4 byte units */
2472         if (addr & 3 || len & 3 || len <= 0)
2473                 return (EINVAL);
2474
2475         /* Enabled memories */
2476         em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2477
2478         r = &mem_ranges[0];
2479         n = 0;
2480         bzero(r, sizeof(mem_ranges));
2481         if (em & F_EDRAM0_ENABLE) {
2482                 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2483                 r->size = G_EDRAM0_SIZE(addr_len) << 20;
2484                 if (r->size > 0) {
2485                         r->start = G_EDRAM0_BASE(addr_len) << 20;
2486                         if (addr >= r->start &&
2487                             addr + len <= r->start + r->size)
2488                                 return (0);
2489                         r++;
2490                         n++;
2491                 }
2492         }
2493         if (em & F_EDRAM1_ENABLE) {
2494                 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2495                 r->size = G_EDRAM1_SIZE(addr_len) << 20;
2496                 if (r->size > 0) {
2497                         r->start = G_EDRAM1_BASE(addr_len) << 20;
2498                         if (addr >= r->start &&
2499                             addr + len <= r->start + r->size)
2500                                 return (0);
2501                         r++;
2502                         n++;
2503                 }
2504         }
2505         if (em & F_EXT_MEM_ENABLE) {
2506                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2507                 r->size = G_EXT_MEM_SIZE(addr_len) << 20;
2508                 if (r->size > 0) {
2509                         r->start = G_EXT_MEM_BASE(addr_len) << 20;
2510                         if (addr >= r->start &&
2511                             addr + len <= r->start + r->size)
2512                                 return (0);
2513                         r++;
2514                         n++;
2515                 }
2516         }
2517         if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
2518                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2519                 r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
2520                 if (r->size > 0) {
2521                         r->start = G_EXT_MEM1_BASE(addr_len) << 20;
2522                         if (addr >= r->start &&
2523                             addr + len <= r->start + r->size)
2524                                 return (0);
2525                         r++;
2526                         n++;
2527                 }
2528         }
2529         MPASS(n <= nitems(mem_ranges));
2530
2531         if (n > 1) {
2532                 /* Sort and merge the ranges. */
2533                 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
2534
2535                 /* Start from index 0 and examine the next n - 1 entries. */
2536                 r = &mem_ranges[0];
2537                 for (remaining = n - 1; remaining > 0; remaining--, r++) {
2538
2539                         MPASS(r->size > 0);     /* r is a valid entry. */
2540                         next = r + 1;
2541                         MPASS(next->size > 0);  /* and so is the next one. */
2542
2543                         while (r->start + r->size >= next->start) {
2544                                 /* Merge the next one into the current entry. */
2545                                 r->size = max(r->start + r->size,
2546                                     next->start + next->size) - r->start;
2547                                 n--;    /* One fewer entry in total. */
2548                                 if (--remaining == 0)
2549                                         goto done;      /* short circuit */
2550                                 next++;
2551                         }
2552                         if (next != r + 1) {
2553                                 /*
2554                                  * Some entries were merged into r and next
2555                                  * points to the first valid entry that couldn't
2556                                  * be merged.
2557                                  */
2558                                 MPASS(next->size > 0);  /* must be valid */
2559                                 memcpy(r + 1, next, remaining * sizeof(*r));
2560 #ifdef INVARIANTS
2561                                 /*
2562                                  * This so that the foo->size assertion in the
2563                                  * next iteration of the loop do the right
2564                                  * thing for entries that were pulled up and are
2565                                  * no longer valid.
2566                                  */
2567                                 MPASS(n < nitems(mem_ranges));
2568                                 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
2569                                     sizeof(struct t4_range));
2570 #endif
2571                         }
2572                 }
2573 done:
2574                 /* Done merging the ranges. */
2575                 MPASS(n > 0);
2576                 r = &mem_ranges[0];
2577                 for (i = 0; i < n; i++, r++) {
2578                         if (addr >= r->start &&
2579                             addr + len <= r->start + r->size)
2580                                 return (0);
2581                 }
2582         }
2583
2584         return (EFAULT);
2585 }
2586
2587 static int
2588 fwmtype_to_hwmtype(int mtype)
2589 {
2590
2591         switch (mtype) {
2592         case FW_MEMTYPE_EDC0:
2593                 return (MEM_EDC0);
2594         case FW_MEMTYPE_EDC1:
2595                 return (MEM_EDC1);
2596         case FW_MEMTYPE_EXTMEM:
2597                 return (MEM_MC0);
2598         case FW_MEMTYPE_EXTMEM1:
2599                 return (MEM_MC1);
2600         default:
2601                 panic("%s: cannot translate fw mtype %d.", __func__, mtype);
2602         }
2603 }
2604
2605 /*
2606  * Verify that the memory range specified by the memtype/offset/len pair is
2607  * valid and lies entirely within the memtype specified.  The global address of
2608  * the start of the range is returned in addr.
2609  */
2610 static int
2611 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, int len,
2612     uint32_t *addr)
2613 {
2614         uint32_t em, addr_len, maddr;
2615
2616         /* Memory can only be accessed in naturally aligned 4 byte units */
2617         if (off & 3 || len & 3 || len == 0)
2618                 return (EINVAL);
2619
2620         em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2621         switch (fwmtype_to_hwmtype(mtype)) {
2622         case MEM_EDC0:
2623                 if (!(em & F_EDRAM0_ENABLE))
2624                         return (EINVAL);
2625                 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2626                 maddr = G_EDRAM0_BASE(addr_len) << 20;
2627                 break;
2628         case MEM_EDC1:
2629                 if (!(em & F_EDRAM1_ENABLE))
2630                         return (EINVAL);
2631                 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2632                 maddr = G_EDRAM1_BASE(addr_len) << 20;
2633                 break;
2634         case MEM_MC:
2635                 if (!(em & F_EXT_MEM_ENABLE))
2636                         return (EINVAL);
2637                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2638                 maddr = G_EXT_MEM_BASE(addr_len) << 20;
2639                 break;
2640         case MEM_MC1:
2641                 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
2642                         return (EINVAL);
2643                 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
2644                 maddr = G_EXT_MEM1_BASE(addr_len) << 20;
2645                 break;
2646         default:
2647                 return (EINVAL);
2648         }
2649
2650         *addr = maddr + off;    /* global address */
2651         return (validate_mem_range(sc, *addr, len));
2652 }
2653
2654 static int
2655 fixup_devlog_params(struct adapter *sc)
2656 {
2657         struct devlog_params *dparams = &sc->params.devlog;
2658         int rc;
2659
2660         rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
2661             dparams->size, &dparams->addr);
2662
2663         return (rc);
2664 }
2665
2666 static void
2667 update_nirq(struct intrs_and_queues *iaq, int nports)
2668 {
2669         int extra = T4_EXTRA_INTR;
2670
2671         iaq->nirq = extra;
2672         iaq->nirq += nports * (iaq->nrxq + iaq->nofldrxq);
2673         iaq->nirq += nports * (iaq->num_vis - 1) *
2674             max(iaq->nrxq_vi, iaq->nnmrxq_vi);
2675         iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
2676 }
2677
2678 /*
2679  * Adjust requirements to fit the number of interrupts available.
2680  */
2681 static void
2682 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
2683     int navail)
2684 {
2685         int old_nirq;
2686         const int nports = sc->params.nports;
2687
2688         MPASS(nports > 0);
2689         MPASS(navail > 0);
2690
2691         bzero(iaq, sizeof(*iaq));
2692         iaq->intr_type = itype;
2693         iaq->num_vis = t4_num_vis;
2694         iaq->ntxq = t4_ntxq;
2695         iaq->ntxq_vi = t4_ntxq_vi;
2696         iaq->nrxq = t4_nrxq;
2697         iaq->nrxq_vi = t4_nrxq_vi;
2698 #ifdef TCP_OFFLOAD
2699         if (is_offload(sc)) {
2700                 iaq->nofldtxq = t4_nofldtxq;
2701                 iaq->nofldtxq_vi = t4_nofldtxq_vi;
2702                 iaq->nofldrxq = t4_nofldrxq;
2703                 iaq->nofldrxq_vi = t4_nofldrxq_vi;
2704         }
2705 #endif
2706 #ifdef DEV_NETMAP
2707         iaq->nnmtxq_vi = t4_nnmtxq_vi;
2708         iaq->nnmrxq_vi = t4_nnmrxq_vi;
2709 #endif
2710
2711         update_nirq(iaq, nports);
2712         if (iaq->nirq <= navail &&
2713             (itype != INTR_MSI || powerof2(iaq->nirq))) {
2714                 /*
2715                  * This is the normal case -- there are enough interrupts for
2716                  * everything.
2717                  */
2718                 goto done;
2719         }
2720
2721         /*
2722          * If extra VIs have been configured try reducing their count and see if
2723          * that works.
2724          */
2725         while (iaq->num_vis > 1) {
2726                 iaq->num_vis--;
2727                 update_nirq(iaq, nports);
2728                 if (iaq->nirq <= navail &&
2729                     (itype != INTR_MSI || powerof2(iaq->nirq))) {
2730                         device_printf(sc->dev, "virtual interfaces per port "
2731                             "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
2732                             "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
2733                             "itype %d, navail %u, nirq %d.\n",
2734                             iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
2735                             iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
2736                             itype, navail, iaq->nirq);
2737                         goto done;
2738                 }
2739         }
2740
2741         /*
2742          * Extra VIs will not be created.  Log a message if they were requested.
2743          */
2744         MPASS(iaq->num_vis == 1);
2745         iaq->ntxq_vi = iaq->nrxq_vi = 0;
2746         iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
2747         iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
2748         if (iaq->num_vis != t4_num_vis) {
2749                 device_printf(sc->dev, "extra virtual interfaces disabled.  "
2750                     "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
2751                     "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
2752                     iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
2753                     iaq->nnmrxq_vi, itype, navail, iaq->nirq);
2754         }
2755
2756         /*
2757          * Keep reducing the number of NIC rx queues to the next lower power of
2758          * 2 (for even RSS distribution) and halving the TOE rx queues and see
2759          * if that works.
2760          */
2761         do {
2762                 if (iaq->nrxq > 1) {
2763                         do {
2764                                 iaq->nrxq--;
2765                         } while (!powerof2(iaq->nrxq));
2766                 }
2767                 if (iaq->nofldrxq > 1)
2768                         iaq->nofldrxq >>= 1;
2769
2770                 old_nirq = iaq->nirq;
2771                 update_nirq(iaq, nports);
2772                 if (iaq->nirq <= navail &&
2773                     (itype != INTR_MSI || powerof2(iaq->nirq))) {
2774                         device_printf(sc->dev, "running with reduced number of "
2775                             "rx queues because of shortage of interrupts.  "
2776                             "nrxq=%u, nofldrxq=%u.  "
2777                             "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
2778                             iaq->nofldrxq, itype, navail, iaq->nirq);
2779                         goto done;
2780                 }
2781         } while (old_nirq != iaq->nirq);
2782
2783         /* One interrupt for everything.  Ugh. */
2784         device_printf(sc->dev, "running with minimal number of queues.  "
2785             "itype %d, navail %u.\n", itype, navail);
2786         iaq->nirq = 1;
2787         MPASS(iaq->nrxq == 1);
2788         iaq->ntxq = 1;
2789         if (iaq->nofldrxq > 1)
2790                 iaq->nofldtxq = 1;
2791 done:
2792         MPASS(iaq->num_vis > 0);
2793         if (iaq->num_vis > 1) {
2794                 MPASS(iaq->nrxq_vi > 0);
2795                 MPASS(iaq->ntxq_vi > 0);
2796         }
2797         MPASS(iaq->nirq > 0);
2798         MPASS(iaq->nrxq > 0);
2799         MPASS(iaq->ntxq > 0);
2800         if (itype == INTR_MSI) {
2801                 MPASS(powerof2(iaq->nirq));
2802         }
2803 }
2804
2805 static int
2806 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
2807 {
2808         int rc, itype, navail, nalloc;
2809
2810         for (itype = INTR_MSIX; itype; itype >>= 1) {
2811
2812                 if ((itype & t4_intr_types) == 0)
2813                         continue;       /* not allowed */
2814
2815                 if (itype == INTR_MSIX)
2816                         navail = pci_msix_count(sc->dev);
2817                 else if (itype == INTR_MSI)
2818                         navail = pci_msi_count(sc->dev);
2819                 else
2820                         navail = 1;
2821 restart:
2822                 if (navail == 0)
2823                         continue;
2824
2825                 calculate_iaq(sc, iaq, itype, navail);
2826                 nalloc = iaq->nirq;
2827                 rc = 0;
2828                 if (itype == INTR_MSIX)
2829                         rc = pci_alloc_msix(sc->dev, &nalloc);
2830                 else if (itype == INTR_MSI)
2831                         rc = pci_alloc_msi(sc->dev, &nalloc);
2832
2833                 if (rc == 0 && nalloc > 0) {
2834                         if (nalloc == iaq->nirq)
2835                                 return (0);
2836
2837                         /*
2838                          * Didn't get the number requested.  Use whatever number
2839                          * the kernel is willing to allocate.
2840                          */
2841                         device_printf(sc->dev, "fewer vectors than requested, "
2842                             "type=%d, req=%d, rcvd=%d; will downshift req.\n",
2843                             itype, iaq->nirq, nalloc);
2844                         pci_release_msi(sc->dev);
2845                         navail = nalloc;
2846                         goto restart;
2847                 }
2848
2849                 device_printf(sc->dev,
2850                     "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
2851                     itype, rc, iaq->nirq, nalloc);
2852         }
2853
2854         device_printf(sc->dev,
2855             "failed to find a usable interrupt type.  "
2856             "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
2857             pci_msix_count(sc->dev), pci_msi_count(sc->dev));
2858
2859         return (ENXIO);
2860 }
2861
2862 #define FW_VERSION(chip) ( \
2863     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
2864     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
2865     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
2866     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
2867 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
2868
2869 struct fw_info {
2870         uint8_t chip;
2871         char *kld_name;
2872         char *fw_mod_name;
2873         struct fw_hdr fw_hdr;   /* XXX: waste of space, need a sparse struct */
2874 } fw_info[] = {
2875         {
2876                 .chip = CHELSIO_T4,
2877                 .kld_name = "t4fw_cfg",
2878                 .fw_mod_name = "t4fw",
2879                 .fw_hdr = {
2880                         .chip = FW_HDR_CHIP_T4,
2881                         .fw_ver = htobe32_const(FW_VERSION(T4)),
2882                         .intfver_nic = FW_INTFVER(T4, NIC),
2883                         .intfver_vnic = FW_INTFVER(T4, VNIC),
2884                         .intfver_ofld = FW_INTFVER(T4, OFLD),
2885                         .intfver_ri = FW_INTFVER(T4, RI),
2886                         .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
2887                         .intfver_iscsi = FW_INTFVER(T4, ISCSI),
2888                         .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
2889                         .intfver_fcoe = FW_INTFVER(T4, FCOE),
2890                 },
2891         }, {
2892                 .chip = CHELSIO_T5,
2893                 .kld_name = "t5fw_cfg",
2894                 .fw_mod_name = "t5fw",
2895                 .fw_hdr = {
2896                         .chip = FW_HDR_CHIP_T5,
2897                         .fw_ver = htobe32_const(FW_VERSION(T5)),
2898                         .intfver_nic = FW_INTFVER(T5, NIC),
2899                         .intfver_vnic = FW_INTFVER(T5, VNIC),
2900                         .intfver_ofld = FW_INTFVER(T5, OFLD),
2901                         .intfver_ri = FW_INTFVER(T5, RI),
2902                         .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
2903                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
2904                         .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
2905                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
2906                 },
2907         }, {
2908                 .chip = CHELSIO_T6,
2909                 .kld_name = "t6fw_cfg",
2910                 .fw_mod_name = "t6fw",
2911                 .fw_hdr = {
2912                         .chip = FW_HDR_CHIP_T6,
2913                         .fw_ver = htobe32_const(FW_VERSION(T6)),
2914                         .intfver_nic = FW_INTFVER(T6, NIC),
2915                         .intfver_vnic = FW_INTFVER(T6, VNIC),
2916                         .intfver_ofld = FW_INTFVER(T6, OFLD),
2917                         .intfver_ri = FW_INTFVER(T6, RI),
2918                         .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
2919                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
2920                         .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
2921                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
2922                 },
2923         }
2924 };
2925
2926 static struct fw_info *
2927 find_fw_info(int chip)
2928 {
2929         int i;
2930
2931         for (i = 0; i < nitems(fw_info); i++) {
2932                 if (fw_info[i].chip == chip)
2933                         return (&fw_info[i]);
2934         }
2935         return (NULL);
2936 }
2937
2938 /*
2939  * Is the given firmware API compatible with the one the driver was compiled
2940  * with?
2941  */
2942 static int
2943 fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2944 {
2945
2946         /* short circuit if it's the exact same firmware version */
2947         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2948                 return (1);
2949
2950         /*
2951          * XXX: Is this too conservative?  Perhaps I should limit this to the
2952          * features that are supported in the driver.
2953          */
2954 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2955         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2956             SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
2957             SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
2958                 return (1);
2959 #undef SAME_INTF
2960
2961         return (0);
2962 }
2963
2964 /*
2965  * The firmware in the KLD is usable, but should it be installed?  This routine
2966  * explains itself in detail if it indicates the KLD firmware should be
2967  * installed.
2968  */
2969 static int
2970 should_install_kld_fw(struct adapter *sc, int card_fw_usable, int k, int c)
2971 {
2972         const char *reason;
2973
2974         if (!card_fw_usable) {
2975                 reason = "incompatible or unusable";
2976                 goto install;
2977         }
2978
2979         if (k > c) {
2980                 reason = "older than the version bundled with this driver";
2981                 goto install;
2982         }
2983
2984         if (t4_fw_install == 2 && k != c) {
2985                 reason = "different than the version bundled with this driver";
2986                 goto install;
2987         }
2988
2989         return (0);
2990
2991 install:
2992         if (t4_fw_install == 0) {
2993                 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
2994                     "but the driver is prohibited from installing a different "
2995                     "firmware on the card.\n",
2996                     G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
2997                     G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
2998
2999                 return (0);
3000         }
3001
3002         device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3003             "installing firmware %u.%u.%u.%u on card.\n",
3004             G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3005             G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
3006             G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3007             G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
3008
3009         return (1);
3010 }
3011
3012 /*
3013  * Establish contact with the firmware and determine if we are the master driver
3014  * or not, and whether we are responsible for chip initialization.
3015  */
3016 static int
3017 prep_firmware(struct adapter *sc)
3018 {
3019         const struct firmware *fw = NULL, *default_cfg;
3020         int rc, pf, card_fw_usable, kld_fw_usable, need_fw_reset = 1;
3021         enum dev_state state;
3022         struct fw_info *fw_info;
3023         struct fw_hdr *card_fw;         /* fw on the card */
3024         const struct fw_hdr *kld_fw;    /* fw in the KLD */
3025         const struct fw_hdr *drv_fw;    /* fw header the driver was compiled
3026                                            against */
3027
3028         /* This is the firmware whose headers the driver was compiled against */
3029         fw_info = find_fw_info(chip_id(sc));
3030         if (fw_info == NULL) {
3031                 device_printf(sc->dev,
3032                     "unable to look up firmware information for chip %d.\n",
3033                     chip_id(sc));
3034                 return (EINVAL);
3035         }
3036         drv_fw = &fw_info->fw_hdr;
3037
3038         /*
3039          * The firmware KLD contains many modules.  The KLD name is also the
3040          * name of the module that contains the default config file.
3041          */
3042         default_cfg = firmware_get(fw_info->kld_name);
3043
3044         /* This is the firmware in the KLD */
3045         fw = firmware_get(fw_info->fw_mod_name);
3046         if (fw != NULL) {
3047                 kld_fw = (const void *)fw->data;
3048                 kld_fw_usable = fw_compatible(drv_fw, kld_fw);
3049         } else {
3050                 kld_fw = NULL;
3051                 kld_fw_usable = 0;
3052         }
3053
3054         /* Read the header of the firmware on the card */
3055         card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
3056         rc = -t4_read_flash(sc, FLASH_FW_START,
3057             sizeof (*card_fw) / sizeof (uint32_t), (uint32_t *)card_fw, 1);
3058         if (rc == 0) {
3059                 card_fw_usable = fw_compatible(drv_fw, (const void*)card_fw);
3060                 if (card_fw->fw_ver == be32toh(0xffffffff)) {
3061                         uint32_t d = be32toh(kld_fw->fw_ver);
3062
3063                         if (!kld_fw_usable) {
3064                                 device_printf(sc->dev,
3065                                     "no firmware on the card and no usable "
3066                                     "firmware bundled with the driver.\n");
3067                                 rc = EIO;
3068                                 goto done;
3069                         } else if (t4_fw_install == 0) {
3070                                 device_printf(sc->dev,
3071                                     "no firmware on the card and the driver "
3072                                     "is prohibited from installing new "
3073                                     "firmware.\n");
3074                                 rc = EIO;
3075                                 goto done;
3076                         }
3077
3078                         device_printf(sc->dev, "no firmware on the card, "
3079                             "installing firmware %d.%d.%d.%d\n",
3080                             G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3081                             G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
3082                         rc = t4_fw_forceinstall(sc, fw->data, fw->datasize);
3083                         if (rc < 0) {
3084                                 rc = -rc;
3085                                 device_printf(sc->dev,
3086                                     "firmware install failed: %d.\n", rc);
3087                                 goto done;
3088                         }
3089                         memcpy(card_fw, kld_fw, sizeof(*card_fw));
3090                         card_fw_usable = 1;
3091                         need_fw_reset = 0;
3092                 }
3093         } else {
3094                 device_printf(sc->dev,
3095                     "Unable to read card's firmware header: %d\n", rc);
3096                 card_fw_usable = 0;
3097         }
3098
3099         /* Contact firmware. */
3100         rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
3101         if (rc < 0 || state == DEV_STATE_ERR) {
3102                 rc = -rc;
3103                 device_printf(sc->dev,
3104                     "failed to connect to the firmware: %d, %d.\n", rc, state);
3105                 goto done;
3106         }
3107         pf = rc;
3108         if (pf == sc->mbox)
3109                 sc->flags |= MASTER_PF;
3110         else if (state == DEV_STATE_UNINIT) {
3111                 /*
3112                  * We didn't get to be the master so we definitely won't be
3113                  * configuring the chip.  It's a bug if someone else hasn't
3114                  * configured it already.
3115                  */
3116                 device_printf(sc->dev, "couldn't be master(%d), "
3117                     "device not already initialized either(%d).\n", rc, state);
3118                 rc = EPROTO;
3119                 goto done;
3120         }
3121
3122         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3123             (!kld_fw_usable || kld_fw->fw_ver == drv_fw->fw_ver)) {
3124                 /*
3125                  * Common case: the firmware on the card is an exact match and
3126                  * the KLD is an exact match too, or the KLD is
3127                  * absent/incompatible.  Note that t4_fw_install = 2 is ignored
3128                  * here -- use cxgbetool loadfw if you want to reinstall the
3129                  * same firmware as the one on the card.
3130                  */
3131         } else if (kld_fw_usable && state == DEV_STATE_UNINIT &&
3132             should_install_kld_fw(sc, card_fw_usable, be32toh(kld_fw->fw_ver),
3133             be32toh(card_fw->fw_ver))) {
3134
3135                 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
3136                 if (rc != 0) {
3137                         device_printf(sc->dev,
3138                             "failed to install firmware: %d\n", rc);
3139                         goto done;
3140                 }
3141
3142                 /* Installed successfully, update the cached header too. */
3143                 memcpy(card_fw, kld_fw, sizeof(*card_fw));
3144                 card_fw_usable = 1;
3145                 need_fw_reset = 0;      /* already reset as part of load_fw */
3146         }
3147
3148         if (!card_fw_usable) {
3149                 uint32_t d, c, k;
3150
3151                 d = ntohl(drv_fw->fw_ver);
3152                 c = ntohl(card_fw->fw_ver);
3153                 k = kld_fw ? ntohl(kld_fw->fw_ver) : 0;
3154
3155                 device_printf(sc->dev, "Cannot find a usable firmware: "
3156                     "fw_install %d, chip state %d, "
3157                     "driver compiled with %d.%d.%d.%d, "
3158                     "card has %d.%d.%d.%d, KLD has %d.%d.%d.%d\n",
3159                     t4_fw_install, state,
3160                     G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3161                     G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d),
3162                     G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3163                     G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c),
3164                     G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3165                     G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
3166                 rc = EINVAL;
3167                 goto done;
3168         }
3169
3170         /* Reset device */
3171         if (need_fw_reset &&
3172             (rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST)) != 0) {
3173                 device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
3174                 if (rc != ETIMEDOUT && rc != EIO)
3175                         t4_fw_bye(sc, sc->mbox);
3176                 goto done;
3177         }
3178         sc->flags |= FW_OK;
3179
3180         rc = get_params__pre_init(sc);
3181         if (rc != 0)
3182                 goto done; /* error message displayed already */
3183
3184         /* Partition adapter resources as specified in the config file. */
3185         if (state == DEV_STATE_UNINIT) {
3186
3187                 KASSERT(sc->flags & MASTER_PF,
3188                     ("%s: trying to change chip settings when not master.",
3189                     __func__));
3190
3191                 rc = partition_resources(sc, default_cfg, fw_info->kld_name);
3192                 if (rc != 0)
3193                         goto done;      /* error message displayed already */
3194
3195                 t4_tweak_chip_settings(sc);
3196
3197                 /* get basic stuff going */
3198                 rc = -t4_fw_initialize(sc, sc->mbox);
3199                 if (rc != 0) {
3200                         device_printf(sc->dev, "fw init failed: %d.\n", rc);
3201                         goto done;
3202                 }
3203         } else {
3204                 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", pf);
3205                 sc->cfcsum = 0;
3206         }
3207
3208 done:
3209         free(card_fw, M_CXGBE);
3210         if (fw != NULL)
3211                 firmware_put(fw, FIRMWARE_UNLOAD);
3212         if (default_cfg != NULL)
3213                 firmware_put(default_cfg, FIRMWARE_UNLOAD);
3214
3215         return (rc);
3216 }
3217
3218 #define FW_PARAM_DEV(param) \
3219         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
3220          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
3221 #define FW_PARAM_PFVF(param) \
3222         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3223          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
3224
3225 /*
3226  * Partition chip resources for use between various PFs, VFs, etc.
3227  */
3228 static int
3229 partition_resources(struct adapter *sc, const struct firmware *default_cfg,
3230     const char *name_prefix)
3231 {
3232         const struct firmware *cfg = NULL;
3233         int rc = 0;
3234         struct fw_caps_config_cmd caps;
3235         uint32_t mtype, moff, finicsum, cfcsum;
3236
3237         /*
3238          * Figure out what configuration file to use.  Pick the default config
3239          * file for the card if the user hasn't specified one explicitly.
3240          */
3241         snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", t4_cfg_file);
3242         if (strncmp(t4_cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3243                 /* Card specific overrides go here. */
3244                 if (pci_get_device(sc->dev) == 0x440a)
3245                         snprintf(sc->cfg_file, sizeof(sc->cfg_file), UWIRE_CF);
3246                 if (is_fpga(sc))
3247                         snprintf(sc->cfg_file, sizeof(sc->cfg_file), FPGA_CF);
3248         }
3249
3250         /*
3251          * We need to load another module if the profile is anything except
3252          * "default" or "flash".
3253          */
3254         if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) != 0 &&
3255             strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
3256                 char s[32];
3257
3258                 snprintf(s, sizeof(s), "%s_%s", name_prefix, sc->cfg_file);
3259                 cfg = firmware_get(s);
3260                 if (cfg == NULL) {
3261                         if (default_cfg != NULL) {
3262                                 device_printf(sc->dev,
3263                                     "unable to load module \"%s\" for "
3264                                     "configuration profile \"%s\", will use "
3265                                     "the default config file instead.\n",
3266                                     s, sc->cfg_file);
3267                                 snprintf(sc->cfg_file, sizeof(sc->cfg_file),
3268                                     "%s", DEFAULT_CF);
3269                         } else {
3270                                 device_printf(sc->dev,
3271                                     "unable to load module \"%s\" for "
3272                                     "configuration profile \"%s\", will use "
3273                                     "the config file on the card's flash "
3274                                     "instead.\n", s, sc->cfg_file);
3275                                 snprintf(sc->cfg_file, sizeof(sc->cfg_file),
3276                                     "%s", FLASH_CF);
3277                         }
3278                 }
3279         }
3280
3281         if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) == 0 &&
3282             default_cfg == NULL) {
3283                 device_printf(sc->dev,
3284                     "default config file not available, will use the config "
3285                     "file on the card's flash instead.\n");
3286                 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", FLASH_CF);
3287         }
3288
3289         if (strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
3290                 u_int cflen;
3291                 const uint32_t *cfdata;
3292                 uint32_t param, val, addr;
3293
3294                 KASSERT(cfg != NULL || default_cfg != NULL,
3295                     ("%s: no config to upload", __func__));
3296
3297                 /*
3298                  * Ask the firmware where it wants us to upload the config file.
3299                  */
3300                 param = FW_PARAM_DEV(CF);
3301                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3302                 if (rc != 0) {
3303                         /* No support for config file?  Shouldn't happen. */
3304                         device_printf(sc->dev,
3305                             "failed to query config file location: %d.\n", rc);
3306                         goto done;
3307                 }
3308                 mtype = G_FW_PARAMS_PARAM_Y(val);
3309                 moff = G_FW_PARAMS_PARAM_Z(val) << 16;
3310
3311                 /*
3312                  * XXX: sheer laziness.  We deliberately added 4 bytes of
3313                  * useless stuffing/comments at the end of the config file so
3314                  * it's ok to simply throw away the last remaining bytes when
3315                  * the config file is not an exact multiple of 4.  This also
3316                  * helps with the validate_mt_off_len check.
3317                  */
3318                 if (cfg != NULL) {
3319                         cflen = cfg->datasize & ~3;
3320                         cfdata = cfg->data;
3321                 } else {
3322                         cflen = default_cfg->datasize & ~3;
3323                         cfdata = default_cfg->data;
3324                 }
3325
3326                 if (cflen > FLASH_CFG_MAX_SIZE) {
3327                         device_printf(sc->dev,
3328                             "config file too long (%d, max allowed is %d).  "
3329                             "Will try to use the config on the card, if any.\n",
3330                             cflen, FLASH_CFG_MAX_SIZE);
3331                         goto use_config_on_flash;
3332                 }
3333
3334                 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
3335                 if (rc != 0) {
3336                         device_printf(sc->dev,
3337                             "%s: addr (%d/0x%x) or len %d is not valid: %d.  "
3338                             "Will try to use the config on the card, if any.\n",
3339                             __func__, mtype, moff, cflen, rc);
3340                         goto use_config_on_flash;
3341                 }
3342                 write_via_memwin(sc, 2, addr, cfdata, cflen);
3343         } else {
3344 use_config_on_flash:
3345                 mtype = FW_MEMTYPE_FLASH;
3346                 moff = t4_flash_cfg_addr(sc);
3347         }
3348
3349         bzero(&caps, sizeof(caps));
3350         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3351             F_FW_CMD_REQUEST | F_FW_CMD_READ);
3352         caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
3353             V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
3354             V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps));
3355         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3356         if (rc != 0) {
3357                 device_printf(sc->dev,
3358                     "failed to pre-process config file: %d "
3359                     "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
3360                 goto done;
3361         }
3362
3363         finicsum = be32toh(caps.finicsum);
3364         cfcsum = be32toh(caps.cfcsum);
3365         if (finicsum != cfcsum) {
3366                 device_printf(sc->dev,
3367                     "WARNING: config file checksum mismatch: %08x %08x\n",
3368                     finicsum, cfcsum);
3369         }
3370         sc->cfcsum = cfcsum;
3371
3372 #define LIMIT_CAPS(x) do { \
3373         caps.x &= htobe16(t4_##x##_allowed); \
3374 } while (0)
3375
3376         /*
3377          * Let the firmware know what features will (not) be used so it can tune
3378          * things accordingly.
3379          */
3380         LIMIT_CAPS(nbmcaps);
3381         LIMIT_CAPS(linkcaps);
3382         LIMIT_CAPS(switchcaps);
3383         LIMIT_CAPS(niccaps);
3384         LIMIT_CAPS(toecaps);
3385         LIMIT_CAPS(rdmacaps);
3386         LIMIT_CAPS(cryptocaps);
3387         LIMIT_CAPS(iscsicaps);
3388         LIMIT_CAPS(fcoecaps);
3389 #undef LIMIT_CAPS
3390
3391         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3392             F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
3393         caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3394         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
3395         if (rc != 0) {
3396                 device_printf(sc->dev,
3397                     "failed to process config file: %d.\n", rc);
3398         }
3399 done:
3400         if (cfg != NULL)
3401                 firmware_put(cfg, FIRMWARE_UNLOAD);
3402         return (rc);
3403 }
3404
3405 /*
3406  * Retrieve parameters that are needed (or nice to have) very early.
3407  */
3408 static int
3409 get_params__pre_init(struct adapter *sc)
3410 {
3411         int rc;
3412         uint32_t param[2], val[2];
3413
3414         t4_get_version_info(sc);
3415
3416         snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
3417             G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
3418             G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
3419             G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
3420             G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
3421
3422         snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
3423             G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
3424             G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
3425             G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
3426             G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
3427
3428         snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
3429             G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
3430             G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
3431             G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
3432             G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
3433
3434         snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
3435             G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
3436             G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
3437             G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
3438             G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
3439
3440         param[0] = FW_PARAM_DEV(PORTVEC);
3441         param[1] = FW_PARAM_DEV(CCLK);
3442         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3443         if (rc != 0) {
3444                 device_printf(sc->dev,
3445                     "failed to query parameters (pre_init): %d.\n", rc);
3446                 return (rc);
3447         }
3448
3449         sc->params.portvec = val[0];
3450         sc->params.nports = bitcount32(val[0]);
3451         sc->params.vpd.cclk = val[1];
3452
3453         /* Read device log parameters. */
3454         rc = -t4_init_devlog_params(sc, 1);
3455         if (rc == 0)
3456                 fixup_devlog_params(sc);
3457         else {
3458                 device_printf(sc->dev,
3459                     "failed to get devlog parameters: %d.\n", rc);
3460                 rc = 0; /* devlog isn't critical for device operation */
3461         }
3462
3463         return (rc);
3464 }
3465
3466 /*
3467  * Retrieve various parameters that are of interest to the driver.  The device
3468  * has been initialized by the firmware at this point.
3469  */
3470 static int
3471 get_params__post_init(struct adapter *sc)
3472 {
3473         int rc;
3474         uint32_t param[7], val[7];
3475         struct fw_caps_config_cmd caps;
3476
3477         param[0] = FW_PARAM_PFVF(IQFLINT_START);
3478         param[1] = FW_PARAM_PFVF(EQ_START);
3479         param[2] = FW_PARAM_PFVF(FILTER_START);
3480         param[3] = FW_PARAM_PFVF(FILTER_END);
3481         param[4] = FW_PARAM_PFVF(L2T_START);
3482         param[5] = FW_PARAM_PFVF(L2T_END);
3483         param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3484             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
3485             V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
3486         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
3487         if (rc != 0) {
3488                 device_printf(sc->dev,
3489                     "failed to query parameters (post_init): %d.\n", rc);
3490                 return (rc);
3491         }
3492
3493         sc->sge.iq_start = val[0];
3494         sc->sge.eq_start = val[1];
3495         sc->tids.ftid_base = val[2];
3496         sc->tids.nftids = val[3] - val[2] + 1;
3497         sc->params.ftid_min = val[2];
3498         sc->params.ftid_max = val[3];
3499         sc->vres.l2t.start = val[4];
3500         sc->vres.l2t.size = val[5] - val[4] + 1;
3501         KASSERT(sc->vres.l2t.size <= L2T_SIZE,
3502             ("%s: L2 table size (%u) larger than expected (%u)",
3503             __func__, sc->vres.l2t.size, L2T_SIZE));
3504         sc->params.core_vdd = val[6];
3505
3506         /*
3507          * MPSBGMAP is queried separately because only recent firmwares support
3508          * it as a parameter and we don't want the compound query above to fail
3509          * on older firmwares.
3510          */
3511         param[0] = FW_PARAM_DEV(MPSBGMAP);
3512         val[0] = 0;
3513         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
3514         if (rc == 0)
3515                 sc->params.mps_bg_map = val[0];
3516         else
3517                 sc->params.mps_bg_map = 0;
3518
3519         /* get capabilites */
3520         bzero(&caps, sizeof(caps));
3521         caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3522             F_FW_CMD_REQUEST | F_FW_CMD_READ);
3523         caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3524         rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3525         if (rc != 0) {
3526                 device_printf(sc->dev,
3527                     "failed to get card capabilities: %d.\n", rc);
3528                 return (rc);
3529         }
3530
3531 #define READ_CAPS(x) do { \
3532         sc->x = htobe16(caps.x); \
3533 } while (0)
3534         READ_CAPS(nbmcaps);
3535         READ_CAPS(linkcaps);
3536         READ_CAPS(switchcaps);
3537         READ_CAPS(niccaps);
3538         READ_CAPS(toecaps);
3539         READ_CAPS(rdmacaps);
3540         READ_CAPS(cryptocaps);
3541         READ_CAPS(iscsicaps);
3542         READ_CAPS(fcoecaps);
3543
3544         /*
3545          * The firmware attempts memfree TOE configuration for -SO cards and
3546          * will report toecaps=0 if it runs out of resources (this depends on
3547          * the config file).  It may not report 0 for other capabilities
3548          * dependent on the TOE in this case.  Set them to 0 here so that the
3549          * driver doesn't bother tracking resources that will never be used.
3550          */
3551         if (sc->toecaps == 0) {
3552                 sc->iscsicaps = 0;
3553                 sc->rdmacaps = 0;
3554         }
3555
3556         if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
3557                 param[0] = FW_PARAM_PFVF(ETHOFLD_START);
3558                 param[1] = FW_PARAM_PFVF(ETHOFLD_END);
3559                 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3560                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
3561                 if (rc != 0) {
3562                         device_printf(sc->dev,
3563                             "failed to query NIC parameters: %d.\n", rc);
3564                         return (rc);
3565                 }
3566                 sc->tids.etid_base = val[0];
3567                 sc->params.etid_min = val[0];
3568                 sc->tids.netids = val[1] - val[0] + 1;
3569                 sc->params.netids = sc->tids.netids;
3570                 sc->params.eo_wr_cred = val[2];
3571                 sc->params.ethoffload = 1;
3572         }
3573
3574         if (sc->toecaps) {
3575                 /* query offload-related parameters */
3576                 param[0] = FW_PARAM_DEV(NTID);
3577                 param[1] = FW_PARAM_PFVF(SERVER_START);
3578                 param[2] = FW_PARAM_PFVF(SERVER_END);
3579                 param[3] = FW_PARAM_PFVF(TDDP_START);
3580                 param[4] = FW_PARAM_PFVF(TDDP_END);
3581                 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3582                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3583                 if (rc != 0) {
3584                         device_printf(sc->dev,
3585                             "failed to query TOE parameters: %d.\n", rc);
3586                         return (rc);
3587                 }
3588                 sc->tids.ntids = val[0];
3589                 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
3590                 sc->tids.stid_base = val[1];
3591                 sc->tids.nstids = val[2] - val[1] + 1;
3592                 sc->vres.ddp.start = val[3];
3593                 sc->vres.ddp.size = val[4] - val[3] + 1;
3594                 sc->params.ofldq_wr_cred = val[5];
3595                 sc->params.offload = 1;
3596         }
3597         if (sc->rdmacaps) {
3598                 param[0] = FW_PARAM_PFVF(STAG_START);
3599                 param[1] = FW_PARAM_PFVF(STAG_END);
3600                 param[2] = FW_PARAM_PFVF(RQ_START);
3601                 param[3] = FW_PARAM_PFVF(RQ_END);
3602                 param[4] = FW_PARAM_PFVF(PBL_START);
3603                 param[5] = FW_PARAM_PFVF(PBL_END);
3604                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3605                 if (rc != 0) {
3606                         device_printf(sc->dev,
3607                             "failed to query RDMA parameters(1): %d.\n", rc);
3608                         return (rc);
3609                 }
3610                 sc->vres.stag.start = val[0];
3611                 sc->vres.stag.size = val[1] - val[0] + 1;
3612                 sc->vres.rq.start = val[2];
3613                 sc->vres.rq.size = val[3] - val[2] + 1;
3614                 sc->vres.pbl.start = val[4];
3615                 sc->vres.pbl.size = val[5] - val[4] + 1;
3616
3617                 param[0] = FW_PARAM_PFVF(SQRQ_START);
3618                 param[1] = FW_PARAM_PFVF(SQRQ_END);
3619                 param[2] = FW_PARAM_PFVF(CQ_START);
3620                 param[3] = FW_PARAM_PFVF(CQ_END);
3621                 param[4] = FW_PARAM_PFVF(OCQ_START);
3622                 param[5] = FW_PARAM_PFVF(OCQ_END);
3623                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
3624                 if (rc != 0) {
3625                         device_printf(sc->dev,
3626                             "failed to query RDMA parameters(2): %d.\n", rc);
3627                         return (rc);
3628                 }
3629                 sc->vres.qp.start = val[0];
3630                 sc->vres.qp.size = val[1] - val[0] + 1;
3631                 sc->vres.cq.start = val[2];
3632                 sc->vres.cq.size = val[3] - val[2] + 1;
3633                 sc->vres.ocq.start = val[4];
3634                 sc->vres.ocq.size = val[5] - val[4] + 1;
3635
3636                 param[0] = FW_PARAM_PFVF(SRQ_START);
3637                 param[1] = FW_PARAM_PFVF(SRQ_END);
3638                 param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
3639                 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3640                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
3641                 if (rc != 0) {
3642                         device_printf(sc->dev,
3643                             "failed to query RDMA parameters(3): %d.\n", rc);
3644                         return (rc);
3645                 }
3646                 sc->vres.srq.start = val[0];
3647                 sc->vres.srq.size = val[1] - val[0] + 1;
3648                 sc->params.max_ordird_qp = val[2];
3649                 sc->params.max_ird_adapter = val[3];
3650         }
3651         if (sc->iscsicaps) {
3652                 param[0] = FW_PARAM_PFVF(ISCSI_START);
3653                 param[1] = FW_PARAM_PFVF(ISCSI_END);
3654                 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
3655                 if (rc != 0) {
3656                         device_printf(sc->dev,
3657                             "failed to query iSCSI parameters: %d.\n", rc);
3658                         return (rc);
3659                 }
3660                 sc->vres.iscsi.start = val[0];
3661                 sc->vres.iscsi.size = val[1] - val[0] + 1;
3662         }
3663
3664         t4_init_sge_params(sc);
3665
3666         /*
3667          * We've got the params we wanted to query via the firmware.  Now grab
3668          * some others directly from the chip.
3669          */
3670         rc = t4_read_chip_settings(sc);
3671
3672         return (rc);
3673 }
3674
3675 static int
3676 set_params__post_init(struct adapter *sc)
3677 {
3678         uint32_t param, val;
3679 #ifdef TCP_OFFLOAD
3680         int i, v, shift;
3681 #endif
3682
3683         /* ask for encapsulated CPLs */
3684         param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3685         val = 1;
3686         (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3687
3688 #ifdef TCP_OFFLOAD
3689         /*
3690          * Override the TOE timers with user provided tunables.  This is not the
3691          * recommended way to change the timers (the firmware config file is) so
3692          * these tunables are not documented.
3693          *
3694          * All the timer tunables are in microseconds.
3695          */
3696         if (t4_toe_keepalive_idle != 0) {
3697                 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
3698                 v &= M_KEEPALIVEIDLE;
3699                 t4_set_reg_field(sc, A_TP_KEEP_IDLE,
3700                     V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
3701         }
3702         if (t4_toe_keepalive_interval != 0) {
3703                 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
3704                 v &= M_KEEPALIVEINTVL;
3705                 t4_set_reg_field(sc, A_TP_KEEP_INTVL,
3706                     V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
3707         }
3708         if (t4_toe_keepalive_count != 0) {
3709                 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
3710                 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
3711                     V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
3712                     V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
3713                     V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
3714         }
3715         if (t4_toe_rexmt_min != 0) {
3716                 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
3717                 v &= M_RXTMIN;
3718                 t4_set_reg_field(sc, A_TP_RXT_MIN,
3719                     V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
3720         }
3721         if (t4_toe_rexmt_max != 0) {
3722                 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
3723                 v &= M_RXTMAX;
3724                 t4_set_reg_field(sc, A_TP_RXT_MAX,
3725                     V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
3726         }
3727         if (t4_toe_rexmt_count != 0) {
3728                 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
3729                 t4_set_reg_field(sc, A_TP_SHIFT_CNT,
3730                     V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
3731                     V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
3732                     V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
3733         }
3734         for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
3735                 if (t4_toe_rexmt_backoff[i] != -1) {
3736                         v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
3737                         shift = (i & 3) << 3;
3738                         t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
3739                             M_TIMERBACKOFFINDEX0 << shift, v << shift);
3740                 }
3741         }
3742 #endif
3743         return (0);
3744 }
3745
3746 #undef FW_PARAM_PFVF
3747 #undef FW_PARAM_DEV
3748
3749 static void
3750 t4_set_desc(struct adapter *sc)
3751 {
3752         char buf[128];
3753         struct adapter_params *p = &sc->params;
3754
3755         snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
3756
3757         device_set_desc_copy(sc->dev, buf);
3758 }
3759
3760 static void
3761 build_medialist(struct port_info *pi, struct ifmedia *media)
3762 {
3763         int m;
3764
3765         PORT_LOCK_ASSERT_OWNED(pi);
3766
3767         ifmedia_removeall(media);
3768
3769         /*
3770          * XXX: Would it be better to ifmedia_add all 4 combinations of pause
3771          * settings for every speed instead of just txpause|rxpause?  ifconfig
3772          * media display looks much better if autoselect is the only case where
3773          * ifm_current is different from ifm_active.  If the user picks anything
3774          * except txpause|rxpause the display is ugly.
3775          */
3776         m = IFM_ETHER | IFM_FDX | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
3777
3778         switch(pi->port_type) {
3779         case FW_PORT_TYPE_BT_XFI:
3780         case FW_PORT_TYPE_BT_XAUI:
3781                 ifmedia_add(media, m | IFM_10G_T, 0, NULL);
3782                 /* fall through */
3783
3784         case FW_PORT_TYPE_BT_SGMII:
3785                 ifmedia_add(media, m | IFM_1000_T, 0, NULL);
3786                 ifmedia_add(media, m | IFM_100_TX, 0, NULL);
3787                 ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL);
3788                 ifmedia_set(media, IFM_ETHER | IFM_AUTO);
3789                 break;
3790
3791         case FW_PORT_TYPE_CX4:
3792                 ifmedia_add(media, m | IFM_10G_CX4, 0, NULL);
3793                 ifmedia_set(media, m | IFM_10G_CX4);
3794                 break;
3795
3796         case FW_PORT_TYPE_QSFP_10G:
3797         case FW_PORT_TYPE_SFP:
3798         case FW_PORT_TYPE_FIBER_XFI:
3799         case FW_PORT_TYPE_FIBER_XAUI:
3800                 switch (pi->mod_type) {
3801
3802                 case FW_PORT_MOD_TYPE_LR:
3803                         ifmedia_add(media, m | IFM_10G_LR, 0, NULL);
3804                         ifmedia_set(media, m | IFM_10G_LR);
3805                         break;
3806
3807                 case FW_PORT_MOD_TYPE_SR:
3808                         ifmedia_add(media, m | IFM_10G_SR, 0, NULL);
3809                         ifmedia_set(media, m | IFM_10G_SR);
3810                         break;
3811
3812                 case FW_PORT_MOD_TYPE_LRM:
3813                         ifmedia_add(media, m | IFM_10G_LRM, 0, NULL);
3814                         ifmedia_set(media, m | IFM_10G_LRM);
3815                         break;
3816
3817                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3818                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3819                         ifmedia_add(media, m | IFM_10G_TWINAX, 0, NULL);
3820                         ifmedia_set(media, m | IFM_10G_TWINAX);
3821                         break;
3822
3823                 case FW_PORT_MOD_TYPE_NONE:
3824                         m &= ~IFM_FDX;
3825                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3826                         ifmedia_set(media, m | IFM_NONE);
3827                         break;
3828
3829                 case FW_PORT_MOD_TYPE_NA:
3830                 case FW_PORT_MOD_TYPE_ER:
3831                 default:
3832                         device_printf(pi->dev,
3833                             "unknown port_type (%d), mod_type (%d)\n",
3834                             pi->port_type, pi->mod_type);
3835                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3836                         ifmedia_set(media, m | IFM_UNKNOWN);
3837                         break;
3838                 }
3839                 break;
3840
3841         case FW_PORT_TYPE_CR_QSFP:
3842         case FW_PORT_TYPE_SFP28:
3843         case FW_PORT_TYPE_KR_SFP28:
3844                 switch (pi->mod_type) {
3845
3846                 case FW_PORT_MOD_TYPE_SR:
3847                         ifmedia_add(media, m | IFM_25G_SR, 0, NULL);
3848                         ifmedia_set(media, m | IFM_25G_SR);
3849                         break;
3850
3851                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3852                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3853                         ifmedia_add(media, m | IFM_25G_CR, 0, NULL);
3854                         ifmedia_set(media, m | IFM_25G_CR);
3855                         break;
3856
3857                 case FW_PORT_MOD_TYPE_NONE:
3858                         m &= ~IFM_FDX;
3859                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3860                         ifmedia_set(media, m | IFM_NONE);
3861                         break;
3862
3863                 default:
3864                         device_printf(pi->dev,
3865                             "unknown port_type (%d), mod_type (%d)\n",
3866                             pi->port_type, pi->mod_type);
3867                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3868                         ifmedia_set(media, m | IFM_UNKNOWN);
3869                         break;
3870                 }
3871                 break;
3872
3873         case FW_PORT_TYPE_QSFP:
3874                 switch (pi->mod_type) {
3875
3876                 case FW_PORT_MOD_TYPE_LR:
3877                         ifmedia_add(media, m | IFM_40G_LR4, 0, NULL);
3878                         ifmedia_set(media, m | IFM_40G_LR4);
3879                         break;
3880
3881                 case FW_PORT_MOD_TYPE_SR:
3882                         ifmedia_add(media, m | IFM_40G_SR4, 0, NULL);
3883                         ifmedia_set(media, m | IFM_40G_SR4);
3884                         break;
3885
3886                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3887                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3888                         ifmedia_add(media, m | IFM_40G_CR4, 0, NULL);
3889                         ifmedia_set(media, m | IFM_40G_CR4);
3890                         break;
3891
3892                 case FW_PORT_MOD_TYPE_NONE:
3893                         m &= ~IFM_FDX;
3894                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3895                         ifmedia_set(media, m | IFM_NONE);
3896                         break;
3897
3898                 default:
3899                         device_printf(pi->dev,
3900                             "unknown port_type (%d), mod_type (%d)\n",
3901                             pi->port_type, pi->mod_type);
3902                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3903                         ifmedia_set(media, m | IFM_UNKNOWN);
3904                         break;
3905                 }
3906                 break;
3907
3908         case FW_PORT_TYPE_KR4_100G:
3909         case FW_PORT_TYPE_CR4_QSFP:
3910                 switch (pi->mod_type) {
3911
3912                 case FW_PORT_MOD_TYPE_LR:
3913                         ifmedia_add(media, m | IFM_100G_LR4, 0, NULL);
3914                         ifmedia_set(media, m | IFM_100G_LR4);
3915                         break;
3916
3917                 case FW_PORT_MOD_TYPE_SR:
3918                         ifmedia_add(media, m | IFM_100G_SR4, 0, NULL);
3919                         ifmedia_set(media, m | IFM_100G_SR4);
3920                         break;
3921
3922                 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3923                 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3924                         ifmedia_add(media, m | IFM_100G_CR4, 0, NULL);
3925                         ifmedia_set(media, m | IFM_100G_CR4);
3926                         break;
3927
3928                 case FW_PORT_MOD_TYPE_NONE:
3929                         m &= ~IFM_FDX;
3930                         ifmedia_add(media, m | IFM_NONE, 0, NULL);
3931                         ifmedia_set(media, m | IFM_NONE);
3932                         break;
3933
3934                 default:
3935                         device_printf(pi->dev,
3936                             "unknown port_type (%d), mod_type (%d)\n",
3937                             pi->port_type, pi->mod_type);
3938                         ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3939                         ifmedia_set(media, m | IFM_UNKNOWN);
3940                         break;
3941                 }
3942                 break;
3943
3944         default:
3945                 device_printf(pi->dev,
3946                     "unknown port_type (%d), mod_type (%d)\n", pi->port_type,
3947                     pi->mod_type);
3948                 ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
3949                 ifmedia_set(media, m | IFM_UNKNOWN);
3950                 break;
3951         }
3952 }
3953
3954 /*
3955  * Update all the requested_* fields in the link config and then send a mailbox
3956  * command to apply the settings.
3957  */
3958 static void
3959 init_l1cfg(struct port_info *pi)
3960 {
3961         struct adapter *sc = pi->adapter;
3962         struct link_config *lc = &pi->link_cfg;
3963         int rc;
3964
3965         ASSERT_SYNCHRONIZED_OP(sc);
3966
3967         if (t4_autoneg != 0 && lc->supported & FW_PORT_CAP_ANEG) {
3968                 lc->requested_aneg = AUTONEG_ENABLE;
3969                 lc->requested_speed = 0;
3970         } else {
3971                 lc->requested_aneg = AUTONEG_DISABLE;
3972                 lc->requested_speed = port_top_speed(pi);       /* in Gbps */
3973         }
3974
3975         lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX);
3976
3977         if (t4_fec != -1) {
3978                 lc->requested_fec = t4_fec & (FEC_RS | FEC_BASER_RS |
3979                     FEC_RESERVED);
3980         } else {
3981                 /* Use the suggested value provided by the firmware in acaps */
3982                 if (lc->advertising & FW_PORT_CAP_FEC_RS)
3983                         lc->requested_fec = FEC_RS;
3984                 else if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
3985                         lc->requested_fec = FEC_BASER_RS;
3986                 else if (lc->advertising & FW_PORT_CAP_FEC_RESERVED)
3987                         lc->requested_fec = FEC_RESERVED;
3988                 else
3989                         lc->requested_fec = 0;
3990         }
3991
3992         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
3993         if (rc != 0) {
3994                 device_printf(pi->dev, "l1cfg failed: %d\n", rc);
3995         } else {
3996                 lc->fc = lc->requested_fc;
3997                 lc->fec = lc->requested_fec;
3998         }
3999 }
4000
4001 #define FW_MAC_EXACT_CHUNK      7
4002
4003 /*
4004  * Program the port's XGMAC based on parameters in ifnet.  The caller also
4005  * indicates which parameters should be programmed (the rest are left alone).
4006  */
4007 int
4008 update_mac_settings(struct ifnet *ifp, int flags)
4009 {
4010         int rc = 0;
4011         struct vi_info *vi = ifp->if_softc;
4012         struct port_info *pi = vi->pi;
4013         struct adapter *sc = pi->adapter;
4014         int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
4015
4016         ASSERT_SYNCHRONIZED_OP(sc);
4017         KASSERT(flags, ("%s: not told what to update.", __func__));
4018
4019         if (flags & XGMAC_MTU)
4020                 mtu = ifp->if_mtu;
4021
4022         if (flags & XGMAC_PROMISC)
4023                 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
4024
4025         if (flags & XGMAC_ALLMULTI)
4026                 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
4027
4028         if (flags & XGMAC_VLANEX)
4029                 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
4030
4031         if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
4032                 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
4033                     allmulti, 1, vlanex, false);
4034                 if (rc) {
4035                         if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
4036                             rc);
4037                         return (rc);
4038                 }
4039         }
4040
4041         if (flags & XGMAC_UCADDR) {
4042                 uint8_t ucaddr[ETHER_ADDR_LEN];
4043
4044                 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
4045                 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
4046                     ucaddr, true, true);
4047                 if (rc < 0) {
4048                         rc = -rc;
4049                         if_printf(ifp, "change_mac failed: %d\n", rc);
4050                         return (rc);
4051                 } else {
4052                         vi->xact_addr_filt = rc;
4053                         rc = 0;
4054                 }
4055         }
4056
4057         if (flags & XGMAC_MCADDRS) {
4058                 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
4059                 int del = 1;
4060                 uint64_t hash = 0;
4061                 struct ifmultiaddr *ifma;
4062                 int i = 0, j;
4063
4064                 if_maddr_rlock(ifp);
4065                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
4066                         if (ifma->ifma_addr->sa_family != AF_LINK)
4067                                 continue;
4068                         mcaddr[i] =
4069                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
4070                         MPASS(ETHER_IS_MULTICAST(mcaddr[i]));
4071                         i++;
4072
4073                         if (i == FW_MAC_EXACT_CHUNK) {
4074                                 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
4075                                     del, i, mcaddr, NULL, &hash, 0);
4076                                 if (rc < 0) {
4077                                         rc = -rc;
4078                                         for (j = 0; j < i; j++) {
4079                                                 if_printf(ifp,
4080                                                     "failed to add mc address"
4081                                                     " %02x:%02x:%02x:"
4082                                                     "%02x:%02x:%02x rc=%d\n",
4083                                                     mcaddr[j][0], mcaddr[j][1],
4084                                                     mcaddr[j][2], mcaddr[j][3],
4085                                                     mcaddr[j][4], mcaddr[j][5],
4086                                                     rc);
4087                                         }
4088                                         goto mcfail;
4089                                 }
4090                                 del = 0;
4091                                 i = 0;
4092                         }
4093                 }
4094                 if (i > 0) {
4095                         rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i,
4096                             mcaddr, NULL, &hash, 0);
4097                         if (rc < 0) {
4098                                 rc = -rc;
4099                                 for (j = 0; j < i; j++) {
4100                                         if_printf(ifp,
4101                                             "failed to add mc address"
4102                                             " %02x:%02x:%02x:"
4103                                             "%02x:%02x:%02x rc=%d\n",
4104                                             mcaddr[j][0], mcaddr[j][1],
4105                                             mcaddr[j][2], mcaddr[j][3],
4106                                             mcaddr[j][4], mcaddr[j][5],
4107                                             rc);
4108                                 }
4109                                 goto mcfail;
4110                         }
4111                 }
4112
4113                 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0);
4114                 if (rc != 0)
4115                         if_printf(ifp, "failed to set mc address hash: %d", rc);
4116 mcfail:
4117                 if_maddr_runlock(ifp);
4118         }
4119
4120         return (rc);
4121 }
4122
4123 /*
4124  * {begin|end}_synchronized_op must be called from the same thread.
4125  */
4126 int
4127 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
4128     char *wmesg)
4129 {
4130         int rc, pri;
4131
4132 #ifdef WITNESS
4133         /* the caller thinks it's ok to sleep, but is it really? */
4134         if (flags & SLEEP_OK)
4135                 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
4136                     "begin_synchronized_op");
4137 #endif
4138
4139         if (INTR_OK)
4140                 pri = PCATCH;
4141         else
4142                 pri = 0;
4143
4144         ADAPTER_LOCK(sc);
4145         for (;;) {
4146
4147                 if (vi && IS_DOOMED(vi)) {
4148                         rc = ENXIO;
4149                         goto done;
4150                 }
4151
4152                 if (!IS_BUSY(sc)) {
4153                         rc = 0;
4154                         break;
4155                 }
4156
4157                 if (!(flags & SLEEP_OK)) {
4158                         rc = EBUSY;
4159                         goto done;
4160                 }
4161
4162                 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
4163                         rc = EINTR;
4164                         goto done;
4165                 }
4166         }
4167
4168         KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
4169         SET_BUSY(sc);
4170 #ifdef INVARIANTS
4171         sc->last_op = wmesg;
4172         sc->last_op_thr = curthread;
4173         sc->last_op_flags = flags;
4174 #endif
4175
4176 done:
4177         if (!(flags & HOLD_LOCK) || rc)
4178                 ADAPTER_UNLOCK(sc);
4179
4180         return (rc);
4181 }
4182
4183 /*
4184  * Tell if_ioctl and if_init that the VI is going away.  This is
4185  * special variant of begin_synchronized_op and must be paired with a
4186  * call to end_synchronized_op.
4187  */
4188 void
4189 doom_vi(struct adapter *sc, struct vi_info *vi)
4190 {
4191
4192         ADAPTER_LOCK(sc);
4193         SET_DOOMED(vi);
4194         wakeup(&sc->flags);
4195         while (IS_BUSY(sc))
4196                 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
4197         SET_BUSY(sc);
4198 #ifdef INVARIANTS
4199         sc->last_op = "t4detach";
4200         sc->last_op_thr = curthread;
4201         sc->last_op_flags = 0;
4202 #endif
4203         ADAPTER_UNLOCK(sc);
4204 }
4205
4206 /*
4207  * {begin|end}_synchronized_op must be called from the same thread.
4208  */
4209 void
4210 end_synchronized_op(struct adapter *sc, int flags)
4211 {
4212
4213         if (flags & LOCK_HELD)
4214                 ADAPTER_LOCK_ASSERT_OWNED(sc);
4215         else
4216                 ADAPTER_LOCK(sc);
4217
4218         KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
4219         CLR_BUSY(sc);
4220         wakeup(&sc->flags);
4221         ADAPTER_UNLOCK(sc);
4222 }
4223
4224 static int
4225 cxgbe_init_synchronized(struct vi_info *vi)
4226 {
4227         struct port_info *pi = vi->pi;
4228         struct adapter *sc = pi->adapter;
4229         struct ifnet *ifp = vi->ifp;
4230         int rc = 0, i;
4231         struct sge_txq *txq;
4232
4233         ASSERT_SYNCHRONIZED_OP(sc);
4234
4235         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4236                 return (0);     /* already running */
4237
4238         if (!(sc->flags & FULL_INIT_DONE) &&
4239             ((rc = adapter_full_init(sc)) != 0))
4240                 return (rc);    /* error message displayed already */
4241
4242         if (!(vi->flags & VI_INIT_DONE) &&
4243             ((rc = vi_full_init(vi)) != 0))
4244                 return (rc); /* error message displayed already */
4245
4246         rc = update_mac_settings(ifp, XGMAC_ALL);
4247         if (rc)
4248                 goto done;      /* error message displayed already */
4249
4250         rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
4251         if (rc != 0) {
4252                 if_printf(ifp, "enable_vi failed: %d\n", rc);
4253                 goto done;
4254         }
4255
4256         /*
4257          * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
4258          * if this changes.
4259          */
4260
4261         for_each_txq(vi, i, txq) {
4262                 TXQ_LOCK(txq);
4263                 txq->eq.flags |= EQ_ENABLED;
4264                 TXQ_UNLOCK(txq);
4265         }
4266
4267         /*
4268          * The first iq of the first port to come up is used for tracing.
4269          */
4270         if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
4271                 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
4272                 t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
4273                     A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
4274                     V_QUEUENUMBER(sc->traceq));
4275                 pi->flags |= HAS_TRACEQ;
4276         }
4277
4278         /* all ok */
4279         PORT_LOCK(pi);
4280         if (pi->up_vis++ == 0) {
4281                 t4_update_port_info(pi);
4282                 build_medialist(pi, &pi->media);
4283                 init_l1cfg(pi);
4284         }
4285         ifp->if_drv_flags |= IFF_DRV_RUNNING;
4286
4287         if (pi->nvi > 1 || sc->flags & IS_VF)
4288                 callout_reset(&vi->tick, hz, vi_tick, vi);
4289         else
4290                 callout_reset(&pi->tick, hz, cxgbe_tick, pi);
4291         PORT_UNLOCK(pi);
4292 done:
4293         if (rc != 0)
4294                 cxgbe_uninit_synchronized(vi);
4295
4296         return (rc);
4297 }
4298
4299 /*
4300  * Idempotent.
4301  */
4302 static int
4303 cxgbe_uninit_synchronized(struct vi_info *vi)
4304 {
4305         struct port_info *pi = vi->pi;
4306         struct adapter *sc = pi->adapter;
4307         struct ifnet *ifp = vi->ifp;
4308         int rc, i;
4309         struct sge_txq *txq;
4310
4311         ASSERT_SYNCHRONIZED_OP(sc);
4312
4313         if (!(vi->flags & VI_INIT_DONE)) {
4314                 KASSERT(!(ifp->if_drv_flags & IFF_DRV_RUNNING),
4315                     ("uninited VI is running"));
4316                 return (0);
4317         }
4318
4319         /*
4320          * Disable the VI so that all its data in either direction is discarded
4321          * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
4322          * tick) intact as the TP can deliver negative advice or data that it's
4323          * holding in its RAM (for an offloaded connection) even after the VI is
4324          * disabled.
4325          */
4326         rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
4327         if (rc) {
4328                 if_printf(ifp, "disable_vi failed: %d\n", rc);
4329                 return (rc);
4330         }
4331
4332         for_each_txq(vi, i, txq) {
4333                 TXQ_LOCK(txq);
4334                 txq->eq.flags &= ~EQ_ENABLED;
4335                 TXQ_UNLOCK(txq);
4336         }
4337
4338         PORT_LOCK(pi);
4339         if (pi->nvi > 1 || sc->flags & IS_VF)
4340                 callout_stop(&vi->tick);
4341         else
4342                 callout_stop(&pi->tick);
4343         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4344                 PORT_UNLOCK(pi);
4345                 return (0);
4346         }
4347         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4348         pi->up_vis--;
4349         if (pi->up_vis > 0) {
4350                 PORT_UNLOCK(pi);
4351                 return (0);
4352         }
4353         PORT_UNLOCK(pi);
4354
4355         pi->link_cfg.link_ok = 0;
4356         pi->link_cfg.speed = 0;
4357         pi->link_cfg.link_down_rc = 255;
4358         t4_os_link_changed(pi);
4359         pi->old_link_cfg = pi->link_cfg;
4360
4361         return (0);
4362 }
4363
4364 /*
4365  * It is ok for this function to fail midway and return right away.  t4_detach
4366  * will walk the entire sc->irq list and clean up whatever is valid.
4367  */
4368 int
4369 t4_setup_intr_handlers(struct adapter *sc)
4370 {
4371         int rc, rid, p, q, v;
4372         char s[8];
4373         struct irq *irq;
4374         struct port_info *pi;
4375         struct vi_info *vi;
4376         struct sge *sge = &sc->sge;
4377         struct sge_rxq *rxq;
4378 #ifdef TCP_OFFLOAD
4379         struct sge_ofld_rxq *ofld_rxq;
4380 #endif
4381 #ifdef DEV_NETMAP
4382         struct sge_nm_rxq *nm_rxq;
4383 #endif
4384 #ifdef RSS
4385         int nbuckets = rss_getnumbuckets();
4386 #endif
4387
4388         /*
4389          * Setup interrupts.
4390          */
4391         irq = &sc->irq[0];
4392         rid = sc->intr_type == INTR_INTX ? 0 : 1;
4393         if (forwarding_intr_to_fwq(sc))
4394                 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
4395
4396         /* Multiple interrupts. */
4397         if (sc->flags & IS_VF)
4398                 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
4399                     ("%s: too few intr.", __func__));
4400         else
4401                 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
4402                     ("%s: too few intr.", __func__));
4403
4404         /* The first one is always error intr on PFs */
4405         if (!(sc->flags & IS_VF)) {
4406                 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
4407                 if (rc != 0)
4408                         return (rc);
4409                 irq++;
4410                 rid++;
4411         }
4412
4413         /* The second one is always the firmware event queue (first on VFs) */
4414         rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
4415         if (rc != 0)
4416                 return (rc);
4417         irq++;
4418         rid++;
4419
4420         for_each_port(sc, p) {
4421                 pi = sc->port[p];
4422                 for_each_vi(pi, v, vi) {
4423                         vi->first_intr = rid - 1;
4424
4425                         if (vi->nnmrxq > 0) {
4426                                 int n = max(vi->nrxq, vi->nnmrxq);
4427
4428                                 rxq = &sge->rxq[vi->first_rxq];
4429 #ifdef DEV_NETMAP
4430                                 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
4431 #endif
4432                                 for (q = 0; q < n; q++) {
4433                                         snprintf(s, sizeof(s), "%x%c%x", p,
4434                                             'a' + v, q);
4435                                         if (q < vi->nrxq)
4436                                                 irq->rxq = rxq++;
4437 #ifdef DEV_NETMAP
4438                                         if (q < vi->nnmrxq)
4439                                                 irq->nm_rxq = nm_rxq++;
4440 #endif
4441                                         rc = t4_alloc_irq(sc, irq, rid,
4442                                             t4_vi_intr, irq, s);
4443                                         if (rc != 0)
4444                                                 return (rc);
4445 #ifdef RSS
4446                                         if (q < vi->nrxq) {
4447                                                 bus_bind_intr(sc->dev, irq->res,
4448                                                     rss_getcpu(q % nbuckets));
4449                                         }
4450 #endif
4451                                         irq++;
4452                                         rid++;
4453                                         vi->nintr++;
4454                                 }
4455                         } else {
4456                                 for_each_rxq(vi, q, rxq) {
4457                                         snprintf(s, sizeof(s), "%x%c%x", p,
4458                                             'a' + v, q);
4459                                         rc = t4_alloc_irq(sc, irq, rid,
4460                                             t4_intr, rxq, s);
4461                                         if (rc != 0)
4462                                                 return (rc);
4463 #ifdef RSS
4464                                         bus_bind_intr(sc->dev, irq->res,
4465                                             rss_getcpu(q % nbuckets));
4466 #endif
4467                                         irq++;
4468                                         rid++;
4469                                         vi->nintr++;
4470                                 }
4471                         }
4472 #ifdef TCP_OFFLOAD
4473                         for_each_ofld_rxq(vi, q, ofld_rxq) {
4474                                 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
4475                                 rc = t4_alloc_irq(sc, irq, rid, t4_intr,
4476                                     ofld_rxq, s);
4477                                 if (rc != 0)
4478                                         return (rc);
4479                                 irq++;
4480                                 rid++;
4481                                 vi->nintr++;
4482                         }
4483 #endif
4484                 }
4485         }
4486         MPASS(irq == &sc->irq[sc->intr_count]);
4487
4488         return (0);
4489 }
4490
4491 int
4492 adapter_full_init(struct adapter *sc)
4493 {
4494         int rc, i;
4495 #ifdef RSS
4496         uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
4497         uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
4498 #endif
4499
4500         ASSERT_SYNCHRONIZED_OP(sc);
4501         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
4502         KASSERT((sc->flags & FULL_INIT_DONE) == 0,
4503             ("%s: FULL_INIT_DONE already", __func__));
4504
4505         /*
4506          * queues that belong to the adapter (not any particular port).
4507          */
4508         rc = t4_setup_adapter_queues(sc);
4509         if (rc != 0)
4510                 goto done;
4511
4512         for (i = 0; i < nitems(sc->tq); i++) {
4513                 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
4514                     taskqueue_thread_enqueue, &sc->tq[i]);
4515                 if (sc->tq[i] == NULL) {
4516                         device_printf(sc->dev,
4517                             "failed to allocate task queue %d\n", i);
4518                         rc = ENOMEM;
4519                         goto done;
4520                 }
4521                 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
4522                     device_get_nameunit(sc->dev), i);
4523         }
4524 #ifdef RSS
4525         MPASS(RSS_KEYSIZE == 40);
4526         rss_getkey((void *)&raw_rss_key[0]);
4527         for (i = 0; i < nitems(rss_key); i++) {
4528                 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
4529         }
4530         t4_write_rss_key(sc, &rss_key[0], -1, 1);
4531 #endif
4532
4533         if (!(sc->flags & IS_VF))
4534                 t4_intr_enable(sc);
4535         sc->flags |= FULL_INIT_DONE;
4536 done:
4537         if (rc != 0)
4538                 adapter_full_uninit(sc);
4539
4540         return (rc);
4541 }
4542
4543 int
4544 adapter_full_uninit(struct adapter *sc)
4545 {
4546         int i;
4547
4548         ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
4549
4550         t4_teardown_adapter_queues(sc);
4551
4552         for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
4553                 taskqueue_free(sc->tq[i]);
4554                 sc->tq[i] = NULL;
4555         }
4556
4557         sc->flags &= ~FULL_INIT_DONE;
4558
4559         return (0);
4560 }
4561
4562 #ifdef RSS
4563 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
4564     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
4565     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
4566     RSS_HASHTYPE_RSS_UDP_IPV6)
4567
4568 /* Translates kernel hash types to hardware. */
4569 static int
4570 hashconfig_to_hashen(int hashconfig)
4571 {
4572         int hashen = 0;
4573
4574         if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
4575                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
4576         if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
4577                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
4578         if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
4579                 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
4580                     F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
4581         }
4582         if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
4583                 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
4584                     F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
4585         }
4586         if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
4587                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
4588         if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
4589                 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
4590
4591         return (hashen);
4592 }
4593
4594 /* Translates hardware hash types to kernel. */
4595 static int
4596 hashen_to_hashconfig(int hashen)
4597 {
4598         int hashconfig = 0;
4599
4600         if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
4601                 /*
4602                  * If UDP hashing was enabled it must have been enabled for
4603                  * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
4604                  * enabling any 4-tuple hash is nonsense configuration.
4605                  */
4606                 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
4607                     F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
4608
4609                 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
4610                         hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
4611                 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
4612                         hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
4613         }
4614         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
4615                 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
4616         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
4617                 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
4618         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
4619                 hashconfig |= RSS_HASHTYPE_RSS_IPV4;
4620         if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
4621                 hashconfig |= RSS_HASHTYPE_RSS_IPV6;
4622
4623         return (hashconfig);
4624 }
4625 #endif
4626
4627 int
4628 vi_full_init(struct vi_info *vi)
4629 {
4630         struct adapter *sc = vi->pi->adapter;
4631         struct ifnet *ifp = vi->ifp;
4632         uint16_t *rss;
4633         struct sge_rxq *rxq;
4634         int rc, i, j, hashen;
4635 #ifdef RSS
4636         int nbuckets = rss_getnumbuckets();
4637         int hashconfig = rss_gethashconfig();
4638         int extra;
4639 #endif
4640
4641         ASSERT_SYNCHRONIZED_OP(sc);
4642         KASSERT((vi->flags & VI_INIT_DONE) == 0,
4643             ("%s: VI_INIT_DONE already", __func__));
4644
4645         sysctl_ctx_init(&vi->ctx);
4646         vi->flags |= VI_SYSCTL_CTX;
4647
4648         /*
4649          * Allocate tx/rx/fl queues for this VI.
4650          */
4651         rc = t4_setup_vi_queues(vi);
4652         if (rc != 0)
4653                 goto done;      /* error message displayed already */
4654
4655         /*
4656          * Setup RSS for this VI.  Save a copy of the RSS table for later use.
4657          */
4658         if (vi->nrxq > vi->rss_size) {
4659                 if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); "
4660                     "some queues will never receive traffic.\n", vi->nrxq,
4661                     vi->rss_size);
4662         } else if (vi->rss_size % vi->nrxq) {
4663                 if_printf(ifp, "nrxq (%d), hw RSS table size (%d); "
4664                     "expect uneven traffic distribution.\n", vi->nrxq,
4665                     vi->rss_size);
4666         }
4667 #ifdef RSS
4668         if (vi->nrxq != nbuckets) {
4669                 if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);"
4670                     "performance will be impacted.\n", vi->nrxq, nbuckets);
4671         }
4672 #endif
4673         rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK);
4674         for (i = 0; i < vi->rss_size;) {
4675 #ifdef RSS
4676                 j = rss_get_indirection_to_bucket(i);
4677                 j %= vi->nrxq;
4678                 rxq = &sc->sge.rxq[vi->first_rxq + j];
4679                 rss[i++] = rxq->iq.abs_id;
4680 #else
4681                 for_each_rxq(vi, j, rxq) {
4682                         rss[i++] = rxq->iq.abs_id;
4683                         if (i == vi->rss_size)
4684                                 break;
4685                 }
4686 #endif
4687         }
4688
4689         rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss,
4690             vi->rss_size);
4691         if (rc != 0) {
4692                 if_printf(ifp, "rss_config failed: %d\n", rc);
4693                 goto done;
4694         }
4695
4696 #ifdef RSS
4697         hashen = hashconfig_to_hashen(hashconfig);
4698
4699         /*
4700          * We may have had to enable some hashes even though the global config
4701          * wants them disabled.  This is a potential problem that must be
4702          * reported to the user.
4703          */
4704         extra = hashen_to_hashconfig(hashen) ^ hashconfig;
4705
4706         /*
4707          * If we consider only the supported hash types, then the enabled hashes
4708          * are a superset of the requested hashes.  In other words, there cannot
4709          * be any supported hash that was requested but not enabled, but there
4710          * can be hashes that were not requested but had to be enabled.
4711          */
4712         extra &= SUPPORTED_RSS_HASHTYPES;
4713         MPASS((extra & hashconfig) == 0);
4714
4715         if (extra) {
4716                 if_printf(ifp,
4717                     "global RSS config (0x%x) cannot be accommodated.\n",
4718                     hashconfig);
4719         }
4720         if (extra & RSS_HASHTYPE_RSS_IPV4)
4721                 if_printf(ifp, "IPv4 2-tuple hashing forced on.\n");
4722         if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
4723                 if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n");
4724         if (extra & RSS_HASHTYPE_RSS_IPV6)
4725                 if_printf(ifp, "IPv6 2-tuple hashing forced on.\n");
4726         if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
4727                 if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n");
4728         if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
4729                 if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n");
4730         if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
4731                 if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n");
4732 #else
4733         hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
4734             F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
4735             F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
4736             F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
4737 #endif
4738         rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, hashen, rss[0], 0, 0);
4739         if (rc != 0) {
4740                 if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc);
4741                 goto done;
4742         }
4743
4744         vi->rss = rss;
4745         vi->flags |= VI_INIT_DONE;
4746 done:
4747         if (rc != 0)
4748                 vi_full_uninit(vi);
4749
4750         return (rc);
4751 }
4752
4753 /*
4754  * Idempotent.
4755  */
4756 int
4757 vi_full_uninit(struct vi_info *vi)
4758 {
4759         struct port_info *pi = vi->pi;
4760         struct adapter *sc = pi->adapter;
4761         int i;
4762         struct sge_rxq *rxq;
4763         struct sge_txq *txq;
4764 #ifdef TCP_OFFLOAD
4765         struct sge_ofld_rxq *ofld_rxq;
4766         struct sge_wrq *ofld_txq;
4767 #endif
4768
4769         if (vi->flags & VI_INIT_DONE) {
4770
4771                 /* Need to quiesce queues.  */
4772
4773                 /* XXX: Only for the first VI? */
4774                 if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
4775                         quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
4776
4777                 for_each_txq(vi, i, txq) {
4778                         quiesce_txq(sc, txq);
4779                 }
4780
4781 #ifdef TCP_OFFLOAD
4782                 for_each_ofld_txq(vi, i, ofld_txq) {
4783                         quiesce_wrq(sc, ofld_txq);
4784                 }
4785 #endif
4786
4787                 for_each_rxq(vi, i, rxq) {
4788                         quiesce_iq(sc, &rxq->iq);
4789                         quiesce_fl(sc, &rxq->fl);
4790                 }
4791
4792 #ifdef TCP_OFFLOAD
4793                 for_each_ofld_rxq(vi, i, ofld_rxq) {
4794                         quiesce_iq(sc, &ofld_rxq->iq);
4795                         quiesce_fl(sc, &ofld_rxq->fl);
4796                 }
4797 #endif
4798                 free(vi->rss, M_CXGBE);
4799                 free(vi->nm_rss, M_CXGBE);
4800         }
4801
4802         t4_teardown_vi_queues(vi);
4803         vi->flags &= ~VI_INIT_DONE;
4804
4805         return (0);
4806 }
4807
4808 static void
4809 quiesce_txq(struct adapter *sc, struct sge_txq *txq)
4810 {
4811         struct sge_eq *eq = &txq->eq;
4812         struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4813
4814         (void) sc;      /* unused */
4815
4816 #ifdef INVARIANTS
4817         TXQ_LOCK(txq);
4818         MPASS((eq->flags & EQ_ENABLED) == 0);
4819         TXQ_UNLOCK(txq);
4820 #endif
4821
4822         /* Wait for the mp_ring to empty. */
4823         while (!mp_ring_is_idle(txq->r)) {
4824                 mp_ring_check_drainage(txq->r, 0);
4825                 pause("rquiesce", 1);
4826         }
4827
4828         /* Then wait for the hardware to finish. */
4829         while (spg->cidx != htobe16(eq->pidx))
4830                 pause("equiesce", 1);
4831
4832         /* Finally, wait for the driver to reclaim all descriptors. */
4833         while (eq->cidx != eq->pidx)
4834                 pause("dquiesce", 1);
4835 }
4836
4837 static void
4838 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq)
4839 {
4840
4841         /* XXXTX */
4842 }
4843
4844 static void
4845 quiesce_iq(struct adapter *sc, struct sge_iq *iq)
4846 {
4847         (void) sc;      /* unused */
4848
4849         /* Synchronize with the interrupt handler */
4850         while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
4851                 pause("iqfree", 1);
4852 }
4853
4854 static void
4855 quiesce_fl(struct adapter *sc, struct sge_fl *fl)
4856 {
4857         mtx_lock(&sc->sfl_lock);
4858         FL_LOCK(fl);
4859         fl->flags |= FL_DOOMED;
4860         FL_UNLOCK(fl);
4861         callout_stop(&sc->sfl_callout);
4862         mtx_unlock(&sc->sfl_lock);
4863
4864         KASSERT((fl->flags & FL_STARVING) == 0,
4865             ("%s: still starving", __func__));
4866 }
4867
4868 static int
4869 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
4870     driver_intr_t *handler, void *arg, char *name)
4871 {
4872         int rc;
4873
4874         irq->rid = rid;
4875         irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
4876             RF_SHAREABLE | RF_ACTIVE);
4877         if (irq->res == NULL) {
4878                 device_printf(sc->dev,
4879                     "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
4880                 return (ENOMEM);
4881         }
4882
4883         rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
4884             NULL, handler, arg, &irq->tag);
4885         if (rc != 0) {
4886                 device_printf(sc->dev,
4887                     "failed to setup interrupt for rid %d, name %s: %d\n",
4888                     rid, name, rc);
4889         } else if (name)
4890                 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
4891
4892         return (rc);
4893 }
4894
4895 static int
4896 t4_free_irq(struct adapter *sc, struct irq *irq)
4897 {
4898         if (irq->tag)
4899                 bus_teardown_intr(sc->dev, irq->res, irq->tag);
4900         if (irq->res)
4901                 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
4902
4903         bzero(irq, sizeof(*irq));
4904
4905         return (0);
4906 }
4907
4908 static void
4909 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
4910 {
4911
4912         regs->version = chip_id(sc) | chip_rev(sc) << 10;
4913         t4_get_regs(sc, buf, regs->len);
4914 }
4915
4916 #define A_PL_INDIR_CMD  0x1f8
4917
4918 #define S_PL_AUTOINC    31
4919 #define M_PL_AUTOINC    0x1U
4920 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
4921 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
4922
4923 #define S_PL_VFID       20
4924 #define M_PL_VFID       0xffU
4925 #define V_PL_VFID(x)    ((x) << S_PL_VFID)
4926 #define G_PL_VFID(x)    (((x) >> S_PL_VFID) & M_PL_VFID)
4927
4928 #define S_PL_ADDR       0
4929 #define M_PL_ADDR       0xfffffU
4930 #define V_PL_ADDR(x)    ((x) << S_PL_ADDR)
4931 #define G_PL_ADDR(x)    (((x) >> S_PL_ADDR) & M_PL_ADDR)
4932
4933 #define A_PL_INDIR_DATA 0x1fc
4934
4935 static uint64_t
4936 read_vf_stat(struct adapter *sc, unsigned int viid, int reg)
4937 {
4938         u32 stats[2];
4939
4940         mtx_assert(&sc->reg_lock, MA_OWNED);
4941         if (sc->flags & IS_VF) {
4942                 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
4943                 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
4944         } else {
4945                 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
4946                     V_PL_VFID(G_FW_VIID_VIN(viid)) |
4947                     V_PL_ADDR(VF_MPS_REG(reg)));
4948                 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
4949                 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
4950         }
4951         return (((uint64_t)stats[1]) << 32 | stats[0]);
4952 }
4953
4954 static void
4955 t4_get_vi_stats(struct adapter *sc, unsigned int viid,
4956     struct fw_vi_stats_vf *stats)
4957 {
4958
4959 #define GET_STAT(name) \
4960         read_vf_stat(sc, viid, A_MPS_VF_STAT_##name##_L)
4961
4962         stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
4963         stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
4964         stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
4965         stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
4966         stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
4967         stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
4968         stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
4969         stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
4970         stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
4971         stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
4972         stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
4973         stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
4974         stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
4975         stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
4976         stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
4977         stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
4978
4979 #undef GET_STAT
4980 }
4981
4982 static void
4983 t4_clr_vi_stats(struct adapter *sc, unsigned int viid)
4984 {
4985         int reg;
4986
4987         t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
4988             V_PL_VFID(G_FW_VIID_VIN(viid)) |
4989             V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
4990         for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
4991              reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
4992                 t4_write_reg(sc, A_PL_INDIR_DATA, 0);
4993 }
4994
4995 static void
4996 vi_refresh_stats(struct adapter *sc, struct vi_info *vi)
4997 {
4998         struct timeval tv;
4999         const struct timeval interval = {0, 250000};    /* 250ms */
5000
5001         if (!(vi->flags & VI_INIT_DONE))
5002                 return;
5003
5004         getmicrotime(&tv);
5005         timevalsub(&tv, &interval);
5006         if (timevalcmp(&tv, &vi->last_refreshed, <))
5007                 return;
5008
5009         mtx_lock(&sc->reg_lock);
5010         t4_get_vi_stats(sc, vi->viid, &vi->stats);
5011         getmicrotime(&vi->last_refreshed);
5012         mtx_unlock(&sc->reg_lock);
5013 }
5014
5015 static void
5016 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi)
5017 {
5018         u_int i, v, tnl_cong_drops, bg_map;
5019         struct timeval tv;
5020         const struct timeval interval = {0, 250000};    /* 250ms */
5021
5022         getmicrotime(&tv);
5023         timevalsub(&tv, &interval);
5024         if (timevalcmp(&tv, &pi->last_refreshed, <))
5025                 return;
5026
5027         tnl_cong_drops = 0;
5028         t4_get_port_stats(sc, pi->tx_chan, &pi->stats);
5029         bg_map = pi->mps_bg_map;
5030         while (bg_map) {
5031                 i = ffs(bg_map) - 1;
5032                 mtx_lock(&sc->reg_lock);
5033                 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
5034                     A_TP_MIB_TNL_CNG_DROP_0 + i);
5035                 mtx_unlock(&sc->reg_lock);
5036                 tnl_cong_drops += v;
5037                 bg_map &= ~(1 << i);
5038         }
5039         pi->tnl_cong_drops = tnl_cong_drops;
5040         getmicrotime(&pi->last_refreshed);
5041 }
5042
5043 static void
5044 cxgbe_tick(void *arg)
5045 {
5046         struct port_info *pi = arg;
5047         struct adapter *sc = pi->adapter;
5048
5049         PORT_LOCK_ASSERT_OWNED(pi);
5050         cxgbe_refresh_stats(sc, pi);
5051
5052         callout_schedule(&pi->tick, hz);
5053 }
5054
5055 void
5056 vi_tick(void *arg)
5057 {
5058         struct vi_info *vi = arg;
5059         struct adapter *sc = vi->pi->adapter;
5060
5061         vi_refresh_stats(sc, vi);
5062
5063         callout_schedule(&vi->tick, hz);
5064 }
5065
5066 static void
5067 cxgbe_vlan_config(void *arg, struct ifnet *ifp, uint16_t vid)
5068 {
5069         struct ifnet *vlan;
5070
5071         if (arg != ifp || ifp->if_type != IFT_ETHER)
5072                 return;
5073
5074         vlan = VLAN_DEVAT(ifp, vid);
5075         VLAN_SETCOOKIE(vlan, ifp);
5076 }
5077
5078 /*
5079  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
5080  */
5081 static char *caps_decoder[] = {
5082         "\20\001IPMI\002NCSI",                          /* 0: NBM */
5083         "\20\001PPP\002QFC\003DCBX",                    /* 1: link */
5084         "\20\001INGRESS\002EGRESS",                     /* 2: switch */
5085         "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"      /* 3: NIC */
5086             "\006HASHFILTER\007ETHOFLD",
5087         "\20\001TOE",                                   /* 4: TOE */
5088         "\20\001RDDP\002RDMAC",                         /* 5: RDMA */
5089         "\20\001INITIATOR_PDU\002TARGET_PDU"            /* 6: iSCSI */
5090             "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
5091             "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
5092             "\007T10DIF"
5093             "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
5094         "\20\001LOOKASIDE\002TLSKEYS",                  /* 7: Crypto */
5095         "\20\001INITIATOR\002TARGET\003CTRL_OFLD"       /* 8: FCoE */
5096                     "\004PO_INITIATOR\005PO_TARGET",
5097 };
5098
5099 void
5100 t4_sysctls(struct adapter *sc)
5101 {
5102         struct sysctl_ctx_list *ctx;
5103         struct sysctl_oid *oid;
5104         struct sysctl_oid_list *children, *c0;
5105         static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
5106
5107         ctx = device_get_sysctl_ctx(sc->dev);
5108
5109         /*
5110          * dev.t4nex.X.
5111          */
5112         oid = device_get_sysctl_tree(sc->dev);
5113         c0 = children = SYSCTL_CHILDREN(oid);
5114
5115         sc->sc_do_rxcopy = 1;
5116         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
5117             &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
5118
5119         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
5120             sc->params.nports, "# of ports");
5121
5122         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
5123             CTLTYPE_STRING | CTLFLAG_RD, doorbells, sc->doorbells,
5124             sysctl_bitfield, "A", "available doorbells");
5125
5126         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
5127             sc->params.vpd.cclk, "core clock frequency (in KHz)");
5128
5129         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
5130             CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val,
5131             sizeof(sc->params.sge.timer_val), sysctl_int_array, "A",
5132             "interrupt holdoff timer values (us)");
5133
5134         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
5135             CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val,
5136             sizeof(sc->params.sge.counter_val), sysctl_int_array, "A",
5137             "interrupt holdoff packet counter values");
5138
5139         t4_sge_sysctls(sc, ctx, children);
5140
5141         sc->lro_timeout = 100;
5142         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
5143             &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
5144
5145         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
5146             &sc->debug_flags, 0, "flags to enable runtime debugging");
5147
5148         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
5149             CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
5150
5151         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
5152             CTLFLAG_RD, sc->fw_version, 0, "firmware version");
5153
5154         if (sc->flags & IS_VF)
5155                 return;
5156
5157         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
5158             NULL, chip_rev(sc), "chip hardware revision");
5159
5160         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
5161             CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
5162
5163         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
5164             CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
5165
5166         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
5167             CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
5168
5169         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
5170             CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
5171
5172         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
5173             CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
5174
5175         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
5176             sc->er_version, 0, "expansion ROM version");
5177
5178         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
5179             sc->bs_version, 0, "bootstrap firmware version");
5180
5181         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
5182             NULL, sc->params.scfg_vers, "serial config version");
5183
5184         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
5185             NULL, sc->params.vpd_vers, "VPD version");
5186
5187         SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
5188             CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
5189
5190         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
5191             sc->cfcsum, "config file checksum");
5192
5193 #define SYSCTL_CAP(name, n, text) \
5194         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
5195             CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], sc->name, \
5196             sysctl_bitfield, "A", "available " text " capabilities")
5197
5198         SYSCTL_CAP(nbmcaps, 0, "NBM");
5199         SYSCTL_CAP(linkcaps, 1, "link");
5200         SYSCTL_CAP(switchcaps, 2, "switch");
5201         SYSCTL_CAP(niccaps, 3, "NIC");
5202         SYSCTL_CAP(toecaps, 4, "TCP offload");
5203         SYSCTL_CAP(rdmacaps, 5, "RDMA");
5204         SYSCTL_CAP(iscsicaps, 6, "iSCSI");
5205         SYSCTL_CAP(cryptocaps, 7, "crypto");
5206         SYSCTL_CAP(fcoecaps, 8, "FCoE");
5207 #undef SYSCTL_CAP
5208
5209         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
5210             NULL, sc->tids.nftids, "number of filters");
5211
5212         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT |
5213             CTLFLAG_RD, sc, 0, sysctl_temperature, "I",
5214             "chip temperature (in Celsius)");
5215
5216         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_vdd", CTLFLAG_RD,
5217             &sc->params.core_vdd, 0, "core Vdd (in mV)");
5218
5219 #ifdef SBUF_DRAIN
5220         /*
5221          * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
5222          */
5223         oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
5224             CTLFLAG_RD | CTLFLAG_SKIP, NULL,
5225             "logs and miscellaneous information");
5226         children = SYSCTL_CHILDREN(oid);
5227
5228         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
5229             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5230             sysctl_cctrl, "A", "congestion control");
5231
5232         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
5233             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5234             sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
5235
5236         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
5237             CTLTYPE_STRING | CTLFLAG_RD, sc, 1,
5238             sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
5239
5240         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
5241             CTLTYPE_STRING | CTLFLAG_RD, sc, 2,
5242             sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
5243
5244         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
5245             CTLTYPE_STRING | CTLFLAG_RD, sc, 3,
5246             sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
5247
5248         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
5249             CTLTYPE_STRING | CTLFLAG_RD, sc, 4,
5250             sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
5251
5252         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
5253             CTLTYPE_STRING | CTLFLAG_RD, sc, 5,
5254             sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
5255
5256         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
5257             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5258             chip_id(sc) <= CHELSIO_T5 ? sysctl_cim_la : sysctl_cim_la_t6,
5259             "A", "CIM logic analyzer");
5260
5261         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
5262             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5263             sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
5264
5265         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
5266             CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ,
5267             sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
5268
5269         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
5270             CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ,
5271             sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
5272
5273         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
5274             CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ,
5275             sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
5276
5277         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
5278             CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ,
5279             sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
5280
5281         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
5282             CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ,
5283             sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
5284
5285         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
5286             CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ,
5287             sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
5288
5289         if (chip_id(sc) > CHELSIO_T4) {
5290                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
5291                     CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ,
5292                     sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)");
5293
5294                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
5295                     CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ,
5296                     sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)");
5297         }
5298
5299         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
5300             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5301             sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
5302
5303         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
5304             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5305             sysctl_cim_qcfg, "A", "CIM queue configuration");
5306
5307         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
5308             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5309             sysctl_cpl_stats, "A", "CPL statistics");
5310
5311         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
5312             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5313             sysctl_ddp_stats, "A", "non-TCP DDP statistics");
5314
5315         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
5316             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5317             sysctl_devlog, "A", "firmware's device log");
5318
5319         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
5320             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5321             sysctl_fcoe_stats, "A", "FCoE statistics");
5322
5323         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
5324             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5325             sysctl_hw_sched, "A", "hardware scheduler ");
5326
5327         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
5328             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5329             sysctl_l2t, "A", "hardware L2 table");
5330
5331         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
5332             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5333             sysctl_lb_stats, "A", "loopback statistics");
5334
5335         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
5336             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5337             sysctl_meminfo, "A", "memory regions");
5338
5339         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
5340             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5341             chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
5342             "A", "MPS TCAM entries");
5343
5344         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
5345             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5346             sysctl_path_mtus, "A", "path MTUs");
5347
5348         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
5349             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5350             sysctl_pm_stats, "A", "PM statistics");
5351
5352         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
5353             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5354             sysctl_rdma_stats, "A", "RDMA statistics");
5355
5356         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
5357             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5358             sysctl_tcp_stats, "A", "TCP statistics");
5359
5360         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
5361             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5362             sysctl_tids, "A", "TID information");
5363
5364         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
5365             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5366             sysctl_tp_err_stats, "A", "TP error statistics");
5367
5368         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
5369             CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I",
5370             "TP logic analyzer event capture mask");
5371
5372         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
5373             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5374             sysctl_tp_la, "A", "TP logic analyzer");
5375
5376         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
5377             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5378             sysctl_tx_rate, "A", "Tx rate");
5379
5380         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
5381             CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5382             sysctl_ulprx_la, "A", "ULPRX logic analyzer");
5383
5384         if (chip_id(sc) >= CHELSIO_T5) {
5385                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
5386                     CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
5387                     sysctl_wcwr_stats, "A", "write combined work requests");
5388         }
5389 #endif
5390
5391 #ifdef TCP_OFFLOAD
5392         if (is_offload(sc)) {
5393                 int i;
5394                 char s[4];
5395
5396                 /*
5397                  * dev.t4nex.X.toe.
5398                  */
5399                 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD,
5400                     NULL, "TOE parameters");
5401                 children = SYSCTL_CHILDREN(oid);
5402
5403                 sc->tt.cong_algorithm = -1;
5404                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
5405                     CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
5406                     "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
5407                     "3 = highspeed)");
5408
5409                 sc->tt.sndbuf = 256 * 1024;
5410                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
5411                     &sc->tt.sndbuf, 0, "max hardware send buffer size");
5412
5413                 sc->tt.ddp = 0;
5414                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW,
5415                     &sc->tt.ddp, 0, "DDP allowed");
5416
5417                 sc->tt.rx_coalesce = 1;
5418                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
5419                     CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
5420
5421                 sc->tt.tx_align = 1;
5422                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
5423                     CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
5424
5425                 sc->tt.tx_zcopy = 0;
5426                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
5427                     CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
5428                     "Enable zero-copy aio_write(2)");
5429
5430                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
5431                     CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A",
5432                     "TP timer tick (us)");
5433
5434                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
5435                     CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A",
5436                     "TCP timestamp tick (us)");
5437
5438                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
5439                     CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A",
5440                     "DACK tick (us)");
5441
5442                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
5443                     CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer,
5444                     "IU", "DACK timer (us)");
5445
5446                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
5447                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN,
5448                     sysctl_tp_timer, "LU", "Minimum retransmit interval (us)");
5449
5450                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
5451                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX,
5452                     sysctl_tp_timer, "LU", "Maximum retransmit interval (us)");
5453
5454                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
5455                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN,
5456                     sysctl_tp_timer, "LU", "Persist timer min (us)");
5457
5458                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
5459                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX,
5460                     sysctl_tp_timer, "LU", "Persist timer max (us)");
5461
5462                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
5463                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE,
5464                     sysctl_tp_timer, "LU", "Keepalive idle timer (us)");
5465
5466                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
5467                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL,
5468                     sysctl_tp_timer, "LU", "Keepalive interval timer (us)");
5469
5470                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
5471                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT,
5472                     sysctl_tp_timer, "LU", "Initial SRTT (us)");
5473
5474                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
5475                     CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER,
5476                     sysctl_tp_timer, "LU", "FINWAIT2 timer (us)");
5477
5478                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
5479                     CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX,
5480                     sysctl_tp_shift_cnt, "IU",
5481                     "Number of SYN retransmissions before abort");
5482
5483                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
5484                     CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2,
5485                     sysctl_tp_shift_cnt, "IU",
5486                     "Number of retransmissions before abort");
5487
5488                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
5489                     CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2,
5490                     sysctl_tp_shift_cnt, "IU",
5491                     "Number of keepalive probes before abort");
5492
5493                 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
5494                     CTLFLAG_RD, NULL, "TOE retransmit backoffs");
5495                 children = SYSCTL_CHILDREN(oid);
5496                 for (i = 0; i < 16; i++) {
5497                         snprintf(s, sizeof(s), "%u", i);
5498                         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
5499                             CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff,
5500                             "IU", "TOE retransmit backoff");
5501                 }
5502         }
5503 #endif
5504 }
5505
5506 void
5507 vi_sysctls(struct vi_info *vi)
5508 {
5509         struct sysctl_ctx_list *ctx;
5510         struct sysctl_oid *oid;
5511         struct sysctl_oid_list *children;
5512
5513         ctx = device_get_sysctl_ctx(vi->dev);
5514
5515         /*
5516          * dev.v?(cxgbe|cxl).X.
5517          */
5518         oid = device_get_sysctl_tree(vi->dev);
5519         children = SYSCTL_CHILDREN(oid);
5520
5521         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
5522             vi->viid, "VI identifer");
5523         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
5524             &vi->nrxq, 0, "# of rx queues");
5525         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
5526             &vi->ntxq, 0, "# of tx queues");
5527         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
5528             &vi->first_rxq, 0, "index of first rx queue");
5529         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
5530             &vi->first_txq, 0, "index of first tx queue");
5531         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
5532             vi->rss_size, "size of RSS indirection table");
5533
5534         if (IS_MAIN_VI(vi)) {
5535                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
5536                     CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU",
5537                     "Reserve queue 0 for non-flowid packets");
5538         }
5539
5540 #ifdef TCP_OFFLOAD
5541         if (vi->nofldrxq != 0) {
5542                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
5543                     &vi->nofldrxq, 0,
5544                     "# of rx queues for offloaded TCP connections");
5545                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
5546                     &vi->nofldtxq, 0,
5547                     "# of tx queues for offloaded TCP connections");
5548                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
5549                     CTLFLAG_RD, &vi->first_ofld_rxq, 0,
5550                     "index of first TOE rx queue");
5551                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
5552                     CTLFLAG_RD, &vi->first_ofld_txq, 0,
5553                     "index of first TOE tx queue");
5554                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
5555                     CTLTYPE_INT | CTLFLAG_RW, vi, 0,
5556                     sysctl_holdoff_tmr_idx_ofld, "I",
5557                     "holdoff timer index for TOE queues");
5558                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
5559                     CTLTYPE_INT | CTLFLAG_RW, vi, 0,
5560                     sysctl_holdoff_pktc_idx_ofld, "I",
5561                     "holdoff packet counter index for TOE queues");
5562         }
5563 #endif
5564 #ifdef DEV_NETMAP
5565         if (vi->nnmrxq != 0) {
5566                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
5567                     &vi->nnmrxq, 0, "# of netmap rx queues");
5568                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
5569                     &vi->nnmtxq, 0, "# of netmap tx queues");
5570                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
5571                     CTLFLAG_RD, &vi->first_nm_rxq, 0,
5572                     "index of first netmap rx queue");
5573                 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
5574                     CTLFLAG_RD, &vi->first_nm_txq, 0,
5575                     "index of first netmap tx queue");
5576         }
5577 #endif
5578
5579         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
5580             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I",
5581             "holdoff timer index");
5582         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
5583             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I",
5584             "holdoff packet counter index");
5585
5586         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
5587             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I",
5588             "rx queue size");
5589         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
5590             CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I",
5591             "tx queue size");
5592 }
5593
5594 static void
5595 cxgbe_sysctls(struct port_info *pi)
5596 {
5597         struct sysctl_ctx_list *ctx;
5598         struct sysctl_oid *oid;
5599         struct sysctl_oid_list *children, *children2;
5600         struct adapter *sc = pi->adapter;
5601         int i;
5602         char name[16];
5603
5604         ctx = device_get_sysctl_ctx(pi->dev);
5605
5606         /*
5607          * dev.cxgbe.X.
5608          */
5609         oid = device_get_sysctl_tree(pi->dev);
5610         children = SYSCTL_CHILDREN(oid);
5611
5612         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING |
5613            CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down");
5614         if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
5615                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
5616                     CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I",
5617                     "PHY temperature (in Celsius)");
5618                 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
5619                     CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I",
5620                     "PHY firmware version");
5621         }
5622
5623         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
5624             CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A",
5625             "PAUSE settings (bit 0 = rx_pause, bit 1 = tx_pause)");
5626         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec",
5627             CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A",
5628             "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
5629         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
5630             CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I",
5631             "autonegotiation (-1 = not supported)");
5632
5633         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
5634             port_top_speed(pi), "max speed (in Gbps)");
5635         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
5636             pi->mps_bg_map, "MPS buffer group map");
5637         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
5638             NULL, pi->rx_e_chan_map, "TP rx e-channel map");
5639
5640         if (sc->flags & IS_VF)
5641                 return;
5642
5643         /*
5644          * dev.(cxgbe|cxl).X.tc.
5645          */
5646         oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL,
5647             "Tx scheduler traffic classes (cl_rl)");
5648         for (i = 0; i < sc->chip_params->nsched_cls; i++) {
5649                 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
5650
5651                 snprintf(name, sizeof(name), "%d", i);
5652                 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
5653                     SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL,
5654                     "traffic class"));
5655                 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "flags", CTLFLAG_RD,
5656                     &tc->flags, 0, "flags");
5657                 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
5658                     CTLFLAG_RD, &tc->refcount, 0, "references to this class");
5659 #ifdef SBUF_DRAIN
5660                 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
5661                     CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i,
5662                     sysctl_tc_params, "A", "traffic class parameters");
5663 #endif
5664         }
5665
5666         /*
5667          * dev.cxgbe.X.stats.
5668          */
5669         oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
5670             NULL, "port statistics");
5671         children = SYSCTL_CHILDREN(oid);
5672         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
5673             &pi->tx_parse_error, 0,
5674             "# of tx packets with invalid length or # of segments");
5675
5676 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \
5677         SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \
5678             CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \
5679             sysctl_handle_t4_reg64, "QU", desc)
5680
5681         SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames",
5682             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L));
5683         SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames",
5684             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L));
5685         SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames",
5686             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L));
5687         SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames",
5688             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L));
5689         SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames",
5690             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L));
5691         SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames",
5692             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L));
5693         SYSCTL_ADD_T4_REG64(pi, "tx_frames_64",
5694             "# of tx frames in this range",
5695             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L));
5696         SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127",
5697             "# of tx frames in this range",
5698             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L));
5699         SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255",
5700             "# of tx frames in this range",
5701             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L));
5702         SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511",
5703             "# of tx frames in this range",
5704             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L));
5705         SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023",
5706             "# of tx frames in this range",
5707             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L));
5708         SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518",
5709             "# of tx frames in this range",
5710             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L));
5711         SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max",
5712             "# of tx frames in this range",
5713             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L));
5714         SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames",
5715             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L));
5716         SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted",
5717             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L));
5718         SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted",
5719             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L));
5720         SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted",
5721             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L));
5722         SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted",
5723             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L));
5724         SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted",
5725             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L));
5726         SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted",
5727             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L));
5728         SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted",
5729             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L));
5730         SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted",
5731             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L));
5732         SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted",
5733             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L));
5734
5735         SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames",
5736             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L));
5737         SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames",
5738             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L));
5739         SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames",
5740             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L));
5741         SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames",
5742             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L));
5743         SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames",
5744             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L));
5745         SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU",
5746             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L));
5747         SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames",
5748             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L));
5749         SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err",
5750             "# of frames received with bad FCS",
5751             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L));
5752         SYSCTL_ADD_T4_REG64(pi, "rx_len_err",
5753             "# of frames received with length error",
5754             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L));
5755         SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors",
5756             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L));
5757         SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received",
5758             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L));
5759         SYSCTL_ADD_T4_REG64(pi, "rx_frames_64",
5760             "# of rx frames in this range",
5761             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L));
5762         SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127",
5763             "# of rx frames in this range",
5764             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L));
5765         SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255",
5766             "# of rx frames in this range",
5767             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L));
5768         SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511",
5769             "# of rx frames in this range",
5770             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L));
5771         SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023",
5772             "# of rx frames in this range",
5773             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L));
5774         SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518",
5775             "# of rx frames in this range",
5776             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L));
5777         SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max",
5778             "# of rx frames in this range",
5779             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L));
5780         SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received",
5781             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L));
5782         SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received",
5783             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L));
5784         SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received",
5785             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L));
5786         SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received",
5787             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L));
5788         SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received",
5789             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L));
5790         SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received",
5791             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L));
5792         SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received",
5793             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L));
5794         SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received",
5795             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L));
5796         SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received",
5797             PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L));
5798
5799 #undef SYSCTL_ADD_T4_REG64
5800
5801 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \
5802         SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
5803             &pi->stats.name, desc)
5804
5805         /* We get these from port_stats and they may be stale by up to 1s */
5806         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0,
5807             "# drops due to buffer-group 0 overflows");
5808         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1,
5809             "# drops due to buffer-group 1 overflows");
5810         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2,
5811             "# drops due to buffer-group 2 overflows");
5812         SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3,
5813             "# drops due to buffer-group 3 overflows");
5814         SYSCTL_ADD_T4_PORTSTAT(rx_trunc0,
5815             "# of buffer-group 0 truncated packets");
5816         SYSCTL_ADD_T4_PORTSTAT(rx_trunc1,
5817             "# of buffer-group 1 truncated packets");
5818         SYSCTL_ADD_T4_PORTSTAT(rx_trunc2,
5819             "# of buffer-group 2 truncated packets");
5820         SYSCTL_ADD_T4_PORTSTAT(rx_trunc3,
5821             "# of buffer-group 3 truncated packets");
5822
5823 #undef SYSCTL_ADD_T4_PORTSTAT
5824 }
5825
5826 static int
5827 sysctl_int_array(SYSCTL_HANDLER_ARGS)
5828 {
5829         int rc, *i, space = 0;
5830         struct sbuf sb;
5831
5832         sbuf_new_for_sysctl(&sb, NULL, 64, req);
5833         for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
5834                 if (space)
5835                         sbuf_printf(&sb, " ");
5836                 sbuf_printf(&sb, "%d", *i);
5837                 space = 1;
5838         }
5839         rc = sbuf_finish(&sb);
5840         sbuf_delete(&sb);
5841         return (rc);
5842 }
5843
5844 static int
5845 sysctl_bitfield(SYSCTL_HANDLER_ARGS)
5846 {
5847         int rc;
5848         struct sbuf *sb;
5849
5850         rc = sysctl_wire_old_buffer(req, 0);
5851         if (rc != 0)
5852                 return(rc);
5853
5854         sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5855         if (sb == NULL)
5856                 return (ENOMEM);
5857
5858         sbuf_printf(sb, "%b", (int)arg2, (char *)arg1);
5859         rc = sbuf_finish(sb);
5860         sbuf_delete(sb);
5861
5862         return (rc);
5863 }
5864
5865 static int
5866 sysctl_btphy(SYSCTL_HANDLER_ARGS)
5867 {
5868         struct port_info *pi = arg1;
5869         int op = arg2;
5870         struct adapter *sc = pi->adapter;
5871         u_int v;
5872         int rc;
5873
5874         rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
5875         if (rc)
5876                 return (rc);
5877         /* XXX: magic numbers */
5878         rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820,
5879             &v);
5880         end_synchronized_op(sc, 0);
5881         if (rc)
5882                 return (rc);
5883         if (op == 0)
5884                 v /= 256;
5885
5886         rc = sysctl_handle_int(oidp, &v, 0, req);
5887         return (rc);
5888 }
5889
5890 static int
5891 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
5892 {
5893         struct vi_info *vi = arg1;
5894         int rc, val;
5895
5896         val = vi->rsrv_noflowq;
5897         rc = sysctl_handle_int(oidp, &val, 0, req);
5898         if (rc != 0 || req->newptr == NULL)
5899                 return (rc);
5900
5901         if ((val >= 1) && (vi->ntxq > 1))
5902                 vi->rsrv_noflowq = 1;
5903         else
5904                 vi->rsrv_noflowq = 0;
5905
5906         return (rc);
5907 }
5908
5909 static int
5910 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
5911 {
5912         struct vi_info *vi = arg1;
5913         struct adapter *sc = vi->pi->adapter;
5914         int idx, rc, i;
5915         struct sge_rxq *rxq;
5916         uint8_t v;
5917
5918         idx = vi->tmr_idx;
5919
5920         rc = sysctl_handle_int(oidp, &idx, 0, req);
5921         if (rc != 0 || req->newptr == NULL)
5922                 return (rc);
5923
5924         if (idx < 0 || idx >= SGE_NTIMERS)
5925                 return (EINVAL);
5926
5927         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
5928             "t4tmr");
5929         if (rc)
5930                 return (rc);
5931
5932         v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
5933         for_each_rxq(vi, i, rxq) {
5934 #ifdef atomic_store_rel_8
5935                 atomic_store_rel_8(&rxq->iq.intr_params, v);
5936 #else
5937                 rxq->iq.intr_params = v;
5938 #endif
5939         }
5940         vi->tmr_idx = idx;
5941
5942         end_synchronized_op(sc, LOCK_HELD);
5943         return (0);
5944 }
5945
5946 static int
5947 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
5948 {
5949         struct vi_info *vi = arg1;
5950         struct adapter *sc = vi->pi->adapter;
5951         int idx, rc;
5952
5953         idx = vi->pktc_idx;
5954
5955         rc = sysctl_handle_int(oidp, &idx, 0, req);
5956         if (rc != 0 || req->newptr == NULL)
5957                 return (rc);
5958
5959         if (idx < -1 || idx >= SGE_NCOUNTERS)
5960                 return (EINVAL);
5961
5962         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
5963             "t4pktc");
5964         if (rc)
5965                 return (rc);
5966
5967         if (vi->flags & VI_INIT_DONE)
5968                 rc = EBUSY; /* cannot be changed once the queues are created */
5969         else
5970                 vi->pktc_idx = idx;
5971
5972         end_synchronized_op(sc, LOCK_HELD);
5973         return (rc);
5974 }
5975
5976 static int
5977 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
5978 {
5979         struct vi_info *vi = arg1;
5980         struct adapter *sc = vi->pi->adapter;
5981         int qsize, rc;
5982
5983         qsize = vi->qsize_rxq;
5984
5985         rc = sysctl_handle_int(oidp, &qsize, 0, req);
5986         if (rc != 0 || req->newptr == NULL)
5987                 return (rc);
5988
5989         if (qsize < 128 || (qsize & 7))
5990                 return (EINVAL);
5991
5992         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
5993             "t4rxqs");
5994         if (rc)
5995                 return (rc);
5996
5997         if (vi->flags & VI_INIT_DONE)
5998                 rc = EBUSY; /* cannot be changed once the queues are created */
5999         else
6000                 vi->qsize_rxq = qsize;
6001
6002         end_synchronized_op(sc, LOCK_HELD);
6003         return (rc);
6004 }
6005
6006 static int
6007 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
6008 {
6009         struct vi_info *vi = arg1;
6010         struct adapter *sc = vi->pi->adapter;
6011         int qsize, rc;
6012
6013         qsize = vi->qsize_txq;
6014
6015         rc = sysctl_handle_int(oidp, &qsize, 0, req);
6016         if (rc != 0 || req->newptr == NULL)
6017                 return (rc);
6018
6019         if (qsize < 128 || qsize > 65536)
6020                 return (EINVAL);
6021
6022         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6023             "t4txqs");
6024         if (rc)
6025                 return (rc);
6026
6027         if (vi->flags & VI_INIT_DONE)
6028                 rc = EBUSY; /* cannot be changed once the queues are created */
6029         else
6030                 vi->qsize_txq = qsize;
6031
6032         end_synchronized_op(sc, LOCK_HELD);
6033         return (rc);
6034 }
6035
6036 static int
6037 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
6038 {
6039         struct port_info *pi = arg1;
6040         struct adapter *sc = pi->adapter;
6041         struct link_config *lc = &pi->link_cfg;
6042         int rc;
6043
6044         if (req->newptr == NULL) {
6045                 struct sbuf *sb;
6046                 static char *bits = "\20\1PAUSE_RX\2PAUSE_TX";
6047
6048                 rc = sysctl_wire_old_buffer(req, 0);
6049                 if (rc != 0)
6050                         return(rc);
6051
6052                 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6053                 if (sb == NULL)
6054                         return (ENOMEM);
6055
6056                 sbuf_printf(sb, "%b", lc->fc & (PAUSE_TX | PAUSE_RX), bits);
6057                 rc = sbuf_finish(sb);
6058                 sbuf_delete(sb);
6059         } else {
6060                 char s[2];
6061                 int n;
6062
6063                 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX));
6064                 s[1] = 0;
6065
6066                 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
6067                 if (rc != 0)
6068                         return(rc);
6069
6070                 if (s[1] != 0)
6071                         return (EINVAL);
6072                 if (s[0] < '0' || s[0] > '9')
6073                         return (EINVAL);        /* not a number */
6074                 n = s[0] - '0';
6075                 if (n & ~(PAUSE_TX | PAUSE_RX))
6076                         return (EINVAL);        /* some other bit is set too */
6077
6078                 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6079                     "t4PAUSE");
6080                 if (rc)
6081                         return (rc);
6082                 if ((lc->requested_fc & (PAUSE_TX | PAUSE_RX)) != n) {
6083                         lc->requested_fc &= ~(PAUSE_TX | PAUSE_RX);
6084                         lc->requested_fc |= n;
6085                         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6086                         if (rc == 0) {
6087                                 lc->fc = lc->requested_fc;
6088                         }
6089                 }
6090                 end_synchronized_op(sc, 0);
6091         }
6092
6093         return (rc);
6094 }
6095
6096 static int
6097 sysctl_fec(SYSCTL_HANDLER_ARGS)
6098 {
6099         struct port_info *pi = arg1;
6100         struct adapter *sc = pi->adapter;
6101         struct link_config *lc = &pi->link_cfg;
6102         int rc;
6103
6104         if (req->newptr == NULL) {
6105                 struct sbuf *sb;
6106                 static char *bits = "\20\1RS\2BASER_RS\3RESERVED";
6107
6108                 rc = sysctl_wire_old_buffer(req, 0);
6109                 if (rc != 0)
6110                         return(rc);
6111
6112                 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6113                 if (sb == NULL)
6114                         return (ENOMEM);
6115
6116                 sbuf_printf(sb, "%b", lc->fec & M_FW_PORT_CAP_FEC, bits);
6117                 rc = sbuf_finish(sb);
6118                 sbuf_delete(sb);
6119         } else {
6120                 char s[2];
6121                 int n;
6122
6123                 s[0] = '0' + (lc->requested_fec & M_FW_PORT_CAP_FEC);
6124                 s[1] = 0;
6125
6126                 rc = sysctl_handle_string(oidp, s, sizeof(s), req);
6127                 if (rc != 0)
6128                         return(rc);
6129
6130                 if (s[1] != 0)
6131                         return (EINVAL);
6132                 if (s[0] < '0' || s[0] > '9')
6133                         return (EINVAL);        /* not a number */
6134                 n = s[0] - '0';
6135                 if (n & ~M_FW_PORT_CAP_FEC)
6136                         return (EINVAL);        /* some other bit is set too */
6137
6138                 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6139                     "t4fec");
6140                 if (rc)
6141                         return (rc);
6142                 if ((lc->requested_fec & M_FW_PORT_CAP_FEC) != n) {
6143                         lc->requested_fec = n &
6144                             G_FW_PORT_CAP_FEC(lc->supported);
6145                         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6146                         if (rc == 0) {
6147                                 lc->fec = lc->requested_fec;
6148                         }
6149                 }
6150                 end_synchronized_op(sc, 0);
6151         }
6152
6153         return (rc);
6154 }
6155
6156 static int
6157 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
6158 {
6159         struct port_info *pi = arg1;
6160         struct adapter *sc = pi->adapter;
6161         struct link_config *lc = &pi->link_cfg;
6162         int rc, val, old;
6163
6164         if (lc->supported & FW_PORT_CAP_ANEG)
6165                 val = lc->requested_aneg == AUTONEG_ENABLE ? 1 : 0;
6166         else
6167                 val = -1;
6168         rc = sysctl_handle_int(oidp, &val, 0, req);
6169         if (rc != 0 || req->newptr == NULL)
6170                 return (rc);
6171         if ((lc->supported & FW_PORT_CAP_ANEG) == 0)
6172                 return (ENOTSUP);
6173
6174         if (val == 0)
6175                 val = AUTONEG_DISABLE;
6176         else if (val == 1)
6177                 val = AUTONEG_ENABLE;
6178         else
6179                 return (EINVAL);
6180         if (lc->requested_aneg == val)
6181                 return (0);     /* no change */
6182
6183         rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6184             "t4aneg");
6185         if (rc)
6186                 return (rc);
6187         old = lc->requested_aneg;
6188         lc->requested_aneg = val;
6189         rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6190         if (rc != 0)
6191                 lc->requested_aneg = old;
6192         end_synchronized_op(sc, 0);
6193         return (rc);
6194 }
6195
6196 static int
6197 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
6198 {
6199         struct adapter *sc = arg1;
6200         int reg = arg2;
6201         uint64_t val;
6202
6203         val = t4_read_reg64(sc, reg);
6204
6205         return (sysctl_handle_64(oidp, &val, 0, req));
6206 }
6207
6208 static int
6209 sysctl_temperature(SYSCTL_HANDLER_ARGS)
6210 {
6211         struct adapter *sc = arg1;
6212         int rc, t;
6213         uint32_t param, val;
6214
6215         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
6216         if (rc)
6217                 return (rc);
6218         param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6219             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
6220             V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
6221         rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
6222         end_synchronized_op(sc, 0);
6223         if (rc)
6224                 return (rc);
6225
6226         /* unknown is returned as 0 but we display -1 in that case */
6227         t = val == 0 ? -1 : val;
6228
6229         rc = sysctl_handle_int(oidp, &t, 0, req);
6230         return (rc);
6231 }
6232
6233 #ifdef SBUF_DRAIN
6234 static int
6235 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
6236 {
6237         struct adapter *sc = arg1;
6238         struct sbuf *sb;
6239         int rc, i;
6240         uint16_t incr[NMTUS][NCCTRL_WIN];
6241         static const char *dec_fac[] = {
6242                 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
6243                 "0.9375"
6244         };
6245
6246         rc = sysctl_wire_old_buffer(req, 0);
6247         if (rc != 0)
6248                 return (rc);
6249
6250         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6251         if (sb == NULL)
6252                 return (ENOMEM);
6253
6254         t4_read_cong_tbl(sc, incr);
6255
6256         for (i = 0; i < NCCTRL_WIN; ++i) {
6257                 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
6258                     incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
6259                     incr[5][i], incr[6][i], incr[7][i]);
6260                 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
6261                     incr[8][i], incr[9][i], incr[10][i], incr[11][i],
6262                     incr[12][i], incr[13][i], incr[14][i], incr[15][i],
6263                     sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
6264         }
6265
6266         rc = sbuf_finish(sb);
6267         sbuf_delete(sb);
6268
6269         return (rc);
6270 }
6271
6272 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
6273         "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",   /* ibq's */
6274         "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
6275         "SGE0-RX", "SGE1-RX"    /* additional obq's (T5 onwards) */
6276 };
6277
6278 static int
6279 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
6280 {
6281         struct adapter *sc = arg1;
6282         struct sbuf *sb;
6283         int rc, i, n, qid = arg2;
6284         uint32_t *buf, *p;
6285         char *qtype;
6286         u_int cim_num_obq = sc->chip_params->cim_num_obq;
6287
6288         KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
6289             ("%s: bad qid %d\n", __func__, qid));
6290
6291         if (qid < CIM_NUM_IBQ) {
6292                 /* inbound queue */
6293                 qtype = "IBQ";
6294                 n = 4 * CIM_IBQ_SIZE;
6295                 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
6296                 rc = t4_read_cim_ibq(sc, qid, buf, n);
6297         } else {
6298                 /* outbound queue */
6299                 qtype = "OBQ";
6300                 qid -= CIM_NUM_IBQ;
6301                 n = 4 * cim_num_obq * CIM_OBQ_SIZE;
6302                 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
6303                 rc = t4_read_cim_obq(sc, qid, buf, n);
6304         }
6305
6306         if (rc < 0) {
6307                 rc = -rc;
6308                 goto done;
6309         }
6310         n = rc * sizeof(uint32_t);      /* rc has # of words actually read */
6311
6312         rc = sysctl_wire_old_buffer(req, 0);
6313         if (rc != 0)
6314                 goto done;
6315
6316         sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
6317         if (sb == NULL) {
6318                 rc = ENOMEM;
6319                 goto done;
6320         }
6321
6322         sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
6323         for (i = 0, p = buf; i < n; i += 16, p += 4)
6324                 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
6325                     p[2], p[3]);
6326
6327         rc = sbuf_finish(sb);
6328         sbuf_delete(sb);
6329 done:
6330         free(buf, M_CXGBE);
6331         return (rc);
6332 }
6333
6334 static int
6335 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
6336 {
6337         struct adapter *sc = arg1;
6338         u_int cfg;
6339         struct sbuf *sb;
6340         uint32_t *buf, *p;
6341         int rc;
6342
6343         MPASS(chip_id(sc) <= CHELSIO_T5);
6344
6345         rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
6346         if (rc != 0)
6347                 return (rc);
6348
6349         rc = sysctl_wire_old_buffer(req, 0);
6350         if (rc != 0)
6351                 return (rc);
6352
6353         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6354         if (sb == NULL)
6355                 return (ENOMEM);
6356
6357         buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
6358             M_ZERO | M_WAITOK);
6359
6360         rc = -t4_cim_read_la(sc, buf, NULL);
6361         if (rc != 0)
6362                 goto done;
6363
6364         sbuf_printf(sb, "Status   Data      PC%s",
6365             cfg & F_UPDBGLACAPTPCONLY ? "" :
6366             "     LS0Stat  LS0Addr             LS0Data");
6367
6368         for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
6369                 if (cfg & F_UPDBGLACAPTPCONLY) {
6370                         sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
6371                             p[6], p[7]);
6372                         sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
6373                             (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
6374                             p[4] & 0xff, p[5] >> 8);
6375                         sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
6376                             (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
6377                             p[1] & 0xf, p[2] >> 4);
6378                 } else {
6379                         sbuf_printf(sb,
6380                             "\n  %02x   %x%07x %x%07x %08x %08x "
6381                             "%08x%08x%08x%08x",
6382                             (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
6383                             p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
6384                             p[6], p[7]);
6385                 }
6386         }
6387
6388         rc = sbuf_finish(sb);
6389         sbuf_delete(sb);
6390 done:
6391         free(buf, M_CXGBE);
6392         return (rc);
6393 }
6394
6395 static int
6396 sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS)
6397 {
6398         struct adapter *sc = arg1;
6399         u_int cfg;
6400         struct sbuf *sb;
6401         uint32_t *buf, *p;
6402         int rc;
6403
6404         MPASS(chip_id(sc) > CHELSIO_T5);
6405
6406         rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
6407         if (rc != 0)
6408                 return (rc);
6409
6410         rc = sysctl_wire_old_buffer(req, 0);
6411         if (rc != 0)
6412                 return (rc);
6413
6414         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6415         if (sb == NULL)
6416                 return (ENOMEM);
6417
6418         buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
6419             M_ZERO | M_WAITOK);
6420
6421         rc = -t4_cim_read_la(sc, buf, NULL);
6422         if (rc != 0)
6423                 goto done;
6424
6425         sbuf_printf(sb, "Status   Inst    Data      PC%s",
6426             cfg & F_UPDBGLACAPTPCONLY ? "" :
6427             "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
6428
6429         for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
6430                 if (cfg & F_UPDBGLACAPTPCONLY) {
6431                         sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
6432                             p[3] & 0xff, p[2], p[1], p[0]);
6433                         sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
6434                             (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
6435                             p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
6436                         sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
6437                             (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
6438                             p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
6439                             p[6] >> 16);
6440                 } else {
6441                         sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
6442                             "%08x %08x %08x %08x %08x %08x",
6443                             (p[9] >> 16) & 0xff,
6444                             p[9] & 0xffff, p[8] >> 16,
6445                             p[8] & 0xffff, p[7] >> 16,
6446                             p[7] & 0xffff, p[6] >> 16,
6447                             p[2], p[1], p[0], p[5], p[4], p[3]);
6448                 }
6449         }
6450
6451         rc = sbuf_finish(sb);
6452         sbuf_delete(sb);
6453 done:
6454         free(buf, M_CXGBE);
6455         return (rc);
6456 }
6457
6458 static int
6459 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
6460 {
6461         struct adapter *sc = arg1;
6462         u_int i;
6463         struct sbuf *sb;
6464         uint32_t *buf, *p;
6465         int rc;
6466
6467         rc = sysctl_wire_old_buffer(req, 0);
6468         if (rc != 0)
6469                 return (rc);
6470
6471         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6472         if (sb == NULL)
6473                 return (ENOMEM);
6474
6475         buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
6476             M_ZERO | M_WAITOK);
6477
6478         t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
6479         p = buf;
6480
6481         for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
6482                 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
6483                     p[1], p[0]);
6484         }
6485
6486         sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
6487         for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
6488                 sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
6489                     (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
6490                     (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
6491                     (p[1] >> 2) | ((p[2] & 3) << 30),
6492                     (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
6493                     p[0] & 1);
6494         }
6495
6496         rc = sbuf_finish(sb);
6497         sbuf_delete(sb);
6498         free(buf, M_CXGBE);
6499         return (rc);
6500 }
6501
6502 static int
6503 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
6504 {
6505         struct adapter *sc = arg1;
6506         u_int i;
6507         struct sbuf *sb;
6508         uint32_t *buf, *p;
6509         int rc;
6510
6511         rc = sysctl_wire_old_buffer(req, 0);
6512         if (rc != 0)
6513                 return (rc);
6514
6515         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6516         if (sb == NULL)
6517                 return (ENOMEM);
6518
6519         buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
6520             M_ZERO | M_WAITOK);
6521
6522         t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
6523         p = buf;
6524
6525         sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
6526         for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
6527                 sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
6528                     (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
6529                     p[4], p[3], p[2], p[1], p[0]);
6530         }
6531
6532         sbuf_printf(sb, "\n\nCntl ID               Data");
6533         for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
6534                 sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
6535                     (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
6536         }
6537
6538         rc = sbuf_finish(sb);
6539         sbuf_delete(sb);
6540         free(buf, M_CXGBE);
6541         return (rc);
6542 }
6543
6544 static int
6545 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
6546 {
6547         struct adapter *sc = arg1;
6548         struct sbuf *sb;
6549         int rc, i;
6550         uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
6551         uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
6552         uint16_t thres[CIM_NUM_IBQ];
6553         uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
6554         uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
6555         u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
6556
6557         cim_num_obq = sc->chip_params->cim_num_obq;
6558         if (is_t4(sc)) {
6559                 ibq_rdaddr = A_UP_IBQ_0_RDADDR;
6560                 obq_rdaddr = A_UP_OBQ_0_REALADDR;
6561         } else {
6562                 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
6563                 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
6564         }
6565         nq = CIM_NUM_IBQ + cim_num_obq;
6566
6567         rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
6568         if (rc == 0)
6569                 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr);
6570         if (rc != 0)
6571                 return (rc);
6572
6573         t4_read_cimq_cfg(sc, base, size, thres);
6574
6575         rc = sysctl_wire_old_buffer(req, 0);
6576         if (rc != 0)
6577                 return (rc);
6578
6579         sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
6580         if (sb == NULL)
6581                 return (ENOMEM);
6582
6583         sbuf_printf(sb,
6584             "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
6585
6586         for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
6587                 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
6588                     qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
6589                     G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
6590                     G_QUEREMFLITS(p[2]) * 16);
6591         for ( ; i < nq; i++, p += 4, wr += 2)
6592                 sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
6593                     base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
6594                     wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
6595                     G_QUEREMFLITS(p[2]) * 16);
6596
6597         rc = sbuf_finish(sb);
6598         sbuf_delete(sb);
6599
6600         return (rc);
6601 }
6602
6603 static int
6604 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
6605 {
6606         struct adapter *sc = arg1;
6607         struct sbuf *sb;
6608         int rc;
6609         struct tp_cpl_stats stats;
6610
6611         rc = sysctl_wire_old_buffer(req, 0);
6612         if (rc != 0)
6613                 return (rc);
6614
6615         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6616         if (sb == NULL)
6617                 return (ENOMEM);
6618
6619         mtx_lock(&sc->reg_lock);
6620         t4_tp_get_cpl_stats(sc, &stats, 0);
6621         mtx_unlock(&sc->reg_lock);
6622
6623         if (sc->chip_params->nchan > 2) {
6624                 sbuf_printf(sb, "                 channel 0  channel 1"
6625                     "  channel 2  channel 3");
6626                 sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
6627                     stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
6628                 sbuf_printf(sb, "\nCPL responses:   %10u %10u %10u %10u",
6629                     stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
6630         } else {
6631                 sbuf_printf(sb, "                 channel 0  channel 1");
6632                 sbuf_printf(sb, "\nCPL requests:   %10u %10u",
6633                     stats.req[0], stats.req[1]);
6634                 sbuf_printf(sb, "\nCPL responses:   %10u %10u",
6635                     stats.rsp[0], stats.rsp[1]);
6636         }
6637
6638         rc = sbuf_finish(sb);
6639         sbuf_delete(sb);
6640
6641         return (rc);
6642 }
6643
6644 static int
6645 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
6646 {
6647         struct adapter *sc = arg1;
6648         struct sbuf *sb;
6649         int rc;
6650         struct tp_usm_stats stats;
6651
6652         rc = sysctl_wire_old_buffer(req, 0);
6653         if (rc != 0)
6654                 return(rc);
6655
6656         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6657         if (sb == NULL)
6658                 return (ENOMEM);
6659
6660         t4_get_usm_stats(sc, &stats, 1);
6661
6662         sbuf_printf(sb, "Frames: %u\n", stats.frames);
6663         sbuf_printf(sb, "Octets: %ju\n", stats.octets);
6664         sbuf_printf(sb, "Drops:  %u", stats.drops);
6665
6666         rc = sbuf_finish(sb);
6667         sbuf_delete(sb);
6668
6669         return (rc);
6670 }
6671
6672 static const char * const devlog_level_strings[] = {
6673         [FW_DEVLOG_LEVEL_EMERG]         = "EMERG",
6674         [FW_DEVLOG_LEVEL_CRIT]          = "CRIT",
6675         [FW_DEVLOG_LEVEL_ERR]           = "ERR",
6676         [FW_DEVLOG_LEVEL_NOTICE]        = "NOTICE",
6677         [FW_DEVLOG_LEVEL_INFO]          = "INFO",
6678         [FW_DEVLOG_LEVEL_DEBUG]         = "DEBUG"
6679 };
6680
6681 static const char * const devlog_facility_strings[] = {
6682         [FW_DEVLOG_FACILITY_CORE]       = "CORE",
6683         [FW_DEVLOG_FACILITY_CF]         = "CF",
6684         [FW_DEVLOG_FACILITY_SCHED]      = "SCHED",
6685         [FW_DEVLOG_FACILITY_TIMER]      = "TIMER",
6686         [FW_DEVLOG_FACILITY_RES]        = "RES",
6687         [FW_DEVLOG_FACILITY_HW]         = "HW",
6688         [FW_DEVLOG_FACILITY_FLR]        = "FLR",
6689         [FW_DEVLOG_FACILITY_DMAQ]       = "DMAQ",
6690         [FW_DEVLOG_FACILITY_PHY]        = "PHY",
6691         [FW_DEVLOG_FACILITY_MAC]        = "MAC",
6692         [FW_DEVLOG_FACILITY_PORT]       = "PORT",
6693         [FW_DEVLOG_FACILITY_VI]         = "VI",
6694         [FW_DEVLOG_FACILITY_FILTER]     = "FILTER",
6695         [FW_DEVLOG_FACILITY_ACL]        = "ACL",
6696         [FW_DEVLOG_FACILITY_TM]         = "TM",
6697         [FW_DEVLOG_FACILITY_QFC]        = "QFC",
6698         [FW_DEVLOG_FACILITY_DCB]        = "DCB",
6699         [FW_DEVLOG_FACILITY_ETH]        = "ETH",
6700         [FW_DEVLOG_FACILITY_OFLD]       = "OFLD",
6701         [FW_DEVLOG_FACILITY_RI]         = "RI",
6702         [FW_DEVLOG_FACILITY_ISCSI]      = "ISCSI",
6703         [FW_DEVLOG_FACILITY_FCOE]       = "FCOE",
6704         [FW_DEVLOG_FACILITY_FOISCSI]    = "FOISCSI",
6705         [FW_DEVLOG_FACILITY_FOFCOE]     = "FOFCOE",
6706         [FW_DEVLOG_FACILITY_CHNET]      = "CHNET",
6707 };
6708
6709 static int
6710 sysctl_devlog(SYSCTL_HANDLER_ARGS)
6711 {
6712         struct adapter *sc = arg1;
6713         struct devlog_params *dparams = &sc->params.devlog;
6714         struct fw_devlog_e *buf, *e;
6715         int i, j, rc, nentries, first = 0;
6716         struct sbuf *sb;
6717         uint64_t ftstamp = UINT64_MAX;
6718
6719         if (dparams->addr == 0)
6720                 return (ENXIO);
6721
6722         buf = malloc(dparams->size, M_CXGBE, M_NOWAIT);
6723         if (buf == NULL)
6724                 return (ENOMEM);
6725
6726         rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size);
6727         if (rc != 0)
6728                 goto done;
6729
6730         nentries = dparams->size / sizeof(struct fw_devlog_e);
6731         for (i = 0; i < nentries; i++) {
6732                 e = &buf[i];
6733
6734                 if (e->timestamp == 0)
6735                         break;  /* end */
6736
6737                 e->timestamp = be64toh(e->timestamp);
6738                 e->seqno = be32toh(e->seqno);
6739                 for (j = 0; j < 8; j++)
6740                         e->params[j] = be32toh(e->params[j]);
6741
6742                 if (e->timestamp < ftstamp) {
6743                         ftstamp = e->timestamp;
6744                         first = i;
6745                 }
6746         }
6747
6748         if (buf[first].timestamp == 0)
6749                 goto done;      /* nothing in the log */
6750
6751         rc = sysctl_wire_old_buffer(req, 0);
6752         if (rc != 0)
6753                 goto done;
6754
6755         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6756         if (sb == NULL) {
6757                 rc = ENOMEM;
6758                 goto done;
6759         }
6760         sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
6761             "Seq#", "Tstamp", "Level", "Facility", "Message");
6762
6763         i = first;
6764         do {
6765                 e = &buf[i];
6766                 if (e->timestamp == 0)
6767                         break;  /* end */
6768
6769                 sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
6770                     e->seqno, e->timestamp,
6771                     (e->level < nitems(devlog_level_strings) ?
6772                         devlog_level_strings[e->level] : "UNKNOWN"),
6773                     (e->facility < nitems(devlog_facility_strings) ?
6774                         devlog_facility_strings[e->facility] : "UNKNOWN"));
6775                 sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
6776                     e->params[2], e->params[3], e->params[4],
6777                     e->params[5], e->params[6], e->params[7]);
6778
6779                 if (++i == nentries)
6780                         i = 0;
6781         } while (i != first);
6782
6783         rc = sbuf_finish(sb);
6784         sbuf_delete(sb);
6785 done:
6786         free(buf, M_CXGBE);
6787         return (rc);
6788 }
6789
6790 static int
6791 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
6792 {
6793         struct adapter *sc = arg1;
6794         struct sbuf *sb;
6795         int rc;
6796         struct tp_fcoe_stats stats[MAX_NCHAN];
6797         int i, nchan = sc->chip_params->nchan;
6798
6799         rc = sysctl_wire_old_buffer(req, 0);
6800         if (rc != 0)
6801                 return (rc);
6802
6803         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6804         if (sb == NULL)
6805                 return (ENOMEM);
6806
6807         for (i = 0; i < nchan; i++)
6808                 t4_get_fcoe_stats(sc, i, &stats[i], 1);
6809
6810         if (nchan > 2) {
6811                 sbuf_printf(sb, "                   channel 0        channel 1"
6812                     "        channel 2        channel 3");
6813                 sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
6814                     stats[0].octets_ddp, stats[1].octets_ddp,
6815                     stats[2].octets_ddp, stats[3].octets_ddp);
6816                 sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
6817                     stats[0].frames_ddp, stats[1].frames_ddp,
6818                     stats[2].frames_ddp, stats[3].frames_ddp);
6819                 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
6820                     stats[0].frames_drop, stats[1].frames_drop,
6821                     stats[2].frames_drop, stats[3].frames_drop);
6822         } else {
6823                 sbuf_printf(sb, "                   channel 0        channel 1");
6824                 sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
6825                     stats[0].octets_ddp, stats[1].octets_ddp);
6826                 sbuf_printf(sb, "\nframesDDP:  %16u %16u",
6827                     stats[0].frames_ddp, stats[1].frames_ddp);
6828                 sbuf_printf(sb, "\nframesDrop: %16u %16u",
6829                     stats[0].frames_drop, stats[1].frames_drop);
6830         }
6831
6832         rc = sbuf_finish(sb);
6833         sbuf_delete(sb);
6834
6835         return (rc);
6836 }
6837
6838 static int
6839 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
6840 {
6841         struct adapter *sc = arg1;
6842         struct sbuf *sb;
6843         int rc, i;
6844         unsigned int map, kbps, ipg, mode;
6845         unsigned int pace_tab[NTX_SCHED];
6846
6847         rc = sysctl_wire_old_buffer(req, 0);
6848         if (rc != 0)
6849                 return (rc);
6850
6851         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
6852         if (sb == NULL)
6853                 return (ENOMEM);
6854
6855         map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
6856         mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
6857         t4_read_pace_tbl(sc, pace_tab);
6858
6859         sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
6860             "Class IPG (0.1 ns)   Flow IPG (us)");
6861
6862         for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
6863                 t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
6864                 sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
6865                     (mode & (1 << i)) ? "flow" : "class", map & 3);
6866                 if (kbps)
6867                         sbuf_printf(sb, "%9u     ", kbps);
6868                 else
6869                         sbuf_printf(sb, " disabled     ");
6870
6871                 if (ipg)
6872                         sbuf_printf(sb, "%13u        ", ipg);
6873                 else
6874                         sbuf_printf(sb, "     disabled        ");
6875
6876                 if (pace_tab[i])
6877                         sbuf_printf(sb, "%10u", pace_tab[i]);
6878                 else
6879                         sbuf_printf(sb, "  disabled");
6880         }
6881
6882         rc = sbuf_finish(sb);
6883         sbuf_delete(sb);
6884
6885         return (rc);
6886 }
6887
6888 static int
6889 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
6890 {
6891         struct adapter *sc = arg1;
6892         struct sbuf *sb;
6893         int rc, i, j;
6894         uint64_t *p0, *p1;
6895         struct lb_port_stats s[2];
6896         static const char *stat_name[] = {
6897                 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
6898                 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
6899                 "Frames128To255:", "Frames256To511:", "Frames512To1023:",
6900                 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
6901                 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
6902                 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
6903                 "BG2FramesTrunc:", "BG3FramesTrunc:"
6904         };
6905
6906         rc = sysctl_wire_old_buffer(req, 0);
6907         if (rc != 0)
6908                 return (rc);
6909
6910         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
6911         if (sb == NULL)
6912                 return (ENOMEM);
6913
6914         memset(s, 0, sizeof(s));
6915
6916         for (i = 0; i < sc->chip_params->nchan; i += 2) {
6917                 t4_get_lb_stats(sc, i, &s[0]);
6918                 t4_get_lb_stats(sc, i + 1, &s[1]);
6919
6920                 p0 = &s[0].octets;
6921                 p1 = &s[1].octets;
6922                 sbuf_printf(sb, "%s                       Loopback %u"
6923                     "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
6924
6925                 for (j = 0; j < nitems(stat_name); j++)
6926                         sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
6927                                    *p0++, *p1++);
6928         }
6929
6930         rc = sbuf_finish(sb);
6931         sbuf_delete(sb);
6932
6933         return (rc);
6934 }
6935
6936 static int
6937 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
6938 {
6939         int rc = 0;
6940         struct port_info *pi = arg1;
6941         struct link_config *lc = &pi->link_cfg;
6942         struct sbuf *sb;
6943
6944         rc = sysctl_wire_old_buffer(req, 0);
6945         if (rc != 0)
6946                 return(rc);
6947         sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
6948         if (sb == NULL)
6949                 return (ENOMEM);
6950
6951         if (lc->link_ok || lc->link_down_rc == 255)
6952                 sbuf_printf(sb, "n/a");
6953         else
6954                 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
6955
6956         rc = sbuf_finish(sb);
6957         sbuf_delete(sb);
6958
6959         return (rc);
6960 }
6961
6962 struct mem_desc {
6963         unsigned int base;
6964         unsigned int limit;
6965         unsigned int idx;
6966 };
6967
6968 static int
6969 mem_desc_cmp(const void *a, const void *b)
6970 {
6971         return ((const struct mem_desc *)a)->base -
6972                ((const struct mem_desc *)b)->base;
6973 }
6974
6975 static void
6976 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
6977     unsigned int to)
6978 {
6979         unsigned int size;
6980
6981         if (from == to)
6982                 return;
6983
6984         size = to - from + 1;
6985         if (size == 0)
6986                 return;
6987
6988         /* XXX: need humanize_number(3) in libkern for a more readable 'size' */
6989         sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
6990 }
6991
6992 static int
6993 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
6994 {
6995         struct adapter *sc = arg1;
6996         struct sbuf *sb;
6997         int rc, i, n;
6998         uint32_t lo, hi, used, alloc;
6999         static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"};
7000         static const char *region[] = {
7001                 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
7002                 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
7003                 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
7004                 "TDDP region:", "TPT region:", "STAG region:", "RQ region:",
7005                 "RQUDP region:", "PBL region:", "TXPBL region:",
7006                 "DBVFIFO region:", "ULPRX state:", "ULPTX state:",
7007                 "On-chip queues:"
7008         };
7009         struct mem_desc avail[4];
7010         struct mem_desc mem[nitems(region) + 3];        /* up to 3 holes */
7011         struct mem_desc *md = mem;
7012
7013         rc = sysctl_wire_old_buffer(req, 0);
7014         if (rc != 0)
7015                 return (rc);
7016
7017         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7018         if (sb == NULL)
7019                 return (ENOMEM);
7020
7021         for (i = 0; i < nitems(mem); i++) {
7022                 mem[i].limit = 0;
7023                 mem[i].idx = i;
7024         }
7025
7026         /* Find and sort the populated memory ranges */
7027         i = 0;
7028         lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
7029         if (lo & F_EDRAM0_ENABLE) {
7030                 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
7031                 avail[i].base = G_EDRAM0_BASE(hi) << 20;
7032                 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
7033                 avail[i].idx = 0;
7034                 i++;
7035         }
7036         if (lo & F_EDRAM1_ENABLE) {
7037                 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
7038                 avail[i].base = G_EDRAM1_BASE(hi) << 20;
7039                 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
7040                 avail[i].idx = 1;
7041                 i++;
7042         }
7043         if (lo & F_EXT_MEM_ENABLE) {
7044                 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
7045                 avail[i].base = G_EXT_MEM_BASE(hi) << 20;
7046                 avail[i].limit = avail[i].base +
7047                     (G_EXT_MEM_SIZE(hi) << 20);
7048                 avail[i].idx = is_t5(sc) ? 3 : 2;       /* Call it MC0 for T5 */
7049                 i++;
7050         }
7051         if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
7052                 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
7053                 avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
7054                 avail[i].limit = avail[i].base +
7055                     (G_EXT_MEM1_SIZE(hi) << 20);
7056                 avail[i].idx = 4;
7057                 i++;
7058         }
7059         if (!i)                                    /* no memory available */
7060                 return 0;
7061         qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
7062
7063         (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
7064         (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
7065         (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
7066         (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
7067         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
7068         (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
7069         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
7070         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
7071         (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
7072
7073         /* the next few have explicit upper bounds */
7074         md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
7075         md->limit = md->base - 1 +
7076                     t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
7077                     G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
7078         md++;
7079
7080         md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
7081         md->limit = md->base - 1 +
7082                     t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
7083                     G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
7084         md++;
7085
7086         if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
7087                 if (chip_id(sc) <= CHELSIO_T5)
7088                         md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
7089                 else
7090                         md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
7091                 md->limit = 0;
7092         } else {
7093                 md->base = 0;
7094                 md->idx = nitems(region);  /* hide it */
7095         }
7096         md++;
7097
7098 #define ulp_region(reg) \
7099         md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
7100         (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
7101
7102         ulp_region(RX_ISCSI);
7103         ulp_region(RX_TDDP);
7104         ulp_region(TX_TPT);
7105         ulp_region(RX_STAG);
7106         ulp_region(RX_RQ);
7107         ulp_region(RX_RQUDP);
7108         ulp_region(RX_PBL);
7109         ulp_region(TX_PBL);
7110 #undef ulp_region
7111
7112         md->base = 0;
7113         md->idx = nitems(region);
7114         if (!is_t4(sc)) {
7115                 uint32_t size = 0;
7116                 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
7117                 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
7118
7119                 if (is_t5(sc)) {
7120                         if (sge_ctrl & F_VFIFO_ENABLE)
7121                                 size = G_DBVFIFO_SIZE(fifo_size);
7122                 } else
7123                         size = G_T6_DBVFIFO_SIZE(fifo_size);
7124
7125                 if (size) {
7126                         md->base = G_BASEADDR(t4_read_reg(sc,
7127                             A_SGE_DBVFIFO_BADDR));
7128                         md->limit = md->base + (size << 2) - 1;
7129                 }
7130         }
7131         md++;
7132
7133         md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
7134         md->limit = 0;
7135         md++;
7136         md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
7137         md->limit = 0;
7138         md++;
7139
7140         md->base = sc->vres.ocq.start;
7141         if (sc->vres.ocq.size)
7142                 md->limit = md->base + sc->vres.ocq.size - 1;
7143         else
7144                 md->idx = nitems(region);  /* hide it */
7145         md++;
7146
7147         /* add any address-space holes, there can be up to 3 */
7148         for (n = 0; n < i - 1; n++)
7149                 if (avail[n].limit < avail[n + 1].base)
7150                         (md++)->base = avail[n].limit;
7151         if (avail[n].limit)
7152                 (md++)->base = avail[n].limit;
7153
7154         n = md - mem;
7155         qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
7156
7157         for (lo = 0; lo < i; lo++)
7158                 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
7159                                 avail[lo].limit - 1);
7160
7161         sbuf_printf(sb, "\n");
7162         for (i = 0; i < n; i++) {
7163                 if (mem[i].idx >= nitems(region))
7164                         continue;                        /* skip holes */
7165                 if (!mem[i].limit)
7166                         mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
7167                 mem_region_show(sb, region[mem[i].idx], mem[i].base,
7168                                 mem[i].limit);
7169         }
7170
7171         sbuf_printf(sb, "\n");
7172         lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
7173         hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
7174         mem_region_show(sb, "uP RAM:", lo, hi);
7175
7176         lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
7177         hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
7178         mem_region_show(sb, "uP Extmem2:", lo, hi);
7179
7180         lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
7181         sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
7182                    G_PMRXMAXPAGE(lo),
7183                    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
7184                    (lo & F_PMRXNUMCHN) ? 2 : 1);
7185
7186         lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
7187         hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
7188         sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
7189                    G_PMTXMAXPAGE(lo),
7190                    hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
7191                    hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
7192         sbuf_printf(sb, "%u p-structs\n",
7193                    t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
7194
7195         for (i = 0; i < 4; i++) {
7196                 if (chip_id(sc) > CHELSIO_T5)
7197                         lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
7198                 else
7199                         lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
7200                 if (is_t5(sc)) {
7201                         used = G_T5_USED(lo);
7202                         alloc = G_T5_ALLOC(lo);
7203                 } else {
7204                         used = G_USED(lo);
7205                         alloc = G_ALLOC(lo);
7206                 }
7207                 /* For T6 these are MAC buffer groups */
7208                 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
7209                     i, used, alloc);
7210         }
7211         for (i = 0; i < sc->chip_params->nchan; i++) {
7212                 if (chip_id(sc) > CHELSIO_T5)
7213                         lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
7214                 else
7215                         lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
7216                 if (is_t5(sc)) {
7217                         used = G_T5_USED(lo);
7218                         alloc = G_T5_ALLOC(lo);
7219                 } else {
7220                         used = G_USED(lo);
7221                         alloc = G_ALLOC(lo);
7222                 }
7223                 /* For T6 these are MAC buffer groups */
7224                 sbuf_printf(sb,
7225                     "\nLoopback %d using %u pages out of %u allocated",
7226                     i, used, alloc);
7227         }
7228
7229         rc = sbuf_finish(sb);
7230         sbuf_delete(sb);
7231
7232         return (rc);
7233 }
7234
7235 static inline void
7236 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
7237 {
7238         *mask = x | y;
7239         y = htobe64(y);
7240         memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
7241 }
7242
7243 static int
7244 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
7245 {
7246         struct adapter *sc = arg1;
7247         struct sbuf *sb;
7248         int rc, i;
7249
7250         MPASS(chip_id(sc) <= CHELSIO_T5);
7251
7252         rc = sysctl_wire_old_buffer(req, 0);
7253         if (rc != 0)
7254                 return (rc);
7255
7256         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7257         if (sb == NULL)
7258                 return (ENOMEM);
7259
7260         sbuf_printf(sb,
7261             "Idx  Ethernet address     Mask     Vld Ports PF"
7262             "  VF              Replication             P0 P1 P2 P3  ML");
7263         for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
7264                 uint64_t tcamx, tcamy, mask;
7265                 uint32_t cls_lo, cls_hi;
7266                 uint8_t addr[ETHER_ADDR_LEN];
7267
7268                 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
7269                 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
7270                 if (tcamx & tcamy)
7271                         continue;
7272                 tcamxy2valmask(tcamx, tcamy, addr, &mask);
7273                 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
7274                 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
7275                 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
7276                            "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
7277                            addr[3], addr[4], addr[5], (uintmax_t)mask,
7278                            (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
7279                            G_PORTMAP(cls_hi), G_PF(cls_lo),
7280                            (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
7281
7282                 if (cls_lo & F_REPLICATE) {
7283                         struct fw_ldst_cmd ldst_cmd;
7284
7285                         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
7286                         ldst_cmd.op_to_addrspace =
7287                             htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
7288                                 F_FW_CMD_REQUEST | F_FW_CMD_READ |
7289                                 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
7290                         ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
7291                         ldst_cmd.u.mps.rplc.fid_idx =
7292                             htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
7293                                 V_FW_LDST_CMD_IDX(i));
7294
7295                         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
7296                             "t4mps");
7297                         if (rc)
7298                                 break;
7299                         rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
7300                             sizeof(ldst_cmd), &ldst_cmd);
7301                         end_synchronized_op(sc, 0);
7302
7303                         if (rc != 0) {
7304                                 sbuf_printf(sb, "%36d", rc);
7305                                 rc = 0;
7306                         } else {
7307                                 sbuf_printf(sb, " %08x %08x %08x %08x",
7308                                     be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
7309                                     be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
7310                                     be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
7311                                     be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
7312                         }
7313                 } else
7314                         sbuf_printf(sb, "%36s", "");
7315
7316                 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
7317                     G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
7318                     G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
7319         }
7320
7321         if (rc)
7322                 (void) sbuf_finish(sb);
7323         else
7324                 rc = sbuf_finish(sb);
7325         sbuf_delete(sb);
7326
7327         return (rc);
7328 }
7329
7330 static int
7331 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
7332 {
7333         struct adapter *sc = arg1;
7334         struct sbuf *sb;
7335         int rc, i;
7336
7337         MPASS(chip_id(sc) > CHELSIO_T5);
7338
7339         rc = sysctl_wire_old_buffer(req, 0);
7340         if (rc != 0)
7341                 return (rc);
7342
7343         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7344         if (sb == NULL)
7345                 return (ENOMEM);
7346
7347         sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
7348             "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
7349             "                           Replication"
7350             "                                    P0 P1 P2 P3  ML\n");
7351
7352         for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
7353                 uint8_t dip_hit, vlan_vld, lookup_type, port_num;
7354                 uint16_t ivlan;
7355                 uint64_t tcamx, tcamy, val, mask;
7356                 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
7357                 uint8_t addr[ETHER_ADDR_LEN];
7358
7359                 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
7360                 if (i < 256)
7361                         ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
7362                 else
7363                         ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
7364                 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
7365                 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
7366                 tcamy = G_DMACH(val) << 32;
7367                 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
7368                 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
7369                 lookup_type = G_DATALKPTYPE(data2);
7370                 port_num = G_DATAPORTNUM(data2);
7371                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
7372                         /* Inner header VNI */
7373                         vniy = ((data2 & F_DATAVIDH2) << 23) |
7374                                        (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
7375                         dip_hit = data2 & F_DATADIPHIT;
7376                         vlan_vld = 0;
7377                 } else {
7378                         vniy = 0;
7379                         dip_hit = 0;
7380                         vlan_vld = data2 & F_DATAVIDH2;
7381                         ivlan = G_VIDL(val);
7382                 }
7383
7384                 ctl |= V_CTLXYBITSEL(1);
7385                 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
7386                 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
7387                 tcamx = G_DMACH(val) << 32;
7388                 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
7389                 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
7390                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
7391                         /* Inner header VNI mask */
7392                         vnix = ((data2 & F_DATAVIDH2) << 23) |
7393                                (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
7394                 } else
7395                         vnix = 0;
7396
7397                 if (tcamx & tcamy)
7398                         continue;
7399                 tcamxy2valmask(tcamx, tcamy, addr, &mask);
7400
7401                 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
7402                 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
7403
7404                 if (lookup_type && lookup_type != M_DATALKPTYPE) {
7405                         sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
7406                             "%012jx %06x %06x    -    -   %3c"
7407                             "      'I'  %4x   %3c   %#x%4u%4d", i, addr[0],
7408                             addr[1], addr[2], addr[3], addr[4], addr[5],
7409                             (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
7410                             port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
7411                             G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
7412                             cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
7413                 } else {
7414                         sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
7415                             "%012jx    -       -   ", i, addr[0], addr[1],
7416                             addr[2], addr[3], addr[4], addr[5],
7417                             (uintmax_t)mask);
7418
7419                         if (vlan_vld)
7420                                 sbuf_printf(sb, "%4u   Y     ", ivlan);
7421                         else
7422                                 sbuf_printf(sb, "  -    N     ");
7423
7424                         sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
7425                             lookup_type ? 'I' : 'O', port_num,
7426                             cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
7427                             G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
7428                             cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
7429                 }
7430
7431
7432                 if (cls_lo & F_T6_REPLICATE) {
7433                         struct fw_ldst_cmd ldst_cmd;
7434
7435                         memset(&ldst_cmd, 0, sizeof(ldst_cmd));
7436                         ldst_cmd.op_to_addrspace =
7437                             htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
7438                                 F_FW_CMD_REQUEST | F_FW_CMD_READ |
7439                                 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
7440                         ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
7441                         ldst_cmd.u.mps.rplc.fid_idx =
7442                             htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
7443                                 V_FW_LDST_CMD_IDX(i));
7444
7445                         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
7446                             "t6mps");
7447                         if (rc)
7448                                 break;
7449                         rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
7450                             sizeof(ldst_cmd), &ldst_cmd);
7451                         end_synchronized_op(sc, 0);
7452
7453                         if (rc != 0) {
7454                                 sbuf_printf(sb, "%72d", rc);
7455                                 rc = 0;
7456                         } else {
7457                                 sbuf_printf(sb, " %08x %08x %08x %08x"
7458                                     " %08x %08x %08x %08x",
7459                                     be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
7460                                     be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
7461                                     be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
7462                                     be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
7463                                     be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
7464                                     be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
7465                                     be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
7466                                     be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
7467                         }
7468                 } else
7469                         sbuf_printf(sb, "%72s", "");
7470
7471                 sbuf_printf(sb, "%4u%3u%3u%3u %#x",
7472                     G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
7473                     G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
7474                     (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
7475         }
7476
7477         if (rc)
7478                 (void) sbuf_finish(sb);
7479         else
7480                 rc = sbuf_finish(sb);
7481         sbuf_delete(sb);
7482
7483         return (rc);
7484 }
7485
7486 static int
7487 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
7488 {
7489         struct adapter *sc = arg1;
7490         struct sbuf *sb;
7491         int rc;
7492         uint16_t mtus[NMTUS];
7493
7494         rc = sysctl_wire_old_buffer(req, 0);
7495         if (rc != 0)
7496                 return (rc);
7497
7498         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7499         if (sb == NULL)
7500                 return (ENOMEM);
7501
7502         t4_read_mtu_tbl(sc, mtus, NULL);
7503
7504         sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
7505             mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
7506             mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
7507             mtus[14], mtus[15]);
7508
7509         rc = sbuf_finish(sb);
7510         sbuf_delete(sb);
7511
7512         return (rc);
7513 }
7514
7515 static int
7516 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
7517 {
7518         struct adapter *sc = arg1;
7519         struct sbuf *sb;
7520         int rc, i;
7521         uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
7522         uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
7523         static const char *tx_stats[MAX_PM_NSTATS] = {
7524                 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
7525                 "Tx FIFO wait", NULL, "Tx latency"
7526         };
7527         static const char *rx_stats[MAX_PM_NSTATS] = {
7528                 "Read:", "Write bypass:", "Write mem:", "Flush:",
7529                 "Rx FIFO wait", NULL, "Rx latency"
7530         };
7531
7532         rc = sysctl_wire_old_buffer(req, 0);
7533         if (rc != 0)
7534                 return (rc);
7535
7536         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7537         if (sb == NULL)
7538                 return (ENOMEM);
7539
7540         t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
7541         t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
7542
7543         sbuf_printf(sb, "                Tx pcmds             Tx bytes");
7544         for (i = 0; i < 4; i++) {
7545                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7546                     tx_cyc[i]);
7547         }
7548
7549         sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
7550         for (i = 0; i < 4; i++) {
7551                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7552                     rx_cyc[i]);
7553         }
7554
7555         if (chip_id(sc) > CHELSIO_T5) {
7556                 sbuf_printf(sb,
7557                     "\n              Total wait      Total occupancy");
7558                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7559                     tx_cyc[i]);
7560                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7561                     rx_cyc[i]);
7562
7563                 i += 2;
7564                 MPASS(i < nitems(tx_stats));
7565
7566                 sbuf_printf(sb,
7567                     "\n                   Reads           Total wait");
7568                 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
7569                     tx_cyc[i]);
7570                 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
7571                     rx_cyc[i]);
7572         }
7573
7574         rc = sbuf_finish(sb);
7575         sbuf_delete(sb);
7576
7577         return (rc);
7578 }
7579
7580 static int
7581 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
7582 {
7583         struct adapter *sc = arg1;
7584         struct sbuf *sb;
7585         int rc;
7586         struct tp_rdma_stats stats;
7587
7588         rc = sysctl_wire_old_buffer(req, 0);
7589         if (rc != 0)
7590                 return (rc);
7591
7592         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7593         if (sb == NULL)
7594                 return (ENOMEM);
7595
7596         mtx_lock(&sc->reg_lock);
7597         t4_tp_get_rdma_stats(sc, &stats, 0);
7598         mtx_unlock(&sc->reg_lock);
7599
7600         sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
7601         sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
7602
7603         rc = sbuf_finish(sb);
7604         sbuf_delete(sb);
7605
7606         return (rc);
7607 }
7608
7609 static int
7610 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
7611 {
7612         struct adapter *sc = arg1;
7613         struct sbuf *sb;
7614         int rc;
7615         struct tp_tcp_stats v4, v6;
7616
7617         rc = sysctl_wire_old_buffer(req, 0);
7618         if (rc != 0)
7619                 return (rc);
7620
7621         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7622         if (sb == NULL)
7623                 return (ENOMEM);
7624
7625         mtx_lock(&sc->reg_lock);
7626         t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
7627         mtx_unlock(&sc->reg_lock);
7628
7629         sbuf_printf(sb,
7630             "                                IP                 IPv6\n");
7631         sbuf_printf(sb, "OutRsts:      %20u %20u\n",
7632             v4.tcp_out_rsts, v6.tcp_out_rsts);
7633         sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
7634             v4.tcp_in_segs, v6.tcp_in_segs);
7635         sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
7636             v4.tcp_out_segs, v6.tcp_out_segs);
7637         sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
7638             v4.tcp_retrans_segs, v6.tcp_retrans_segs);
7639
7640         rc = sbuf_finish(sb);
7641         sbuf_delete(sb);
7642
7643         return (rc);
7644 }
7645
7646 static int
7647 sysctl_tids(SYSCTL_HANDLER_ARGS)
7648 {
7649         struct adapter *sc = arg1;
7650         struct sbuf *sb;
7651         int rc;
7652         struct tid_info *t = &sc->tids;
7653
7654         rc = sysctl_wire_old_buffer(req, 0);
7655         if (rc != 0)
7656                 return (rc);
7657
7658         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7659         if (sb == NULL)
7660                 return (ENOMEM);
7661
7662         if (t->natids) {
7663                 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
7664                     t->atids_in_use);
7665         }
7666
7667         if (t->ntids) {
7668                 sbuf_printf(sb, "TID range: ");
7669                 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
7670                         uint32_t b, hb;
7671
7672                         if (chip_id(sc) <= CHELSIO_T5) {
7673                                 b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
7674                                 hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
7675                         } else {
7676                                 b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
7677                                 hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
7678                         }
7679
7680                         if (b)
7681                                 sbuf_printf(sb, "0-%u, ", b - 1);
7682                         sbuf_printf(sb, "%u-%u", hb, t->ntids - 1);
7683                 } else
7684                         sbuf_printf(sb, "0-%u", t->ntids - 1);
7685                 sbuf_printf(sb, ", in use: %u\n",
7686                     atomic_load_acq_int(&t->tids_in_use));
7687         }
7688
7689         if (t->nstids) {
7690                 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
7691                     t->stid_base + t->nstids - 1, t->stids_in_use);
7692         }
7693
7694         if (t->nftids) {
7695                 sbuf_printf(sb, "FTID range: %u-%u\n", t->ftid_base,
7696                     t->ftid_base + t->nftids - 1);
7697         }
7698
7699         if (t->netids) {
7700                 sbuf_printf(sb, "ETID range: %u-%u\n", t->etid_base,
7701                     t->etid_base + t->netids - 1);
7702         }
7703
7704         sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users",
7705             t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4),
7706             t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6));
7707
7708         rc = sbuf_finish(sb);
7709         sbuf_delete(sb);
7710
7711         return (rc);
7712 }
7713
7714 static int
7715 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
7716 {
7717         struct adapter *sc = arg1;
7718         struct sbuf *sb;
7719         int rc;
7720         struct tp_err_stats stats;
7721
7722         rc = sysctl_wire_old_buffer(req, 0);
7723         if (rc != 0)
7724                 return (rc);
7725
7726         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7727         if (sb == NULL)
7728                 return (ENOMEM);
7729
7730         mtx_lock(&sc->reg_lock);
7731         t4_tp_get_err_stats(sc, &stats, 0);
7732         mtx_unlock(&sc->reg_lock);
7733
7734         if (sc->chip_params->nchan > 2) {
7735                 sbuf_printf(sb, "                 channel 0  channel 1"
7736                     "  channel 2  channel 3\n");
7737                 sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
7738                     stats.mac_in_errs[0], stats.mac_in_errs[1],
7739                     stats.mac_in_errs[2], stats.mac_in_errs[3]);
7740                 sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
7741                     stats.hdr_in_errs[0], stats.hdr_in_errs[1],
7742                     stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
7743                 sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
7744                     stats.tcp_in_errs[0], stats.tcp_in_errs[1],
7745                     stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
7746                 sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
7747                     stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
7748                     stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
7749                 sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
7750                     stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
7751                     stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
7752                 sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
7753                     stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
7754                     stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
7755                 sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
7756                     stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
7757                     stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
7758                 sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
7759                     stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
7760                     stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
7761         } else {
7762                 sbuf_printf(sb, "                 channel 0  channel 1\n");
7763                 sbuf_printf(sb, "macInErrs:      %10u %10u\n",
7764                     stats.mac_in_errs[0], stats.mac_in_errs[1]);
7765                 sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
7766                     stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
7767                 sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
7768                     stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
7769                 sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
7770                     stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
7771                 sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
7772                     stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
7773                 sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
7774                     stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
7775                 sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
7776                     stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
7777                 sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
7778                     stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
7779         }
7780
7781         sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
7782             stats.ofld_no_neigh, stats.ofld_cong_defer);
7783
7784         rc = sbuf_finish(sb);
7785         sbuf_delete(sb);
7786
7787         return (rc);
7788 }
7789
7790 static int
7791 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
7792 {
7793         struct adapter *sc = arg1;
7794         struct tp_params *tpp = &sc->params.tp;
7795         u_int mask;
7796         int rc;
7797
7798         mask = tpp->la_mask >> 16;
7799         rc = sysctl_handle_int(oidp, &mask, 0, req);
7800         if (rc != 0 || req->newptr == NULL)
7801                 return (rc);
7802         if (mask > 0xffff)
7803                 return (EINVAL);
7804         tpp->la_mask = mask << 16;
7805         t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask);
7806
7807         return (0);
7808 }
7809
7810 struct field_desc {
7811         const char *name;
7812         u_int start;
7813         u_int width;
7814 };
7815
7816 static void
7817 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
7818 {
7819         char buf[32];
7820         int line_size = 0;
7821
7822         while (f->name) {
7823                 uint64_t mask = (1ULL << f->width) - 1;
7824                 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
7825                     ((uintmax_t)v >> f->start) & mask);
7826
7827                 if (line_size + len >= 79) {
7828                         line_size = 8;
7829                         sbuf_printf(sb, "\n        ");
7830                 }
7831                 sbuf_printf(sb, "%s ", buf);
7832                 line_size += len + 1;
7833                 f++;
7834         }
7835         sbuf_printf(sb, "\n");
7836 }
7837
7838 static const struct field_desc tp_la0[] = {
7839         { "RcfOpCodeOut", 60, 4 },
7840         { "State", 56, 4 },
7841         { "WcfState", 52, 4 },
7842         { "RcfOpcSrcOut", 50, 2 },
7843         { "CRxError", 49, 1 },
7844         { "ERxError", 48, 1 },
7845         { "SanityFailed", 47, 1 },
7846         { "SpuriousMsg", 46, 1 },
7847         { "FlushInputMsg", 45, 1 },
7848         { "FlushInputCpl", 44, 1 },
7849         { "RssUpBit", 43, 1 },
7850         { "RssFilterHit", 42, 1 },
7851         { "Tid", 32, 10 },
7852         { "InitTcb", 31, 1 },
7853         { "LineNumber", 24, 7 },
7854         { "Emsg", 23, 1 },
7855         { "EdataOut", 22, 1 },
7856         { "Cmsg", 21, 1 },
7857         { "CdataOut", 20, 1 },
7858         { "EreadPdu", 19, 1 },
7859         { "CreadPdu", 18, 1 },
7860         { "TunnelPkt", 17, 1 },
7861         { "RcfPeerFin", 16, 1 },
7862         { "RcfReasonOut", 12, 4 },
7863         { "TxCchannel", 10, 2 },
7864         { "RcfTxChannel", 8, 2 },
7865         { "RxEchannel", 6, 2 },
7866         { "RcfRxChannel", 5, 1 },
7867         { "RcfDataOutSrdy", 4, 1 },
7868         { "RxDvld", 3, 1 },
7869         { "RxOoDvld", 2, 1 },
7870         { "RxCongestion", 1, 1 },
7871         { "TxCongestion", 0, 1 },
7872         { NULL }
7873 };
7874
7875 static const struct field_desc tp_la1[] = {
7876         { "CplCmdIn", 56, 8 },
7877         { "CplCmdOut", 48, 8 },
7878         { "ESynOut", 47, 1 },
7879         { "EAckOut", 46, 1 },
7880         { "EFinOut", 45, 1 },
7881         { "ERstOut", 44, 1 },
7882         { "SynIn", 43, 1 },
7883         { "AckIn", 42, 1 },
7884         { "FinIn", 41, 1 },
7885         { "RstIn", 40, 1 },
7886         { "DataIn", 39, 1 },
7887         { "DataInVld", 38, 1 },
7888         { "PadIn", 37, 1 },
7889         { "RxBufEmpty", 36, 1 },
7890         { "RxDdp", 35, 1 },
7891         { "RxFbCongestion", 34, 1 },
7892         { "TxFbCongestion", 33, 1 },
7893         { "TxPktSumSrdy", 32, 1 },
7894         { "RcfUlpType", 28, 4 },
7895         { "Eread", 27, 1 },
7896         { "Ebypass", 26, 1 },
7897         { "Esave", 25, 1 },
7898         { "Static0", 24, 1 },
7899         { "Cread", 23, 1 },
7900         { "Cbypass", 22, 1 },
7901         { "Csave", 21, 1 },
7902         { "CPktOut", 20, 1 },
7903         { "RxPagePoolFull", 18, 2 },
7904         { "RxLpbkPkt", 17, 1 },
7905         { "TxLpbkPkt", 16, 1 },
7906         { "RxVfValid", 15, 1 },
7907         { "SynLearned", 14, 1 },
7908         { "SetDelEntry", 13, 1 },
7909         { "SetInvEntry", 12, 1 },
7910         { "CpcmdDvld", 11, 1 },
7911         { "CpcmdSave", 10, 1 },
7912         { "RxPstructsFull", 8, 2 },
7913         { "EpcmdDvld", 7, 1 },
7914         { "EpcmdFlush", 6, 1 },
7915         { "EpcmdTrimPrefix", 5, 1 },
7916         { "EpcmdTrimPostfix", 4, 1 },
7917         { "ERssIp4Pkt", 3, 1 },
7918         { "ERssIp6Pkt", 2, 1 },
7919         { "ERssTcpUdpPkt", 1, 1 },
7920         { "ERssFceFipPkt", 0, 1 },
7921         { NULL }
7922 };
7923
7924 static const struct field_desc tp_la2[] = {
7925         { "CplCmdIn", 56, 8 },
7926         { "MpsVfVld", 55, 1 },
7927         { "MpsPf", 52, 3 },
7928         { "MpsVf", 44, 8 },
7929         { "SynIn", 43, 1 },
7930         { "AckIn", 42, 1 },
7931         { "FinIn", 41, 1 },
7932         { "RstIn", 40, 1 },
7933         { "DataIn", 39, 1 },
7934         { "DataInVld", 38, 1 },
7935         { "PadIn", 37, 1 },
7936         { "RxBufEmpty", 36, 1 },
7937         { "RxDdp", 35, 1 },
7938         { "RxFbCongestion", 34, 1 },
7939         { "TxFbCongestion", 33, 1 },
7940         { "TxPktSumSrdy", 32, 1 },
7941         { "RcfUlpType", 28, 4 },
7942         { "Eread", 27, 1 },
7943         { "Ebypass", 26, 1 },
7944         { "Esave", 25, 1 },
7945         { "Static0", 24, 1 },
7946         { "Cread", 23, 1 },
7947         { "Cbypass", 22, 1 },
7948         { "Csave", 21, 1 },
7949         { "CPktOut", 20, 1 },
7950         { "RxPagePoolFull", 18, 2 },
7951         { "RxLpbkPkt", 17, 1 },
7952         { "TxLpbkPkt", 16, 1 },
7953         { "RxVfValid", 15, 1 },
7954         { "SynLearned", 14, 1 },
7955         { "SetDelEntry", 13, 1 },
7956         { "SetInvEntry", 12, 1 },
7957         { "CpcmdDvld", 11, 1 },
7958         { "CpcmdSave", 10, 1 },
7959         { "RxPstructsFull", 8, 2 },
7960         { "EpcmdDvld", 7, 1 },
7961         { "EpcmdFlush", 6, 1 },
7962         { "EpcmdTrimPrefix", 5, 1 },
7963         { "EpcmdTrimPostfix", 4, 1 },
7964         { "ERssIp4Pkt", 3, 1 },
7965         { "ERssIp6Pkt", 2, 1 },
7966         { "ERssTcpUdpPkt", 1, 1 },
7967         { "ERssFceFipPkt", 0, 1 },
7968         { NULL }
7969 };
7970
7971 static void
7972 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
7973 {
7974
7975         field_desc_show(sb, *p, tp_la0);
7976 }
7977
7978 static void
7979 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
7980 {
7981
7982         if (idx)
7983                 sbuf_printf(sb, "\n");
7984         field_desc_show(sb, p[0], tp_la0);
7985         if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
7986                 field_desc_show(sb, p[1], tp_la0);
7987 }
7988
7989 static void
7990 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
7991 {
7992
7993         if (idx)
7994                 sbuf_printf(sb, "\n");
7995         field_desc_show(sb, p[0], tp_la0);
7996         if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
7997                 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
7998 }
7999
8000 static int
8001 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
8002 {
8003         struct adapter *sc = arg1;
8004         struct sbuf *sb;
8005         uint64_t *buf, *p;
8006         int rc;
8007         u_int i, inc;
8008         void (*show_func)(struct sbuf *, uint64_t *, int);
8009
8010         rc = sysctl_wire_old_buffer(req, 0);
8011         if (rc != 0)
8012                 return (rc);
8013
8014         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8015         if (sb == NULL)
8016                 return (ENOMEM);
8017
8018         buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
8019
8020         t4_tp_read_la(sc, buf, NULL);
8021         p = buf;
8022
8023         switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
8024         case 2:
8025                 inc = 2;
8026                 show_func = tp_la_show2;
8027                 break;
8028         case 3:
8029                 inc = 2;
8030                 show_func = tp_la_show3;
8031                 break;
8032         default:
8033                 inc = 1;
8034                 show_func = tp_la_show;
8035         }
8036
8037         for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
8038                 (*show_func)(sb, p, i);
8039
8040         rc = sbuf_finish(sb);
8041         sbuf_delete(sb);
8042         free(buf, M_CXGBE);
8043         return (rc);
8044 }
8045
8046 static int
8047 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
8048 {
8049         struct adapter *sc = arg1;
8050         struct sbuf *sb;
8051         int rc;
8052         u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
8053
8054         rc = sysctl_wire_old_buffer(req, 0);
8055         if (rc != 0)
8056                 return (rc);
8057
8058         sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8059         if (sb == NULL)
8060                 return (ENOMEM);
8061
8062         t4_get_chan_txrate(sc, nrate, orate);
8063
8064         if (sc->chip_params->nchan > 2) {
8065                 sbuf_printf(sb, "              channel 0   channel 1"
8066                     "   channel 2   channel 3\n");
8067                 sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
8068                     nrate[0], nrate[1], nrate[2], nrate[3]);
8069                 sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
8070                     orate[0], orate[1], orate[2], orate[3]);
8071         } else {
8072                 sbuf_printf(sb, "              channel 0   channel 1\n");
8073                 sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
8074                     nrate[0], nrate[1]);
8075                 sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
8076                     orate[0], orate[1]);
8077         }
8078
8079         rc = sbuf_finish(sb);
8080         sbuf_delete(sb);
8081
8082         return (rc);
8083 }
8084
8085 static int
8086 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
8087 {
8088         struct adapter *sc = arg1;
8089         struct sbuf *sb;
8090         uint32_t *buf, *p;
8091         int rc, i;
8092
8093         rc = sysctl_wire_old_buffer(req, 0);
8094         if (rc != 0)
8095                 return (rc);
8096
8097         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8098         if (sb == NULL)
8099                 return (ENOMEM);
8100
8101         buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
8102             M_ZERO | M_WAITOK);
8103
8104         t4_ulprx_read_la(sc, buf);
8105         p = buf;
8106
8107         sbuf_printf(sb, "      Pcmd        Type   Message"
8108             "                Data");
8109         for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
8110                 sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
8111                     p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
8112         }
8113
8114         rc = sbuf_finish(sb);
8115         sbuf_delete(sb);
8116         free(buf, M_CXGBE);
8117         return (rc);
8118 }
8119
8120 static int
8121 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
8122 {
8123         struct adapter *sc = arg1;
8124         struct sbuf *sb;
8125         int rc, v;
8126
8127         MPASS(chip_id(sc) >= CHELSIO_T5);
8128
8129         rc = sysctl_wire_old_buffer(req, 0);
8130         if (rc != 0)
8131                 return (rc);
8132
8133         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8134         if (sb == NULL)
8135                 return (ENOMEM);
8136
8137         v = t4_read_reg(sc, A_SGE_STAT_CFG);
8138         if (G_STATSOURCE_T5(v) == 7) {
8139                 int mode;
8140
8141                 mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v);
8142                 if (mode == 0) {
8143                         sbuf_printf(sb, "total %d, incomplete %d",
8144                             t4_read_reg(sc, A_SGE_STAT_TOTAL),
8145                             t4_read_reg(sc, A_SGE_STAT_MATCH));
8146                 } else if (mode == 1) {
8147                         sbuf_printf(sb, "total %d, data overflow %d",
8148                             t4_read_reg(sc, A_SGE_STAT_TOTAL),
8149                             t4_read_reg(sc, A_SGE_STAT_MATCH));
8150                 } else {
8151                         sbuf_printf(sb, "unknown mode %d", mode);
8152                 }
8153         }
8154         rc = sbuf_finish(sb);
8155         sbuf_delete(sb);
8156
8157         return (rc);
8158 }
8159
8160 static int
8161 sysctl_tc_params(SYSCTL_HANDLER_ARGS)
8162 {
8163         struct adapter *sc = arg1;
8164         struct tx_cl_rl_params tc;
8165         struct sbuf *sb;
8166         int i, rc, port_id, mbps, gbps;
8167
8168         rc = sysctl_wire_old_buffer(req, 0);
8169         if (rc != 0)
8170                 return (rc);
8171
8172         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8173         if (sb == NULL)
8174                 return (ENOMEM);
8175
8176         port_id = arg2 >> 16;
8177         MPASS(port_id < sc->params.nports);
8178         MPASS(sc->port[port_id] != NULL);
8179         i = arg2 & 0xffff;
8180         MPASS(i < sc->chip_params->nsched_cls);
8181
8182         mtx_lock(&sc->tc_lock);
8183         tc = sc->port[port_id]->sched_params->cl_rl[i];
8184         mtx_unlock(&sc->tc_lock);
8185
8186         if (tc.flags & TX_CLRL_ERROR) {
8187                 sbuf_printf(sb, "error");
8188                 goto done;
8189         }
8190
8191         if (tc.ratemode == SCHED_CLASS_RATEMODE_REL) {
8192                 /* XXX: top speed or actual link speed? */
8193                 gbps = port_top_speed(sc->port[port_id]);
8194                 sbuf_printf(sb, " %u%% of %uGbps", tc.maxrate, gbps);
8195         } else if (tc.ratemode == SCHED_CLASS_RATEMODE_ABS) {
8196                 switch (tc.rateunit) {
8197                 case SCHED_CLASS_RATEUNIT_BITS:
8198                         mbps = tc.maxrate / 1000;
8199                         gbps = tc.maxrate / 1000000;
8200                         if (tc.maxrate == gbps * 1000000)
8201                                 sbuf_printf(sb, " %uGbps", gbps);
8202                         else if (tc.maxrate == mbps * 1000)
8203                                 sbuf_printf(sb, " %uMbps", mbps);
8204                         else
8205                                 sbuf_printf(sb, " %uKbps", tc.maxrate);
8206                         break;
8207                 case SCHED_CLASS_RATEUNIT_PKTS:
8208                         sbuf_printf(sb, " %upps", tc.maxrate);
8209                         break;
8210                 default:
8211                         rc = ENXIO;
8212                         goto done;
8213                 }
8214         }
8215
8216         switch (tc.mode) {
8217         case SCHED_CLASS_MODE_CLASS:
8218                 sbuf_printf(sb, " aggregate");
8219                 break;
8220         case SCHED_CLASS_MODE_FLOW:
8221                 sbuf_printf(sb, " per-flow");
8222                 break;
8223         default:
8224                 rc = ENXIO;
8225                 goto done;
8226         }
8227
8228 done:
8229         if (rc == 0)
8230                 rc = sbuf_finish(sb);
8231         sbuf_delete(sb);
8232
8233         return (rc);
8234 }
8235 #endif
8236
8237 #ifdef TCP_OFFLOAD
8238 static void
8239 unit_conv(char *buf, size_t len, u_int val, u_int factor)
8240 {
8241         u_int rem = val % factor;
8242
8243         if (rem == 0)
8244                 snprintf(buf, len, "%u", val / factor);
8245         else {
8246                 while (rem % 10 == 0)
8247                         rem /= 10;
8248                 snprintf(buf, len, "%u.%u", val / factor, rem);
8249         }
8250 }
8251
8252 static int
8253 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
8254 {
8255         struct adapter *sc = arg1;
8256         char buf[16];
8257         u_int res, re;
8258         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8259
8260         res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
8261         switch (arg2) {
8262         case 0:
8263                 /* timer_tick */
8264                 re = G_TIMERRESOLUTION(res);
8265                 break;
8266         case 1:
8267                 /* TCP timestamp tick */
8268                 re = G_TIMESTAMPRESOLUTION(res);
8269                 break;
8270         case 2:
8271                 /* DACK tick */
8272                 re = G_DELAYEDACKRESOLUTION(res);
8273                 break;
8274         default:
8275                 return (EDOOFUS);
8276         }
8277
8278         unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
8279
8280         return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
8281 }
8282
8283 static int
8284 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
8285 {
8286         struct adapter *sc = arg1;
8287         u_int res, dack_re, v;
8288         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8289
8290         res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
8291         dack_re = G_DELAYEDACKRESOLUTION(res);
8292         v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER);
8293
8294         return (sysctl_handle_int(oidp, &v, 0, req));
8295 }
8296
8297 static int
8298 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
8299 {
8300         struct adapter *sc = arg1;
8301         int reg = arg2;
8302         u_int tre;
8303         u_long tp_tick_us, v;
8304         u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
8305
8306         MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
8307             reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
8308             reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
8309             reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
8310
8311         tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
8312         tp_tick_us = (cclk_ps << tre) / 1000000;
8313
8314         if (reg == A_TP_INIT_SRTT)
8315                 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
8316         else
8317                 v = tp_tick_us * t4_read_reg(sc, reg);
8318
8319         return (sysctl_handle_long(oidp, &v, 0, req));
8320 }
8321
8322 /*
8323  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
8324  * passed to this function.
8325  */
8326 static int
8327 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
8328 {
8329         struct adapter *sc = arg1;
8330         int idx = arg2;
8331         u_int v;
8332
8333         MPASS(idx >= 0 && idx <= 24);
8334
8335         v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
8336
8337         return (sysctl_handle_int(oidp, &v, 0, req));
8338 }
8339
8340 static int
8341 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
8342 {
8343         struct adapter *sc = arg1;
8344         int idx = arg2;
8345         u_int shift, v, r;
8346
8347         MPASS(idx >= 0 && idx < 16);
8348
8349         r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
8350         shift = (idx & 3) << 3;
8351         v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
8352
8353         return (sysctl_handle_int(oidp, &v, 0, req));
8354 }
8355
8356 static int
8357 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
8358 {
8359         struct vi_info *vi = arg1;
8360         struct adapter *sc = vi->pi->adapter;
8361         int idx, rc, i;
8362         struct sge_ofld_rxq *ofld_rxq;
8363         uint8_t v;
8364
8365         idx = vi->ofld_tmr_idx;
8366
8367         rc = sysctl_handle_int(oidp, &idx, 0, req);
8368         if (rc != 0 || req->newptr == NULL)
8369                 return (rc);
8370
8371         if (idx < 0 || idx >= SGE_NTIMERS)
8372                 return (EINVAL);
8373
8374         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8375             "t4otmr");
8376         if (rc)
8377                 return (rc);
8378
8379         v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
8380         for_each_ofld_rxq(vi, i, ofld_rxq) {
8381 #ifdef atomic_store_rel_8
8382                 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
8383 #else
8384                 ofld_rxq->iq.intr_params = v;
8385 #endif
8386         }
8387         vi->ofld_tmr_idx = idx;
8388
8389         end_synchronized_op(sc, LOCK_HELD);
8390         return (0);
8391 }
8392
8393 static int
8394 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
8395 {
8396         struct vi_info *vi = arg1;
8397         struct adapter *sc = vi->pi->adapter;
8398         int idx, rc;
8399
8400         idx = vi->ofld_pktc_idx;
8401
8402         rc = sysctl_handle_int(oidp, &idx, 0, req);
8403         if (rc != 0 || req->newptr == NULL)
8404                 return (rc);
8405
8406         if (idx < -1 || idx >= SGE_NCOUNTERS)
8407                 return (EINVAL);
8408
8409         rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8410             "t4opktc");
8411         if (rc)
8412                 return (rc);
8413
8414         if (vi->flags & VI_INIT_DONE)
8415                 rc = EBUSY; /* cannot be changed once the queues are created */
8416         else
8417                 vi->ofld_pktc_idx = idx;
8418
8419         end_synchronized_op(sc, LOCK_HELD);
8420         return (rc);
8421 }
8422 #endif
8423
8424 static uint32_t
8425 fconf_iconf_to_mode(uint32_t fconf, uint32_t iconf)
8426 {
8427         uint32_t mode;
8428
8429         mode = T4_FILTER_IPv4 | T4_FILTER_IPv6 | T4_FILTER_IP_SADDR |
8430             T4_FILTER_IP_DADDR | T4_FILTER_IP_SPORT | T4_FILTER_IP_DPORT;
8431
8432         if (fconf & F_FRAGMENTATION)
8433                 mode |= T4_FILTER_IP_FRAGMENT;
8434
8435         if (fconf & F_MPSHITTYPE)
8436                 mode |= T4_FILTER_MPS_HIT_TYPE;
8437
8438         if (fconf & F_MACMATCH)
8439                 mode |= T4_FILTER_MAC_IDX;
8440
8441         if (fconf & F_ETHERTYPE)
8442                 mode |= T4_FILTER_ETH_TYPE;
8443
8444         if (fconf & F_PROTOCOL)
8445                 mode |= T4_FILTER_IP_PROTO;
8446
8447         if (fconf & F_TOS)
8448                 mode |= T4_FILTER_IP_TOS;
8449
8450         if (fconf & F_VLAN)
8451                 mode |= T4_FILTER_VLAN;
8452
8453         if (fconf & F_VNIC_ID) {
8454                 mode |= T4_FILTER_VNIC;
8455                 if (iconf & F_VNIC)
8456                         mode |= T4_FILTER_IC_VNIC;
8457         }
8458
8459         if (fconf & F_PORT)
8460                 mode |= T4_FILTER_PORT;
8461
8462         if (fconf & F_FCOE)
8463                 mode |= T4_FILTER_FCoE;
8464
8465         return (mode);
8466 }
8467
8468 static uint32_t
8469 mode_to_fconf(uint32_t mode)
8470 {
8471         uint32_t fconf = 0;
8472
8473         if (mode & T4_FILTER_IP_FRAGMENT)
8474                 fconf |= F_FRAGMENTATION;
8475
8476         if (mode & T4_FILTER_MPS_HIT_TYPE)
8477                 fconf |= F_MPSHITTYPE;
8478
8479         if (mode & T4_FILTER_MAC_IDX)
8480                 fconf |= F_MACMATCH;
8481
8482         if (mode & T4_FILTER_ETH_TYPE)
8483                 fconf |= F_ETHERTYPE;
8484
8485         if (mode & T4_FILTER_IP_PROTO)
8486                 fconf |= F_PROTOCOL;
8487
8488         if (mode & T4_FILTER_IP_TOS)
8489                 fconf |= F_TOS;
8490
8491         if (mode & T4_FILTER_VLAN)
8492                 fconf |= F_VLAN;
8493
8494         if (mode & T4_FILTER_VNIC)
8495                 fconf |= F_VNIC_ID;
8496
8497         if (mode & T4_FILTER_PORT)
8498                 fconf |= F_PORT;
8499
8500         if (mode & T4_FILTER_FCoE)
8501                 fconf |= F_FCOE;
8502
8503         return (fconf);
8504 }
8505
8506 static uint32_t
8507 mode_to_iconf(uint32_t mode)
8508 {
8509
8510         if (mode & T4_FILTER_IC_VNIC)
8511                 return (F_VNIC);
8512         return (0);
8513 }
8514
8515 static int check_fspec_against_fconf_iconf(struct adapter *sc,
8516     struct t4_filter_specification *fs)
8517 {
8518         struct tp_params *tpp = &sc->params.tp;
8519         uint32_t fconf = 0;
8520
8521         if (fs->val.frag || fs->mask.frag)
8522                 fconf |= F_FRAGMENTATION;
8523
8524         if (fs->val.matchtype || fs->mask.matchtype)
8525                 fconf |= F_MPSHITTYPE;
8526
8527         if (fs->val.macidx || fs->mask.macidx)
8528                 fconf |= F_MACMATCH;
8529
8530         if (fs->val.ethtype || fs->mask.ethtype)
8531                 fconf |= F_ETHERTYPE;
8532
8533         if (fs->val.proto || fs->mask.proto)
8534                 fconf |= F_PROTOCOL;
8535
8536         if (fs->val.tos || fs->mask.tos)
8537                 fconf |= F_TOS;
8538
8539         if (fs->val.vlan_vld || fs->mask.vlan_vld)
8540                 fconf |= F_VLAN;
8541
8542         if (fs->val.ovlan_vld || fs->mask.ovlan_vld) {
8543                 fconf |= F_VNIC_ID;
8544                 if (tpp->ingress_config & F_VNIC)
8545                         return (EINVAL);
8546         }
8547
8548         if (fs->val.pfvf_vld || fs->mask.pfvf_vld) {
8549                 fconf |= F_VNIC_ID;
8550                 if ((tpp->ingress_config & F_VNIC) == 0)
8551                         return (EINVAL);
8552         }
8553
8554         if (fs->val.iport || fs->mask.iport)
8555                 fconf |= F_PORT;
8556
8557         if (fs->val.fcoe || fs->mask.fcoe)
8558                 fconf |= F_FCOE;
8559
8560         if ((tpp->vlan_pri_map | fconf) != tpp->vlan_pri_map)
8561                 return (E2BIG);
8562
8563         return (0);
8564 }
8565
8566 static int
8567 get_filter_mode(struct adapter *sc, uint32_t *mode)
8568 {
8569         struct tp_params *tpp = &sc->params.tp;
8570
8571         /*
8572          * We trust the cached values of the relevant TP registers.  This means
8573          * things work reliably only if writes to those registers are always via
8574          * t4_set_filter_mode.
8575          */
8576         *mode = fconf_iconf_to_mode(tpp->vlan_pri_map, tpp->ingress_config);
8577
8578         return (0);
8579 }
8580
8581 static int
8582 set_filter_mode(struct adapter *sc, uint32_t mode)
8583 {
8584         struct tp_params *tpp = &sc->params.tp;
8585         uint32_t fconf, iconf;
8586         int rc;
8587
8588         iconf = mode_to_iconf(mode);
8589         if ((iconf ^ tpp->ingress_config) & F_VNIC) {
8590                 /*
8591                  * For now we just complain if A_TP_INGRESS_CONFIG is not
8592                  * already set to the correct value for the requested filter
8593                  * mode.  It's not clear if it's safe to write to this register
8594                  * on the fly.  (And we trust the cached value of the register).
8595                  */
8596                 return (EBUSY);
8597         }
8598
8599         fconf = mode_to_fconf(mode);
8600
8601         rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK,
8602             "t4setfm");
8603         if (rc)
8604                 return (rc);
8605
8606         if (sc->tids.ftids_in_use > 0) {
8607                 rc = EBUSY;
8608                 goto done;
8609         }
8610
8611 #ifdef TCP_OFFLOAD
8612         if (uld_active(sc, ULD_TOM)) {
8613                 rc = EBUSY;
8614                 goto done;
8615         }
8616 #endif
8617
8618         rc = -t4_set_filter_mode(sc, fconf, true);
8619 done:
8620         end_synchronized_op(sc, LOCK_HELD);
8621         return (rc);
8622 }
8623
8624 static inline uint64_t
8625 get_filter_hits(struct adapter *sc, uint32_t fid)
8626 {
8627         uint32_t tcb_addr;
8628
8629         tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) +
8630             (fid + sc->tids.ftid_base) * TCB_SIZE;
8631
8632         if (is_t4(sc)) {
8633                 uint64_t hits;
8634
8635                 read_via_memwin(sc, 0, tcb_addr + 16, (uint32_t *)&hits, 8);
8636                 return (be64toh(hits));
8637         } else {
8638                 uint32_t hits;
8639
8640                 read_via_memwin(sc, 0, tcb_addr + 24, &hits, 4);
8641                 return (be32toh(hits));
8642         }
8643 }
8644
8645 static int
8646 get_filter(struct adapter *sc, struct t4_filter *t)
8647 {
8648         int i, rc, nfilters = sc->tids.nftids;
8649         struct filter_entry *f;
8650
8651         rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK,
8652             "t4getf");
8653         if (rc)
8654                 return (rc);
8655
8656         if (sc->tids.ftids_in_use == 0 || sc->tids.ftid_tab == NULL ||
8657             t->idx >= nfilters) {
8658                 t->idx = 0xffffffff;
8659                 goto done;
8660         }
8661
8662         f = &sc->tids.ftid_tab[t->idx];
8663         for (i = t->idx; i < nfilters; i++, f++) {
8664                 if (f->valid) {
8665                         t->idx = i;
8666                         t->l2tidx = f->l2t ? f->l2t->idx : 0;
8667                         t->smtidx = f->smtidx;
8668                         if (f->fs.hitcnts)
8669                                 t->hits = get_filter_hits(sc, t->idx);
8670                         else
8671                                 t->hits = UINT64_MAX;
8672                         t->fs = f->fs;
8673
8674                         goto done;
8675                 }
8676         }
8677
8678         t->idx = 0xffffffff;
8679 done:
8680         end_synchronized_op(sc, LOCK_HELD);
8681         return (0);
8682 }
8683
8684 static int
8685 set_filter(struct adapter *sc, struct t4_filter *t)
8686 {
8687         unsigned int nfilters, nports;
8688         struct filter_entry *f;
8689         int i, rc;
8690
8691         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4setf");
8692         if (rc)
8693                 return (rc);
8694
8695         nfilters = sc->tids.nftids;
8696         nports = sc->params.nports;
8697
8698         if (nfilters == 0) {
8699                 rc = ENOTSUP;
8700                 goto done;
8701         }
8702
8703         if (t->idx >= nfilters) {
8704                 rc = EINVAL;
8705                 goto done;
8706         }
8707
8708         /* Validate against the global filter mode and ingress config */
8709         rc = check_fspec_against_fconf_iconf(sc, &t->fs);
8710         if (rc != 0)
8711                 goto done;
8712
8713         if (t->fs.action == FILTER_SWITCH && t->fs.eport >= nports) {
8714                 rc = EINVAL;
8715                 goto done;
8716         }
8717
8718         if (t->fs.val.iport >= nports) {
8719                 rc = EINVAL;
8720                 goto done;
8721         }
8722
8723         /* Can't specify an iq if not steering to it */
8724         if (!t->fs.dirsteer && t->fs.iq) {
8725                 rc = EINVAL;
8726                 goto done;
8727         }
8728
8729         /* IPv6 filter idx must be 4 aligned */
8730         if (t->fs.type == 1 &&
8731             ((t->idx & 0x3) || t->idx + 4 >= nfilters)) {
8732                 rc = EINVAL;
8733                 goto done;
8734         }
8735
8736         if (!(sc->flags & FULL_INIT_DONE) &&
8737             ((rc = adapter_full_init(sc)) != 0))
8738                 goto done;
8739
8740         if (sc->tids.ftid_tab == NULL) {
8741                 KASSERT(sc->tids.ftids_in_use == 0,
8742                     ("%s: no memory allocated but filters_in_use > 0",
8743                     __func__));
8744
8745                 sc->tids.ftid_tab = malloc(sizeof (struct filter_entry) *
8746                     nfilters, M_CXGBE, M_NOWAIT | M_ZERO);
8747                 if (sc->tids.ftid_tab == NULL) {
8748                         rc = ENOMEM;
8749                         goto done;
8750                 }
8751                 mtx_init(&sc->tids.ftid_lock, "T4 filters", 0, MTX_DEF);
8752         }
8753
8754         for (i = 0; i < 4; i++) {
8755                 f = &sc->tids.ftid_tab[t->idx + i];
8756
8757                 if (f->pending || f->valid) {
8758                         rc = EBUSY;
8759                         goto done;
8760                 }
8761                 if (f->locked) {
8762                         rc = EPERM;
8763                         goto done;
8764                 }
8765
8766                 if (t->fs.type == 0)
8767                         break;
8768         }
8769
8770         f = &sc->tids.ftid_tab[t->idx];
8771         f->fs = t->fs;
8772
8773         rc = set_filter_wr(sc, t->idx);
8774 done:
8775         end_synchronized_op(sc, 0);
8776
8777         if (rc == 0) {
8778                 mtx_lock(&sc->tids.ftid_lock);
8779                 for (;;) {
8780                         if (f->pending == 0) {
8781                                 rc = f->valid ? 0 : EIO;
8782                                 break;
8783                         }
8784
8785                         if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock,
8786                             PCATCH, "t4setfw", 0)) {
8787                                 rc = EINPROGRESS;
8788                                 break;
8789                         }
8790                 }
8791                 mtx_unlock(&sc->tids.ftid_lock);
8792         }
8793         return (rc);
8794 }
8795
8796 static int
8797 del_filter(struct adapter *sc, struct t4_filter *t)
8798 {
8799         unsigned int nfilters;
8800         struct filter_entry *f;
8801         int rc;
8802
8803         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4delf");
8804         if (rc)
8805                 return (rc);
8806
8807         nfilters = sc->tids.nftids;
8808
8809         if (nfilters == 0) {
8810                 rc = ENOTSUP;
8811                 goto done;
8812         }
8813
8814         if (sc->tids.ftid_tab == NULL || sc->tids.ftids_in_use == 0 ||
8815             t->idx >= nfilters) {
8816                 rc = EINVAL;
8817                 goto done;
8818         }
8819
8820         if (!(sc->flags & FULL_INIT_DONE)) {
8821                 rc = EAGAIN;
8822                 goto done;
8823         }
8824
8825         f = &sc->tids.ftid_tab[t->idx];
8826
8827         if (f->pending) {
8828                 rc = EBUSY;
8829                 goto done;
8830         }
8831         if (f->locked) {
8832                 rc = EPERM;
8833                 goto done;
8834         }
8835
8836         if (f->valid) {
8837                 t->fs = f->fs;  /* extra info for the caller */
8838                 rc = del_filter_wr(sc, t->idx);
8839         }
8840
8841 done:
8842         end_synchronized_op(sc, 0);
8843
8844         if (rc == 0) {
8845                 mtx_lock(&sc->tids.ftid_lock);
8846                 for (;;) {
8847                         if (f->pending == 0) {
8848                                 rc = f->valid ? EIO : 0;
8849                                 break;
8850                         }
8851
8852                         if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock,
8853                             PCATCH, "t4delfw", 0)) {
8854                                 rc = EINPROGRESS;
8855                                 break;
8856                         }
8857                 }
8858                 mtx_unlock(&sc->tids.ftid_lock);
8859         }
8860
8861         return (rc);
8862 }
8863
8864 static void
8865 clear_filter(struct filter_entry *f)
8866 {
8867         if (f->l2t)
8868                 t4_l2t_release(f->l2t);
8869
8870         bzero(f, sizeof (*f));
8871 }
8872
8873 static int
8874 set_filter_wr(struct adapter *sc, int fidx)
8875 {
8876         struct filter_entry *f = &sc->tids.ftid_tab[fidx];
8877         struct fw_filter_wr *fwr;
8878         unsigned int ftid, vnic_vld, vnic_vld_mask;
8879         struct wrq_cookie cookie;
8880
8881         ASSERT_SYNCHRONIZED_OP(sc);
8882
8883         if (f->fs.newdmac || f->fs.newvlan) {
8884                 /* This filter needs an L2T entry; allocate one. */
8885                 f->l2t = t4_l2t_alloc_switching(sc->l2t);
8886                 if (f->l2t == NULL)
8887                         return (EAGAIN);
8888                 if (t4_l2t_set_switching(sc, f->l2t, f->fs.vlan, f->fs.eport,
8889                     f->fs.dmac)) {
8890                         t4_l2t_release(f->l2t);
8891                         f->l2t = NULL;
8892                         return (ENOMEM);
8893                 }
8894         }
8895
8896         /* Already validated against fconf, iconf */
8897         MPASS((f->fs.val.pfvf_vld & f->fs.val.ovlan_vld) == 0);
8898         MPASS((f->fs.mask.pfvf_vld & f->fs.mask.ovlan_vld) == 0);
8899         if (f->fs.val.pfvf_vld || f->fs.val.ovlan_vld)
8900                 vnic_vld = 1;
8901         else
8902                 vnic_vld = 0;
8903         if (f->fs.mask.pfvf_vld || f->fs.mask.ovlan_vld)
8904                 vnic_vld_mask = 1;
8905         else
8906                 vnic_vld_mask = 0;
8907
8908         ftid = sc->tids.ftid_base + fidx;
8909
8910         fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie);
8911         if (fwr == NULL)
8912                 return (ENOMEM);
8913         bzero(fwr, sizeof(*fwr));
8914
8915         fwr->op_pkd = htobe32(V_FW_WR_OP(FW_FILTER_WR));
8916         fwr->len16_pkd = htobe32(FW_LEN16(*fwr));
8917         fwr->tid_to_iq =
8918             htobe32(V_FW_FILTER_WR_TID(ftid) |
8919                 V_FW_FILTER_WR_RQTYPE(f->fs.type) |
8920                 V_FW_FILTER_WR_NOREPLY(0) |
8921                 V_FW_FILTER_WR_IQ(f->fs.iq));
8922         fwr->del_filter_to_l2tix =
8923             htobe32(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
8924                 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
8925                 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
8926                 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
8927                 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
8928                 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
8929                 V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
8930                 V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
8931                 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
8932                     f->fs.newvlan == VLAN_REWRITE) |
8933                 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
8934                     f->fs.newvlan == VLAN_REWRITE) |
8935                 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
8936                 V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
8937                 V_FW_FILTER_WR_PRIO(f->fs.prio) |
8938                 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
8939         fwr->ethtype = htobe16(f->fs.val.ethtype);
8940         fwr->ethtypem = htobe16(f->fs.mask.ethtype);
8941         fwr->frag_to_ovlan_vldm =
8942             (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
8943                 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
8944                 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.vlan_vld) |
8945                 V_FW_FILTER_WR_OVLAN_VLD(vnic_vld) |
8946                 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.vlan_vld) |
8947                 V_FW_FILTER_WR_OVLAN_VLDM(vnic_vld_mask));
8948         fwr->smac_sel = 0;
8949         fwr->rx_chan_rx_rpl_iq = htobe16(V_FW_FILTER_WR_RX_CHAN(0) |
8950             V_FW_FILTER_WR_RX_RPL_IQ(sc->sge.fwq.abs_id));
8951         fwr->maci_to_matchtypem =
8952             htobe32(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
8953                 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
8954                 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
8955                 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
8956                 V_FW_FILTER_WR_PORT(f->fs.val.iport) |
8957                 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
8958                 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
8959                 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
8960         fwr->ptcl = f->fs.val.proto;
8961         fwr->ptclm = f->fs.mask.proto;
8962         fwr->ttyp = f->fs.val.tos;
8963         fwr->ttypm = f->fs.mask.tos;
8964         fwr->ivlan = htobe16(f->fs.val.vlan);
8965         fwr->ivlanm = htobe16(f->fs.mask.vlan);
8966         fwr->ovlan = htobe16(f->fs.val.vnic);
8967         fwr->ovlanm = htobe16(f->fs.mask.vnic);
8968         bcopy(f->fs.val.dip, fwr->lip, sizeof (fwr->lip));
8969         bcopy(f->fs.mask.dip, fwr->lipm, sizeof (fwr->lipm));
8970         bcopy(f->fs.val.sip, fwr->fip, sizeof (fwr->fip));
8971         bcopy(f->fs.mask.sip, fwr->fipm, sizeof (fwr->fipm));
8972         fwr->lp = htobe16(f->fs.val.dport);
8973         fwr->lpm = htobe16(f->fs.mask.dport);
8974         fwr->fp = htobe16(f->fs.val.sport);
8975         fwr->fpm = htobe16(f->fs.mask.sport);
8976         if (f->fs.newsmac)
8977                 bcopy(f->fs.smac, fwr->sma, sizeof (fwr->sma));
8978
8979         f->pending = 1;
8980         sc->tids.ftids_in_use++;
8981
8982         commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie);
8983         return (0);
8984 }
8985
8986 static int
8987 del_filter_wr(struct adapter *sc, int fidx)
8988 {
8989         struct filter_entry *f = &sc->tids.ftid_tab[fidx];
8990         struct fw_filter_wr *fwr;
8991         unsigned int ftid;
8992         struct wrq_cookie cookie;
8993
8994         ftid = sc->tids.ftid_base + fidx;
8995
8996         fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie);
8997         if (fwr == NULL)
8998                 return (ENOMEM);
8999         bzero(fwr, sizeof (*fwr));
9000
9001         t4_mk_filtdelwr(ftid, fwr, sc->sge.fwq.abs_id);
9002
9003         f->pending = 1;
9004         commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie);
9005         return (0);
9006 }
9007
9008 int
9009 t4_filter_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
9010 {
9011         struct adapter *sc = iq->adapter;
9012         const struct cpl_set_tcb_rpl *rpl = (const void *)(rss + 1);
9013         unsigned int idx = GET_TID(rpl);
9014         unsigned int rc;
9015         struct filter_entry *f;
9016
9017         KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
9018             rss->opcode));
9019         MPASS(iq == &sc->sge.fwq);
9020         MPASS(is_ftid(sc, idx));
9021
9022         idx -= sc->tids.ftid_base;
9023         f = &sc->tids.ftid_tab[idx];
9024         rc = G_COOKIE(rpl->cookie);
9025
9026         mtx_lock(&sc->tids.ftid_lock);
9027         if (rc == FW_FILTER_WR_FLT_ADDED) {
9028                 KASSERT(f->pending, ("%s: filter[%u] isn't pending.",
9029                     __func__, idx));
9030                 f->smtidx = (be64toh(rpl->oldval) >> 24) & 0xff;
9031                 f->pending = 0;  /* asynchronous setup completed */
9032                 f->valid = 1;
9033         } else {
9034                 if (rc != FW_FILTER_WR_FLT_DELETED) {
9035                         /* Add or delete failed, display an error */
9036                         log(LOG_ERR,
9037                             "filter %u setup failed with error %u\n",
9038                             idx, rc);
9039                 }
9040
9041                 clear_filter(f);
9042                 sc->tids.ftids_in_use--;
9043         }
9044         wakeup(&sc->tids.ftid_tab);
9045         mtx_unlock(&sc->tids.ftid_lock);
9046
9047         return (0);
9048 }
9049
9050 static int
9051 set_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
9052 {
9053
9054         MPASS(iq->set_tcb_rpl != NULL);
9055         return (iq->set_tcb_rpl(iq, rss, m));
9056 }
9057
9058 static int
9059 l2t_write_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
9060 {
9061
9062         MPASS(iq->l2t_write_rpl != NULL);
9063         return (iq->l2t_write_rpl(iq, rss, m));
9064 }
9065
9066 static int
9067 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
9068 {
9069         int rc;
9070
9071         if (cntxt->cid > M_CTXTQID)
9072                 return (EINVAL);
9073
9074         if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
9075             cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
9076                 return (EINVAL);
9077
9078         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
9079         if (rc)
9080                 return (rc);
9081
9082         if (sc->flags & FW_OK) {
9083                 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
9084                     &cntxt->data[0]);
9085                 if (rc == 0)
9086                         goto done;
9087         }
9088
9089         /*
9090          * Read via firmware failed or wasn't even attempted.  Read directly via
9091          * the backdoor.
9092          */
9093         rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
9094 done:
9095         end_synchronized_op(sc, 0);
9096         return (rc);
9097 }
9098
9099 static int
9100 load_fw(struct adapter *sc, struct t4_data *fw)
9101 {
9102         int rc;
9103         uint8_t *fw_data;
9104
9105         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
9106         if (rc)
9107                 return (rc);
9108
9109         /*
9110          * The firmware, with the sole exception of the memory parity error
9111          * handler, runs from memory and not flash.  It is almost always safe to
9112          * install a new firmware on a running system.  Just set bit 1 in
9113          * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
9114          */
9115         if (sc->flags & FULL_INIT_DONE &&
9116             (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
9117                 rc = EBUSY;
9118                 goto done;
9119         }
9120
9121         fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
9122         if (fw_data == NULL) {
9123                 rc = ENOMEM;
9124                 goto done;
9125         }
9126
9127         rc = copyin(fw->data, fw_data, fw->len);
9128         if (rc == 0)
9129                 rc = -t4_load_fw(sc, fw_data, fw->len);
9130
9131         free(fw_data, M_CXGBE);
9132 done:
9133         end_synchronized_op(sc, 0);
9134         return (rc);
9135 }
9136
9137 static int
9138 load_cfg(struct adapter *sc, struct t4_data *cfg)
9139 {
9140         int rc;
9141         uint8_t *cfg_data = NULL;
9142
9143         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9144         if (rc)
9145                 return (rc);
9146
9147         if (cfg->len == 0) {
9148                 /* clear */
9149                 rc = -t4_load_cfg(sc, NULL, 0);
9150                 goto done;
9151         }
9152
9153         cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
9154         if (cfg_data == NULL) {
9155                 rc = ENOMEM;
9156                 goto done;
9157         }
9158
9159         rc = copyin(cfg->data, cfg_data, cfg->len);
9160         if (rc == 0)
9161                 rc = -t4_load_cfg(sc, cfg_data, cfg->len);
9162
9163         free(cfg_data, M_CXGBE);
9164 done:
9165         end_synchronized_op(sc, 0);
9166         return (rc);
9167 }
9168
9169 static int
9170 load_boot(struct adapter *sc, struct t4_bootrom *br)
9171 {
9172         int rc;
9173         uint8_t *br_data = NULL;
9174         u_int offset;
9175
9176         if (br->len > 1024 * 1024)
9177                 return (EFBIG);
9178
9179         if (br->pf_offset == 0) {
9180                 /* pfidx */
9181                 if (br->pfidx_addr > 7)
9182                         return (EINVAL);
9183                 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
9184                     A_PCIE_PF_EXPROM_OFST)));
9185         } else if (br->pf_offset == 1) {
9186                 /* offset */
9187                 offset = G_OFFSET(br->pfidx_addr);
9188         } else {
9189                 return (EINVAL);
9190         }
9191
9192         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
9193         if (rc)
9194                 return (rc);
9195
9196         if (br->len == 0) {
9197                 /* clear */
9198                 rc = -t4_load_boot(sc, NULL, offset, 0);
9199                 goto done;
9200         }
9201
9202         br_data = malloc(br->len, M_CXGBE, M_WAITOK);
9203         if (br_data == NULL) {
9204                 rc = ENOMEM;
9205                 goto done;
9206         }
9207
9208         rc = copyin(br->data, br_data, br->len);
9209         if (rc == 0)
9210                 rc = -t4_load_boot(sc, br_data, offset, br->len);
9211
9212         free(br_data, M_CXGBE);
9213 done:
9214         end_synchronized_op(sc, 0);
9215         return (rc);
9216 }
9217
9218 static int
9219 load_bootcfg(struct adapter *sc, struct t4_data *bc)
9220 {
9221         int rc;
9222         uint8_t *bc_data = NULL;
9223
9224         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9225         if (rc)
9226                 return (rc);
9227
9228         if (bc->len == 0) {
9229                 /* clear */
9230                 rc = -t4_load_bootcfg(sc, NULL, 0);
9231                 goto done;
9232         }
9233
9234         bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
9235         if (bc_data == NULL) {
9236                 rc = ENOMEM;
9237                 goto done;
9238         }
9239
9240         rc = copyin(bc->data, bc_data, bc->len);
9241         if (rc == 0)
9242                 rc = -t4_load_bootcfg(sc, bc_data, bc->len);
9243
9244         free(bc_data, M_CXGBE);
9245 done:
9246         end_synchronized_op(sc, 0);
9247         return (rc);
9248 }
9249
9250 static int
9251 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
9252 {
9253         int rc;
9254         struct cudbg_init *cudbg;
9255         void *handle, *buf;
9256
9257         /* buf is large, don't block if no memory is available */
9258         buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
9259         if (buf == NULL)
9260                 return (ENOMEM);
9261
9262         handle = cudbg_alloc_handle();
9263         if (handle == NULL) {
9264                 rc = ENOMEM;
9265                 goto done;
9266         }
9267
9268         cudbg = cudbg_get_init(handle);
9269         cudbg->adap = sc;
9270         cudbg->print = (cudbg_print_cb)printf;
9271
9272 #ifndef notyet
9273         device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
9274             __func__, dump->wr_flash, dump->len, dump->data);
9275 #endif
9276
9277         if (dump->wr_flash)
9278                 cudbg->use_flash = 1;
9279         MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
9280         memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
9281
9282         rc = cudbg_collect(handle, buf, &dump->len);
9283         if (rc != 0)
9284                 goto done;
9285
9286         rc = copyout(buf, dump->data, dump->len);
9287 done:
9288         cudbg_free_handle(handle);
9289         free(buf, M_CXGBE);
9290         return (rc);
9291 }
9292
9293 #define MAX_READ_BUF_SIZE (128 * 1024)
9294 static int
9295 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
9296 {
9297         uint32_t addr, remaining, n;
9298         uint32_t *buf;
9299         int rc;
9300         uint8_t *dst;
9301
9302         rc = validate_mem_range(sc, mr->addr, mr->len);
9303         if (rc != 0)
9304                 return (rc);
9305
9306         buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
9307         addr = mr->addr;
9308         remaining = mr->len;
9309         dst = (void *)mr->data;
9310
9311         while (remaining) {
9312                 n = min(remaining, MAX_READ_BUF_SIZE);
9313                 read_via_memwin(sc, 2, addr, buf, n);
9314
9315                 rc = copyout(buf, dst, n);
9316                 if (rc != 0)
9317                         break;
9318
9319                 dst += n;
9320                 remaining -= n;
9321                 addr += n;
9322         }
9323
9324         free(buf, M_CXGBE);
9325         return (rc);
9326 }
9327 #undef MAX_READ_BUF_SIZE
9328
9329 static int
9330 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
9331 {
9332         int rc;
9333
9334         if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
9335                 return (EINVAL);
9336
9337         if (i2cd->len > sizeof(i2cd->data))
9338                 return (EFBIG);
9339
9340         rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
9341         if (rc)
9342                 return (rc);
9343         rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
9344             i2cd->offset, i2cd->len, &i2cd->data[0]);
9345         end_synchronized_op(sc, 0);
9346
9347         return (rc);
9348 }
9349
9350 int
9351 t4_os_find_pci_capability(struct adapter *sc, int cap)
9352 {
9353         int i;
9354
9355         return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
9356 }
9357
9358 int
9359 t4_os_pci_save_state(struct adapter *sc)
9360 {
9361         device_t dev;
9362         struct pci_devinfo *dinfo;
9363
9364         dev = sc->dev;
9365         dinfo = device_get_ivars(dev);
9366
9367         pci_cfg_save(dev, dinfo, 0);
9368         return (0);
9369 }
9370
9371 int
9372 t4_os_pci_restore_state(struct adapter *sc)
9373 {
9374         device_t dev;
9375         struct pci_devinfo *dinfo;
9376
9377         dev = sc->dev;
9378         dinfo = device_get_ivars(dev);
9379
9380         pci_cfg_restore(dev, dinfo);
9381         return (0);
9382 }
9383
9384 void
9385 t4_os_portmod_changed(struct port_info *pi)
9386 {
9387         struct adapter *sc = pi->adapter;
9388         struct vi_info *vi;
9389         struct ifnet *ifp;
9390         static const char *mod_str[] = {
9391                 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
9392         };
9393
9394         PORT_LOCK(pi);
9395         build_medialist(pi, &pi->media);
9396         PORT_UNLOCK(pi);
9397         vi = &pi->vi[0];
9398         if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
9399                 init_l1cfg(pi);
9400                 end_synchronized_op(sc, LOCK_HELD);
9401         }
9402
9403         ifp = vi->ifp;
9404         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
9405                 if_printf(ifp, "transceiver unplugged.\n");
9406         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
9407                 if_printf(ifp, "unknown transceiver inserted.\n");
9408         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
9409                 if_printf(ifp, "unsupported transceiver inserted.\n");
9410         else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
9411                 if_printf(ifp, "%dGbps %s transceiver inserted.\n",
9412                     port_top_speed(pi), mod_str[pi->mod_type]);
9413         } else {
9414                 if_printf(ifp, "transceiver (type %d) inserted.\n",
9415                     pi->mod_type);
9416         }
9417 }
9418
9419 void
9420 t4_os_link_changed(struct port_info *pi)
9421 {
9422         struct vi_info *vi;
9423         struct ifnet *ifp;
9424         struct link_config *lc;
9425         int v;
9426
9427         for_each_vi(pi, v, vi) {
9428                 ifp = vi->ifp;
9429                 if (ifp == NULL)
9430                         continue;
9431
9432                 lc = &pi->link_cfg;
9433                 if (lc->link_ok) {
9434                         ifp->if_baudrate = IF_Mbps(lc->speed);
9435                         if_link_state_change(ifp, LINK_STATE_UP);
9436                 } else {
9437                         if_link_state_change(ifp, LINK_STATE_DOWN);
9438                 }
9439         }
9440 }
9441
9442 void
9443 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
9444 {
9445         struct adapter *sc;
9446
9447         sx_slock(&t4_list_lock);
9448         SLIST_FOREACH(sc, &t4_list, link) {
9449                 /*
9450                  * func should not make any assumptions about what state sc is
9451                  * in - the only guarantee is that sc->sc_lock is a valid lock.
9452                  */
9453                 func(sc, arg);
9454         }
9455         sx_sunlock(&t4_list_lock);
9456 }
9457
9458 static int
9459 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
9460     struct thread *td)
9461 {
9462         int rc;
9463         struct adapter *sc = dev->si_drv1;
9464
9465         rc = priv_check(td, PRIV_DRIVER);
9466         if (rc != 0)
9467                 return (rc);
9468
9469         switch (cmd) {
9470         case CHELSIO_T4_GETREG: {
9471                 struct t4_reg *edata = (struct t4_reg *)data;
9472
9473                 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
9474                         return (EFAULT);
9475
9476                 if (edata->size == 4)
9477                         edata->val = t4_read_reg(sc, edata->addr);
9478                 else if (edata->size == 8)
9479                         edata->val = t4_read_reg64(sc, edata->addr);
9480                 else
9481                         return (EINVAL);
9482
9483                 break;
9484         }
9485         case CHELSIO_T4_SETREG: {
9486                 struct t4_reg *edata = (struct t4_reg *)data;
9487
9488                 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
9489                         return (EFAULT);
9490
9491                 if (edata->size == 4) {
9492                         if (edata->val & 0xffffffff00000000)
9493                                 return (EINVAL);
9494                         t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
9495                 } else if (edata->size == 8)
9496                         t4_write_reg64(sc, edata->addr, edata->val);
9497                 else
9498                         return (EINVAL);
9499                 break;
9500         }
9501         case CHELSIO_T4_REGDUMP: {
9502                 struct t4_regdump *regs = (struct t4_regdump *)data;
9503                 int reglen = t4_get_regs_len(sc);
9504                 uint8_t *buf;
9505
9506                 if (regs->len < reglen) {
9507                         regs->len = reglen; /* hint to the caller */
9508                         return (ENOBUFS);
9509                 }
9510
9511                 regs->len = reglen;
9512                 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
9513                 get_regs(sc, regs, buf);
9514                 rc = copyout(buf, regs->data, reglen);
9515                 free(buf, M_CXGBE);
9516                 break;
9517         }
9518         case CHELSIO_T4_GET_FILTER_MODE:
9519                 rc = get_filter_mode(sc, (uint32_t *)data);
9520                 break;
9521         case CHELSIO_T4_SET_FILTER_MODE:
9522                 rc = set_filter_mode(sc, *(uint32_t *)data);
9523                 break;
9524         case CHELSIO_T4_GET_FILTER:
9525                 rc = get_filter(sc, (struct t4_filter *)data);
9526                 break;
9527         case CHELSIO_T4_SET_FILTER:
9528                 rc = set_filter(sc, (struct t4_filter *)data);
9529                 break;
9530         case CHELSIO_T4_DEL_FILTER:
9531                 rc = del_filter(sc, (struct t4_filter *)data);
9532                 break;
9533         case CHELSIO_T4_GET_SGE_CONTEXT:
9534                 rc = get_sge_context(sc, (struct t4_sge_context *)data);
9535                 break;
9536         case CHELSIO_T4_LOAD_FW:
9537                 rc = load_fw(sc, (struct t4_data *)data);
9538                 break;
9539         case CHELSIO_T4_GET_MEM:
9540                 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
9541                 break;
9542         case CHELSIO_T4_GET_I2C:
9543                 rc = read_i2c(sc, (struct t4_i2c_data *)data);
9544                 break;
9545         case CHELSIO_T4_CLEAR_STATS: {
9546                 int i, v;
9547                 u_int port_id = *(uint32_t *)data;
9548                 struct port_info *pi;
9549                 struct vi_info *vi;
9550
9551                 if (port_id >= sc->params.nports)
9552                         return (EINVAL);
9553                 pi = sc->port[port_id];
9554                 if (pi == NULL)
9555                         return (EIO);
9556
9557                 /* MAC stats */
9558                 t4_clr_port_stats(sc, pi->tx_chan);
9559                 pi->tx_parse_error = 0;
9560                 mtx_lock(&sc->reg_lock);
9561                 for_each_vi(pi, v, vi) {
9562                         if (vi->flags & VI_INIT_DONE)
9563                                 t4_clr_vi_stats(sc, vi->viid);
9564                 }
9565                 mtx_unlock(&sc->reg_lock);
9566
9567                 /*
9568                  * Since this command accepts a port, clear stats for
9569                  * all VIs on this port.
9570                  */
9571                 for_each_vi(pi, v, vi) {
9572                         if (vi->flags & VI_INIT_DONE) {
9573                                 struct sge_rxq *rxq;
9574                                 struct sge_txq *txq;
9575                                 struct sge_wrq *wrq;
9576
9577                                 for_each_rxq(vi, i, rxq) {
9578 #if defined(INET) || defined(INET6)
9579                                         rxq->lro.lro_queued = 0;
9580                                         rxq->lro.lro_flushed = 0;
9581 #endif
9582                                         rxq->rxcsum = 0;
9583                                         rxq->vlan_extraction = 0;
9584                                 }
9585
9586                                 for_each_txq(vi, i, txq) {
9587                                         txq->txcsum = 0;
9588                                         txq->tso_wrs = 0;
9589                                         txq->vlan_insertion = 0;
9590                                         txq->imm_wrs = 0;
9591                                         txq->sgl_wrs = 0;
9592                                         txq->txpkt_wrs = 0;
9593                                         txq->txpkts0_wrs = 0;
9594                                         txq->txpkts1_wrs = 0;
9595                                         txq->txpkts0_pkts = 0;
9596                                         txq->txpkts1_pkts = 0;
9597                                         mp_ring_reset_stats(txq->r);
9598                                 }
9599
9600 #ifdef TCP_OFFLOAD
9601                                 /* nothing to clear for each ofld_rxq */
9602
9603                                 for_each_ofld_txq(vi, i, wrq) {
9604                                         wrq->tx_wrs_direct = 0;
9605                                         wrq->tx_wrs_copied = 0;
9606                                 }
9607 #endif
9608
9609                                 if (IS_MAIN_VI(vi)) {
9610                                         wrq = &sc->sge.ctrlq[pi->port_id];
9611                                         wrq->tx_wrs_direct = 0;
9612                                         wrq->tx_wrs_copied = 0;
9613                                 }
9614                         }
9615                 }
9616                 break;
9617         }
9618         case CHELSIO_T4_SCHED_CLASS:
9619                 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
9620                 break;
9621         case CHELSIO_T4_SCHED_QUEUE:
9622                 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
9623                 break;
9624         case CHELSIO_T4_GET_TRACER:
9625                 rc = t4_get_tracer(sc, (struct t4_tracer *)data);
9626                 break;
9627         case CHELSIO_T4_SET_TRACER:
9628                 rc = t4_set_tracer(sc, (struct t4_tracer *)data);
9629                 break;
9630         case CHELSIO_T4_LOAD_CFG:
9631                 rc = load_cfg(sc, (struct t4_data *)data);
9632                 break;
9633         case CHELSIO_T4_LOAD_BOOT:
9634                 rc = load_boot(sc, (struct t4_bootrom *)data);
9635                 break;
9636         case CHELSIO_T4_LOAD_BOOTCFG:
9637                 rc = load_bootcfg(sc, (struct t4_data *)data);
9638                 break;
9639         case CHELSIO_T4_CUDBG_DUMP:
9640                 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
9641                 break;
9642         default:
9643                 rc = ENOTTY;
9644         }
9645
9646         return (rc);
9647 }
9648
9649 void
9650 t4_db_full(struct adapter *sc)
9651 {
9652
9653         CXGBE_UNIMPLEMENTED(__func__);
9654 }
9655
9656 void
9657 t4_db_dropped(struct adapter *sc)
9658 {
9659
9660         CXGBE_UNIMPLEMENTED(__func__);
9661 }
9662
9663 #ifdef TCP_OFFLOAD
9664 static int
9665 toe_capability(struct vi_info *vi, int enable)
9666 {
9667         int rc;
9668         struct port_info *pi = vi->pi;
9669         struct adapter *sc = pi->adapter;
9670
9671         ASSERT_SYNCHRONIZED_OP(sc);
9672
9673         if (!is_offload(sc))
9674                 return (ENODEV);
9675
9676         if (enable) {
9677                 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
9678                         /* TOE is already enabled. */
9679                         return (0);
9680                 }
9681
9682                 /*
9683                  * We need the port's queues around so that we're able to send
9684                  * and receive CPLs to/from the TOE even if the ifnet for this
9685                  * port has never been UP'd administratively.
9686                  */
9687                 if (!(vi->flags & VI_INIT_DONE)) {
9688                         rc = vi_full_init(vi);
9689                         if (rc)
9690                                 return (rc);
9691                 }
9692                 if (!(pi->vi[0].flags & VI_INIT_DONE)) {
9693                         rc = vi_full_init(&pi->vi[0]);
9694                         if (rc)
9695                                 return (rc);
9696                 }
9697
9698                 if (isset(&sc->offload_map, pi->port_id)) {
9699                         /* TOE is enabled on another VI of this port. */
9700                         pi->uld_vis++;
9701                         return (0);
9702                 }
9703
9704                 if (!uld_active(sc, ULD_TOM)) {
9705                         rc = t4_activate_uld(sc, ULD_TOM);
9706                         if (rc == EAGAIN) {
9707                                 log(LOG_WARNING,
9708                                     "You must kldload t4_tom.ko before trying "
9709                                     "to enable TOE on a cxgbe interface.\n");
9710                         }
9711                         if (rc != 0)
9712                                 return (rc);
9713                         KASSERT(sc->tom_softc != NULL,
9714                             ("%s: TOM activated but softc NULL", __func__));
9715                         KASSERT(uld_active(sc, ULD_TOM),
9716                             ("%s: TOM activated but flag not set", __func__));
9717                 }
9718
9719                 /* Activate iWARP and iSCSI too, if the modules are loaded. */
9720                 if (!uld_active(sc, ULD_IWARP))
9721                         (void) t4_activate_uld(sc, ULD_IWARP);
9722                 if (!uld_active(sc, ULD_ISCSI))
9723                         (void) t4_activate_uld(sc, ULD_ISCSI);
9724
9725                 pi->uld_vis++;
9726                 setbit(&sc->offload_map, pi->port_id);
9727         } else {
9728                 pi->uld_vis--;
9729
9730                 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
9731                         return (0);
9732
9733                 KASSERT(uld_active(sc, ULD_TOM),
9734                     ("%s: TOM never initialized?", __func__));
9735                 clrbit(&sc->offload_map, pi->port_id);
9736         }
9737
9738         return (0);
9739 }
9740
9741 /*
9742  * Add an upper layer driver to the global list.
9743  */
9744 int
9745 t4_register_uld(struct uld_info *ui)
9746 {
9747         int rc = 0;
9748         struct uld_info *u;
9749
9750         sx_xlock(&t4_uld_list_lock);
9751         SLIST_FOREACH(u, &t4_uld_list, link) {
9752             if (u->uld_id == ui->uld_id) {
9753                     rc = EEXIST;
9754                     goto done;
9755             }
9756         }
9757
9758         SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
9759         ui->refcount = 0;
9760 done:
9761         sx_xunlock(&t4_uld_list_lock);
9762         return (rc);
9763 }
9764
9765 int
9766 t4_unregister_uld(struct uld_info *ui)
9767 {
9768         int rc = EINVAL;
9769         struct uld_info *u;
9770
9771         sx_xlock(&t4_uld_list_lock);
9772
9773         SLIST_FOREACH(u, &t4_uld_list, link) {
9774             if (u == ui) {
9775                     if (ui->refcount > 0) {
9776                             rc = EBUSY;
9777                             goto done;
9778                     }
9779
9780                     SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
9781                     rc = 0;
9782                     goto done;
9783             }
9784         }
9785 done:
9786         sx_xunlock(&t4_uld_list_lock);
9787         return (rc);
9788 }
9789
9790 int
9791 t4_activate_uld(struct adapter *sc, int id)
9792 {
9793         int rc;
9794         struct uld_info *ui;
9795
9796         ASSERT_SYNCHRONIZED_OP(sc);
9797
9798         if (id < 0 || id > ULD_MAX)
9799                 return (EINVAL);
9800         rc = EAGAIN;    /* kldoad the module with this ULD and try again. */
9801
9802         sx_slock(&t4_uld_list_lock);
9803
9804         SLIST_FOREACH(ui, &t4_uld_list, link) {
9805                 if (ui->uld_id == id) {
9806                         if (!(sc->flags & FULL_INIT_DONE)) {
9807                                 rc = adapter_full_init(sc);
9808                                 if (rc != 0)
9809                                         break;
9810                         }
9811
9812                         rc = ui->activate(sc);
9813                         if (rc == 0) {
9814                                 setbit(&sc->active_ulds, id);
9815                                 ui->refcount++;
9816                         }
9817                         break;
9818                 }
9819         }
9820
9821         sx_sunlock(&t4_uld_list_lock);
9822
9823         return (rc);
9824 }
9825
9826 int
9827 t4_deactivate_uld(struct adapter *sc, int id)
9828 {
9829         int rc;
9830         struct uld_info *ui;
9831
9832         ASSERT_SYNCHRONIZED_OP(sc);
9833
9834         if (id < 0 || id > ULD_MAX)
9835                 return (EINVAL);
9836         rc = ENXIO;
9837
9838         sx_slock(&t4_uld_list_lock);
9839
9840         SLIST_FOREACH(ui, &t4_uld_list, link) {
9841                 if (ui->uld_id == id) {
9842                         rc = ui->deactivate(sc);
9843                         if (rc == 0) {
9844                                 clrbit(&sc->active_ulds, id);
9845                                 ui->refcount--;
9846                         }
9847                         break;
9848                 }
9849         }
9850
9851         sx_sunlock(&t4_uld_list_lock);
9852
9853         return (rc);
9854 }
9855
9856 int
9857 uld_active(struct adapter *sc, int uld_id)
9858 {
9859
9860         MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
9861
9862         return (isset(&sc->active_ulds, uld_id));
9863 }
9864 #endif
9865
9866 /*
9867  * t  = ptr to tunable.
9868  * nc = number of CPUs.
9869  * c  = compiled in default for that tunable.
9870  */
9871 static void
9872 calculate_nqueues(int *t, int nc, const int c)
9873 {
9874         int nq;
9875
9876         if (*t > 0)
9877                 return;
9878         nq = *t < 0 ? -*t : c;
9879         *t = min(nc, nq);
9880 }
9881
9882 /*
9883  * Come up with reasonable defaults for some of the tunables, provided they're
9884  * not set by the user (in which case we'll use the values as is).
9885  */
9886 static void
9887 tweak_tunables(void)
9888 {
9889         int nc = mp_ncpus;      /* our snapshot of the number of CPUs */
9890
9891         if (t4_ntxq < 1) {
9892 #ifdef RSS
9893                 t4_ntxq = rss_getnumbuckets();
9894 #else
9895                 calculate_nqueues(&t4_ntxq, nc, NTXQ);
9896 #endif
9897         }
9898
9899         calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
9900
9901         if (t4_nrxq < 1) {
9902 #ifdef RSS
9903                 t4_nrxq = rss_getnumbuckets();
9904 #else
9905                 calculate_nqueues(&t4_nrxq, nc, NRXQ);
9906 #endif
9907         }
9908
9909         calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
9910
9911 #ifdef TCP_OFFLOAD
9912         calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
9913         calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
9914         calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
9915         calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
9916
9917         if (t4_toecaps_allowed == -1)
9918                 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
9919
9920         if (t4_rdmacaps_allowed == -1) {
9921                 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
9922                     FW_CAPS_CONFIG_RDMA_RDMAC;
9923         }
9924
9925         if (t4_iscsicaps_allowed == -1) {
9926                 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
9927                     FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
9928                     FW_CAPS_CONFIG_ISCSI_T10DIF;
9929         }
9930
9931         if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
9932                 t4_tmr_idx_ofld = TMR_IDX_OFLD;
9933
9934         if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
9935                 t4_pktc_idx_ofld = PKTC_IDX_OFLD;
9936 #else
9937         if (t4_toecaps_allowed == -1)
9938                 t4_toecaps_allowed = 0;
9939
9940         if (t4_rdmacaps_allowed == -1)
9941                 t4_rdmacaps_allowed = 0;
9942
9943         if (t4_iscsicaps_allowed == -1)
9944                 t4_iscsicaps_allowed = 0;
9945 #endif
9946
9947 #ifdef DEV_NETMAP
9948         calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
9949         calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
9950 #endif
9951
9952         if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
9953                 t4_tmr_idx = TMR_IDX;
9954
9955         if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
9956                 t4_pktc_idx = PKTC_IDX;
9957
9958         if (t4_qsize_txq < 128)
9959                 t4_qsize_txq = 128;
9960
9961         if (t4_qsize_rxq < 128)
9962                 t4_qsize_rxq = 128;
9963         while (t4_qsize_rxq & 7)
9964                 t4_qsize_rxq++;
9965
9966         t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
9967
9968         /*
9969          * Number of VIs to create per-port.  The first VI is the "main" regular
9970          * VI for the port.  The rest are additional virtual interfaces on the
9971          * same physical port.  Note that the main VI does not have native
9972          * netmap support but the extra VIs do.
9973          *
9974          * Limit the number of VIs per port to the number of available
9975          * MAC addresses per port.
9976          */
9977         if (t4_num_vis < 1)
9978                 t4_num_vis = 1;
9979         if (t4_num_vis > nitems(vi_mac_funcs)) {
9980                 t4_num_vis = nitems(vi_mac_funcs);
9981                 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
9982         }
9983
9984         if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
9985                 pcie_relaxed_ordering = 1;
9986 #if defined(__i386__) || defined(__amd64__)
9987                 if (cpu_vendor_id == CPU_VENDOR_INTEL)
9988                         pcie_relaxed_ordering = 0;
9989 #endif
9990         }
9991 }
9992
9993 #ifdef DDB
9994 static void
9995 t4_dump_tcb(struct adapter *sc, int tid)
9996 {
9997         uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
9998
9999         reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
10000         save = t4_read_reg(sc, reg);
10001         base = sc->memwin[2].mw_base;
10002
10003         /* Dump TCB for the tid */
10004         tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10005         tcb_addr += tid * TCB_SIZE;
10006
10007         if (is_t4(sc)) {
10008                 pf = 0;
10009                 win_pos = tcb_addr & ~0xf;      /* start must be 16B aligned */
10010         } else {
10011                 pf = V_PFNUM(sc->pf);
10012                 win_pos = tcb_addr & ~0x7f;     /* start must be 128B aligned */
10013         }
10014         t4_write_reg(sc, reg, win_pos | pf);
10015         t4_read_reg(sc, reg);
10016
10017         off = tcb_addr - win_pos;
10018         for (i = 0; i < 4; i++) {
10019                 uint32_t buf[8];
10020                 for (j = 0; j < 8; j++, off += 4)
10021                         buf[j] = htonl(t4_read_reg(sc, base + off));
10022
10023                 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
10024                     buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
10025                     buf[7]);
10026         }
10027
10028         t4_write_reg(sc, reg, save);
10029         t4_read_reg(sc, reg);
10030 }
10031
10032 static void
10033 t4_dump_devlog(struct adapter *sc)
10034 {
10035         struct devlog_params *dparams = &sc->params.devlog;
10036         struct fw_devlog_e e;
10037         int i, first, j, m, nentries, rc;
10038         uint64_t ftstamp = UINT64_MAX;
10039
10040         if (dparams->start == 0) {
10041                 db_printf("devlog params not valid\n");
10042                 return;
10043         }
10044
10045         nentries = dparams->size / sizeof(struct fw_devlog_e);
10046         m = fwmtype_to_hwmtype(dparams->memtype);
10047
10048         /* Find the first entry. */
10049         first = -1;
10050         for (i = 0; i < nentries && !db_pager_quit; i++) {
10051                 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10052                     sizeof(e), (void *)&e);
10053                 if (rc != 0)
10054                         break;
10055
10056                 if (e.timestamp == 0)
10057                         break;
10058
10059                 e.timestamp = be64toh(e.timestamp);
10060                 if (e.timestamp < ftstamp) {
10061                         ftstamp = e.timestamp;
10062                         first = i;
10063                 }
10064         }
10065
10066         if (first == -1)
10067                 return;
10068
10069         i = first;
10070         do {
10071                 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10072                     sizeof(e), (void *)&e);
10073                 if (rc != 0)
10074                         return;
10075
10076                 if (e.timestamp == 0)
10077                         return;
10078
10079                 e.timestamp = be64toh(e.timestamp);
10080                 e.seqno = be32toh(e.seqno);
10081                 for (j = 0; j < 8; j++)
10082                         e.params[j] = be32toh(e.params[j]);
10083
10084                 db_printf("%10d  %15ju  %8s  %8s  ",
10085                     e.seqno, e.timestamp,
10086                     (e.level < nitems(devlog_level_strings) ?
10087                         devlog_level_strings[e.level] : "UNKNOWN"),
10088                     (e.facility < nitems(devlog_facility_strings) ?
10089                         devlog_facility_strings[e.facility] : "UNKNOWN"));
10090                 db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
10091                     e.params[3], e.params[4], e.params[5], e.params[6],
10092                     e.params[7]);
10093
10094                 if (++i == nentries)
10095                         i = 0;
10096         } while (i != first && !db_pager_quit);
10097 }
10098
10099 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
10100 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
10101
10102 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
10103 {
10104         device_t dev;
10105         int t;
10106         bool valid;
10107
10108         valid = false;
10109         t = db_read_token();
10110         if (t == tIDENT) {
10111                 dev = device_lookup_by_name(db_tok_string);
10112                 valid = true;
10113         }
10114         db_skip_to_eol();
10115         if (!valid) {
10116                 db_printf("usage: show t4 devlog <nexus>\n");
10117                 return;
10118         }
10119
10120         if (dev == NULL) {
10121                 db_printf("device not found\n");
10122                 return;
10123         }
10124
10125         t4_dump_devlog(device_get_softc(dev));
10126 }
10127
10128 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
10129 {
10130         device_t dev;
10131         int radix, tid, t;
10132         bool valid;
10133
10134         valid = false;
10135         radix = db_radix;
10136         db_radix = 10;
10137         t = db_read_token();
10138         if (t == tIDENT) {
10139                 dev = device_lookup_by_name(db_tok_string);
10140                 t = db_read_token();
10141                 if (t == tNUMBER) {
10142                         tid = db_tok_number;
10143                         valid = true;
10144                 }
10145         }       
10146         db_radix = radix;
10147         db_skip_to_eol();
10148         if (!valid) {
10149                 db_printf("usage: show t4 tcb <nexus> <tid>\n");
10150                 return;
10151         }
10152
10153         if (dev == NULL) {
10154                 db_printf("device not found\n");
10155                 return;
10156         }
10157         if (tid < 0) {
10158                 db_printf("invalid tid\n");
10159                 return;
10160         }
10161
10162         t4_dump_tcb(device_get_softc(dev), tid);
10163 }
10164 #endif
10165
10166 static struct sx mlu;   /* mod load unload */
10167 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
10168
10169 static int
10170 mod_event(module_t mod, int cmd, void *arg)
10171 {
10172         int rc = 0;
10173         static int loaded = 0;
10174
10175         switch (cmd) {
10176         case MOD_LOAD:
10177                 sx_xlock(&mlu);
10178                 if (loaded++ == 0) {
10179                         t4_sge_modload();
10180                         t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl);
10181                         t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl);
10182                         t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
10183                         t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
10184                         sx_init(&t4_list_lock, "T4/T5 adapters");
10185                         SLIST_INIT(&t4_list);
10186 #ifdef TCP_OFFLOAD
10187                         sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
10188                         SLIST_INIT(&t4_uld_list);
10189 #endif
10190                         t4_tracer_modload();
10191                         tweak_tunables();
10192                 }
10193                 sx_xunlock(&mlu);
10194                 break;
10195
10196         case MOD_UNLOAD:
10197                 sx_xlock(&mlu);
10198                 if (--loaded == 0) {
10199                         int tries;
10200
10201                         sx_slock(&t4_list_lock);
10202                         if (!SLIST_EMPTY(&t4_list)) {
10203                                 rc = EBUSY;
10204                                 sx_sunlock(&t4_list_lock);
10205                                 goto done_unload;
10206                         }
10207 #ifdef TCP_OFFLOAD
10208                         sx_slock(&t4_uld_list_lock);
10209                         if (!SLIST_EMPTY(&t4_uld_list)) {
10210                                 rc = EBUSY;
10211                                 sx_sunlock(&t4_uld_list_lock);
10212                                 sx_sunlock(&t4_list_lock);
10213                                 goto done_unload;
10214                         }
10215 #endif
10216                         tries = 0;
10217                         while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
10218                                 uprintf("%ju clusters with custom free routine "
10219                                     "still is use.\n", t4_sge_extfree_refs());
10220                                 pause("t4unload", 2 * hz);
10221                         }
10222 #ifdef TCP_OFFLOAD
10223                         sx_sunlock(&t4_uld_list_lock);
10224 #endif
10225                         sx_sunlock(&t4_list_lock);
10226
10227                         if (t4_sge_extfree_refs() == 0) {
10228                                 t4_tracer_modunload();
10229 #ifdef TCP_OFFLOAD
10230                                 sx_destroy(&t4_uld_list_lock);
10231 #endif
10232                                 sx_destroy(&t4_list_lock);
10233                                 t4_sge_modunload();
10234                                 loaded = 0;
10235                         } else {
10236                                 rc = EBUSY;
10237                                 loaded++;       /* undo earlier decrement */
10238                         }
10239                 }
10240 done_unload:
10241                 sx_xunlock(&mlu);
10242                 break;
10243         }
10244
10245         return (rc);
10246 }
10247
10248 static devclass_t t4_devclass, t5_devclass, t6_devclass;
10249 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass;
10250 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass;
10251
10252 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
10253 MODULE_VERSION(t4nex, 1);
10254 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
10255 #ifdef DEV_NETMAP
10256 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
10257 #endif /* DEV_NETMAP */
10258
10259 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
10260 MODULE_VERSION(t5nex, 1);
10261 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
10262 #ifdef DEV_NETMAP
10263 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
10264 #endif /* DEV_NETMAP */
10265
10266 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0);
10267 MODULE_VERSION(t6nex, 1);
10268 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
10269 #ifdef DEV_NETMAP
10270 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
10271 #endif /* DEV_NETMAP */
10272
10273 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
10274 MODULE_VERSION(cxgbe, 1);
10275
10276 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
10277 MODULE_VERSION(cxl, 1);
10278
10279 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0);
10280 MODULE_VERSION(cc, 1);
10281
10282 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
10283 MODULE_VERSION(vcxgbe, 1);
10284
10285 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
10286 MODULE_VERSION(vcxl, 1);
10287
10288 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0);
10289 MODULE_VERSION(vcc, 1);