]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/tom/t4_ddp.c
Merge compiler-rt r291274.
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / tom / t4_ddp.c
1 /*-
2  * Copyright (c) 2012 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_inet.h"
32
33 #include <sys/param.h>
34 #include <sys/aio.h>
35 #include <sys/file.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/ktr.h>
39 #include <sys/module.h>
40 #include <sys/protosw.h>
41 #include <sys/proc.h>
42 #include <sys/domain.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/taskqueue.h>
46 #include <sys/uio.h>
47 #include <netinet/in.h>
48 #include <netinet/in_pcb.h>
49 #include <netinet/ip.h>
50 #include <netinet/tcp_var.h>
51 #define TCPSTATES
52 #include <netinet/tcp_fsm.h>
53 #include <netinet/toecore.h>
54
55 #include <vm/vm.h>
56 #include <vm/vm_extern.h>
57 #include <vm/vm_param.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_map.h>
60 #include <vm/vm_page.h>
61 #include <vm/vm_object.h>
62
63 #ifdef TCP_OFFLOAD
64 #include "common/common.h"
65 #include "common/t4_msg.h"
66 #include "common/t4_regs.h"
67 #include "common/t4_tcb.h"
68 #include "tom/t4_tom.h"
69
70 VNET_DECLARE(int, tcp_do_autorcvbuf);
71 #define V_tcp_do_autorcvbuf VNET(tcp_do_autorcvbuf)
72 VNET_DECLARE(int, tcp_autorcvbuf_inc);
73 #define V_tcp_autorcvbuf_inc VNET(tcp_autorcvbuf_inc)
74 VNET_DECLARE(int, tcp_autorcvbuf_max);
75 #define V_tcp_autorcvbuf_max VNET(tcp_autorcvbuf_max)
76
77 /*
78  * Use the 'backend3' field in AIO jobs to store the amount of data
79  * received by the AIO job so far.
80  */
81 #define aio_received    backend3
82
83 static void aio_ddp_requeue_task(void *context, int pending);
84 static void ddp_complete_all(struct toepcb *toep, int error);
85 static void t4_aio_cancel_active(struct kaiocb *job);
86 static void t4_aio_cancel_queued(struct kaiocb *job);
87
88 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets;
89 static struct mtx ddp_orphan_pagesets_lock;
90 static struct task ddp_orphan_task;
91
92 #define MAX_DDP_BUFFER_SIZE             (M_TCB_RX_DDP_BUF0_LEN)
93
94 /*
95  * A page set holds information about a buffer used for DDP.  The page
96  * set holds resources such as the VM pages backing the buffer (either
97  * held or wired) and the page pods associated with the buffer.
98  * Recently used page sets are cached to allow for efficient reuse of
99  * buffers (avoiding the need to re-fault in pages, hold them, etc.).
100  * Note that cached page sets keep the backing pages wired.  The
101  * number of wired pages is capped by only allowing for two wired
102  * pagesets per connection.  This is not a perfect cap, but is a
103  * trade-off for performance.
104  *
105  * If an application ping-pongs two buffers for a connection via
106  * aio_read(2) then those buffers should remain wired and expensive VM
107  * fault lookups should be avoided after each buffer has been used
108  * once.  If an application uses more than two buffers then this will
109  * fall back to doing expensive VM fault lookups for each operation.
110  */
111 static void
112 free_pageset(struct tom_data *td, struct pageset *ps)
113 {
114         vm_page_t p;
115         int i;
116
117         if (ps->prsv.prsv_nppods > 0)
118                 t4_free_page_pods(&ps->prsv);
119
120         if (ps->flags & PS_WIRED) {
121                 for (i = 0; i < ps->npages; i++) {
122                         p = ps->pages[i];
123                         vm_page_lock(p);
124                         vm_page_unwire(p, PQ_INACTIVE);
125                         vm_page_unlock(p);
126                 }
127         } else
128                 vm_page_unhold_pages(ps->pages, ps->npages);
129         mtx_lock(&ddp_orphan_pagesets_lock);
130         TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link);
131         taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task);
132         mtx_unlock(&ddp_orphan_pagesets_lock);
133 }
134
135 static void
136 ddp_free_orphan_pagesets(void *context, int pending)
137 {
138         struct pageset *ps;
139
140         mtx_lock(&ddp_orphan_pagesets_lock);
141         while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) {
142                 ps = TAILQ_FIRST(&ddp_orphan_pagesets);
143                 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link);
144                 mtx_unlock(&ddp_orphan_pagesets_lock);
145                 if (ps->vm)
146                         vmspace_free(ps->vm);
147                 free(ps, M_CXGBE);
148                 mtx_lock(&ddp_orphan_pagesets_lock);
149         }
150         mtx_unlock(&ddp_orphan_pagesets_lock);
151 }
152
153 static void
154 recycle_pageset(struct toepcb *toep, struct pageset *ps)
155 {
156
157         DDP_ASSERT_LOCKED(toep);
158         if (!(toep->ddp_flags & DDP_DEAD) && ps->flags & PS_WIRED) {
159                 KASSERT(toep->ddp_cached_count + toep->ddp_active_count <
160                     nitems(toep->db), ("too many wired pagesets"));
161                 TAILQ_INSERT_HEAD(&toep->ddp_cached_pagesets, ps, link);
162                 toep->ddp_cached_count++;
163         } else
164                 free_pageset(toep->td, ps);
165 }
166
167 static void
168 ddp_complete_one(struct kaiocb *job, int error)
169 {
170         long copied;
171
172         /*
173          * If this job had copied data out of the socket buffer before
174          * it was cancelled, report it as a short read rather than an
175          * error.
176          */
177         copied = job->aio_received;
178         if (copied != 0 || error == 0)
179                 aio_complete(job, copied, 0);
180         else
181                 aio_complete(job, -1, error);
182 }
183
184 static void
185 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db)
186 {
187
188         if (db->job) {
189                 /*
190                  * XXX: If we are un-offloading the socket then we
191                  * should requeue these on the socket somehow.  If we
192                  * got a FIN from the remote end, then this completes
193                  * any remaining requests with an EOF read.
194                  */
195                 if (!aio_clear_cancel_function(db->job))
196                         ddp_complete_one(db->job, 0);
197         }
198
199         if (db->ps)
200                 free_pageset(td, db->ps);
201 }
202
203 void
204 ddp_init_toep(struct toepcb *toep)
205 {
206
207         TAILQ_INIT(&toep->ddp_aiojobq);
208         TASK_INIT(&toep->ddp_requeue_task, 0, aio_ddp_requeue_task, toep);
209         toep->ddp_active_id = -1;
210         mtx_init(&toep->ddp_lock, "t4 ddp", NULL, MTX_DEF);
211 }
212
213 void
214 ddp_uninit_toep(struct toepcb *toep)
215 {
216
217         mtx_destroy(&toep->ddp_lock);
218 }
219
220 void
221 release_ddp_resources(struct toepcb *toep)
222 {
223         struct pageset *ps;
224         int i;
225
226         DDP_LOCK(toep);
227         toep->flags |= DDP_DEAD;
228         for (i = 0; i < nitems(toep->db); i++) {
229                 free_ddp_buffer(toep->td, &toep->db[i]);
230         }
231         while ((ps = TAILQ_FIRST(&toep->ddp_cached_pagesets)) != NULL) {
232                 TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link);
233                 free_pageset(toep->td, ps);
234         }
235         ddp_complete_all(toep, 0);
236         DDP_UNLOCK(toep);
237 }
238
239 #ifdef INVARIANTS
240 void
241 ddp_assert_empty(struct toepcb *toep)
242 {
243         int i;
244
245         MPASS(!(toep->ddp_flags & DDP_TASK_ACTIVE));
246         for (i = 0; i < nitems(toep->db); i++) {
247                 MPASS(toep->db[i].job == NULL);
248                 MPASS(toep->db[i].ps == NULL);
249         }
250         MPASS(TAILQ_EMPTY(&toep->ddp_cached_pagesets));
251         MPASS(TAILQ_EMPTY(&toep->ddp_aiojobq));
252 }
253 #endif
254
255 static void
256 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db,
257     unsigned int db_idx)
258 {
259         unsigned int db_flag;
260
261         toep->ddp_active_count--;
262         if (toep->ddp_active_id == db_idx) {
263                 if (toep->ddp_active_count == 0) {
264                         KASSERT(toep->db[db_idx ^ 1].job == NULL,
265                             ("%s: active_count mismatch", __func__));
266                         toep->ddp_active_id = -1;
267                 } else
268                         toep->ddp_active_id ^= 1;
269 #ifdef VERBOSE_TRACES
270                 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
271                     toep->ddp_active_id);
272 #endif
273         } else {
274                 KASSERT(toep->ddp_active_count != 0 &&
275                     toep->ddp_active_id != -1,
276                     ("%s: active count mismatch", __func__));
277         }
278
279         db->cancel_pending = 0;
280         db->job = NULL;
281         recycle_pageset(toep, db->ps);
282         db->ps = NULL;
283
284         db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
285         KASSERT(toep->ddp_flags & db_flag,
286             ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x",
287             __func__, toep, toep->ddp_flags));
288         toep->ddp_flags &= ~db_flag;
289 }
290
291 /* XXX: handle_ddp_data code duplication */
292 void
293 insert_ddp_data(struct toepcb *toep, uint32_t n)
294 {
295         struct inpcb *inp = toep->inp;
296         struct tcpcb *tp = intotcpcb(inp);
297         struct ddp_buffer *db;
298         struct kaiocb *job;
299         size_t placed;
300         long copied;
301         unsigned int db_flag, db_idx;
302
303         INP_WLOCK_ASSERT(inp);
304         DDP_ASSERT_LOCKED(toep);
305
306         tp->rcv_nxt += n;
307 #ifndef USE_DDP_RX_FLOW_CONTROL
308         KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__));
309         tp->rcv_wnd -= n;
310 #endif
311 #ifndef USE_DDP_RX_FLOW_CONTROL
312         toep->rx_credits += n;
313 #endif
314         CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP",
315             __func__, n);
316         while (toep->ddp_active_count > 0) {
317                 MPASS(toep->ddp_active_id != -1);
318                 db_idx = toep->ddp_active_id;
319                 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
320                 MPASS((toep->ddp_flags & db_flag) != 0);
321                 db = &toep->db[db_idx];
322                 job = db->job;
323                 copied = job->aio_received;
324                 placed = n;
325                 if (placed > job->uaiocb.aio_nbytes - copied)
326                         placed = job->uaiocb.aio_nbytes - copied;
327                 if (placed > 0)
328                         job->msgrcv = 1;
329                 if (!aio_clear_cancel_function(job)) {
330                         /*
331                          * Update the copied length for when
332                          * t4_aio_cancel_active() completes this
333                          * request.
334                          */
335                         job->aio_received += placed;
336                 } else if (copied + placed != 0) {
337                         CTR4(KTR_CXGBE,
338                             "%s: completing %p (copied %ld, placed %lu)",
339                             __func__, job, copied, placed);
340                         /* XXX: This always completes if there is some data. */
341                         aio_complete(job, copied + placed, 0);
342                 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) {
343                         TAILQ_INSERT_HEAD(&toep->ddp_aiojobq, job, list);
344                         toep->ddp_waiting_count++;
345                 } else
346                         aio_cancel(job);
347                 n -= placed;
348                 complete_ddp_buffer(toep, db, db_idx);
349         }
350
351         MPASS(n == 0);
352 }
353
354 /* SET_TCB_FIELD sent as a ULP command looks like this */
355 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \
356     sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core))
357
358 /* RX_DATA_ACK sent as a ULP command looks like this */
359 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \
360     sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core))
361
362 static inline void *
363 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep,
364     uint64_t word, uint64_t mask, uint64_t val)
365 {
366         struct ulptx_idata *ulpsc;
367         struct cpl_set_tcb_field_core *req;
368
369         ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
370         ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16));
371
372         ulpsc = (struct ulptx_idata *)(ulpmc + 1);
373         ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
374         ulpsc->len = htobe32(sizeof(*req));
375
376         req = (struct cpl_set_tcb_field_core *)(ulpsc + 1);
377         OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid));
378         req->reply_ctrl = htobe16(V_NO_REPLY(1) |
379             V_QUEUENO(toep->ofld_rxq->iq.abs_id));
380         req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0));
381         req->mask = htobe64(mask);
382         req->val = htobe64(val);
383
384         ulpsc = (struct ulptx_idata *)(req + 1);
385         if (LEN__SET_TCB_FIELD_ULP % 16) {
386                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
387                 ulpsc->len = htobe32(0);
388                 return (ulpsc + 1);
389         }
390         return (ulpsc);
391 }
392
393 static inline void *
394 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep)
395 {
396         struct ulptx_idata *ulpsc;
397         struct cpl_rx_data_ack_core *req;
398
399         ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
400         ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16));
401
402         ulpsc = (struct ulptx_idata *)(ulpmc + 1);
403         ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
404         ulpsc->len = htobe32(sizeof(*req));
405
406         req = (struct cpl_rx_data_ack_core *)(ulpsc + 1);
407         OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid));
408         req->credit_dack = htobe32(F_RX_MODULATE_RX);
409
410         ulpsc = (struct ulptx_idata *)(req + 1);
411         if (LEN__RX_DATA_ACK_ULP % 16) {
412                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
413                 ulpsc->len = htobe32(0);
414                 return (ulpsc + 1);
415         }
416         return (ulpsc);
417 }
418
419 static struct wrqe *
420 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx,
421     struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask)
422 {
423         struct wrqe *wr;
424         struct work_request_hdr *wrh;
425         struct ulp_txpkt *ulpmc;
426         int len;
427
428         KASSERT(db_idx == 0 || db_idx == 1,
429             ("%s: bad DDP buffer index %d", __func__, db_idx));
430
431         /*
432          * We'll send a compound work request that has 3 SET_TCB_FIELDs and an
433          * RX_DATA_ACK (with RX_MODULATE to speed up delivery).
434          *
435          * The work request header is 16B and always ends at a 16B boundary.
436          * The ULPTX master commands that follow must all end at 16B boundaries
437          * too so we round up the size to 16.
438          */
439         len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) +
440             roundup2(LEN__RX_DATA_ACK_ULP, 16);
441
442         wr = alloc_wrqe(len, toep->ctrlq);
443         if (wr == NULL)
444                 return (NULL);
445         wrh = wrtod(wr);
446         INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */
447         ulpmc = (struct ulp_txpkt *)(wrh + 1);
448
449         /* Write the buffer's tag */
450         ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
451             W_TCB_RX_DDP_BUF0_TAG + db_idx,
452             V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG),
453             V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag));
454
455         /* Update the current offset in the DDP buffer and its total length */
456         if (db_idx == 0)
457                 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
458                     W_TCB_RX_DDP_BUF0_OFFSET,
459                     V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) |
460                     V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN),
461                     V_TCB_RX_DDP_BUF0_OFFSET(offset) |
462                     V_TCB_RX_DDP_BUF0_LEN(ps->len));
463         else
464                 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
465                     W_TCB_RX_DDP_BUF1_OFFSET,
466                     V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) |
467                     V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32),
468                     V_TCB_RX_DDP_BUF1_OFFSET(offset) |
469                     V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32));
470
471         /* Update DDP flags */
472         ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS,
473             ddp_flags_mask, ddp_flags);
474
475         /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */
476         ulpmc = mk_rx_data_ack_ulp(ulpmc, toep);
477
478         return (wr);
479 }
480
481 static int
482 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len)
483 {
484         uint32_t report = be32toh(ddp_report);
485         unsigned int db_idx;
486         struct inpcb *inp = toep->inp;
487         struct ddp_buffer *db;
488         struct tcpcb *tp;
489         struct socket *so;
490         struct sockbuf *sb;
491         struct kaiocb *job;
492         long copied;
493
494         db_idx = report & F_DDP_BUF_IDX ? 1 : 0;
495
496         if (__predict_false(!(report & F_DDP_INV)))
497                 CXGBE_UNIMPLEMENTED("DDP buffer still valid");
498
499         INP_WLOCK(inp);
500         so = inp_inpcbtosocket(inp);
501         sb = &so->so_rcv;
502         DDP_LOCK(toep);
503
504         KASSERT(toep->ddp_active_id == db_idx,
505             ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx,
506             toep->ddp_active_id, toep->tid));
507         db = &toep->db[db_idx];
508         job = db->job;
509
510         if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) {
511                 /*
512                  * This can happen due to an administrative tcpdrop(8).
513                  * Just fail the request with ECONNRESET.
514                  */
515                 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x",
516                     __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags);
517                 if (aio_clear_cancel_function(job))
518                         ddp_complete_one(job, ECONNRESET);
519                 goto completed;
520         }
521
522         tp = intotcpcb(inp);
523
524         /*
525          * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the
526          * sequence number of the next byte to receive.  The length of
527          * the data received for this message must be computed by
528          * comparing the new and old values of rcv_nxt.
529          *
530          * For RX_DATA_DDP, len might be non-zero, but it is only the
531          * length of the most recent DMA.  It does not include the
532          * total length of the data received since the previous update
533          * for this DDP buffer.  rcv_nxt is the sequence number of the
534          * first received byte from the most recent DMA.
535          */
536         len += be32toh(rcv_nxt) - tp->rcv_nxt;
537         tp->rcv_nxt += len;
538         tp->t_rcvtime = ticks;
539 #ifndef USE_DDP_RX_FLOW_CONTROL
540         KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__));
541         tp->rcv_wnd -= len;
542 #endif
543 #ifdef VERBOSE_TRACES
544         CTR4(KTR_CXGBE, "%s: DDP[%d] placed %d bytes (%#x)", __func__, db_idx,
545             len, report);
546 #endif
547
548         /* receive buffer autosize */
549         CURVNET_SET(so->so_vnet);
550         SOCKBUF_LOCK(sb);
551         if (sb->sb_flags & SB_AUTOSIZE &&
552             V_tcp_do_autorcvbuf &&
553             sb->sb_hiwat < V_tcp_autorcvbuf_max &&
554             len > (sbspace(sb) / 8 * 7)) {
555                 unsigned int hiwat = sb->sb_hiwat;
556                 unsigned int newsize = min(hiwat + V_tcp_autorcvbuf_inc,
557                     V_tcp_autorcvbuf_max);
558
559                 if (!sbreserve_locked(sb, newsize, so, NULL))
560                         sb->sb_flags &= ~SB_AUTOSIZE;
561                 else
562                         toep->rx_credits += newsize - hiwat;
563         }
564         SOCKBUF_UNLOCK(sb);
565         CURVNET_RESTORE();
566
567 #ifndef USE_DDP_RX_FLOW_CONTROL
568         toep->rx_credits += len;
569 #endif
570
571         job->msgrcv = 1;
572         if (db->cancel_pending) {
573                 /*
574                  * Update the job's length but defer completion to the
575                  * TCB_RPL callback.
576                  */
577                 job->aio_received += len;
578                 goto out;
579         } else if (!aio_clear_cancel_function(job)) {
580                 /*
581                  * Update the copied length for when
582                  * t4_aio_cancel_active() completes this request.
583                  */
584                 job->aio_received += len;
585         } else {
586                 copied = job->aio_received;
587 #ifdef VERBOSE_TRACES
588                 CTR4(KTR_CXGBE, "%s: completing %p (copied %ld, placed %d)",
589                     __func__, job, copied, len);
590 #endif
591                 aio_complete(job, copied + len, 0);
592                 t4_rcvd(&toep->td->tod, tp);
593         }
594
595 completed:
596         complete_ddp_buffer(toep, db, db_idx);
597         if (toep->ddp_waiting_count > 0)
598                 ddp_queue_toep(toep);
599 out:
600         DDP_UNLOCK(toep);
601         INP_WUNLOCK(inp);
602
603         return (0);
604 }
605
606 void
607 handle_ddp_indicate(struct toepcb *toep)
608 {
609
610         DDP_ASSERT_LOCKED(toep);
611         MPASS(toep->ddp_active_count == 0);
612         MPASS((toep->ddp_flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0);
613         if (toep->ddp_waiting_count == 0) {
614                 /*
615                  * The pending requests that triggered the request for an
616                  * an indicate were cancelled.  Those cancels should have
617                  * already disabled DDP.  Just ignore this as the data is
618                  * going into the socket buffer anyway.
619                  */
620                 return;
621         }
622         CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__,
623             toep->tid, toep->ddp_waiting_count);
624         ddp_queue_toep(toep);
625 }
626
627 enum {
628         DDP_BUF0_INVALIDATED = 0x2,
629         DDP_BUF1_INVALIDATED
630 };
631
632 void
633 handle_ddp_tcb_rpl(struct toepcb *toep, const struct cpl_set_tcb_rpl *cpl)
634 {
635         unsigned int db_idx;
636         struct inpcb *inp = toep->inp;
637         struct ddp_buffer *db;
638         struct kaiocb *job;
639         long copied;
640
641         if (cpl->status != CPL_ERR_NONE)
642                 panic("XXX: tcp_rpl failed: %d", cpl->status);
643
644         switch (cpl->cookie) {
645         case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED):
646         case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED):
647                 /*
648                  * XXX: This duplicates a lot of code with handle_ddp_data().
649                  */
650                 db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED;
651                 INP_WLOCK(inp);
652                 DDP_LOCK(toep);
653                 db = &toep->db[db_idx];
654
655                 /*
656                  * handle_ddp_data() should leave the job around until
657                  * this callback runs once a cancel is pending.
658                  */
659                 MPASS(db != NULL);
660                 MPASS(db->job != NULL);
661                 MPASS(db->cancel_pending);
662
663                 /*
664                  * XXX: It's not clear what happens if there is data
665                  * placed when the buffer is invalidated.  I suspect we
666                  * need to read the TCB to see how much data was placed.
667                  *
668                  * For now this just pretends like nothing was placed.
669                  *
670                  * XXX: Note that if we did check the PCB we would need to
671                  * also take care of updating the tp, etc.
672                  */
673                 job = db->job;
674                 copied = job->aio_received;
675                 if (copied == 0) {
676                         CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job);
677                         aio_cancel(job);
678                 } else {
679                         CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)",
680                             __func__, job, copied);
681                         aio_complete(job, copied, 0);
682                         t4_rcvd(&toep->td->tod, intotcpcb(inp));
683                 }
684
685                 complete_ddp_buffer(toep, db, db_idx);
686                 if (toep->ddp_waiting_count > 0)
687                         ddp_queue_toep(toep);
688                 DDP_UNLOCK(toep);
689                 INP_WUNLOCK(inp);
690                 break;
691         default:
692                 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x",
693                     G_WORD(cpl->cookie), G_COOKIE(cpl->cookie));
694         }
695 }
696
697 void
698 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt)
699 {
700         struct ddp_buffer *db;
701         struct kaiocb *job;
702         long copied;
703         unsigned int db_flag, db_idx;
704         int len, placed;
705
706         INP_WLOCK_ASSERT(toep->inp);
707         DDP_ASSERT_LOCKED(toep);
708         len = be32toh(rcv_nxt) - tp->rcv_nxt;
709
710         tp->rcv_nxt += len;
711 #ifndef USE_DDP_RX_FLOW_CONTROL
712         toep->rx_credits += len;
713 #endif
714
715         while (toep->ddp_active_count > 0) {
716                 MPASS(toep->ddp_active_id != -1);
717                 db_idx = toep->ddp_active_id;
718                 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
719                 MPASS((toep->ddp_flags & db_flag) != 0);
720                 db = &toep->db[db_idx];
721                 job = db->job;
722                 copied = job->aio_received;
723                 placed = len;
724                 if (placed > job->uaiocb.aio_nbytes - copied)
725                         placed = job->uaiocb.aio_nbytes - copied;
726                 if (placed > 0)
727                         job->msgrcv = 1;
728                 if (!aio_clear_cancel_function(job)) {
729                         /*
730                          * Update the copied length for when
731                          * t4_aio_cancel_active() completes this
732                          * request.
733                          */
734                         job->aio_received += placed;
735                 } else {
736                         CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d",
737                             __func__, toep->tid, db_idx, placed);
738                         aio_complete(job, copied + placed, 0);
739                 }
740                 len -= placed;
741                 complete_ddp_buffer(toep, db, db_idx);
742         }
743
744         MPASS(len == 0);
745         ddp_complete_all(toep, 0);
746 }
747
748 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\
749          F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\
750          F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\
751          F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR)
752
753 extern cpl_handler_t t4_cpl_handler[];
754
755 static int
756 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
757 {
758         struct adapter *sc = iq->adapter;
759         const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1);
760         unsigned int tid = GET_TID(cpl);
761         uint32_t vld;
762         struct toepcb *toep = lookup_tid(sc, tid);
763
764         KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
765         KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
766         KASSERT(!(toep->flags & TPF_SYNQE),
767             ("%s: toep %p claims to be a synq entry", __func__, toep));
768
769         vld = be32toh(cpl->ddpvld);
770         if (__predict_false(vld & DDP_ERR)) {
771                 panic("%s: DDP error 0x%x (tid %d, toep %p)",
772                     __func__, vld, tid, toep);
773         }
774
775         if (toep->ulp_mode == ULP_MODE_ISCSI) {
776                 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m);
777                 return (0);
778         }
779
780         handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len));
781
782         return (0);
783 }
784
785 static int
786 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss,
787     struct mbuf *m)
788 {
789         struct adapter *sc = iq->adapter;
790         const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1);
791         unsigned int tid = GET_TID(cpl);
792         struct toepcb *toep = lookup_tid(sc, tid);
793
794         KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
795         KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
796         KASSERT(!(toep->flags & TPF_SYNQE),
797             ("%s: toep %p claims to be a synq entry", __func__, toep));
798
799         handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0);
800
801         return (0);
802 }
803
804 static void
805 enable_ddp(struct adapter *sc, struct toepcb *toep)
806 {
807
808         KASSERT((toep->ddp_flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK,
809             ("%s: toep %p has bad ddp_flags 0x%x",
810             __func__, toep, toep->ddp_flags));
811
812         CTR3(KTR_CXGBE, "%s: tid %u (time %u)",
813             __func__, toep->tid, time_uptime);
814
815         DDP_ASSERT_LOCKED(toep);
816         toep->ddp_flags |= DDP_SC_REQ;
817         t4_set_tcb_field(sc, toep->ctrlq, toep->tid, W_TCB_RX_DDP_FLAGS,
818             V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) |
819             V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) |
820             V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1),
821             V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0,
822             toep->ofld_rxq->iq.abs_id);
823         t4_set_tcb_field(sc, toep->ctrlq, toep->tid, W_TCB_T_FLAGS,
824             V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0, toep->ofld_rxq->iq.abs_id);
825 }
826
827 static int
828 calculate_hcf(int n1, int n2)
829 {
830         int a, b, t;
831
832         if (n1 <= n2) {
833                 a = n1;
834                 b = n2;
835         } else {
836                 a = n2;
837                 b = n1;
838         }
839
840         while (a != 0) {
841                 t = a;
842                 a = b % a;
843                 b = t;
844         }
845
846         return (b);
847 }
848
849 static inline int
850 pages_to_nppods(int npages, int ddp_page_shift)
851 {
852
853         MPASS(ddp_page_shift >= PAGE_SHIFT);
854
855         return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES));
856 }
857
858 static int
859 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx,
860     struct ppod_reservation *prsv)
861 {
862         vmem_addr_t addr;       /* relative to start of region */
863
864         if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT,
865             &addr) != 0)
866                 return (ENOMEM);
867
868         CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d",
869             __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask,
870             nppods, 1 << pr->pr_page_shift[pgsz_idx]);
871
872         /*
873          * The hardware tagmask includes an extra invalid bit but the arena was
874          * seeded with valid values only.  An allocation out of this arena will
875          * fit inside the tagmask but won't have the invalid bit set.
876          */
877         MPASS((addr & pr->pr_tag_mask) == addr);
878         MPASS((addr & pr->pr_invalid_bit) == 0);
879
880         prsv->prsv_pr = pr;
881         prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr;
882         prsv->prsv_nppods = nppods;
883
884         return (0);
885 }
886
887 int
888 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps)
889 {
890         int i, hcf, seglen, idx, nppods;
891         struct ppod_reservation *prsv = &ps->prsv;
892
893         KASSERT(prsv->prsv_nppods == 0,
894             ("%s: page pods already allocated", __func__));
895
896         /*
897          * The DDP page size is unrelated to the VM page size.  We combine
898          * contiguous physical pages into larger segments to get the best DDP
899          * page size possible.  This is the largest of the four sizes in
900          * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in
901          * the page list.
902          */
903         hcf = 0;
904         for (i = 0; i < ps->npages; i++) {
905                 seglen = PAGE_SIZE;
906                 while (i < ps->npages - 1 &&
907                     ps->pages[i]->phys_addr + PAGE_SIZE ==
908                     ps->pages[i + 1]->phys_addr) {
909                         seglen += PAGE_SIZE;
910                         i++;
911                 }
912
913                 hcf = calculate_hcf(hcf, seglen);
914                 if (hcf < (1 << pr->pr_page_shift[1])) {
915                         idx = 0;
916                         goto have_pgsz; /* give up, short circuit */
917                 }
918         }
919
920 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
921         MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
922         for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
923                 if ((hcf & PR_PAGE_MASK(idx)) == 0)
924                         break;
925         }
926 #undef PR_PAGE_MASK
927
928 have_pgsz:
929         MPASS(idx <= M_PPOD_PGSZ);
930
931         nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]);
932         if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
933                 return (0);
934         MPASS(prsv->prsv_nppods > 0);
935
936         return (1);
937 }
938
939 int
940 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len,
941     struct ppod_reservation *prsv)
942 {
943         int hcf, seglen, idx, npages, nppods;
944         uintptr_t start_pva, end_pva, pva, p1;
945
946         MPASS(buf > 0);
947         MPASS(len > 0);
948
949         /*
950          * The DDP page size is unrelated to the VM page size.  We combine
951          * contiguous physical pages into larger segments to get the best DDP
952          * page size possible.  This is the largest of the four sizes in
953          * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes
954          * in the page list.
955          */
956         hcf = 0;
957         start_pva = trunc_page(buf);
958         end_pva = trunc_page(buf + len - 1);
959         pva = start_pva;
960         while (pva <= end_pva) {
961                 seglen = PAGE_SIZE;
962                 p1 = pmap_kextract(pva);
963                 pva += PAGE_SIZE;
964                 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) {
965                         seglen += PAGE_SIZE;
966                         pva += PAGE_SIZE;
967                 }
968
969                 hcf = calculate_hcf(hcf, seglen);
970                 if (hcf < (1 << pr->pr_page_shift[1])) {
971                         idx = 0;
972                         goto have_pgsz; /* give up, short circuit */
973                 }
974         }
975
976 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
977         MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
978         for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
979                 if ((hcf & PR_PAGE_MASK(idx)) == 0)
980                         break;
981         }
982 #undef PR_PAGE_MASK
983
984 have_pgsz:
985         MPASS(idx <= M_PPOD_PGSZ);
986
987         npages = 1;
988         npages += (end_pva - start_pva) >> pr->pr_page_shift[idx];
989         nppods = howmany(npages, PPOD_PAGES);
990         if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
991                 return (ENOMEM);
992         MPASS(prsv->prsv_nppods > 0);
993
994         return (0);
995 }
996
997 void
998 t4_free_page_pods(struct ppod_reservation *prsv)
999 {
1000         struct ppod_region *pr = prsv->prsv_pr;
1001         vmem_addr_t addr;
1002
1003         MPASS(prsv != NULL);
1004         MPASS(prsv->prsv_nppods != 0);
1005
1006         addr = prsv->prsv_tag & pr->pr_tag_mask;
1007         MPASS((addr & pr->pr_invalid_bit) == 0);
1008
1009         CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__,
1010             pr->pr_arena, addr, prsv->prsv_nppods);
1011
1012         vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods));
1013         prsv->prsv_nppods = 0;
1014 }
1015
1016 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE)
1017
1018 int
1019 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid,
1020     struct pageset *ps)
1021 {
1022         struct wrqe *wr;
1023         struct ulp_mem_io *ulpmc;
1024         struct ulptx_idata *ulpsc;
1025         struct pagepod *ppod;
1026         int i, j, k, n, chunk, len, ddp_pgsz, idx;
1027         u_int ppod_addr;
1028         uint32_t cmd;
1029         struct ppod_reservation *prsv = &ps->prsv;
1030         struct ppod_region *pr = prsv->prsv_pr;
1031
1032         KASSERT(!(ps->flags & PS_PPODS_WRITTEN),
1033             ("%s: page pods already written", __func__));
1034         MPASS(prsv->prsv_nppods > 0);
1035
1036         cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1037         if (is_t4(sc))
1038                 cmd |= htobe32(F_ULP_MEMIO_ORDER);
1039         else
1040                 cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1041         ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1042         ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1043         for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1044
1045                 /* How many page pods are we writing in this cycle */
1046                 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1047                 chunk = PPOD_SZ(n);
1048                 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1049
1050                 wr = alloc_wrqe(len, wrq);
1051                 if (wr == NULL)
1052                         return (ENOMEM);        /* ok to just bail out */
1053                 ulpmc = wrtod(wr);
1054
1055                 INIT_ULPTX_WR(ulpmc, len, 0, 0);
1056                 ulpmc->cmd = cmd;
1057                 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1058                 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1059                 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1060
1061                 ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1062                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1063                 ulpsc->len = htobe32(chunk);
1064
1065                 ppod = (struct pagepod *)(ulpsc + 1);
1066                 for (j = 0; j < n; i++, j++, ppod++) {
1067                         ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1068                             V_PPOD_TID(tid) | prsv->prsv_tag);
1069                         ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) |
1070                             V_PPOD_OFST(ps->offset));
1071                         ppod->rsvd = 0;
1072                         idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE);
1073                         for (k = 0; k < nitems(ppod->addr); k++) {
1074                                 if (idx < ps->npages) {
1075                                         ppod->addr[k] =
1076                                             htobe64(ps->pages[idx]->phys_addr);
1077                                         idx += ddp_pgsz / PAGE_SIZE;
1078                                 } else
1079                                         ppod->addr[k] = 0;
1080 #if 0
1081                                 CTR5(KTR_CXGBE,
1082                                     "%s: tid %d ppod[%d]->addr[%d] = %p",
1083                                     __func__, toep->tid, i, k,
1084                                     htobe64(ppod->addr[k]));
1085 #endif
1086                         }
1087
1088                 }
1089
1090                 t4_wrq_tx(sc, wr);
1091         }
1092         ps->flags |= PS_PPODS_WRITTEN;
1093
1094         return (0);
1095 }
1096
1097 int
1098 t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid,
1099     struct ppod_reservation *prsv, vm_offset_t buf, int buflen)
1100 {
1101         struct wrqe *wr;
1102         struct ulp_mem_io *ulpmc;
1103         struct ulptx_idata *ulpsc;
1104         struct pagepod *ppod;
1105         int i, j, k, n, chunk, len, ddp_pgsz;
1106         u_int ppod_addr, offset;
1107         uint32_t cmd;
1108         struct ppod_region *pr = prsv->prsv_pr;
1109         uintptr_t end_pva, pva, pa;
1110
1111         cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1112         if (is_t4(sc))
1113                 cmd |= htobe32(F_ULP_MEMIO_ORDER);
1114         else
1115                 cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1116         ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1117         offset = buf & PAGE_MASK;
1118         ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1119         pva = trunc_page(buf);
1120         end_pva = trunc_page(buf + buflen - 1);
1121         for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1122
1123                 /* How many page pods are we writing in this cycle */
1124                 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1125                 MPASS(n > 0);
1126                 chunk = PPOD_SZ(n);
1127                 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1128
1129                 wr = alloc_wrqe(len, wrq);
1130                 if (wr == NULL)
1131                         return (ENOMEM);        /* ok to just bail out */
1132                 ulpmc = wrtod(wr);
1133
1134                 INIT_ULPTX_WR(ulpmc, len, 0, 0);
1135                 ulpmc->cmd = cmd;
1136                 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1137                 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1138                 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1139
1140                 ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1141                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1142                 ulpsc->len = htobe32(chunk);
1143
1144                 ppod = (struct pagepod *)(ulpsc + 1);
1145                 for (j = 0; j < n; i++, j++, ppod++) {
1146                         ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1147                             V_PPOD_TID(tid) |
1148                             (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
1149                         ppod->len_offset = htobe64(V_PPOD_LEN(buflen) |
1150                             V_PPOD_OFST(offset));
1151                         ppod->rsvd = 0;
1152
1153                         for (k = 0; k < nitems(ppod->addr); k++) {
1154                                 if (pva > end_pva)
1155                                         ppod->addr[k] = 0;
1156                                 else {
1157                                         pa = pmap_kextract(pva);
1158                                         ppod->addr[k] = htobe64(pa);
1159                                         pva += ddp_pgsz;
1160                                 }
1161 #if 0
1162                                 CTR5(KTR_CXGBE,
1163                                     "%s: tid %d ppod[%d]->addr[%d] = %p",
1164                                     __func__, tid, i, k,
1165                                     htobe64(ppod->addr[k]));
1166 #endif
1167                         }
1168
1169                         /*
1170                          * Walk back 1 segment so that the first address in the
1171                          * next pod is the same as the last one in the current
1172                          * pod.
1173                          */
1174                         pva -= ddp_pgsz;
1175                 }
1176
1177                 t4_wrq_tx(sc, wr);
1178         }
1179
1180         MPASS(pva <= end_pva);
1181
1182         return (0);
1183 }
1184
1185 static void
1186 wire_pageset(struct pageset *ps)
1187 {
1188         vm_page_t p;
1189         int i;
1190
1191         KASSERT(!(ps->flags & PS_WIRED), ("pageset already wired"));
1192
1193         for (i = 0; i < ps->npages; i++) {
1194                 p = ps->pages[i];
1195                 vm_page_lock(p);
1196                 vm_page_wire(p);
1197                 vm_page_unhold(p);
1198                 vm_page_unlock(p);
1199         }
1200         ps->flags |= PS_WIRED;
1201 }
1202
1203 /*
1204  * Prepare a pageset for DDP.  This wires the pageset and sets up page
1205  * pods.
1206  */
1207 static int
1208 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps)
1209 {
1210         struct tom_data *td = sc->tom_softc;
1211
1212         if (!(ps->flags & PS_WIRED))
1213                 wire_pageset(ps);
1214         if (ps->prsv.prsv_nppods == 0 &&
1215             !t4_alloc_page_pods_for_ps(&td->pr, ps)) {
1216                 return (0);
1217         }
1218         if (!(ps->flags & PS_PPODS_WRITTEN) &&
1219             t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) {
1220                 return (0);
1221         }
1222
1223         return (1);
1224 }
1225
1226 int
1227 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz,
1228     const char *name)
1229 {
1230         int i;
1231
1232         MPASS(pr != NULL);
1233         MPASS(r->size > 0);
1234
1235         pr->pr_start = r->start;
1236         pr->pr_len = r->size;
1237         pr->pr_page_shift[0] = 12 + G_HPZ0(psz);
1238         pr->pr_page_shift[1] = 12 + G_HPZ1(psz);
1239         pr->pr_page_shift[2] = 12 + G_HPZ2(psz);
1240         pr->pr_page_shift[3] = 12 + G_HPZ3(psz);
1241
1242         /* The SGL -> page pod algorithm requires the sizes to be in order. */
1243         for (i = 1; i < nitems(pr->pr_page_shift); i++) {
1244                 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1])
1245                         return (ENXIO);
1246         }
1247
1248         pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG);
1249         pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask;
1250         if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0)
1251                 return (ENXIO);
1252         pr->pr_alias_shift = fls(pr->pr_tag_mask);
1253         pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1);
1254
1255         pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0,
1256             M_FIRSTFIT | M_NOWAIT);
1257         if (pr->pr_arena == NULL)
1258                 return (ENOMEM);
1259
1260         return (0);
1261 }
1262
1263 void
1264 t4_free_ppod_region(struct ppod_region *pr)
1265 {
1266
1267         MPASS(pr != NULL);
1268
1269         if (pr->pr_arena)
1270                 vmem_destroy(pr->pr_arena);
1271         bzero(pr, sizeof(*pr));
1272 }
1273
1274 static int
1275 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages,
1276     int pgoff, int len)
1277 {
1278
1279         if (ps->npages != npages || ps->offset != pgoff || ps->len != len)
1280                 return (1);
1281
1282         return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp);
1283 }
1284
1285 static int
1286 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps)
1287 {
1288         struct vmspace *vm;
1289         vm_map_t map;
1290         vm_offset_t start, end, pgoff;
1291         struct pageset *ps;
1292         int n;
1293
1294         DDP_ASSERT_LOCKED(toep);
1295
1296         /*
1297          * The AIO subsystem will cancel and drain all requests before
1298          * permitting a process to exit or exec, so p_vmspace should
1299          * be stable here.
1300          */
1301         vm = job->userproc->p_vmspace;
1302         map = &vm->vm_map;
1303         start = (uintptr_t)job->uaiocb.aio_buf;
1304         pgoff = start & PAGE_MASK;
1305         end = round_page(start + job->uaiocb.aio_nbytes);
1306         start = trunc_page(start);
1307
1308         if (end - start > MAX_DDP_BUFFER_SIZE) {
1309                 /*
1310                  * Truncate the request to a short read.
1311                  * Alternatively, we could DDP in chunks to the larger
1312                  * buffer, but that would be quite a bit more work.
1313                  *
1314                  * When truncating, round the request down to avoid
1315                  * crossing a cache line on the final transaction.
1316                  */
1317                 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE);
1318 #ifdef VERBOSE_TRACES
1319                 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu",
1320                     __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes,
1321                     (unsigned long)(end - (start + pgoff)));
1322                 job->uaiocb.aio_nbytes = end - (start + pgoff);
1323 #endif
1324                 end = round_page(end);
1325         }
1326
1327         n = atop(end - start);
1328
1329         /*
1330          * Try to reuse a cached pageset.
1331          */
1332         TAILQ_FOREACH(ps, &toep->ddp_cached_pagesets, link) {
1333                 if (pscmp(ps, vm, start, n, pgoff,
1334                     job->uaiocb.aio_nbytes) == 0) {
1335                         TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link);
1336                         toep->ddp_cached_count--;
1337                         *pps = ps;
1338                         return (0);
1339                 }
1340         }
1341
1342         /*
1343          * If there are too many cached pagesets to create a new one,
1344          * free a pageset before creating a new one.
1345          */
1346         KASSERT(toep->ddp_active_count + toep->ddp_cached_count <=
1347             nitems(toep->db), ("%s: too many wired pagesets", __func__));
1348         if (toep->ddp_active_count + toep->ddp_cached_count ==
1349             nitems(toep->db)) {
1350                 KASSERT(toep->ddp_cached_count > 0,
1351                     ("no cached pageset to free"));
1352                 ps = TAILQ_LAST(&toep->ddp_cached_pagesets, pagesetq);
1353                 TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link);
1354                 toep->ddp_cached_count--;
1355                 free_pageset(toep->td, ps);
1356         }
1357         DDP_UNLOCK(toep);
1358
1359         /* Create a new pageset. */
1360         ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK |
1361             M_ZERO);
1362         ps->pages = (vm_page_t *)(ps + 1);
1363         ps->vm_timestamp = map->timestamp;
1364         ps->npages = vm_fault_quick_hold_pages(map, start, end - start,
1365             VM_PROT_WRITE, ps->pages, n);
1366
1367         DDP_LOCK(toep);
1368         if (ps->npages < 0) {
1369                 free(ps, M_CXGBE);
1370                 return (EFAULT);
1371         }
1372
1373         KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d",
1374             ps->npages, n));
1375
1376         ps->offset = pgoff;
1377         ps->len = job->uaiocb.aio_nbytes;
1378         atomic_add_int(&vm->vm_refcnt, 1);
1379         ps->vm = vm;
1380
1381         CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d",
1382             __func__, toep->tid, ps, job, ps->npages);
1383         *pps = ps;
1384         return (0);
1385 }
1386
1387 static void
1388 ddp_complete_all(struct toepcb *toep, int error)
1389 {
1390         struct kaiocb *job;
1391
1392         DDP_ASSERT_LOCKED(toep);
1393         while (!TAILQ_EMPTY(&toep->ddp_aiojobq)) {
1394                 job = TAILQ_FIRST(&toep->ddp_aiojobq);
1395                 TAILQ_REMOVE(&toep->ddp_aiojobq, job, list);
1396                 toep->ddp_waiting_count--;
1397                 if (aio_clear_cancel_function(job))
1398                         ddp_complete_one(job, error);
1399         }
1400 }
1401
1402 static void
1403 aio_ddp_cancel_one(struct kaiocb *job)
1404 {
1405         long copied;
1406
1407         /*
1408          * If this job had copied data out of the socket buffer before
1409          * it was cancelled, report it as a short read rather than an
1410          * error.
1411          */
1412         copied = job->aio_received;
1413         if (copied != 0)
1414                 aio_complete(job, copied, 0);
1415         else
1416                 aio_cancel(job);
1417 }
1418
1419 /*
1420  * Called when the main loop wants to requeue a job to retry it later.
1421  * Deals with the race of the job being cancelled while it was being
1422  * examined.
1423  */
1424 static void
1425 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job)
1426 {
1427
1428         DDP_ASSERT_LOCKED(toep);
1429         if (!(toep->ddp_flags & DDP_DEAD) &&
1430             aio_set_cancel_function(job, t4_aio_cancel_queued)) {
1431                 TAILQ_INSERT_HEAD(&toep->ddp_aiojobq, job, list);
1432                 toep->ddp_waiting_count++;
1433         } else
1434                 aio_ddp_cancel_one(job);
1435 }
1436
1437 static void
1438 aio_ddp_requeue(struct toepcb *toep)
1439 {
1440         struct adapter *sc = td_adapter(toep->td);
1441         struct socket *so;
1442         struct sockbuf *sb;
1443         struct inpcb *inp;
1444         struct kaiocb *job;
1445         struct ddp_buffer *db;
1446         size_t copied, offset, resid;
1447         struct pageset *ps;
1448         struct mbuf *m;
1449         uint64_t ddp_flags, ddp_flags_mask;
1450         struct wrqe *wr;
1451         int buf_flag, db_idx, error;
1452
1453         DDP_ASSERT_LOCKED(toep);
1454
1455 restart:
1456         if (toep->ddp_flags & DDP_DEAD) {
1457                 MPASS(toep->ddp_waiting_count == 0);
1458                 MPASS(toep->ddp_active_count == 0);
1459                 return;
1460         }
1461
1462         if (toep->ddp_waiting_count == 0 ||
1463             toep->ddp_active_count == nitems(toep->db)) {
1464                 return;
1465         }
1466
1467         job = TAILQ_FIRST(&toep->ddp_aiojobq);
1468         so = job->fd_file->f_data;
1469         sb = &so->so_rcv;
1470         SOCKBUF_LOCK(sb);
1471
1472         /* We will never get anything unless we are or were connected. */
1473         if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
1474                 SOCKBUF_UNLOCK(sb);
1475                 ddp_complete_all(toep, ENOTCONN);
1476                 return;
1477         }
1478
1479         KASSERT(toep->ddp_active_count == 0 || sbavail(sb) == 0,
1480             ("%s: pending sockbuf data and DDP is active", __func__));
1481
1482         /* Abort if socket has reported problems. */
1483         /* XXX: Wait for any queued DDP's to finish and/or flush them? */
1484         if (so->so_error && sbavail(sb) == 0) {
1485                 toep->ddp_waiting_count--;
1486                 TAILQ_REMOVE(&toep->ddp_aiojobq, job, list);
1487                 if (!aio_clear_cancel_function(job)) {
1488                         SOCKBUF_UNLOCK(sb);
1489                         goto restart;
1490                 }
1491
1492                 /*
1493                  * If this job has previously copied some data, report
1494                  * a short read and leave the error to be reported by
1495                  * a future request.
1496                  */
1497                 copied = job->aio_received;
1498                 if (copied != 0) {
1499                         SOCKBUF_UNLOCK(sb);
1500                         aio_complete(job, copied, 0);
1501                         goto restart;
1502                 }
1503                 error = so->so_error;
1504                 so->so_error = 0;
1505                 SOCKBUF_UNLOCK(sb);
1506                 aio_complete(job, -1, error);
1507                 goto restart;
1508         }
1509
1510         /*
1511          * Door is closed.  If there is pending data in the socket buffer,
1512          * deliver it.  If there are pending DDP requests, wait for those
1513          * to complete.  Once they have completed, return EOF reads.
1514          */
1515         if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
1516                 SOCKBUF_UNLOCK(sb);
1517                 if (toep->ddp_active_count != 0)
1518                         return;
1519                 ddp_complete_all(toep, 0);
1520                 return;
1521         }
1522
1523         /*
1524          * If DDP is not enabled and there is no pending socket buffer
1525          * data, try to enable DDP.
1526          */
1527         if (sbavail(sb) == 0 && (toep->ddp_flags & DDP_ON) == 0) {
1528                 SOCKBUF_UNLOCK(sb);
1529
1530                 /*
1531                  * Wait for the card to ACK that DDP is enabled before
1532                  * queueing any buffers.  Currently this waits for an
1533                  * indicate to arrive.  This could use a TCB_SET_FIELD_RPL
1534                  * message to know that DDP was enabled instead of waiting
1535                  * for the indicate which would avoid copying the indicate
1536                  * if no data is pending.
1537                  *
1538                  * XXX: Might want to limit the indicate size to the size
1539                  * of the first queued request.
1540                  */
1541                 if ((toep->ddp_flags & DDP_SC_REQ) == 0)
1542                         enable_ddp(sc, toep);
1543                 return;
1544         }
1545         SOCKBUF_UNLOCK(sb);
1546
1547         /*
1548          * If another thread is queueing a buffer for DDP, let it
1549          * drain any work and return.
1550          */
1551         if (toep->ddp_queueing != NULL)
1552                 return;
1553
1554         /* Take the next job to prep it for DDP. */
1555         toep->ddp_waiting_count--;
1556         TAILQ_REMOVE(&toep->ddp_aiojobq, job, list);
1557         if (!aio_clear_cancel_function(job))
1558                 goto restart;
1559         toep->ddp_queueing = job;
1560
1561         /* NB: This drops DDP_LOCK while it holds the backing VM pages. */
1562         error = hold_aio(toep, job, &ps);
1563         if (error != 0) {
1564                 ddp_complete_one(job, error);
1565                 toep->ddp_queueing = NULL;
1566                 goto restart;
1567         }
1568
1569         SOCKBUF_LOCK(sb);
1570         if (so->so_error && sbavail(sb) == 0) {
1571                 copied = job->aio_received;
1572                 if (copied != 0) {
1573                         SOCKBUF_UNLOCK(sb);
1574                         recycle_pageset(toep, ps);
1575                         aio_complete(job, copied, 0);
1576                         toep->ddp_queueing = NULL;
1577                         goto restart;
1578                 }
1579
1580                 error = so->so_error;
1581                 so->so_error = 0;
1582                 SOCKBUF_UNLOCK(sb);
1583                 recycle_pageset(toep, ps);
1584                 aio_complete(job, -1, error);
1585                 toep->ddp_queueing = NULL;
1586                 goto restart;
1587         }
1588
1589         if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
1590                 SOCKBUF_UNLOCK(sb);
1591                 recycle_pageset(toep, ps);
1592                 if (toep->ddp_active_count != 0) {
1593                         /*
1594                          * The door is closed, but there are still pending
1595                          * DDP buffers.  Requeue.  These jobs will all be
1596                          * completed once those buffers drain.
1597                          */
1598                         aio_ddp_requeue_one(toep, job);
1599                         toep->ddp_queueing = NULL;
1600                         return;
1601                 }
1602                 ddp_complete_one(job, 0);
1603                 ddp_complete_all(toep, 0);
1604                 toep->ddp_queueing = NULL;
1605                 return;
1606         }
1607
1608 sbcopy:
1609         /*
1610          * If the toep is dead, there shouldn't be any data in the socket
1611          * buffer, so the above case should have handled this.
1612          */
1613         MPASS(!(toep->ddp_flags & DDP_DEAD));
1614
1615         /*
1616          * If there is pending data in the socket buffer (either
1617          * from before the requests were queued or a DDP indicate),
1618          * copy those mbufs out directly.
1619          */
1620         copied = 0;
1621         offset = ps->offset + job->aio_received;
1622         MPASS(job->aio_received <= job->uaiocb.aio_nbytes);
1623         resid = job->uaiocb.aio_nbytes - job->aio_received;
1624         m = sb->sb_mb;
1625         KASSERT(m == NULL || toep->ddp_active_count == 0,
1626             ("%s: sockbuf data with active DDP", __func__));
1627         while (m != NULL && resid > 0) {
1628                 struct iovec iov[1];
1629                 struct uio uio;
1630                 int error;
1631
1632                 iov[0].iov_base = mtod(m, void *);
1633                 iov[0].iov_len = m->m_len;
1634                 if (iov[0].iov_len > resid)
1635                         iov[0].iov_len = resid;
1636                 uio.uio_iov = iov;
1637                 uio.uio_iovcnt = 1;
1638                 uio.uio_offset = 0;
1639                 uio.uio_resid = iov[0].iov_len;
1640                 uio.uio_segflg = UIO_SYSSPACE;
1641                 uio.uio_rw = UIO_WRITE;
1642                 error = uiomove_fromphys(ps->pages, offset + copied,
1643                     uio.uio_resid, &uio);
1644                 MPASS(error == 0 && uio.uio_resid == 0);
1645                 copied += uio.uio_offset;
1646                 resid -= uio.uio_offset;
1647                 m = m->m_next;
1648         }
1649         if (copied != 0) {
1650                 sbdrop_locked(sb, copied);
1651                 job->aio_received += copied;
1652                 job->msgrcv = 1;
1653                 copied = job->aio_received;
1654                 inp = sotoinpcb(so);
1655                 if (!INP_TRY_WLOCK(inp)) {
1656                         /*
1657                          * The reference on the socket file descriptor in
1658                          * the AIO job should keep 'sb' and 'inp' stable.
1659                          * Our caller has a reference on the 'toep' that
1660                          * keeps it stable.
1661                          */
1662                         SOCKBUF_UNLOCK(sb);
1663                         DDP_UNLOCK(toep);
1664                         INP_WLOCK(inp);
1665                         DDP_LOCK(toep);
1666                         SOCKBUF_LOCK(sb);
1667
1668                         /*
1669                          * If the socket has been closed, we should detect
1670                          * that and complete this request if needed on
1671                          * the next trip around the loop.
1672                          */
1673                 }
1674                 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp));
1675                 INP_WUNLOCK(inp);
1676                 if (resid == 0 || toep->ddp_flags & DDP_DEAD) {
1677                         /*
1678                          * We filled the entire buffer with socket
1679                          * data, DDP is not being used, or the socket
1680                          * is being shut down, so complete the
1681                          * request.
1682                          */
1683                         SOCKBUF_UNLOCK(sb);
1684                         recycle_pageset(toep, ps);
1685                         aio_complete(job, copied, 0);
1686                         toep->ddp_queueing = NULL;
1687                         goto restart;
1688                 }
1689
1690                 /*
1691                  * If DDP is not enabled, requeue this request and restart.
1692                  * This will either enable DDP or wait for more data to
1693                  * arrive on the socket buffer.
1694                  */
1695                 if ((toep->ddp_flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) {
1696                         SOCKBUF_UNLOCK(sb);
1697                         recycle_pageset(toep, ps);
1698                         aio_ddp_requeue_one(toep, job);
1699                         toep->ddp_queueing = NULL;
1700                         goto restart;
1701                 }
1702
1703                 /*
1704                  * An indicate might have arrived and been added to
1705                  * the socket buffer while it was unlocked after the
1706                  * copy to lock the INP.  If so, restart the copy.
1707                  */
1708                 if (sbavail(sb) != 0)
1709                         goto sbcopy;
1710         }
1711         SOCKBUF_UNLOCK(sb);
1712
1713         if (prep_pageset(sc, toep, ps) == 0) {
1714                 recycle_pageset(toep, ps);
1715                 aio_ddp_requeue_one(toep, job);
1716                 toep->ddp_queueing = NULL;
1717
1718                 /*
1719                  * XXX: Need to retry this later.  Mostly need a trigger
1720                  * when page pods are freed up.
1721                  */
1722                 printf("%s: prep_pageset failed\n", __func__);
1723                 return;
1724         }
1725
1726         /* Determine which DDP buffer to use. */
1727         if (toep->db[0].job == NULL) {
1728                 db_idx = 0;
1729         } else {
1730                 MPASS(toep->db[1].job == NULL);
1731                 db_idx = 1;
1732         }
1733
1734         ddp_flags = 0;
1735         ddp_flags_mask = 0;
1736         if (db_idx == 0) {
1737                 ddp_flags |= V_TF_DDP_BUF0_VALID(1);
1738                 if (so->so_state & SS_NBIO)
1739                         ddp_flags |= V_TF_DDP_BUF0_FLUSH(1);
1740                 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) |
1741                     V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) |
1742                     V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1);
1743                 buf_flag = DDP_BUF0_ACTIVE;
1744         } else {
1745                 ddp_flags |= V_TF_DDP_BUF1_VALID(1);
1746                 if (so->so_state & SS_NBIO)
1747                         ddp_flags |= V_TF_DDP_BUF1_FLUSH(1);
1748                 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) |
1749                     V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) |
1750                     V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1);
1751                 buf_flag = DDP_BUF1_ACTIVE;
1752         }
1753         MPASS((toep->ddp_flags & buf_flag) == 0);
1754         if ((toep->ddp_flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) {
1755                 MPASS(db_idx == 0);
1756                 MPASS(toep->ddp_active_id == -1);
1757                 MPASS(toep->ddp_active_count == 0);
1758                 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1);
1759         }
1760
1761         /*
1762          * The TID for this connection should still be valid.  If DDP_DEAD
1763          * is set, SBS_CANTRCVMORE should be set, so we shouldn't be
1764          * this far anyway.  Even if the socket is closing on the other
1765          * end, the AIO job holds a reference on this end of the socket
1766          * which will keep it open and keep the TCP PCB attached until
1767          * after the job is completed.
1768          */
1769         wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received,
1770             ddp_flags, ddp_flags_mask);
1771         if (wr == NULL) {
1772                 recycle_pageset(toep, ps);
1773                 aio_ddp_requeue_one(toep, job);
1774                 toep->ddp_queueing = NULL;
1775
1776                 /*
1777                  * XXX: Need a way to kick a retry here.
1778                  *
1779                  * XXX: We know the fixed size needed and could
1780                  * preallocate this using a blocking request at the
1781                  * start of the task to avoid having to handle this
1782                  * edge case.
1783                  */
1784                 printf("%s: mk_update_tcb_for_ddp failed\n", __func__);
1785                 return;
1786         }
1787
1788         if (!aio_set_cancel_function(job, t4_aio_cancel_active)) {
1789                 free_wrqe(wr);
1790                 recycle_pageset(toep, ps);
1791                 aio_ddp_cancel_one(job);
1792                 toep->ddp_queueing = NULL;
1793                 goto restart;
1794         }
1795
1796 #ifdef VERBOSE_TRACES
1797         CTR5(KTR_CXGBE, "%s: scheduling %p for DDP[%d] (flags %#lx/%#lx)",
1798             __func__, job, db_idx, ddp_flags, ddp_flags_mask);
1799 #endif
1800         /* Give the chip the go-ahead. */
1801         t4_wrq_tx(sc, wr);
1802         db = &toep->db[db_idx];
1803         db->cancel_pending = 0;
1804         db->job = job;
1805         db->ps = ps;
1806         toep->ddp_queueing = NULL;
1807         toep->ddp_flags |= buf_flag;
1808         toep->ddp_active_count++;
1809         if (toep->ddp_active_count == 1) {
1810                 MPASS(toep->ddp_active_id == -1);
1811                 toep->ddp_active_id = db_idx;
1812                 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
1813                     toep->ddp_active_id);
1814         }
1815         goto restart;
1816 }
1817
1818 void
1819 ddp_queue_toep(struct toepcb *toep)
1820 {
1821
1822         DDP_ASSERT_LOCKED(toep);
1823         if (toep->ddp_flags & DDP_TASK_ACTIVE)
1824                 return;
1825         toep->ddp_flags |= DDP_TASK_ACTIVE;
1826         hold_toepcb(toep);
1827         soaio_enqueue(&toep->ddp_requeue_task);
1828 }
1829
1830 static void
1831 aio_ddp_requeue_task(void *context, int pending)
1832 {
1833         struct toepcb *toep = context;
1834
1835         DDP_LOCK(toep);
1836         aio_ddp_requeue(toep);
1837         toep->ddp_flags &= ~DDP_TASK_ACTIVE;
1838         DDP_UNLOCK(toep);
1839
1840         free_toepcb(toep);
1841 }
1842
1843 static void
1844 t4_aio_cancel_active(struct kaiocb *job)
1845 {
1846         struct socket *so = job->fd_file->f_data;
1847         struct tcpcb *tp = so_sototcpcb(so);
1848         struct toepcb *toep = tp->t_toe;
1849         struct adapter *sc = td_adapter(toep->td);
1850         uint64_t valid_flag;
1851         int i;
1852
1853         DDP_LOCK(toep);
1854         if (aio_cancel_cleared(job)) {
1855                 DDP_UNLOCK(toep);
1856                 aio_ddp_cancel_one(job);
1857                 return;
1858         }
1859
1860         for (i = 0; i < nitems(toep->db); i++) {
1861                 if (toep->db[i].job == job) {
1862                         /* Should only ever get one cancel request for a job. */
1863                         MPASS(toep->db[i].cancel_pending == 0);
1864
1865                         /*
1866                          * Invalidate this buffer.  It will be
1867                          * cancelled or partially completed once the
1868                          * card ACKs the invalidate.
1869                          */
1870                         valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) :
1871                             V_TF_DDP_BUF1_VALID(1);
1872                         t4_set_tcb_field(sc, toep->ctrlq, toep->tid,
1873                             W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1,
1874                             i + DDP_BUF0_INVALIDATED,
1875                             toep->ofld_rxq->iq.abs_id);
1876                         toep->db[i].cancel_pending = 1;
1877                         CTR2(KTR_CXGBE, "%s: request %p marked pending",
1878                             __func__, job);
1879                         break;
1880                 }
1881         }
1882         DDP_UNLOCK(toep);
1883 }
1884
1885 static void
1886 t4_aio_cancel_queued(struct kaiocb *job)
1887 {
1888         struct socket *so = job->fd_file->f_data;
1889         struct tcpcb *tp = so_sototcpcb(so);
1890         struct toepcb *toep = tp->t_toe;
1891
1892         DDP_LOCK(toep);
1893         if (!aio_cancel_cleared(job)) {
1894                 TAILQ_REMOVE(&toep->ddp_aiojobq, job, list);
1895                 toep->ddp_waiting_count--;
1896                 if (toep->ddp_waiting_count == 0)
1897                         ddp_queue_toep(toep);
1898         }
1899         CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job);
1900         DDP_UNLOCK(toep);
1901
1902         aio_ddp_cancel_one(job);
1903 }
1904
1905 int
1906 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job)
1907 {
1908         struct tcpcb *tp = so_sototcpcb(so);
1909         struct toepcb *toep = tp->t_toe;
1910
1911
1912         /* Ignore writes. */
1913         if (job->uaiocb.aio_lio_opcode != LIO_READ)
1914                 return (EOPNOTSUPP);
1915
1916         DDP_LOCK(toep);
1917
1918         /*
1919          * XXX: Think about possibly returning errors for ENOTCONN,
1920          * etc.  Perhaps the caller would only queue the request
1921          * if it failed with EOPNOTSUPP?
1922          */
1923
1924 #ifdef VERBOSE_TRACES
1925         CTR2(KTR_CXGBE, "%s: queueing %p", __func__, job);
1926 #endif
1927         if (!aio_set_cancel_function(job, t4_aio_cancel_queued))
1928                 panic("new job was cancelled");
1929         TAILQ_INSERT_TAIL(&toep->ddp_aiojobq, job, list);
1930         toep->ddp_waiting_count++;
1931         toep->ddp_flags |= DDP_OK;
1932
1933         /*
1934          * Try to handle this request synchronously.  If this has
1935          * to block because the task is running, it will just bail
1936          * and let the task handle it instead.
1937          */
1938         aio_ddp_requeue(toep);
1939         DDP_UNLOCK(toep);
1940         return (0);
1941 }
1942
1943 int
1944 t4_ddp_mod_load(void)
1945 {
1946
1947         t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp);
1948         t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete);
1949         TAILQ_INIT(&ddp_orphan_pagesets);
1950         mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF);
1951         TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL);
1952         return (0);
1953 }
1954
1955 void
1956 t4_ddp_mod_unload(void)
1957 {
1958
1959         taskqueue_drain(taskqueue_thread, &ddp_orphan_task);
1960         MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets));
1961         mtx_destroy(&ddp_orphan_pagesets_lock);
1962         t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL);
1963         t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL);
1964 }
1965 #endif