]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/tom/t4_ddp.c
MFV r348583: 9847 leaking dd_clones (DMU_OT_DSL_CLONES) objects
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / tom / t4_ddp.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include "opt_inet.h"
34
35 #include <sys/param.h>
36 #include <sys/aio.h>
37 #include <sys/file.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/ktr.h>
41 #include <sys/module.h>
42 #include <sys/protosw.h>
43 #include <sys/proc.h>
44 #include <sys/domain.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/taskqueue.h>
48 #include <sys/uio.h>
49 #include <netinet/in.h>
50 #include <netinet/in_pcb.h>
51 #include <netinet/ip.h>
52 #include <netinet/tcp_var.h>
53 #define TCPSTATES
54 #include <netinet/tcp_fsm.h>
55 #include <netinet/toecore.h>
56
57 #include <vm/vm.h>
58 #include <vm/vm_extern.h>
59 #include <vm/vm_param.h>
60 #include <vm/pmap.h>
61 #include <vm/vm_map.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_object.h>
64
65 #ifdef TCP_OFFLOAD
66 #include "common/common.h"
67 #include "common/t4_msg.h"
68 #include "common/t4_regs.h"
69 #include "common/t4_tcb.h"
70 #include "tom/t4_tom.h"
71
72 /*
73  * Use the 'backend3' field in AIO jobs to store the amount of data
74  * received by the AIO job so far.
75  */
76 #define aio_received    backend3
77
78 static void aio_ddp_requeue_task(void *context, int pending);
79 static void ddp_complete_all(struct toepcb *toep, int error);
80 static void t4_aio_cancel_active(struct kaiocb *job);
81 static void t4_aio_cancel_queued(struct kaiocb *job);
82
83 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets;
84 static struct mtx ddp_orphan_pagesets_lock;
85 static struct task ddp_orphan_task;
86
87 #define MAX_DDP_BUFFER_SIZE             (M_TCB_RX_DDP_BUF0_LEN)
88
89 /*
90  * A page set holds information about a buffer used for DDP.  The page
91  * set holds resources such as the VM pages backing the buffer (either
92  * held or wired) and the page pods associated with the buffer.
93  * Recently used page sets are cached to allow for efficient reuse of
94  * buffers (avoiding the need to re-fault in pages, hold them, etc.).
95  * Note that cached page sets keep the backing pages wired.  The
96  * number of wired pages is capped by only allowing for two wired
97  * pagesets per connection.  This is not a perfect cap, but is a
98  * trade-off for performance.
99  *
100  * If an application ping-pongs two buffers for a connection via
101  * aio_read(2) then those buffers should remain wired and expensive VM
102  * fault lookups should be avoided after each buffer has been used
103  * once.  If an application uses more than two buffers then this will
104  * fall back to doing expensive VM fault lookups for each operation.
105  */
106 static void
107 free_pageset(struct tom_data *td, struct pageset *ps)
108 {
109         vm_page_t p;
110         int i;
111
112         if (ps->prsv.prsv_nppods > 0)
113                 t4_free_page_pods(&ps->prsv);
114
115         if (ps->flags & PS_WIRED) {
116                 for (i = 0; i < ps->npages; i++) {
117                         p = ps->pages[i];
118                         vm_page_lock(p);
119                         vm_page_unwire(p, PQ_INACTIVE);
120                         vm_page_unlock(p);
121                 }
122         } else
123                 vm_page_unhold_pages(ps->pages, ps->npages);
124         mtx_lock(&ddp_orphan_pagesets_lock);
125         TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link);
126         taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task);
127         mtx_unlock(&ddp_orphan_pagesets_lock);
128 }
129
130 static void
131 ddp_free_orphan_pagesets(void *context, int pending)
132 {
133         struct pageset *ps;
134
135         mtx_lock(&ddp_orphan_pagesets_lock);
136         while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) {
137                 ps = TAILQ_FIRST(&ddp_orphan_pagesets);
138                 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link);
139                 mtx_unlock(&ddp_orphan_pagesets_lock);
140                 if (ps->vm)
141                         vmspace_free(ps->vm);
142                 free(ps, M_CXGBE);
143                 mtx_lock(&ddp_orphan_pagesets_lock);
144         }
145         mtx_unlock(&ddp_orphan_pagesets_lock);
146 }
147
148 static void
149 recycle_pageset(struct toepcb *toep, struct pageset *ps)
150 {
151
152         DDP_ASSERT_LOCKED(toep);
153         if (!(toep->ddp.flags & DDP_DEAD) && ps->flags & PS_WIRED) {
154                 KASSERT(toep->ddp.cached_count + toep->ddp.active_count <
155                     nitems(toep->ddp.db), ("too many wired pagesets"));
156                 TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link);
157                 toep->ddp.cached_count++;
158         } else
159                 free_pageset(toep->td, ps);
160 }
161
162 static void
163 ddp_complete_one(struct kaiocb *job, int error)
164 {
165         long copied;
166
167         /*
168          * If this job had copied data out of the socket buffer before
169          * it was cancelled, report it as a short read rather than an
170          * error.
171          */
172         copied = job->aio_received;
173         if (copied != 0 || error == 0)
174                 aio_complete(job, copied, 0);
175         else
176                 aio_complete(job, -1, error);
177 }
178
179 static void
180 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db)
181 {
182
183         if (db->job) {
184                 /*
185                  * XXX: If we are un-offloading the socket then we
186                  * should requeue these on the socket somehow.  If we
187                  * got a FIN from the remote end, then this completes
188                  * any remaining requests with an EOF read.
189                  */
190                 if (!aio_clear_cancel_function(db->job))
191                         ddp_complete_one(db->job, 0);
192         }
193
194         if (db->ps)
195                 free_pageset(td, db->ps);
196 }
197
198 void
199 ddp_init_toep(struct toepcb *toep)
200 {
201
202         TAILQ_INIT(&toep->ddp.aiojobq);
203         TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep);
204         toep->ddp.flags = DDP_OK;
205         toep->ddp.active_id = -1;
206         mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF);
207 }
208
209 void
210 ddp_uninit_toep(struct toepcb *toep)
211 {
212
213         mtx_destroy(&toep->ddp.lock);
214 }
215
216 void
217 release_ddp_resources(struct toepcb *toep)
218 {
219         struct pageset *ps;
220         int i;
221
222         DDP_LOCK(toep);
223         toep->flags |= DDP_DEAD;
224         for (i = 0; i < nitems(toep->ddp.db); i++) {
225                 free_ddp_buffer(toep->td, &toep->ddp.db[i]);
226         }
227         while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) {
228                 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
229                 free_pageset(toep->td, ps);
230         }
231         ddp_complete_all(toep, 0);
232         DDP_UNLOCK(toep);
233 }
234
235 #ifdef INVARIANTS
236 void
237 ddp_assert_empty(struct toepcb *toep)
238 {
239         int i;
240
241         MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE));
242         for (i = 0; i < nitems(toep->ddp.db); i++) {
243                 MPASS(toep->ddp.db[i].job == NULL);
244                 MPASS(toep->ddp.db[i].ps == NULL);
245         }
246         MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets));
247         MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq));
248 }
249 #endif
250
251 static void
252 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db,
253     unsigned int db_idx)
254 {
255         unsigned int db_flag;
256
257         toep->ddp.active_count--;
258         if (toep->ddp.active_id == db_idx) {
259                 if (toep->ddp.active_count == 0) {
260                         KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL,
261                             ("%s: active_count mismatch", __func__));
262                         toep->ddp.active_id = -1;
263                 } else
264                         toep->ddp.active_id ^= 1;
265 #ifdef VERBOSE_TRACES
266                 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
267                     toep->ddp.active_id);
268 #endif
269         } else {
270                 KASSERT(toep->ddp.active_count != 0 &&
271                     toep->ddp.active_id != -1,
272                     ("%s: active count mismatch", __func__));
273         }
274
275         db->cancel_pending = 0;
276         db->job = NULL;
277         recycle_pageset(toep, db->ps);
278         db->ps = NULL;
279
280         db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
281         KASSERT(toep->ddp.flags & db_flag,
282             ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x",
283             __func__, toep, toep->ddp.flags));
284         toep->ddp.flags &= ~db_flag;
285 }
286
287 /* XXX: handle_ddp_data code duplication */
288 void
289 insert_ddp_data(struct toepcb *toep, uint32_t n)
290 {
291         struct inpcb *inp = toep->inp;
292         struct tcpcb *tp = intotcpcb(inp);
293         struct ddp_buffer *db;
294         struct kaiocb *job;
295         size_t placed;
296         long copied;
297         unsigned int db_flag, db_idx;
298
299         INP_WLOCK_ASSERT(inp);
300         DDP_ASSERT_LOCKED(toep);
301
302         tp->rcv_nxt += n;
303 #ifndef USE_DDP_RX_FLOW_CONTROL
304         KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__));
305         tp->rcv_wnd -= n;
306 #endif
307         CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP",
308             __func__, n);
309         while (toep->ddp.active_count > 0) {
310                 MPASS(toep->ddp.active_id != -1);
311                 db_idx = toep->ddp.active_id;
312                 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
313                 MPASS((toep->ddp.flags & db_flag) != 0);
314                 db = &toep->ddp.db[db_idx];
315                 job = db->job;
316                 copied = job->aio_received;
317                 placed = n;
318                 if (placed > job->uaiocb.aio_nbytes - copied)
319                         placed = job->uaiocb.aio_nbytes - copied;
320                 if (placed > 0)
321                         job->msgrcv = 1;
322                 if (!aio_clear_cancel_function(job)) {
323                         /*
324                          * Update the copied length for when
325                          * t4_aio_cancel_active() completes this
326                          * request.
327                          */
328                         job->aio_received += placed;
329                 } else if (copied + placed != 0) {
330                         CTR4(KTR_CXGBE,
331                             "%s: completing %p (copied %ld, placed %lu)",
332                             __func__, job, copied, placed);
333                         /* XXX: This always completes if there is some data. */
334                         aio_complete(job, copied + placed, 0);
335                 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) {
336                         TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
337                         toep->ddp.waiting_count++;
338                 } else
339                         aio_cancel(job);
340                 n -= placed;
341                 complete_ddp_buffer(toep, db, db_idx);
342         }
343
344         MPASS(n == 0);
345 }
346
347 /* SET_TCB_FIELD sent as a ULP command looks like this */
348 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \
349     sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core))
350
351 /* RX_DATA_ACK sent as a ULP command looks like this */
352 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \
353     sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core))
354
355 static inline void *
356 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep,
357     uint64_t word, uint64_t mask, uint64_t val)
358 {
359         struct ulptx_idata *ulpsc;
360         struct cpl_set_tcb_field_core *req;
361
362         ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
363         ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16));
364
365         ulpsc = (struct ulptx_idata *)(ulpmc + 1);
366         ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
367         ulpsc->len = htobe32(sizeof(*req));
368
369         req = (struct cpl_set_tcb_field_core *)(ulpsc + 1);
370         OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid));
371         req->reply_ctrl = htobe16(V_NO_REPLY(1) |
372             V_QUEUENO(toep->ofld_rxq->iq.abs_id));
373         req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0));
374         req->mask = htobe64(mask);
375         req->val = htobe64(val);
376
377         ulpsc = (struct ulptx_idata *)(req + 1);
378         if (LEN__SET_TCB_FIELD_ULP % 16) {
379                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
380                 ulpsc->len = htobe32(0);
381                 return (ulpsc + 1);
382         }
383         return (ulpsc);
384 }
385
386 static inline void *
387 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep)
388 {
389         struct ulptx_idata *ulpsc;
390         struct cpl_rx_data_ack_core *req;
391
392         ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
393         ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16));
394
395         ulpsc = (struct ulptx_idata *)(ulpmc + 1);
396         ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
397         ulpsc->len = htobe32(sizeof(*req));
398
399         req = (struct cpl_rx_data_ack_core *)(ulpsc + 1);
400         OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid));
401         req->credit_dack = htobe32(F_RX_MODULATE_RX);
402
403         ulpsc = (struct ulptx_idata *)(req + 1);
404         if (LEN__RX_DATA_ACK_ULP % 16) {
405                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
406                 ulpsc->len = htobe32(0);
407                 return (ulpsc + 1);
408         }
409         return (ulpsc);
410 }
411
412 static struct wrqe *
413 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx,
414     struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask)
415 {
416         struct wrqe *wr;
417         struct work_request_hdr *wrh;
418         struct ulp_txpkt *ulpmc;
419         int len;
420
421         KASSERT(db_idx == 0 || db_idx == 1,
422             ("%s: bad DDP buffer index %d", __func__, db_idx));
423
424         /*
425          * We'll send a compound work request that has 3 SET_TCB_FIELDs and an
426          * RX_DATA_ACK (with RX_MODULATE to speed up delivery).
427          *
428          * The work request header is 16B and always ends at a 16B boundary.
429          * The ULPTX master commands that follow must all end at 16B boundaries
430          * too so we round up the size to 16.
431          */
432         len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) +
433             roundup2(LEN__RX_DATA_ACK_ULP, 16);
434
435         wr = alloc_wrqe(len, toep->ctrlq);
436         if (wr == NULL)
437                 return (NULL);
438         wrh = wrtod(wr);
439         INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */
440         ulpmc = (struct ulp_txpkt *)(wrh + 1);
441
442         /* Write the buffer's tag */
443         ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
444             W_TCB_RX_DDP_BUF0_TAG + db_idx,
445             V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG),
446             V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag));
447
448         /* Update the current offset in the DDP buffer and its total length */
449         if (db_idx == 0)
450                 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
451                     W_TCB_RX_DDP_BUF0_OFFSET,
452                     V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) |
453                     V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN),
454                     V_TCB_RX_DDP_BUF0_OFFSET(offset) |
455                     V_TCB_RX_DDP_BUF0_LEN(ps->len));
456         else
457                 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
458                     W_TCB_RX_DDP_BUF1_OFFSET,
459                     V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) |
460                     V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32),
461                     V_TCB_RX_DDP_BUF1_OFFSET(offset) |
462                     V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32));
463
464         /* Update DDP flags */
465         ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS,
466             ddp_flags_mask, ddp_flags);
467
468         /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */
469         ulpmc = mk_rx_data_ack_ulp(ulpmc, toep);
470
471         return (wr);
472 }
473
474 static int
475 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len)
476 {
477         uint32_t report = be32toh(ddp_report);
478         unsigned int db_idx;
479         struct inpcb *inp = toep->inp;
480         struct ddp_buffer *db;
481         struct tcpcb *tp;
482         struct socket *so;
483         struct sockbuf *sb;
484         struct kaiocb *job;
485         long copied;
486
487         db_idx = report & F_DDP_BUF_IDX ? 1 : 0;
488
489         if (__predict_false(!(report & F_DDP_INV)))
490                 CXGBE_UNIMPLEMENTED("DDP buffer still valid");
491
492         INP_WLOCK(inp);
493         so = inp_inpcbtosocket(inp);
494         sb = &so->so_rcv;
495         DDP_LOCK(toep);
496
497         KASSERT(toep->ddp.active_id == db_idx,
498             ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx,
499             toep->ddp.active_id, toep->tid));
500         db = &toep->ddp.db[db_idx];
501         job = db->job;
502
503         if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) {
504                 /*
505                  * This can happen due to an administrative tcpdrop(8).
506                  * Just fail the request with ECONNRESET.
507                  */
508                 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x",
509                     __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags);
510                 if (aio_clear_cancel_function(job))
511                         ddp_complete_one(job, ECONNRESET);
512                 goto completed;
513         }
514
515         tp = intotcpcb(inp);
516
517         /*
518          * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the
519          * sequence number of the next byte to receive.  The length of
520          * the data received for this message must be computed by
521          * comparing the new and old values of rcv_nxt.
522          *
523          * For RX_DATA_DDP, len might be non-zero, but it is only the
524          * length of the most recent DMA.  It does not include the
525          * total length of the data received since the previous update
526          * for this DDP buffer.  rcv_nxt is the sequence number of the
527          * first received byte from the most recent DMA.
528          */
529         len += be32toh(rcv_nxt) - tp->rcv_nxt;
530         tp->rcv_nxt += len;
531         tp->t_rcvtime = ticks;
532 #ifndef USE_DDP_RX_FLOW_CONTROL
533         KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__));
534         tp->rcv_wnd -= len;
535 #endif
536 #ifdef VERBOSE_TRACES
537         CTR4(KTR_CXGBE, "%s: DDP[%d] placed %d bytes (%#x)", __func__, db_idx,
538             len, report);
539 #endif
540
541         /* receive buffer autosize */
542         MPASS(toep->vnet == so->so_vnet);
543         CURVNET_SET(toep->vnet);
544         SOCKBUF_LOCK(sb);
545         if (sb->sb_flags & SB_AUTOSIZE &&
546             V_tcp_do_autorcvbuf &&
547             sb->sb_hiwat < V_tcp_autorcvbuf_max &&
548             len > (sbspace(sb) / 8 * 7)) {
549                 struct adapter *sc = td_adapter(toep->td);
550                 unsigned int hiwat = sb->sb_hiwat;
551                 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc,
552                     V_tcp_autorcvbuf_max);
553
554                 if (!sbreserve_locked(sb, newsize, so, NULL))
555                         sb->sb_flags &= ~SB_AUTOSIZE;
556         }
557         SOCKBUF_UNLOCK(sb);
558         CURVNET_RESTORE();
559
560         job->msgrcv = 1;
561         if (db->cancel_pending) {
562                 /*
563                  * Update the job's length but defer completion to the
564                  * TCB_RPL callback.
565                  */
566                 job->aio_received += len;
567                 goto out;
568         } else if (!aio_clear_cancel_function(job)) {
569                 /*
570                  * Update the copied length for when
571                  * t4_aio_cancel_active() completes this request.
572                  */
573                 job->aio_received += len;
574         } else {
575                 copied = job->aio_received;
576 #ifdef VERBOSE_TRACES
577                 CTR4(KTR_CXGBE, "%s: completing %p (copied %ld, placed %d)",
578                     __func__, job, copied, len);
579 #endif
580                 aio_complete(job, copied + len, 0);
581                 t4_rcvd(&toep->td->tod, tp);
582         }
583
584 completed:
585         complete_ddp_buffer(toep, db, db_idx);
586         if (toep->ddp.waiting_count > 0)
587                 ddp_queue_toep(toep);
588 out:
589         DDP_UNLOCK(toep);
590         INP_WUNLOCK(inp);
591
592         return (0);
593 }
594
595 void
596 handle_ddp_indicate(struct toepcb *toep)
597 {
598
599         DDP_ASSERT_LOCKED(toep);
600         MPASS(toep->ddp.active_count == 0);
601         MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0);
602         if (toep->ddp.waiting_count == 0) {
603                 /*
604                  * The pending requests that triggered the request for an
605                  * an indicate were cancelled.  Those cancels should have
606                  * already disabled DDP.  Just ignore this as the data is
607                  * going into the socket buffer anyway.
608                  */
609                 return;
610         }
611         CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__,
612             toep->tid, toep->ddp.waiting_count);
613         ddp_queue_toep(toep);
614 }
615
616 enum {
617         DDP_BUF0_INVALIDATED = 0x2,
618         DDP_BUF1_INVALIDATED
619 };
620
621 CTASSERT(DDP_BUF0_INVALIDATED == CPL_COOKIE_DDP0);
622
623 static int
624 do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
625 {
626         struct adapter *sc = iq->adapter;
627         const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
628         unsigned int tid = GET_TID(cpl);
629         unsigned int db_idx;
630         struct toepcb *toep;
631         struct inpcb *inp;
632         struct ddp_buffer *db;
633         struct kaiocb *job;
634         long copied;
635
636         if (cpl->status != CPL_ERR_NONE)
637                 panic("XXX: tcp_rpl failed: %d", cpl->status);
638
639         toep = lookup_tid(sc, tid);
640         inp = toep->inp;
641         switch (cpl->cookie) {
642         case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED):
643         case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED):
644                 /*
645                  * XXX: This duplicates a lot of code with handle_ddp_data().
646                  */
647                 db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED;
648                 MPASS(db_idx < nitems(toep->ddp.db));
649                 INP_WLOCK(inp);
650                 DDP_LOCK(toep);
651                 db = &toep->ddp.db[db_idx];
652
653                 /*
654                  * handle_ddp_data() should leave the job around until
655                  * this callback runs once a cancel is pending.
656                  */
657                 MPASS(db != NULL);
658                 MPASS(db->job != NULL);
659                 MPASS(db->cancel_pending);
660
661                 /*
662                  * XXX: It's not clear what happens if there is data
663                  * placed when the buffer is invalidated.  I suspect we
664                  * need to read the TCB to see how much data was placed.
665                  *
666                  * For now this just pretends like nothing was placed.
667                  *
668                  * XXX: Note that if we did check the PCB we would need to
669                  * also take care of updating the tp, etc.
670                  */
671                 job = db->job;
672                 copied = job->aio_received;
673                 if (copied == 0) {
674                         CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job);
675                         aio_cancel(job);
676                 } else {
677                         CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)",
678                             __func__, job, copied);
679                         aio_complete(job, copied, 0);
680                         t4_rcvd(&toep->td->tod, intotcpcb(inp));
681                 }
682
683                 complete_ddp_buffer(toep, db, db_idx);
684                 if (toep->ddp.waiting_count > 0)
685                         ddp_queue_toep(toep);
686                 DDP_UNLOCK(toep);
687                 INP_WUNLOCK(inp);
688                 break;
689         default:
690                 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x",
691                     G_WORD(cpl->cookie), G_COOKIE(cpl->cookie));
692         }
693
694         return (0);
695 }
696
697 void
698 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt)
699 {
700         struct ddp_buffer *db;
701         struct kaiocb *job;
702         long copied;
703         unsigned int db_flag, db_idx;
704         int len, placed;
705
706         INP_WLOCK_ASSERT(toep->inp);
707         DDP_ASSERT_LOCKED(toep);
708
709         len = be32toh(rcv_nxt) - tp->rcv_nxt;
710         tp->rcv_nxt += len;
711
712         while (toep->ddp.active_count > 0) {
713                 MPASS(toep->ddp.active_id != -1);
714                 db_idx = toep->ddp.active_id;
715                 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
716                 MPASS((toep->ddp.flags & db_flag) != 0);
717                 db = &toep->ddp.db[db_idx];
718                 job = db->job;
719                 copied = job->aio_received;
720                 placed = len;
721                 if (placed > job->uaiocb.aio_nbytes - copied)
722                         placed = job->uaiocb.aio_nbytes - copied;
723                 if (placed > 0)
724                         job->msgrcv = 1;
725                 if (!aio_clear_cancel_function(job)) {
726                         /*
727                          * Update the copied length for when
728                          * t4_aio_cancel_active() completes this
729                          * request.
730                          */
731                         job->aio_received += placed;
732                 } else {
733                         CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d",
734                             __func__, toep->tid, db_idx, placed);
735                         aio_complete(job, copied + placed, 0);
736                 }
737                 len -= placed;
738                 complete_ddp_buffer(toep, db, db_idx);
739         }
740
741         MPASS(len == 0);
742         ddp_complete_all(toep, 0);
743 }
744
745 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\
746          F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\
747          F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\
748          F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR)
749
750 extern cpl_handler_t t4_cpl_handler[];
751
752 static int
753 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
754 {
755         struct adapter *sc = iq->adapter;
756         const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1);
757         unsigned int tid = GET_TID(cpl);
758         uint32_t vld;
759         struct toepcb *toep = lookup_tid(sc, tid);
760
761         KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
762         KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
763         KASSERT(!(toep->flags & TPF_SYNQE),
764             ("%s: toep %p claims to be a synq entry", __func__, toep));
765
766         vld = be32toh(cpl->ddpvld);
767         if (__predict_false(vld & DDP_ERR)) {
768                 panic("%s: DDP error 0x%x (tid %d, toep %p)",
769                     __func__, vld, tid, toep);
770         }
771
772         if (toep->ulp_mode == ULP_MODE_ISCSI) {
773                 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m);
774                 return (0);
775         }
776
777         handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len));
778
779         return (0);
780 }
781
782 static int
783 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss,
784     struct mbuf *m)
785 {
786         struct adapter *sc = iq->adapter;
787         const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1);
788         unsigned int tid = GET_TID(cpl);
789         struct toepcb *toep = lookup_tid(sc, tid);
790
791         KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
792         KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
793         KASSERT(!(toep->flags & TPF_SYNQE),
794             ("%s: toep %p claims to be a synq entry", __func__, toep));
795
796         handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0);
797
798         return (0);
799 }
800
801 static void
802 enable_ddp(struct adapter *sc, struct toepcb *toep)
803 {
804
805         KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK,
806             ("%s: toep %p has bad ddp_flags 0x%x",
807             __func__, toep, toep->ddp.flags));
808
809         CTR3(KTR_CXGBE, "%s: tid %u (time %u)",
810             __func__, toep->tid, time_uptime);
811
812         DDP_ASSERT_LOCKED(toep);
813         toep->ddp.flags |= DDP_SC_REQ;
814         t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS,
815             V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) |
816             V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) |
817             V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1),
818             V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0);
819         t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS,
820             V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0);
821 }
822
823 static int
824 calculate_hcf(int n1, int n2)
825 {
826         int a, b, t;
827
828         if (n1 <= n2) {
829                 a = n1;
830                 b = n2;
831         } else {
832                 a = n2;
833                 b = n1;
834         }
835
836         while (a != 0) {
837                 t = a;
838                 a = b % a;
839                 b = t;
840         }
841
842         return (b);
843 }
844
845 static inline int
846 pages_to_nppods(int npages, int ddp_page_shift)
847 {
848
849         MPASS(ddp_page_shift >= PAGE_SHIFT);
850
851         return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES));
852 }
853
854 static int
855 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx,
856     struct ppod_reservation *prsv)
857 {
858         vmem_addr_t addr;       /* relative to start of region */
859
860         if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT,
861             &addr) != 0)
862                 return (ENOMEM);
863
864         CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d",
865             __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask,
866             nppods, 1 << pr->pr_page_shift[pgsz_idx]);
867
868         /*
869          * The hardware tagmask includes an extra invalid bit but the arena was
870          * seeded with valid values only.  An allocation out of this arena will
871          * fit inside the tagmask but won't have the invalid bit set.
872          */
873         MPASS((addr & pr->pr_tag_mask) == addr);
874         MPASS((addr & pr->pr_invalid_bit) == 0);
875
876         prsv->prsv_pr = pr;
877         prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr;
878         prsv->prsv_nppods = nppods;
879
880         return (0);
881 }
882
883 int
884 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps)
885 {
886         int i, hcf, seglen, idx, nppods;
887         struct ppod_reservation *prsv = &ps->prsv;
888
889         KASSERT(prsv->prsv_nppods == 0,
890             ("%s: page pods already allocated", __func__));
891
892         /*
893          * The DDP page size is unrelated to the VM page size.  We combine
894          * contiguous physical pages into larger segments to get the best DDP
895          * page size possible.  This is the largest of the four sizes in
896          * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in
897          * the page list.
898          */
899         hcf = 0;
900         for (i = 0; i < ps->npages; i++) {
901                 seglen = PAGE_SIZE;
902                 while (i < ps->npages - 1 &&
903                     ps->pages[i]->phys_addr + PAGE_SIZE ==
904                     ps->pages[i + 1]->phys_addr) {
905                         seglen += PAGE_SIZE;
906                         i++;
907                 }
908
909                 hcf = calculate_hcf(hcf, seglen);
910                 if (hcf < (1 << pr->pr_page_shift[1])) {
911                         idx = 0;
912                         goto have_pgsz; /* give up, short circuit */
913                 }
914         }
915
916 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
917         MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
918         for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
919                 if ((hcf & PR_PAGE_MASK(idx)) == 0)
920                         break;
921         }
922 #undef PR_PAGE_MASK
923
924 have_pgsz:
925         MPASS(idx <= M_PPOD_PGSZ);
926
927         nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]);
928         if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
929                 return (0);
930         MPASS(prsv->prsv_nppods > 0);
931
932         return (1);
933 }
934
935 int
936 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len,
937     struct ppod_reservation *prsv)
938 {
939         int hcf, seglen, idx, npages, nppods;
940         uintptr_t start_pva, end_pva, pva, p1;
941
942         MPASS(buf > 0);
943         MPASS(len > 0);
944
945         /*
946          * The DDP page size is unrelated to the VM page size.  We combine
947          * contiguous physical pages into larger segments to get the best DDP
948          * page size possible.  This is the largest of the four sizes in
949          * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes
950          * in the page list.
951          */
952         hcf = 0;
953         start_pva = trunc_page(buf);
954         end_pva = trunc_page(buf + len - 1);
955         pva = start_pva;
956         while (pva <= end_pva) {
957                 seglen = PAGE_SIZE;
958                 p1 = pmap_kextract(pva);
959                 pva += PAGE_SIZE;
960                 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) {
961                         seglen += PAGE_SIZE;
962                         pva += PAGE_SIZE;
963                 }
964
965                 hcf = calculate_hcf(hcf, seglen);
966                 if (hcf < (1 << pr->pr_page_shift[1])) {
967                         idx = 0;
968                         goto have_pgsz; /* give up, short circuit */
969                 }
970         }
971
972 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
973         MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
974         for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
975                 if ((hcf & PR_PAGE_MASK(idx)) == 0)
976                         break;
977         }
978 #undef PR_PAGE_MASK
979
980 have_pgsz:
981         MPASS(idx <= M_PPOD_PGSZ);
982
983         npages = 1;
984         npages += (end_pva - start_pva) >> pr->pr_page_shift[idx];
985         nppods = howmany(npages, PPOD_PAGES);
986         if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
987                 return (ENOMEM);
988         MPASS(prsv->prsv_nppods > 0);
989
990         return (0);
991 }
992
993 void
994 t4_free_page_pods(struct ppod_reservation *prsv)
995 {
996         struct ppod_region *pr = prsv->prsv_pr;
997         vmem_addr_t addr;
998
999         MPASS(prsv != NULL);
1000         MPASS(prsv->prsv_nppods != 0);
1001
1002         addr = prsv->prsv_tag & pr->pr_tag_mask;
1003         MPASS((addr & pr->pr_invalid_bit) == 0);
1004
1005         CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__,
1006             pr->pr_arena, addr, prsv->prsv_nppods);
1007
1008         vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods));
1009         prsv->prsv_nppods = 0;
1010 }
1011
1012 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE)
1013
1014 int
1015 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid,
1016     struct pageset *ps)
1017 {
1018         struct wrqe *wr;
1019         struct ulp_mem_io *ulpmc;
1020         struct ulptx_idata *ulpsc;
1021         struct pagepod *ppod;
1022         int i, j, k, n, chunk, len, ddp_pgsz, idx;
1023         u_int ppod_addr;
1024         uint32_t cmd;
1025         struct ppod_reservation *prsv = &ps->prsv;
1026         struct ppod_region *pr = prsv->prsv_pr;
1027
1028         KASSERT(!(ps->flags & PS_PPODS_WRITTEN),
1029             ("%s: page pods already written", __func__));
1030         MPASS(prsv->prsv_nppods > 0);
1031
1032         cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1033         if (is_t4(sc))
1034                 cmd |= htobe32(F_ULP_MEMIO_ORDER);
1035         else
1036                 cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1037         ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1038         ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1039         for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1040
1041                 /* How many page pods are we writing in this cycle */
1042                 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1043                 chunk = PPOD_SZ(n);
1044                 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1045
1046                 wr = alloc_wrqe(len, wrq);
1047                 if (wr == NULL)
1048                         return (ENOMEM);        /* ok to just bail out */
1049                 ulpmc = wrtod(wr);
1050
1051                 INIT_ULPTX_WR(ulpmc, len, 0, 0);
1052                 ulpmc->cmd = cmd;
1053                 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1054                 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1055                 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1056
1057                 ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1058                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1059                 ulpsc->len = htobe32(chunk);
1060
1061                 ppod = (struct pagepod *)(ulpsc + 1);
1062                 for (j = 0; j < n; i++, j++, ppod++) {
1063                         ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1064                             V_PPOD_TID(tid) | prsv->prsv_tag);
1065                         ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) |
1066                             V_PPOD_OFST(ps->offset));
1067                         ppod->rsvd = 0;
1068                         idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE);
1069                         for (k = 0; k < nitems(ppod->addr); k++) {
1070                                 if (idx < ps->npages) {
1071                                         ppod->addr[k] =
1072                                             htobe64(ps->pages[idx]->phys_addr);
1073                                         idx += ddp_pgsz / PAGE_SIZE;
1074                                 } else
1075                                         ppod->addr[k] = 0;
1076 #if 0
1077                                 CTR5(KTR_CXGBE,
1078                                     "%s: tid %d ppod[%d]->addr[%d] = %p",
1079                                     __func__, toep->tid, i, k,
1080                                     htobe64(ppod->addr[k]));
1081 #endif
1082                         }
1083
1084                 }
1085
1086                 t4_wrq_tx(sc, wr);
1087         }
1088         ps->flags |= PS_PPODS_WRITTEN;
1089
1090         return (0);
1091 }
1092
1093 int
1094 t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid,
1095     struct ppod_reservation *prsv, vm_offset_t buf, int buflen)
1096 {
1097         struct wrqe *wr;
1098         struct ulp_mem_io *ulpmc;
1099         struct ulptx_idata *ulpsc;
1100         struct pagepod *ppod;
1101         int i, j, k, n, chunk, len, ddp_pgsz;
1102         u_int ppod_addr, offset;
1103         uint32_t cmd;
1104         struct ppod_region *pr = prsv->prsv_pr;
1105         uintptr_t end_pva, pva, pa;
1106
1107         cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1108         if (is_t4(sc))
1109                 cmd |= htobe32(F_ULP_MEMIO_ORDER);
1110         else
1111                 cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1112         ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1113         offset = buf & PAGE_MASK;
1114         ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1115         pva = trunc_page(buf);
1116         end_pva = trunc_page(buf + buflen - 1);
1117         for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1118
1119                 /* How many page pods are we writing in this cycle */
1120                 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1121                 MPASS(n > 0);
1122                 chunk = PPOD_SZ(n);
1123                 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1124
1125                 wr = alloc_wrqe(len, wrq);
1126                 if (wr == NULL)
1127                         return (ENOMEM);        /* ok to just bail out */
1128                 ulpmc = wrtod(wr);
1129
1130                 INIT_ULPTX_WR(ulpmc, len, 0, 0);
1131                 ulpmc->cmd = cmd;
1132                 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1133                 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1134                 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1135
1136                 ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1137                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1138                 ulpsc->len = htobe32(chunk);
1139
1140                 ppod = (struct pagepod *)(ulpsc + 1);
1141                 for (j = 0; j < n; i++, j++, ppod++) {
1142                         ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1143                             V_PPOD_TID(tid) |
1144                             (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
1145                         ppod->len_offset = htobe64(V_PPOD_LEN(buflen) |
1146                             V_PPOD_OFST(offset));
1147                         ppod->rsvd = 0;
1148
1149                         for (k = 0; k < nitems(ppod->addr); k++) {
1150                                 if (pva > end_pva)
1151                                         ppod->addr[k] = 0;
1152                                 else {
1153                                         pa = pmap_kextract(pva);
1154                                         ppod->addr[k] = htobe64(pa);
1155                                         pva += ddp_pgsz;
1156                                 }
1157 #if 0
1158                                 CTR5(KTR_CXGBE,
1159                                     "%s: tid %d ppod[%d]->addr[%d] = %p",
1160                                     __func__, tid, i, k,
1161                                     htobe64(ppod->addr[k]));
1162 #endif
1163                         }
1164
1165                         /*
1166                          * Walk back 1 segment so that the first address in the
1167                          * next pod is the same as the last one in the current
1168                          * pod.
1169                          */
1170                         pva -= ddp_pgsz;
1171                 }
1172
1173                 t4_wrq_tx(sc, wr);
1174         }
1175
1176         MPASS(pva <= end_pva);
1177
1178         return (0);
1179 }
1180
1181 static void
1182 wire_pageset(struct pageset *ps)
1183 {
1184         vm_page_t p;
1185         int i;
1186
1187         KASSERT(!(ps->flags & PS_WIRED), ("pageset already wired"));
1188
1189         for (i = 0; i < ps->npages; i++) {
1190                 p = ps->pages[i];
1191                 vm_page_lock(p);
1192                 vm_page_wire(p);
1193                 vm_page_unhold(p);
1194                 vm_page_unlock(p);
1195         }
1196         ps->flags |= PS_WIRED;
1197 }
1198
1199 /*
1200  * Prepare a pageset for DDP.  This wires the pageset and sets up page
1201  * pods.
1202  */
1203 static int
1204 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps)
1205 {
1206         struct tom_data *td = sc->tom_softc;
1207
1208         if (!(ps->flags & PS_WIRED))
1209                 wire_pageset(ps);
1210         if (ps->prsv.prsv_nppods == 0 &&
1211             !t4_alloc_page_pods_for_ps(&td->pr, ps)) {
1212                 return (0);
1213         }
1214         if (!(ps->flags & PS_PPODS_WRITTEN) &&
1215             t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) {
1216                 return (0);
1217         }
1218
1219         return (1);
1220 }
1221
1222 int
1223 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz,
1224     const char *name)
1225 {
1226         int i;
1227
1228         MPASS(pr != NULL);
1229         MPASS(r->size > 0);
1230
1231         pr->pr_start = r->start;
1232         pr->pr_len = r->size;
1233         pr->pr_page_shift[0] = 12 + G_HPZ0(psz);
1234         pr->pr_page_shift[1] = 12 + G_HPZ1(psz);
1235         pr->pr_page_shift[2] = 12 + G_HPZ2(psz);
1236         pr->pr_page_shift[3] = 12 + G_HPZ3(psz);
1237
1238         /* The SGL -> page pod algorithm requires the sizes to be in order. */
1239         for (i = 1; i < nitems(pr->pr_page_shift); i++) {
1240                 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1])
1241                         return (ENXIO);
1242         }
1243
1244         pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG);
1245         pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask;
1246         if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0)
1247                 return (ENXIO);
1248         pr->pr_alias_shift = fls(pr->pr_tag_mask);
1249         pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1);
1250
1251         pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0,
1252             M_FIRSTFIT | M_NOWAIT);
1253         if (pr->pr_arena == NULL)
1254                 return (ENOMEM);
1255
1256         return (0);
1257 }
1258
1259 void
1260 t4_free_ppod_region(struct ppod_region *pr)
1261 {
1262
1263         MPASS(pr != NULL);
1264
1265         if (pr->pr_arena)
1266                 vmem_destroy(pr->pr_arena);
1267         bzero(pr, sizeof(*pr));
1268 }
1269
1270 static int
1271 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages,
1272     int pgoff, int len)
1273 {
1274
1275         if (ps->start != start || ps->npages != npages ||
1276             ps->offset != pgoff || ps->len != len)
1277                 return (1);
1278
1279         return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp);
1280 }
1281
1282 static int
1283 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps)
1284 {
1285         struct vmspace *vm;
1286         vm_map_t map;
1287         vm_offset_t start, end, pgoff;
1288         struct pageset *ps;
1289         int n;
1290
1291         DDP_ASSERT_LOCKED(toep);
1292
1293         /*
1294          * The AIO subsystem will cancel and drain all requests before
1295          * permitting a process to exit or exec, so p_vmspace should
1296          * be stable here.
1297          */
1298         vm = job->userproc->p_vmspace;
1299         map = &vm->vm_map;
1300         start = (uintptr_t)job->uaiocb.aio_buf;
1301         pgoff = start & PAGE_MASK;
1302         end = round_page(start + job->uaiocb.aio_nbytes);
1303         start = trunc_page(start);
1304
1305         if (end - start > MAX_DDP_BUFFER_SIZE) {
1306                 /*
1307                  * Truncate the request to a short read.
1308                  * Alternatively, we could DDP in chunks to the larger
1309                  * buffer, but that would be quite a bit more work.
1310                  *
1311                  * When truncating, round the request down to avoid
1312                  * crossing a cache line on the final transaction.
1313                  */
1314                 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE);
1315 #ifdef VERBOSE_TRACES
1316                 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu",
1317                     __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes,
1318                     (unsigned long)(end - (start + pgoff)));
1319                 job->uaiocb.aio_nbytes = end - (start + pgoff);
1320 #endif
1321                 end = round_page(end);
1322         }
1323
1324         n = atop(end - start);
1325
1326         /*
1327          * Try to reuse a cached pageset.
1328          */
1329         TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) {
1330                 if (pscmp(ps, vm, start, n, pgoff,
1331                     job->uaiocb.aio_nbytes) == 0) {
1332                         TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
1333                         toep->ddp.cached_count--;
1334                         *pps = ps;
1335                         return (0);
1336                 }
1337         }
1338
1339         /*
1340          * If there are too many cached pagesets to create a new one,
1341          * free a pageset before creating a new one.
1342          */
1343         KASSERT(toep->ddp.active_count + toep->ddp.cached_count <=
1344             nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__));
1345         if (toep->ddp.active_count + toep->ddp.cached_count ==
1346             nitems(toep->ddp.db)) {
1347                 KASSERT(toep->ddp.cached_count > 0,
1348                     ("no cached pageset to free"));
1349                 ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq);
1350                 TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link);
1351                 toep->ddp.cached_count--;
1352                 free_pageset(toep->td, ps);
1353         }
1354         DDP_UNLOCK(toep);
1355
1356         /* Create a new pageset. */
1357         ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK |
1358             M_ZERO);
1359         ps->pages = (vm_page_t *)(ps + 1);
1360         ps->vm_timestamp = map->timestamp;
1361         ps->npages = vm_fault_quick_hold_pages(map, start, end - start,
1362             VM_PROT_WRITE, ps->pages, n);
1363
1364         DDP_LOCK(toep);
1365         if (ps->npages < 0) {
1366                 free(ps, M_CXGBE);
1367                 return (EFAULT);
1368         }
1369
1370         KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d",
1371             ps->npages, n));
1372
1373         ps->offset = pgoff;
1374         ps->len = job->uaiocb.aio_nbytes;
1375         atomic_add_int(&vm->vm_refcnt, 1);
1376         ps->vm = vm;
1377         ps->start = start;
1378
1379         CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d",
1380             __func__, toep->tid, ps, job, ps->npages);
1381         *pps = ps;
1382         return (0);
1383 }
1384
1385 static void
1386 ddp_complete_all(struct toepcb *toep, int error)
1387 {
1388         struct kaiocb *job;
1389
1390         DDP_ASSERT_LOCKED(toep);
1391         while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) {
1392                 job = TAILQ_FIRST(&toep->ddp.aiojobq);
1393                 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1394                 toep->ddp.waiting_count--;
1395                 if (aio_clear_cancel_function(job))
1396                         ddp_complete_one(job, error);
1397         }
1398 }
1399
1400 static void
1401 aio_ddp_cancel_one(struct kaiocb *job)
1402 {
1403         long copied;
1404
1405         /*
1406          * If this job had copied data out of the socket buffer before
1407          * it was cancelled, report it as a short read rather than an
1408          * error.
1409          */
1410         copied = job->aio_received;
1411         if (copied != 0)
1412                 aio_complete(job, copied, 0);
1413         else
1414                 aio_cancel(job);
1415 }
1416
1417 /*
1418  * Called when the main loop wants to requeue a job to retry it later.
1419  * Deals with the race of the job being cancelled while it was being
1420  * examined.
1421  */
1422 static void
1423 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job)
1424 {
1425
1426         DDP_ASSERT_LOCKED(toep);
1427         if (!(toep->ddp.flags & DDP_DEAD) &&
1428             aio_set_cancel_function(job, t4_aio_cancel_queued)) {
1429                 TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list);
1430                 toep->ddp.waiting_count++;
1431         } else
1432                 aio_ddp_cancel_one(job);
1433 }
1434
1435 static void
1436 aio_ddp_requeue(struct toepcb *toep)
1437 {
1438         struct adapter *sc = td_adapter(toep->td);
1439         struct socket *so;
1440         struct sockbuf *sb;
1441         struct inpcb *inp;
1442         struct kaiocb *job;
1443         struct ddp_buffer *db;
1444         size_t copied, offset, resid;
1445         struct pageset *ps;
1446         struct mbuf *m;
1447         uint64_t ddp_flags, ddp_flags_mask;
1448         struct wrqe *wr;
1449         int buf_flag, db_idx, error;
1450
1451         DDP_ASSERT_LOCKED(toep);
1452
1453 restart:
1454         if (toep->ddp.flags & DDP_DEAD) {
1455                 MPASS(toep->ddp.waiting_count == 0);
1456                 MPASS(toep->ddp.active_count == 0);
1457                 return;
1458         }
1459
1460         if (toep->ddp.waiting_count == 0 ||
1461             toep->ddp.active_count == nitems(toep->ddp.db)) {
1462                 return;
1463         }
1464
1465         job = TAILQ_FIRST(&toep->ddp.aiojobq);
1466         so = job->fd_file->f_data;
1467         sb = &so->so_rcv;
1468         SOCKBUF_LOCK(sb);
1469
1470         /* We will never get anything unless we are or were connected. */
1471         if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
1472                 SOCKBUF_UNLOCK(sb);
1473                 ddp_complete_all(toep, ENOTCONN);
1474                 return;
1475         }
1476
1477         KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0,
1478             ("%s: pending sockbuf data and DDP is active", __func__));
1479
1480         /* Abort if socket has reported problems. */
1481         /* XXX: Wait for any queued DDP's to finish and/or flush them? */
1482         if (so->so_error && sbavail(sb) == 0) {
1483                 toep->ddp.waiting_count--;
1484                 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1485                 if (!aio_clear_cancel_function(job)) {
1486                         SOCKBUF_UNLOCK(sb);
1487                         goto restart;
1488                 }
1489
1490                 /*
1491                  * If this job has previously copied some data, report
1492                  * a short read and leave the error to be reported by
1493                  * a future request.
1494                  */
1495                 copied = job->aio_received;
1496                 if (copied != 0) {
1497                         SOCKBUF_UNLOCK(sb);
1498                         aio_complete(job, copied, 0);
1499                         goto restart;
1500                 }
1501                 error = so->so_error;
1502                 so->so_error = 0;
1503                 SOCKBUF_UNLOCK(sb);
1504                 aio_complete(job, -1, error);
1505                 goto restart;
1506         }
1507
1508         /*
1509          * Door is closed.  If there is pending data in the socket buffer,
1510          * deliver it.  If there are pending DDP requests, wait for those
1511          * to complete.  Once they have completed, return EOF reads.
1512          */
1513         if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
1514                 SOCKBUF_UNLOCK(sb);
1515                 if (toep->ddp.active_count != 0)
1516                         return;
1517                 ddp_complete_all(toep, 0);
1518                 return;
1519         }
1520
1521         /*
1522          * If DDP is not enabled and there is no pending socket buffer
1523          * data, try to enable DDP.
1524          */
1525         if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) {
1526                 SOCKBUF_UNLOCK(sb);
1527
1528                 /*
1529                  * Wait for the card to ACK that DDP is enabled before
1530                  * queueing any buffers.  Currently this waits for an
1531                  * indicate to arrive.  This could use a TCB_SET_FIELD_RPL
1532                  * message to know that DDP was enabled instead of waiting
1533                  * for the indicate which would avoid copying the indicate
1534                  * if no data is pending.
1535                  *
1536                  * XXX: Might want to limit the indicate size to the size
1537                  * of the first queued request.
1538                  */
1539                 if ((toep->ddp.flags & DDP_SC_REQ) == 0)
1540                         enable_ddp(sc, toep);
1541                 return;
1542         }
1543         SOCKBUF_UNLOCK(sb);
1544
1545         /*
1546          * If another thread is queueing a buffer for DDP, let it
1547          * drain any work and return.
1548          */
1549         if (toep->ddp.queueing != NULL)
1550                 return;
1551
1552         /* Take the next job to prep it for DDP. */
1553         toep->ddp.waiting_count--;
1554         TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1555         if (!aio_clear_cancel_function(job))
1556                 goto restart;
1557         toep->ddp.queueing = job;
1558
1559         /* NB: This drops DDP_LOCK while it holds the backing VM pages. */
1560         error = hold_aio(toep, job, &ps);
1561         if (error != 0) {
1562                 ddp_complete_one(job, error);
1563                 toep->ddp.queueing = NULL;
1564                 goto restart;
1565         }
1566
1567         SOCKBUF_LOCK(sb);
1568         if (so->so_error && sbavail(sb) == 0) {
1569                 copied = job->aio_received;
1570                 if (copied != 0) {
1571                         SOCKBUF_UNLOCK(sb);
1572                         recycle_pageset(toep, ps);
1573                         aio_complete(job, copied, 0);
1574                         toep->ddp.queueing = NULL;
1575                         goto restart;
1576                 }
1577
1578                 error = so->so_error;
1579                 so->so_error = 0;
1580                 SOCKBUF_UNLOCK(sb);
1581                 recycle_pageset(toep, ps);
1582                 aio_complete(job, -1, error);
1583                 toep->ddp.queueing = NULL;
1584                 goto restart;
1585         }
1586
1587         if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
1588                 SOCKBUF_UNLOCK(sb);
1589                 recycle_pageset(toep, ps);
1590                 if (toep->ddp.active_count != 0) {
1591                         /*
1592                          * The door is closed, but there are still pending
1593                          * DDP buffers.  Requeue.  These jobs will all be
1594                          * completed once those buffers drain.
1595                          */
1596                         aio_ddp_requeue_one(toep, job);
1597                         toep->ddp.queueing = NULL;
1598                         return;
1599                 }
1600                 ddp_complete_one(job, 0);
1601                 ddp_complete_all(toep, 0);
1602                 toep->ddp.queueing = NULL;
1603                 return;
1604         }
1605
1606 sbcopy:
1607         /*
1608          * If the toep is dead, there shouldn't be any data in the socket
1609          * buffer, so the above case should have handled this.
1610          */
1611         MPASS(!(toep->ddp.flags & DDP_DEAD));
1612
1613         /*
1614          * If there is pending data in the socket buffer (either
1615          * from before the requests were queued or a DDP indicate),
1616          * copy those mbufs out directly.
1617          */
1618         copied = 0;
1619         offset = ps->offset + job->aio_received;
1620         MPASS(job->aio_received <= job->uaiocb.aio_nbytes);
1621         resid = job->uaiocb.aio_nbytes - job->aio_received;
1622         m = sb->sb_mb;
1623         KASSERT(m == NULL || toep->ddp.active_count == 0,
1624             ("%s: sockbuf data with active DDP", __func__));
1625         while (m != NULL && resid > 0) {
1626                 struct iovec iov[1];
1627                 struct uio uio;
1628                 int error;
1629
1630                 iov[0].iov_base = mtod(m, void *);
1631                 iov[0].iov_len = m->m_len;
1632                 if (iov[0].iov_len > resid)
1633                         iov[0].iov_len = resid;
1634                 uio.uio_iov = iov;
1635                 uio.uio_iovcnt = 1;
1636                 uio.uio_offset = 0;
1637                 uio.uio_resid = iov[0].iov_len;
1638                 uio.uio_segflg = UIO_SYSSPACE;
1639                 uio.uio_rw = UIO_WRITE;
1640                 error = uiomove_fromphys(ps->pages, offset + copied,
1641                     uio.uio_resid, &uio);
1642                 MPASS(error == 0 && uio.uio_resid == 0);
1643                 copied += uio.uio_offset;
1644                 resid -= uio.uio_offset;
1645                 m = m->m_next;
1646         }
1647         if (copied != 0) {
1648                 sbdrop_locked(sb, copied);
1649                 job->aio_received += copied;
1650                 job->msgrcv = 1;
1651                 copied = job->aio_received;
1652                 inp = sotoinpcb(so);
1653                 if (!INP_TRY_WLOCK(inp)) {
1654                         /*
1655                          * The reference on the socket file descriptor in
1656                          * the AIO job should keep 'sb' and 'inp' stable.
1657                          * Our caller has a reference on the 'toep' that
1658                          * keeps it stable.
1659                          */
1660                         SOCKBUF_UNLOCK(sb);
1661                         DDP_UNLOCK(toep);
1662                         INP_WLOCK(inp);
1663                         DDP_LOCK(toep);
1664                         SOCKBUF_LOCK(sb);
1665
1666                         /*
1667                          * If the socket has been closed, we should detect
1668                          * that and complete this request if needed on
1669                          * the next trip around the loop.
1670                          */
1671                 }
1672                 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp));
1673                 INP_WUNLOCK(inp);
1674                 if (resid == 0 || toep->ddp.flags & DDP_DEAD) {
1675                         /*
1676                          * We filled the entire buffer with socket
1677                          * data, DDP is not being used, or the socket
1678                          * is being shut down, so complete the
1679                          * request.
1680                          */
1681                         SOCKBUF_UNLOCK(sb);
1682                         recycle_pageset(toep, ps);
1683                         aio_complete(job, copied, 0);
1684                         toep->ddp.queueing = NULL;
1685                         goto restart;
1686                 }
1687
1688                 /*
1689                  * If DDP is not enabled, requeue this request and restart.
1690                  * This will either enable DDP or wait for more data to
1691                  * arrive on the socket buffer.
1692                  */
1693                 if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) {
1694                         SOCKBUF_UNLOCK(sb);
1695                         recycle_pageset(toep, ps);
1696                         aio_ddp_requeue_one(toep, job);
1697                         toep->ddp.queueing = NULL;
1698                         goto restart;
1699                 }
1700
1701                 /*
1702                  * An indicate might have arrived and been added to
1703                  * the socket buffer while it was unlocked after the
1704                  * copy to lock the INP.  If so, restart the copy.
1705                  */
1706                 if (sbavail(sb) != 0)
1707                         goto sbcopy;
1708         }
1709         SOCKBUF_UNLOCK(sb);
1710
1711         if (prep_pageset(sc, toep, ps) == 0) {
1712                 recycle_pageset(toep, ps);
1713                 aio_ddp_requeue_one(toep, job);
1714                 toep->ddp.queueing = NULL;
1715
1716                 /*
1717                  * XXX: Need to retry this later.  Mostly need a trigger
1718                  * when page pods are freed up.
1719                  */
1720                 printf("%s: prep_pageset failed\n", __func__);
1721                 return;
1722         }
1723
1724         /* Determine which DDP buffer to use. */
1725         if (toep->ddp.db[0].job == NULL) {
1726                 db_idx = 0;
1727         } else {
1728                 MPASS(toep->ddp.db[1].job == NULL);
1729                 db_idx = 1;
1730         }
1731
1732         ddp_flags = 0;
1733         ddp_flags_mask = 0;
1734         if (db_idx == 0) {
1735                 ddp_flags |= V_TF_DDP_BUF0_VALID(1);
1736                 if (so->so_state & SS_NBIO)
1737                         ddp_flags |= V_TF_DDP_BUF0_FLUSH(1);
1738                 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) |
1739                     V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) |
1740                     V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1);
1741                 buf_flag = DDP_BUF0_ACTIVE;
1742         } else {
1743                 ddp_flags |= V_TF_DDP_BUF1_VALID(1);
1744                 if (so->so_state & SS_NBIO)
1745                         ddp_flags |= V_TF_DDP_BUF1_FLUSH(1);
1746                 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) |
1747                     V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) |
1748                     V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1);
1749                 buf_flag = DDP_BUF1_ACTIVE;
1750         }
1751         MPASS((toep->ddp.flags & buf_flag) == 0);
1752         if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) {
1753                 MPASS(db_idx == 0);
1754                 MPASS(toep->ddp.active_id == -1);
1755                 MPASS(toep->ddp.active_count == 0);
1756                 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1);
1757         }
1758
1759         /*
1760          * The TID for this connection should still be valid.  If DDP_DEAD
1761          * is set, SBS_CANTRCVMORE should be set, so we shouldn't be
1762          * this far anyway.  Even if the socket is closing on the other
1763          * end, the AIO job holds a reference on this end of the socket
1764          * which will keep it open and keep the TCP PCB attached until
1765          * after the job is completed.
1766          */
1767         wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received,
1768             ddp_flags, ddp_flags_mask);
1769         if (wr == NULL) {
1770                 recycle_pageset(toep, ps);
1771                 aio_ddp_requeue_one(toep, job);
1772                 toep->ddp.queueing = NULL;
1773
1774                 /*
1775                  * XXX: Need a way to kick a retry here.
1776                  *
1777                  * XXX: We know the fixed size needed and could
1778                  * preallocate this using a blocking request at the
1779                  * start of the task to avoid having to handle this
1780                  * edge case.
1781                  */
1782                 printf("%s: mk_update_tcb_for_ddp failed\n", __func__);
1783                 return;
1784         }
1785
1786         if (!aio_set_cancel_function(job, t4_aio_cancel_active)) {
1787                 free_wrqe(wr);
1788                 recycle_pageset(toep, ps);
1789                 aio_ddp_cancel_one(job);
1790                 toep->ddp.queueing = NULL;
1791                 goto restart;
1792         }
1793
1794 #ifdef VERBOSE_TRACES
1795         CTR5(KTR_CXGBE, "%s: scheduling %p for DDP[%d] (flags %#lx/%#lx)",
1796             __func__, job, db_idx, ddp_flags, ddp_flags_mask);
1797 #endif
1798         /* Give the chip the go-ahead. */
1799         t4_wrq_tx(sc, wr);
1800         db = &toep->ddp.db[db_idx];
1801         db->cancel_pending = 0;
1802         db->job = job;
1803         db->ps = ps;
1804         toep->ddp.queueing = NULL;
1805         toep->ddp.flags |= buf_flag;
1806         toep->ddp.active_count++;
1807         if (toep->ddp.active_count == 1) {
1808                 MPASS(toep->ddp.active_id == -1);
1809                 toep->ddp.active_id = db_idx;
1810                 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
1811                     toep->ddp.active_id);
1812         }
1813         goto restart;
1814 }
1815
1816 void
1817 ddp_queue_toep(struct toepcb *toep)
1818 {
1819
1820         DDP_ASSERT_LOCKED(toep);
1821         if (toep->ddp.flags & DDP_TASK_ACTIVE)
1822                 return;
1823         toep->ddp.flags |= DDP_TASK_ACTIVE;
1824         hold_toepcb(toep);
1825         soaio_enqueue(&toep->ddp.requeue_task);
1826 }
1827
1828 static void
1829 aio_ddp_requeue_task(void *context, int pending)
1830 {
1831         struct toepcb *toep = context;
1832
1833         DDP_LOCK(toep);
1834         aio_ddp_requeue(toep);
1835         toep->ddp.flags &= ~DDP_TASK_ACTIVE;
1836         DDP_UNLOCK(toep);
1837
1838         free_toepcb(toep);
1839 }
1840
1841 static void
1842 t4_aio_cancel_active(struct kaiocb *job)
1843 {
1844         struct socket *so = job->fd_file->f_data;
1845         struct tcpcb *tp = so_sototcpcb(so);
1846         struct toepcb *toep = tp->t_toe;
1847         struct adapter *sc = td_adapter(toep->td);
1848         uint64_t valid_flag;
1849         int i;
1850
1851         DDP_LOCK(toep);
1852         if (aio_cancel_cleared(job)) {
1853                 DDP_UNLOCK(toep);
1854                 aio_ddp_cancel_one(job);
1855                 return;
1856         }
1857
1858         for (i = 0; i < nitems(toep->ddp.db); i++) {
1859                 if (toep->ddp.db[i].job == job) {
1860                         /* Should only ever get one cancel request for a job. */
1861                         MPASS(toep->ddp.db[i].cancel_pending == 0);
1862
1863                         /*
1864                          * Invalidate this buffer.  It will be
1865                          * cancelled or partially completed once the
1866                          * card ACKs the invalidate.
1867                          */
1868                         valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) :
1869                             V_TF_DDP_BUF1_VALID(1);
1870                         t4_set_tcb_field(sc, toep->ctrlq, toep,
1871                             W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1,
1872                             i + DDP_BUF0_INVALIDATED);
1873                         toep->ddp.db[i].cancel_pending = 1;
1874                         CTR2(KTR_CXGBE, "%s: request %p marked pending",
1875                             __func__, job);
1876                         break;
1877                 }
1878         }
1879         DDP_UNLOCK(toep);
1880 }
1881
1882 static void
1883 t4_aio_cancel_queued(struct kaiocb *job)
1884 {
1885         struct socket *so = job->fd_file->f_data;
1886         struct tcpcb *tp = so_sototcpcb(so);
1887         struct toepcb *toep = tp->t_toe;
1888
1889         DDP_LOCK(toep);
1890         if (!aio_cancel_cleared(job)) {
1891                 TAILQ_REMOVE(&toep->ddp.aiojobq, job, list);
1892                 toep->ddp.waiting_count--;
1893                 if (toep->ddp.waiting_count == 0)
1894                         ddp_queue_toep(toep);
1895         }
1896         CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job);
1897         DDP_UNLOCK(toep);
1898
1899         aio_ddp_cancel_one(job);
1900 }
1901
1902 int
1903 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job)
1904 {
1905         struct tcpcb *tp = so_sototcpcb(so);
1906         struct toepcb *toep = tp->t_toe;
1907
1908
1909         /* Ignore writes. */
1910         if (job->uaiocb.aio_lio_opcode != LIO_READ)
1911                 return (EOPNOTSUPP);
1912
1913         DDP_LOCK(toep);
1914
1915         /*
1916          * XXX: Think about possibly returning errors for ENOTCONN,
1917          * etc.  Perhaps the caller would only queue the request
1918          * if it failed with EOPNOTSUPP?
1919          */
1920
1921 #ifdef VERBOSE_TRACES
1922         CTR2(KTR_CXGBE, "%s: queueing %p", __func__, job);
1923 #endif
1924         if (!aio_set_cancel_function(job, t4_aio_cancel_queued))
1925                 panic("new job was cancelled");
1926         TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list);
1927         toep->ddp.waiting_count++;
1928         toep->ddp.flags |= DDP_OK;
1929
1930         /*
1931          * Try to handle this request synchronously.  If this has
1932          * to block because the task is running, it will just bail
1933          * and let the task handle it instead.
1934          */
1935         aio_ddp_requeue(toep);
1936         DDP_UNLOCK(toep);
1937         return (0);
1938 }
1939
1940 void
1941 t4_ddp_mod_load(void)
1942 {
1943
1944         t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
1945             CPL_COOKIE_DDP0);
1946         t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl,
1947             CPL_COOKIE_DDP1);
1948         t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp);
1949         t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete);
1950         TAILQ_INIT(&ddp_orphan_pagesets);
1951         mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF);
1952         TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL);
1953 }
1954
1955 void
1956 t4_ddp_mod_unload(void)
1957 {
1958
1959         taskqueue_drain(taskqueue_thread, &ddp_orphan_task);
1960         MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets));
1961         mtx_destroy(&ddp_orphan_pagesets_lock);
1962         t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0);
1963         t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1);
1964         t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL);
1965         t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL);
1966 }
1967 #endif