]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/cxgbe/tom/t4_ddp.c
Import tzdata 2017c
[FreeBSD/FreeBSD.git] / sys / dev / cxgbe / tom / t4_ddp.c
1 /*-
2  * Copyright (c) 2012 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: Navdeep Parhar <np@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include "opt_inet.h"
32
33 #include <sys/param.h>
34 #include <sys/aio.h>
35 #include <sys/file.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/ktr.h>
39 #include <sys/module.h>
40 #include <sys/protosw.h>
41 #include <sys/proc.h>
42 #include <sys/domain.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/taskqueue.h>
46 #include <sys/uio.h>
47 #include <netinet/in.h>
48 #include <netinet/in_pcb.h>
49 #include <netinet/ip.h>
50 #include <netinet/tcp_var.h>
51 #define TCPSTATES
52 #include <netinet/tcp_fsm.h>
53 #include <netinet/toecore.h>
54
55 #include <vm/vm.h>
56 #include <vm/vm_extern.h>
57 #include <vm/vm_param.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_map.h>
60 #include <vm/vm_page.h>
61 #include <vm/vm_object.h>
62
63 #ifdef TCP_OFFLOAD
64 #include "common/common.h"
65 #include "common/t4_msg.h"
66 #include "common/t4_regs.h"
67 #include "common/t4_tcb.h"
68 #include "tom/t4_tom.h"
69
70 /*
71  * Use the 'backend3' field in AIO jobs to store the amount of data
72  * received by the AIO job so far.
73  */
74 #define aio_received    backend3
75
76 static void aio_ddp_requeue_task(void *context, int pending);
77 static void ddp_complete_all(struct toepcb *toep, int error);
78 static void t4_aio_cancel_active(struct kaiocb *job);
79 static void t4_aio_cancel_queued(struct kaiocb *job);
80
81 static TAILQ_HEAD(, pageset) ddp_orphan_pagesets;
82 static struct mtx ddp_orphan_pagesets_lock;
83 static struct task ddp_orphan_task;
84
85 #define MAX_DDP_BUFFER_SIZE             (M_TCB_RX_DDP_BUF0_LEN)
86
87 /*
88  * A page set holds information about a buffer used for DDP.  The page
89  * set holds resources such as the VM pages backing the buffer (either
90  * held or wired) and the page pods associated with the buffer.
91  * Recently used page sets are cached to allow for efficient reuse of
92  * buffers (avoiding the need to re-fault in pages, hold them, etc.).
93  * Note that cached page sets keep the backing pages wired.  The
94  * number of wired pages is capped by only allowing for two wired
95  * pagesets per connection.  This is not a perfect cap, but is a
96  * trade-off for performance.
97  *
98  * If an application ping-pongs two buffers for a connection via
99  * aio_read(2) then those buffers should remain wired and expensive VM
100  * fault lookups should be avoided after each buffer has been used
101  * once.  If an application uses more than two buffers then this will
102  * fall back to doing expensive VM fault lookups for each operation.
103  */
104 static void
105 free_pageset(struct tom_data *td, struct pageset *ps)
106 {
107         vm_page_t p;
108         int i;
109
110         if (ps->prsv.prsv_nppods > 0)
111                 t4_free_page_pods(&ps->prsv);
112
113         if (ps->flags & PS_WIRED) {
114                 for (i = 0; i < ps->npages; i++) {
115                         p = ps->pages[i];
116                         vm_page_lock(p);
117                         vm_page_unwire(p, PQ_INACTIVE);
118                         vm_page_unlock(p);
119                 }
120         } else
121                 vm_page_unhold_pages(ps->pages, ps->npages);
122         mtx_lock(&ddp_orphan_pagesets_lock);
123         TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link);
124         taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task);
125         mtx_unlock(&ddp_orphan_pagesets_lock);
126 }
127
128 static void
129 ddp_free_orphan_pagesets(void *context, int pending)
130 {
131         struct pageset *ps;
132
133         mtx_lock(&ddp_orphan_pagesets_lock);
134         while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) {
135                 ps = TAILQ_FIRST(&ddp_orphan_pagesets);
136                 TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link);
137                 mtx_unlock(&ddp_orphan_pagesets_lock);
138                 if (ps->vm)
139                         vmspace_free(ps->vm);
140                 free(ps, M_CXGBE);
141                 mtx_lock(&ddp_orphan_pagesets_lock);
142         }
143         mtx_unlock(&ddp_orphan_pagesets_lock);
144 }
145
146 static void
147 recycle_pageset(struct toepcb *toep, struct pageset *ps)
148 {
149
150         DDP_ASSERT_LOCKED(toep);
151         if (!(toep->ddp_flags & DDP_DEAD) && ps->flags & PS_WIRED) {
152                 KASSERT(toep->ddp_cached_count + toep->ddp_active_count <
153                     nitems(toep->db), ("too many wired pagesets"));
154                 TAILQ_INSERT_HEAD(&toep->ddp_cached_pagesets, ps, link);
155                 toep->ddp_cached_count++;
156         } else
157                 free_pageset(toep->td, ps);
158 }
159
160 static void
161 ddp_complete_one(struct kaiocb *job, int error)
162 {
163         long copied;
164
165         /*
166          * If this job had copied data out of the socket buffer before
167          * it was cancelled, report it as a short read rather than an
168          * error.
169          */
170         copied = job->aio_received;
171         if (copied != 0 || error == 0)
172                 aio_complete(job, copied, 0);
173         else
174                 aio_complete(job, -1, error);
175 }
176
177 static void
178 free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db)
179 {
180
181         if (db->job) {
182                 /*
183                  * XXX: If we are un-offloading the socket then we
184                  * should requeue these on the socket somehow.  If we
185                  * got a FIN from the remote end, then this completes
186                  * any remaining requests with an EOF read.
187                  */
188                 if (!aio_clear_cancel_function(db->job))
189                         ddp_complete_one(db->job, 0);
190         }
191
192         if (db->ps)
193                 free_pageset(td, db->ps);
194 }
195
196 void
197 ddp_init_toep(struct toepcb *toep)
198 {
199
200         TAILQ_INIT(&toep->ddp_aiojobq);
201         TASK_INIT(&toep->ddp_requeue_task, 0, aio_ddp_requeue_task, toep);
202         toep->ddp_active_id = -1;
203         mtx_init(&toep->ddp_lock, "t4 ddp", NULL, MTX_DEF);
204 }
205
206 void
207 ddp_uninit_toep(struct toepcb *toep)
208 {
209
210         mtx_destroy(&toep->ddp_lock);
211 }
212
213 void
214 release_ddp_resources(struct toepcb *toep)
215 {
216         struct pageset *ps;
217         int i;
218
219         DDP_LOCK(toep);
220         toep->flags |= DDP_DEAD;
221         for (i = 0; i < nitems(toep->db); i++) {
222                 free_ddp_buffer(toep->td, &toep->db[i]);
223         }
224         while ((ps = TAILQ_FIRST(&toep->ddp_cached_pagesets)) != NULL) {
225                 TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link);
226                 free_pageset(toep->td, ps);
227         }
228         ddp_complete_all(toep, 0);
229         DDP_UNLOCK(toep);
230 }
231
232 #ifdef INVARIANTS
233 void
234 ddp_assert_empty(struct toepcb *toep)
235 {
236         int i;
237
238         MPASS(!(toep->ddp_flags & DDP_TASK_ACTIVE));
239         for (i = 0; i < nitems(toep->db); i++) {
240                 MPASS(toep->db[i].job == NULL);
241                 MPASS(toep->db[i].ps == NULL);
242         }
243         MPASS(TAILQ_EMPTY(&toep->ddp_cached_pagesets));
244         MPASS(TAILQ_EMPTY(&toep->ddp_aiojobq));
245 }
246 #endif
247
248 static void
249 complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db,
250     unsigned int db_idx)
251 {
252         unsigned int db_flag;
253
254         toep->ddp_active_count--;
255         if (toep->ddp_active_id == db_idx) {
256                 if (toep->ddp_active_count == 0) {
257                         KASSERT(toep->db[db_idx ^ 1].job == NULL,
258                             ("%s: active_count mismatch", __func__));
259                         toep->ddp_active_id = -1;
260                 } else
261                         toep->ddp_active_id ^= 1;
262 #ifdef VERBOSE_TRACES
263                 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
264                     toep->ddp_active_id);
265 #endif
266         } else {
267                 KASSERT(toep->ddp_active_count != 0 &&
268                     toep->ddp_active_id != -1,
269                     ("%s: active count mismatch", __func__));
270         }
271
272         db->cancel_pending = 0;
273         db->job = NULL;
274         recycle_pageset(toep, db->ps);
275         db->ps = NULL;
276
277         db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
278         KASSERT(toep->ddp_flags & db_flag,
279             ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x",
280             __func__, toep, toep->ddp_flags));
281         toep->ddp_flags &= ~db_flag;
282 }
283
284 /* XXX: handle_ddp_data code duplication */
285 void
286 insert_ddp_data(struct toepcb *toep, uint32_t n)
287 {
288         struct inpcb *inp = toep->inp;
289         struct tcpcb *tp = intotcpcb(inp);
290         struct ddp_buffer *db;
291         struct kaiocb *job;
292         size_t placed;
293         long copied;
294         unsigned int db_flag, db_idx;
295
296         INP_WLOCK_ASSERT(inp);
297         DDP_ASSERT_LOCKED(toep);
298
299         tp->rcv_nxt += n;
300 #ifndef USE_DDP_RX_FLOW_CONTROL
301         KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__));
302         tp->rcv_wnd -= n;
303 #endif
304 #ifndef USE_DDP_RX_FLOW_CONTROL
305         toep->rx_credits += n;
306 #endif
307         CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP",
308             __func__, n);
309         while (toep->ddp_active_count > 0) {
310                 MPASS(toep->ddp_active_id != -1);
311                 db_idx = toep->ddp_active_id;
312                 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
313                 MPASS((toep->ddp_flags & db_flag) != 0);
314                 db = &toep->db[db_idx];
315                 job = db->job;
316                 copied = job->aio_received;
317                 placed = n;
318                 if (placed > job->uaiocb.aio_nbytes - copied)
319                         placed = job->uaiocb.aio_nbytes - copied;
320                 if (placed > 0)
321                         job->msgrcv = 1;
322                 if (!aio_clear_cancel_function(job)) {
323                         /*
324                          * Update the copied length for when
325                          * t4_aio_cancel_active() completes this
326                          * request.
327                          */
328                         job->aio_received += placed;
329                 } else if (copied + placed != 0) {
330                         CTR4(KTR_CXGBE,
331                             "%s: completing %p (copied %ld, placed %lu)",
332                             __func__, job, copied, placed);
333                         /* XXX: This always completes if there is some data. */
334                         aio_complete(job, copied + placed, 0);
335                 } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) {
336                         TAILQ_INSERT_HEAD(&toep->ddp_aiojobq, job, list);
337                         toep->ddp_waiting_count++;
338                 } else
339                         aio_cancel(job);
340                 n -= placed;
341                 complete_ddp_buffer(toep, db, db_idx);
342         }
343
344         MPASS(n == 0);
345 }
346
347 /* SET_TCB_FIELD sent as a ULP command looks like this */
348 #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \
349     sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core))
350
351 /* RX_DATA_ACK sent as a ULP command looks like this */
352 #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \
353     sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core))
354
355 static inline void *
356 mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep,
357     uint64_t word, uint64_t mask, uint64_t val)
358 {
359         struct ulptx_idata *ulpsc;
360         struct cpl_set_tcb_field_core *req;
361
362         ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
363         ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16));
364
365         ulpsc = (struct ulptx_idata *)(ulpmc + 1);
366         ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
367         ulpsc->len = htobe32(sizeof(*req));
368
369         req = (struct cpl_set_tcb_field_core *)(ulpsc + 1);
370         OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid));
371         req->reply_ctrl = htobe16(V_NO_REPLY(1) |
372             V_QUEUENO(toep->ofld_rxq->iq.abs_id));
373         req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0));
374         req->mask = htobe64(mask);
375         req->val = htobe64(val);
376
377         ulpsc = (struct ulptx_idata *)(req + 1);
378         if (LEN__SET_TCB_FIELD_ULP % 16) {
379                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
380                 ulpsc->len = htobe32(0);
381                 return (ulpsc + 1);
382         }
383         return (ulpsc);
384 }
385
386 static inline void *
387 mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep)
388 {
389         struct ulptx_idata *ulpsc;
390         struct cpl_rx_data_ack_core *req;
391
392         ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
393         ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16));
394
395         ulpsc = (struct ulptx_idata *)(ulpmc + 1);
396         ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
397         ulpsc->len = htobe32(sizeof(*req));
398
399         req = (struct cpl_rx_data_ack_core *)(ulpsc + 1);
400         OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid));
401         req->credit_dack = htobe32(F_RX_MODULATE_RX);
402
403         ulpsc = (struct ulptx_idata *)(req + 1);
404         if (LEN__RX_DATA_ACK_ULP % 16) {
405                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
406                 ulpsc->len = htobe32(0);
407                 return (ulpsc + 1);
408         }
409         return (ulpsc);
410 }
411
412 static struct wrqe *
413 mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx,
414     struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask)
415 {
416         struct wrqe *wr;
417         struct work_request_hdr *wrh;
418         struct ulp_txpkt *ulpmc;
419         int len;
420
421         KASSERT(db_idx == 0 || db_idx == 1,
422             ("%s: bad DDP buffer index %d", __func__, db_idx));
423
424         /*
425          * We'll send a compound work request that has 3 SET_TCB_FIELDs and an
426          * RX_DATA_ACK (with RX_MODULATE to speed up delivery).
427          *
428          * The work request header is 16B and always ends at a 16B boundary.
429          * The ULPTX master commands that follow must all end at 16B boundaries
430          * too so we round up the size to 16.
431          */
432         len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) +
433             roundup2(LEN__RX_DATA_ACK_ULP, 16);
434
435         wr = alloc_wrqe(len, toep->ctrlq);
436         if (wr == NULL)
437                 return (NULL);
438         wrh = wrtod(wr);
439         INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */
440         ulpmc = (struct ulp_txpkt *)(wrh + 1);
441
442         /* Write the buffer's tag */
443         ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
444             W_TCB_RX_DDP_BUF0_TAG + db_idx,
445             V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG),
446             V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag));
447
448         /* Update the current offset in the DDP buffer and its total length */
449         if (db_idx == 0)
450                 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
451                     W_TCB_RX_DDP_BUF0_OFFSET,
452                     V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) |
453                     V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN),
454                     V_TCB_RX_DDP_BUF0_OFFSET(offset) |
455                     V_TCB_RX_DDP_BUF0_LEN(ps->len));
456         else
457                 ulpmc = mk_set_tcb_field_ulp(ulpmc, toep,
458                     W_TCB_RX_DDP_BUF1_OFFSET,
459                     V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) |
460                     V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32),
461                     V_TCB_RX_DDP_BUF1_OFFSET(offset) |
462                     V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32));
463
464         /* Update DDP flags */
465         ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS,
466             ddp_flags_mask, ddp_flags);
467
468         /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */
469         ulpmc = mk_rx_data_ack_ulp(ulpmc, toep);
470
471         return (wr);
472 }
473
474 static int
475 handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len)
476 {
477         uint32_t report = be32toh(ddp_report);
478         unsigned int db_idx;
479         struct inpcb *inp = toep->inp;
480         struct ddp_buffer *db;
481         struct tcpcb *tp;
482         struct socket *so;
483         struct sockbuf *sb;
484         struct kaiocb *job;
485         long copied;
486
487         db_idx = report & F_DDP_BUF_IDX ? 1 : 0;
488
489         if (__predict_false(!(report & F_DDP_INV)))
490                 CXGBE_UNIMPLEMENTED("DDP buffer still valid");
491
492         INP_WLOCK(inp);
493         so = inp_inpcbtosocket(inp);
494         sb = &so->so_rcv;
495         DDP_LOCK(toep);
496
497         KASSERT(toep->ddp_active_id == db_idx,
498             ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx,
499             toep->ddp_active_id, toep->tid));
500         db = &toep->db[db_idx];
501         job = db->job;
502
503         if (__predict_false(inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT))) {
504                 /*
505                  * This can happen due to an administrative tcpdrop(8).
506                  * Just fail the request with ECONNRESET.
507                  */
508                 CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x",
509                     __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags);
510                 if (aio_clear_cancel_function(job))
511                         ddp_complete_one(job, ECONNRESET);
512                 goto completed;
513         }
514
515         tp = intotcpcb(inp);
516
517         /*
518          * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the
519          * sequence number of the next byte to receive.  The length of
520          * the data received for this message must be computed by
521          * comparing the new and old values of rcv_nxt.
522          *
523          * For RX_DATA_DDP, len might be non-zero, but it is only the
524          * length of the most recent DMA.  It does not include the
525          * total length of the data received since the previous update
526          * for this DDP buffer.  rcv_nxt is the sequence number of the
527          * first received byte from the most recent DMA.
528          */
529         len += be32toh(rcv_nxt) - tp->rcv_nxt;
530         tp->rcv_nxt += len;
531         tp->t_rcvtime = ticks;
532 #ifndef USE_DDP_RX_FLOW_CONTROL
533         KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__));
534         tp->rcv_wnd -= len;
535 #endif
536 #ifdef VERBOSE_TRACES
537         CTR4(KTR_CXGBE, "%s: DDP[%d] placed %d bytes (%#x)", __func__, db_idx,
538             len, report);
539 #endif
540
541         /* receive buffer autosize */
542         MPASS(toep->vnet == so->so_vnet);
543         CURVNET_SET(toep->vnet);
544         SOCKBUF_LOCK(sb);
545         if (sb->sb_flags & SB_AUTOSIZE &&
546             V_tcp_do_autorcvbuf &&
547             sb->sb_hiwat < V_tcp_autorcvbuf_max &&
548             len > (sbspace(sb) / 8 * 7)) {
549                 unsigned int hiwat = sb->sb_hiwat;
550                 unsigned int newsize = min(hiwat + V_tcp_autorcvbuf_inc,
551                     V_tcp_autorcvbuf_max);
552
553                 if (!sbreserve_locked(sb, newsize, so, NULL))
554                         sb->sb_flags &= ~SB_AUTOSIZE;
555                 else
556                         toep->rx_credits += newsize - hiwat;
557         }
558         SOCKBUF_UNLOCK(sb);
559         CURVNET_RESTORE();
560
561 #ifndef USE_DDP_RX_FLOW_CONTROL
562         toep->rx_credits += len;
563 #endif
564
565         job->msgrcv = 1;
566         if (db->cancel_pending) {
567                 /*
568                  * Update the job's length but defer completion to the
569                  * TCB_RPL callback.
570                  */
571                 job->aio_received += len;
572                 goto out;
573         } else if (!aio_clear_cancel_function(job)) {
574                 /*
575                  * Update the copied length for when
576                  * t4_aio_cancel_active() completes this request.
577                  */
578                 job->aio_received += len;
579         } else {
580                 copied = job->aio_received;
581 #ifdef VERBOSE_TRACES
582                 CTR4(KTR_CXGBE, "%s: completing %p (copied %ld, placed %d)",
583                     __func__, job, copied, len);
584 #endif
585                 aio_complete(job, copied + len, 0);
586                 t4_rcvd(&toep->td->tod, tp);
587         }
588
589 completed:
590         complete_ddp_buffer(toep, db, db_idx);
591         if (toep->ddp_waiting_count > 0)
592                 ddp_queue_toep(toep);
593 out:
594         DDP_UNLOCK(toep);
595         INP_WUNLOCK(inp);
596
597         return (0);
598 }
599
600 void
601 handle_ddp_indicate(struct toepcb *toep)
602 {
603
604         DDP_ASSERT_LOCKED(toep);
605         MPASS(toep->ddp_active_count == 0);
606         MPASS((toep->ddp_flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0);
607         if (toep->ddp_waiting_count == 0) {
608                 /*
609                  * The pending requests that triggered the request for an
610                  * an indicate were cancelled.  Those cancels should have
611                  * already disabled DDP.  Just ignore this as the data is
612                  * going into the socket buffer anyway.
613                  */
614                 return;
615         }
616         CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__,
617             toep->tid, toep->ddp_waiting_count);
618         ddp_queue_toep(toep);
619 }
620
621 enum {
622         DDP_BUF0_INVALIDATED = 0x2,
623         DDP_BUF1_INVALIDATED
624 };
625
626 void
627 handle_ddp_tcb_rpl(struct toepcb *toep, const struct cpl_set_tcb_rpl *cpl)
628 {
629         unsigned int db_idx;
630         struct inpcb *inp = toep->inp;
631         struct ddp_buffer *db;
632         struct kaiocb *job;
633         long copied;
634
635         if (cpl->status != CPL_ERR_NONE)
636                 panic("XXX: tcp_rpl failed: %d", cpl->status);
637
638         switch (cpl->cookie) {
639         case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF0_INVALIDATED):
640         case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(DDP_BUF1_INVALIDATED):
641                 /*
642                  * XXX: This duplicates a lot of code with handle_ddp_data().
643                  */
644                 db_idx = G_COOKIE(cpl->cookie) - DDP_BUF0_INVALIDATED;
645                 INP_WLOCK(inp);
646                 DDP_LOCK(toep);
647                 db = &toep->db[db_idx];
648
649                 /*
650                  * handle_ddp_data() should leave the job around until
651                  * this callback runs once a cancel is pending.
652                  */
653                 MPASS(db != NULL);
654                 MPASS(db->job != NULL);
655                 MPASS(db->cancel_pending);
656
657                 /*
658                  * XXX: It's not clear what happens if there is data
659                  * placed when the buffer is invalidated.  I suspect we
660                  * need to read the TCB to see how much data was placed.
661                  *
662                  * For now this just pretends like nothing was placed.
663                  *
664                  * XXX: Note that if we did check the PCB we would need to
665                  * also take care of updating the tp, etc.
666                  */
667                 job = db->job;
668                 copied = job->aio_received;
669                 if (copied == 0) {
670                         CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job);
671                         aio_cancel(job);
672                 } else {
673                         CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)",
674                             __func__, job, copied);
675                         aio_complete(job, copied, 0);
676                         t4_rcvd(&toep->td->tod, intotcpcb(inp));
677                 }
678
679                 complete_ddp_buffer(toep, db, db_idx);
680                 if (toep->ddp_waiting_count > 0)
681                         ddp_queue_toep(toep);
682                 DDP_UNLOCK(toep);
683                 INP_WUNLOCK(inp);
684                 break;
685         default:
686                 panic("XXX: unknown tcb_rpl offset %#x, cookie %#x",
687                     G_WORD(cpl->cookie), G_COOKIE(cpl->cookie));
688         }
689 }
690
691 void
692 handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt)
693 {
694         struct ddp_buffer *db;
695         struct kaiocb *job;
696         long copied;
697         unsigned int db_flag, db_idx;
698         int len, placed;
699
700         INP_WLOCK_ASSERT(toep->inp);
701         DDP_ASSERT_LOCKED(toep);
702         len = be32toh(rcv_nxt) - tp->rcv_nxt;
703
704         tp->rcv_nxt += len;
705 #ifndef USE_DDP_RX_FLOW_CONTROL
706         toep->rx_credits += len;
707 #endif
708
709         while (toep->ddp_active_count > 0) {
710                 MPASS(toep->ddp_active_id != -1);
711                 db_idx = toep->ddp_active_id;
712                 db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE;
713                 MPASS((toep->ddp_flags & db_flag) != 0);
714                 db = &toep->db[db_idx];
715                 job = db->job;
716                 copied = job->aio_received;
717                 placed = len;
718                 if (placed > job->uaiocb.aio_nbytes - copied)
719                         placed = job->uaiocb.aio_nbytes - copied;
720                 if (placed > 0)
721                         job->msgrcv = 1;
722                 if (!aio_clear_cancel_function(job)) {
723                         /*
724                          * Update the copied length for when
725                          * t4_aio_cancel_active() completes this
726                          * request.
727                          */
728                         job->aio_received += placed;
729                 } else {
730                         CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d",
731                             __func__, toep->tid, db_idx, placed);
732                         aio_complete(job, copied + placed, 0);
733                 }
734                 len -= placed;
735                 complete_ddp_buffer(toep, db, db_idx);
736         }
737
738         MPASS(len == 0);
739         ddp_complete_all(toep, 0);
740 }
741
742 #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\
743          F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\
744          F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\
745          F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR)
746
747 extern cpl_handler_t t4_cpl_handler[];
748
749 static int
750 do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
751 {
752         struct adapter *sc = iq->adapter;
753         const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1);
754         unsigned int tid = GET_TID(cpl);
755         uint32_t vld;
756         struct toepcb *toep = lookup_tid(sc, tid);
757
758         KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
759         KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
760         KASSERT(!(toep->flags & TPF_SYNQE),
761             ("%s: toep %p claims to be a synq entry", __func__, toep));
762
763         vld = be32toh(cpl->ddpvld);
764         if (__predict_false(vld & DDP_ERR)) {
765                 panic("%s: DDP error 0x%x (tid %d, toep %p)",
766                     __func__, vld, tid, toep);
767         }
768
769         if (toep->ulp_mode == ULP_MODE_ISCSI) {
770                 t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m);
771                 return (0);
772         }
773
774         handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len));
775
776         return (0);
777 }
778
779 static int
780 do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss,
781     struct mbuf *m)
782 {
783         struct adapter *sc = iq->adapter;
784         const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1);
785         unsigned int tid = GET_TID(cpl);
786         struct toepcb *toep = lookup_tid(sc, tid);
787
788         KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
789         KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__));
790         KASSERT(!(toep->flags & TPF_SYNQE),
791             ("%s: toep %p claims to be a synq entry", __func__, toep));
792
793         handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0);
794
795         return (0);
796 }
797
798 static void
799 enable_ddp(struct adapter *sc, struct toepcb *toep)
800 {
801
802         KASSERT((toep->ddp_flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK,
803             ("%s: toep %p has bad ddp_flags 0x%x",
804             __func__, toep, toep->ddp_flags));
805
806         CTR3(KTR_CXGBE, "%s: tid %u (time %u)",
807             __func__, toep->tid, time_uptime);
808
809         DDP_ASSERT_LOCKED(toep);
810         toep->ddp_flags |= DDP_SC_REQ;
811         t4_set_tcb_field(sc, toep->ctrlq, toep->tid, W_TCB_RX_DDP_FLAGS,
812             V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) |
813             V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) |
814             V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1),
815             V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0,
816             toep->ofld_rxq->iq.abs_id);
817         t4_set_tcb_field(sc, toep->ctrlq, toep->tid, W_TCB_T_FLAGS,
818             V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0, toep->ofld_rxq->iq.abs_id);
819 }
820
821 static int
822 calculate_hcf(int n1, int n2)
823 {
824         int a, b, t;
825
826         if (n1 <= n2) {
827                 a = n1;
828                 b = n2;
829         } else {
830                 a = n2;
831                 b = n1;
832         }
833
834         while (a != 0) {
835                 t = a;
836                 a = b % a;
837                 b = t;
838         }
839
840         return (b);
841 }
842
843 static inline int
844 pages_to_nppods(int npages, int ddp_page_shift)
845 {
846
847         MPASS(ddp_page_shift >= PAGE_SHIFT);
848
849         return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES));
850 }
851
852 static int
853 alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx,
854     struct ppod_reservation *prsv)
855 {
856         vmem_addr_t addr;       /* relative to start of region */
857
858         if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT,
859             &addr) != 0)
860                 return (ENOMEM);
861
862         CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d",
863             __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask,
864             nppods, 1 << pr->pr_page_shift[pgsz_idx]);
865
866         /*
867          * The hardware tagmask includes an extra invalid bit but the arena was
868          * seeded with valid values only.  An allocation out of this arena will
869          * fit inside the tagmask but won't have the invalid bit set.
870          */
871         MPASS((addr & pr->pr_tag_mask) == addr);
872         MPASS((addr & pr->pr_invalid_bit) == 0);
873
874         prsv->prsv_pr = pr;
875         prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr;
876         prsv->prsv_nppods = nppods;
877
878         return (0);
879 }
880
881 int
882 t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps)
883 {
884         int i, hcf, seglen, idx, nppods;
885         struct ppod_reservation *prsv = &ps->prsv;
886
887         KASSERT(prsv->prsv_nppods == 0,
888             ("%s: page pods already allocated", __func__));
889
890         /*
891          * The DDP page size is unrelated to the VM page size.  We combine
892          * contiguous physical pages into larger segments to get the best DDP
893          * page size possible.  This is the largest of the four sizes in
894          * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in
895          * the page list.
896          */
897         hcf = 0;
898         for (i = 0; i < ps->npages; i++) {
899                 seglen = PAGE_SIZE;
900                 while (i < ps->npages - 1 &&
901                     ps->pages[i]->phys_addr + PAGE_SIZE ==
902                     ps->pages[i + 1]->phys_addr) {
903                         seglen += PAGE_SIZE;
904                         i++;
905                 }
906
907                 hcf = calculate_hcf(hcf, seglen);
908                 if (hcf < (1 << pr->pr_page_shift[1])) {
909                         idx = 0;
910                         goto have_pgsz; /* give up, short circuit */
911                 }
912         }
913
914 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
915         MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
916         for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
917                 if ((hcf & PR_PAGE_MASK(idx)) == 0)
918                         break;
919         }
920 #undef PR_PAGE_MASK
921
922 have_pgsz:
923         MPASS(idx <= M_PPOD_PGSZ);
924
925         nppods = pages_to_nppods(ps->npages, pr->pr_page_shift[idx]);
926         if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
927                 return (0);
928         MPASS(prsv->prsv_nppods > 0);
929
930         return (1);
931 }
932
933 int
934 t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len,
935     struct ppod_reservation *prsv)
936 {
937         int hcf, seglen, idx, npages, nppods;
938         uintptr_t start_pva, end_pva, pva, p1;
939
940         MPASS(buf > 0);
941         MPASS(len > 0);
942
943         /*
944          * The DDP page size is unrelated to the VM page size.  We combine
945          * contiguous physical pages into larger segments to get the best DDP
946          * page size possible.  This is the largest of the four sizes in
947          * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes
948          * in the page list.
949          */
950         hcf = 0;
951         start_pva = trunc_page(buf);
952         end_pva = trunc_page(buf + len - 1);
953         pva = start_pva;
954         while (pva <= end_pva) {
955                 seglen = PAGE_SIZE;
956                 p1 = pmap_kextract(pva);
957                 pva += PAGE_SIZE;
958                 while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) {
959                         seglen += PAGE_SIZE;
960                         pva += PAGE_SIZE;
961                 }
962
963                 hcf = calculate_hcf(hcf, seglen);
964                 if (hcf < (1 << pr->pr_page_shift[1])) {
965                         idx = 0;
966                         goto have_pgsz; /* give up, short circuit */
967                 }
968         }
969
970 #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1)
971         MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */
972         for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) {
973                 if ((hcf & PR_PAGE_MASK(idx)) == 0)
974                         break;
975         }
976 #undef PR_PAGE_MASK
977
978 have_pgsz:
979         MPASS(idx <= M_PPOD_PGSZ);
980
981         npages = 1;
982         npages += (end_pva - start_pva) >> pr->pr_page_shift[idx];
983         nppods = howmany(npages, PPOD_PAGES);
984         if (alloc_page_pods(pr, nppods, idx, prsv) != 0)
985                 return (ENOMEM);
986         MPASS(prsv->prsv_nppods > 0);
987
988         return (0);
989 }
990
991 void
992 t4_free_page_pods(struct ppod_reservation *prsv)
993 {
994         struct ppod_region *pr = prsv->prsv_pr;
995         vmem_addr_t addr;
996
997         MPASS(prsv != NULL);
998         MPASS(prsv->prsv_nppods != 0);
999
1000         addr = prsv->prsv_tag & pr->pr_tag_mask;
1001         MPASS((addr & pr->pr_invalid_bit) == 0);
1002
1003         CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__,
1004             pr->pr_arena, addr, prsv->prsv_nppods);
1005
1006         vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods));
1007         prsv->prsv_nppods = 0;
1008 }
1009
1010 #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE)
1011
1012 int
1013 t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid,
1014     struct pageset *ps)
1015 {
1016         struct wrqe *wr;
1017         struct ulp_mem_io *ulpmc;
1018         struct ulptx_idata *ulpsc;
1019         struct pagepod *ppod;
1020         int i, j, k, n, chunk, len, ddp_pgsz, idx;
1021         u_int ppod_addr;
1022         uint32_t cmd;
1023         struct ppod_reservation *prsv = &ps->prsv;
1024         struct ppod_region *pr = prsv->prsv_pr;
1025
1026         KASSERT(!(ps->flags & PS_PPODS_WRITTEN),
1027             ("%s: page pods already written", __func__));
1028         MPASS(prsv->prsv_nppods > 0);
1029
1030         cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1031         if (is_t4(sc))
1032                 cmd |= htobe32(F_ULP_MEMIO_ORDER);
1033         else
1034                 cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1035         ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1036         ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1037         for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1038
1039                 /* How many page pods are we writing in this cycle */
1040                 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1041                 chunk = PPOD_SZ(n);
1042                 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1043
1044                 wr = alloc_wrqe(len, wrq);
1045                 if (wr == NULL)
1046                         return (ENOMEM);        /* ok to just bail out */
1047                 ulpmc = wrtod(wr);
1048
1049                 INIT_ULPTX_WR(ulpmc, len, 0, 0);
1050                 ulpmc->cmd = cmd;
1051                 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1052                 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1053                 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1054
1055                 ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1056                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1057                 ulpsc->len = htobe32(chunk);
1058
1059                 ppod = (struct pagepod *)(ulpsc + 1);
1060                 for (j = 0; j < n; i++, j++, ppod++) {
1061                         ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1062                             V_PPOD_TID(tid) | prsv->prsv_tag);
1063                         ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) |
1064                             V_PPOD_OFST(ps->offset));
1065                         ppod->rsvd = 0;
1066                         idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE);
1067                         for (k = 0; k < nitems(ppod->addr); k++) {
1068                                 if (idx < ps->npages) {
1069                                         ppod->addr[k] =
1070                                             htobe64(ps->pages[idx]->phys_addr);
1071                                         idx += ddp_pgsz / PAGE_SIZE;
1072                                 } else
1073                                         ppod->addr[k] = 0;
1074 #if 0
1075                                 CTR5(KTR_CXGBE,
1076                                     "%s: tid %d ppod[%d]->addr[%d] = %p",
1077                                     __func__, toep->tid, i, k,
1078                                     htobe64(ppod->addr[k]));
1079 #endif
1080                         }
1081
1082                 }
1083
1084                 t4_wrq_tx(sc, wr);
1085         }
1086         ps->flags |= PS_PPODS_WRITTEN;
1087
1088         return (0);
1089 }
1090
1091 int
1092 t4_write_page_pods_for_buf(struct adapter *sc, struct sge_wrq *wrq, int tid,
1093     struct ppod_reservation *prsv, vm_offset_t buf, int buflen)
1094 {
1095         struct wrqe *wr;
1096         struct ulp_mem_io *ulpmc;
1097         struct ulptx_idata *ulpsc;
1098         struct pagepod *ppod;
1099         int i, j, k, n, chunk, len, ddp_pgsz;
1100         u_int ppod_addr, offset;
1101         uint32_t cmd;
1102         struct ppod_region *pr = prsv->prsv_pr;
1103         uintptr_t end_pva, pva, pa;
1104
1105         cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
1106         if (is_t4(sc))
1107                 cmd |= htobe32(F_ULP_MEMIO_ORDER);
1108         else
1109                 cmd |= htobe32(F_T5_ULP_MEMIO_IMM);
1110         ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)];
1111         offset = buf & PAGE_MASK;
1112         ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask);
1113         pva = trunc_page(buf);
1114         end_pva = trunc_page(buf + buflen - 1);
1115         for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) {
1116
1117                 /* How many page pods are we writing in this cycle */
1118                 n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS);
1119                 MPASS(n > 0);
1120                 chunk = PPOD_SZ(n);
1121                 len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16);
1122
1123                 wr = alloc_wrqe(len, wrq);
1124                 if (wr == NULL)
1125                         return (ENOMEM);        /* ok to just bail out */
1126                 ulpmc = wrtod(wr);
1127
1128                 INIT_ULPTX_WR(ulpmc, len, 0, 0);
1129                 ulpmc->cmd = cmd;
1130                 ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32));
1131                 ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16));
1132                 ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5));
1133
1134                 ulpsc = (struct ulptx_idata *)(ulpmc + 1);
1135                 ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
1136                 ulpsc->len = htobe32(chunk);
1137
1138                 ppod = (struct pagepod *)(ulpsc + 1);
1139                 for (j = 0; j < n; i++, j++, ppod++) {
1140                         ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID |
1141                             V_PPOD_TID(tid) |
1142                             (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ)));
1143                         ppod->len_offset = htobe64(V_PPOD_LEN(buflen) |
1144                             V_PPOD_OFST(offset));
1145                         ppod->rsvd = 0;
1146
1147                         for (k = 0; k < nitems(ppod->addr); k++) {
1148                                 if (pva > end_pva)
1149                                         ppod->addr[k] = 0;
1150                                 else {
1151                                         pa = pmap_kextract(pva);
1152                                         ppod->addr[k] = htobe64(pa);
1153                                         pva += ddp_pgsz;
1154                                 }
1155 #if 0
1156                                 CTR5(KTR_CXGBE,
1157                                     "%s: tid %d ppod[%d]->addr[%d] = %p",
1158                                     __func__, tid, i, k,
1159                                     htobe64(ppod->addr[k]));
1160 #endif
1161                         }
1162
1163                         /*
1164                          * Walk back 1 segment so that the first address in the
1165                          * next pod is the same as the last one in the current
1166                          * pod.
1167                          */
1168                         pva -= ddp_pgsz;
1169                 }
1170
1171                 t4_wrq_tx(sc, wr);
1172         }
1173
1174         MPASS(pva <= end_pva);
1175
1176         return (0);
1177 }
1178
1179 static void
1180 wire_pageset(struct pageset *ps)
1181 {
1182         vm_page_t p;
1183         int i;
1184
1185         KASSERT(!(ps->flags & PS_WIRED), ("pageset already wired"));
1186
1187         for (i = 0; i < ps->npages; i++) {
1188                 p = ps->pages[i];
1189                 vm_page_lock(p);
1190                 vm_page_wire(p);
1191                 vm_page_unhold(p);
1192                 vm_page_unlock(p);
1193         }
1194         ps->flags |= PS_WIRED;
1195 }
1196
1197 /*
1198  * Prepare a pageset for DDP.  This wires the pageset and sets up page
1199  * pods.
1200  */
1201 static int
1202 prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps)
1203 {
1204         struct tom_data *td = sc->tom_softc;
1205
1206         if (!(ps->flags & PS_WIRED))
1207                 wire_pageset(ps);
1208         if (ps->prsv.prsv_nppods == 0 &&
1209             !t4_alloc_page_pods_for_ps(&td->pr, ps)) {
1210                 return (0);
1211         }
1212         if (!(ps->flags & PS_PPODS_WRITTEN) &&
1213             t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) {
1214                 return (0);
1215         }
1216
1217         return (1);
1218 }
1219
1220 int
1221 t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz,
1222     const char *name)
1223 {
1224         int i;
1225
1226         MPASS(pr != NULL);
1227         MPASS(r->size > 0);
1228
1229         pr->pr_start = r->start;
1230         pr->pr_len = r->size;
1231         pr->pr_page_shift[0] = 12 + G_HPZ0(psz);
1232         pr->pr_page_shift[1] = 12 + G_HPZ1(psz);
1233         pr->pr_page_shift[2] = 12 + G_HPZ2(psz);
1234         pr->pr_page_shift[3] = 12 + G_HPZ3(psz);
1235
1236         /* The SGL -> page pod algorithm requires the sizes to be in order. */
1237         for (i = 1; i < nitems(pr->pr_page_shift); i++) {
1238                 if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1])
1239                         return (ENXIO);
1240         }
1241
1242         pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG);
1243         pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask;
1244         if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0)
1245                 return (ENXIO);
1246         pr->pr_alias_shift = fls(pr->pr_tag_mask);
1247         pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1);
1248
1249         pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0,
1250             M_FIRSTFIT | M_NOWAIT);
1251         if (pr->pr_arena == NULL)
1252                 return (ENOMEM);
1253
1254         return (0);
1255 }
1256
1257 void
1258 t4_free_ppod_region(struct ppod_region *pr)
1259 {
1260
1261         MPASS(pr != NULL);
1262
1263         if (pr->pr_arena)
1264                 vmem_destroy(pr->pr_arena);
1265         bzero(pr, sizeof(*pr));
1266 }
1267
1268 static int
1269 pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages,
1270     int pgoff, int len)
1271 {
1272
1273         if (ps->start != start || ps->npages != npages ||
1274             ps->offset != pgoff || ps->len != len)
1275                 return (1);
1276
1277         return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp);
1278 }
1279
1280 static int
1281 hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps)
1282 {
1283         struct vmspace *vm;
1284         vm_map_t map;
1285         vm_offset_t start, end, pgoff;
1286         struct pageset *ps;
1287         int n;
1288
1289         DDP_ASSERT_LOCKED(toep);
1290
1291         /*
1292          * The AIO subsystem will cancel and drain all requests before
1293          * permitting a process to exit or exec, so p_vmspace should
1294          * be stable here.
1295          */
1296         vm = job->userproc->p_vmspace;
1297         map = &vm->vm_map;
1298         start = (uintptr_t)job->uaiocb.aio_buf;
1299         pgoff = start & PAGE_MASK;
1300         end = round_page(start + job->uaiocb.aio_nbytes);
1301         start = trunc_page(start);
1302
1303         if (end - start > MAX_DDP_BUFFER_SIZE) {
1304                 /*
1305                  * Truncate the request to a short read.
1306                  * Alternatively, we could DDP in chunks to the larger
1307                  * buffer, but that would be quite a bit more work.
1308                  *
1309                  * When truncating, round the request down to avoid
1310                  * crossing a cache line on the final transaction.
1311                  */
1312                 end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE);
1313 #ifdef VERBOSE_TRACES
1314                 CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu",
1315                     __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes,
1316                     (unsigned long)(end - (start + pgoff)));
1317                 job->uaiocb.aio_nbytes = end - (start + pgoff);
1318 #endif
1319                 end = round_page(end);
1320         }
1321
1322         n = atop(end - start);
1323
1324         /*
1325          * Try to reuse a cached pageset.
1326          */
1327         TAILQ_FOREACH(ps, &toep->ddp_cached_pagesets, link) {
1328                 if (pscmp(ps, vm, start, n, pgoff,
1329                     job->uaiocb.aio_nbytes) == 0) {
1330                         TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link);
1331                         toep->ddp_cached_count--;
1332                         *pps = ps;
1333                         return (0);
1334                 }
1335         }
1336
1337         /*
1338          * If there are too many cached pagesets to create a new one,
1339          * free a pageset before creating a new one.
1340          */
1341         KASSERT(toep->ddp_active_count + toep->ddp_cached_count <=
1342             nitems(toep->db), ("%s: too many wired pagesets", __func__));
1343         if (toep->ddp_active_count + toep->ddp_cached_count ==
1344             nitems(toep->db)) {
1345                 KASSERT(toep->ddp_cached_count > 0,
1346                     ("no cached pageset to free"));
1347                 ps = TAILQ_LAST(&toep->ddp_cached_pagesets, pagesetq);
1348                 TAILQ_REMOVE(&toep->ddp_cached_pagesets, ps, link);
1349                 toep->ddp_cached_count--;
1350                 free_pageset(toep->td, ps);
1351         }
1352         DDP_UNLOCK(toep);
1353
1354         /* Create a new pageset. */
1355         ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK |
1356             M_ZERO);
1357         ps->pages = (vm_page_t *)(ps + 1);
1358         ps->vm_timestamp = map->timestamp;
1359         ps->npages = vm_fault_quick_hold_pages(map, start, end - start,
1360             VM_PROT_WRITE, ps->pages, n);
1361
1362         DDP_LOCK(toep);
1363         if (ps->npages < 0) {
1364                 free(ps, M_CXGBE);
1365                 return (EFAULT);
1366         }
1367
1368         KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d",
1369             ps->npages, n));
1370
1371         ps->offset = pgoff;
1372         ps->len = job->uaiocb.aio_nbytes;
1373         atomic_add_int(&vm->vm_refcnt, 1);
1374         ps->vm = vm;
1375         ps->start = start;
1376
1377         CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d",
1378             __func__, toep->tid, ps, job, ps->npages);
1379         *pps = ps;
1380         return (0);
1381 }
1382
1383 static void
1384 ddp_complete_all(struct toepcb *toep, int error)
1385 {
1386         struct kaiocb *job;
1387
1388         DDP_ASSERT_LOCKED(toep);
1389         while (!TAILQ_EMPTY(&toep->ddp_aiojobq)) {
1390                 job = TAILQ_FIRST(&toep->ddp_aiojobq);
1391                 TAILQ_REMOVE(&toep->ddp_aiojobq, job, list);
1392                 toep->ddp_waiting_count--;
1393                 if (aio_clear_cancel_function(job))
1394                         ddp_complete_one(job, error);
1395         }
1396 }
1397
1398 static void
1399 aio_ddp_cancel_one(struct kaiocb *job)
1400 {
1401         long copied;
1402
1403         /*
1404          * If this job had copied data out of the socket buffer before
1405          * it was cancelled, report it as a short read rather than an
1406          * error.
1407          */
1408         copied = job->aio_received;
1409         if (copied != 0)
1410                 aio_complete(job, copied, 0);
1411         else
1412                 aio_cancel(job);
1413 }
1414
1415 /*
1416  * Called when the main loop wants to requeue a job to retry it later.
1417  * Deals with the race of the job being cancelled while it was being
1418  * examined.
1419  */
1420 static void
1421 aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job)
1422 {
1423
1424         DDP_ASSERT_LOCKED(toep);
1425         if (!(toep->ddp_flags & DDP_DEAD) &&
1426             aio_set_cancel_function(job, t4_aio_cancel_queued)) {
1427                 TAILQ_INSERT_HEAD(&toep->ddp_aiojobq, job, list);
1428                 toep->ddp_waiting_count++;
1429         } else
1430                 aio_ddp_cancel_one(job);
1431 }
1432
1433 static void
1434 aio_ddp_requeue(struct toepcb *toep)
1435 {
1436         struct adapter *sc = td_adapter(toep->td);
1437         struct socket *so;
1438         struct sockbuf *sb;
1439         struct inpcb *inp;
1440         struct kaiocb *job;
1441         struct ddp_buffer *db;
1442         size_t copied, offset, resid;
1443         struct pageset *ps;
1444         struct mbuf *m;
1445         uint64_t ddp_flags, ddp_flags_mask;
1446         struct wrqe *wr;
1447         int buf_flag, db_idx, error;
1448
1449         DDP_ASSERT_LOCKED(toep);
1450
1451 restart:
1452         if (toep->ddp_flags & DDP_DEAD) {
1453                 MPASS(toep->ddp_waiting_count == 0);
1454                 MPASS(toep->ddp_active_count == 0);
1455                 return;
1456         }
1457
1458         if (toep->ddp_waiting_count == 0 ||
1459             toep->ddp_active_count == nitems(toep->db)) {
1460                 return;
1461         }
1462
1463         job = TAILQ_FIRST(&toep->ddp_aiojobq);
1464         so = job->fd_file->f_data;
1465         sb = &so->so_rcv;
1466         SOCKBUF_LOCK(sb);
1467
1468         /* We will never get anything unless we are or were connected. */
1469         if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
1470                 SOCKBUF_UNLOCK(sb);
1471                 ddp_complete_all(toep, ENOTCONN);
1472                 return;
1473         }
1474
1475         KASSERT(toep->ddp_active_count == 0 || sbavail(sb) == 0,
1476             ("%s: pending sockbuf data and DDP is active", __func__));
1477
1478         /* Abort if socket has reported problems. */
1479         /* XXX: Wait for any queued DDP's to finish and/or flush them? */
1480         if (so->so_error && sbavail(sb) == 0) {
1481                 toep->ddp_waiting_count--;
1482                 TAILQ_REMOVE(&toep->ddp_aiojobq, job, list);
1483                 if (!aio_clear_cancel_function(job)) {
1484                         SOCKBUF_UNLOCK(sb);
1485                         goto restart;
1486                 }
1487
1488                 /*
1489                  * If this job has previously copied some data, report
1490                  * a short read and leave the error to be reported by
1491                  * a future request.
1492                  */
1493                 copied = job->aio_received;
1494                 if (copied != 0) {
1495                         SOCKBUF_UNLOCK(sb);
1496                         aio_complete(job, copied, 0);
1497                         goto restart;
1498                 }
1499                 error = so->so_error;
1500                 so->so_error = 0;
1501                 SOCKBUF_UNLOCK(sb);
1502                 aio_complete(job, -1, error);
1503                 goto restart;
1504         }
1505
1506         /*
1507          * Door is closed.  If there is pending data in the socket buffer,
1508          * deliver it.  If there are pending DDP requests, wait for those
1509          * to complete.  Once they have completed, return EOF reads.
1510          */
1511         if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
1512                 SOCKBUF_UNLOCK(sb);
1513                 if (toep->ddp_active_count != 0)
1514                         return;
1515                 ddp_complete_all(toep, 0);
1516                 return;
1517         }
1518
1519         /*
1520          * If DDP is not enabled and there is no pending socket buffer
1521          * data, try to enable DDP.
1522          */
1523         if (sbavail(sb) == 0 && (toep->ddp_flags & DDP_ON) == 0) {
1524                 SOCKBUF_UNLOCK(sb);
1525
1526                 /*
1527                  * Wait for the card to ACK that DDP is enabled before
1528                  * queueing any buffers.  Currently this waits for an
1529                  * indicate to arrive.  This could use a TCB_SET_FIELD_RPL
1530                  * message to know that DDP was enabled instead of waiting
1531                  * for the indicate which would avoid copying the indicate
1532                  * if no data is pending.
1533                  *
1534                  * XXX: Might want to limit the indicate size to the size
1535                  * of the first queued request.
1536                  */
1537                 if ((toep->ddp_flags & DDP_SC_REQ) == 0)
1538                         enable_ddp(sc, toep);
1539                 return;
1540         }
1541         SOCKBUF_UNLOCK(sb);
1542
1543         /*
1544          * If another thread is queueing a buffer for DDP, let it
1545          * drain any work and return.
1546          */
1547         if (toep->ddp_queueing != NULL)
1548                 return;
1549
1550         /* Take the next job to prep it for DDP. */
1551         toep->ddp_waiting_count--;
1552         TAILQ_REMOVE(&toep->ddp_aiojobq, job, list);
1553         if (!aio_clear_cancel_function(job))
1554                 goto restart;
1555         toep->ddp_queueing = job;
1556
1557         /* NB: This drops DDP_LOCK while it holds the backing VM pages. */
1558         error = hold_aio(toep, job, &ps);
1559         if (error != 0) {
1560                 ddp_complete_one(job, error);
1561                 toep->ddp_queueing = NULL;
1562                 goto restart;
1563         }
1564
1565         SOCKBUF_LOCK(sb);
1566         if (so->so_error && sbavail(sb) == 0) {
1567                 copied = job->aio_received;
1568                 if (copied != 0) {
1569                         SOCKBUF_UNLOCK(sb);
1570                         recycle_pageset(toep, ps);
1571                         aio_complete(job, copied, 0);
1572                         toep->ddp_queueing = NULL;
1573                         goto restart;
1574                 }
1575
1576                 error = so->so_error;
1577                 so->so_error = 0;
1578                 SOCKBUF_UNLOCK(sb);
1579                 recycle_pageset(toep, ps);
1580                 aio_complete(job, -1, error);
1581                 toep->ddp_queueing = NULL;
1582                 goto restart;
1583         }
1584
1585         if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) {
1586                 SOCKBUF_UNLOCK(sb);
1587                 recycle_pageset(toep, ps);
1588                 if (toep->ddp_active_count != 0) {
1589                         /*
1590                          * The door is closed, but there are still pending
1591                          * DDP buffers.  Requeue.  These jobs will all be
1592                          * completed once those buffers drain.
1593                          */
1594                         aio_ddp_requeue_one(toep, job);
1595                         toep->ddp_queueing = NULL;
1596                         return;
1597                 }
1598                 ddp_complete_one(job, 0);
1599                 ddp_complete_all(toep, 0);
1600                 toep->ddp_queueing = NULL;
1601                 return;
1602         }
1603
1604 sbcopy:
1605         /*
1606          * If the toep is dead, there shouldn't be any data in the socket
1607          * buffer, so the above case should have handled this.
1608          */
1609         MPASS(!(toep->ddp_flags & DDP_DEAD));
1610
1611         /*
1612          * If there is pending data in the socket buffer (either
1613          * from before the requests were queued or a DDP indicate),
1614          * copy those mbufs out directly.
1615          */
1616         copied = 0;
1617         offset = ps->offset + job->aio_received;
1618         MPASS(job->aio_received <= job->uaiocb.aio_nbytes);
1619         resid = job->uaiocb.aio_nbytes - job->aio_received;
1620         m = sb->sb_mb;
1621         KASSERT(m == NULL || toep->ddp_active_count == 0,
1622             ("%s: sockbuf data with active DDP", __func__));
1623         while (m != NULL && resid > 0) {
1624                 struct iovec iov[1];
1625                 struct uio uio;
1626                 int error;
1627
1628                 iov[0].iov_base = mtod(m, void *);
1629                 iov[0].iov_len = m->m_len;
1630                 if (iov[0].iov_len > resid)
1631                         iov[0].iov_len = resid;
1632                 uio.uio_iov = iov;
1633                 uio.uio_iovcnt = 1;
1634                 uio.uio_offset = 0;
1635                 uio.uio_resid = iov[0].iov_len;
1636                 uio.uio_segflg = UIO_SYSSPACE;
1637                 uio.uio_rw = UIO_WRITE;
1638                 error = uiomove_fromphys(ps->pages, offset + copied,
1639                     uio.uio_resid, &uio);
1640                 MPASS(error == 0 && uio.uio_resid == 0);
1641                 copied += uio.uio_offset;
1642                 resid -= uio.uio_offset;
1643                 m = m->m_next;
1644         }
1645         if (copied != 0) {
1646                 sbdrop_locked(sb, copied);
1647                 job->aio_received += copied;
1648                 job->msgrcv = 1;
1649                 copied = job->aio_received;
1650                 inp = sotoinpcb(so);
1651                 if (!INP_TRY_WLOCK(inp)) {
1652                         /*
1653                          * The reference on the socket file descriptor in
1654                          * the AIO job should keep 'sb' and 'inp' stable.
1655                          * Our caller has a reference on the 'toep' that
1656                          * keeps it stable.
1657                          */
1658                         SOCKBUF_UNLOCK(sb);
1659                         DDP_UNLOCK(toep);
1660                         INP_WLOCK(inp);
1661                         DDP_LOCK(toep);
1662                         SOCKBUF_LOCK(sb);
1663
1664                         /*
1665                          * If the socket has been closed, we should detect
1666                          * that and complete this request if needed on
1667                          * the next trip around the loop.
1668                          */
1669                 }
1670                 t4_rcvd_locked(&toep->td->tod, intotcpcb(inp));
1671                 INP_WUNLOCK(inp);
1672                 if (resid == 0 || toep->ddp_flags & DDP_DEAD) {
1673                         /*
1674                          * We filled the entire buffer with socket
1675                          * data, DDP is not being used, or the socket
1676                          * is being shut down, so complete the
1677                          * request.
1678                          */
1679                         SOCKBUF_UNLOCK(sb);
1680                         recycle_pageset(toep, ps);
1681                         aio_complete(job, copied, 0);
1682                         toep->ddp_queueing = NULL;
1683                         goto restart;
1684                 }
1685
1686                 /*
1687                  * If DDP is not enabled, requeue this request and restart.
1688                  * This will either enable DDP or wait for more data to
1689                  * arrive on the socket buffer.
1690                  */
1691                 if ((toep->ddp_flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) {
1692                         SOCKBUF_UNLOCK(sb);
1693                         recycle_pageset(toep, ps);
1694                         aio_ddp_requeue_one(toep, job);
1695                         toep->ddp_queueing = NULL;
1696                         goto restart;
1697                 }
1698
1699                 /*
1700                  * An indicate might have arrived and been added to
1701                  * the socket buffer while it was unlocked after the
1702                  * copy to lock the INP.  If so, restart the copy.
1703                  */
1704                 if (sbavail(sb) != 0)
1705                         goto sbcopy;
1706         }
1707         SOCKBUF_UNLOCK(sb);
1708
1709         if (prep_pageset(sc, toep, ps) == 0) {
1710                 recycle_pageset(toep, ps);
1711                 aio_ddp_requeue_one(toep, job);
1712                 toep->ddp_queueing = NULL;
1713
1714                 /*
1715                  * XXX: Need to retry this later.  Mostly need a trigger
1716                  * when page pods are freed up.
1717                  */
1718                 printf("%s: prep_pageset failed\n", __func__);
1719                 return;
1720         }
1721
1722         /* Determine which DDP buffer to use. */
1723         if (toep->db[0].job == NULL) {
1724                 db_idx = 0;
1725         } else {
1726                 MPASS(toep->db[1].job == NULL);
1727                 db_idx = 1;
1728         }
1729
1730         ddp_flags = 0;
1731         ddp_flags_mask = 0;
1732         if (db_idx == 0) {
1733                 ddp_flags |= V_TF_DDP_BUF0_VALID(1);
1734                 if (so->so_state & SS_NBIO)
1735                         ddp_flags |= V_TF_DDP_BUF0_FLUSH(1);
1736                 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) |
1737                     V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) |
1738                     V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1);
1739                 buf_flag = DDP_BUF0_ACTIVE;
1740         } else {
1741                 ddp_flags |= V_TF_DDP_BUF1_VALID(1);
1742                 if (so->so_state & SS_NBIO)
1743                         ddp_flags |= V_TF_DDP_BUF1_FLUSH(1);
1744                 ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) |
1745                     V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) |
1746                     V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1);
1747                 buf_flag = DDP_BUF1_ACTIVE;
1748         }
1749         MPASS((toep->ddp_flags & buf_flag) == 0);
1750         if ((toep->ddp_flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) {
1751                 MPASS(db_idx == 0);
1752                 MPASS(toep->ddp_active_id == -1);
1753                 MPASS(toep->ddp_active_count == 0);
1754                 ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1);
1755         }
1756
1757         /*
1758          * The TID for this connection should still be valid.  If DDP_DEAD
1759          * is set, SBS_CANTRCVMORE should be set, so we shouldn't be
1760          * this far anyway.  Even if the socket is closing on the other
1761          * end, the AIO job holds a reference on this end of the socket
1762          * which will keep it open and keep the TCP PCB attached until
1763          * after the job is completed.
1764          */
1765         wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received,
1766             ddp_flags, ddp_flags_mask);
1767         if (wr == NULL) {
1768                 recycle_pageset(toep, ps);
1769                 aio_ddp_requeue_one(toep, job);
1770                 toep->ddp_queueing = NULL;
1771
1772                 /*
1773                  * XXX: Need a way to kick a retry here.
1774                  *
1775                  * XXX: We know the fixed size needed and could
1776                  * preallocate this using a blocking request at the
1777                  * start of the task to avoid having to handle this
1778                  * edge case.
1779                  */
1780                 printf("%s: mk_update_tcb_for_ddp failed\n", __func__);
1781                 return;
1782         }
1783
1784         if (!aio_set_cancel_function(job, t4_aio_cancel_active)) {
1785                 free_wrqe(wr);
1786                 recycle_pageset(toep, ps);
1787                 aio_ddp_cancel_one(job);
1788                 toep->ddp_queueing = NULL;
1789                 goto restart;
1790         }
1791
1792 #ifdef VERBOSE_TRACES
1793         CTR5(KTR_CXGBE, "%s: scheduling %p for DDP[%d] (flags %#lx/%#lx)",
1794             __func__, job, db_idx, ddp_flags, ddp_flags_mask);
1795 #endif
1796         /* Give the chip the go-ahead. */
1797         t4_wrq_tx(sc, wr);
1798         db = &toep->db[db_idx];
1799         db->cancel_pending = 0;
1800         db->job = job;
1801         db->ps = ps;
1802         toep->ddp_queueing = NULL;
1803         toep->ddp_flags |= buf_flag;
1804         toep->ddp_active_count++;
1805         if (toep->ddp_active_count == 1) {
1806                 MPASS(toep->ddp_active_id == -1);
1807                 toep->ddp_active_id = db_idx;
1808                 CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__,
1809                     toep->ddp_active_id);
1810         }
1811         goto restart;
1812 }
1813
1814 void
1815 ddp_queue_toep(struct toepcb *toep)
1816 {
1817
1818         DDP_ASSERT_LOCKED(toep);
1819         if (toep->ddp_flags & DDP_TASK_ACTIVE)
1820                 return;
1821         toep->ddp_flags |= DDP_TASK_ACTIVE;
1822         hold_toepcb(toep);
1823         soaio_enqueue(&toep->ddp_requeue_task);
1824 }
1825
1826 static void
1827 aio_ddp_requeue_task(void *context, int pending)
1828 {
1829         struct toepcb *toep = context;
1830
1831         DDP_LOCK(toep);
1832         aio_ddp_requeue(toep);
1833         toep->ddp_flags &= ~DDP_TASK_ACTIVE;
1834         DDP_UNLOCK(toep);
1835
1836         free_toepcb(toep);
1837 }
1838
1839 static void
1840 t4_aio_cancel_active(struct kaiocb *job)
1841 {
1842         struct socket *so = job->fd_file->f_data;
1843         struct tcpcb *tp = so_sototcpcb(so);
1844         struct toepcb *toep = tp->t_toe;
1845         struct adapter *sc = td_adapter(toep->td);
1846         uint64_t valid_flag;
1847         int i;
1848
1849         DDP_LOCK(toep);
1850         if (aio_cancel_cleared(job)) {
1851                 DDP_UNLOCK(toep);
1852                 aio_ddp_cancel_one(job);
1853                 return;
1854         }
1855
1856         for (i = 0; i < nitems(toep->db); i++) {
1857                 if (toep->db[i].job == job) {
1858                         /* Should only ever get one cancel request for a job. */
1859                         MPASS(toep->db[i].cancel_pending == 0);
1860
1861                         /*
1862                          * Invalidate this buffer.  It will be
1863                          * cancelled or partially completed once the
1864                          * card ACKs the invalidate.
1865                          */
1866                         valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) :
1867                             V_TF_DDP_BUF1_VALID(1);
1868                         t4_set_tcb_field(sc, toep->ctrlq, toep->tid,
1869                             W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1,
1870                             i + DDP_BUF0_INVALIDATED,
1871                             toep->ofld_rxq->iq.abs_id);
1872                         toep->db[i].cancel_pending = 1;
1873                         CTR2(KTR_CXGBE, "%s: request %p marked pending",
1874                             __func__, job);
1875                         break;
1876                 }
1877         }
1878         DDP_UNLOCK(toep);
1879 }
1880
1881 static void
1882 t4_aio_cancel_queued(struct kaiocb *job)
1883 {
1884         struct socket *so = job->fd_file->f_data;
1885         struct tcpcb *tp = so_sototcpcb(so);
1886         struct toepcb *toep = tp->t_toe;
1887
1888         DDP_LOCK(toep);
1889         if (!aio_cancel_cleared(job)) {
1890                 TAILQ_REMOVE(&toep->ddp_aiojobq, job, list);
1891                 toep->ddp_waiting_count--;
1892                 if (toep->ddp_waiting_count == 0)
1893                         ddp_queue_toep(toep);
1894         }
1895         CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job);
1896         DDP_UNLOCK(toep);
1897
1898         aio_ddp_cancel_one(job);
1899 }
1900
1901 int
1902 t4_aio_queue_ddp(struct socket *so, struct kaiocb *job)
1903 {
1904         struct tcpcb *tp = so_sototcpcb(so);
1905         struct toepcb *toep = tp->t_toe;
1906
1907
1908         /* Ignore writes. */
1909         if (job->uaiocb.aio_lio_opcode != LIO_READ)
1910                 return (EOPNOTSUPP);
1911
1912         DDP_LOCK(toep);
1913
1914         /*
1915          * XXX: Think about possibly returning errors for ENOTCONN,
1916          * etc.  Perhaps the caller would only queue the request
1917          * if it failed with EOPNOTSUPP?
1918          */
1919
1920 #ifdef VERBOSE_TRACES
1921         CTR2(KTR_CXGBE, "%s: queueing %p", __func__, job);
1922 #endif
1923         if (!aio_set_cancel_function(job, t4_aio_cancel_queued))
1924                 panic("new job was cancelled");
1925         TAILQ_INSERT_TAIL(&toep->ddp_aiojobq, job, list);
1926         toep->ddp_waiting_count++;
1927         toep->ddp_flags |= DDP_OK;
1928
1929         /*
1930          * Try to handle this request synchronously.  If this has
1931          * to block because the task is running, it will just bail
1932          * and let the task handle it instead.
1933          */
1934         aio_ddp_requeue(toep);
1935         DDP_UNLOCK(toep);
1936         return (0);
1937 }
1938
1939 int
1940 t4_ddp_mod_load(void)
1941 {
1942
1943         t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp);
1944         t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete);
1945         TAILQ_INIT(&ddp_orphan_pagesets);
1946         mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF);
1947         TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL);
1948         return (0);
1949 }
1950
1951 void
1952 t4_ddp_mod_unload(void)
1953 {
1954
1955         taskqueue_drain(taskqueue_thread, &ddp_orphan_task);
1956         MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets));
1957         mtx_destroy(&ddp_orphan_pagesets_lock);
1958         t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL);
1959         t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL);
1960 }
1961 #endif