]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/drm2/i915/i915_gem_tiling.c
MFV r331405: 9084 spa_*_ashift must ignore spare devices
[FreeBSD/FreeBSD.git] / sys / dev / drm2 / i915 / i915_gem_tiling.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <dev/drm2/drmP.h>
32 #include <dev/drm2/i915/i915_drm.h>
33 #include <dev/drm2/i915/i915_drv.h>
34
35 #include <sys/sf_buf.h>
36
37 /** @file i915_gem_tiling.c
38  *
39  * Support for managing tiling state of buffer objects.
40  *
41  * The idea behind tiling is to increase cache hit rates by rearranging
42  * pixel data so that a group of pixel accesses are in the same cacheline.
43  * Performance improvement from doing this on the back/depth buffer are on
44  * the order of 30%.
45  *
46  * Intel architectures make this somewhat more complicated, though, by
47  * adjustments made to addressing of data when the memory is in interleaved
48  * mode (matched pairs of DIMMS) to improve memory bandwidth.
49  * For interleaved memory, the CPU sends every sequential 64 bytes
50  * to an alternate memory channel so it can get the bandwidth from both.
51  *
52  * The GPU also rearranges its accesses for increased bandwidth to interleaved
53  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
54  * it does it a little differently, since one walks addresses not just in the
55  * X direction but also Y.  So, along with alternating channels when bit
56  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
57  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
58  * are common to both the 915 and 965-class hardware.
59  *
60  * The CPU also sometimes XORs in higher bits as well, to improve
61  * bandwidth doing strided access like we do so frequently in graphics.  This
62  * is called "Channel XOR Randomization" in the MCH documentation.  The result
63  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
64  * decode.
65  *
66  * All of this bit 6 XORing has an effect on our memory management,
67  * as we need to make sure that the 3d driver can correctly address object
68  * contents.
69  *
70  * If we don't have interleaved memory, all tiling is safe and no swizzling is
71  * required.
72  *
73  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
74  * 17 is not just a page offset, so as we page an objet out and back in,
75  * individual pages in it will have different bit 17 addresses, resulting in
76  * each 64 bytes being swapped with its neighbor!
77  *
78  * Otherwise, if interleaved, we have to tell the 3d driver what the address
79  * swizzling it needs to do is, since it's writing with the CPU to the pages
80  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
81  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
82  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
83  * to match what the GPU expects.
84  */
85
86 /**
87  * Detects bit 6 swizzling of address lookup between IGD access and CPU
88  * access through main memory.
89  */
90 void
91 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
92 {
93         drm_i915_private_t *dev_priv = dev->dev_private;
94         uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
95         uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
96
97         if (IS_VALLEYVIEW(dev)) {
98                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
99                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
100         } else if (INTEL_INFO(dev)->gen >= 6) {
101                 uint32_t dimm_c0, dimm_c1;
102                 dimm_c0 = I915_READ(MAD_DIMM_C0);
103                 dimm_c1 = I915_READ(MAD_DIMM_C1);
104                 dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
105                 dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
106                 /* Enable swizzling when the channels are populated with
107                  * identically sized dimms. We don't need to check the 3rd
108                  * channel because no cpu with gpu attached ships in that
109                  * configuration. Also, swizzling only makes sense for 2
110                  * channels anyway. */
111                 if (dimm_c0 == dimm_c1) {
112                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
113                         swizzle_y = I915_BIT_6_SWIZZLE_9;
114                 } else {
115                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
116                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
117                 }
118         } else if (IS_GEN5(dev)) {
119                 /* On Ironlake whatever DRAM config, GPU always do
120                  * same swizzling setup.
121                  */
122                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
123                 swizzle_y = I915_BIT_6_SWIZZLE_9;
124         } else if (IS_GEN2(dev)) {
125                 /* As far as we know, the 865 doesn't have these bit 6
126                  * swizzling issues.
127                  */
128                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
129                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
130         } else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
131                 uint32_t dcc;
132
133                 /* On 9xx chipsets, channel interleave by the CPU is
134                  * determined by DCC.  For single-channel, neither the CPU
135                  * nor the GPU do swizzling.  For dual channel interleaved,
136                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
137                  * 9 for Y tiled.  The CPU's interleave is independent, and
138                  * can be based on either bit 11 (haven't seen this yet) or
139                  * bit 17 (common).
140                  */
141                 dcc = I915_READ(DCC);
142                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
143                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
144                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
145                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
146                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
147                         break;
148                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
149                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
150                                 /* This is the base swizzling by the GPU for
151                                  * tiled buffers.
152                                  */
153                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
154                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
155                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
156                                 /* Bit 11 swizzling by the CPU in addition. */
157                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
158                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
159                         } else {
160                                 /* Bit 17 swizzling by the CPU in addition. */
161                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
162                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
163                         }
164                         break;
165                 }
166                 if (dcc == 0xffffffff) {
167                         DRM_ERROR("Couldn't read from MCHBAR.  "
168                                   "Disabling tiling.\n");
169                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
170                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
171                 }
172         } else {
173                 /* The 965, G33, and newer, have a very flexible memory
174                  * configuration.  It will enable dual-channel mode
175                  * (interleaving) on as much memory as it can, and the GPU
176                  * will additionally sometimes enable different bit 6
177                  * swizzling for tiled objects from the CPU.
178                  *
179                  * Here's what I found on the G965:
180                  *    slot fill         memory size  swizzling
181                  * 0A   0B   1A   1B    1-ch   2-ch
182                  * 512  0    0    0     512    0     O
183                  * 512  0    512  0     16     1008  X
184                  * 512  0    0    512   16     1008  X
185                  * 0    512  0    512   16     1008  X
186                  * 1024 1024 1024 0     2048   1024  O
187                  *
188                  * We could probably detect this based on either the DRB
189                  * matching, which was the case for the swizzling required in
190                  * the table above, or from the 1-ch value being less than
191                  * the minimum size of a rank.
192                  */
193                 if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
194                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
195                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
196                 } else {
197                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
198                         swizzle_y = I915_BIT_6_SWIZZLE_9;
199                 }
200         }
201
202         dev_priv->mm.bit_6_swizzle_x = swizzle_x;
203         dev_priv->mm.bit_6_swizzle_y = swizzle_y;
204 }
205
206 /* Check pitch constriants for all chips & tiling formats */
207 static bool
208 i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
209 {
210         int tile_width;
211
212         /* Linear is always fine */
213         if (tiling_mode == I915_TILING_NONE)
214                 return true;
215
216         if (IS_GEN2(dev) ||
217             (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
218                 tile_width = 128;
219         else
220                 tile_width = 512;
221
222         /* check maximum stride & object size */
223         if (INTEL_INFO(dev)->gen >= 4) {
224                 /* i965 stores the end address of the gtt mapping in the fence
225                  * reg, so dont bother to check the size */
226                 if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
227                         return false;
228         } else {
229                 if (stride > 8192)
230                         return false;
231
232                 if (IS_GEN3(dev)) {
233                         if (size > I830_FENCE_MAX_SIZE_VAL << 20)
234                                 return false;
235                 } else {
236                         if (size > I830_FENCE_MAX_SIZE_VAL << 19)
237                                 return false;
238                 }
239         }
240
241         /* 965+ just needs multiples of tile width */
242         if (INTEL_INFO(dev)->gen >= 4) {
243                 if (stride & (tile_width - 1))
244                         return false;
245                 return true;
246         }
247
248         /* Pre-965 needs power of two tile widths */
249         if (stride < tile_width)
250                 return false;
251
252         if (stride & (stride - 1))
253                 return false;
254
255         return true;
256 }
257
258 /* Is the current GTT allocation valid for the change in tiling? */
259 static bool
260 i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
261 {
262         u32 size;
263
264         if (tiling_mode == I915_TILING_NONE)
265                 return true;
266
267         if (INTEL_INFO(obj->base.dev)->gen >= 4)
268                 return true;
269
270         if (INTEL_INFO(obj->base.dev)->gen == 3) {
271                 if (obj->gtt_offset & ~I915_FENCE_START_MASK)
272                         return false;
273         } else {
274                 if (obj->gtt_offset & ~I830_FENCE_START_MASK)
275                         return false;
276         }
277
278         /*
279          * Previous chips need to be aligned to the size of the smallest
280          * fence register that can contain the object.
281          */
282         if (INTEL_INFO(obj->base.dev)->gen == 3)
283                 size = 1024*1024;
284         else
285                 size = 512*1024;
286
287         while (size < obj->base.size)
288                 size <<= 1;
289
290         if (obj->gtt_space->size != size)
291                 return false;
292
293         if (obj->gtt_offset & (size - 1))
294                 return false;
295
296         return true;
297 }
298
299 /**
300  * Sets the tiling mode of an object, returning the required swizzling of
301  * bit 6 of addresses in the object.
302  */
303 int
304 i915_gem_set_tiling(struct drm_device *dev, void *data,
305                    struct drm_file *file)
306 {
307         struct drm_i915_gem_set_tiling *args = data;
308         drm_i915_private_t *dev_priv = dev->dev_private;
309         struct drm_i915_gem_object *obj;
310         int ret = 0;
311
312         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
313         if (&obj->base == NULL)
314                 return -ENOENT;
315
316         if (!i915_tiling_ok(dev,
317                             args->stride, obj->base.size, args->tiling_mode)) {
318                 drm_gem_object_unreference_unlocked(&obj->base);
319                 return -EINVAL;
320         }
321
322         if (obj->pin_count) {
323                 drm_gem_object_unreference_unlocked(&obj->base);
324                 return -EBUSY;
325         }
326
327         if (args->tiling_mode == I915_TILING_NONE) {
328                 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
329                 args->stride = 0;
330         } else {
331                 if (args->tiling_mode == I915_TILING_X)
332                         args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
333                 else
334                         args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
335
336                 /* Hide bit 17 swizzling from the user.  This prevents old Mesa
337                  * from aborting the application on sw fallbacks to bit 17,
338                  * and we use the pread/pwrite bit17 paths to swizzle for it.
339                  * If there was a user that was relying on the swizzle
340                  * information for drm_intel_bo_map()ed reads/writes this would
341                  * break it, but we don't have any of those.
342                  */
343                 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
344                         args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
345                 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
346                         args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
347
348                 /* If we can't handle the swizzling, make it untiled. */
349                 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
350                         args->tiling_mode = I915_TILING_NONE;
351                         args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
352                         args->stride = 0;
353                 }
354         }
355
356         DRM_LOCK(dev);
357         if (args->tiling_mode != obj->tiling_mode ||
358             args->stride != obj->stride) {
359                 /* We need to rebind the object if its current allocation
360                  * no longer meets the alignment restrictions for its new
361                  * tiling mode. Otherwise we can just leave it alone, but
362                  * need to ensure that any fence register is updated before
363                  * the next fenced (either through the GTT or by the BLT unit
364                  * on older GPUs) access.
365                  *
366                  * After updating the tiling parameters, we then flag whether
367                  * we need to update an associated fence register. Note this
368                  * has to also include the unfenced register the GPU uses
369                  * whilst executing a fenced command for an untiled object.
370                  */
371
372                 obj->map_and_fenceable =
373                         obj->gtt_space == NULL ||
374                         (obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end &&
375                          i915_gem_object_fence_ok(obj, args->tiling_mode));
376
377                 /* Rebind if we need a change of alignment */
378                 if (!obj->map_and_fenceable) {
379                         u32 unfenced_alignment =
380                                 i915_gem_get_unfenced_gtt_alignment(dev,
381                                                                     obj->base.size,
382                                                                     args->tiling_mode);
383                         if (obj->gtt_offset & (unfenced_alignment - 1))
384                                 ret = i915_gem_object_unbind(obj);
385                 }
386
387                 if (ret == 0) {
388                         obj->fence_dirty =
389                                 obj->fenced_gpu_access ||
390                                 obj->fence_reg != I915_FENCE_REG_NONE;
391
392                         obj->tiling_mode = args->tiling_mode;
393                         obj->stride = args->stride;
394
395                         /* Force the fence to be reacquired for GTT access */
396                         i915_gem_release_mmap(obj);
397                 }
398         }
399         /* we have to maintain this existing ABI... */
400         args->stride = obj->stride;
401         args->tiling_mode = obj->tiling_mode;
402         drm_gem_object_unreference(&obj->base);
403         DRM_UNLOCK(dev);
404
405         return ret;
406 }
407
408 /**
409  * Returns the current tiling mode and required bit 6 swizzling for the object.
410  */
411 int
412 i915_gem_get_tiling(struct drm_device *dev, void *data,
413                    struct drm_file *file)
414 {
415         struct drm_i915_gem_get_tiling *args = data;
416         drm_i915_private_t *dev_priv = dev->dev_private;
417         struct drm_i915_gem_object *obj;
418
419         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
420         if (&obj->base == NULL)
421                 return -ENOENT;
422
423         DRM_LOCK(dev);
424
425         args->tiling_mode = obj->tiling_mode;
426         switch (obj->tiling_mode) {
427         case I915_TILING_X:
428                 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
429                 break;
430         case I915_TILING_Y:
431                 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
432                 break;
433         case I915_TILING_NONE:
434                 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
435                 break;
436         default:
437                 DRM_ERROR("unknown tiling mode\n");
438         }
439
440         /* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
441         if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
442                 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
443         if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
444                 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
445
446         drm_gem_object_unreference(&obj->base);
447         DRM_UNLOCK(dev);
448
449         return 0;
450 }
451
452 /**
453  * Swap every 64 bytes of this page around, to account for it having a new
454  * bit 17 of its physical address and therefore being interpreted differently
455  * by the GPU.
456  */
457 static void
458 i915_gem_swizzle_page(vm_page_t page)
459 {
460         char temp[64];
461         struct sf_buf *sf;
462         char *vaddr;
463         int i;
464
465         /* XXXKIB sleep */
466         sf = sf_buf_alloc(page, SFB_DEFAULT);
467         vaddr = (char *)sf_buf_kva(sf);
468
469         for (i = 0; i < PAGE_SIZE; i += 128) {
470                 memcpy(temp, &vaddr[i], 64);
471                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
472                 memcpy(&vaddr[i + 64], temp, 64);
473         }
474
475         sf_buf_free(sf);
476 }
477
478 void
479 i915_gem_object_do_bit_17_swizzle_page(struct drm_i915_gem_object *obj,
480     vm_page_t m)
481 {
482         char new_bit_17;
483
484         if (obj->bit_17 == NULL)
485                 return;
486
487         new_bit_17 = VM_PAGE_TO_PHYS(m) >> 17;
488         if ((new_bit_17 & 0x1) !=
489             (test_bit(m->pindex, obj->bit_17) != 0)) {
490                 i915_gem_swizzle_page(m);
491                 vm_page_dirty(m);
492         }
493 }
494
495 void
496 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
497 {
498         int page_count = obj->base.size >> PAGE_SHIFT;
499         int i;
500
501         if (obj->bit_17 == NULL)
502                 return;
503
504         for (i = 0; i < page_count; i++) {
505                 vm_page_t page = obj->pages[i];
506                 char new_bit_17 = VM_PAGE_TO_PHYS(page) >> 17;
507                 if ((new_bit_17 & 0x1) !=
508                     (test_bit(i, obj->bit_17) != 0)) {
509                         i915_gem_swizzle_page(page);
510                         vm_page_dirty(page);
511                 }
512         }
513 }
514
515 void
516 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
517 {
518         int page_count = obj->base.size >> PAGE_SHIFT;
519         int i;
520
521         if (obj->bit_17 == NULL) {
522                 obj->bit_17 = malloc(BITS_TO_LONGS(page_count) *
523                                            sizeof(long), DRM_I915_GEM, M_WAITOK);
524                 if (obj->bit_17 == NULL) {
525                         DRM_ERROR("Failed to allocate memory for bit 17 "
526                                   "record\n");
527                         return;
528                 }
529         }
530
531         /* XXXKIB: review locking, atomics might be not needed there */
532         for (i = 0; i < page_count; i++) {
533                 vm_page_t page = obj->pages[i];
534                 if (VM_PAGE_TO_PHYS(page) & (1 << 17))
535                         __set_bit(i, obj->bit_17);
536                 else
537                         __clear_bit(i, obj->bit_17);
538         }
539 }