]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/drm2/i915/intel_display.c
Remove drm2 modules.
[FreeBSD/FreeBSD.git] / sys / dev / drm2 / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <dev/drm2/drmP.h>
31 #include <dev/drm2/drm_edid.h>
32 #include <dev/drm2/i915/intel_drv.h>
33 #include <dev/drm2/i915/i915_drm.h>
34 #include <dev/drm2/i915/i915_drv.h>
35 #include <dev/drm2/drm_dp_helper.h>
36 #include <dev/drm2/drm_crtc_helper.h>
37
38 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
39 static void intel_increase_pllclock(struct drm_crtc *crtc);
40 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
41
42 typedef struct {
43         /* given values */
44         int n;
45         int m1, m2;
46         int p1, p2;
47         /* derived values */
48         int     dot;
49         int     vco;
50         int     m;
51         int     p;
52 } intel_clock_t;
53
54 typedef struct {
55         int     min, max;
56 } intel_range_t;
57
58 typedef struct {
59         int     dot_limit;
60         int     p2_slow, p2_fast;
61 } intel_p2_t;
62
63 #define INTEL_P2_NUM                  2
64 typedef struct intel_limit intel_limit_t;
65 struct intel_limit {
66         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
67         intel_p2_t          p2;
68         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
69                         int, int, intel_clock_t *, intel_clock_t *);
70 };
71
72 /* FDI */
73 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
74
75 int
76 intel_pch_rawclk(struct drm_device *dev)
77 {
78         struct drm_i915_private *dev_priv = dev->dev_private;
79
80         WARN_ON(!HAS_PCH_SPLIT(dev));
81
82         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
83 }
84
85 static bool
86 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
87                     int target, int refclk, intel_clock_t *match_clock,
88                     intel_clock_t *best_clock);
89 static bool
90 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
91                         int target, int refclk, intel_clock_t *match_clock,
92                         intel_clock_t *best_clock);
93
94 static bool
95 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
96                       int target, int refclk, intel_clock_t *match_clock,
97                       intel_clock_t *best_clock);
98 static bool
99 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
100                            int target, int refclk, intel_clock_t *match_clock,
101                            intel_clock_t *best_clock);
102
103 static bool
104 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
105                         int target, int refclk, intel_clock_t *match_clock,
106                         intel_clock_t *best_clock);
107
108 static inline u32 /* units of 100MHz */
109 intel_fdi_link_freq(struct drm_device *dev)
110 {
111         if (IS_GEN5(dev)) {
112                 struct drm_i915_private *dev_priv = dev->dev_private;
113                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
114         } else
115                 return 27;
116 }
117
118 static const intel_limit_t intel_limits_i8xx_dvo = {
119         .dot = { .min = 25000, .max = 350000 },
120         .vco = { .min = 930000, .max = 1400000 },
121         .n = { .min = 3, .max = 16 },
122         .m = { .min = 96, .max = 140 },
123         .m1 = { .min = 18, .max = 26 },
124         .m2 = { .min = 6, .max = 16 },
125         .p = { .min = 4, .max = 128 },
126         .p1 = { .min = 2, .max = 33 },
127         .p2 = { .dot_limit = 165000,
128                 .p2_slow = 4, .p2_fast = 2 },
129         .find_pll = intel_find_best_PLL,
130 };
131
132 static const intel_limit_t intel_limits_i8xx_lvds = {
133         .dot = { .min = 25000, .max = 350000 },
134         .vco = { .min = 930000, .max = 1400000 },
135         .n = { .min = 3, .max = 16 },
136         .m = { .min = 96, .max = 140 },
137         .m1 = { .min = 18, .max = 26 },
138         .m2 = { .min = 6, .max = 16 },
139         .p = { .min = 4, .max = 128 },
140         .p1 = { .min = 1, .max = 6 },
141         .p2 = { .dot_limit = 165000,
142                 .p2_slow = 14, .p2_fast = 7 },
143         .find_pll = intel_find_best_PLL,
144 };
145
146 static const intel_limit_t intel_limits_i9xx_sdvo = {
147         .dot = { .min = 20000, .max = 400000 },
148         .vco = { .min = 1400000, .max = 2800000 },
149         .n = { .min = 1, .max = 6 },
150         .m = { .min = 70, .max = 120 },
151         .m1 = { .min = 8, .max = 18 },
152         .m2 = { .min = 3, .max = 7 },
153         .p = { .min = 5, .max = 80 },
154         .p1 = { .min = 1, .max = 8 },
155         .p2 = { .dot_limit = 200000,
156                 .p2_slow = 10, .p2_fast = 5 },
157         .find_pll = intel_find_best_PLL,
158 };
159
160 static const intel_limit_t intel_limits_i9xx_lvds = {
161         .dot = { .min = 20000, .max = 400000 },
162         .vco = { .min = 1400000, .max = 2800000 },
163         .n = { .min = 1, .max = 6 },
164         .m = { .min = 70, .max = 120 },
165         .m1 = { .min = 10, .max = 22 },
166         .m2 = { .min = 5, .max = 9 },
167         .p = { .min = 7, .max = 98 },
168         .p1 = { .min = 1, .max = 8 },
169         .p2 = { .dot_limit = 112000,
170                 .p2_slow = 14, .p2_fast = 7 },
171         .find_pll = intel_find_best_PLL,
172 };
173
174
175 static const intel_limit_t intel_limits_g4x_sdvo = {
176         .dot = { .min = 25000, .max = 270000 },
177         .vco = { .min = 1750000, .max = 3500000},
178         .n = { .min = 1, .max = 4 },
179         .m = { .min = 104, .max = 138 },
180         .m1 = { .min = 17, .max = 23 },
181         .m2 = { .min = 5, .max = 11 },
182         .p = { .min = 10, .max = 30 },
183         .p1 = { .min = 1, .max = 3},
184         .p2 = { .dot_limit = 270000,
185                 .p2_slow = 10,
186                 .p2_fast = 10
187         },
188         .find_pll = intel_g4x_find_best_PLL,
189 };
190
191 static const intel_limit_t intel_limits_g4x_hdmi = {
192         .dot = { .min = 22000, .max = 400000 },
193         .vco = { .min = 1750000, .max = 3500000},
194         .n = { .min = 1, .max = 4 },
195         .m = { .min = 104, .max = 138 },
196         .m1 = { .min = 16, .max = 23 },
197         .m2 = { .min = 5, .max = 11 },
198         .p = { .min = 5, .max = 80 },
199         .p1 = { .min = 1, .max = 8},
200         .p2 = { .dot_limit = 165000,
201                 .p2_slow = 10, .p2_fast = 5 },
202         .find_pll = intel_g4x_find_best_PLL,
203 };
204
205 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
206         .dot = { .min = 20000, .max = 115000 },
207         .vco = { .min = 1750000, .max = 3500000 },
208         .n = { .min = 1, .max = 3 },
209         .m = { .min = 104, .max = 138 },
210         .m1 = { .min = 17, .max = 23 },
211         .m2 = { .min = 5, .max = 11 },
212         .p = { .min = 28, .max = 112 },
213         .p1 = { .min = 2, .max = 8 },
214         .p2 = { .dot_limit = 0,
215                 .p2_slow = 14, .p2_fast = 14
216         },
217         .find_pll = intel_g4x_find_best_PLL,
218 };
219
220 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
221         .dot = { .min = 80000, .max = 224000 },
222         .vco = { .min = 1750000, .max = 3500000 },
223         .n = { .min = 1, .max = 3 },
224         .m = { .min = 104, .max = 138 },
225         .m1 = { .min = 17, .max = 23 },
226         .m2 = { .min = 5, .max = 11 },
227         .p = { .min = 14, .max = 42 },
228         .p1 = { .min = 2, .max = 6 },
229         .p2 = { .dot_limit = 0,
230                 .p2_slow = 7, .p2_fast = 7
231         },
232         .find_pll = intel_g4x_find_best_PLL,
233 };
234
235 static const intel_limit_t intel_limits_g4x_display_port = {
236         .dot = { .min = 161670, .max = 227000 },
237         .vco = { .min = 1750000, .max = 3500000},
238         .n = { .min = 1, .max = 2 },
239         .m = { .min = 97, .max = 108 },
240         .m1 = { .min = 0x10, .max = 0x12 },
241         .m2 = { .min = 0x05, .max = 0x06 },
242         .p = { .min = 10, .max = 20 },
243         .p1 = { .min = 1, .max = 2},
244         .p2 = { .dot_limit = 0,
245                 .p2_slow = 10, .p2_fast = 10 },
246         .find_pll = intel_find_pll_g4x_dp,
247 };
248
249 static const intel_limit_t intel_limits_pineview_sdvo = {
250         .dot = { .min = 20000, .max = 400000},
251         .vco = { .min = 1700000, .max = 3500000 },
252         /* Pineview's Ncounter is a ring counter */
253         .n = { .min = 3, .max = 6 },
254         .m = { .min = 2, .max = 256 },
255         /* Pineview only has one combined m divider, which we treat as m2. */
256         .m1 = { .min = 0, .max = 0 },
257         .m2 = { .min = 0, .max = 254 },
258         .p = { .min = 5, .max = 80 },
259         .p1 = { .min = 1, .max = 8 },
260         .p2 = { .dot_limit = 200000,
261                 .p2_slow = 10, .p2_fast = 5 },
262         .find_pll = intel_find_best_PLL,
263 };
264
265 static const intel_limit_t intel_limits_pineview_lvds = {
266         .dot = { .min = 20000, .max = 400000 },
267         .vco = { .min = 1700000, .max = 3500000 },
268         .n = { .min = 3, .max = 6 },
269         .m = { .min = 2, .max = 256 },
270         .m1 = { .min = 0, .max = 0 },
271         .m2 = { .min = 0, .max = 254 },
272         .p = { .min = 7, .max = 112 },
273         .p1 = { .min = 1, .max = 8 },
274         .p2 = { .dot_limit = 112000,
275                 .p2_slow = 14, .p2_fast = 14 },
276         .find_pll = intel_find_best_PLL,
277 };
278
279 /* Ironlake / Sandybridge
280  *
281  * We calculate clock using (register_value + 2) for N/M1/M2, so here
282  * the range value for them is (actual_value - 2).
283  */
284 static const intel_limit_t intel_limits_ironlake_dac = {
285         .dot = { .min = 25000, .max = 350000 },
286         .vco = { .min = 1760000, .max = 3510000 },
287         .n = { .min = 1, .max = 5 },
288         .m = { .min = 79, .max = 127 },
289         .m1 = { .min = 12, .max = 22 },
290         .m2 = { .min = 5, .max = 9 },
291         .p = { .min = 5, .max = 80 },
292         .p1 = { .min = 1, .max = 8 },
293         .p2 = { .dot_limit = 225000,
294                 .p2_slow = 10, .p2_fast = 5 },
295         .find_pll = intel_g4x_find_best_PLL,
296 };
297
298 static const intel_limit_t intel_limits_ironlake_single_lvds = {
299         .dot = { .min = 25000, .max = 350000 },
300         .vco = { .min = 1760000, .max = 3510000 },
301         .n = { .min = 1, .max = 3 },
302         .m = { .min = 79, .max = 118 },
303         .m1 = { .min = 12, .max = 22 },
304         .m2 = { .min = 5, .max = 9 },
305         .p = { .min = 28, .max = 112 },
306         .p1 = { .min = 2, .max = 8 },
307         .p2 = { .dot_limit = 225000,
308                 .p2_slow = 14, .p2_fast = 14 },
309         .find_pll = intel_g4x_find_best_PLL,
310 };
311
312 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
313         .dot = { .min = 25000, .max = 350000 },
314         .vco = { .min = 1760000, .max = 3510000 },
315         .n = { .min = 1, .max = 3 },
316         .m = { .min = 79, .max = 127 },
317         .m1 = { .min = 12, .max = 22 },
318         .m2 = { .min = 5, .max = 9 },
319         .p = { .min = 14, .max = 56 },
320         .p1 = { .min = 2, .max = 8 },
321         .p2 = { .dot_limit = 225000,
322                 .p2_slow = 7, .p2_fast = 7 },
323         .find_pll = intel_g4x_find_best_PLL,
324 };
325
326 /* LVDS 100mhz refclk limits. */
327 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
328         .dot = { .min = 25000, .max = 350000 },
329         .vco = { .min = 1760000, .max = 3510000 },
330         .n = { .min = 1, .max = 2 },
331         .m = { .min = 79, .max = 126 },
332         .m1 = { .min = 12, .max = 22 },
333         .m2 = { .min = 5, .max = 9 },
334         .p = { .min = 28, .max = 112 },
335         .p1 = { .min = 2, .max = 8 },
336         .p2 = { .dot_limit = 225000,
337                 .p2_slow = 14, .p2_fast = 14 },
338         .find_pll = intel_g4x_find_best_PLL,
339 };
340
341 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
342         .dot = { .min = 25000, .max = 350000 },
343         .vco = { .min = 1760000, .max = 3510000 },
344         .n = { .min = 1, .max = 3 },
345         .m = { .min = 79, .max = 126 },
346         .m1 = { .min = 12, .max = 22 },
347         .m2 = { .min = 5, .max = 9 },
348         .p = { .min = 14, .max = 42 },
349         .p1 = { .min = 2, .max = 6 },
350         .p2 = { .dot_limit = 225000,
351                 .p2_slow = 7, .p2_fast = 7 },
352         .find_pll = intel_g4x_find_best_PLL,
353 };
354
355 static const intel_limit_t intel_limits_ironlake_display_port = {
356         .dot = { .min = 25000, .max = 350000 },
357         .vco = { .min = 1760000, .max = 3510000},
358         .n = { .min = 1, .max = 2 },
359         .m = { .min = 81, .max = 90 },
360         .m1 = { .min = 12, .max = 22 },
361         .m2 = { .min = 5, .max = 9 },
362         .p = { .min = 10, .max = 20 },
363         .p1 = { .min = 1, .max = 2},
364         .p2 = { .dot_limit = 0,
365                 .p2_slow = 10, .p2_fast = 10 },
366         .find_pll = intel_find_pll_ironlake_dp,
367 };
368
369 static const intel_limit_t intel_limits_vlv_dac = {
370         .dot = { .min = 25000, .max = 270000 },
371         .vco = { .min = 4000000, .max = 6000000 },
372         .n = { .min = 1, .max = 7 },
373         .m = { .min = 22, .max = 450 }, /* guess */
374         .m1 = { .min = 2, .max = 3 },
375         .m2 = { .min = 11, .max = 156 },
376         .p = { .min = 10, .max = 30 },
377         .p1 = { .min = 2, .max = 3 },
378         .p2 = { .dot_limit = 270000,
379                 .p2_slow = 2, .p2_fast = 20 },
380         .find_pll = intel_vlv_find_best_pll,
381 };
382
383 static const intel_limit_t intel_limits_vlv_hdmi = {
384         .dot = { .min = 20000, .max = 165000 },
385         .vco = { .min = 4000000, .max = 5994000},
386         .n = { .min = 1, .max = 7 },
387         .m = { .min = 60, .max = 300 }, /* guess */
388         .m1 = { .min = 2, .max = 3 },
389         .m2 = { .min = 11, .max = 156 },
390         .p = { .min = 10, .max = 30 },
391         .p1 = { .min = 2, .max = 3 },
392         .p2 = { .dot_limit = 270000,
393                 .p2_slow = 2, .p2_fast = 20 },
394         .find_pll = intel_vlv_find_best_pll,
395 };
396
397 static const intel_limit_t intel_limits_vlv_dp = {
398         .dot = { .min = 25000, .max = 270000 },
399         .vco = { .min = 4000000, .max = 6000000 },
400         .n = { .min = 1, .max = 7 },
401         .m = { .min = 22, .max = 450 },
402         .m1 = { .min = 2, .max = 3 },
403         .m2 = { .min = 11, .max = 156 },
404         .p = { .min = 10, .max = 30 },
405         .p1 = { .min = 2, .max = 3 },
406         .p2 = { .dot_limit = 270000,
407                 .p2_slow = 2, .p2_fast = 20 },
408         .find_pll = intel_vlv_find_best_pll,
409 };
410
411 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
412 {
413         u32 val = 0;
414
415         sx_xlock(&dev_priv->dpio_lock);
416         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
417                 DRM_ERROR("DPIO idle wait timed out\n");
418                 goto out_unlock;
419         }
420
421         I915_WRITE(DPIO_REG, reg);
422         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
423                    DPIO_BYTE);
424         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
425                 DRM_ERROR("DPIO read wait timed out\n");
426                 goto out_unlock;
427         }
428         val = I915_READ(DPIO_DATA);
429
430 out_unlock:
431         sx_xunlock(&dev_priv->dpio_lock);
432         return val;
433 }
434
435 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
436                              u32 val)
437 {
438
439         sx_xlock(&dev_priv->dpio_lock);
440         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441                 DRM_ERROR("DPIO idle wait timed out\n");
442                 goto out_unlock;
443         }
444
445         I915_WRITE(DPIO_DATA, val);
446         I915_WRITE(DPIO_REG, reg);
447         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448                    DPIO_BYTE);
449         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450                 DRM_ERROR("DPIO write wait timed out\n");
451
452 out_unlock:
453        sx_xunlock(&dev_priv->dpio_lock);
454 }
455
456 static void vlv_init_dpio(struct drm_device *dev)
457 {
458         struct drm_i915_private *dev_priv = dev->dev_private;
459
460         /* Reset the DPIO config */
461         I915_WRITE(DPIO_CTL, 0);
462         POSTING_READ(DPIO_CTL);
463         I915_WRITE(DPIO_CTL, 1);
464         POSTING_READ(DPIO_CTL);
465 }
466
467 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468 {
469         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470         return 1;
471 }
472
473 static const struct dmi_system_id intel_dual_link_lvds[] = {
474         {
475                 .callback = intel_dual_link_lvds_callback,
476                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477                 .matches = {
478                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480                 },
481         },
482         { }     /* terminating entry */
483 };
484
485 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486                               unsigned int reg)
487 {
488         unsigned int val;
489
490         /* use the module option value if specified */
491         if (i915_lvds_channel_mode > 0)
492                 return i915_lvds_channel_mode == 2;
493
494         if (dmi_check_system(intel_dual_link_lvds))
495                 return true;
496
497         if (dev_priv->lvds_val)
498                 val = dev_priv->lvds_val;
499         else {
500                 /* BIOS should set the proper LVDS register value at boot, but
501                  * in reality, it doesn't set the value when the lid is closed;
502                  * we need to check "the value to be set" in VBT when LVDS
503                  * register is uninitialized.
504                  */
505                 val = I915_READ(reg);
506                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
507                         val = dev_priv->bios_lvds_val;
508                 dev_priv->lvds_val = val;
509         }
510         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511 }
512
513 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514                                                 int refclk)
515 {
516         struct drm_device *dev = crtc->dev;
517         struct drm_i915_private *dev_priv = dev->dev_private;
518         const intel_limit_t *limit;
519
520         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
522                         /* LVDS dual channel */
523                         if (refclk == 100000)
524                                 limit = &intel_limits_ironlake_dual_lvds_100m;
525                         else
526                                 limit = &intel_limits_ironlake_dual_lvds;
527                 } else {
528                         if (refclk == 100000)
529                                 limit = &intel_limits_ironlake_single_lvds_100m;
530                         else
531                                 limit = &intel_limits_ironlake_single_lvds;
532                 }
533         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
534                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
535                 limit = &intel_limits_ironlake_display_port;
536         else
537                 limit = &intel_limits_ironlake_dac;
538
539         return limit;
540 }
541
542 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543 {
544         struct drm_device *dev = crtc->dev;
545         struct drm_i915_private *dev_priv = dev->dev_private;
546         const intel_limit_t *limit;
547
548         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
549                 if (is_dual_link_lvds(dev_priv, LVDS))
550                         /* LVDS with dual channel */
551                         limit = &intel_limits_g4x_dual_channel_lvds;
552                 else
553                         /* LVDS with dual channel */
554                         limit = &intel_limits_g4x_single_channel_lvds;
555         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
557                 limit = &intel_limits_g4x_hdmi;
558         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
559                 limit = &intel_limits_g4x_sdvo;
560         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
561                 limit = &intel_limits_g4x_display_port;
562         } else /* The option is for other outputs */
563                 limit = &intel_limits_i9xx_sdvo;
564
565         return limit;
566 }
567
568 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
569 {
570         struct drm_device *dev = crtc->dev;
571         const intel_limit_t *limit;
572
573         if (HAS_PCH_SPLIT(dev))
574                 limit = intel_ironlake_limit(crtc, refclk);
575         else if (IS_G4X(dev)) {
576                 limit = intel_g4x_limit(crtc);
577         } else if (IS_PINEVIEW(dev)) {
578                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
579                         limit = &intel_limits_pineview_lvds;
580                 else
581                         limit = &intel_limits_pineview_sdvo;
582         } else if (IS_VALLEYVIEW(dev)) {
583                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584                         limit = &intel_limits_vlv_dac;
585                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586                         limit = &intel_limits_vlv_hdmi;
587                 else
588                         limit = &intel_limits_vlv_dp;
589         } else if (!IS_GEN2(dev)) {
590                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591                         limit = &intel_limits_i9xx_lvds;
592                 else
593                         limit = &intel_limits_i9xx_sdvo;
594         } else {
595                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
596                         limit = &intel_limits_i8xx_lvds;
597                 else
598                         limit = &intel_limits_i8xx_dvo;
599         }
600         return limit;
601 }
602
603 /* m1 is reserved as 0 in Pineview, n is a ring counter */
604 static void pineview_clock(int refclk, intel_clock_t *clock)
605 {
606         clock->m = clock->m2 + 2;
607         clock->p = clock->p1 * clock->p2;
608         clock->vco = refclk * clock->m / clock->n;
609         clock->dot = clock->vco / clock->p;
610 }
611
612 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613 {
614         if (IS_PINEVIEW(dev)) {
615                 pineview_clock(refclk, clock);
616                 return;
617         }
618         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619         clock->p = clock->p1 * clock->p2;
620         clock->vco = refclk * clock->m / (clock->n + 2);
621         clock->dot = clock->vco / clock->p;
622 }
623
624 /**
625  * Returns whether any output on the specified pipe is of the specified type
626  */
627 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
628 {
629         struct drm_device *dev = crtc->dev;
630         struct intel_encoder *encoder;
631
632         for_each_encoder_on_crtc(dev, crtc, encoder)
633                 if (encoder->type == type)
634                         return true;
635
636         return false;
637 }
638
639 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
640 /**
641  * Returns whether the given set of divisors are valid for a given refclk with
642  * the given connectors.
643  */
644
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646                                const intel_limit_t *limit,
647                                const intel_clock_t *clock)
648 {
649         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
650                 INTELPllInvalid("p1 out of range\n");
651         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
652                 INTELPllInvalid("p out of range\n");
653         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
654                 INTELPllInvalid("m2 out of range\n");
655         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
656                 INTELPllInvalid("m1 out of range\n");
657         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
658                 INTELPllInvalid("m1 <= m2\n");
659         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
660                 INTELPllInvalid("m out of range\n");
661         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
662                 INTELPllInvalid("n out of range\n");
663         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
664                 INTELPllInvalid("vco out of range\n");
665         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666          * connector, etc., rather than just a single range.
667          */
668         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
669                 INTELPllInvalid("dot out of range\n");
670
671         return true;
672 }
673
674 static bool
675 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
676                     int target, int refclk, intel_clock_t *match_clock,
677                     intel_clock_t *best_clock)
678
679 {
680         struct drm_device *dev = crtc->dev;
681         struct drm_i915_private *dev_priv = dev->dev_private;
682         intel_clock_t clock;
683         int err = target;
684
685         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
686             (I915_READ(LVDS)) != 0) {
687                 /*
688                  * For LVDS, if the panel is on, just rely on its current
689                  * settings for dual-channel.  We haven't figured out how to
690                  * reliably set up different single/dual channel state, if we
691                  * even can.
692                  */
693                 if (is_dual_link_lvds(dev_priv, LVDS))
694                         clock.p2 = limit->p2.p2_fast;
695                 else
696                         clock.p2 = limit->p2.p2_slow;
697         } else {
698                 if (target < limit->p2.dot_limit)
699                         clock.p2 = limit->p2.p2_slow;
700                 else
701                         clock.p2 = limit->p2.p2_fast;
702         }
703
704         memset(best_clock, 0, sizeof(*best_clock));
705
706         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707              clock.m1++) {
708                 for (clock.m2 = limit->m2.min;
709                      clock.m2 <= limit->m2.max; clock.m2++) {
710                         /* m1 is always 0 in Pineview */
711                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
712                                 break;
713                         for (clock.n = limit->n.min;
714                              clock.n <= limit->n.max; clock.n++) {
715                                 for (clock.p1 = limit->p1.min;
716                                         clock.p1 <= limit->p1.max; clock.p1++) {
717                                         int this_err;
718
719                                         intel_clock(dev, refclk, &clock);
720                                         if (!intel_PLL_is_valid(dev, limit,
721                                                                 &clock))
722                                                 continue;
723                                         if (match_clock &&
724                                             clock.p != match_clock->p)
725                                                 continue;
726
727                                         this_err = abs(clock.dot - target);
728                                         if (this_err < err) {
729                                                 *best_clock = clock;
730                                                 err = this_err;
731                                         }
732                                 }
733                         }
734                 }
735         }
736
737         return (err != target);
738 }
739
740 static bool
741 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742                         int target, int refclk, intel_clock_t *match_clock,
743                         intel_clock_t *best_clock)
744 {
745         struct drm_device *dev = crtc->dev;
746         struct drm_i915_private *dev_priv = dev->dev_private;
747         intel_clock_t clock;
748         int max_n;
749         bool found;
750         /* approximately equals target * 0.00585 */
751         int err_most = (target >> 8) + (target >> 9);
752         found = false;
753
754         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
755                 int lvds_reg;
756
757                 if (HAS_PCH_SPLIT(dev))
758                         lvds_reg = PCH_LVDS;
759                 else
760                         lvds_reg = LVDS;
761                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
762                     LVDS_CLKB_POWER_UP)
763                         clock.p2 = limit->p2.p2_fast;
764                 else
765                         clock.p2 = limit->p2.p2_slow;
766         } else {
767                 if (target < limit->p2.dot_limit)
768                         clock.p2 = limit->p2.p2_slow;
769                 else
770                         clock.p2 = limit->p2.p2_fast;
771         }
772
773         memset(best_clock, 0, sizeof(*best_clock));
774         max_n = limit->n.max;
775         /* based on hardware requirement, prefer smaller n to precision */
776         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777                 /* based on hardware requirement, prefere larger m1,m2 */
778                 for (clock.m1 = limit->m1.max;
779                      clock.m1 >= limit->m1.min; clock.m1--) {
780                         for (clock.m2 = limit->m2.max;
781                              clock.m2 >= limit->m2.min; clock.m2--) {
782                                 for (clock.p1 = limit->p1.max;
783                                      clock.p1 >= limit->p1.min; clock.p1--) {
784                                         int this_err;
785
786                                         intel_clock(dev, refclk, &clock);
787                                         if (!intel_PLL_is_valid(dev, limit,
788                                                                 &clock))
789                                                 continue;
790                                         if (match_clock &&
791                                             clock.p != match_clock->p)
792                                                 continue;
793
794                                         this_err = abs(clock.dot - target);
795                                         if (this_err < err_most) {
796                                                 *best_clock = clock;
797                                                 err_most = this_err;
798                                                 max_n = clock.n;
799                                                 found = true;
800                                         }
801                                 }
802                         }
803                 }
804         }
805         return found;
806 }
807
808 static bool
809 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
810                            int target, int refclk, intel_clock_t *match_clock,
811                            intel_clock_t *best_clock)
812 {
813         struct drm_device *dev = crtc->dev;
814         intel_clock_t clock;
815
816         if (target < 200000) {
817                 clock.n = 1;
818                 clock.p1 = 2;
819                 clock.p2 = 10;
820                 clock.m1 = 12;
821                 clock.m2 = 9;
822         } else {
823                 clock.n = 2;
824                 clock.p1 = 1;
825                 clock.p2 = 10;
826                 clock.m1 = 14;
827                 clock.m2 = 8;
828         }
829         intel_clock(dev, refclk, &clock);
830         memcpy(best_clock, &clock, sizeof(intel_clock_t));
831         return true;
832 }
833
834 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
835 static bool
836 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837                       int target, int refclk, intel_clock_t *match_clock,
838                       intel_clock_t *best_clock)
839 {
840         intel_clock_t clock;
841         if (target < 200000) {
842                 clock.p1 = 2;
843                 clock.p2 = 10;
844                 clock.n = 2;
845                 clock.m1 = 23;
846                 clock.m2 = 8;
847         } else {
848                 clock.p1 = 1;
849                 clock.p2 = 10;
850                 clock.n = 1;
851                 clock.m1 = 14;
852                 clock.m2 = 2;
853         }
854         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855         clock.p = (clock.p1 * clock.p2);
856         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857         clock.vco = 0;
858         memcpy(best_clock, &clock, sizeof(intel_clock_t));
859         return true;
860 }
861 static bool
862 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863                         int target, int refclk, intel_clock_t *match_clock,
864                         intel_clock_t *best_clock)
865 {
866         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867         u32 m, n, fastclk;
868         u32 updrate, minupdate, fracbits, p;
869         unsigned long bestppm, ppm, absppm;
870         int dotclk, flag;
871
872         flag = 0;
873         dotclk = target * 1000;
874         bestppm = 1000000;
875         ppm = absppm = 0;
876         fastclk = dotclk / (2*100);
877         updrate = 0;
878         minupdate = 19200;
879         fracbits = 1;
880         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881         bestm1 = bestm2 = bestp1 = bestp2 = 0;
882
883         /* based on hardware requirement, prefer smaller n to precision */
884         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885                 updrate = refclk / n;
886                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888                                 if (p2 > 10)
889                                         p2 = p2 - 1;
890                                 p = p1 * p2;
891                                 /* based on hardware requirement, prefer bigger m1,m2 values */
892                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893                                         m2 = (((2*(fastclk * p * n / m1 )) +
894                                                refclk) / (2*refclk));
895                                         m = m1 * m2;
896                                         vco = updrate * m;
897                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
898                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899                                                 absppm = (ppm > 0) ? ppm : (-ppm);
900                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901                                                         bestppm = 0;
902                                                         flag = 1;
903                                                 }
904                                                 if (absppm < bestppm - 10) {
905                                                         bestppm = absppm;
906                                                         flag = 1;
907                                                 }
908                                                 if (flag) {
909                                                         bestn = n;
910                                                         bestm1 = m1;
911                                                         bestm2 = m2;
912                                                         bestp1 = p1;
913                                                         bestp2 = p2;
914                                                         flag = 0;
915                                                 }
916                                         }
917                                 }
918                         }
919                 }
920         }
921         best_clock->n = bestn;
922         best_clock->m1 = bestm1;
923         best_clock->m2 = bestm2;
924         best_clock->p1 = bestp1;
925         best_clock->p2 = bestp2;
926
927         return true;
928 }
929
930 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
931                                              enum pipe pipe)
932 {
933         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
934         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
935
936         return intel_crtc->cpu_transcoder;
937 }
938
939 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
940 {
941         struct drm_i915_private *dev_priv = dev->dev_private;
942         u32 frame, frame_reg = PIPEFRAME(pipe);
943
944         frame = I915_READ(frame_reg);
945
946         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
947                 DRM_DEBUG_KMS("vblank wait timed out\n");
948 }
949
950 /**
951  * intel_wait_for_vblank - wait for vblank on a given pipe
952  * @dev: drm device
953  * @pipe: pipe to wait for
954  *
955  * Wait for vblank to occur on a given pipe.  Needed for various bits of
956  * mode setting code.
957  */
958 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
959 {
960         struct drm_i915_private *dev_priv = dev->dev_private;
961         int pipestat_reg = PIPESTAT(pipe);
962
963         if (INTEL_INFO(dev)->gen >= 5) {
964                 ironlake_wait_for_vblank(dev, pipe);
965                 return;
966         }
967
968         /* Clear existing vblank status. Note this will clear any other
969          * sticky status fields as well.
970          *
971          * This races with i915_driver_irq_handler() with the result
972          * that either function could miss a vblank event.  Here it is not
973          * fatal, as we will either wait upon the next vblank interrupt or
974          * timeout.  Generally speaking intel_wait_for_vblank() is only
975          * called during modeset at which time the GPU should be idle and
976          * should *not* be performing page flips and thus not waiting on
977          * vblanks...
978          * Currently, the result of us stealing a vblank from the irq
979          * handler is that a single frame will be skipped during swapbuffers.
980          */
981         I915_WRITE(pipestat_reg,
982                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
983
984         /* Wait for vblank interrupt bit to set */
985         if (wait_for(I915_READ(pipestat_reg) &
986                      PIPE_VBLANK_INTERRUPT_STATUS,
987                      50))
988                 DRM_DEBUG_KMS("vblank wait timed out\n");
989 }
990
991 /*
992  * intel_wait_for_pipe_off - wait for pipe to turn off
993  * @dev: drm device
994  * @pipe: pipe to wait for
995  *
996  * After disabling a pipe, we can't wait for vblank in the usual way,
997  * spinning on the vblank interrupt status bit, since we won't actually
998  * see an interrupt when the pipe is disabled.
999  *
1000  * On Gen4 and above:
1001  *   wait for the pipe register state bit to turn off
1002  *
1003  * Otherwise:
1004  *   wait for the display line value to settle (it usually
1005  *   ends up stopping at the start of the next frame).
1006  *
1007  */
1008 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1009 {
1010         struct drm_i915_private *dev_priv = dev->dev_private;
1011         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1012                                                                       pipe);
1013
1014         if (INTEL_INFO(dev)->gen >= 4) {
1015                 int reg = PIPECONF(cpu_transcoder);
1016
1017                 /* Wait for the Pipe State to go off */
1018                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1019                              100))
1020                         WARN(1, "pipe_off wait timed out\n");
1021         } else {
1022                 u32 last_line, line_mask;
1023                 int reg = PIPEDSL(pipe);
1024                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1025
1026                 if (IS_GEN2(dev))
1027                         line_mask = DSL_LINEMASK_GEN2;
1028                 else
1029                         line_mask = DSL_LINEMASK_GEN3;
1030
1031                 /* Wait for the display line to settle */
1032                 do {
1033                         last_line = I915_READ(reg) & line_mask;
1034                         mdelay(5);
1035                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1036                          time_after(timeout, jiffies));
1037                 if (time_after(jiffies, timeout))
1038                         WARN(1, "pipe_off wait timed out\n");
1039         }
1040 }
1041
1042 static const char *state_string(bool enabled)
1043 {
1044         return enabled ? "on" : "off";
1045 }
1046
1047 /* Only for pre-ILK configs */
1048 static void assert_pll(struct drm_i915_private *dev_priv,
1049                        enum pipe pipe, bool state)
1050 {
1051         int reg;
1052         u32 val;
1053         bool cur_state;
1054
1055         reg = DPLL(pipe);
1056         val = I915_READ(reg);
1057         cur_state = !!(val & DPLL_VCO_ENABLE);
1058         WARN(cur_state != state,
1059              "PLL state assertion failure (expected %s, current %s)\n",
1060              state_string(state), state_string(cur_state));
1061 }
1062 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1063 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1064
1065 /* For ILK+ */
1066 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1067                            struct intel_pch_pll *pll,
1068                            struct intel_crtc *crtc,
1069                            bool state)
1070 {
1071         u32 val;
1072         bool cur_state;
1073
1074         if (HAS_PCH_LPT(dev_priv->dev)) {
1075                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1076                 return;
1077         }
1078
1079         if (WARN (!pll,
1080                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1081                 return;
1082
1083         val = I915_READ(pll->pll_reg);
1084         cur_state = !!(val & DPLL_VCO_ENABLE);
1085         WARN(cur_state != state,
1086              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1087              pll->pll_reg, state_string(state), state_string(cur_state), val);
1088
1089         /* Make sure the selected PLL is correctly attached to the transcoder */
1090         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1091                 u32 pch_dpll;
1092
1093                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1094                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1095                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1096                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1097                           cur_state, crtc->pipe, pch_dpll)) {
1098                         cur_state = !!(val >> (4*crtc->pipe + 3));
1099                         WARN(cur_state != state,
1100                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1101                              pll->pll_reg == _PCH_DPLL_B,
1102                              state_string(state),
1103                              crtc->pipe,
1104                              val);
1105                 }
1106         }
1107 }
1108 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1109 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1110
1111 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1112                           enum pipe pipe, bool state)
1113 {
1114         int reg;
1115         u32 val;
1116         bool cur_state;
1117         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1118                                                                       pipe);
1119
1120         if (IS_HASWELL(dev_priv->dev)) {
1121                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1122                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1123                 val = I915_READ(reg);
1124                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1125         } else {
1126                 reg = FDI_TX_CTL(pipe);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & FDI_TX_ENABLE);
1129         }
1130         WARN(cur_state != state,
1131              "FDI TX state assertion failure (expected %s, current %s)\n",
1132              state_string(state), state_string(cur_state));
1133 }
1134 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1135 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1136
1137 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1138                           enum pipe pipe, bool state)
1139 {
1140         int reg;
1141         u32 val;
1142         bool cur_state;
1143
1144         reg = FDI_RX_CTL(pipe);
1145         val = I915_READ(reg);
1146         cur_state = !!(val & FDI_RX_ENABLE);
1147         WARN(cur_state != state,
1148              "FDI RX state assertion failure (expected %s, current %s)\n",
1149              state_string(state), state_string(cur_state));
1150 }
1151 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1152 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1153
1154 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1155                                       enum pipe pipe)
1156 {
1157         int reg;
1158         u32 val;
1159
1160         /* ILK FDI PLL is always enabled */
1161         if (dev_priv->info->gen == 5)
1162                 return;
1163
1164         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1165         if (IS_HASWELL(dev_priv->dev))
1166                 return;
1167
1168         reg = FDI_TX_CTL(pipe);
1169         val = I915_READ(reg);
1170         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1171 }
1172
1173 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1174                                       enum pipe pipe)
1175 {
1176         int reg;
1177         u32 val;
1178
1179         reg = FDI_RX_CTL(pipe);
1180         val = I915_READ(reg);
1181         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1182 }
1183
1184 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1185                                   enum pipe pipe)
1186 {
1187         int pp_reg, lvds_reg;
1188         u32 val;
1189         enum pipe panel_pipe = PIPE_A;
1190         bool locked = true;
1191
1192         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1193                 pp_reg = PCH_PP_CONTROL;
1194                 lvds_reg = PCH_LVDS;
1195         } else {
1196                 pp_reg = PP_CONTROL;
1197                 lvds_reg = LVDS;
1198         }
1199
1200         val = I915_READ(pp_reg);
1201         if (!(val & PANEL_POWER_ON) ||
1202             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1203                 locked = false;
1204
1205         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1206                 panel_pipe = PIPE_B;
1207
1208         WARN(panel_pipe == pipe && locked,
1209              "panel assertion failure, pipe %c regs locked\n",
1210              pipe_name(pipe));
1211 }
1212
1213 void assert_pipe(struct drm_i915_private *dev_priv,
1214                  enum pipe pipe, bool state)
1215 {
1216         int reg;
1217         u32 val;
1218         bool cur_state;
1219         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1220                                                                       pipe);
1221
1222         /* if we need the pipe A quirk it must be always on */
1223         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1224                 state = true;
1225
1226         reg = PIPECONF(cpu_transcoder);
1227         val = I915_READ(reg);
1228         cur_state = !!(val & PIPECONF_ENABLE);
1229         WARN(cur_state != state,
1230              "pipe %c assertion failure (expected %s, current %s)\n",
1231              pipe_name(pipe), state_string(state), state_string(cur_state));
1232 }
1233
1234 static void assert_plane(struct drm_i915_private *dev_priv,
1235                          enum plane plane, bool state)
1236 {
1237         int reg;
1238         u32 val;
1239         bool cur_state;
1240
1241         reg = DSPCNTR(plane);
1242         val = I915_READ(reg);
1243         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1244         WARN(cur_state != state,
1245              "plane %c assertion failure (expected %s, current %s)\n",
1246              plane_name(plane), state_string(state), state_string(cur_state));
1247 }
1248
1249 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1250 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1251
1252 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1253                                    enum pipe pipe)
1254 {
1255         int reg, i;
1256         u32 val;
1257         int cur_pipe;
1258
1259         /* Planes are fixed to pipes on ILK+ */
1260         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1261                 reg = DSPCNTR(pipe);
1262                 val = I915_READ(reg);
1263                 WARN((val & DISPLAY_PLANE_ENABLE),
1264                      "plane %c assertion failure, should be disabled but not\n",
1265                      plane_name(pipe));
1266                 return;
1267         }
1268
1269         /* Need to check both planes against the pipe */
1270         for (i = 0; i < 2; i++) {
1271                 reg = DSPCNTR(i);
1272                 val = I915_READ(reg);
1273                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1274                         DISPPLANE_SEL_PIPE_SHIFT;
1275                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1276                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1277                      plane_name(i), pipe_name(pipe));
1278         }
1279 }
1280
1281 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1282 {
1283         u32 val;
1284         bool enabled;
1285
1286         if (HAS_PCH_LPT(dev_priv->dev)) {
1287                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1288                 return;
1289         }
1290
1291         val = I915_READ(PCH_DREF_CONTROL);
1292         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1293                             DREF_SUPERSPREAD_SOURCE_MASK));
1294         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1295 }
1296
1297 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1298                                        enum pipe pipe)
1299 {
1300         int reg;
1301         u32 val;
1302         bool enabled;
1303
1304         reg = TRANSCONF(pipe);
1305         val = I915_READ(reg);
1306         enabled = !!(val & TRANS_ENABLE);
1307         WARN(enabled,
1308              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1309              pipe_name(pipe));
1310 }
1311
1312 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1313                             enum pipe pipe, u32 port_sel, u32 val)
1314 {
1315         if ((val & DP_PORT_EN) == 0)
1316                 return false;
1317
1318         if (HAS_PCH_CPT(dev_priv->dev)) {
1319                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1320                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1321                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1322                         return false;
1323         } else {
1324                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1325                         return false;
1326         }
1327         return true;
1328 }
1329
1330 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1331                               enum pipe pipe, u32 val)
1332 {
1333         if ((val & PORT_ENABLE) == 0)
1334                 return false;
1335
1336         if (HAS_PCH_CPT(dev_priv->dev)) {
1337                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1338                         return false;
1339         } else {
1340                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1341                         return false;
1342         }
1343         return true;
1344 }
1345
1346 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1347                               enum pipe pipe, u32 val)
1348 {
1349         if ((val & LVDS_PORT_EN) == 0)
1350                 return false;
1351
1352         if (HAS_PCH_CPT(dev_priv->dev)) {
1353                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1354                         return false;
1355         } else {
1356                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1357                         return false;
1358         }
1359         return true;
1360 }
1361
1362 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1363                               enum pipe pipe, u32 val)
1364 {
1365         if ((val & ADPA_DAC_ENABLE) == 0)
1366                 return false;
1367         if (HAS_PCH_CPT(dev_priv->dev)) {
1368                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1369                         return false;
1370         } else {
1371                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1372                         return false;
1373         }
1374         return true;
1375 }
1376
1377 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1378                                    enum pipe pipe, int reg, u32 port_sel)
1379 {
1380         u32 val = I915_READ(reg);
1381         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1382              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1383              reg, pipe_name(pipe));
1384
1385         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1386              && (val & DP_PIPEB_SELECT),
1387              "IBX PCH dp port still using transcoder B\n");
1388 }
1389
1390 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1391                                      enum pipe pipe, int reg)
1392 {
1393         u32 val = I915_READ(reg);
1394         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1395              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1396              reg, pipe_name(pipe));
1397
1398         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1399              && (val & SDVO_PIPE_B_SELECT),
1400              "IBX PCH hdmi port still using transcoder B\n");
1401 }
1402
1403 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1404                                       enum pipe pipe)
1405 {
1406         int reg;
1407         u32 val;
1408
1409         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1410         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1411         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1412
1413         reg = PCH_ADPA;
1414         val = I915_READ(reg);
1415         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1416              "PCH VGA enabled on transcoder %c, should be disabled\n",
1417              pipe_name(pipe));
1418
1419         reg = PCH_LVDS;
1420         val = I915_READ(reg);
1421         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1422              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1423              pipe_name(pipe));
1424
1425         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1426         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1427         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1428 }
1429
1430 /**
1431  * intel_enable_pll - enable a PLL
1432  * @dev_priv: i915 private structure
1433  * @pipe: pipe PLL to enable
1434  *
1435  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1436  * make sure the PLL reg is writable first though, since the panel write
1437  * protect mechanism may be enabled.
1438  *
1439  * Note!  This is for pre-ILK only.
1440  *
1441  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1442  */
1443 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1444 {
1445         int reg;
1446         u32 val;
1447
1448         /* No really, not for ILK+ */
1449         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1450
1451         /* PLL is protected by panel, make sure we can write it */
1452         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1453                 assert_panel_unlocked(dev_priv, pipe);
1454
1455         reg = DPLL(pipe);
1456         val = I915_READ(reg);
1457         val |= DPLL_VCO_ENABLE;
1458
1459         /* We do this three times for luck */
1460         I915_WRITE(reg, val);
1461         POSTING_READ(reg);
1462         udelay(150); /* wait for warmup */
1463         I915_WRITE(reg, val);
1464         POSTING_READ(reg);
1465         udelay(150); /* wait for warmup */
1466         I915_WRITE(reg, val);
1467         POSTING_READ(reg);
1468         udelay(150); /* wait for warmup */
1469 }
1470
1471 /**
1472  * intel_disable_pll - disable a PLL
1473  * @dev_priv: i915 private structure
1474  * @pipe: pipe PLL to disable
1475  *
1476  * Disable the PLL for @pipe, making sure the pipe is off first.
1477  *
1478  * Note!  This is for pre-ILK only.
1479  */
1480 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1481 {
1482         int reg;
1483         u32 val;
1484
1485         /* Don't disable pipe A or pipe A PLLs if needed */
1486         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1487                 return;
1488
1489         /* Make sure the pipe isn't still relying on us */
1490         assert_pipe_disabled(dev_priv, pipe);
1491
1492         reg = DPLL(pipe);
1493         val = I915_READ(reg);
1494         val &= ~DPLL_VCO_ENABLE;
1495         I915_WRITE(reg, val);
1496         POSTING_READ(reg);
1497 }
1498
1499 /* SBI access */
1500 static void
1501 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1502                 enum intel_sbi_destination destination)
1503 {
1504         u32 tmp;
1505
1506         sx_xlock(&dev_priv->dpio_lock);
1507         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, 100)) {
1508                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1509                 goto out_unlock;
1510         }
1511
1512         I915_WRITE(SBI_ADDR, (reg << 16));
1513         I915_WRITE(SBI_DATA, value);
1514
1515         if (destination == SBI_ICLK)
1516                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1517         else
1518                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1519         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1520
1521         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1522                                 100)) {
1523                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1524                 goto out_unlock;
1525         }
1526
1527 out_unlock:
1528         sx_xunlock(&dev_priv->dpio_lock);
1529 }
1530
1531 static u32
1532 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1533                enum intel_sbi_destination destination)
1534 {
1535         u32 value = 0;
1536
1537         sx_xlock(&dev_priv->dpio_lock);
1538         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, 100)) {
1539                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1540                 goto out_unlock;
1541         }
1542
1543         I915_WRITE(SBI_ADDR, (reg << 16));
1544
1545         if (destination == SBI_ICLK)
1546                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1547         else
1548                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1549         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1550
1551         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1552                                 100)) {
1553                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1554                 goto out_unlock;
1555         }
1556
1557         value = I915_READ(SBI_DATA);
1558
1559 out_unlock:
1560         sx_xunlock(&dev_priv->dpio_lock);
1561         return value;
1562 }
1563
1564 /**
1565  * ironlake_enable_pch_pll - enable PCH PLL
1566  * @dev_priv: i915 private structure
1567  * @pipe: pipe PLL to enable
1568  *
1569  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1570  * drives the transcoder clock.
1571  */
1572 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1573 {
1574         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1575         struct intel_pch_pll *pll;
1576         int reg;
1577         u32 val;
1578
1579         /* PCH PLLs only available on ILK, SNB and IVB */
1580         BUG_ON(dev_priv->info->gen < 5);
1581         pll = intel_crtc->pch_pll;
1582         if (pll == NULL)
1583                 return;
1584
1585         if (WARN_ON(pll->refcount == 0))
1586                 return;
1587
1588         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1589                       pll->pll_reg, pll->active, pll->on,
1590                       intel_crtc->base.base.id);
1591
1592         /* PCH refclock must be enabled first */
1593         assert_pch_refclk_enabled(dev_priv);
1594
1595         if (pll->active++ && pll->on) {
1596                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1597                 return;
1598         }
1599
1600         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1601
1602         reg = pll->pll_reg;
1603         val = I915_READ(reg);
1604         val |= DPLL_VCO_ENABLE;
1605         I915_WRITE(reg, val);
1606         POSTING_READ(reg);
1607         udelay(200);
1608
1609         pll->on = true;
1610 }
1611
1612 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1613 {
1614         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1615         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1616         int reg;
1617         u32 val;
1618
1619         /* PCH only available on ILK+ */
1620         BUG_ON(dev_priv->info->gen < 5);
1621         if (pll == NULL)
1622                return;
1623
1624         if (WARN_ON(pll->refcount == 0))
1625                 return;
1626
1627         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1628                       pll->pll_reg, pll->active, pll->on,
1629                       intel_crtc->base.base.id);
1630
1631         if (WARN_ON(pll->active == 0)) {
1632                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1633                 return;
1634         }
1635
1636         if (--pll->active) {
1637                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1638                 return;
1639         }
1640
1641         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1642
1643         /* Make sure transcoder isn't still depending on us */
1644         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1645
1646         reg = pll->pll_reg;
1647         val = I915_READ(reg);
1648         val &= ~DPLL_VCO_ENABLE;
1649         I915_WRITE(reg, val);
1650         POSTING_READ(reg);
1651         udelay(200);
1652
1653         pll->on = false;
1654 }
1655
1656 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1657                                            enum pipe pipe)
1658 {
1659         struct drm_device *dev = dev_priv->dev;
1660         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1661         uint32_t reg, val, pipeconf_val;
1662
1663         /* PCH only available on ILK+ */
1664         BUG_ON(dev_priv->info->gen < 5);
1665
1666         /* Make sure PCH DPLL is enabled */
1667         assert_pch_pll_enabled(dev_priv,
1668                                to_intel_crtc(crtc)->pch_pll,
1669                                to_intel_crtc(crtc));
1670
1671         /* FDI must be feeding us bits for PCH ports */
1672         assert_fdi_tx_enabled(dev_priv, pipe);
1673         assert_fdi_rx_enabled(dev_priv, pipe);
1674
1675         if (HAS_PCH_CPT(dev)) {
1676                 /* Workaround: Set the timing override bit before enabling the
1677                  * pch transcoder. */
1678                 reg = TRANS_CHICKEN2(pipe);
1679                 val = I915_READ(reg);
1680                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1681                 I915_WRITE(reg, val);
1682         }
1683
1684         reg = TRANSCONF(pipe);
1685         val = I915_READ(reg);
1686         pipeconf_val = I915_READ(PIPECONF(pipe));
1687
1688         if (HAS_PCH_IBX(dev_priv->dev)) {
1689                 /*
1690                  * make the BPC in transcoder be consistent with
1691                  * that in pipeconf reg.
1692                  */
1693                 val &= ~PIPE_BPC_MASK;
1694                 val |= pipeconf_val & PIPE_BPC_MASK;
1695         }
1696
1697         val &= ~TRANS_INTERLACE_MASK;
1698         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1699                 if (HAS_PCH_IBX(dev_priv->dev) &&
1700                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1701                         val |= TRANS_LEGACY_INTERLACED_ILK;
1702                 else
1703                         val |= TRANS_INTERLACED;
1704         else
1705                 val |= TRANS_PROGRESSIVE;
1706
1707         I915_WRITE(reg, val | TRANS_ENABLE);
1708         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1709                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1710 }
1711
1712 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1713                                       enum transcoder cpu_transcoder)
1714 {
1715         u32 val, pipeconf_val;
1716
1717         /* PCH only available on ILK+ */
1718         BUG_ON(dev_priv->info->gen < 5);
1719
1720         /* FDI must be feeding us bits for PCH ports */
1721         assert_fdi_tx_enabled(dev_priv, (enum pipe)cpu_transcoder);
1722         assert_fdi_rx_enabled(dev_priv, (enum pipe)TRANSCODER_A);
1723
1724         /* Workaround: set timing override bit. */
1725         val = I915_READ(_TRANSA_CHICKEN2);
1726         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1727         I915_WRITE(_TRANSA_CHICKEN2, val);
1728
1729         val = TRANS_ENABLE;
1730         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1731
1732         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1733             PIPECONF_INTERLACED_ILK)
1734                 val |= TRANS_INTERLACED;
1735         else
1736                 val |= TRANS_PROGRESSIVE;
1737
1738         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1739         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1740                 DRM_ERROR("Failed to enable PCH transcoder\n");
1741 }
1742
1743 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1744                                             enum pipe pipe)
1745 {
1746         struct drm_device *dev = dev_priv->dev;
1747         uint32_t reg, val;
1748
1749         /* FDI relies on the transcoder */
1750         assert_fdi_tx_disabled(dev_priv, pipe);
1751         assert_fdi_rx_disabled(dev_priv, pipe);
1752
1753         /* Ports must be off as well */
1754         assert_pch_ports_disabled(dev_priv, pipe);
1755
1756         reg = TRANSCONF(pipe);
1757         val = I915_READ(reg);
1758         val &= ~TRANS_ENABLE;
1759         I915_WRITE(reg, val);
1760         /* wait for PCH transcoder off, transcoder state */
1761         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1762                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1763
1764         if (!HAS_PCH_IBX(dev)) {
1765                 /* Workaround: Clear the timing override chicken bit again. */
1766                 reg = TRANS_CHICKEN2(pipe);
1767                 val = I915_READ(reg);
1768                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1769                 I915_WRITE(reg, val);
1770         }
1771 }
1772
1773 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1774 {
1775         u32 val;
1776
1777         val = I915_READ(_TRANSACONF);
1778         val &= ~TRANS_ENABLE;
1779         I915_WRITE(_TRANSACONF, val);
1780         /* wait for PCH transcoder off, transcoder state */
1781         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1782                 DRM_ERROR("Failed to disable PCH transcoder\n");
1783
1784         /* Workaround: clear timing override bit. */
1785         val = I915_READ(_TRANSA_CHICKEN2);
1786         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1787         I915_WRITE(_TRANSA_CHICKEN2, val);
1788 }
1789
1790 /**
1791  * intel_enable_pipe - enable a pipe, asserting requirements
1792  * @dev_priv: i915 private structure
1793  * @pipe: pipe to enable
1794  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1795  *
1796  * Enable @pipe, making sure that various hardware specific requirements
1797  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1798  *
1799  * @pipe should be %PIPE_A or %PIPE_B.
1800  *
1801  * Will wait until the pipe is actually running (i.e. first vblank) before
1802  * returning.
1803  */
1804 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1805                               bool pch_port)
1806 {
1807         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1808                                                                       pipe);
1809         enum transcoder pch_transcoder;
1810         int reg;
1811         u32 val;
1812
1813         if (IS_HASWELL(dev_priv->dev))
1814                 pch_transcoder = TRANSCODER_A;
1815         else
1816                 pch_transcoder = (enum transcoder)pipe;
1817
1818         /*
1819          * A pipe without a PLL won't actually be able to drive bits from
1820          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1821          * need the check.
1822          */
1823         if (!HAS_PCH_SPLIT(dev_priv->dev))
1824                 assert_pll_enabled(dev_priv, pipe);
1825         else {
1826                 if (pch_port) {
1827                         /* if driving the PCH, we need FDI enabled */
1828                         assert_fdi_rx_pll_enabled(dev_priv, (enum pipe)pch_transcoder);
1829                         assert_fdi_tx_pll_enabled(dev_priv, (enum pipe)cpu_transcoder);
1830                 }
1831                 /* FIXME: assert CPU port conditions for SNB+ */
1832         }
1833
1834         reg = PIPECONF(cpu_transcoder);
1835         val = I915_READ(reg);
1836         if (val & PIPECONF_ENABLE)
1837                 return;
1838
1839         I915_WRITE(reg, val | PIPECONF_ENABLE);
1840         intel_wait_for_vblank(dev_priv->dev, pipe);
1841 }
1842
1843 /**
1844  * intel_disable_pipe - disable a pipe, asserting requirements
1845  * @dev_priv: i915 private structure
1846  * @pipe: pipe to disable
1847  *
1848  * Disable @pipe, making sure that various hardware specific requirements
1849  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1850  *
1851  * @pipe should be %PIPE_A or %PIPE_B.
1852  *
1853  * Will wait until the pipe has shut down before returning.
1854  */
1855 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1856                                enum pipe pipe)
1857 {
1858         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1859                                                                       pipe);
1860         int reg;
1861         u32 val;
1862
1863         /*
1864          * Make sure planes won't keep trying to pump pixels to us,
1865          * or we might hang the display.
1866          */
1867         assert_planes_disabled(dev_priv, pipe);
1868
1869         /* Don't disable pipe A or pipe A PLLs if needed */
1870         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1871                 return;
1872
1873         reg = PIPECONF(cpu_transcoder);
1874         val = I915_READ(reg);
1875         if ((val & PIPECONF_ENABLE) == 0)
1876                 return;
1877
1878         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1879         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1880 }
1881
1882 /*
1883  * Plane regs are double buffered, going from enabled->disabled needs a
1884  * trigger in order to latch.  The display address reg provides this.
1885  */
1886 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1887                                       enum plane plane)
1888 {
1889         if (dev_priv->info->gen >= 4)
1890                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1891         else
1892                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1893 }
1894
1895 /**
1896  * intel_enable_plane - enable a display plane on a given pipe
1897  * @dev_priv: i915 private structure
1898  * @plane: plane to enable
1899  * @pipe: pipe being fed
1900  *
1901  * Enable @plane on @pipe, making sure that @pipe is running first.
1902  */
1903 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1904                                enum plane plane, enum pipe pipe)
1905 {
1906         int reg;
1907         u32 val;
1908
1909         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1910         assert_pipe_enabled(dev_priv, pipe);
1911
1912         reg = DSPCNTR(plane);
1913         val = I915_READ(reg);
1914         if (val & DISPLAY_PLANE_ENABLE)
1915                 return;
1916
1917         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1918         intel_flush_display_plane(dev_priv, plane);
1919         intel_wait_for_vblank(dev_priv->dev, pipe);
1920 }
1921
1922 /**
1923  * intel_disable_plane - disable a display plane
1924  * @dev_priv: i915 private structure
1925  * @plane: plane to disable
1926  * @pipe: pipe consuming the data
1927  *
1928  * Disable @plane; should be an independent operation.
1929  */
1930 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1931                                 enum plane plane, enum pipe pipe)
1932 {
1933         int reg;
1934         u32 val;
1935
1936         reg = DSPCNTR(plane);
1937         val = I915_READ(reg);
1938         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1939                 return;
1940
1941         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1942         intel_flush_display_plane(dev_priv, plane);
1943         intel_wait_for_vblank(dev_priv->dev, pipe);
1944 }
1945
1946 int
1947 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1948                            struct drm_i915_gem_object *obj,
1949                            struct intel_ring_buffer *pipelined)
1950 {
1951         struct drm_i915_private *dev_priv = dev->dev_private;
1952         u32 alignment;
1953         int ret;
1954
1955         switch (obj->tiling_mode) {
1956         case I915_TILING_NONE:
1957                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1958                         alignment = 128 * 1024;
1959                 else if (INTEL_INFO(dev)->gen >= 4)
1960                         alignment = 4 * 1024;
1961                 else
1962                         alignment = 64 * 1024;
1963                 break;
1964         case I915_TILING_X:
1965                 /* pin() will align the object as required by fence */
1966                 alignment = 0;
1967                 break;
1968         case I915_TILING_Y:
1969                 /* FIXME: Is this true? */
1970                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1971                 return -EINVAL;
1972         default:
1973                 BUG();
1974         }
1975
1976         dev_priv->mm.interruptible = false;
1977         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1978         if (ret)
1979                 goto err_interruptible;
1980
1981         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1982          * fence, whereas 965+ only requires a fence if using
1983          * framebuffer compression.  For simplicity, we always install
1984          * a fence as the cost is not that onerous.
1985          */
1986         ret = i915_gem_object_get_fence(obj);
1987         if (ret)
1988                 goto err_unpin;
1989
1990         i915_gem_object_pin_fence(obj);
1991
1992         dev_priv->mm.interruptible = true;
1993         return 0;
1994
1995 err_unpin:
1996         i915_gem_object_unpin(obj);
1997 err_interruptible:
1998         dev_priv->mm.interruptible = true;
1999         return ret;
2000 }
2001
2002 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2003 {
2004         i915_gem_object_unpin_fence(obj);
2005         i915_gem_object_unpin(obj);
2006 }
2007
2008 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2009  * is assumed to be a power-of-two. */
2010 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2011                                              unsigned int tiling_mode,
2012                                              unsigned int cpp,
2013                                              unsigned int pitch)
2014 {
2015         if (tiling_mode != I915_TILING_NONE) {
2016                 unsigned int tile_rows, tiles;
2017
2018                 tile_rows = *y / 8;
2019                 *y %= 8;
2020
2021                 tiles = *x / (512/cpp);
2022                 *x %= 512/cpp;
2023
2024                 return tile_rows * pitch * 8 + tiles * 4096;
2025         } else {
2026                 unsigned int offset;
2027
2028                 offset = *y * pitch + *x * cpp;
2029                 *y = 0;
2030                 *x = (offset & 4095) / cpp;
2031                 return offset & -4096;
2032         }
2033 }
2034
2035 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2036                              int x, int y)
2037 {
2038         struct drm_device *dev = crtc->dev;
2039         struct drm_i915_private *dev_priv = dev->dev_private;
2040         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2041         struct intel_framebuffer *intel_fb;
2042         struct drm_i915_gem_object *obj;
2043         int plane = intel_crtc->plane;
2044         unsigned long linear_offset;
2045         u32 dspcntr;
2046         u32 reg;
2047
2048         switch (plane) {
2049         case 0:
2050         case 1:
2051                 break;
2052         default:
2053                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2054                 return -EINVAL;
2055         }
2056
2057         intel_fb = to_intel_framebuffer(fb);
2058         obj = intel_fb->obj;
2059
2060         reg = DSPCNTR(plane);
2061         dspcntr = I915_READ(reg);
2062         /* Mask out pixel format bits in case we change it */
2063         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2064         switch (fb->pixel_format) {
2065         case DRM_FORMAT_C8:
2066                 dspcntr |= DISPPLANE_8BPP;
2067                 break;
2068         case DRM_FORMAT_XRGB1555:
2069         case DRM_FORMAT_ARGB1555:
2070                 dspcntr |= DISPPLANE_BGRX555;
2071                 break;
2072         case DRM_FORMAT_RGB565:
2073                 dspcntr |= DISPPLANE_BGRX565;
2074                 break;
2075         case DRM_FORMAT_XRGB8888:
2076         case DRM_FORMAT_ARGB8888:
2077                 dspcntr |= DISPPLANE_BGRX888;
2078                 break;
2079         case DRM_FORMAT_XBGR8888:
2080         case DRM_FORMAT_ABGR8888:
2081                 dspcntr |= DISPPLANE_RGBX888;
2082                 break;
2083         case DRM_FORMAT_XRGB2101010:
2084         case DRM_FORMAT_ARGB2101010:
2085                 dspcntr |= DISPPLANE_BGRX101010;
2086                 break;
2087         case DRM_FORMAT_XBGR2101010:
2088         case DRM_FORMAT_ABGR2101010:
2089                 dspcntr |= DISPPLANE_RGBX101010;
2090                 break;
2091         default:
2092                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2093                 return -EINVAL;
2094         }
2095
2096         if (INTEL_INFO(dev)->gen >= 4) {
2097                 if (obj->tiling_mode != I915_TILING_NONE)
2098                         dspcntr |= DISPPLANE_TILED;
2099                 else
2100                         dspcntr &= ~DISPPLANE_TILED;
2101         }
2102
2103         I915_WRITE(reg, dspcntr);
2104
2105         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2106
2107         if (INTEL_INFO(dev)->gen >= 4) {
2108                 intel_crtc->dspaddr_offset =
2109                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2110                                                        fb->bits_per_pixel / 8,
2111                                                        fb->pitches[0]);
2112                 linear_offset -= intel_crtc->dspaddr_offset;
2113         } else {
2114                 intel_crtc->dspaddr_offset = linear_offset;
2115         }
2116
2117         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2118                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2119         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2120         if (INTEL_INFO(dev)->gen >= 4) {
2121                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2122                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2123                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2124                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2125         } else
2126                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2127         POSTING_READ(reg);
2128
2129         return 0;
2130 }
2131
2132 static int ironlake_update_plane(struct drm_crtc *crtc,
2133                                  struct drm_framebuffer *fb, int x, int y)
2134 {
2135         struct drm_device *dev = crtc->dev;
2136         struct drm_i915_private *dev_priv = dev->dev_private;
2137         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2138         struct intel_framebuffer *intel_fb;
2139         struct drm_i915_gem_object *obj;
2140         int plane = intel_crtc->plane;
2141         unsigned long linear_offset;
2142         u32 dspcntr;
2143         u32 reg;
2144
2145         switch (plane) {
2146         case 0:
2147         case 1:
2148         case 2:
2149                 break;
2150         default:
2151                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2152                 return -EINVAL;
2153         }
2154
2155         intel_fb = to_intel_framebuffer(fb);
2156         obj = intel_fb->obj;
2157
2158         reg = DSPCNTR(plane);
2159         dspcntr = I915_READ(reg);
2160         /* Mask out pixel format bits in case we change it */
2161         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2162         switch (fb->pixel_format) {
2163         case DRM_FORMAT_C8:
2164                 dspcntr |= DISPPLANE_8BPP;
2165                 break;
2166         case DRM_FORMAT_RGB565:
2167                 dspcntr |= DISPPLANE_BGRX565;
2168                 break;
2169         case DRM_FORMAT_XRGB8888:
2170         case DRM_FORMAT_ARGB8888:
2171                 dspcntr |= DISPPLANE_BGRX888;
2172                 break;
2173         case DRM_FORMAT_XBGR8888:
2174         case DRM_FORMAT_ABGR8888:
2175                 dspcntr |= DISPPLANE_RGBX888;
2176                 break;
2177         case DRM_FORMAT_XRGB2101010:
2178         case DRM_FORMAT_ARGB2101010:
2179                 dspcntr |= DISPPLANE_BGRX101010;
2180                 break;
2181         case DRM_FORMAT_XBGR2101010:
2182         case DRM_FORMAT_ABGR2101010:
2183                 dspcntr |= DISPPLANE_RGBX101010;
2184                 break;
2185         default:
2186                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2187                 return -EINVAL;
2188         }
2189
2190         if (obj->tiling_mode != I915_TILING_NONE)
2191                 dspcntr |= DISPPLANE_TILED;
2192         else
2193                 dspcntr &= ~DISPPLANE_TILED;
2194
2195         /* must disable */
2196         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2197
2198         I915_WRITE(reg, dspcntr);
2199
2200         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2201         intel_crtc->dspaddr_offset =
2202                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2203                                                fb->bits_per_pixel / 8,
2204                                                fb->pitches[0]);
2205         linear_offset -= intel_crtc->dspaddr_offset;
2206
2207         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2208                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2209         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2210         I915_MODIFY_DISPBASE(DSPSURF(plane),
2211                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2212         if (IS_HASWELL(dev)) {
2213                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2214         } else {
2215                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2216                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2217         }
2218         POSTING_READ(reg);
2219
2220         return 0;
2221 }
2222
2223 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2224 static int
2225 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2226                            int x, int y, enum mode_set_atomic state)
2227 {
2228         struct drm_device *dev = crtc->dev;
2229         struct drm_i915_private *dev_priv = dev->dev_private;
2230
2231         if (dev_priv->display.disable_fbc)
2232                 dev_priv->display.disable_fbc(dev);
2233         intel_increase_pllclock(crtc);
2234
2235         return dev_priv->display.update_plane(crtc, fb, x, y);
2236 }
2237
2238 static int
2239 intel_finish_fb(struct drm_framebuffer *old_fb)
2240 {
2241         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2242         struct drm_device *dev = obj->base.dev;
2243         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2244         bool was_interruptible = dev_priv->mm.interruptible;
2245         int ret;
2246
2247         mtx_lock(&dev->event_lock);
2248         while (!(atomic_read(&dev_priv->mm.wedged) ||
2249                  atomic_read(&obj->pending_flip) == 0)) {
2250                 msleep(&dev_priv->pending_flip_queue, &dev->event_lock,
2251                     0, "915flp", 0);
2252         }
2253         mtx_unlock(&dev->event_lock);
2254
2255         /* Big Hammer, we also need to ensure that any pending
2256          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2257          * current scanout is retired before unpinning the old
2258          * framebuffer.
2259          *
2260          * This should only fail upon a hung GPU, in which case we
2261          * can safely continue.
2262          */
2263         dev_priv->mm.interruptible = false;
2264         ret = i915_gem_object_finish_gpu(obj);
2265         dev_priv->mm.interruptible = was_interruptible;
2266
2267         return ret;
2268 }
2269
2270 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2271 {
2272         struct drm_device *dev = crtc->dev;
2273         struct drm_i915_master_private *master_priv;
2274         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2275
2276         if (!dev->primary->master)
2277                 return;
2278
2279         master_priv = dev->primary->master->driver_priv;
2280         if (!master_priv->sarea_priv)
2281                 return;
2282
2283         switch (intel_crtc->pipe) {
2284         case 0:
2285                 master_priv->sarea_priv->pipeA_x = x;
2286                 master_priv->sarea_priv->pipeA_y = y;
2287                 break;
2288         case 1:
2289                 master_priv->sarea_priv->pipeB_x = x;
2290                 master_priv->sarea_priv->pipeB_y = y;
2291                 break;
2292         default:
2293                 break;
2294         }
2295 }
2296
2297 static int
2298 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2299                     struct drm_framebuffer *fb)
2300 {
2301         struct drm_device *dev = crtc->dev;
2302         struct drm_i915_private *dev_priv = dev->dev_private;
2303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2304         struct drm_framebuffer *old_fb;
2305         int ret;
2306
2307         /* no fb bound */
2308         if (!fb) {
2309                 DRM_ERROR("No FB bound\n");
2310                 return 0;
2311         }
2312
2313         if(intel_crtc->plane > dev_priv->num_pipe) {
2314                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2315                                 intel_crtc->plane,
2316                                 dev_priv->num_pipe);
2317                 return -EINVAL;
2318         }
2319
2320         DRM_LOCK(dev);
2321         ret = intel_pin_and_fence_fb_obj(dev,
2322                                          to_intel_framebuffer(fb)->obj,
2323                                          NULL);
2324         if (ret != 0) {
2325                 DRM_UNLOCK(dev);
2326                 DRM_ERROR("pin & fence failed\n");
2327                 return ret;
2328         }
2329
2330         if (crtc->fb)
2331                 intel_finish_fb(crtc->fb);
2332
2333         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2334         if (ret) {
2335                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2336                 DRM_UNLOCK(dev);
2337                 DRM_ERROR("failed to update base address\n");
2338                 return ret;
2339         }
2340
2341         old_fb = crtc->fb;
2342         crtc->fb = fb;
2343         crtc->x = x;
2344         crtc->y = y;
2345
2346         if (old_fb) {
2347                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2348                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2349         }
2350
2351         intel_update_fbc(dev);
2352         DRM_UNLOCK(dev);
2353
2354         intel_crtc_update_sarea_pos(crtc, x, y);
2355
2356         return 0;
2357 }
2358
2359 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2360 {
2361         struct drm_device *dev = crtc->dev;
2362         struct drm_i915_private *dev_priv = dev->dev_private;
2363         u32 dpa_ctl;
2364
2365         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2366         dpa_ctl = I915_READ(DP_A);
2367         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2368
2369         if (clock < 200000) {
2370                 u32 temp;
2371                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2372                 /* workaround for 160Mhz:
2373                    1) program 0x4600c bits 15:0 = 0x8124
2374                    2) program 0x46010 bit 0 = 1
2375                    3) program 0x46034 bit 24 = 1
2376                    4) program 0x64000 bit 14 = 1
2377                    */
2378                 temp = I915_READ(0x4600c);
2379                 temp &= 0xffff0000;
2380                 I915_WRITE(0x4600c, temp | 0x8124);
2381
2382                 temp = I915_READ(0x46010);
2383                 I915_WRITE(0x46010, temp | 1);
2384
2385                 temp = I915_READ(0x46034);
2386                 I915_WRITE(0x46034, temp | (1 << 24));
2387         } else {
2388                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2389         }
2390         I915_WRITE(DP_A, dpa_ctl);
2391
2392         POSTING_READ(DP_A);
2393         udelay(500);
2394 }
2395
2396 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2397 {
2398         struct drm_device *dev = crtc->dev;
2399         struct drm_i915_private *dev_priv = dev->dev_private;
2400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2401         int pipe = intel_crtc->pipe;
2402         u32 reg, temp;
2403
2404         /* enable normal train */
2405         reg = FDI_TX_CTL(pipe);
2406         temp = I915_READ(reg);
2407         if (IS_IVYBRIDGE(dev)) {
2408                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2409                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2410         } else {
2411                 temp &= ~FDI_LINK_TRAIN_NONE;
2412                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2413         }
2414         I915_WRITE(reg, temp);
2415
2416         reg = FDI_RX_CTL(pipe);
2417         temp = I915_READ(reg);
2418         if (HAS_PCH_CPT(dev)) {
2419                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2420                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2421         } else {
2422                 temp &= ~FDI_LINK_TRAIN_NONE;
2423                 temp |= FDI_LINK_TRAIN_NONE;
2424         }
2425         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2426
2427         /* wait one idle pattern time */
2428         POSTING_READ(reg);
2429         udelay(1000);
2430
2431         /* IVB wants error correction enabled */
2432         if (IS_IVYBRIDGE(dev))
2433                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2434                            FDI_FE_ERRC_ENABLE);
2435 }
2436
2437 static void ivb_modeset_global_resources(struct drm_device *dev)
2438 {
2439         struct drm_i915_private *dev_priv = dev->dev_private;
2440         struct intel_crtc *pipe_B_crtc =
2441                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2442         struct intel_crtc *pipe_C_crtc =
2443                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2444         uint32_t temp;
2445
2446         /* When everything is off disable fdi C so that we could enable fdi B
2447          * with all lanes. XXX: This misses the case where a pipe is not using
2448          * any pch resources and so doesn't need any fdi lanes. */
2449         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2450                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2451                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2452
2453                 temp = I915_READ(SOUTH_CHICKEN1);
2454                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2455                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2456                 I915_WRITE(SOUTH_CHICKEN1, temp);
2457         }
2458 }
2459
2460 /* The FDI link training functions for ILK/Ibexpeak. */
2461 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2462 {
2463         struct drm_device *dev = crtc->dev;
2464         struct drm_i915_private *dev_priv = dev->dev_private;
2465         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2466         int pipe = intel_crtc->pipe;
2467         int plane = intel_crtc->plane;
2468         u32 reg, temp, tries;
2469
2470         /* FDI needs bits from pipe & plane first */
2471         assert_pipe_enabled(dev_priv, pipe);
2472         assert_plane_enabled(dev_priv, plane);
2473
2474         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2475            for train result */
2476         reg = FDI_RX_IMR(pipe);
2477         temp = I915_READ(reg);
2478         temp &= ~FDI_RX_SYMBOL_LOCK;
2479         temp &= ~FDI_RX_BIT_LOCK;
2480         I915_WRITE(reg, temp);
2481         I915_READ(reg);
2482         udelay(150);
2483
2484         /* enable CPU FDI TX and PCH FDI RX */
2485         reg = FDI_TX_CTL(pipe);
2486         temp = I915_READ(reg);
2487         temp &= ~(7 << 19);
2488         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2489         temp &= ~FDI_LINK_TRAIN_NONE;
2490         temp |= FDI_LINK_TRAIN_PATTERN_1;
2491         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2492
2493         reg = FDI_RX_CTL(pipe);
2494         temp = I915_READ(reg);
2495         temp &= ~FDI_LINK_TRAIN_NONE;
2496         temp |= FDI_LINK_TRAIN_PATTERN_1;
2497         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2498
2499         POSTING_READ(reg);
2500         udelay(150);
2501
2502         /* Ironlake workaround, enable clock pointer after FDI enable*/
2503         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2504         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2505                    FDI_RX_PHASE_SYNC_POINTER_EN);
2506
2507         reg = FDI_RX_IIR(pipe);
2508         for (tries = 0; tries < 5; tries++) {
2509                 temp = I915_READ(reg);
2510                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2511
2512                 if ((temp & FDI_RX_BIT_LOCK)) {
2513                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2514                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2515                         break;
2516                 }
2517         }
2518         if (tries == 5)
2519                 DRM_ERROR("FDI train 1 fail!\n");
2520
2521         /* Train 2 */
2522         reg = FDI_TX_CTL(pipe);
2523         temp = I915_READ(reg);
2524         temp &= ~FDI_LINK_TRAIN_NONE;
2525         temp |= FDI_LINK_TRAIN_PATTERN_2;
2526         I915_WRITE(reg, temp);
2527
2528         reg = FDI_RX_CTL(pipe);
2529         temp = I915_READ(reg);
2530         temp &= ~FDI_LINK_TRAIN_NONE;
2531         temp |= FDI_LINK_TRAIN_PATTERN_2;
2532         I915_WRITE(reg, temp);
2533
2534         POSTING_READ(reg);
2535         udelay(150);
2536
2537         reg = FDI_RX_IIR(pipe);
2538         for (tries = 0; tries < 5; tries++) {
2539                 temp = I915_READ(reg);
2540                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2541
2542                 if (temp & FDI_RX_SYMBOL_LOCK) {
2543                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2544                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2545                         break;
2546                 }
2547         }
2548         if (tries == 5)
2549                 DRM_ERROR("FDI train 2 fail!\n");
2550
2551         DRM_DEBUG_KMS("FDI train done\n");
2552
2553 }
2554
2555 static const int snb_b_fdi_train_param[] = {
2556         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2557         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2558         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2559         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2560 };
2561
2562 /* The FDI link training functions for SNB/Cougarpoint. */
2563 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2564 {
2565         struct drm_device *dev = crtc->dev;
2566         struct drm_i915_private *dev_priv = dev->dev_private;
2567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2568         int pipe = intel_crtc->pipe;
2569         u32 reg, temp, i, retry;
2570
2571         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2572            for train result */
2573         reg = FDI_RX_IMR(pipe);
2574         temp = I915_READ(reg);
2575         temp &= ~FDI_RX_SYMBOL_LOCK;
2576         temp &= ~FDI_RX_BIT_LOCK;
2577         I915_WRITE(reg, temp);
2578
2579         POSTING_READ(reg);
2580         udelay(150);
2581
2582         /* enable CPU FDI TX and PCH FDI RX */
2583         reg = FDI_TX_CTL(pipe);
2584         temp = I915_READ(reg);
2585         temp &= ~(7 << 19);
2586         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2587         temp &= ~FDI_LINK_TRAIN_NONE;
2588         temp |= FDI_LINK_TRAIN_PATTERN_1;
2589         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2590         /* SNB-B */
2591         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2592         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2593
2594         I915_WRITE(FDI_RX_MISC(pipe),
2595                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2596
2597         reg = FDI_RX_CTL(pipe);
2598         temp = I915_READ(reg);
2599         if (HAS_PCH_CPT(dev)) {
2600                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2601                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2602         } else {
2603                 temp &= ~FDI_LINK_TRAIN_NONE;
2604                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2605         }
2606         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2607
2608         POSTING_READ(reg);
2609         udelay(150);
2610
2611         for (i = 0; i < 4; i++) {
2612                 reg = FDI_TX_CTL(pipe);
2613                 temp = I915_READ(reg);
2614                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2615                 temp |= snb_b_fdi_train_param[i];
2616                 I915_WRITE(reg, temp);
2617
2618                 POSTING_READ(reg);
2619                 udelay(500);
2620
2621                 for (retry = 0; retry < 5; retry++) {
2622                         reg = FDI_RX_IIR(pipe);
2623                         temp = I915_READ(reg);
2624                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2625                         if (temp & FDI_RX_BIT_LOCK) {
2626                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2627                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2628                                 break;
2629                         }
2630                         udelay(50);
2631                 }
2632                 if (retry < 5)
2633                         break;
2634         }
2635         if (i == 4)
2636                 DRM_ERROR("FDI train 1 fail!\n");
2637
2638         /* Train 2 */
2639         reg = FDI_TX_CTL(pipe);
2640         temp = I915_READ(reg);
2641         temp &= ~FDI_LINK_TRAIN_NONE;
2642         temp |= FDI_LINK_TRAIN_PATTERN_2;
2643         if (IS_GEN6(dev)) {
2644                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2645                 /* SNB-B */
2646                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2647         }
2648         I915_WRITE(reg, temp);
2649
2650         reg = FDI_RX_CTL(pipe);
2651         temp = I915_READ(reg);
2652         if (HAS_PCH_CPT(dev)) {
2653                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2654                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2655         } else {
2656                 temp &= ~FDI_LINK_TRAIN_NONE;
2657                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2658         }
2659         I915_WRITE(reg, temp);
2660
2661         POSTING_READ(reg);
2662         udelay(150);
2663
2664         for (i = 0; i < 4; i++) {
2665                 reg = FDI_TX_CTL(pipe);
2666                 temp = I915_READ(reg);
2667                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2668                 temp |= snb_b_fdi_train_param[i];
2669                 I915_WRITE(reg, temp);
2670
2671                 POSTING_READ(reg);
2672                 udelay(500);
2673
2674                 for (retry = 0; retry < 5; retry++) {
2675                         reg = FDI_RX_IIR(pipe);
2676                         temp = I915_READ(reg);
2677                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2678                         if (temp & FDI_RX_SYMBOL_LOCK) {
2679                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2680                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2681                                 break;
2682                         }
2683                         udelay(50);
2684                 }
2685                 if (retry < 5)
2686                         break;
2687         }
2688         if (i == 4)
2689                 DRM_ERROR("FDI train 2 fail!\n");
2690
2691         DRM_DEBUG_KMS("FDI train done.\n");
2692 }
2693
2694 /* Manual link training for Ivy Bridge A0 parts */
2695 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2696 {
2697         struct drm_device *dev = crtc->dev;
2698         struct drm_i915_private *dev_priv = dev->dev_private;
2699         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2700         int pipe = intel_crtc->pipe;
2701         u32 reg, temp, i;
2702
2703         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2704            for train result */
2705         reg = FDI_RX_IMR(pipe);
2706         temp = I915_READ(reg);
2707         temp &= ~FDI_RX_SYMBOL_LOCK;
2708         temp &= ~FDI_RX_BIT_LOCK;
2709         I915_WRITE(reg, temp);
2710
2711         POSTING_READ(reg);
2712         udelay(150);
2713
2714         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2715                       I915_READ(FDI_RX_IIR(pipe)));
2716
2717         /* enable CPU FDI TX and PCH FDI RX */
2718         reg = FDI_TX_CTL(pipe);
2719         temp = I915_READ(reg);
2720         temp &= ~(7 << 19);
2721         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2722         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2723         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2724         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2725         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2726         temp |= FDI_COMPOSITE_SYNC;
2727         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2728
2729         I915_WRITE(FDI_RX_MISC(pipe),
2730                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2731
2732         reg = FDI_RX_CTL(pipe);
2733         temp = I915_READ(reg);
2734         temp &= ~FDI_LINK_TRAIN_AUTO;
2735         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2736         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2737         temp |= FDI_COMPOSITE_SYNC;
2738         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2739
2740         POSTING_READ(reg);
2741         udelay(150);
2742
2743         for (i = 0; i < 4; i++) {
2744                 reg = FDI_TX_CTL(pipe);
2745                 temp = I915_READ(reg);
2746                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2747                 temp |= snb_b_fdi_train_param[i];
2748                 I915_WRITE(reg, temp);
2749
2750                 POSTING_READ(reg);
2751                 udelay(500);
2752
2753                 reg = FDI_RX_IIR(pipe);
2754                 temp = I915_READ(reg);
2755                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2756
2757                 if (temp & FDI_RX_BIT_LOCK ||
2758                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2759                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2760                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2761                         break;
2762                 }
2763         }
2764         if (i == 4)
2765                 DRM_ERROR("FDI train 1 fail!\n");
2766
2767         /* Train 2 */
2768         reg = FDI_TX_CTL(pipe);
2769         temp = I915_READ(reg);
2770         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2771         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2772         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2773         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2774         I915_WRITE(reg, temp);
2775
2776         reg = FDI_RX_CTL(pipe);
2777         temp = I915_READ(reg);
2778         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2779         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2780         I915_WRITE(reg, temp);
2781
2782         POSTING_READ(reg);
2783         udelay(150);
2784
2785         for (i = 0; i < 4; i++) {
2786                 reg = FDI_TX_CTL(pipe);
2787                 temp = I915_READ(reg);
2788                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2789                 temp |= snb_b_fdi_train_param[i];
2790                 I915_WRITE(reg, temp);
2791
2792                 POSTING_READ(reg);
2793                 udelay(500);
2794
2795                 reg = FDI_RX_IIR(pipe);
2796                 temp = I915_READ(reg);
2797                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2798
2799                 if (temp & FDI_RX_SYMBOL_LOCK) {
2800                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2801                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2802                         break;
2803                 }
2804         }
2805         if (i == 4)
2806                 DRM_ERROR("FDI train 2 fail!\n");
2807
2808         DRM_DEBUG_KMS("FDI train done.\n");
2809 }
2810
2811 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2812 {
2813         struct drm_device *dev = intel_crtc->base.dev;
2814         struct drm_i915_private *dev_priv = dev->dev_private;
2815         int pipe = intel_crtc->pipe;
2816         u32 reg, temp;
2817
2818
2819         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2820         reg = FDI_RX_CTL(pipe);
2821         temp = I915_READ(reg);
2822         temp &= ~((0x7 << 19) | (0x7 << 16));
2823         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2824         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2825         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2826
2827         POSTING_READ(reg);
2828         udelay(200);
2829
2830         /* Switch from Rawclk to PCDclk */
2831         temp = I915_READ(reg);
2832         I915_WRITE(reg, temp | FDI_PCDCLK);
2833
2834         POSTING_READ(reg);
2835         udelay(200);
2836
2837         /* On Haswell, the PLL configuration for ports and pipes is handled
2838          * separately, as part of DDI setup */
2839         if (!IS_HASWELL(dev)) {
2840                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2841                 reg = FDI_TX_CTL(pipe);
2842                 temp = I915_READ(reg);
2843                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2844                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2845
2846                         POSTING_READ(reg);
2847                         udelay(100);
2848                 }
2849         }
2850 }
2851
2852 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2853 {
2854         struct drm_device *dev = intel_crtc->base.dev;
2855         struct drm_i915_private *dev_priv = dev->dev_private;
2856         int pipe = intel_crtc->pipe;
2857         u32 reg, temp;
2858
2859         /* Switch from PCDclk to Rawclk */
2860         reg = FDI_RX_CTL(pipe);
2861         temp = I915_READ(reg);
2862         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2863
2864         /* Disable CPU FDI TX PLL */
2865         reg = FDI_TX_CTL(pipe);
2866         temp = I915_READ(reg);
2867         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2868
2869         POSTING_READ(reg);
2870         udelay(100);
2871
2872         reg = FDI_RX_CTL(pipe);
2873         temp = I915_READ(reg);
2874         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2875
2876         /* Wait for the clocks to turn off. */
2877         POSTING_READ(reg);
2878         udelay(100);
2879 }
2880
2881 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2882 {
2883         struct drm_device *dev = crtc->dev;
2884         struct drm_i915_private *dev_priv = dev->dev_private;
2885         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2886         int pipe = intel_crtc->pipe;
2887         u32 reg, temp;
2888
2889         /* disable CPU FDI tx and PCH FDI rx */
2890         reg = FDI_TX_CTL(pipe);
2891         temp = I915_READ(reg);
2892         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2893         POSTING_READ(reg);
2894
2895         reg = FDI_RX_CTL(pipe);
2896         temp = I915_READ(reg);
2897         temp &= ~(0x7 << 16);
2898         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2899         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2900
2901         POSTING_READ(reg);
2902         udelay(100);
2903
2904         /* Ironlake workaround, disable clock pointer after downing FDI */
2905         if (HAS_PCH_IBX(dev)) {
2906                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2907         }
2908
2909         /* still set train pattern 1 */
2910         reg = FDI_TX_CTL(pipe);
2911         temp = I915_READ(reg);
2912         temp &= ~FDI_LINK_TRAIN_NONE;
2913         temp |= FDI_LINK_TRAIN_PATTERN_1;
2914         I915_WRITE(reg, temp);
2915
2916         reg = FDI_RX_CTL(pipe);
2917         temp = I915_READ(reg);
2918         if (HAS_PCH_CPT(dev)) {
2919                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2920                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2921         } else {
2922                 temp &= ~FDI_LINK_TRAIN_NONE;
2923                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2924         }
2925         /* BPC in FDI rx is consistent with that in PIPECONF */
2926         temp &= ~(0x07 << 16);
2927         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2928         I915_WRITE(reg, temp);
2929
2930         POSTING_READ(reg);
2931         udelay(100);
2932 }
2933
2934 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2935 {
2936         struct drm_device *dev = crtc->dev;
2937         struct drm_i915_private *dev_priv = dev->dev_private;
2938         bool pending;
2939
2940         if (atomic_read(&dev_priv->mm.wedged))
2941                 return false;
2942
2943         /*
2944          * NOTE Linux<->FreeBSD dev->event_lock is already locked in
2945          * intel_crtc_wait_for_pending_flips().
2946          */
2947         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2948
2949         return pending;
2950 }
2951
2952 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2953 {
2954         struct drm_device *dev = crtc->dev;
2955         struct drm_i915_private *dev_priv = dev->dev_private;
2956
2957         if (crtc->fb == NULL)
2958                 return;
2959
2960         mtx_lock(&dev->event_lock);
2961         while (intel_crtc_has_pending_flip(crtc)) {
2962                 msleep(&dev_priv->pending_flip_queue, &dev->event_lock,
2963                     0, "915flp", 0);
2964         }
2965         mtx_unlock(&dev->event_lock);
2966
2967         DRM_LOCK(dev);
2968         intel_finish_fb(crtc->fb);
2969         DRM_UNLOCK(dev);
2970 }
2971
2972 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2973 {
2974         struct drm_device *dev = crtc->dev;
2975         struct intel_encoder *intel_encoder;
2976
2977         /*
2978          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2979          * must be driven by its own crtc; no sharing is possible.
2980          */
2981         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2982                 switch (intel_encoder->type) {
2983                 case INTEL_OUTPUT_EDP:
2984                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2985                                 return false;
2986                         continue;
2987                 }
2988         }
2989
2990         return true;
2991 }
2992
2993 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2994 {
2995         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2996 }
2997
2998 /* Program iCLKIP clock to the desired frequency */
2999 static void lpt_program_iclkip(struct drm_crtc *crtc)
3000 {
3001         struct drm_device *dev = crtc->dev;
3002         struct drm_i915_private *dev_priv = dev->dev_private;
3003         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3004         u32 temp;
3005
3006         /* It is necessary to ungate the pixclk gate prior to programming
3007          * the divisors, and gate it back when it is done.
3008          */
3009         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3010
3011         /* Disable SSCCTL */
3012         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3013                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3014                                 SBI_SSCCTL_DISABLE,
3015                         SBI_ICLK);
3016
3017         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3018         if (crtc->mode.clock == 20000) {
3019                 auxdiv = 1;
3020                 divsel = 0x41;
3021                 phaseinc = 0x20;
3022         } else {
3023                 /* The iCLK virtual clock root frequency is in MHz,
3024                  * but the crtc->mode.clock in in KHz. To get the divisors,
3025                  * it is necessary to divide one by another, so we
3026                  * convert the virtual clock precision to KHz here for higher
3027                  * precision.
3028                  */
3029                 u32 iclk_virtual_root_freq = 172800 * 1000;
3030                 u32 iclk_pi_range = 64;
3031                 u32 desired_divisor, msb_divisor_value, pi_value;
3032
3033                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3034                 msb_divisor_value = desired_divisor / iclk_pi_range;
3035                 pi_value = desired_divisor % iclk_pi_range;
3036
3037                 auxdiv = 0;
3038                 divsel = msb_divisor_value - 2;
3039                 phaseinc = pi_value;
3040         }
3041
3042         /* This should not happen with any sane values */
3043         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3044                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3045         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3046                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3047
3048         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3049                         crtc->mode.clock,
3050                         auxdiv,
3051                         divsel,
3052                         phasedir,
3053                         phaseinc);
3054
3055         /* Program SSCDIVINTPHASE6 */
3056         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3057         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3058         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3059         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3060         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3061         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3062         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3063         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3064
3065         /* Program SSCAUXDIV */
3066         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3067         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3068         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3069         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3070
3071         /* Enable modulator and associated divider */
3072         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3073         temp &= ~SBI_SSCCTL_DISABLE;
3074         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3075
3076         /* Wait for initialization time */
3077         udelay(24);
3078
3079         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3080 }
3081
3082 /*
3083  * Enable PCH resources required for PCH ports:
3084  *   - PCH PLLs
3085  *   - FDI training & RX/TX
3086  *   - update transcoder timings
3087  *   - DP transcoding bits
3088  *   - transcoder
3089  */
3090 static void ironlake_pch_enable(struct drm_crtc *crtc)
3091 {
3092         struct drm_device *dev = crtc->dev;
3093         struct drm_i915_private *dev_priv = dev->dev_private;
3094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3095         int pipe = intel_crtc->pipe;
3096         u32 reg, temp;
3097
3098         assert_transcoder_disabled(dev_priv, pipe);
3099
3100         /* Write the TU size bits before fdi link training, so that error
3101          * detection works. */
3102         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3103                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3104
3105         /* For PCH output, training FDI link */
3106         dev_priv->display.fdi_link_train(crtc);
3107
3108         /* XXX: pch pll's can be enabled any time before we enable the PCH
3109          * transcoder, and we actually should do this to not upset any PCH
3110          * transcoder that already use the clock when we share it.
3111          *
3112          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3113          * unconditionally resets the pll - we need that to have the right LVDS
3114          * enable sequence. */
3115         ironlake_enable_pch_pll(intel_crtc);
3116
3117         if (HAS_PCH_CPT(dev)) {
3118                 u32 sel;
3119
3120                 temp = I915_READ(PCH_DPLL_SEL);
3121                 switch (pipe) {
3122                 default:
3123                 case 0:
3124                         temp |= TRANSA_DPLL_ENABLE;
3125                         sel = TRANSA_DPLLB_SEL;
3126                         break;
3127                 case 1:
3128                         temp |= TRANSB_DPLL_ENABLE;
3129                         sel = TRANSB_DPLLB_SEL;
3130                         break;
3131                 case 2:
3132                         temp |= TRANSC_DPLL_ENABLE;
3133                         sel = TRANSC_DPLLB_SEL;
3134                         break;
3135                 }
3136                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3137                         temp |= sel;
3138                 else
3139                         temp &= ~sel;
3140                 I915_WRITE(PCH_DPLL_SEL, temp);
3141         }
3142
3143         /* set transcoder timing, panel must allow it */
3144         assert_panel_unlocked(dev_priv, pipe);
3145         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3146         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3147         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3148
3149         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3150         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3151         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3152         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3153
3154         intel_fdi_normal_train(crtc);
3155
3156         /* For PCH DP, enable TRANS_DP_CTL */
3157         if (HAS_PCH_CPT(dev) &&
3158             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3159              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3160                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3161                 reg = TRANS_DP_CTL(pipe);
3162                 temp = I915_READ(reg);
3163                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3164                           TRANS_DP_SYNC_MASK |
3165                           TRANS_DP_BPC_MASK);
3166                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3167                          TRANS_DP_ENH_FRAMING);
3168                 temp |= bpc << 9; /* same format but at 11:9 */
3169
3170                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3171                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3172                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3173                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3174
3175                 switch (intel_trans_dp_port_sel(crtc)) {
3176                 case PCH_DP_B:
3177                         temp |= TRANS_DP_PORT_SEL_B;
3178                         break;
3179                 case PCH_DP_C:
3180                         temp |= TRANS_DP_PORT_SEL_C;
3181                         break;
3182                 case PCH_DP_D:
3183                         temp |= TRANS_DP_PORT_SEL_D;
3184                         break;
3185                 default:
3186                         BUG();
3187                 }
3188
3189                 I915_WRITE(reg, temp);
3190         }
3191
3192         ironlake_enable_pch_transcoder(dev_priv, pipe);
3193 }
3194
3195 static void lpt_pch_enable(struct drm_crtc *crtc)
3196 {
3197         struct drm_device *dev = crtc->dev;
3198         struct drm_i915_private *dev_priv = dev->dev_private;
3199         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3200         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3201
3202         assert_transcoder_disabled(dev_priv, (enum pipe)TRANSCODER_A);
3203
3204         lpt_program_iclkip(crtc);
3205
3206         /* Set transcoder timing. */
3207         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3208         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3209         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3210
3211         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3212         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3213         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3214         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3215
3216         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3217 }
3218
3219 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3220 {
3221         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3222
3223         if (pll == NULL)
3224                 return;
3225
3226         if (pll->refcount == 0) {
3227                 WARN(1, "bad PCH PLL refcount\n");
3228                 return;
3229         }
3230
3231         --pll->refcount;
3232         intel_crtc->pch_pll = NULL;
3233 }
3234
3235 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3236 {
3237         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3238         struct intel_pch_pll *pll;
3239         int i;
3240
3241         pll = intel_crtc->pch_pll;
3242         if (pll) {
3243                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3244                               intel_crtc->base.base.id, pll->pll_reg);
3245                 goto prepare;
3246         }
3247
3248         if (HAS_PCH_IBX(dev_priv->dev)) {
3249                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3250                 i = intel_crtc->pipe;
3251                 pll = &dev_priv->pch_plls[i];
3252
3253                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3254                               intel_crtc->base.base.id, pll->pll_reg);
3255
3256                 goto found;
3257         }
3258
3259         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3260                 pll = &dev_priv->pch_plls[i];
3261
3262                 /* Only want to check enabled timings first */
3263                 if (pll->refcount == 0)
3264                         continue;
3265
3266                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3267                     fp == I915_READ(pll->fp0_reg)) {
3268                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3269                                       intel_crtc->base.base.id,
3270                                       pll->pll_reg, pll->refcount, pll->active);
3271
3272                         goto found;
3273                 }
3274         }
3275
3276         /* Ok no matching timings, maybe there's a free one? */
3277         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3278                 pll = &dev_priv->pch_plls[i];
3279                 if (pll->refcount == 0) {
3280                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3281                                       intel_crtc->base.base.id, pll->pll_reg);
3282                         goto found;
3283                 }
3284         }
3285
3286         return NULL;
3287
3288 found:
3289         intel_crtc->pch_pll = pll;
3290         pll->refcount++;
3291         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3292 prepare: /* separate function? */
3293         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3294
3295         /* Wait for the clocks to stabilize before rewriting the regs */
3296         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3297         POSTING_READ(pll->pll_reg);
3298         udelay(150);
3299
3300         I915_WRITE(pll->fp0_reg, fp);
3301         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3302         pll->on = false;
3303         return pll;
3304 }
3305
3306 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3307 {
3308         struct drm_i915_private *dev_priv = dev->dev_private;
3309         int dslreg = PIPEDSL(pipe);
3310         u32 temp;
3311
3312         temp = I915_READ(dslreg);
3313         udelay(500);
3314         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3315                 if (wait_for(I915_READ(dslreg) != temp, 5))
3316                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3317         }
3318 }
3319
3320 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3321 {
3322         struct drm_device *dev = crtc->dev;
3323         struct drm_i915_private *dev_priv = dev->dev_private;
3324         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3325         struct intel_encoder *encoder;
3326         int pipe = intel_crtc->pipe;
3327         int plane = intel_crtc->plane;
3328         u32 temp;
3329         bool is_pch_port;
3330
3331         WARN_ON(!crtc->enabled);
3332
3333         if (intel_crtc->active)
3334                 return;
3335
3336         intel_crtc->active = true;
3337         intel_update_watermarks(dev);
3338
3339         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3340                 temp = I915_READ(PCH_LVDS);
3341                 if ((temp & LVDS_PORT_EN) == 0)
3342                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3343         }
3344
3345         is_pch_port = ironlake_crtc_driving_pch(crtc);
3346
3347         if (is_pch_port) {
3348                 /* Note: FDI PLL enabling _must_ be done before we enable the
3349                  * cpu pipes, hence this is separate from all the other fdi/pch
3350                  * enabling. */
3351                 ironlake_fdi_pll_enable(intel_crtc);
3352         } else {
3353                 assert_fdi_tx_disabled(dev_priv, pipe);
3354                 assert_fdi_rx_disabled(dev_priv, pipe);
3355         }
3356
3357         for_each_encoder_on_crtc(dev, crtc, encoder)
3358                 if (encoder->pre_enable)
3359                         encoder->pre_enable(encoder);
3360
3361         /* Enable panel fitting for LVDS */
3362         if (dev_priv->pch_pf_size &&
3363             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3364              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3365                 /* Force use of hard-coded filter coefficients
3366                  * as some pre-programmed values are broken,
3367                  * e.g. x201.
3368                  */
3369                 if (IS_IVYBRIDGE(dev))
3370                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3371                                                  PF_PIPE_SEL_IVB(pipe));
3372                 else
3373                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3374                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3375                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3376         }
3377
3378         /*
3379          * On ILK+ LUT must be loaded before the pipe is running but with
3380          * clocks enabled
3381          */
3382         intel_crtc_load_lut(crtc);
3383
3384         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3385         intel_enable_plane(dev_priv, plane, pipe);
3386
3387         if (is_pch_port)
3388                 ironlake_pch_enable(crtc);
3389
3390         DRM_LOCK(dev);
3391         intel_update_fbc(dev);
3392         DRM_UNLOCK(dev);
3393
3394         intel_crtc_update_cursor(crtc, true);
3395
3396         for_each_encoder_on_crtc(dev, crtc, encoder)
3397                 encoder->enable(encoder);
3398
3399         if (HAS_PCH_CPT(dev))
3400                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3401
3402         /*
3403          * There seems to be a race in PCH platform hw (at least on some
3404          * outputs) where an enabled pipe still completes any pageflip right
3405          * away (as if the pipe is off) instead of waiting for vblank. As soon
3406          * as the first vblank happened, everything works as expected. Hence just
3407          * wait for one vblank before returning to avoid strange things
3408          * happening.
3409          */
3410         intel_wait_for_vblank(dev, intel_crtc->pipe);
3411 }
3412
3413 static void haswell_crtc_enable(struct drm_crtc *crtc)
3414 {
3415         struct drm_device *dev = crtc->dev;
3416         struct drm_i915_private *dev_priv = dev->dev_private;
3417         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3418         struct intel_encoder *encoder;
3419         int pipe = intel_crtc->pipe;
3420         int plane = intel_crtc->plane;
3421         bool is_pch_port;
3422
3423         WARN_ON(!crtc->enabled);
3424
3425         if (intel_crtc->active)
3426                 return;
3427
3428         intel_crtc->active = true;
3429         intel_update_watermarks(dev);
3430
3431         is_pch_port = haswell_crtc_driving_pch(crtc);
3432
3433         if (is_pch_port)
3434                 dev_priv->display.fdi_link_train(crtc);
3435
3436         for_each_encoder_on_crtc(dev, crtc, encoder)
3437                 if (encoder->pre_enable)
3438                         encoder->pre_enable(encoder);
3439
3440         intel_ddi_enable_pipe_clock(intel_crtc);
3441
3442         /* Enable panel fitting for eDP */
3443         if (dev_priv->pch_pf_size &&
3444             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3445                 /* Force use of hard-coded filter coefficients
3446                  * as some pre-programmed values are broken,
3447                  * e.g. x201.
3448                  */
3449                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3450                                          PF_PIPE_SEL_IVB(pipe));
3451                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3452                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3453         }
3454
3455         /*
3456          * On ILK+ LUT must be loaded before the pipe is running but with
3457          * clocks enabled
3458          */
3459         intel_crtc_load_lut(crtc);
3460
3461         intel_ddi_set_pipe_settings(crtc);
3462         intel_ddi_enable_pipe_func(crtc);
3463
3464         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3465         intel_enable_plane(dev_priv, plane, pipe);
3466
3467         if (is_pch_port)
3468                 lpt_pch_enable(crtc);
3469
3470         DRM_LOCK(dev);
3471         intel_update_fbc(dev);
3472         DRM_UNLOCK(dev);
3473
3474         intel_crtc_update_cursor(crtc, true);
3475
3476         for_each_encoder_on_crtc(dev, crtc, encoder)
3477                 encoder->enable(encoder);
3478
3479         /*
3480          * There seems to be a race in PCH platform hw (at least on some
3481          * outputs) where an enabled pipe still completes any pageflip right
3482          * away (as if the pipe is off) instead of waiting for vblank. As soon
3483          * as the first vblank happened, everything works as expected. Hence just
3484          * wait for one vblank before returning to avoid strange things
3485          * happening.
3486          */
3487         intel_wait_for_vblank(dev, intel_crtc->pipe);
3488 }
3489
3490 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3491 {
3492         struct drm_device *dev = crtc->dev;
3493         struct drm_i915_private *dev_priv = dev->dev_private;
3494         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3495         struct intel_encoder *encoder;
3496         int pipe = intel_crtc->pipe;
3497         int plane = intel_crtc->plane;
3498         u32 reg, temp;
3499
3500
3501         if (!intel_crtc->active)
3502                 return;
3503
3504         for_each_encoder_on_crtc(dev, crtc, encoder)
3505                 encoder->disable(encoder);
3506
3507         intel_crtc_wait_for_pending_flips(crtc);
3508         drm_vblank_off(dev, pipe);
3509         intel_crtc_update_cursor(crtc, false);
3510
3511         intel_disable_plane(dev_priv, plane, pipe);
3512
3513         if (dev_priv->cfb_plane == plane)
3514                 intel_disable_fbc(dev);
3515
3516         intel_disable_pipe(dev_priv, pipe);
3517
3518         /* Disable PF */
3519         I915_WRITE(PF_CTL(pipe), 0);
3520         I915_WRITE(PF_WIN_SZ(pipe), 0);
3521
3522         for_each_encoder_on_crtc(dev, crtc, encoder)
3523                 if (encoder->post_disable)
3524                         encoder->post_disable(encoder);
3525
3526         ironlake_fdi_disable(crtc);
3527
3528         ironlake_disable_pch_transcoder(dev_priv, pipe);
3529
3530         if (HAS_PCH_CPT(dev)) {
3531                 /* disable TRANS_DP_CTL */
3532                 reg = TRANS_DP_CTL(pipe);
3533                 temp = I915_READ(reg);
3534                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3535                 temp |= TRANS_DP_PORT_SEL_NONE;
3536                 I915_WRITE(reg, temp);
3537
3538                 /* disable DPLL_SEL */
3539                 temp = I915_READ(PCH_DPLL_SEL);
3540                 switch (pipe) {
3541                 case 0:
3542                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3543                         break;
3544                 case 1:
3545                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3546                         break;
3547                 case 2:
3548                         /* C shares PLL A or B */
3549                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3550                         break;
3551                 default:
3552                         BUG(); /* wtf */
3553                 }
3554                 I915_WRITE(PCH_DPLL_SEL, temp);
3555         }
3556
3557         /* disable PCH DPLL */
3558         intel_disable_pch_pll(intel_crtc);
3559
3560         ironlake_fdi_pll_disable(intel_crtc);
3561
3562         intel_crtc->active = false;
3563         intel_update_watermarks(dev);
3564
3565         DRM_LOCK(dev);
3566         intel_update_fbc(dev);
3567         DRM_UNLOCK(dev);
3568 }
3569
3570 static void haswell_crtc_disable(struct drm_crtc *crtc)
3571 {
3572         struct drm_device *dev = crtc->dev;
3573         struct drm_i915_private *dev_priv = dev->dev_private;
3574         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3575         struct intel_encoder *encoder;
3576         int pipe = intel_crtc->pipe;
3577         int plane = intel_crtc->plane;
3578         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3579         bool is_pch_port;
3580
3581         if (!intel_crtc->active)
3582                 return;
3583
3584         is_pch_port = haswell_crtc_driving_pch(crtc);
3585
3586         for_each_encoder_on_crtc(dev, crtc, encoder)
3587                 encoder->disable(encoder);
3588
3589         intel_crtc_wait_for_pending_flips(crtc);
3590         drm_vblank_off(dev, pipe);
3591         intel_crtc_update_cursor(crtc, false);
3592
3593         intel_disable_plane(dev_priv, plane, pipe);
3594
3595         if (dev_priv->cfb_plane == plane)
3596                 intel_disable_fbc(dev);
3597
3598         intel_disable_pipe(dev_priv, pipe);
3599
3600         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3601
3602         /* Disable PF */
3603         I915_WRITE(PF_CTL(pipe), 0);
3604         I915_WRITE(PF_WIN_SZ(pipe), 0);
3605
3606         intel_ddi_disable_pipe_clock(intel_crtc);
3607
3608         for_each_encoder_on_crtc(dev, crtc, encoder)
3609                 if (encoder->post_disable)
3610                         encoder->post_disable(encoder);
3611
3612         if (is_pch_port) {
3613                 lpt_disable_pch_transcoder(dev_priv);
3614                 intel_ddi_fdi_disable(crtc);
3615         }
3616
3617         intel_crtc->active = false;
3618         intel_update_watermarks(dev);
3619
3620         DRM_LOCK(dev);
3621         intel_update_fbc(dev);
3622         DRM_UNLOCK(dev);
3623 }
3624
3625 static void ironlake_crtc_off(struct drm_crtc *crtc)
3626 {
3627         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3628         intel_put_pch_pll(intel_crtc);
3629 }
3630
3631 static void haswell_crtc_off(struct drm_crtc *crtc)
3632 {
3633         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3634
3635         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3636          * start using it. */
3637         intel_crtc->cpu_transcoder = (enum transcoder)intel_crtc->pipe;
3638
3639         intel_ddi_put_crtc_pll(crtc);
3640 }
3641
3642 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3643 {
3644         if (!enable && intel_crtc->overlay) {
3645                 struct drm_device *dev = intel_crtc->base.dev;
3646                 struct drm_i915_private *dev_priv = dev->dev_private;
3647
3648                 DRM_LOCK(dev);
3649                 dev_priv->mm.interruptible = false;
3650                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3651                 dev_priv->mm.interruptible = true;
3652                 DRM_UNLOCK(dev);
3653         }
3654
3655         /* Let userspace switch the overlay on again. In most cases userspace
3656          * has to recompute where to put it anyway.
3657          */
3658 }
3659
3660 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3661 {
3662         struct drm_device *dev = crtc->dev;
3663         struct drm_i915_private *dev_priv = dev->dev_private;
3664         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3665         struct intel_encoder *encoder;
3666         int pipe = intel_crtc->pipe;
3667         int plane = intel_crtc->plane;
3668
3669         WARN_ON(!crtc->enabled);
3670
3671         if (intel_crtc->active)
3672                 return;
3673
3674         intel_crtc->active = true;
3675         intel_update_watermarks(dev);
3676
3677         intel_enable_pll(dev_priv, pipe);
3678         intel_enable_pipe(dev_priv, pipe, false);
3679         intel_enable_plane(dev_priv, plane, pipe);
3680
3681         intel_crtc_load_lut(crtc);
3682         intel_update_fbc(dev);
3683
3684         /* Give the overlay scaler a chance to enable if it's on this pipe */
3685         intel_crtc_dpms_overlay(intel_crtc, true);
3686         intel_crtc_update_cursor(crtc, true);
3687
3688         for_each_encoder_on_crtc(dev, crtc, encoder)
3689                 encoder->enable(encoder);
3690 }
3691
3692 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3693 {
3694         struct drm_device *dev = crtc->dev;
3695         struct drm_i915_private *dev_priv = dev->dev_private;
3696         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3697         struct intel_encoder *encoder;
3698         int pipe = intel_crtc->pipe;
3699         int plane = intel_crtc->plane;
3700         u32 pctl;
3701
3702
3703         if (!intel_crtc->active)
3704                 return;
3705
3706         for_each_encoder_on_crtc(dev, crtc, encoder)
3707                 encoder->disable(encoder);
3708
3709         /* Give the overlay scaler a chance to disable if it's on this pipe */
3710         intel_crtc_wait_for_pending_flips(crtc);
3711         drm_vblank_off(dev, pipe);
3712         intel_crtc_dpms_overlay(intel_crtc, false);
3713         intel_crtc_update_cursor(crtc, false);
3714
3715         if (dev_priv->cfb_plane == plane)
3716                 intel_disable_fbc(dev);
3717
3718         intel_disable_plane(dev_priv, plane, pipe);
3719         intel_disable_pipe(dev_priv, pipe);
3720
3721         /* Disable pannel fitter if it is on this pipe. */
3722         pctl = I915_READ(PFIT_CONTROL);
3723         if ((pctl & PFIT_ENABLE) &&
3724             ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3725                 I915_WRITE(PFIT_CONTROL, 0);
3726
3727         intel_disable_pll(dev_priv, pipe);
3728
3729         intel_crtc->active = false;
3730         intel_update_fbc(dev);
3731         intel_update_watermarks(dev);
3732 }
3733
3734 static void i9xx_crtc_off(struct drm_crtc *crtc)
3735 {
3736 }
3737
3738 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3739                                     bool enabled)
3740 {
3741         struct drm_device *dev = crtc->dev;
3742         struct drm_i915_master_private *master_priv;
3743         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3744         int pipe = intel_crtc->pipe;
3745
3746         if (!dev->primary->master)
3747                 return;
3748
3749         master_priv = dev->primary->master->driver_priv;
3750         if (!master_priv->sarea_priv)
3751                 return;
3752
3753         switch (pipe) {
3754         case 0:
3755                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3756                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3757                 break;
3758         case 1:
3759                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3760                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3761                 break;
3762         default:
3763                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3764                 break;
3765         }
3766 }
3767
3768 /**
3769  * Sets the power management mode of the pipe and plane.
3770  */
3771 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3772 {
3773         struct drm_device *dev = crtc->dev;
3774         struct drm_i915_private *dev_priv = dev->dev_private;
3775         struct intel_encoder *intel_encoder;
3776         bool enable = false;
3777
3778         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3779                 enable |= intel_encoder->connectors_active;
3780
3781         if (enable)
3782                 dev_priv->display.crtc_enable(crtc);
3783         else
3784                 dev_priv->display.crtc_disable(crtc);
3785
3786         intel_crtc_update_sarea(crtc, enable);
3787 }
3788
3789 static void intel_crtc_noop(struct drm_crtc *crtc)
3790 {
3791 }
3792
3793 static void intel_crtc_disable(struct drm_crtc *crtc)
3794 {
3795         struct drm_device *dev = crtc->dev;
3796         struct drm_connector *connector;
3797         struct drm_i915_private *dev_priv = dev->dev_private;
3798
3799         /* crtc should still be enabled when we disable it. */
3800         WARN_ON(!crtc->enabled);
3801
3802         dev_priv->display.crtc_disable(crtc);
3803         intel_crtc_update_sarea(crtc, false);
3804         dev_priv->display.off(crtc);
3805
3806         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3807         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3808
3809         if (crtc->fb) {
3810                 DRM_LOCK(dev);
3811                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3812                 DRM_UNLOCK(dev);
3813                 crtc->fb = NULL;
3814         }
3815
3816         /* Update computed state. */
3817         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3818                 if (!connector->encoder || !connector->encoder->crtc)
3819                         continue;
3820
3821                 if (connector->encoder->crtc != crtc)
3822                         continue;
3823
3824                 connector->dpms = DRM_MODE_DPMS_OFF;
3825                 to_intel_encoder(connector->encoder)->connectors_active = false;
3826         }
3827 }
3828
3829 void intel_modeset_disable(struct drm_device *dev)
3830 {
3831         struct drm_crtc *crtc;
3832
3833         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3834                 if (crtc->enabled)
3835                         intel_crtc_disable(crtc);
3836         }
3837 }
3838
3839 void intel_encoder_noop(struct drm_encoder *encoder)
3840 {
3841 }
3842
3843 void intel_encoder_destroy(struct drm_encoder *encoder)
3844 {
3845         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3846
3847         drm_encoder_cleanup(encoder);
3848         free(intel_encoder, DRM_MEM_KMS);
3849 }
3850
3851 /* Simple dpms helper for encodres with just one connector, no cloning and only
3852  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3853  * state of the entire output pipe. */
3854 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3855 {
3856         if (mode == DRM_MODE_DPMS_ON) {
3857                 encoder->connectors_active = true;
3858
3859                 intel_crtc_update_dpms(encoder->base.crtc);
3860         } else {
3861                 encoder->connectors_active = false;
3862
3863                 intel_crtc_update_dpms(encoder->base.crtc);
3864         }
3865 }
3866
3867 /* Cross check the actual hw state with our own modeset state tracking (and it's
3868  * internal consistency). */
3869 static void intel_connector_check_state(struct intel_connector *connector)
3870 {
3871         if (connector->get_hw_state(connector)) {
3872                 struct intel_encoder *encoder = connector->encoder;
3873                 struct drm_crtc *crtc;
3874                 bool encoder_enabled;
3875                 enum pipe pipe;
3876
3877                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3878                               connector->base.base.id,
3879                               drm_get_connector_name(&connector->base));
3880
3881                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3882                      "wrong connector dpms state\n");
3883                 WARN(connector->base.encoder != &encoder->base,
3884                      "active connector not linked to encoder\n");
3885                 WARN(!encoder->connectors_active,
3886                      "encoder->connectors_active not set\n");
3887
3888                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3889                 WARN(!encoder_enabled, "encoder not enabled\n");
3890                 if (WARN_ON(!encoder->base.crtc))
3891                         return;
3892
3893                 crtc = encoder->base.crtc;
3894
3895                 WARN(!crtc->enabled, "crtc not enabled\n");
3896                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3897                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3898                      "encoder active on the wrong pipe\n");
3899         }
3900 }
3901
3902 /* Even simpler default implementation, if there's really no special case to
3903  * consider. */
3904 void intel_connector_dpms(struct drm_connector *connector, int mode)
3905 {
3906         struct intel_encoder *encoder = intel_attached_encoder(connector);
3907
3908         /* All the simple cases only support two dpms states. */
3909         if (mode != DRM_MODE_DPMS_ON)
3910                 mode = DRM_MODE_DPMS_OFF;
3911
3912         if (mode == connector->dpms)
3913                 return;
3914
3915         connector->dpms = mode;
3916
3917         /* Only need to change hw state when actually enabled */
3918         if (encoder->base.crtc)
3919                 intel_encoder_dpms(encoder, mode);
3920         else
3921                 WARN_ON(encoder->connectors_active != false);
3922
3923         intel_modeset_check_state(connector->dev);
3924 }
3925
3926 /* Simple connector->get_hw_state implementation for encoders that support only
3927  * one connector and no cloning and hence the encoder state determines the state
3928  * of the connector. */
3929 bool intel_connector_get_hw_state(struct intel_connector *connector)
3930 {
3931         enum pipe pipe = 0;
3932         struct intel_encoder *encoder = connector->encoder;
3933
3934         return encoder->get_hw_state(encoder, &pipe);
3935 }
3936
3937 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3938                                   const struct drm_display_mode *mode,
3939                                   struct drm_display_mode *adjusted_mode)
3940 {
3941         struct drm_device *dev = crtc->dev;
3942
3943         if (HAS_PCH_SPLIT(dev)) {
3944                 /* FDI link clock is fixed at 2.7G */
3945                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3946                         return false;
3947         }
3948
3949         /* All interlaced capable intel hw wants timings in frames. Note though
3950          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3951          * timings, so we need to be careful not to clobber these.*/
3952         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3953                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3954
3955         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3956          * with a hsync front porch of 0.
3957          */
3958         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3959                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3960                 return false;
3961
3962         return true;
3963 }
3964
3965 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3966 {
3967         return 400000; /* FIXME */
3968 }
3969
3970 static int i945_get_display_clock_speed(struct drm_device *dev)
3971 {
3972         return 400000;
3973 }
3974
3975 static int i915_get_display_clock_speed(struct drm_device *dev)
3976 {
3977         return 333000;
3978 }
3979
3980 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3981 {
3982         return 200000;
3983 }
3984
3985 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3986 {
3987         u16 gcfgc = 0;
3988
3989         pci_read_config_word(dev->dev, GCFGC, &gcfgc);
3990
3991         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3992                 return 133000;
3993         else {
3994                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3995                 case GC_DISPLAY_CLOCK_333_MHZ:
3996                         return 333000;
3997                 default:
3998                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3999                         return 190000;
4000                 }
4001         }
4002 }
4003
4004 static int i865_get_display_clock_speed(struct drm_device *dev)
4005 {
4006         return 266000;
4007 }
4008
4009 static int i855_get_display_clock_speed(struct drm_device *dev)
4010 {
4011         u16 hpllcc = 0;
4012         /* Assume that the hardware is in the high speed state.  This
4013          * should be the default.
4014          */
4015         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4016         case GC_CLOCK_133_200:
4017         case GC_CLOCK_100_200:
4018                 return 200000;
4019         case GC_CLOCK_166_250:
4020                 return 250000;
4021         case GC_CLOCK_100_133:
4022                 return 133000;
4023         }
4024
4025         /* Shouldn't happen */
4026         return 0;
4027 }
4028
4029 static int i830_get_display_clock_speed(struct drm_device *dev)
4030 {
4031         return 133000;
4032 }
4033
4034 struct fdi_m_n {
4035         u32        tu;
4036         u32        gmch_m;
4037         u32        gmch_n;
4038         u32        link_m;
4039         u32        link_n;
4040 };
4041
4042 static void
4043 fdi_reduce_ratio(u32 *num, u32 *den)
4044 {
4045         while (*num > 0xffffff || *den > 0xffffff) {
4046                 *num >>= 1;
4047                 *den >>= 1;
4048         }
4049 }
4050
4051 static void
4052 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4053                      int link_clock, struct fdi_m_n *m_n)
4054 {
4055         m_n->tu = 64; /* default size */
4056
4057         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4058         m_n->gmch_m = bits_per_pixel * pixel_clock;
4059         m_n->gmch_n = link_clock * nlanes * 8;
4060         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4061
4062         m_n->link_m = pixel_clock;
4063         m_n->link_n = link_clock;
4064         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4065 }
4066
4067 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4068 {
4069         if (i915_panel_use_ssc >= 0)
4070                 return i915_panel_use_ssc != 0;
4071         return dev_priv->lvds_use_ssc
4072                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4073 }
4074
4075 /**
4076  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4077  * @crtc: CRTC structure
4078  * @mode: requested mode
4079  *
4080  * A pipe may be connected to one or more outputs.  Based on the depth of the
4081  * attached framebuffer, choose a good color depth to use on the pipe.
4082  *
4083  * If possible, match the pipe depth to the fb depth.  In some cases, this
4084  * isn't ideal, because the connected output supports a lesser or restricted
4085  * set of depths.  Resolve that here:
4086  *    LVDS typically supports only 6bpc, so clamp down in that case
4087  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4088  *    Displays may support a restricted set as well, check EDID and clamp as
4089  *      appropriate.
4090  *    DP may want to dither down to 6bpc to fit larger modes
4091  *
4092  * RETURNS:
4093  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4094  * true if they don't match).
4095  */
4096 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4097                                          struct drm_framebuffer *fb,
4098                                          unsigned int *pipe_bpp,
4099                                          struct drm_display_mode *mode)
4100 {
4101         struct drm_device *dev = crtc->dev;
4102         struct drm_i915_private *dev_priv = dev->dev_private;
4103         struct drm_connector *connector;
4104         struct intel_encoder *intel_encoder;
4105         unsigned int display_bpc = UINT_MAX, bpc;
4106
4107         /* Walk the encoders & connectors on this crtc, get min bpc */
4108         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4109
4110                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4111                         unsigned int lvds_bpc;
4112
4113                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4114                             LVDS_A3_POWER_UP)
4115                                 lvds_bpc = 8;
4116                         else
4117                                 lvds_bpc = 6;
4118
4119                         if (lvds_bpc < display_bpc) {
4120                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4121                                 display_bpc = lvds_bpc;
4122                         }
4123                         continue;
4124                 }
4125
4126                 /* Not one of the known troublemakers, check the EDID */
4127                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4128                                     head) {
4129                         if (connector->encoder != &intel_encoder->base)
4130                                 continue;
4131
4132                         /* Don't use an invalid EDID bpc value */
4133                         if (connector->display_info.bpc &&
4134                             connector->display_info.bpc < display_bpc) {
4135                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4136                                 display_bpc = connector->display_info.bpc;
4137                         }
4138                 }
4139
4140                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4141                         /* Use VBT settings if we have an eDP panel */
4142                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4143
4144                         if (edp_bpc && edp_bpc < display_bpc) {
4145                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4146                                 display_bpc = edp_bpc;
4147                         }
4148                         continue;
4149                 }
4150
4151                 /*
4152                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4153                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4154                  */
4155                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4156                         if (display_bpc > 8 && display_bpc < 12) {
4157                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4158                                 display_bpc = 12;
4159                         } else {
4160                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4161                                 display_bpc = 8;
4162                         }
4163                 }
4164         }
4165
4166         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4167                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4168                 display_bpc = 6;
4169         }
4170
4171         /*
4172          * We could just drive the pipe at the highest bpc all the time and
4173          * enable dithering as needed, but that costs bandwidth.  So choose
4174          * the minimum value that expresses the full color range of the fb but
4175          * also stays within the max display bpc discovered above.
4176          */
4177
4178         switch (fb->depth) {
4179         case 8:
4180                 bpc = 8; /* since we go through a colormap */
4181                 break;
4182         case 15:
4183         case 16:
4184                 bpc = 6; /* min is 18bpp */
4185                 break;
4186         case 24:
4187                 bpc = 8;
4188                 break;
4189         case 30:
4190                 bpc = 10;
4191                 break;
4192         case 48:
4193                 bpc = 12;
4194                 break;
4195         default:
4196                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4197                 bpc = min((unsigned int)8, display_bpc);
4198                 break;
4199         }
4200
4201         display_bpc = min(display_bpc, bpc);
4202
4203         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4204                       bpc, display_bpc);
4205
4206         *pipe_bpp = display_bpc * 3;
4207
4208         return display_bpc != bpc;
4209 }
4210
4211 static int vlv_get_refclk(struct drm_crtc *crtc)
4212 {
4213         struct drm_device *dev = crtc->dev;
4214         struct drm_i915_private *dev_priv = dev->dev_private;
4215         int refclk = 27000; /* for DP & HDMI */
4216
4217         return 100000; /* only one validated so far */
4218
4219         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4220                 refclk = 96000;
4221         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4222                 if (intel_panel_use_ssc(dev_priv))
4223                         refclk = 100000;
4224                 else
4225                         refclk = 96000;
4226         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4227                 refclk = 100000;
4228         }
4229
4230         return refclk;
4231 }
4232
4233 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4234 {
4235         struct drm_device *dev = crtc->dev;
4236         struct drm_i915_private *dev_priv = dev->dev_private;
4237         int refclk;
4238
4239         if (IS_VALLEYVIEW(dev)) {
4240                 refclk = vlv_get_refclk(crtc);
4241         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4242             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4243                 refclk = dev_priv->lvds_ssc_freq * 1000;
4244                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4245                               refclk / 1000);
4246         } else if (!IS_GEN2(dev)) {
4247                 refclk = 96000;
4248         } else {
4249                 refclk = 48000;
4250         }
4251
4252         return refclk;
4253 }
4254
4255 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4256                                       intel_clock_t *clock)
4257 {
4258         /* SDVO TV has fixed PLL values depend on its clock range,
4259            this mirrors vbios setting. */
4260         if (adjusted_mode->clock >= 100000
4261             && adjusted_mode->clock < 140500) {
4262                 clock->p1 = 2;
4263                 clock->p2 = 10;
4264                 clock->n = 3;
4265                 clock->m1 = 16;
4266                 clock->m2 = 8;
4267         } else if (adjusted_mode->clock >= 140500
4268                    && adjusted_mode->clock <= 200000) {
4269                 clock->p1 = 1;
4270                 clock->p2 = 10;
4271                 clock->n = 6;
4272                 clock->m1 = 12;
4273                 clock->m2 = 8;
4274         }
4275 }
4276
4277 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4278                                      intel_clock_t *clock,
4279                                      intel_clock_t *reduced_clock)
4280 {
4281         struct drm_device *dev = crtc->dev;
4282         struct drm_i915_private *dev_priv = dev->dev_private;
4283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4284         int pipe = intel_crtc->pipe;
4285         u32 fp, fp2 = 0;
4286
4287         if (IS_PINEVIEW(dev)) {
4288                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4289                 if (reduced_clock)
4290                         fp2 = (1 << reduced_clock->n) << 16 |
4291                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4292         } else {
4293                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4294                 if (reduced_clock)
4295                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4296                                 reduced_clock->m2;
4297         }
4298
4299         I915_WRITE(FP0(pipe), fp);
4300
4301         intel_crtc->lowfreq_avail = false;
4302         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4303             reduced_clock && i915_powersave) {
4304                 I915_WRITE(FP1(pipe), fp2);
4305                 intel_crtc->lowfreq_avail = true;
4306         } else {
4307                 I915_WRITE(FP1(pipe), fp);
4308         }
4309 }
4310
4311 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4312                               struct drm_display_mode *adjusted_mode)
4313 {
4314         struct drm_device *dev = crtc->dev;
4315         struct drm_i915_private *dev_priv = dev->dev_private;
4316         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4317         int pipe = intel_crtc->pipe;
4318         u32 temp;
4319
4320         temp = I915_READ(LVDS);
4321         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4322         if (pipe == 1) {
4323                 temp |= LVDS_PIPEB_SELECT;
4324         } else {
4325                 temp &= ~LVDS_PIPEB_SELECT;
4326         }
4327         /* set the corresponsding LVDS_BORDER bit */
4328         temp |= dev_priv->lvds_border_bits;
4329         /* Set the B0-B3 data pairs corresponding to whether we're going to
4330          * set the DPLLs for dual-channel mode or not.
4331          */
4332         if (clock->p2 == 7)
4333                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4334         else
4335                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4336
4337         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4338          * appropriately here, but we need to look more thoroughly into how
4339          * panels behave in the two modes.
4340          */
4341         /* set the dithering flag on LVDS as needed */
4342         if (INTEL_INFO(dev)->gen >= 4) {
4343                 if (dev_priv->lvds_dither)
4344                         temp |= LVDS_ENABLE_DITHER;
4345                 else
4346                         temp &= ~LVDS_ENABLE_DITHER;
4347         }
4348         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4349         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4350                 temp |= LVDS_HSYNC_POLARITY;
4351         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4352                 temp |= LVDS_VSYNC_POLARITY;
4353         I915_WRITE(LVDS, temp);
4354 }
4355
4356 static void vlv_update_pll(struct drm_crtc *crtc,
4357                            struct drm_display_mode *mode,
4358                            struct drm_display_mode *adjusted_mode,
4359                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4360                            int num_connectors)
4361 {
4362         struct drm_device *dev = crtc->dev;
4363         struct drm_i915_private *dev_priv = dev->dev_private;
4364         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4365         int pipe = intel_crtc->pipe;
4366         u32 dpll, mdiv, pdiv;
4367         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4368         bool is_sdvo;
4369         u32 temp;
4370
4371         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4372                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4373
4374         dpll = DPLL_VGA_MODE_DIS;
4375         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4376         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4377         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4378
4379         I915_WRITE(DPLL(pipe), dpll);
4380         POSTING_READ(DPLL(pipe));
4381
4382         bestn = clock->n;
4383         bestm1 = clock->m1;
4384         bestm2 = clock->m2;
4385         bestp1 = clock->p1;
4386         bestp2 = clock->p2;
4387
4388         /*
4389          * In Valleyview PLL and program lane counter registers are exposed
4390          * through DPIO interface
4391          */
4392         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4393         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4394         mdiv |= ((bestn << DPIO_N_SHIFT));
4395         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4396         mdiv |= (1 << DPIO_K_SHIFT);
4397         mdiv |= DPIO_ENABLE_CALIBRATION;
4398         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4399
4400         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4401
4402         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4403                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4404                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4405                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4406         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4407
4408         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4409
4410         dpll |= DPLL_VCO_ENABLE;
4411         I915_WRITE(DPLL(pipe), dpll);
4412         POSTING_READ(DPLL(pipe));
4413         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4414                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4415
4416         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4417
4418         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4419                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4420
4421         I915_WRITE(DPLL(pipe), dpll);
4422
4423         /* Wait for the clocks to stabilize. */
4424         POSTING_READ(DPLL(pipe));
4425         udelay(150);
4426
4427         temp = 0;
4428         if (is_sdvo) {
4429                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4430                 if (temp > 1)
4431                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4432                 else
4433                         temp = 0;
4434         }
4435         I915_WRITE(DPLL_MD(pipe), temp);
4436         POSTING_READ(DPLL_MD(pipe));
4437
4438         /* Now program lane control registers */
4439         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4440                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4441         {
4442                 temp = 0x1000C4;
4443                 if(pipe == 1)
4444                         temp |= (1 << 21);
4445                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4446         }
4447         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4448         {
4449                 temp = 0x1000C4;
4450                 if(pipe == 1)
4451                         temp |= (1 << 21);
4452                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4453         }
4454 }
4455
4456 static void i9xx_update_pll(struct drm_crtc *crtc,
4457                             struct drm_display_mode *mode,
4458                             struct drm_display_mode *adjusted_mode,
4459                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4460                             int num_connectors)
4461 {
4462         struct drm_device *dev = crtc->dev;
4463         struct drm_i915_private *dev_priv = dev->dev_private;
4464         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4465         int pipe = intel_crtc->pipe;
4466         u32 dpll;
4467         bool is_sdvo;
4468
4469         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4470
4471         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4472                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4473
4474         dpll = DPLL_VGA_MODE_DIS;
4475
4476         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4477                 dpll |= DPLLB_MODE_LVDS;
4478         else
4479                 dpll |= DPLLB_MODE_DAC_SERIAL;
4480         if (is_sdvo) {
4481                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4482                 if (pixel_multiplier > 1) {
4483                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4484                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4485                 }
4486                 dpll |= DPLL_DVO_HIGH_SPEED;
4487         }
4488         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4489                 dpll |= DPLL_DVO_HIGH_SPEED;
4490
4491         /* compute bitmask from p1 value */
4492         if (IS_PINEVIEW(dev))
4493                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4494         else {
4495                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4496                 if (IS_G4X(dev) && reduced_clock)
4497                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4498         }
4499         switch (clock->p2) {
4500         case 5:
4501                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4502                 break;
4503         case 7:
4504                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4505                 break;
4506         case 10:
4507                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4508                 break;
4509         case 14:
4510                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4511                 break;
4512         }
4513         if (INTEL_INFO(dev)->gen >= 4)
4514                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4515
4516         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4517                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4518         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4519                 /* XXX: just matching BIOS for now */
4520                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4521                 dpll |= 3;
4522         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4523                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4524                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4525         else
4526                 dpll |= PLL_REF_INPUT_DREFCLK;
4527
4528         dpll |= DPLL_VCO_ENABLE;
4529         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4530         POSTING_READ(DPLL(pipe));
4531         udelay(150);
4532
4533         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4534          * This is an exception to the general rule that mode_set doesn't turn
4535          * things on.
4536          */
4537         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4538                 intel_update_lvds(crtc, clock, adjusted_mode);
4539
4540         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4541                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4542
4543         I915_WRITE(DPLL(pipe), dpll);
4544
4545         /* Wait for the clocks to stabilize. */
4546         POSTING_READ(DPLL(pipe));
4547         udelay(150);
4548
4549         if (INTEL_INFO(dev)->gen >= 4) {
4550                 u32 temp = 0;
4551                 if (is_sdvo) {
4552                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4553                         if (temp > 1)
4554                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4555                         else
4556                                 temp = 0;
4557                 }
4558                 I915_WRITE(DPLL_MD(pipe), temp);
4559         } else {
4560                 /* The pixel multiplier can only be updated once the
4561                  * DPLL is enabled and the clocks are stable.
4562                  *
4563                  * So write it again.
4564                  */
4565                 I915_WRITE(DPLL(pipe), dpll);
4566         }
4567 }
4568
4569 static void i8xx_update_pll(struct drm_crtc *crtc,
4570                             struct drm_display_mode *adjusted_mode,
4571                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4572                             int num_connectors)
4573 {
4574         struct drm_device *dev = crtc->dev;
4575         struct drm_i915_private *dev_priv = dev->dev_private;
4576         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4577         int pipe = intel_crtc->pipe;
4578         u32 dpll;
4579
4580         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4581
4582         dpll = DPLL_VGA_MODE_DIS;
4583
4584         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4585                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4586         } else {
4587                 if (clock->p1 == 2)
4588                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4589                 else
4590                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4591                 if (clock->p2 == 4)
4592                         dpll |= PLL_P2_DIVIDE_BY_4;
4593         }
4594
4595         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4596                 /* XXX: just matching BIOS for now */
4597                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4598                 dpll |= 3;
4599         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4600                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4601                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4602         else
4603                 dpll |= PLL_REF_INPUT_DREFCLK;
4604
4605         dpll |= DPLL_VCO_ENABLE;
4606         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4607         POSTING_READ(DPLL(pipe));
4608         udelay(150);
4609
4610         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4611          * This is an exception to the general rule that mode_set doesn't turn
4612          * things on.
4613          */
4614         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4615                 intel_update_lvds(crtc, clock, adjusted_mode);
4616
4617         I915_WRITE(DPLL(pipe), dpll);
4618
4619         /* Wait for the clocks to stabilize. */
4620         POSTING_READ(DPLL(pipe));
4621         udelay(150);
4622
4623         /* The pixel multiplier can only be updated once the
4624          * DPLL is enabled and the clocks are stable.
4625          *
4626          * So write it again.
4627          */
4628         I915_WRITE(DPLL(pipe), dpll);
4629 }
4630
4631 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4632                                    struct drm_display_mode *mode,
4633                                    struct drm_display_mode *adjusted_mode)
4634 {
4635         struct drm_device *dev = intel_crtc->base.dev;
4636         struct drm_i915_private *dev_priv = dev->dev_private;
4637         enum pipe pipe = intel_crtc->pipe;
4638         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4639         uint32_t vsyncshift;
4640
4641         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4642                 /* the chip adds 2 halflines automatically */
4643                 adjusted_mode->crtc_vtotal -= 1;
4644                 adjusted_mode->crtc_vblank_end -= 1;
4645                 vsyncshift = adjusted_mode->crtc_hsync_start
4646                              - adjusted_mode->crtc_htotal / 2;
4647         } else {
4648                 vsyncshift = 0;
4649         }
4650
4651         if (INTEL_INFO(dev)->gen > 3)
4652                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4653
4654         I915_WRITE(HTOTAL(cpu_transcoder),
4655                    (adjusted_mode->crtc_hdisplay - 1) |
4656                    ((adjusted_mode->crtc_htotal - 1) << 16));
4657         I915_WRITE(HBLANK(cpu_transcoder),
4658                    (adjusted_mode->crtc_hblank_start - 1) |
4659                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4660         I915_WRITE(HSYNC(cpu_transcoder),
4661                    (adjusted_mode->crtc_hsync_start - 1) |
4662                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4663
4664         I915_WRITE(VTOTAL(cpu_transcoder),
4665                    (adjusted_mode->crtc_vdisplay - 1) |
4666                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4667         I915_WRITE(VBLANK(cpu_transcoder),
4668                    (adjusted_mode->crtc_vblank_start - 1) |
4669                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4670         I915_WRITE(VSYNC(cpu_transcoder),
4671                    (adjusted_mode->crtc_vsync_start - 1) |
4672                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4673
4674         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4675          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4676          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4677          * bits. */
4678         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4679             (pipe == PIPE_B || pipe == PIPE_C))
4680                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4681
4682         /* pipesrc controls the size that is scaled from, which should
4683          * always be the user's requested size.
4684          */
4685         I915_WRITE(PIPESRC(pipe),
4686                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4687 }
4688
4689 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4690                               struct drm_display_mode *mode,
4691                               struct drm_display_mode *adjusted_mode,
4692                               int x, int y,
4693                               struct drm_framebuffer *fb)
4694 {
4695         struct drm_device *dev = crtc->dev;
4696         struct drm_i915_private *dev_priv = dev->dev_private;
4697         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4698         int pipe = intel_crtc->pipe;
4699         int plane = intel_crtc->plane;
4700         int refclk, num_connectors = 0;
4701         intel_clock_t clock, reduced_clock;
4702         u32 dspcntr, pipeconf;
4703         bool ok, has_reduced_clock = false, is_sdvo = false;
4704         bool is_lvds = false, is_tv = false, is_dp = false;
4705         struct intel_encoder *encoder;
4706         const intel_limit_t *limit;
4707         int ret;
4708
4709         for_each_encoder_on_crtc(dev, crtc, encoder) {
4710                 switch (encoder->type) {
4711                 case INTEL_OUTPUT_LVDS:
4712                         is_lvds = true;
4713                         break;
4714                 case INTEL_OUTPUT_SDVO:
4715                 case INTEL_OUTPUT_HDMI:
4716                         is_sdvo = true;
4717                         if (encoder->needs_tv_clock)
4718                                 is_tv = true;
4719                         break;
4720                 case INTEL_OUTPUT_TVOUT:
4721                         is_tv = true;
4722                         break;
4723                 case INTEL_OUTPUT_DISPLAYPORT:
4724                         is_dp = true;
4725                         break;
4726                 }
4727
4728                 num_connectors++;
4729         }
4730
4731         refclk = i9xx_get_refclk(crtc, num_connectors);
4732
4733         /*
4734          * Returns a set of divisors for the desired target clock with the given
4735          * refclk, or FALSE.  The returned values represent the clock equation:
4736          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4737          */
4738         limit = intel_limit(crtc, refclk);
4739         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4740                              &clock);
4741         if (!ok) {
4742                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4743                 return -EINVAL;
4744         }
4745
4746         /* Ensure that the cursor is valid for the new mode before changing... */
4747         intel_crtc_update_cursor(crtc, true);
4748
4749         if (is_lvds && dev_priv->lvds_downclock_avail) {
4750                 /*
4751                  * Ensure we match the reduced clock's P to the target clock.
4752                  * If the clocks don't match, we can't switch the display clock
4753                  * by using the FP0/FP1. In such case we will disable the LVDS
4754                  * downclock feature.
4755                 */
4756                 has_reduced_clock = limit->find_pll(limit, crtc,
4757                                                     dev_priv->lvds_downclock,
4758                                                     refclk,
4759                                                     &clock,
4760                                                     &reduced_clock);
4761         }
4762
4763         if (is_sdvo && is_tv)
4764                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4765
4766         if (IS_GEN2(dev))
4767                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4768                                 has_reduced_clock ? &reduced_clock : NULL,
4769                                 num_connectors);
4770         else if (IS_VALLEYVIEW(dev))
4771                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4772                                 has_reduced_clock ? &reduced_clock : NULL,
4773                                 num_connectors);
4774         else
4775                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4776                                 has_reduced_clock ? &reduced_clock : NULL,
4777                                 num_connectors);
4778
4779         /* setup pipeconf */
4780         pipeconf = I915_READ(PIPECONF(pipe));
4781
4782         /* Set up the display plane register */
4783         dspcntr = DISPPLANE_GAMMA_ENABLE;
4784
4785         if (pipe == 0)
4786                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4787         else
4788                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4789
4790         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4791                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4792                  * core speed.
4793                  *
4794                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4795                  * pipe == 0 check?
4796                  */
4797                 if (mode->clock >
4798                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4799                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4800                 else
4801                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4802         }
4803
4804         /* default to 8bpc */
4805         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4806         if (is_dp) {
4807                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4808                         pipeconf |= PIPECONF_BPP_6 |
4809                                     PIPECONF_DITHER_EN |
4810                                     PIPECONF_DITHER_TYPE_SP;
4811                 }
4812         }
4813
4814         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4815                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4816                         pipeconf |= PIPECONF_BPP_6 |
4817                                         PIPECONF_ENABLE |
4818                                         I965_PIPECONF_ACTIVE;
4819                 }
4820         }
4821
4822         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4823         drm_mode_debug_printmodeline(mode);
4824
4825         if (HAS_PIPE_CXSR(dev)) {
4826                 if (intel_crtc->lowfreq_avail) {
4827                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4828                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4829                 } else {
4830                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4831                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4832                 }
4833         }
4834
4835         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4836         if (!IS_GEN2(dev) &&
4837             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4838                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4839         else
4840                 pipeconf |= PIPECONF_PROGRESSIVE;
4841
4842         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4843
4844         /* pipesrc and dspsize control the size that is scaled from,
4845          * which should always be the user's requested size.
4846          */
4847         I915_WRITE(DSPSIZE(plane),
4848                    ((mode->vdisplay - 1) << 16) |
4849                    (mode->hdisplay - 1));
4850         I915_WRITE(DSPPOS(plane), 0);
4851
4852         I915_WRITE(PIPECONF(pipe), pipeconf);
4853         POSTING_READ(PIPECONF(pipe));
4854         intel_enable_pipe(dev_priv, pipe, false);
4855
4856         intel_wait_for_vblank(dev, pipe);
4857
4858         I915_WRITE(DSPCNTR(plane), dspcntr);
4859         POSTING_READ(DSPCNTR(plane));
4860
4861         ret = intel_pipe_set_base(crtc, x, y, fb);
4862
4863         intel_update_watermarks(dev);
4864
4865         return ret;
4866 }
4867
4868 static void ironlake_init_pch_refclk(struct drm_device *dev)
4869 {
4870         struct drm_i915_private *dev_priv = dev->dev_private;
4871         struct drm_mode_config *mode_config = &dev->mode_config;
4872         struct intel_encoder *encoder;
4873         u32 temp;
4874         bool has_lvds = false;
4875         bool has_cpu_edp = false;
4876         bool has_pch_edp = false;
4877         bool has_panel = false;
4878         bool has_ck505 = false;
4879         bool can_ssc = false;
4880
4881         /* We need to take the global config into account */
4882         list_for_each_entry(encoder, &mode_config->encoder_list,
4883                             base.head) {
4884                 switch (encoder->type) {
4885                 case INTEL_OUTPUT_LVDS:
4886                         has_panel = true;
4887                         has_lvds = true;
4888                         break;
4889                 case INTEL_OUTPUT_EDP:
4890                         has_panel = true;
4891                         if (intel_encoder_is_pch_edp(&encoder->base))
4892                                 has_pch_edp = true;
4893                         else
4894                                 has_cpu_edp = true;
4895                         break;
4896                 }
4897         }
4898
4899         if (HAS_PCH_IBX(dev)) {
4900                 has_ck505 = dev_priv->display_clock_mode;
4901                 can_ssc = has_ck505;
4902         } else {
4903                 has_ck505 = false;
4904                 can_ssc = true;
4905         }
4906
4907         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4908                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4909                       has_ck505);
4910
4911         /* Ironlake: try to setup display ref clock before DPLL
4912          * enabling. This is only under driver's control after
4913          * PCH B stepping, previous chipset stepping should be
4914          * ignoring this setting.
4915          */
4916         temp = I915_READ(PCH_DREF_CONTROL);
4917         /* Always enable nonspread source */
4918         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4919
4920         if (has_ck505)
4921                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4922         else
4923                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4924
4925         if (has_panel) {
4926                 temp &= ~DREF_SSC_SOURCE_MASK;
4927                 temp |= DREF_SSC_SOURCE_ENABLE;
4928
4929                 /* SSC must be turned on before enabling the CPU output  */
4930                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4931                         DRM_DEBUG_KMS("Using SSC on panel\n");
4932                         temp |= DREF_SSC1_ENABLE;
4933                 } else
4934                         temp &= ~DREF_SSC1_ENABLE;
4935
4936                 /* Get SSC going before enabling the outputs */
4937                 I915_WRITE(PCH_DREF_CONTROL, temp);
4938                 POSTING_READ(PCH_DREF_CONTROL);
4939                 udelay(200);
4940
4941                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4942
4943                 /* Enable CPU source on CPU attached eDP */
4944                 if (has_cpu_edp) {
4945                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4946                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4947                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4948                         }
4949                         else
4950                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4951                 } else
4952                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4953
4954                 I915_WRITE(PCH_DREF_CONTROL, temp);
4955                 POSTING_READ(PCH_DREF_CONTROL);
4956                 udelay(200);
4957         } else {
4958                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4959
4960                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4961
4962                 /* Turn off CPU output */
4963                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4964
4965                 I915_WRITE(PCH_DREF_CONTROL, temp);
4966                 POSTING_READ(PCH_DREF_CONTROL);
4967                 udelay(200);
4968
4969                 /* Turn off the SSC source */
4970                 temp &= ~DREF_SSC_SOURCE_MASK;
4971                 temp |= DREF_SSC_SOURCE_DISABLE;
4972
4973                 /* Turn off SSC1 */
4974                 temp &= ~ DREF_SSC1_ENABLE;
4975
4976                 I915_WRITE(PCH_DREF_CONTROL, temp);
4977                 POSTING_READ(PCH_DREF_CONTROL);
4978                 udelay(200);
4979         }
4980 }
4981
4982 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4983 static void lpt_init_pch_refclk(struct drm_device *dev)
4984 {
4985         struct drm_i915_private *dev_priv = dev->dev_private;
4986         struct drm_mode_config *mode_config = &dev->mode_config;
4987         struct intel_encoder *encoder;
4988         bool has_vga = false;
4989         bool is_sdv = false;
4990         u32 tmp;
4991
4992         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4993                 switch (encoder->type) {
4994                 case INTEL_OUTPUT_ANALOG:
4995                         has_vga = true;
4996                         break;
4997                 }
4998         }
4999
5000         if (!has_vga)
5001                 return;
5002
5003         /* XXX: Rip out SDV support once Haswell ships for real. */
5004         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
5005                 is_sdv = true;
5006
5007         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5008         tmp &= ~SBI_SSCCTL_DISABLE;
5009         tmp |= SBI_SSCCTL_PATHALT;
5010         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5011
5012         udelay(24);
5013
5014         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5015         tmp &= ~SBI_SSCCTL_PATHALT;
5016         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5017
5018         if (!is_sdv) {
5019                 tmp = I915_READ(SOUTH_CHICKEN2);
5020                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5021                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5022
5023                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5024                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5025                         DRM_ERROR("FDI mPHY reset assert timeout\n");
5026
5027                 tmp = I915_READ(SOUTH_CHICKEN2);
5028                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5029                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5030
5031                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5032                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5033                                        100))
5034                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5035         }
5036
5037         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5038         tmp &= ~(0xFF << 24);
5039         tmp |= (0x12 << 24);
5040         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5041
5042         if (!is_sdv) {
5043                 tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
5044                 tmp &= ~(0x3 << 6);
5045                 tmp |= (1 << 6) | (1 << 0);
5046                 intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
5047         }
5048
5049         if (is_sdv) {
5050                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5051                 tmp |= 0x7FFF;
5052                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5053         }
5054
5055         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5056         tmp |= (1 << 11);
5057         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5058
5059         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5060         tmp |= (1 << 11);
5061         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5062
5063         if (is_sdv) {
5064                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5065                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5066                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5067
5068                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5069                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5070                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5071
5072                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5073                 tmp |= (0x3F << 8);
5074                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5075
5076                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5077                 tmp |= (0x3F << 8);
5078                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5079         }
5080
5081         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5082         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5083         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5084
5085         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5086         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5087         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5088
5089         if (!is_sdv) {
5090                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5091                 tmp &= ~(7 << 13);
5092                 tmp |= (5 << 13);
5093                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5094
5095                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5096                 tmp &= ~(7 << 13);
5097                 tmp |= (5 << 13);
5098                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5099         }
5100
5101         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5102         tmp &= ~0xFF;
5103         tmp |= 0x1C;
5104         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5105
5106         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5107         tmp &= ~0xFF;
5108         tmp |= 0x1C;
5109         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5110
5111         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5112         tmp &= ~(0xFF << 16);
5113         tmp |= (0x1C << 16);
5114         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5115
5116         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5117         tmp &= ~(0xFF << 16);
5118         tmp |= (0x1C << 16);
5119         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5120
5121         if (!is_sdv) {
5122                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5123                 tmp |= (1 << 27);
5124                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5125
5126                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5127                 tmp |= (1 << 27);
5128                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5129
5130                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5131                 tmp &= ~(0xF << 28);
5132                 tmp |= (4 << 28);
5133                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5134
5135                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5136                 tmp &= ~(0xF << 28);
5137                 tmp |= (4 << 28);
5138                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5139         }
5140
5141         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5142         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5143         tmp |= SBI_DBUFF0_ENABLE;
5144         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5145 }
5146
5147 /*
5148  * Initialize reference clocks when the driver loads
5149  */
5150 void intel_init_pch_refclk(struct drm_device *dev)
5151 {
5152         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5153                 ironlake_init_pch_refclk(dev);
5154         else if (HAS_PCH_LPT(dev))
5155                 lpt_init_pch_refclk(dev);
5156 }
5157
5158 static int ironlake_get_refclk(struct drm_crtc *crtc)
5159 {
5160         struct drm_device *dev = crtc->dev;
5161         struct drm_i915_private *dev_priv = dev->dev_private;
5162         struct intel_encoder *encoder;
5163         struct intel_encoder *edp_encoder = NULL;
5164         int num_connectors = 0;
5165         bool is_lvds = false;
5166
5167         for_each_encoder_on_crtc(dev, crtc, encoder) {
5168                 switch (encoder->type) {
5169                 case INTEL_OUTPUT_LVDS:
5170                         is_lvds = true;
5171                         break;
5172                 case INTEL_OUTPUT_EDP:
5173                         edp_encoder = encoder;
5174                         break;
5175                 }
5176                 num_connectors++;
5177         }
5178
5179         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5180                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5181                               dev_priv->lvds_ssc_freq);
5182                 return dev_priv->lvds_ssc_freq * 1000;
5183         }
5184
5185         return 120000;
5186 }
5187
5188 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5189                                   struct drm_display_mode *adjusted_mode,
5190                                   bool dither)
5191 {
5192         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5194         int pipe = intel_crtc->pipe;
5195         uint32_t val;
5196
5197         val = I915_READ(PIPECONF(pipe));
5198
5199         val &= ~PIPE_BPC_MASK;
5200         switch (intel_crtc->bpp) {
5201         case 18:
5202                 val |= PIPE_6BPC;
5203                 break;
5204         case 24:
5205                 val |= PIPE_8BPC;
5206                 break;
5207         case 30:
5208                 val |= PIPE_10BPC;
5209                 break;
5210         case 36:
5211                 val |= PIPE_12BPC;
5212                 break;
5213         default:
5214                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5215                 BUG();
5216         }
5217
5218         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5219         if (dither)
5220                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5221
5222         val &= ~PIPECONF_INTERLACE_MASK;
5223         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5224                 val |= PIPECONF_INTERLACED_ILK;
5225         else
5226                 val |= PIPECONF_PROGRESSIVE;
5227
5228         I915_WRITE(PIPECONF(pipe), val);
5229         POSTING_READ(PIPECONF(pipe));
5230 }
5231
5232 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5233                                  struct drm_display_mode *adjusted_mode,
5234                                  bool dither)
5235 {
5236         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5238         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5239         uint32_t val;
5240
5241         val = I915_READ(PIPECONF(cpu_transcoder));
5242
5243         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5244         if (dither)
5245                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5246
5247         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5248         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5249                 val |= PIPECONF_INTERLACED_ILK;
5250         else
5251                 val |= PIPECONF_PROGRESSIVE;
5252
5253         I915_WRITE(PIPECONF(cpu_transcoder), val);
5254         POSTING_READ(PIPECONF(cpu_transcoder));
5255 }
5256
5257 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5258                                     struct drm_display_mode *adjusted_mode,
5259                                     intel_clock_t *clock,
5260                                     bool *has_reduced_clock,
5261                                     intel_clock_t *reduced_clock)
5262 {
5263         struct drm_device *dev = crtc->dev;
5264         struct drm_i915_private *dev_priv = dev->dev_private;
5265         struct intel_encoder *intel_encoder;
5266         int refclk;
5267         const intel_limit_t *limit;
5268         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5269
5270         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5271                 switch (intel_encoder->type) {
5272                 case INTEL_OUTPUT_LVDS:
5273                         is_lvds = true;
5274                         break;
5275                 case INTEL_OUTPUT_SDVO:
5276                 case INTEL_OUTPUT_HDMI:
5277                         is_sdvo = true;
5278                         if (intel_encoder->needs_tv_clock)
5279                                 is_tv = true;
5280                         break;
5281                 case INTEL_OUTPUT_TVOUT:
5282                         is_tv = true;
5283                         break;
5284                 }
5285         }
5286
5287         refclk = ironlake_get_refclk(crtc);
5288
5289         /*
5290          * Returns a set of divisors for the desired target clock with the given
5291          * refclk, or FALSE.  The returned values represent the clock equation:
5292          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5293          */
5294         limit = intel_limit(crtc, refclk);
5295         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5296                               clock);
5297         if (!ret)
5298                 return false;
5299
5300         if (is_lvds && dev_priv->lvds_downclock_avail) {
5301                 /*
5302                  * Ensure we match the reduced clock's P to the target clock.
5303                  * If the clocks don't match, we can't switch the display clock
5304                  * by using the FP0/FP1. In such case we will disable the LVDS
5305                  * downclock feature.
5306                 */
5307                 *has_reduced_clock = limit->find_pll(limit, crtc,
5308                                                      dev_priv->lvds_downclock,
5309                                                      refclk,
5310                                                      clock,
5311                                                      reduced_clock);
5312         }
5313
5314         if (is_sdvo && is_tv)
5315                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5316
5317         return true;
5318 }
5319
5320 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5321 {
5322         struct drm_i915_private *dev_priv = dev->dev_private;
5323         uint32_t temp;
5324
5325         temp = I915_READ(SOUTH_CHICKEN1);
5326         if (temp & FDI_BC_BIFURCATION_SELECT)
5327                 return;
5328
5329         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5330         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5331
5332         temp |= FDI_BC_BIFURCATION_SELECT;
5333         DRM_DEBUG_KMS("enabling fdi C rx\n");
5334         I915_WRITE(SOUTH_CHICKEN1, temp);
5335         POSTING_READ(SOUTH_CHICKEN1);
5336 }
5337
5338 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5339 {
5340         struct drm_device *dev = intel_crtc->base.dev;
5341         struct drm_i915_private *dev_priv = dev->dev_private;
5342         struct intel_crtc *pipe_B_crtc =
5343                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5344
5345         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5346                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5347         if (intel_crtc->fdi_lanes > 4) {
5348                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5349                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5350                 /* Clamp lanes to avoid programming the hw with bogus values. */
5351                 intel_crtc->fdi_lanes = 4;
5352
5353                 return false;
5354         }
5355
5356         if (dev_priv->num_pipe == 2)
5357                 return true;
5358
5359         switch (intel_crtc->pipe) {
5360         case PIPE_A:
5361                 return true;
5362         case PIPE_B:
5363                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5364                     intel_crtc->fdi_lanes > 2) {
5365                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5366                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5367                         /* Clamp lanes to avoid programming the hw with bogus values. */
5368                         intel_crtc->fdi_lanes = 2;
5369
5370                         return false;
5371                 }
5372
5373                 if (intel_crtc->fdi_lanes > 2)
5374                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5375                 else
5376                         cpt_enable_fdi_bc_bifurcation(dev);
5377
5378                 return true;
5379         case PIPE_C:
5380                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5381                         if (intel_crtc->fdi_lanes > 2) {
5382                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5383                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5384                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5385                                 intel_crtc->fdi_lanes = 2;
5386
5387                                 return false;
5388                         }
5389                 } else {
5390                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5391                         return false;
5392                 }
5393
5394                 cpt_enable_fdi_bc_bifurcation(dev);
5395
5396                 return true;
5397         default:
5398                 BUG();
5399         }
5400 }
5401
5402 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5403 {
5404         /*
5405          * Account for spread spectrum to avoid
5406          * oversubscribing the link. Max center spread
5407          * is 2.5%; use 5% for safety's sake.
5408          */
5409         u32 bps = target_clock * bpp * 21 / 20;
5410         return bps / (link_bw * 8) + 1;
5411 }
5412
5413 static void ironlake_set_m_n(struct drm_crtc *crtc,
5414                              struct drm_display_mode *mode,
5415                              struct drm_display_mode *adjusted_mode)
5416 {
5417         struct drm_device *dev = crtc->dev;
5418         struct drm_i915_private *dev_priv = dev->dev_private;
5419         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5420         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5421         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5422         struct fdi_m_n m_n = {0};
5423         int target_clock, pixel_multiplier, lane, link_bw;
5424         bool is_dp = false, is_cpu_edp = false;
5425
5426         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5427                 switch (intel_encoder->type) {
5428                 case INTEL_OUTPUT_DISPLAYPORT:
5429                         is_dp = true;
5430                         break;
5431                 case INTEL_OUTPUT_EDP:
5432                         is_dp = true;
5433                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5434                                 is_cpu_edp = true;
5435                         edp_encoder = intel_encoder;
5436                         break;
5437                 }
5438         }
5439
5440         /* FDI link */
5441         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5442         lane = 0;
5443         /* CPU eDP doesn't require FDI link, so just set DP M/N
5444            according to current link config */
5445         if (is_cpu_edp) {
5446                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5447         } else {
5448                 /* FDI is a binary signal running at ~2.7GHz, encoding
5449                  * each output octet as 10 bits. The actual frequency
5450                  * is stored as a divider into a 100MHz clock, and the
5451                  * mode pixel clock is stored in units of 1KHz.
5452                  * Hence the bw of each lane in terms of the mode signal
5453                  * is:
5454                  */
5455                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5456         }
5457
5458         /* [e]DP over FDI requires target mode clock instead of link clock. */
5459         if (edp_encoder)
5460                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5461         else if (is_dp)
5462                 target_clock = mode->clock;
5463         else
5464                 target_clock = adjusted_mode->clock;
5465
5466         if (!lane)
5467                 lane = ironlake_get_lanes_required(target_clock, link_bw,
5468                                                    intel_crtc->bpp);
5469
5470         intel_crtc->fdi_lanes = lane;
5471
5472         if (pixel_multiplier > 1)
5473                 link_bw *= pixel_multiplier;
5474         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5475                              &m_n);
5476
5477         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5478         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5479         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5480         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5481 }
5482
5483 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5484                                       struct drm_display_mode *adjusted_mode,
5485                                       intel_clock_t *clock, u32 fp)
5486 {
5487         struct drm_crtc *crtc = &intel_crtc->base;
5488         struct drm_device *dev = crtc->dev;
5489         struct drm_i915_private *dev_priv = dev->dev_private;
5490         struct intel_encoder *intel_encoder;
5491         uint32_t dpll;
5492         int factor, pixel_multiplier, num_connectors = 0;
5493         bool is_lvds = false, is_sdvo = false, is_tv = false;
5494         bool is_dp = false, is_cpu_edp = false;
5495
5496         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5497                 switch (intel_encoder->type) {
5498                 case INTEL_OUTPUT_LVDS:
5499                         is_lvds = true;
5500                         break;
5501                 case INTEL_OUTPUT_SDVO:
5502                 case INTEL_OUTPUT_HDMI:
5503                         is_sdvo = true;
5504                         if (intel_encoder->needs_tv_clock)
5505                                 is_tv = true;
5506                         break;
5507                 case INTEL_OUTPUT_TVOUT:
5508                         is_tv = true;
5509                         break;
5510                 case INTEL_OUTPUT_DISPLAYPORT:
5511                         is_dp = true;
5512                         break;
5513                 case INTEL_OUTPUT_EDP:
5514                         is_dp = true;
5515                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5516                                 is_cpu_edp = true;
5517                         break;
5518                 }
5519
5520                 num_connectors++;
5521         }
5522
5523         /* Enable autotuning of the PLL clock (if permissible) */
5524         factor = 21;
5525         if (is_lvds) {
5526                 if ((intel_panel_use_ssc(dev_priv) &&
5527                      dev_priv->lvds_ssc_freq == 100) ||
5528                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5529                         factor = 25;
5530         } else if (is_sdvo && is_tv)
5531                 factor = 20;
5532
5533         if (clock->m < factor * clock->n)
5534                 fp |= FP_CB_TUNE;
5535
5536         dpll = 0;
5537
5538         if (is_lvds)
5539                 dpll |= DPLLB_MODE_LVDS;
5540         else
5541                 dpll |= DPLLB_MODE_DAC_SERIAL;
5542         if (is_sdvo) {
5543                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5544                 if (pixel_multiplier > 1) {
5545                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5546                 }
5547                 dpll |= DPLL_DVO_HIGH_SPEED;
5548         }
5549         if (is_dp && !is_cpu_edp)
5550                 dpll |= DPLL_DVO_HIGH_SPEED;
5551
5552         /* compute bitmask from p1 value */
5553         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5554         /* also FPA1 */
5555         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5556
5557         switch (clock->p2) {
5558         case 5:
5559                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5560                 break;
5561         case 7:
5562                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5563                 break;
5564         case 10:
5565                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5566                 break;
5567         case 14:
5568                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5569                 break;
5570         }
5571
5572         if (is_sdvo && is_tv)
5573                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5574         else if (is_tv)
5575                 /* XXX: just matching BIOS for now */
5576                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5577                 dpll |= 3;
5578         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5579                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5580         else
5581                 dpll |= PLL_REF_INPUT_DREFCLK;
5582
5583         return dpll;
5584 }
5585
5586 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5587                                   struct drm_display_mode *mode,
5588                                   struct drm_display_mode *adjusted_mode,
5589                                   int x, int y,
5590                                   struct drm_framebuffer *fb)
5591 {
5592         struct drm_device *dev = crtc->dev;
5593         struct drm_i915_private *dev_priv = dev->dev_private;
5594         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5595         int pipe = intel_crtc->pipe;
5596         int plane = intel_crtc->plane;
5597         int num_connectors = 0;
5598         intel_clock_t clock, reduced_clock;
5599         u32 dpll, fp = 0, fp2 = 0;
5600         bool ok, has_reduced_clock = false;
5601         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5602         struct intel_encoder *encoder;
5603         u32 temp;
5604         int ret;
5605         bool dither, fdi_config_ok;
5606
5607         for_each_encoder_on_crtc(dev, crtc, encoder) {
5608                 switch (encoder->type) {
5609                 case INTEL_OUTPUT_LVDS:
5610                         is_lvds = true;
5611                         break;
5612                 case INTEL_OUTPUT_DISPLAYPORT:
5613                         is_dp = true;
5614                         break;
5615                 case INTEL_OUTPUT_EDP:
5616                         is_dp = true;
5617                         if (!intel_encoder_is_pch_edp(&encoder->base))
5618                                 is_cpu_edp = true;
5619                         break;
5620                 }
5621
5622                 num_connectors++;
5623         }
5624
5625         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5626              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5627
5628         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5629                                      &has_reduced_clock, &reduced_clock);
5630         if (!ok) {
5631                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5632                 return -EINVAL;
5633         }
5634
5635         /* Ensure that the cursor is valid for the new mode before changing... */
5636         intel_crtc_update_cursor(crtc, true);
5637
5638         /* determine panel color depth */
5639         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5640                                               adjusted_mode);
5641         if (is_lvds && dev_priv->lvds_dither)
5642                 dither = true;
5643
5644         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5645         if (has_reduced_clock)
5646                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5647                         reduced_clock.m2;
5648
5649         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5650
5651         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5652         drm_mode_debug_printmodeline(mode);
5653
5654         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5655         if (!is_cpu_edp) {
5656                 struct intel_pch_pll *pll;
5657
5658                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5659                 if (pll == NULL) {
5660                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5661                                          pipe);
5662                         return -EINVAL;
5663                 }
5664         } else
5665                 intel_put_pch_pll(intel_crtc);
5666
5667         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5668          * This is an exception to the general rule that mode_set doesn't turn
5669          * things on.
5670          */
5671         if (is_lvds) {
5672                 temp = I915_READ(PCH_LVDS);
5673                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5674                 if (HAS_PCH_CPT(dev)) {
5675                         temp &= ~PORT_TRANS_SEL_MASK;
5676                         temp |= PORT_TRANS_SEL_CPT(pipe);
5677                 } else {
5678                         if (pipe == 1)
5679                                 temp |= LVDS_PIPEB_SELECT;
5680                         else
5681                                 temp &= ~LVDS_PIPEB_SELECT;
5682                 }
5683
5684                 /* set the corresponsding LVDS_BORDER bit */
5685                 temp |= dev_priv->lvds_border_bits;
5686                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5687                  * set the DPLLs for dual-channel mode or not.
5688                  */
5689                 if (clock.p2 == 7)
5690                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5691                 else
5692                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5693
5694                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5695                  * appropriately here, but we need to look more thoroughly into how
5696                  * panels behave in the two modes.
5697                  */
5698                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5699                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5700                         temp |= LVDS_HSYNC_POLARITY;
5701                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5702                         temp |= LVDS_VSYNC_POLARITY;
5703                 I915_WRITE(PCH_LVDS, temp);
5704         }
5705
5706         if (is_dp && !is_cpu_edp) {
5707                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5708         } else {
5709                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5710                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5711                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5712                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5713                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5714         }
5715
5716         if (intel_crtc->pch_pll) {
5717                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5718
5719                 /* Wait for the clocks to stabilize. */
5720                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5721                 udelay(150);
5722
5723                 /* The pixel multiplier can only be updated once the
5724                  * DPLL is enabled and the clocks are stable.
5725                  *
5726                  * So write it again.
5727                  */
5728                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5729         }
5730
5731         intel_crtc->lowfreq_avail = false;
5732         if (intel_crtc->pch_pll) {
5733                 if (is_lvds && has_reduced_clock && i915_powersave) {
5734                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5735                         intel_crtc->lowfreq_avail = true;
5736                 } else {
5737                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5738                 }
5739         }
5740
5741         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5742
5743         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5744          * ironlake_check_fdi_lanes. */
5745         ironlake_set_m_n(crtc, mode, adjusted_mode);
5746
5747         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5748
5749         if (is_cpu_edp)
5750                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5751
5752         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5753
5754         intel_wait_for_vblank(dev, pipe);
5755
5756         /* Set up the display plane register */
5757         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5758         POSTING_READ(DSPCNTR(plane));
5759
5760         ret = intel_pipe_set_base(crtc, x, y, fb);
5761
5762         intel_update_watermarks(dev);
5763
5764         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5765
5766         return fdi_config_ok ? ret : -EINVAL;
5767 }
5768
5769 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5770                                  struct drm_display_mode *mode,
5771                                  struct drm_display_mode *adjusted_mode,
5772                                  int x, int y,
5773                                  struct drm_framebuffer *fb)
5774 {
5775         struct drm_device *dev = crtc->dev;
5776         struct drm_i915_private *dev_priv = dev->dev_private;
5777         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5778         int pipe = intel_crtc->pipe;
5779         int plane = intel_crtc->plane;
5780         int num_connectors = 0;
5781         intel_clock_t clock, reduced_clock;
5782         u32 dpll = 0, fp = 0, fp2 = 0;
5783         bool ok, has_reduced_clock = false;
5784         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5785         struct intel_encoder *encoder;
5786         u32 temp;
5787         int ret;
5788         bool dither;
5789
5790         for_each_encoder_on_crtc(dev, crtc, encoder) {
5791                 switch (encoder->type) {
5792                 case INTEL_OUTPUT_LVDS:
5793                         is_lvds = true;
5794                         break;
5795                 case INTEL_OUTPUT_DISPLAYPORT:
5796                         is_dp = true;
5797                         break;
5798                 case INTEL_OUTPUT_EDP:
5799                         is_dp = true;
5800                         if (!intel_encoder_is_pch_edp(&encoder->base))
5801                                 is_cpu_edp = true;
5802                         break;
5803                 }
5804
5805                 num_connectors++;
5806         }
5807
5808         if (is_cpu_edp)
5809                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5810         else
5811                 intel_crtc->cpu_transcoder = pipe;
5812
5813         /* We are not sure yet this won't happen. */
5814         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5815              INTEL_PCH_TYPE(dev));
5816
5817         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5818              num_connectors, pipe_name(pipe));
5819
5820         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5821                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5822
5823         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5824
5825         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5826                 return -EINVAL;
5827
5828         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5829                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5830                                              &has_reduced_clock,
5831                                              &reduced_clock);
5832                 if (!ok) {
5833                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5834                         return -EINVAL;
5835                 }
5836         }
5837
5838         /* Ensure that the cursor is valid for the new mode before changing... */
5839         intel_crtc_update_cursor(crtc, true);
5840
5841         /* determine panel color depth */
5842         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5843                                               adjusted_mode);
5844         if (is_lvds && dev_priv->lvds_dither)
5845                 dither = true;
5846
5847         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5848         drm_mode_debug_printmodeline(mode);
5849
5850         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5851                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5852                 if (has_reduced_clock)
5853                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5854                               reduced_clock.m2;
5855
5856                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5857                                              fp);
5858
5859                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5860                  * own on pre-Haswell/LPT generation */
5861                 if (!is_cpu_edp) {
5862                         struct intel_pch_pll *pll;
5863
5864                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5865                         if (pll == NULL) {
5866                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5867                                                  pipe);
5868                                 return -EINVAL;
5869                         }
5870                 } else
5871                         intel_put_pch_pll(intel_crtc);
5872
5873                 /* The LVDS pin pair needs to be on before the DPLLs are
5874                  * enabled.  This is an exception to the general rule that
5875                  * mode_set doesn't turn things on.
5876                  */
5877                 if (is_lvds) {
5878                         temp = I915_READ(PCH_LVDS);
5879                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5880                         if (HAS_PCH_CPT(dev)) {
5881                                 temp &= ~PORT_TRANS_SEL_MASK;
5882                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5883                         } else {
5884                                 if (pipe == 1)
5885                                         temp |= LVDS_PIPEB_SELECT;
5886                                 else
5887                                         temp &= ~LVDS_PIPEB_SELECT;
5888                         }
5889
5890                         /* set the corresponsding LVDS_BORDER bit */
5891                         temp |= dev_priv->lvds_border_bits;
5892                         /* Set the B0-B3 data pairs corresponding to whether
5893                          * we're going to set the DPLLs for dual-channel mode or
5894                          * not.
5895                          */
5896                         if (clock.p2 == 7)
5897                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5898                         else
5899                                 temp &= ~(LVDS_B0B3_POWER_UP |
5900                                           LVDS_CLKB_POWER_UP);
5901
5902                         /* It would be nice to set 24 vs 18-bit mode
5903                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5904                          * look more thoroughly into how panels behave in the
5905                          * two modes.
5906                          */
5907                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5908                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5909                                 temp |= LVDS_HSYNC_POLARITY;
5910                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5911                                 temp |= LVDS_VSYNC_POLARITY;
5912                         I915_WRITE(PCH_LVDS, temp);
5913                 }
5914         }
5915
5916         if (is_dp && !is_cpu_edp) {
5917                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5918         } else {
5919                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5920                         /* For non-DP output, clear any trans DP clock recovery
5921                          * setting.*/
5922                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5923                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5924                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5925                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5926                 }
5927         }
5928
5929         intel_crtc->lowfreq_avail = false;
5930         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5931                 if (intel_crtc->pch_pll) {
5932                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5933
5934                         /* Wait for the clocks to stabilize. */
5935                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5936                         udelay(150);
5937
5938                         /* The pixel multiplier can only be updated once the
5939                          * DPLL is enabled and the clocks are stable.
5940                          *
5941                          * So write it again.
5942                          */
5943                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5944                 }
5945
5946                 if (intel_crtc->pch_pll) {
5947                         if (is_lvds && has_reduced_clock && i915_powersave) {
5948                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5949                                 intel_crtc->lowfreq_avail = true;
5950                         } else {
5951                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5952                         }
5953                 }
5954         }
5955
5956         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5957
5958         if (!is_dp || is_cpu_edp)
5959                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5960
5961         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5962                 if (is_cpu_edp)
5963                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5964
5965         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5966
5967         /* Set up the display plane register */
5968         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5969         POSTING_READ(DSPCNTR(plane));
5970
5971         ret = intel_pipe_set_base(crtc, x, y, fb);
5972
5973         intel_update_watermarks(dev);
5974
5975         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5976
5977         return ret;
5978 }
5979
5980 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5981                                struct drm_display_mode *mode,
5982                                struct drm_display_mode *adjusted_mode,
5983                                int x, int y,
5984                                struct drm_framebuffer *fb)
5985 {
5986         struct drm_device *dev = crtc->dev;
5987         struct drm_i915_private *dev_priv = dev->dev_private;
5988         struct drm_encoder_helper_funcs *encoder_funcs;
5989         struct intel_encoder *encoder;
5990         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5991         int pipe = intel_crtc->pipe;
5992         int ret;
5993
5994         drm_vblank_pre_modeset(dev, pipe);
5995
5996         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5997                                               x, y, fb);
5998         drm_vblank_post_modeset(dev, pipe);
5999
6000         if (ret != 0)
6001                 return ret;
6002
6003         for_each_encoder_on_crtc(dev, crtc, encoder) {
6004                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6005                         encoder->base.base.id,
6006                         drm_get_encoder_name(&encoder->base),
6007                         mode->base.id, mode->name);
6008                 encoder_funcs = encoder->base.helper_private;
6009                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
6010         }
6011
6012         return 0;
6013 }
6014
6015 static bool intel_eld_uptodate(struct drm_connector *connector,
6016                                int reg_eldv, uint32_t bits_eldv,
6017                                int reg_elda, uint32_t bits_elda,
6018                                int reg_edid)
6019 {
6020         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6021         uint8_t *eld = connector->eld;
6022         uint32_t i;
6023
6024         i = I915_READ(reg_eldv);
6025         i &= bits_eldv;
6026
6027         if (!eld[0])
6028                 return !i;
6029
6030         if (!i)
6031                 return false;
6032
6033         i = I915_READ(reg_elda);
6034         i &= ~bits_elda;
6035         I915_WRITE(reg_elda, i);
6036
6037         for (i = 0; i < eld[2]; i++)
6038                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6039                         return false;
6040
6041         return true;
6042 }
6043
6044 static void g4x_write_eld(struct drm_connector *connector,
6045                           struct drm_crtc *crtc)
6046 {
6047         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6048         uint8_t *eld = connector->eld;
6049         uint32_t eldv;
6050         uint32_t len;
6051         uint32_t i;
6052
6053         i = I915_READ(G4X_AUD_VID_DID);
6054
6055         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6056                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6057         else
6058                 eldv = G4X_ELDV_DEVCTG;
6059
6060         if (intel_eld_uptodate(connector,
6061                                G4X_AUD_CNTL_ST, eldv,
6062                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6063                                G4X_HDMIW_HDMIEDID))
6064                 return;
6065
6066         i = I915_READ(G4X_AUD_CNTL_ST);
6067         i &= ~(eldv | G4X_ELD_ADDR);
6068         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6069         I915_WRITE(G4X_AUD_CNTL_ST, i);
6070
6071         if (!eld[0])
6072                 return;
6073
6074         len = min_t(uint8_t, eld[2], len);
6075         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6076         for (i = 0; i < len; i++)
6077                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6078
6079         i = I915_READ(G4X_AUD_CNTL_ST);
6080         i |= eldv;
6081         I915_WRITE(G4X_AUD_CNTL_ST, i);
6082 }
6083
6084 static void haswell_write_eld(struct drm_connector *connector,
6085                                      struct drm_crtc *crtc)
6086 {
6087         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6088         uint8_t *eld = connector->eld;
6089         struct drm_device *dev = crtc->dev;
6090         uint32_t eldv;
6091         uint32_t i;
6092         int len;
6093         int pipe = to_intel_crtc(crtc)->pipe;
6094         int tmp;
6095
6096         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6097         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6098         int aud_config = HSW_AUD_CFG(pipe);
6099         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6100
6101
6102         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6103
6104         /* Audio output enable */
6105         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6106         tmp = I915_READ(aud_cntrl_st2);
6107         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6108         I915_WRITE(aud_cntrl_st2, tmp);
6109
6110         /* Wait for 1 vertical blank */
6111         intel_wait_for_vblank(dev, pipe);
6112
6113         /* Set ELD valid state */
6114         tmp = I915_READ(aud_cntrl_st2);
6115         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6116         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6117         I915_WRITE(aud_cntrl_st2, tmp);
6118         tmp = I915_READ(aud_cntrl_st2);
6119         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6120
6121         /* Enable HDMI mode */
6122         tmp = I915_READ(aud_config);
6123         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6124         /* clear N_programing_enable and N_value_index */
6125         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6126         I915_WRITE(aud_config, tmp);
6127
6128         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6129
6130         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6131
6132         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6133                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6134                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6135                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6136         } else
6137                 I915_WRITE(aud_config, 0);
6138
6139         if (intel_eld_uptodate(connector,
6140                                aud_cntrl_st2, eldv,
6141                                aud_cntl_st, IBX_ELD_ADDRESS,
6142                                hdmiw_hdmiedid))
6143                 return;
6144
6145         i = I915_READ(aud_cntrl_st2);
6146         i &= ~eldv;
6147         I915_WRITE(aud_cntrl_st2, i);
6148
6149         if (!eld[0])
6150                 return;
6151
6152         i = I915_READ(aud_cntl_st);
6153         i &= ~IBX_ELD_ADDRESS;
6154         I915_WRITE(aud_cntl_st, i);
6155         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6156         DRM_DEBUG_DRIVER("port num:%d\n", i);
6157
6158         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6159         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6160         for (i = 0; i < len; i++)
6161                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6162
6163         i = I915_READ(aud_cntrl_st2);
6164         i |= eldv;
6165         I915_WRITE(aud_cntrl_st2, i);
6166
6167 }
6168
6169 static void ironlake_write_eld(struct drm_connector *connector,
6170                                      struct drm_crtc *crtc)
6171 {
6172         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6173         uint8_t *eld = connector->eld;
6174         uint32_t eldv;
6175         uint32_t i;
6176         int len;
6177         int hdmiw_hdmiedid;
6178         int aud_config;
6179         int aud_cntl_st;
6180         int aud_cntrl_st2;
6181         int pipe = to_intel_crtc(crtc)->pipe;
6182
6183         if (HAS_PCH_IBX(connector->dev)) {
6184                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6185                 aud_config = IBX_AUD_CFG(pipe);
6186                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6187                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6188         } else {
6189                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6190                 aud_config = CPT_AUD_CFG(pipe);
6191                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6192                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6193         }
6194
6195         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6196
6197         i = I915_READ(aud_cntl_st);
6198         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6199         if (!i) {
6200                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6201                 /* operate blindly on all ports */
6202                 eldv = IBX_ELD_VALIDB;
6203                 eldv |= IBX_ELD_VALIDB << 4;
6204                 eldv |= IBX_ELD_VALIDB << 8;
6205         } else {
6206                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6207                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6208         }
6209
6210         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6211                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6212                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6213                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6214         } else
6215                 I915_WRITE(aud_config, 0);
6216
6217         if (intel_eld_uptodate(connector,
6218                                aud_cntrl_st2, eldv,
6219                                aud_cntl_st, IBX_ELD_ADDRESS,
6220                                hdmiw_hdmiedid))
6221                 return;
6222
6223         i = I915_READ(aud_cntrl_st2);
6224         i &= ~eldv;
6225         I915_WRITE(aud_cntrl_st2, i);
6226
6227         if (!eld[0])
6228                 return;
6229
6230         i = I915_READ(aud_cntl_st);
6231         i &= ~IBX_ELD_ADDRESS;
6232         I915_WRITE(aud_cntl_st, i);
6233
6234         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6235         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6236         for (i = 0; i < len; i++)
6237                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6238
6239         i = I915_READ(aud_cntrl_st2);
6240         i |= eldv;
6241         I915_WRITE(aud_cntrl_st2, i);
6242 }
6243
6244 void intel_write_eld(struct drm_encoder *encoder,
6245                      struct drm_display_mode *mode)
6246 {
6247         struct drm_crtc *crtc = encoder->crtc;
6248         struct drm_connector *connector;
6249         struct drm_device *dev = encoder->dev;
6250         struct drm_i915_private *dev_priv = dev->dev_private;
6251
6252         connector = drm_select_eld(encoder, mode);
6253         if (!connector)
6254                 return;
6255
6256         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6257                          connector->base.id,
6258                          drm_get_connector_name(connector),
6259                          connector->encoder->base.id,
6260                          drm_get_encoder_name(connector->encoder));
6261
6262         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6263
6264         if (dev_priv->display.write_eld)
6265                 dev_priv->display.write_eld(connector, crtc);
6266 }
6267
6268 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6269 void intel_crtc_load_lut(struct drm_crtc *crtc)
6270 {
6271         struct drm_device *dev = crtc->dev;
6272         struct drm_i915_private *dev_priv = dev->dev_private;
6273         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6274         int palreg = PALETTE(intel_crtc->pipe);
6275         int i;
6276
6277         /* The clocks have to be on to load the palette. */
6278         if (!crtc->enabled || !intel_crtc->active)
6279                 return;
6280
6281         /* use legacy palette for Ironlake */
6282         if (HAS_PCH_SPLIT(dev))
6283                 palreg = LGC_PALETTE(intel_crtc->pipe);
6284
6285         for (i = 0; i < 256; i++) {
6286                 I915_WRITE(palreg + 4 * i,
6287                            (intel_crtc->lut_r[i] << 16) |
6288                            (intel_crtc->lut_g[i] << 8) |
6289                            intel_crtc->lut_b[i]);
6290         }
6291 }
6292
6293 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6294 {
6295         struct drm_device *dev = crtc->dev;
6296         struct drm_i915_private *dev_priv = dev->dev_private;
6297         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6298         bool visible = base != 0;
6299         u32 cntl;
6300
6301         if (intel_crtc->cursor_visible == visible)
6302                 return;
6303
6304         cntl = I915_READ(_CURACNTR);
6305         if (visible) {
6306                 /* On these chipsets we can only modify the base whilst
6307                  * the cursor is disabled.
6308                  */
6309                 I915_WRITE(_CURABASE, base);
6310
6311                 cntl &= ~(CURSOR_FORMAT_MASK);
6312                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6313                 cntl |= CURSOR_ENABLE |
6314                         CURSOR_GAMMA_ENABLE |
6315                         CURSOR_FORMAT_ARGB;
6316         } else
6317                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6318         I915_WRITE(_CURACNTR, cntl);
6319
6320         intel_crtc->cursor_visible = visible;
6321 }
6322
6323 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6324 {
6325         struct drm_device *dev = crtc->dev;
6326         struct drm_i915_private *dev_priv = dev->dev_private;
6327         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6328         int pipe = intel_crtc->pipe;
6329         bool visible = base != 0;
6330
6331         if (intel_crtc->cursor_visible != visible) {
6332                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6333                 if (base) {
6334                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6335                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6336                         cntl |= pipe << 28; /* Connect to correct pipe */
6337                 } else {
6338                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6339                         cntl |= CURSOR_MODE_DISABLE;
6340                 }
6341                 I915_WRITE(CURCNTR(pipe), cntl);
6342
6343                 intel_crtc->cursor_visible = visible;
6344         }
6345         /* and commit changes on next vblank */
6346         I915_WRITE(CURBASE(pipe), base);
6347 }
6348
6349 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6350 {
6351         struct drm_device *dev = crtc->dev;
6352         struct drm_i915_private *dev_priv = dev->dev_private;
6353         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6354         int pipe = intel_crtc->pipe;
6355         bool visible = base != 0;
6356
6357         if (intel_crtc->cursor_visible != visible) {
6358                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6359                 if (base) {
6360                         cntl &= ~CURSOR_MODE;
6361                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6362                 } else {
6363                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6364                         cntl |= CURSOR_MODE_DISABLE;
6365                 }
6366                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6367
6368                 intel_crtc->cursor_visible = visible;
6369         }
6370         /* and commit changes on next vblank */
6371         I915_WRITE(CURBASE_IVB(pipe), base);
6372 }
6373
6374 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6375 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6376                                      bool on)
6377 {
6378         struct drm_device *dev = crtc->dev;
6379         struct drm_i915_private *dev_priv = dev->dev_private;
6380         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6381         int pipe = intel_crtc->pipe;
6382         int x = intel_crtc->cursor_x;
6383         int y = intel_crtc->cursor_y;
6384         u32 base, pos;
6385         bool visible;
6386
6387         pos = 0;
6388
6389         if (on && crtc->enabled && crtc->fb) {
6390                 base = intel_crtc->cursor_addr;
6391                 if (x > (int) crtc->fb->width)
6392                         base = 0;
6393
6394                 if (y > (int) crtc->fb->height)
6395                         base = 0;
6396         } else
6397                 base = 0;
6398
6399         if (x < 0) {
6400                 if (x + intel_crtc->cursor_width < 0)
6401                         base = 0;
6402
6403                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6404                 x = -x;
6405         }
6406         pos |= x << CURSOR_X_SHIFT;
6407
6408         if (y < 0) {
6409                 if (y + intel_crtc->cursor_height < 0)
6410                         base = 0;
6411
6412                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6413                 y = -y;
6414         }
6415         pos |= y << CURSOR_Y_SHIFT;
6416
6417         visible = base != 0;
6418         if (!visible && !intel_crtc->cursor_visible)
6419                 return;
6420
6421         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6422                 I915_WRITE(CURPOS_IVB(pipe), pos);
6423                 ivb_update_cursor(crtc, base);
6424         } else {
6425                 I915_WRITE(CURPOS(pipe), pos);
6426                 if (IS_845G(dev) || IS_I865G(dev))
6427                         i845_update_cursor(crtc, base);
6428                 else
6429                         i9xx_update_cursor(crtc, base);
6430         }
6431 }
6432
6433 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6434                                  struct drm_file *file,
6435                                  uint32_t handle,
6436                                  uint32_t width, uint32_t height)
6437 {
6438         struct drm_device *dev = crtc->dev;
6439         struct drm_i915_private *dev_priv = dev->dev_private;
6440         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6441         struct drm_i915_gem_object *obj;
6442         uint32_t addr;
6443         int ret;
6444
6445         /* if we want to turn off the cursor ignore width and height */
6446         if (!handle) {
6447                 DRM_DEBUG_KMS("cursor off\n");
6448                 addr = 0;
6449                 obj = NULL;
6450                 DRM_LOCK(dev);
6451                 goto finish;
6452         }
6453
6454         /* Currently we only support 64x64 cursors */
6455         if (width != 64 || height != 64) {
6456                 DRM_ERROR("we currently only support 64x64 cursors\n");
6457                 return -EINVAL;
6458         }
6459
6460         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6461         if (&obj->base == NULL)
6462                 return -ENOENT;
6463
6464         if (obj->base.size < width * height * 4) {
6465                 DRM_ERROR("buffer is to small\n");
6466                 ret = -ENOMEM;
6467                 goto fail;
6468         }
6469
6470         /* we only need to pin inside GTT if cursor is non-phy */
6471         DRM_LOCK(dev);
6472         if (!dev_priv->info->cursor_needs_physical) {
6473                 if (obj->tiling_mode) {
6474                         DRM_ERROR("cursor cannot be tiled\n");
6475                         ret = -EINVAL;
6476                         goto fail_locked;
6477                 }
6478
6479                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6480                 if (ret) {
6481                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6482                         goto fail_locked;
6483                 }
6484
6485                 ret = i915_gem_object_put_fence(obj);
6486                 if (ret) {
6487                         DRM_ERROR("failed to release fence for cursor");
6488                         goto fail_unpin;
6489                 }
6490
6491                 addr = obj->gtt_offset;
6492         } else {
6493                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6494                 ret = i915_gem_attach_phys_object(dev, obj,
6495                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6496                                                   align);
6497                 if (ret) {
6498                         DRM_ERROR("failed to attach phys object\n");
6499                         goto fail_locked;
6500                 }
6501                 addr = obj->phys_obj->handle->busaddr;
6502         }
6503
6504         if (IS_GEN2(dev))
6505                 I915_WRITE(CURSIZE, (height << 12) | width);
6506
6507  finish:
6508         if (intel_crtc->cursor_bo) {
6509                 if (dev_priv->info->cursor_needs_physical) {
6510                         if (intel_crtc->cursor_bo != obj)
6511                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6512                 } else
6513                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6514                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6515         }
6516
6517         DRM_UNLOCK(dev);
6518
6519         intel_crtc->cursor_addr = addr;
6520         intel_crtc->cursor_bo = obj;
6521         intel_crtc->cursor_width = width;
6522         intel_crtc->cursor_height = height;
6523
6524         intel_crtc_update_cursor(crtc, true);
6525
6526         return 0;
6527 fail_unpin:
6528         i915_gem_object_unpin(obj);
6529 fail_locked:
6530         DRM_UNLOCK(dev);
6531 fail:
6532         drm_gem_object_unreference_unlocked(&obj->base);
6533         return ret;
6534 }
6535
6536 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6537 {
6538         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6539
6540         intel_crtc->cursor_x = x;
6541         intel_crtc->cursor_y = y;
6542
6543         intel_crtc_update_cursor(crtc, true);
6544
6545         return 0;
6546 }
6547
6548 /** Sets the color ramps on behalf of RandR */
6549 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6550                                  u16 blue, int regno)
6551 {
6552         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6553
6554         intel_crtc->lut_r[regno] = red >> 8;
6555         intel_crtc->lut_g[regno] = green >> 8;
6556         intel_crtc->lut_b[regno] = blue >> 8;
6557 }
6558
6559 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6560                              u16 *blue, int regno)
6561 {
6562         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6563
6564         *red = intel_crtc->lut_r[regno] << 8;
6565         *green = intel_crtc->lut_g[regno] << 8;
6566         *blue = intel_crtc->lut_b[regno] << 8;
6567 }
6568
6569 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6570                                  u16 *blue, uint32_t start, uint32_t size)
6571 {
6572         int end = (start + size > 256) ? 256 : start + size, i;
6573         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6574
6575         for (i = start; i < end; i++) {
6576                 intel_crtc->lut_r[i] = red[i] >> 8;
6577                 intel_crtc->lut_g[i] = green[i] >> 8;
6578                 intel_crtc->lut_b[i] = blue[i] >> 8;
6579         }
6580
6581         intel_crtc_load_lut(crtc);
6582 }
6583
6584 /**
6585  * Get a pipe with a simple mode set on it for doing load-based monitor
6586  * detection.
6587  *
6588  * It will be up to the load-detect code to adjust the pipe as appropriate for
6589  * its requirements.  The pipe will be connected to no other encoders.
6590  *
6591  * Currently this code will only succeed if there is a pipe with no encoders
6592  * configured for it.  In the future, it could choose to temporarily disable
6593  * some outputs to free up a pipe for its use.
6594  *
6595  * \return crtc, or NULL if no pipes are available.
6596  */
6597
6598 /* VESA 640x480x72Hz mode to set on the pipe */
6599 static struct drm_display_mode load_detect_mode = {
6600         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6601                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6602 };
6603
6604 static int
6605 intel_framebuffer_create(struct drm_device *dev,
6606                          struct drm_mode_fb_cmd2 *mode_cmd,
6607                          struct drm_i915_gem_object *obj,
6608                          struct drm_framebuffer **res)
6609 {
6610         struct intel_framebuffer *intel_fb;
6611         int ret;
6612
6613         intel_fb = malloc(sizeof(*intel_fb), DRM_MEM_KMS, M_WAITOK | M_ZERO);
6614         if (!intel_fb) {
6615                 drm_gem_object_unreference_unlocked(&obj->base);
6616                 return -ENOMEM;
6617         }
6618
6619         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6620         if (ret) {
6621                 drm_gem_object_unreference_unlocked(&obj->base);
6622                 free(intel_fb, DRM_MEM_KMS);
6623                 return ret;
6624         }
6625
6626         *res = &intel_fb->base;
6627         return 0;
6628 }
6629
6630 static u32
6631 intel_framebuffer_pitch_for_width(int width, int bpp)
6632 {
6633         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6634         return roundup2(pitch, 64);
6635 }
6636
6637 static u32
6638 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6639 {
6640         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6641         return roundup2(pitch * mode->vdisplay, PAGE_SIZE);
6642 }
6643
6644 static int
6645 intel_framebuffer_create_for_mode(struct drm_device *dev,
6646                                   struct drm_display_mode *mode,
6647                                   int depth, int bpp,
6648                                   struct drm_framebuffer **res)
6649 {
6650         struct drm_i915_gem_object *obj;
6651         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6652
6653         obj = i915_gem_alloc_object(dev,
6654                                     intel_framebuffer_size_for_mode(mode, bpp));
6655         if (obj == NULL)
6656                 return -ENOMEM;
6657
6658         mode_cmd.width = mode->hdisplay;
6659         mode_cmd.height = mode->vdisplay;
6660         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6661                                                                 bpp);
6662         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6663
6664         return intel_framebuffer_create(dev, &mode_cmd, obj, res);
6665 }
6666
6667 static struct drm_framebuffer *
6668 mode_fits_in_fbdev(struct drm_device *dev,
6669                    struct drm_display_mode *mode)
6670 {
6671         struct drm_i915_private *dev_priv = dev->dev_private;
6672         struct drm_i915_gem_object *obj;
6673         struct drm_framebuffer *fb;
6674
6675         if (dev_priv->fbdev == NULL)
6676                 return NULL;
6677
6678         obj = dev_priv->fbdev->ifb.obj;
6679         if (obj == NULL)
6680                 return NULL;
6681
6682         fb = &dev_priv->fbdev->ifb.base;
6683         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6684                                                                fb->bits_per_pixel))
6685                 return NULL;
6686
6687         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6688                 return NULL;
6689
6690         return fb;
6691 }
6692
6693 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6694                                 struct drm_display_mode *mode,
6695                                 struct intel_load_detect_pipe *old)
6696 {
6697         struct intel_crtc *intel_crtc;
6698         struct intel_encoder *intel_encoder =
6699                 intel_attached_encoder(connector);
6700         struct drm_crtc *possible_crtc;
6701         struct drm_encoder *encoder = &intel_encoder->base;
6702         struct drm_crtc *crtc = NULL;
6703         struct drm_device *dev = encoder->dev;
6704         struct drm_framebuffer *fb;
6705         int i = -1;
6706         int ret;
6707
6708         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6709                       connector->base.id, drm_get_connector_name(connector),
6710                       encoder->base.id, drm_get_encoder_name(encoder));
6711
6712         /*
6713          * Algorithm gets a little messy:
6714          *
6715          *   - if the connector already has an assigned crtc, use it (but make
6716          *     sure it's on first)
6717          *
6718          *   - try to find the first unused crtc that can drive this connector,
6719          *     and use that if we find one
6720          */
6721
6722         /* See if we already have a CRTC for this connector */
6723         if (encoder->crtc) {
6724                 crtc = encoder->crtc;
6725
6726                 old->dpms_mode = connector->dpms;
6727                 old->load_detect_temp = false;
6728
6729                 /* Make sure the crtc and connector are running */
6730                 if (connector->dpms != DRM_MODE_DPMS_ON)
6731                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6732
6733                 return true;
6734         }
6735
6736         /* Find an unused one (if possible) */
6737         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6738                 i++;
6739                 if (!(encoder->possible_crtcs & (1 << i)))
6740                         continue;
6741                 if (!possible_crtc->enabled) {
6742                         crtc = possible_crtc;
6743                         break;
6744                 }
6745         }
6746
6747         /*
6748          * If we didn't find an unused CRTC, don't use any.
6749          */
6750         if (!crtc) {
6751                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6752                 return false;
6753         }
6754
6755         intel_encoder->new_crtc = to_intel_crtc(crtc);
6756         to_intel_connector(connector)->new_encoder = intel_encoder;
6757
6758         intel_crtc = to_intel_crtc(crtc);
6759         old->dpms_mode = connector->dpms;
6760         old->load_detect_temp = true;
6761         old->release_fb = NULL;
6762
6763         if (!mode)
6764                 mode = &load_detect_mode;
6765
6766         /* We need a framebuffer large enough to accommodate all accesses
6767          * that the plane may generate whilst we perform load detection.
6768          * We can not rely on the fbcon either being present (we get called
6769          * during its initialisation to detect all boot displays, or it may
6770          * not even exist) or that it is large enough to satisfy the
6771          * requested mode.
6772          */
6773         ret = 0;
6774         fb = mode_fits_in_fbdev(dev, mode);
6775         if (fb == NULL) {
6776                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6777                 ret = intel_framebuffer_create_for_mode(dev, mode, 24, 32, &fb);
6778                 old->release_fb = fb;
6779         } else
6780                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6781         if (ret) {
6782                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6783                 return false;
6784         }
6785
6786         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6787                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6788                 if (old->release_fb)
6789                         old->release_fb->funcs->destroy(old->release_fb);
6790                 return false;
6791         }
6792
6793         /* let the connector get through one full cycle before testing */
6794         intel_wait_for_vblank(dev, intel_crtc->pipe);
6795         return true;
6796 }
6797
6798 void intel_release_load_detect_pipe(struct drm_connector *connector,
6799                                     struct intel_load_detect_pipe *old)
6800 {
6801         struct intel_encoder *intel_encoder =
6802                 intel_attached_encoder(connector);
6803         struct drm_encoder *encoder = &intel_encoder->base;
6804
6805         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6806                       connector->base.id, drm_get_connector_name(connector),
6807                       encoder->base.id, drm_get_encoder_name(encoder));
6808
6809         if (old->load_detect_temp) {
6810                 struct drm_crtc *crtc = encoder->crtc;
6811
6812                 to_intel_connector(connector)->new_encoder = NULL;
6813                 intel_encoder->new_crtc = NULL;
6814                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6815
6816                 if (old->release_fb)
6817                         old->release_fb->funcs->destroy(old->release_fb);
6818
6819                 return;
6820         }
6821
6822         /* Switch crtc and encoder back off if necessary */
6823         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6824                 connector->funcs->dpms(connector, old->dpms_mode);
6825 }
6826
6827 /* Returns the clock of the currently programmed mode of the given pipe. */
6828 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6829 {
6830         struct drm_i915_private *dev_priv = dev->dev_private;
6831         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6832         int pipe = intel_crtc->pipe;
6833         u32 dpll = I915_READ(DPLL(pipe));
6834         u32 fp;
6835         intel_clock_t clock;
6836
6837         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6838                 fp = I915_READ(FP0(pipe));
6839         else
6840                 fp = I915_READ(FP1(pipe));
6841
6842         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6843         if (IS_PINEVIEW(dev)) {
6844                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6845                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6846         } else {
6847                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6848                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6849         }
6850
6851         if (!IS_GEN2(dev)) {
6852                 if (IS_PINEVIEW(dev))
6853                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6854                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6855                 else
6856                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6857                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6858
6859                 switch (dpll & DPLL_MODE_MASK) {
6860                 case DPLLB_MODE_DAC_SERIAL:
6861                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6862                                 5 : 10;
6863                         break;
6864                 case DPLLB_MODE_LVDS:
6865                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6866                                 7 : 14;
6867                         break;
6868                 default:
6869                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6870                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6871                         return 0;
6872                 }
6873
6874                 /* XXX: Handle the 100Mhz refclk */
6875                 intel_clock(dev, 96000, &clock);
6876         } else {
6877                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6878
6879                 if (is_lvds) {
6880                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6881                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6882                         clock.p2 = 14;
6883
6884                         if ((dpll & PLL_REF_INPUT_MASK) ==
6885                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6886                                 /* XXX: might not be 66MHz */
6887                                 intel_clock(dev, 66000, &clock);
6888                         } else
6889                                 intel_clock(dev, 48000, &clock);
6890                 } else {
6891                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6892                                 clock.p1 = 2;
6893                         else {
6894                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6895                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6896                         }
6897                         if (dpll & PLL_P2_DIVIDE_BY_4)
6898                                 clock.p2 = 4;
6899                         else
6900                                 clock.p2 = 2;
6901
6902                         intel_clock(dev, 48000, &clock);
6903                 }
6904         }
6905
6906         /* XXX: It would be nice to validate the clocks, but we can't reuse
6907          * i830PllIsValid() because it relies on the xf86_config connector
6908          * configuration being accurate, which it isn't necessarily.
6909          */
6910
6911         return clock.dot;
6912 }
6913
6914 /** Returns the currently programmed mode of the given pipe. */
6915 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6916                                              struct drm_crtc *crtc)
6917 {
6918         struct drm_i915_private *dev_priv = dev->dev_private;
6919         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6920         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6921         struct drm_display_mode *mode;
6922         int htot = I915_READ(HTOTAL(cpu_transcoder));
6923         int hsync = I915_READ(HSYNC(cpu_transcoder));
6924         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6925         int vsync = I915_READ(VSYNC(cpu_transcoder));
6926
6927         mode = malloc(sizeof(*mode), DRM_MEM_KMS, M_WAITOK | M_ZERO);
6928         if (!mode)
6929                 return NULL;
6930
6931         mode->clock = intel_crtc_clock_get(dev, crtc);
6932         mode->hdisplay = (htot & 0xffff) + 1;
6933         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6934         mode->hsync_start = (hsync & 0xffff) + 1;
6935         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6936         mode->vdisplay = (vtot & 0xffff) + 1;
6937         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6938         mode->vsync_start = (vsync & 0xffff) + 1;
6939         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6940
6941         drm_mode_set_name(mode);
6942
6943         return mode;
6944 }
6945
6946 static void intel_increase_pllclock(struct drm_crtc *crtc)
6947 {
6948         struct drm_device *dev = crtc->dev;
6949         drm_i915_private_t *dev_priv = dev->dev_private;
6950         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6951         int pipe = intel_crtc->pipe;
6952         int dpll_reg = DPLL(pipe);
6953         int dpll;
6954
6955         if (HAS_PCH_SPLIT(dev))
6956                 return;
6957
6958         if (!dev_priv->lvds_downclock_avail)
6959                 return;
6960
6961         dpll = I915_READ(dpll_reg);
6962         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6963                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6964
6965                 assert_panel_unlocked(dev_priv, pipe);
6966
6967                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6968                 I915_WRITE(dpll_reg, dpll);
6969                 intel_wait_for_vblank(dev, pipe);
6970
6971                 dpll = I915_READ(dpll_reg);
6972                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6973                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6974         }
6975 }
6976
6977 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6978 {
6979         struct drm_device *dev = crtc->dev;
6980         drm_i915_private_t *dev_priv = dev->dev_private;
6981         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6982
6983         if (HAS_PCH_SPLIT(dev))
6984                 return;
6985
6986         if (!dev_priv->lvds_downclock_avail)
6987                 return;
6988
6989         /*
6990          * Since this is called by a timer, we should never get here in
6991          * the manual case.
6992          */
6993         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6994                 int pipe = intel_crtc->pipe;
6995                 int dpll_reg = DPLL(pipe);
6996                 int dpll;
6997
6998                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6999
7000                 assert_panel_unlocked(dev_priv, pipe);
7001
7002                 dpll = I915_READ(dpll_reg);
7003                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7004                 I915_WRITE(dpll_reg, dpll);
7005                 intel_wait_for_vblank(dev, pipe);
7006                 dpll = I915_READ(dpll_reg);
7007                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7008                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7009         }
7010
7011 }
7012
7013 void intel_mark_busy(struct drm_device *dev)
7014 {
7015         i915_update_gfx_val(dev->dev_private);
7016 }
7017
7018 void intel_mark_idle(struct drm_device *dev)
7019 {
7020         struct drm_crtc *crtc;
7021
7022         if (!i915_powersave)
7023                 return;
7024
7025         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7026                 if (!crtc->fb)
7027                         continue;
7028
7029                 intel_decrease_pllclock(crtc);
7030         }
7031 }
7032
7033 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
7034 {
7035         struct drm_device *dev = obj->base.dev;
7036         struct drm_crtc *crtc;
7037
7038         if (!i915_powersave)
7039                 return;
7040
7041         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7042                 if (!crtc->fb)
7043                         continue;
7044
7045                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
7046                         intel_increase_pllclock(crtc);
7047         }
7048 }
7049
7050 static void intel_crtc_destroy(struct drm_crtc *crtc)
7051 {
7052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7053         struct drm_device *dev = crtc->dev;
7054         struct drm_i915_private *dev_priv = dev->dev_private;
7055         struct intel_unpin_work *work;
7056
7057         mtx_lock(&dev->event_lock);
7058         work = intel_crtc->unpin_work;
7059         intel_crtc->unpin_work = NULL;
7060         mtx_unlock(&dev->event_lock);
7061
7062         if (work) {
7063                 taskqueue_cancel(dev_priv->wq, &work->work, NULL);
7064                 taskqueue_drain(dev_priv->wq, &work->work);
7065                 free(work, DRM_MEM_KMS);
7066         }
7067
7068         drm_crtc_cleanup(crtc);
7069
7070         free(intel_crtc, DRM_MEM_KMS);
7071 }
7072
7073 static void intel_unpin_work_fn(void *arg, int pending)
7074 {
7075         struct intel_unpin_work *work =
7076                 arg;
7077         struct drm_device *dev = work->crtc->dev;
7078
7079         DRM_LOCK(dev);
7080         intel_unpin_fb_obj(work->old_fb_obj);
7081         drm_gem_object_unreference(&work->pending_flip_obj->base);
7082         drm_gem_object_unreference(&work->old_fb_obj->base);
7083
7084         intel_update_fbc(dev);
7085         DRM_UNLOCK(dev);
7086
7087         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7088         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7089
7090         free(work, DRM_MEM_KMS);
7091 }
7092
7093 static void do_intel_finish_page_flip(struct drm_device *dev,
7094                                       struct drm_crtc *crtc)
7095 {
7096         drm_i915_private_t *dev_priv = dev->dev_private;
7097         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7098         struct intel_unpin_work *work;
7099         struct drm_i915_gem_object *obj;
7100
7101         /* Ignore early vblank irqs */
7102         if (intel_crtc == NULL)
7103                 return;
7104
7105         mtx_lock(&dev->event_lock);
7106         work = intel_crtc->unpin_work;
7107
7108         /* Ensure we don't miss a work->pending update ... */
7109         smp_rmb();
7110
7111         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7112                 mtx_unlock(&dev->event_lock);
7113                 return;
7114         }
7115
7116         /* and that the unpin work is consistent wrt ->pending. */
7117         smp_rmb();
7118
7119         intel_crtc->unpin_work = NULL;
7120
7121         if (work->event)
7122                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7123
7124         drm_vblank_put(dev, intel_crtc->pipe);
7125
7126         mtx_unlock(&dev->event_lock);
7127
7128         obj = work->old_fb_obj;
7129
7130         atomic_clear_mask(1 << intel_crtc->plane,
7131                           &obj->pending_flip);
7132         wake_up(&dev_priv->pending_flip_queue);
7133
7134         taskqueue_enqueue(dev_priv->wq, &work->work);
7135
7136         CTR2(KTR_DRM, "i915_flip_complete %d %p", intel_crtc->plane,
7137             work->pending_flip_obj);
7138 }
7139
7140 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7141 {
7142         drm_i915_private_t *dev_priv = dev->dev_private;
7143         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7144
7145         do_intel_finish_page_flip(dev, crtc);
7146 }
7147
7148 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7149 {
7150         drm_i915_private_t *dev_priv = dev->dev_private;
7151         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7152
7153         do_intel_finish_page_flip(dev, crtc);
7154 }
7155
7156 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7157 {
7158         drm_i915_private_t *dev_priv = dev->dev_private;
7159         struct intel_crtc *intel_crtc =
7160                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7161
7162         /* NB: An MMIO update of the plane base pointer will also
7163          * generate a page-flip completion irq, i.e. every modeset
7164          * is also accompanied by a spurious intel_prepare_page_flip().
7165          */
7166         mtx_lock(&dev->event_lock);
7167         if (intel_crtc->unpin_work)
7168                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7169         mtx_unlock(&dev->event_lock);
7170 }
7171
7172 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7173 {
7174         /* Ensure that the work item is consistent when activating it ... */
7175         smp_wmb();
7176         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7177         /* and that it is marked active as soon as the irq could fire. */
7178         smp_wmb();
7179 }
7180
7181 static int intel_gen2_queue_flip(struct drm_device *dev,
7182                                  struct drm_crtc *crtc,
7183                                  struct drm_framebuffer *fb,
7184                                  struct drm_i915_gem_object *obj)
7185 {
7186         struct drm_i915_private *dev_priv = dev->dev_private;
7187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7188         u32 flip_mask;
7189         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7190         int ret;
7191
7192         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7193         if (ret)
7194                 goto err;
7195
7196         ret = intel_ring_begin(ring, 6);
7197         if (ret)
7198                 goto err_unpin;
7199
7200         /* Can't queue multiple flips, so wait for the previous
7201          * one to finish before executing the next.
7202          */
7203         if (intel_crtc->plane)
7204                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7205         else
7206                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7207         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7208         intel_ring_emit(ring, MI_NOOP);
7209         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7210                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7211         intel_ring_emit(ring, fb->pitches[0]);
7212         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7213         intel_ring_emit(ring, 0); /* aux display base address, unused */
7214
7215         intel_mark_page_flip_active(intel_crtc);
7216         intel_ring_advance(ring);
7217         return 0;
7218
7219 err_unpin:
7220         intel_unpin_fb_obj(obj);
7221 err:
7222         return ret;
7223 }
7224
7225 static int intel_gen3_queue_flip(struct drm_device *dev,
7226                                  struct drm_crtc *crtc,
7227                                  struct drm_framebuffer *fb,
7228                                  struct drm_i915_gem_object *obj)
7229 {
7230         struct drm_i915_private *dev_priv = dev->dev_private;
7231         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7232         u32 flip_mask;
7233         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7234         int ret;
7235
7236         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7237         if (ret)
7238                 goto err;
7239
7240         ret = intel_ring_begin(ring, 6);
7241         if (ret)
7242                 goto err_unpin;
7243
7244         if (intel_crtc->plane)
7245                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7246         else
7247                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7248         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7249         intel_ring_emit(ring, MI_NOOP);
7250         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7251                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7252         intel_ring_emit(ring, fb->pitches[0]);
7253         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7254         intel_ring_emit(ring, MI_NOOP);
7255
7256         intel_mark_page_flip_active(intel_crtc);
7257         intel_ring_advance(ring);
7258         return 0;
7259
7260 err_unpin:
7261         intel_unpin_fb_obj(obj);
7262 err:
7263         return ret;
7264 }
7265
7266 static int intel_gen4_queue_flip(struct drm_device *dev,
7267                                  struct drm_crtc *crtc,
7268                                  struct drm_framebuffer *fb,
7269                                  struct drm_i915_gem_object *obj)
7270 {
7271         struct drm_i915_private *dev_priv = dev->dev_private;
7272         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7273         uint32_t pf, pipesrc;
7274         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7275         int ret;
7276
7277         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7278         if (ret)
7279                 goto err;
7280
7281         ret = intel_ring_begin(ring, 4);
7282         if (ret)
7283                 goto err_unpin;
7284
7285         /* i965+ uses the linear or tiled offsets from the
7286          * Display Registers (which do not change across a page-flip)
7287          * so we need only reprogram the base address.
7288          */
7289         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7290                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7291         intel_ring_emit(ring, fb->pitches[0]);
7292         intel_ring_emit(ring,
7293                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7294                         obj->tiling_mode);
7295
7296         /* XXX Enabling the panel-fitter across page-flip is so far
7297          * untested on non-native modes, so ignore it for now.
7298          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7299          */
7300         pf = 0;
7301         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7302         intel_ring_emit(ring, pf | pipesrc);
7303
7304         intel_mark_page_flip_active(intel_crtc);
7305         intel_ring_advance(ring);
7306         return 0;
7307
7308 err_unpin:
7309         intel_unpin_fb_obj(obj);
7310 err:
7311         return ret;
7312 }
7313
7314 static int intel_gen6_queue_flip(struct drm_device *dev,
7315                                  struct drm_crtc *crtc,
7316                                  struct drm_framebuffer *fb,
7317                                  struct drm_i915_gem_object *obj)
7318 {
7319         struct drm_i915_private *dev_priv = dev->dev_private;
7320         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7321         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7322         uint32_t pf, pipesrc;
7323         int ret;
7324
7325         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7326         if (ret)
7327                 goto err;
7328
7329         ret = intel_ring_begin(ring, 4);
7330         if (ret)
7331                 goto err_unpin;
7332
7333         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7334                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7335         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7336         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7337
7338         /* Contrary to the suggestions in the documentation,
7339          * "Enable Panel Fitter" does not seem to be required when page
7340          * flipping with a non-native mode, and worse causes a normal
7341          * modeset to fail.
7342          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7343          */
7344         pf = 0;
7345         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7346         intel_ring_emit(ring, pf | pipesrc);
7347
7348         intel_mark_page_flip_active(intel_crtc);
7349         intel_ring_advance(ring);
7350         return 0;
7351
7352 err_unpin:
7353         intel_unpin_fb_obj(obj);
7354 err:
7355         return ret;
7356 }
7357
7358 /*
7359  * On gen7 we currently use the blit ring because (in early silicon at least)
7360  * the render ring doesn't give us interrpts for page flip completion, which
7361  * means clients will hang after the first flip is queued.  Fortunately the
7362  * blit ring generates interrupts properly, so use it instead.
7363  */
7364 static int intel_gen7_queue_flip(struct drm_device *dev,
7365                                  struct drm_crtc *crtc,
7366                                  struct drm_framebuffer *fb,
7367                                  struct drm_i915_gem_object *obj)
7368 {
7369         struct drm_i915_private *dev_priv = dev->dev_private;
7370         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7371         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7372         uint32_t plane_bit = 0;
7373         int ret;
7374
7375         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7376         if (ret)
7377                 goto err;
7378
7379         switch(intel_crtc->plane) {
7380         case PLANE_A:
7381                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7382                 break;
7383         case PLANE_B:
7384                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7385                 break;
7386         case PLANE_C:
7387                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7388                 break;
7389         default:
7390                 WARN_ONCE(1, "unknown plane in flip command\n");
7391                 ret = -ENODEV;
7392                 goto err_unpin;
7393         }
7394
7395         ret = intel_ring_begin(ring, 4);
7396         if (ret)
7397                 goto err_unpin;
7398
7399         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7400         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7401         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7402         intel_ring_emit(ring, (MI_NOOP));
7403
7404         intel_mark_page_flip_active(intel_crtc);
7405         intel_ring_advance(ring);
7406         return 0;
7407
7408 err_unpin:
7409         intel_unpin_fb_obj(obj);
7410 err:
7411         return ret;
7412 }
7413
7414 static int intel_default_queue_flip(struct drm_device *dev,
7415                                     struct drm_crtc *crtc,
7416                                     struct drm_framebuffer *fb,
7417                                     struct drm_i915_gem_object *obj)
7418 {
7419         return -ENODEV;
7420 }
7421
7422 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7423                                 struct drm_framebuffer *fb,
7424                                 struct drm_pending_vblank_event *event)
7425 {
7426         struct drm_device *dev = crtc->dev;
7427         struct drm_i915_private *dev_priv = dev->dev_private;
7428         struct drm_framebuffer *old_fb = crtc->fb;
7429         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7430         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7431         struct intel_unpin_work *work;
7432         int ret;
7433
7434         /* Can't change pixel format via MI display flips. */
7435         if (fb->pixel_format != crtc->fb->pixel_format)
7436                 return -EINVAL;
7437
7438         /*
7439          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7440          * Note that pitch changes could also affect these register.
7441          */
7442         if (INTEL_INFO(dev)->gen > 3 &&
7443             (fb->offsets[0] != crtc->fb->offsets[0] ||
7444              fb->pitches[0] != crtc->fb->pitches[0]))
7445                 return -EINVAL;
7446
7447         work = malloc(sizeof *work, DRM_MEM_KMS, M_WAITOK | M_ZERO);
7448         if (work == NULL)
7449                 return -ENOMEM;
7450
7451         work->event = event;
7452         work->crtc = crtc;
7453         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7454         TASK_INIT(&work->work, 0, intel_unpin_work_fn, work);
7455
7456         ret = drm_vblank_get(dev, intel_crtc->pipe);
7457         if (ret)
7458                 goto free_work;
7459
7460         /* We borrow the event spin lock for protecting unpin_work */
7461         mtx_lock(&dev->event_lock);
7462         if (intel_crtc->unpin_work) {
7463                 mtx_unlock(&dev->event_lock);
7464                 free(work, DRM_MEM_KMS);
7465                 drm_vblank_put(dev, intel_crtc->pipe);
7466
7467                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7468                 return -EBUSY;
7469         }
7470         intel_crtc->unpin_work = work;
7471         mtx_unlock(&dev->event_lock);
7472
7473         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7474                 taskqueue_drain_all(dev_priv->wq);
7475
7476         ret = i915_mutex_lock_interruptible(dev);
7477         if (ret)
7478                 goto cleanup;
7479
7480         /* Reference the objects for the scheduled work. */
7481         drm_gem_object_reference(&work->old_fb_obj->base);
7482         drm_gem_object_reference(&obj->base);
7483
7484         crtc->fb = fb;
7485
7486         work->pending_flip_obj = obj;
7487
7488         work->enable_stall_check = true;
7489
7490         /* Block clients from rendering to the new back buffer until
7491          * the flip occurs and the object is no longer visible.
7492          */
7493         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7494         atomic_inc(&intel_crtc->unpin_work_count);
7495
7496         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7497         if (ret)
7498                 goto cleanup_pending;
7499
7500         intel_disable_fbc(dev);
7501         intel_mark_fb_busy(obj);
7502         DRM_UNLOCK(dev);
7503
7504         CTR2(KTR_DRM, "i915_flip_request %d %p", intel_crtc->plane, obj);
7505
7506         return 0;
7507
7508 cleanup_pending:
7509         atomic_dec(&intel_crtc->unpin_work_count);
7510         crtc->fb = old_fb;
7511         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7512         drm_gem_object_unreference(&work->old_fb_obj->base);
7513         drm_gem_object_unreference(&obj->base);
7514         DRM_UNLOCK(dev);
7515
7516 cleanup:
7517         mtx_lock(&dev->event_lock);
7518         intel_crtc->unpin_work = NULL;
7519         mtx_unlock(&dev->event_lock);
7520
7521         drm_vblank_put(dev, intel_crtc->pipe);
7522 free_work:
7523         free(work, DRM_MEM_KMS);
7524
7525         return ret;
7526 }
7527
7528 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7529         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7530         .load_lut = intel_crtc_load_lut,
7531         .disable = intel_crtc_noop,
7532 };
7533
7534 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7535 {
7536         struct intel_encoder *other_encoder;
7537         struct drm_crtc *crtc = &encoder->new_crtc->base;
7538
7539         if (WARN_ON(!crtc))
7540                 return false;
7541
7542         list_for_each_entry(other_encoder,
7543                             &crtc->dev->mode_config.encoder_list,
7544                             base.head) {
7545
7546                 if (&other_encoder->new_crtc->base != crtc ||
7547                     encoder == other_encoder)
7548                         continue;
7549                 else
7550                         return true;
7551         }
7552
7553         return false;
7554 }
7555
7556 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7557                                   struct drm_crtc *crtc)
7558 {
7559         struct drm_device *dev;
7560         struct drm_crtc *tmp;
7561         int crtc_mask = 1;
7562
7563         WARN(!crtc, "checking null crtc?\n");
7564
7565         dev = crtc->dev;
7566
7567         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7568                 if (tmp == crtc)
7569                         break;
7570                 crtc_mask <<= 1;
7571         }
7572
7573         if (encoder->possible_crtcs & crtc_mask)
7574                 return true;
7575         return false;
7576 }
7577
7578 /**
7579  * intel_modeset_update_staged_output_state
7580  *
7581  * Updates the staged output configuration state, e.g. after we've read out the
7582  * current hw state.
7583  */
7584 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7585 {
7586         struct intel_encoder *encoder;
7587         struct intel_connector *connector;
7588
7589         list_for_each_entry(connector, &dev->mode_config.connector_list,
7590                             base.head) {
7591                 connector->new_encoder =
7592                         to_intel_encoder(connector->base.encoder);
7593         }
7594
7595         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7596                             base.head) {
7597                 encoder->new_crtc =
7598                         to_intel_crtc(encoder->base.crtc);
7599         }
7600 }
7601
7602 /**
7603  * intel_modeset_commit_output_state
7604  *
7605  * This function copies the stage display pipe configuration to the real one.
7606  */
7607 static void intel_modeset_commit_output_state(struct drm_device *dev)
7608 {
7609         struct intel_encoder *encoder;
7610         struct intel_connector *connector;
7611
7612         list_for_each_entry(connector, &dev->mode_config.connector_list,
7613                             base.head) {
7614                 connector->base.encoder = &connector->new_encoder->base;
7615         }
7616
7617         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7618                             base.head) {
7619                 encoder->base.crtc = &encoder->new_crtc->base;
7620         }
7621 }
7622
7623 static int
7624 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7625                             struct drm_display_mode *mode,
7626                             struct drm_display_mode **res)
7627 {
7628         struct drm_device *dev = crtc->dev;
7629         struct drm_display_mode *adjusted_mode;
7630         struct drm_encoder_helper_funcs *encoder_funcs;
7631         struct intel_encoder *encoder;
7632
7633         adjusted_mode = drm_mode_duplicate(dev, mode);
7634         if (!adjusted_mode)
7635                 return -ENOMEM;
7636
7637         /* Pass our mode to the connectors and the CRTC to give them a chance to
7638          * adjust it according to limitations or connector properties, and also
7639          * a chance to reject the mode entirely.
7640          */
7641         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7642                             base.head) {
7643
7644                 if (&encoder->new_crtc->base != crtc)
7645                         continue;
7646                 encoder_funcs = encoder->base.helper_private;
7647                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7648                                                 adjusted_mode))) {
7649                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7650                         goto fail;
7651                 }
7652         }
7653
7654         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7655                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7656                 goto fail;
7657         }
7658         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7659
7660         *res = adjusted_mode;
7661         return 0;
7662 fail:
7663         drm_mode_destroy(dev, adjusted_mode);
7664         return -EINVAL;
7665 }
7666
7667 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7668  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7669 static void
7670 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7671                              unsigned *prepare_pipes, unsigned *disable_pipes)
7672 {
7673         struct intel_crtc *intel_crtc;
7674         struct drm_device *dev = crtc->dev;
7675         struct intel_encoder *encoder;
7676         struct intel_connector *connector;
7677         struct drm_crtc *tmp_crtc;
7678
7679         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7680
7681         /* Check which crtcs have changed outputs connected to them, these need
7682          * to be part of the prepare_pipes mask. We don't (yet) support global
7683          * modeset across multiple crtcs, so modeset_pipes will only have one
7684          * bit set at most. */
7685         list_for_each_entry(connector, &dev->mode_config.connector_list,
7686                             base.head) {
7687                 if (connector->base.encoder == &connector->new_encoder->base)
7688                         continue;
7689
7690                 if (connector->base.encoder) {
7691                         tmp_crtc = connector->base.encoder->crtc;
7692
7693                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7694                 }
7695
7696                 if (connector->new_encoder)
7697                         *prepare_pipes |=
7698                                 1 << connector->new_encoder->new_crtc->pipe;
7699         }
7700
7701         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7702                             base.head) {
7703                 if (encoder->base.crtc == &encoder->new_crtc->base)
7704                         continue;
7705
7706                 if (encoder->base.crtc) {
7707                         tmp_crtc = encoder->base.crtc;
7708
7709                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7710                 }
7711
7712                 if (encoder->new_crtc)
7713                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7714         }
7715
7716         /* Check for any pipes that will be fully disabled ... */
7717         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7718                             base.head) {
7719                 bool used = false;
7720
7721                 /* Don't try to disable disabled crtcs. */
7722                 if (!intel_crtc->base.enabled)
7723                         continue;
7724
7725                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7726                                     base.head) {
7727                         if (encoder->new_crtc == intel_crtc)
7728                                 used = true;
7729                 }
7730
7731                 if (!used)
7732                         *disable_pipes |= 1 << intel_crtc->pipe;
7733         }
7734
7735
7736         /* set_mode is also used to update properties on life display pipes. */
7737         intel_crtc = to_intel_crtc(crtc);
7738         if (crtc->enabled)
7739                 *prepare_pipes |= 1 << intel_crtc->pipe;
7740
7741         /*
7742          * For simplicity do a full modeset on any pipe where the output routing
7743          * changed. We could be more clever, but that would require us to be
7744          * more careful with calling the relevant encoder->mode_set functions.
7745          */
7746         if (*prepare_pipes)
7747                 *modeset_pipes = *prepare_pipes;
7748
7749         /* ... and mask these out. */
7750         *modeset_pipes &= ~(*disable_pipes);
7751         *prepare_pipes &= ~(*disable_pipes);
7752
7753         /*
7754          * HACK: We don't (yet) fully support global modesets. intel_set_config
7755          * obies this rule, but the modeset restore mode of
7756          * intel_modeset_setup_hw_state does not.
7757          */
7758         *modeset_pipes &= 1 << intel_crtc->pipe;
7759         *prepare_pipes &= 1 << intel_crtc->pipe;
7760 }
7761
7762 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7763 {
7764         struct drm_encoder *encoder;
7765         struct drm_device *dev = crtc->dev;
7766
7767         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7768                 if (encoder->crtc == crtc)
7769                         return true;
7770
7771         return false;
7772 }
7773
7774 static void
7775 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7776 {
7777         struct intel_encoder *intel_encoder;
7778         struct intel_crtc *intel_crtc;
7779         struct drm_connector *connector;
7780
7781         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7782                             base.head) {
7783                 if (!intel_encoder->base.crtc)
7784                         continue;
7785
7786                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7787
7788                 if (prepare_pipes & (1 << intel_crtc->pipe))
7789                         intel_encoder->connectors_active = false;
7790         }
7791
7792         intel_modeset_commit_output_state(dev);
7793
7794         /* Update computed state. */
7795         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7796                             base.head) {
7797                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7798         }
7799
7800         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7801                 if (!connector->encoder || !connector->encoder->crtc)
7802                         continue;
7803
7804                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7805
7806                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7807                         struct drm_property *dpms_property =
7808                                 dev->mode_config.dpms_property;
7809
7810                         connector->dpms = DRM_MODE_DPMS_ON;
7811                         drm_object_property_set_value(&connector->base,
7812                                                          dpms_property,
7813                                                          DRM_MODE_DPMS_ON);
7814
7815                         intel_encoder = to_intel_encoder(connector->encoder);
7816                         intel_encoder->connectors_active = true;
7817                 }
7818         }
7819
7820 }
7821
7822 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7823         list_for_each_entry((intel_crtc), \
7824                             &(dev)->mode_config.crtc_list, \
7825                             base.head) \
7826                 if (mask & (1 <<(intel_crtc)->pipe)) \
7827
7828 void
7829 intel_modeset_check_state(struct drm_device *dev)
7830 {
7831         struct intel_crtc *crtc;
7832         struct intel_encoder *encoder;
7833         struct intel_connector *connector;
7834
7835         list_for_each_entry(connector, &dev->mode_config.connector_list,
7836                             base.head) {
7837                 /* This also checks the encoder/connector hw state with the
7838                  * ->get_hw_state callbacks. */
7839                 intel_connector_check_state(connector);
7840
7841                 WARN(&connector->new_encoder->base != connector->base.encoder,
7842                      "connector's staged encoder doesn't match current encoder\n");
7843         }
7844
7845         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7846                             base.head) {
7847                 bool enabled = false;
7848                 bool active = false;
7849                 enum pipe pipe, tracked_pipe;
7850
7851                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7852                               encoder->base.base.id,
7853                               drm_get_encoder_name(&encoder->base));
7854
7855                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7856                      "encoder's stage crtc doesn't match current crtc\n");
7857                 WARN(encoder->connectors_active && !encoder->base.crtc,
7858                      "encoder's active_connectors set, but no crtc\n");
7859
7860                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7861                                     base.head) {
7862                         if (connector->base.encoder != &encoder->base)
7863                                 continue;
7864                         enabled = true;
7865                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7866                                 active = true;
7867                 }
7868                 WARN(!!encoder->base.crtc != enabled,
7869                      "encoder's enabled state mismatch "
7870                      "(expected %i, found %i)\n",
7871                      !!encoder->base.crtc, enabled);
7872                 WARN(active && !encoder->base.crtc,
7873                      "active encoder with no crtc\n");
7874
7875                 WARN(encoder->connectors_active != active,
7876                      "encoder's computed active state doesn't match tracked active state "
7877                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7878
7879                 active = encoder->get_hw_state(encoder, &pipe);
7880                 WARN(active != encoder->connectors_active,
7881                      "encoder's hw state doesn't match sw tracking "
7882                      "(expected %i, found %i)\n",
7883                      encoder->connectors_active, active);
7884
7885                 if (!encoder->base.crtc)
7886                         continue;
7887
7888                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7889                 WARN(active && pipe != tracked_pipe,
7890                      "active encoder's pipe doesn't match"
7891                      "(expected %i, found %i)\n",
7892                      tracked_pipe, pipe);
7893
7894         }
7895
7896         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7897                             base.head) {
7898                 bool enabled = false;
7899                 bool active = false;
7900
7901                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7902                               crtc->base.base.id);
7903
7904                 WARN(crtc->active && !crtc->base.enabled,
7905                      "active crtc, but not enabled in sw tracking\n");
7906
7907                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7908                                     base.head) {
7909                         if (encoder->base.crtc != &crtc->base)
7910                                 continue;
7911                         enabled = true;
7912                         if (encoder->connectors_active)
7913                                 active = true;
7914                 }
7915                 WARN(active != crtc->active,
7916                      "crtc's computed active state doesn't match tracked active state "
7917                      "(expected %i, found %i)\n", active, crtc->active);
7918                 WARN(enabled != crtc->base.enabled,
7919                      "crtc's computed enabled state doesn't match tracked enabled state "
7920                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7921
7922                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7923         }
7924 }
7925
7926 bool intel_set_mode(struct drm_crtc *crtc,
7927                     struct drm_display_mode *mode,
7928                     int x, int y, struct drm_framebuffer *fb)
7929 {
7930         struct drm_device *dev = crtc->dev;
7931         drm_i915_private_t *dev_priv = dev->dev_private;
7932         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7933         struct intel_crtc *intel_crtc;
7934         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7935         bool ret = true;
7936
7937         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7938                                      &prepare_pipes, &disable_pipes);
7939
7940         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7941                       modeset_pipes, prepare_pipes, disable_pipes);
7942
7943         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7944                 intel_crtc_disable(&intel_crtc->base);
7945
7946         saved_hwmode = crtc->hwmode;
7947         saved_mode = crtc->mode;
7948
7949         /* Hack: Because we don't (yet) support global modeset on multiple
7950          * crtcs, we don't keep track of the new mode for more than one crtc.
7951          * Hence simply check whether any bit is set in modeset_pipes in all the
7952          * pieces of code that are not yet converted to deal with mutliple crtcs
7953          * changing their mode at the same time. */
7954         adjusted_mode = NULL;
7955         if (modeset_pipes) {
7956                 int err = intel_modeset_adjusted_mode(crtc, mode, &adjusted_mode);
7957                 if (err) {
7958                         return false;
7959                 }
7960         }
7961
7962         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7963                 if (intel_crtc->base.enabled)
7964                         dev_priv->display.crtc_disable(&intel_crtc->base);
7965         }
7966
7967         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7968          * to set it here already despite that we pass it down the callchain.
7969          */
7970         if (modeset_pipes)
7971                 crtc->mode = *mode;
7972
7973         /* Only after disabling all output pipelines that will be changed can we
7974          * update the output configuration. */
7975         intel_modeset_update_state(dev, prepare_pipes);
7976
7977         if (dev_priv->display.modeset_global_resources)
7978                 dev_priv->display.modeset_global_resources(dev);
7979
7980         /* Set up the DPLL and any encoders state that needs to adjust or depend
7981          * on the DPLL.
7982          */
7983         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7984                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7985                                            mode, adjusted_mode,
7986                                            x, y, fb);
7987                 if (!ret)
7988                     goto done;
7989         }
7990
7991         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7992         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7993                 dev_priv->display.crtc_enable(&intel_crtc->base);
7994
7995         if (modeset_pipes) {
7996                 /* Store real post-adjustment hardware mode. */
7997                 crtc->hwmode = *adjusted_mode;
7998
7999                 /* Calculate and store various constants which
8000                  * are later needed by vblank and swap-completion
8001                  * timestamping. They are derived from true hwmode.
8002                  */
8003                 drm_calc_timestamping_constants(crtc);
8004         }
8005
8006         /* FIXME: add subpixel order */
8007 done:
8008         drm_mode_destroy(dev, adjusted_mode);
8009         if (!ret && crtc->enabled) {
8010                 crtc->hwmode = saved_hwmode;
8011                 crtc->mode = saved_mode;
8012         } else {
8013                 intel_modeset_check_state(dev);
8014         }
8015
8016         return ret;
8017 }
8018
8019 #undef for_each_intel_crtc_masked
8020
8021 static void intel_set_config_free(struct intel_set_config *config)
8022 {
8023         if (!config)
8024                 return;
8025
8026         free(config->save_connector_encoders, DRM_MEM_KMS);
8027         free(config->save_encoder_crtcs, DRM_MEM_KMS);
8028         free(config, DRM_MEM_KMS);
8029 }
8030
8031 static int intel_set_config_save_state(struct drm_device *dev,
8032                                        struct intel_set_config *config)
8033 {
8034         struct drm_encoder *encoder;
8035         struct drm_connector *connector;
8036         int count;
8037
8038         config->save_encoder_crtcs =
8039                 malloc(dev->mode_config.num_encoder *
8040                         sizeof(struct drm_crtc *), DRM_MEM_KMS, M_NOWAIT | M_ZERO);
8041         if (!config->save_encoder_crtcs)
8042                 return -ENOMEM;
8043
8044         config->save_connector_encoders =
8045                 malloc(dev->mode_config.num_connector *
8046                         sizeof(struct drm_encoder *), DRM_MEM_KMS, M_NOWAIT | M_ZERO);
8047         if (!config->save_connector_encoders)
8048                 return -ENOMEM;
8049
8050         /* Copy data. Note that driver private data is not affected.
8051          * Should anything bad happen only the expected state is
8052          * restored, not the drivers personal bookkeeping.
8053          */
8054         count = 0;
8055         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8056                 config->save_encoder_crtcs[count++] = encoder->crtc;
8057         }
8058
8059         count = 0;
8060         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8061                 config->save_connector_encoders[count++] = connector->encoder;
8062         }
8063
8064         return 0;
8065 }
8066
8067 static void intel_set_config_restore_state(struct drm_device *dev,
8068                                            struct intel_set_config *config)
8069 {
8070         struct intel_encoder *encoder;
8071         struct intel_connector *connector;
8072         int count;
8073
8074         count = 0;
8075         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8076                 encoder->new_crtc =
8077                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8078         }
8079
8080         count = 0;
8081         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8082                 connector->new_encoder =
8083                         to_intel_encoder(config->save_connector_encoders[count++]);
8084         }
8085 }
8086
8087 static void
8088 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8089                                       struct intel_set_config *config)
8090 {
8091
8092         /* We should be able to check here if the fb has the same properties
8093          * and then just flip_or_move it */
8094         if (set->crtc->fb != set->fb) {
8095                 /* If we have no fb then treat it as a full mode set */
8096                 if (set->crtc->fb == NULL) {
8097                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8098                         config->mode_changed = true;
8099                 } else if (set->fb == NULL) {
8100                         config->mode_changed = true;
8101                 } else if (set->fb->depth != set->crtc->fb->depth) {
8102                         config->mode_changed = true;
8103                 } else if (set->fb->bits_per_pixel !=
8104                            set->crtc->fb->bits_per_pixel) {
8105                         config->mode_changed = true;
8106                 } else
8107                         config->fb_changed = true;
8108         }
8109
8110         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8111                 config->fb_changed = true;
8112
8113         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8114                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8115                 drm_mode_debug_printmodeline(&set->crtc->mode);
8116                 drm_mode_debug_printmodeline(set->mode);
8117                 config->mode_changed = true;
8118         }
8119 }
8120
8121 static int
8122 intel_modeset_stage_output_state(struct drm_device *dev,
8123                                  struct drm_mode_set *set,
8124                                  struct intel_set_config *config)
8125 {
8126         struct drm_crtc *new_crtc;
8127         struct intel_connector *connector;
8128         struct intel_encoder *encoder;
8129         int count, ro;
8130
8131         /* The upper layers ensure that we either disabl a crtc or have a list
8132          * of connectors. For paranoia, double-check this. */
8133         WARN_ON(!set->fb && (set->num_connectors != 0));
8134         WARN_ON(set->fb && (set->num_connectors == 0));
8135
8136         count = 0;
8137         list_for_each_entry(connector, &dev->mode_config.connector_list,
8138                             base.head) {
8139                 /* Otherwise traverse passed in connector list and get encoders
8140                  * for them. */
8141                 for (ro = 0; ro < set->num_connectors; ro++) {
8142                         if (set->connectors[ro] == &connector->base) {
8143                                 connector->new_encoder = connector->encoder;
8144                                 break;
8145                         }
8146                 }
8147
8148                 /* If we disable the crtc, disable all its connectors. Also, if
8149                  * the connector is on the changing crtc but not on the new
8150                  * connector list, disable it. */
8151                 if ((!set->fb || ro == set->num_connectors) &&
8152                     connector->base.encoder &&
8153                     connector->base.encoder->crtc == set->crtc) {
8154                         connector->new_encoder = NULL;
8155
8156                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8157                                 connector->base.base.id,
8158                                 drm_get_connector_name(&connector->base));
8159                 }
8160
8161
8162                 if (&connector->new_encoder->base != connector->base.encoder) {
8163                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8164                         config->mode_changed = true;
8165                 }
8166         }
8167         /* connector->new_encoder is now updated for all connectors. */
8168
8169         /* Update crtc of enabled connectors. */
8170         count = 0;
8171         list_for_each_entry(connector, &dev->mode_config.connector_list,
8172                             base.head) {
8173                 if (!connector->new_encoder)
8174                         continue;
8175
8176                 new_crtc = connector->new_encoder->base.crtc;
8177
8178                 for (ro = 0; ro < set->num_connectors; ro++) {
8179                         if (set->connectors[ro] == &connector->base)
8180                                 new_crtc = set->crtc;
8181                 }
8182
8183                 /* Make sure the new CRTC will work with the encoder */
8184                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8185                                            new_crtc)) {
8186                         return -EINVAL;
8187                 }
8188                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8189
8190                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8191                         connector->base.base.id,
8192                         drm_get_connector_name(&connector->base),
8193                         new_crtc->base.id);
8194         }
8195
8196         /* Check for any encoders that needs to be disabled. */
8197         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8198                             base.head) {
8199                 list_for_each_entry(connector,
8200                                     &dev->mode_config.connector_list,
8201                                     base.head) {
8202                         if (connector->new_encoder == encoder) {
8203                                 WARN_ON(!connector->new_encoder->new_crtc);
8204
8205                                 goto next_encoder;
8206                         }
8207                 }
8208                 encoder->new_crtc = NULL;
8209 next_encoder:
8210                 /* Only now check for crtc changes so we don't miss encoders
8211                  * that will be disabled. */
8212                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8213                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8214                         config->mode_changed = true;
8215                 }
8216         }
8217         /* Now we've also updated encoder->new_crtc for all encoders. */
8218
8219         return 0;
8220 }
8221
8222 static int intel_crtc_set_config(struct drm_mode_set *set)
8223 {
8224         struct drm_device *dev;
8225         struct drm_mode_set save_set;
8226         struct intel_set_config *config;
8227         int ret;
8228
8229         BUG_ON(!set);
8230         BUG_ON(!set->crtc);
8231         BUG_ON(!set->crtc->helper_private);
8232
8233         if (!set->mode)
8234                 set->fb = NULL;
8235
8236         /* The fb helper likes to play gross jokes with ->mode_set_config.
8237          * Unfortunately the crtc helper doesn't do much at all for this case,
8238          * so we have to cope with this madness until the fb helper is fixed up. */
8239         if (set->fb && set->num_connectors == 0)
8240                 return 0;
8241
8242         if (set->fb) {
8243                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8244                                 set->crtc->base.id, set->fb->base.id,
8245                                 (int)set->num_connectors, set->x, set->y);
8246         } else {
8247                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8248         }
8249
8250         dev = set->crtc->dev;
8251
8252         ret = -ENOMEM;
8253         config = malloc(sizeof(*config), DRM_MEM_KMS, M_NOWAIT | M_ZERO);
8254         if (!config)
8255                 goto out_config;
8256
8257         ret = intel_set_config_save_state(dev, config);
8258         if (ret)
8259                 goto out_config;
8260
8261         save_set.crtc = set->crtc;
8262         save_set.mode = &set->crtc->mode;
8263         save_set.x = set->crtc->x;
8264         save_set.y = set->crtc->y;
8265         save_set.fb = set->crtc->fb;
8266
8267         /* Compute whether we need a full modeset, only an fb base update or no
8268          * change at all. In the future we might also check whether only the
8269          * mode changed, e.g. for LVDS where we only change the panel fitter in
8270          * such cases. */
8271         intel_set_config_compute_mode_changes(set, config);
8272
8273         ret = intel_modeset_stage_output_state(dev, set, config);
8274         if (ret)
8275                 goto fail;
8276
8277         if (config->mode_changed) {
8278                 if (set->mode) {
8279                         DRM_DEBUG_KMS("attempting to set mode from"
8280                                         " userspace\n");
8281                         drm_mode_debug_printmodeline(set->mode);
8282                 }
8283
8284                 if (!intel_set_mode(set->crtc, set->mode,
8285                                     set->x, set->y, set->fb)) {
8286                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8287                                   set->crtc->base.id);
8288                         ret = -EINVAL;
8289                         goto fail;
8290                 }
8291         } else if (config->fb_changed) {
8292                 ret = intel_pipe_set_base(set->crtc,
8293                                           set->x, set->y, set->fb);
8294         }
8295
8296         intel_set_config_free(config);
8297
8298         return 0;
8299
8300 fail:
8301         intel_set_config_restore_state(dev, config);
8302
8303         /* Try to restore the config */
8304         if (config->mode_changed &&
8305             !intel_set_mode(save_set.crtc, save_set.mode,
8306                             save_set.x, save_set.y, save_set.fb))
8307                 DRM_ERROR("failed to restore config after modeset failure\n");
8308
8309 out_config:
8310         intel_set_config_free(config);
8311         return ret;
8312 }
8313
8314 static const struct drm_crtc_funcs intel_crtc_funcs = {
8315         .cursor_set = intel_crtc_cursor_set,
8316         .cursor_move = intel_crtc_cursor_move,
8317         .gamma_set = intel_crtc_gamma_set,
8318         .set_config = intel_crtc_set_config,
8319         .destroy = intel_crtc_destroy,
8320         .page_flip = intel_crtc_page_flip,
8321 };
8322
8323 static void intel_cpu_pll_init(struct drm_device *dev)
8324 {
8325         if (IS_HASWELL(dev))
8326                 intel_ddi_pll_init(dev);
8327 }
8328
8329 static void intel_pch_pll_init(struct drm_device *dev)
8330 {
8331         drm_i915_private_t *dev_priv = dev->dev_private;
8332         int i;
8333
8334         if (dev_priv->num_pch_pll == 0) {
8335                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8336                 return;
8337         }
8338
8339         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8340                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8341                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8342                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8343         }
8344 }
8345
8346 static void intel_crtc_init(struct drm_device *dev, int pipe)
8347 {
8348         drm_i915_private_t *dev_priv = dev->dev_private;
8349         struct intel_crtc *intel_crtc;
8350         int i;
8351
8352         intel_crtc = malloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), DRM_MEM_KMS, M_WAITOK | M_ZERO);
8353         if (intel_crtc == NULL)
8354                 return;
8355
8356         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8357
8358         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8359         for (i = 0; i < 256; i++) {
8360                 intel_crtc->lut_r[i] = i;
8361                 intel_crtc->lut_g[i] = i;
8362                 intel_crtc->lut_b[i] = i;
8363         }
8364
8365         /* Swap pipes & planes for FBC on pre-965 */
8366         intel_crtc->pipe = pipe;
8367         intel_crtc->plane = pipe;
8368         intel_crtc->cpu_transcoder = pipe;
8369         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8370                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8371                 intel_crtc->plane = !pipe;
8372         }
8373
8374         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8375                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8376         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8377         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8378
8379         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8380
8381         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8382 }
8383
8384 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8385                                 struct drm_file *file)
8386 {
8387         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8388         struct drm_mode_object *drmmode_obj;
8389         struct intel_crtc *crtc;
8390
8391         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8392                 return -ENODEV;
8393
8394         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8395                         DRM_MODE_OBJECT_CRTC);
8396
8397         if (!drmmode_obj) {
8398                 DRM_ERROR("no such CRTC id\n");
8399                 return -EINVAL;
8400         }
8401
8402         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8403         pipe_from_crtc_id->pipe = crtc->pipe;
8404
8405         return 0;
8406 }
8407
8408 static int intel_encoder_clones(struct intel_encoder *encoder)
8409 {
8410         struct drm_device *dev = encoder->base.dev;
8411         struct intel_encoder *source_encoder;
8412         int index_mask = 0;
8413         int entry = 0;
8414
8415         list_for_each_entry(source_encoder,
8416                             &dev->mode_config.encoder_list, base.head) {
8417
8418                 if (encoder == source_encoder)
8419                         index_mask |= (1 << entry);
8420
8421                 /* Intel hw has only one MUX where enocoders could be cloned. */
8422                 if (encoder->cloneable && source_encoder->cloneable)
8423                         index_mask |= (1 << entry);
8424
8425                 entry++;
8426         }
8427
8428         return index_mask;
8429 }
8430
8431 static bool has_edp_a(struct drm_device *dev)
8432 {
8433         struct drm_i915_private *dev_priv = dev->dev_private;
8434
8435         if (!IS_MOBILE(dev))
8436                 return false;
8437
8438         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8439                 return false;
8440
8441         if (IS_GEN5(dev) &&
8442             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8443                 return false;
8444
8445         return true;
8446 }
8447
8448 static void intel_setup_outputs(struct drm_device *dev)
8449 {
8450         struct drm_i915_private *dev_priv = dev->dev_private;
8451         struct intel_encoder *encoder;
8452         bool dpd_is_edp = false;
8453         bool has_lvds;
8454
8455         has_lvds = intel_lvds_init(dev);
8456         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8457                 /* disable the panel fitter on everything but LVDS */
8458                 I915_WRITE(PFIT_CONTROL, 0);
8459         }
8460
8461         if (!(IS_HASWELL(dev) &&
8462               (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8463                 intel_crt_init(dev);
8464
8465         if (IS_HASWELL(dev)) {
8466                 int found;
8467
8468                 /* Haswell uses DDI functions to detect digital outputs */
8469                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8470                 /* DDI A only supports eDP */
8471                 if (found)
8472                         intel_ddi_init(dev, PORT_A);
8473
8474                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8475                  * register */
8476                 found = I915_READ(SFUSE_STRAP);
8477
8478                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8479                         intel_ddi_init(dev, PORT_B);
8480                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8481                         intel_ddi_init(dev, PORT_C);
8482                 if (found & SFUSE_STRAP_DDID_DETECTED)
8483                         intel_ddi_init(dev, PORT_D);
8484         } else if (HAS_PCH_SPLIT(dev)) {
8485                 int found;
8486                 dpd_is_edp = intel_dpd_is_edp(dev);
8487
8488                 if (has_edp_a(dev))
8489                         intel_dp_init(dev, DP_A, PORT_A);
8490
8491                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8492                         /* PCH SDVOB multiplex with HDMIB */
8493                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8494                         if (!found)
8495                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8496                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8497                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8498                 }
8499
8500                 if (I915_READ(HDMIC) & PORT_DETECTED)
8501                         intel_hdmi_init(dev, HDMIC, PORT_C);
8502
8503                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8504                         intel_hdmi_init(dev, HDMID, PORT_D);
8505
8506                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8507                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8508
8509                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8510                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8511         } else if (IS_VALLEYVIEW(dev)) {
8512                 int found;
8513
8514                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8515                 if (I915_READ(DP_C) & DP_DETECTED)
8516                         intel_dp_init(dev, DP_C, PORT_C);
8517
8518                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8519                         /* SDVOB multiplex with HDMIB */
8520                         found = intel_sdvo_init(dev, SDVOB, true);
8521                         if (!found)
8522                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8523                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8524                                 intel_dp_init(dev, DP_B, PORT_B);
8525                 }
8526
8527                 if (I915_READ(SDVOC) & PORT_DETECTED)
8528                         intel_hdmi_init(dev, SDVOC, PORT_C);
8529
8530         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8531                 bool found = false;
8532
8533                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8534                         DRM_DEBUG_KMS("probing SDVOB\n");
8535                         found = intel_sdvo_init(dev, SDVOB, true);
8536                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8537                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8538                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8539                         }
8540
8541                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8542                                 DRM_DEBUG_KMS("probing DP_B\n");
8543                                 intel_dp_init(dev, DP_B, PORT_B);
8544                         }
8545                 }
8546
8547                 /* Before G4X SDVOC doesn't have its own detect register */
8548
8549                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8550                         DRM_DEBUG_KMS("probing SDVOC\n");
8551                         found = intel_sdvo_init(dev, SDVOC, false);
8552                 }
8553
8554                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8555
8556                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8557                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8558                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8559                         }
8560                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8561                                 DRM_DEBUG_KMS("probing DP_C\n");
8562                                 intel_dp_init(dev, DP_C, PORT_C);
8563                         }
8564                 }
8565
8566                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8567                     (I915_READ(DP_D) & DP_DETECTED)) {
8568                         DRM_DEBUG_KMS("probing DP_D\n");
8569                         intel_dp_init(dev, DP_D, PORT_D);
8570                 }
8571         } else if (IS_GEN2(dev))
8572                 intel_dvo_init(dev);
8573
8574         if (SUPPORTS_TV(dev))
8575                 intel_tv_init(dev);
8576
8577         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8578                 encoder->base.possible_crtcs = encoder->crtc_mask;
8579                 encoder->base.possible_clones =
8580                         intel_encoder_clones(encoder);
8581         }
8582
8583         intel_init_pch_refclk(dev);
8584
8585         drm_helper_move_panel_connectors_to_head(dev);
8586 }
8587
8588 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8589 {
8590         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8591
8592         drm_framebuffer_cleanup(fb);
8593         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8594
8595         free(intel_fb, DRM_MEM_KMS);
8596 }
8597
8598 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8599                                                 struct drm_file *file,
8600                                                 unsigned int *handle)
8601 {
8602         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8603         struct drm_i915_gem_object *obj = intel_fb->obj;
8604
8605         return drm_gem_handle_create(file, &obj->base, handle);
8606 }
8607
8608 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8609         .destroy = intel_user_framebuffer_destroy,
8610         .create_handle = intel_user_framebuffer_create_handle,
8611 };
8612
8613 int intel_framebuffer_init(struct drm_device *dev,
8614                            struct intel_framebuffer *intel_fb,
8615                            struct drm_mode_fb_cmd2 *mode_cmd,
8616                            struct drm_i915_gem_object *obj)
8617 {
8618         int ret;
8619
8620         if (obj->tiling_mode == I915_TILING_Y) {
8621                 DRM_DEBUG("hardware does not support tiling Y\n");
8622                 return -EINVAL;
8623         }
8624
8625         if (mode_cmd->pitches[0] & 63) {
8626                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8627                           mode_cmd->pitches[0]);
8628                 return -EINVAL;
8629         }
8630
8631         /* FIXME <= Gen4 stride limits are bit unclear */
8632         if (mode_cmd->pitches[0] > 32768) {
8633                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8634                           mode_cmd->pitches[0]);
8635                 return -EINVAL;
8636         }
8637
8638         if (obj->tiling_mode != I915_TILING_NONE &&
8639             mode_cmd->pitches[0] != obj->stride) {
8640                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8641                           mode_cmd->pitches[0], obj->stride);
8642                 return -EINVAL;
8643         }
8644
8645         /* Reject formats not supported by any plane early. */
8646         switch (mode_cmd->pixel_format) {
8647         case DRM_FORMAT_C8:
8648         case DRM_FORMAT_RGB565:
8649         case DRM_FORMAT_XRGB8888:
8650         case DRM_FORMAT_ARGB8888:
8651                 break;
8652         case DRM_FORMAT_XRGB1555:
8653         case DRM_FORMAT_ARGB1555:
8654                 if (INTEL_INFO(dev)->gen > 3) {
8655                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8656                         return -EINVAL;
8657                 }
8658                 break;
8659         case DRM_FORMAT_XBGR8888:
8660         case DRM_FORMAT_ABGR8888:
8661         case DRM_FORMAT_XRGB2101010:
8662         case DRM_FORMAT_ARGB2101010:
8663         case DRM_FORMAT_XBGR2101010:
8664         case DRM_FORMAT_ABGR2101010:
8665                 if (INTEL_INFO(dev)->gen < 4) {
8666                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8667                         return -EINVAL;
8668                 }
8669                 break;
8670         case DRM_FORMAT_YUYV:
8671         case DRM_FORMAT_UYVY:
8672         case DRM_FORMAT_YVYU:
8673         case DRM_FORMAT_VYUY:
8674                 if (INTEL_INFO(dev)->gen < 5) {
8675                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8676                         return -EINVAL;
8677                 }
8678                 break;
8679         default:
8680                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8681                 return -EINVAL;
8682         }
8683
8684         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8685         if (mode_cmd->offsets[0] != 0)
8686                 return -EINVAL;
8687
8688         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8689         if (ret) {
8690                 DRM_ERROR("framebuffer init failed %d\n", ret);
8691                 return ret;
8692         }
8693
8694         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8695         intel_fb->obj = obj;
8696         return 0;
8697 }
8698
8699 static int
8700 intel_user_framebuffer_create(struct drm_device *dev,
8701                               struct drm_file *filp,
8702                               struct drm_mode_fb_cmd2 *mode_cmd,
8703                               struct drm_framebuffer **res)
8704 {
8705         struct drm_i915_gem_object *obj;
8706
8707         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8708                                                 mode_cmd->handles[0]));
8709         if (&obj->base == NULL)
8710                 return -ENOENT;
8711
8712         return intel_framebuffer_create(dev, mode_cmd, obj, res);
8713 }
8714
8715 static const struct drm_mode_config_funcs intel_mode_funcs = {
8716         .fb_create = intel_user_framebuffer_create,
8717         .output_poll_changed = intel_fb_output_poll_changed,
8718 };
8719
8720 /* Set up chip specific display functions */
8721 static void intel_init_display(struct drm_device *dev)
8722 {
8723         struct drm_i915_private *dev_priv = dev->dev_private;
8724
8725         /* We always want a DPMS function */
8726         if (IS_HASWELL(dev)) {
8727                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8728                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8729                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8730                 dev_priv->display.off = haswell_crtc_off;
8731                 dev_priv->display.update_plane = ironlake_update_plane;
8732         } else if (HAS_PCH_SPLIT(dev)) {
8733                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8734                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8735                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8736                 dev_priv->display.off = ironlake_crtc_off;
8737                 dev_priv->display.update_plane = ironlake_update_plane;
8738         } else {
8739                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8740                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8741                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8742                 dev_priv->display.off = i9xx_crtc_off;
8743                 dev_priv->display.update_plane = i9xx_update_plane;
8744         }
8745
8746         /* Returns the core display clock speed */
8747         if (IS_VALLEYVIEW(dev))
8748                 dev_priv->display.get_display_clock_speed =
8749                         valleyview_get_display_clock_speed;
8750         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8751                 dev_priv->display.get_display_clock_speed =
8752                         i945_get_display_clock_speed;
8753         else if (IS_I915G(dev))
8754                 dev_priv->display.get_display_clock_speed =
8755                         i915_get_display_clock_speed;
8756         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8757                 dev_priv->display.get_display_clock_speed =
8758                         i9xx_misc_get_display_clock_speed;
8759         else if (IS_I915GM(dev))
8760                 dev_priv->display.get_display_clock_speed =
8761                         i915gm_get_display_clock_speed;
8762         else if (IS_I865G(dev))
8763                 dev_priv->display.get_display_clock_speed =
8764                         i865_get_display_clock_speed;
8765         else if (IS_I85X(dev))
8766                 dev_priv->display.get_display_clock_speed =
8767                         i855_get_display_clock_speed;
8768         else /* 852, 830 */
8769                 dev_priv->display.get_display_clock_speed =
8770                         i830_get_display_clock_speed;
8771
8772         if (HAS_PCH_SPLIT(dev)) {
8773                 if (IS_GEN5(dev)) {
8774                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8775                         dev_priv->display.write_eld = ironlake_write_eld;
8776                 } else if (IS_GEN6(dev)) {
8777                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8778                         dev_priv->display.write_eld = ironlake_write_eld;
8779                 } else if (IS_IVYBRIDGE(dev)) {
8780                         /* FIXME: detect B0+ stepping and use auto training */
8781                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8782                         dev_priv->display.write_eld = ironlake_write_eld;
8783                         dev_priv->display.modeset_global_resources =
8784                                 ivb_modeset_global_resources;
8785                 } else if (IS_HASWELL(dev)) {
8786                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8787                         dev_priv->display.write_eld = haswell_write_eld;
8788                 } else
8789                         dev_priv->display.update_wm = NULL;
8790         } else if (IS_G4X(dev)) {
8791                 dev_priv->display.write_eld = g4x_write_eld;
8792         }
8793
8794         /* Default just returns -ENODEV to indicate unsupported */
8795         dev_priv->display.queue_flip = intel_default_queue_flip;
8796
8797         switch (INTEL_INFO(dev)->gen) {
8798         case 2:
8799                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8800                 break;
8801
8802         case 3:
8803                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8804                 break;
8805
8806         case 4:
8807         case 5:
8808                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8809                 break;
8810
8811         case 6:
8812                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8813                 break;
8814         case 7:
8815                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8816                 break;
8817         }
8818 }
8819
8820 /*
8821  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8822  * resume, or other times.  This quirk makes sure that's the case for
8823  * affected systems.
8824  */
8825 static void quirk_pipea_force(struct drm_device *dev)
8826 {
8827         struct drm_i915_private *dev_priv = dev->dev_private;
8828
8829         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8830         DRM_INFO("applying pipe a force quirk\n");
8831 }
8832
8833 /*
8834  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8835  */
8836 static void quirk_ssc_force_disable(struct drm_device *dev)
8837 {
8838         struct drm_i915_private *dev_priv = dev->dev_private;
8839         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8840         DRM_INFO("applying lvds SSC disable quirk\n");
8841 }
8842
8843 /*
8844  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8845  * brightness value
8846  */
8847 static void quirk_invert_brightness(struct drm_device *dev)
8848 {
8849         struct drm_i915_private *dev_priv = dev->dev_private;
8850         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8851         DRM_INFO("applying inverted panel brightness quirk\n");
8852 }
8853
8854 struct intel_quirk {
8855         int device;
8856         int subsystem_vendor;
8857         int subsystem_device;
8858         void (*hook)(struct drm_device *dev);
8859 };
8860
8861 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8862 struct intel_dmi_quirk {
8863         void (*hook)(struct drm_device *dev);
8864         const struct dmi_system_id (*dmi_id_list)[];
8865 };
8866
8867 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8868 {
8869         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8870         return 1;
8871 }
8872
8873 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8874         {
8875                 .dmi_id_list =
8876 #if !defined(__clang__) && !__GNUC_PREREQ__(4, 3)
8877                     /* gcc 4.2 needs an additional cast, to avoid a bogus
8878                      * "initialization from incompatible pointer type" warning.
8879                      * see: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=36432
8880                      */
8881                     (const struct dmi_system_id (*)[])
8882 #endif
8883                     &(const struct dmi_system_id[]) {
8884                         {
8885                                 .callback = intel_dmi_reverse_brightness,
8886                                 .ident = "NCR Corporation",
8887                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8888                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8889                                 },
8890                         },
8891                         { }  /* terminating entry */
8892                 },
8893                 .hook = quirk_invert_brightness,
8894         },
8895 };
8896
8897 #define PCI_ANY_ID      (~0u)
8898
8899 static struct intel_quirk intel_quirks[] = {
8900         /* HP Mini needs pipe A force quirk (LP: #322104) */
8901         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8902
8903         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8904         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8905
8906         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8907         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8908
8909         /* 830/845 need to leave pipe A & dpll A up */
8910         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8911         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8912
8913         /* Lenovo U160 cannot use SSC on LVDS */
8914         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8915
8916         /* Sony Vaio Y cannot use SSC on LVDS */
8917         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8918
8919         /* Acer Aspire 5734Z must invert backlight brightness */
8920         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8921
8922         /* Acer Aspire 4736Z */
8923         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8924
8925         /* Acer/eMachines G725 */
8926         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8927
8928         /* Acer/eMachines e725 */
8929         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8930
8931         /* Acer/Packard Bell NCL20 */
8932         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8933 };
8934
8935 static void intel_init_quirks(struct drm_device *dev)
8936 {
8937         int i;
8938
8939         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8940                 struct intel_quirk *q = &intel_quirks[i];
8941
8942                 if (pci_get_device(dev->dev) == q->device &&
8943                     (pci_get_subvendor(dev->dev) == q->subsystem_vendor ||
8944                      q->subsystem_vendor == PCI_ANY_ID) &&
8945                     (pci_get_subdevice(dev->dev) == q->subsystem_device ||
8946                      q->subsystem_device == PCI_ANY_ID))
8947                         q->hook(dev);
8948         }
8949         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8950                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8951                         intel_dmi_quirks[i].hook(dev);
8952         }
8953 }
8954
8955 /* Disable the VGA plane that we never use */
8956 static void i915_disable_vga(struct drm_device *dev)
8957 {
8958         struct drm_i915_private *dev_priv = dev->dev_private;
8959         u8 sr1;
8960         u32 vga_reg;
8961
8962         if (HAS_PCH_SPLIT(dev))
8963                 vga_reg = CPU_VGACNTRL;
8964         else
8965                 vga_reg = VGACNTRL;
8966
8967 #ifdef FREEBSD_WIP
8968         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8969 #endif /* FREEBSD_WIP */
8970         outb(VGA_SR_INDEX, SR01);
8971         sr1 = inb(VGA_SR_DATA);
8972         outb(VGA_SR_DATA, sr1 | 1<<5);
8973 #ifdef FREEBSD_WIP
8974         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8975 #endif /* FREEBSD_WIP */
8976         udelay(300);
8977
8978         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8979         POSTING_READ(vga_reg);
8980 }
8981
8982 void intel_modeset_init_hw(struct drm_device *dev)
8983 {
8984         /* We attempt to init the necessary power wells early in the initialization
8985          * time, so the subsystems that expect power to be enabled can work.
8986          */
8987         intel_init_power_wells(dev);
8988
8989         intel_prepare_ddi(dev);
8990
8991         intel_init_clock_gating(dev);
8992
8993         DRM_LOCK(dev);
8994         intel_enable_gt_powersave(dev);
8995         DRM_UNLOCK(dev);
8996 }
8997
8998 void intel_modeset_init(struct drm_device *dev)
8999 {
9000         struct drm_i915_private *dev_priv = dev->dev_private;
9001         int i, ret;
9002
9003         drm_mode_config_init(dev);
9004
9005         dev->mode_config.min_width = 0;
9006         dev->mode_config.min_height = 0;
9007
9008         dev->mode_config.preferred_depth = 24;
9009         dev->mode_config.prefer_shadow = 1;
9010
9011         dev->mode_config.funcs = &intel_mode_funcs;
9012
9013         intel_init_quirks(dev);
9014
9015         intel_init_pm(dev);
9016
9017         intel_init_display(dev);
9018
9019         if (IS_GEN2(dev)) {
9020                 dev->mode_config.max_width = 2048;
9021                 dev->mode_config.max_height = 2048;
9022         } else if (IS_GEN3(dev)) {
9023                 dev->mode_config.max_width = 4096;
9024                 dev->mode_config.max_height = 4096;
9025         } else {
9026                 dev->mode_config.max_width = 8192;
9027                 dev->mode_config.max_height = 8192;
9028         }
9029         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
9030
9031         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9032                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9033
9034         for (i = 0; i < dev_priv->num_pipe; i++) {
9035                 intel_crtc_init(dev, i);
9036                 ret = intel_plane_init(dev, i);
9037                 if (ret)
9038                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9039         }
9040
9041         intel_cpu_pll_init(dev);
9042         intel_pch_pll_init(dev);
9043
9044         /* Just disable it once at startup */
9045         i915_disable_vga(dev);
9046         intel_setup_outputs(dev);
9047 }
9048
9049 static void
9050 intel_connector_break_all_links(struct intel_connector *connector)
9051 {
9052         connector->base.dpms = DRM_MODE_DPMS_OFF;
9053         connector->base.encoder = NULL;
9054         connector->encoder->connectors_active = false;
9055         connector->encoder->base.crtc = NULL;
9056 }
9057
9058 static void intel_enable_pipe_a(struct drm_device *dev)
9059 {
9060         struct intel_connector *connector;
9061         struct drm_connector *crt = NULL;
9062         struct intel_load_detect_pipe load_detect_temp;
9063
9064         /* We can't just switch on the pipe A, we need to set things up with a
9065          * proper mode and output configuration. As a gross hack, enable pipe A
9066          * by enabling the load detect pipe once. */
9067         list_for_each_entry(connector,
9068                             &dev->mode_config.connector_list,
9069                             base.head) {
9070                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9071                         crt = &connector->base;
9072                         break;
9073                 }
9074         }
9075
9076         if (!crt)
9077                 return;
9078
9079         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9080                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9081
9082
9083 }
9084
9085 static bool
9086 intel_check_plane_mapping(struct intel_crtc *crtc)
9087 {
9088         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
9089         u32 reg, val;
9090
9091         if (dev_priv->num_pipe == 1)
9092                 return true;
9093
9094         reg = DSPCNTR(!crtc->plane);
9095         val = I915_READ(reg);
9096
9097         if ((val & DISPLAY_PLANE_ENABLE) &&
9098             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9099                 return false;
9100
9101         return true;
9102 }
9103
9104 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9105 {
9106         struct drm_device *dev = crtc->base.dev;
9107         struct drm_i915_private *dev_priv = dev->dev_private;
9108         u32 reg;
9109
9110         /* Clear any frame start delays used for debugging left by the BIOS */
9111         reg = PIPECONF(crtc->cpu_transcoder);
9112         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9113
9114         /* We need to sanitize the plane -> pipe mapping first because this will
9115          * disable the crtc (and hence change the state) if it is wrong. Note
9116          * that gen4+ has a fixed plane -> pipe mapping.  */
9117         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9118                 struct intel_connector *connector;
9119                 bool plane;
9120
9121                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9122                               crtc->base.base.id);
9123
9124                 /* Pipe has the wrong plane attached and the plane is active.
9125                  * Temporarily change the plane mapping and disable everything
9126                  * ...  */
9127                 plane = crtc->plane;
9128                 crtc->plane = !plane;
9129                 dev_priv->display.crtc_disable(&crtc->base);
9130                 crtc->plane = plane;
9131
9132                 /* ... and break all links. */
9133                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9134                                     base.head) {
9135                         if (connector->encoder->base.crtc != &crtc->base)
9136                                 continue;
9137
9138                         intel_connector_break_all_links(connector);
9139                 }
9140
9141                 WARN_ON(crtc->active);
9142                 crtc->base.enabled = false;
9143         }
9144
9145         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9146             crtc->pipe == PIPE_A && !crtc->active) {
9147                 /* BIOS forgot to enable pipe A, this mostly happens after
9148                  * resume. Force-enable the pipe to fix this, the update_dpms
9149                  * call below we restore the pipe to the right state, but leave
9150                  * the required bits on. */
9151                 intel_enable_pipe_a(dev);
9152         }
9153
9154         /* Adjust the state of the output pipe according to whether we
9155          * have active connectors/encoders. */
9156         intel_crtc_update_dpms(&crtc->base);
9157
9158         if (crtc->active != crtc->base.enabled) {
9159                 struct intel_encoder *encoder;
9160
9161                 /* This can happen either due to bugs in the get_hw_state
9162                  * functions or because the pipe is force-enabled due to the
9163                  * pipe A quirk. */
9164                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9165                               crtc->base.base.id,
9166                               crtc->base.enabled ? "enabled" : "disabled",
9167                               crtc->active ? "enabled" : "disabled");
9168
9169                 crtc->base.enabled = crtc->active;
9170
9171                 /* Because we only establish the connector -> encoder ->
9172                  * crtc links if something is active, this means the
9173                  * crtc is now deactivated. Break the links. connector
9174                  * -> encoder links are only establish when things are
9175                  *  actually up, hence no need to break them. */
9176                 WARN_ON(crtc->active);
9177
9178                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9179                         WARN_ON(encoder->connectors_active);
9180                         encoder->base.crtc = NULL;
9181                 }
9182         }
9183 }
9184
9185 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9186 {
9187         struct intel_connector *connector;
9188         struct drm_device *dev = encoder->base.dev;
9189
9190         /* We need to check both for a crtc link (meaning that the
9191          * encoder is active and trying to read from a pipe) and the
9192          * pipe itself being active. */
9193         bool has_active_crtc = encoder->base.crtc &&
9194                 to_intel_crtc(encoder->base.crtc)->active;
9195
9196         if (encoder->connectors_active && !has_active_crtc) {
9197                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9198                               encoder->base.base.id,
9199                               drm_get_encoder_name(&encoder->base));
9200
9201                 /* Connector is active, but has no active pipe. This is
9202                  * fallout from our resume register restoring. Disable
9203                  * the encoder manually again. */
9204                 if (encoder->base.crtc) {
9205                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9206                                       encoder->base.base.id,
9207                                       drm_get_encoder_name(&encoder->base));
9208                         encoder->disable(encoder);
9209                 }
9210
9211                 /* Inconsistent output/port/pipe state happens presumably due to
9212                  * a bug in one of the get_hw_state functions. Or someplace else
9213                  * in our code, like the register restore mess on resume. Clamp
9214                  * things to off as a safer default. */
9215                 list_for_each_entry(connector,
9216                                     &dev->mode_config.connector_list,
9217                                     base.head) {
9218                         if (connector->encoder != encoder)
9219                                 continue;
9220
9221                         intel_connector_break_all_links(connector);
9222                 }
9223         }
9224         /* Enabled encoders without active connectors will be fixed in
9225          * the crtc fixup. */
9226 }
9227
9228 static void i915_redisable_vga(struct drm_device *dev)
9229 {
9230         struct drm_i915_private *dev_priv = dev->dev_private;
9231         u32 vga_reg;
9232
9233         if (HAS_PCH_SPLIT(dev))
9234                 vga_reg = CPU_VGACNTRL;
9235         else
9236                 vga_reg = VGACNTRL;
9237
9238         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9239                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9240                 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9241                 POSTING_READ(vga_reg);
9242         }
9243 }
9244
9245 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9246  * and i915 state tracking structures. */
9247 void intel_modeset_setup_hw_state(struct drm_device *dev,
9248                                   bool force_restore)
9249 {
9250         struct drm_i915_private *dev_priv = dev->dev_private;
9251         enum pipe pipe;
9252         u32 tmp;
9253         struct intel_crtc *crtc;
9254         struct intel_encoder *encoder;
9255         struct intel_connector *connector;
9256
9257         if (IS_HASWELL(dev)) {
9258                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9259
9260                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9261                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9262                         case TRANS_DDI_EDP_INPUT_A_ON:
9263                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9264                                 pipe = PIPE_A;
9265                                 break;
9266                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9267                                 pipe = PIPE_B;
9268                                 break;
9269                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9270                                 pipe = PIPE_C;
9271                                 break;
9272                         }
9273
9274                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9275                         crtc->cpu_transcoder = TRANSCODER_EDP;
9276
9277                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9278                                       pipe_name(pipe));
9279                 }
9280         }
9281
9282         for_each_pipe(pipe) {
9283                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9284
9285                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9286                 if (tmp & PIPECONF_ENABLE)
9287                         crtc->active = true;
9288                 else
9289                         crtc->active = false;
9290
9291                 crtc->base.enabled = crtc->active;
9292
9293                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9294                               crtc->base.base.id,
9295                               crtc->active ? "enabled" : "disabled");
9296         }
9297
9298         if (IS_HASWELL(dev))
9299                 intel_ddi_setup_hw_pll_state(dev);
9300
9301         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9302                             base.head) {
9303                 pipe = 0;
9304
9305                 if (encoder->get_hw_state(encoder, &pipe)) {
9306                         encoder->base.crtc =
9307                                 dev_priv->pipe_to_crtc_mapping[pipe];
9308                 } else {
9309                         encoder->base.crtc = NULL;
9310                 }
9311
9312                 encoder->connectors_active = false;
9313                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9314                               encoder->base.base.id,
9315                               drm_get_encoder_name(&encoder->base),
9316                               encoder->base.crtc ? "enabled" : "disabled",
9317                               pipe);
9318         }
9319
9320         list_for_each_entry(connector, &dev->mode_config.connector_list,
9321                             base.head) {
9322                 if (connector->get_hw_state(connector)) {
9323                         connector->base.dpms = DRM_MODE_DPMS_ON;
9324                         connector->encoder->connectors_active = true;
9325                         connector->base.encoder = &connector->encoder->base;
9326                 } else {
9327                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9328                         connector->base.encoder = NULL;
9329                 }
9330                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9331                               connector->base.base.id,
9332                               drm_get_connector_name(&connector->base),
9333                               connector->base.encoder ? "enabled" : "disabled");
9334         }
9335
9336         /* HW state is read out, now we need to sanitize this mess. */
9337         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9338                             base.head) {
9339                 intel_sanitize_encoder(encoder);
9340         }
9341
9342         for_each_pipe(pipe) {
9343                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9344                 intel_sanitize_crtc(crtc);
9345         }
9346
9347         if (force_restore) {
9348                 for_each_pipe(pipe) {
9349                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9350                         intel_set_mode(&crtc->base, &crtc->base.mode,
9351                                        crtc->base.x, crtc->base.y, crtc->base.fb);
9352                 }
9353
9354                 i915_redisable_vga(dev);
9355         } else {
9356                 intel_modeset_update_staged_output_state(dev);
9357         }
9358
9359         intel_modeset_check_state(dev);
9360
9361         drm_mode_config_reset(dev);
9362 }
9363
9364 void intel_modeset_gem_init(struct drm_device *dev)
9365 {
9366         intel_modeset_init_hw(dev);
9367
9368         intel_setup_overlay(dev);
9369
9370         intel_modeset_setup_hw_state(dev, false);
9371 }
9372
9373 void intel_modeset_cleanup(struct drm_device *dev)
9374 {
9375         struct drm_i915_private *dev_priv = dev->dev_private;
9376         struct drm_crtc *crtc;
9377         struct intel_crtc *intel_crtc;
9378
9379         drm_kms_helper_poll_fini(dev);
9380         DRM_LOCK(dev);
9381
9382         intel_unregister_dsm_handler();
9383
9384
9385         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9386                 /* Skip inactive CRTCs */
9387                 if (!crtc->fb)
9388                         continue;
9389
9390                 intel_crtc = to_intel_crtc(crtc);
9391                 intel_increase_pllclock(crtc);
9392         }
9393
9394         intel_disable_fbc(dev);
9395
9396         intel_disable_gt_powersave(dev);
9397
9398         ironlake_teardown_rc6(dev);
9399
9400         if (IS_VALLEYVIEW(dev))
9401                 vlv_init_dpio(dev);
9402
9403         DRM_UNLOCK(dev);
9404
9405         /* Disable the irq before mode object teardown, for the irq might
9406          * enqueue unpin/hotplug work. */
9407         drm_irq_uninstall(dev);
9408         if (taskqueue_cancel(dev_priv->wq, &dev_priv->hotplug_work, NULL))
9409                 taskqueue_drain(dev_priv->wq, &dev_priv->hotplug_work);
9410         if (taskqueue_cancel(dev_priv->wq, &dev_priv->rps.work, NULL))
9411                 taskqueue_drain(dev_priv->wq, &dev_priv->rps.work);
9412
9413         /* flush any delayed tasks or pending work */
9414         taskqueue_drain_all(dev_priv->wq);
9415
9416         /* destroy backlight, if any, before the connectors */
9417         intel_panel_destroy_backlight(dev);
9418
9419         drm_mode_config_cleanup(dev);
9420 }
9421
9422 /*
9423  * Return which encoder is currently attached for connector.
9424  */
9425 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9426 {
9427         return &intel_attached_encoder(connector)->base;
9428 }
9429
9430 void intel_connector_attach_encoder(struct intel_connector *connector,
9431                                     struct intel_encoder *encoder)
9432 {
9433         connector->encoder = encoder;
9434         drm_mode_connector_attach_encoder(&connector->base,
9435                                           &encoder->base);
9436 }
9437
9438 /*
9439  * set vga decode state - true == enable VGA decode
9440  */
9441 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9442 {
9443         struct drm_i915_private *dev_priv = dev->dev_private;
9444         u16 gmch_ctrl;
9445
9446         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9447         if (state)
9448                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9449         else
9450                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9451         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9452         return 0;
9453 }
9454
9455 //#ifdef CONFIG_DEBUG_FS
9456 #define seq_printf(m, fmt, ...) sbuf_printf((m), (fmt), ##__VA_ARGS__)
9457
9458 struct intel_display_error_state {
9459         struct intel_cursor_error_state {
9460                 u32 control;
9461                 u32 position;
9462                 u32 base;
9463                 u32 size;
9464         } cursor[I915_MAX_PIPES];
9465
9466         struct intel_pipe_error_state {
9467                 u32 conf;
9468                 u32 source;
9469
9470                 u32 htotal;
9471                 u32 hblank;
9472                 u32 hsync;
9473                 u32 vtotal;
9474                 u32 vblank;
9475                 u32 vsync;
9476         } pipe[I915_MAX_PIPES];
9477
9478         struct intel_plane_error_state {
9479                 u32 control;
9480                 u32 stride;
9481                 u32 size;
9482                 u32 pos;
9483                 u32 addr;
9484                 u32 surface;
9485                 u32 tile_offset;
9486         } plane[I915_MAX_PIPES];
9487 };
9488
9489 struct intel_display_error_state *
9490 intel_display_capture_error_state(struct drm_device *dev)
9491 {
9492         drm_i915_private_t *dev_priv = dev->dev_private;
9493         struct intel_display_error_state *error;
9494         enum transcoder cpu_transcoder;
9495         int i;
9496
9497         error = malloc(sizeof(*error), DRM_MEM_KMS, M_NOWAIT);
9498         if (error == NULL)
9499                 return NULL;
9500
9501         for_each_pipe(i) {
9502                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9503
9504                 error->cursor[i].control = I915_READ(CURCNTR(i));
9505                 error->cursor[i].position = I915_READ(CURPOS(i));
9506                 error->cursor[i].base = I915_READ(CURBASE(i));
9507
9508                 error->plane[i].control = I915_READ(DSPCNTR(i));
9509                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9510                 error->plane[i].size = I915_READ(DSPSIZE(i));
9511                 error->plane[i].pos = I915_READ(DSPPOS(i));
9512                 error->plane[i].addr = I915_READ(DSPADDR(i));
9513                 if (INTEL_INFO(dev)->gen >= 4) {
9514                         error->plane[i].surface = I915_READ(DSPSURF(i));
9515                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9516                 }
9517
9518                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9519                 error->pipe[i].source = I915_READ(PIPESRC(i));
9520                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9521                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9522                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9523                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9524                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9525                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9526         }
9527
9528         return error;
9529 }
9530
9531 void
9532 intel_display_print_error_state(struct sbuf *m,
9533                                 struct drm_device *dev,
9534                                 struct intel_display_error_state *error)
9535 {
9536         drm_i915_private_t *dev_priv = dev->dev_private;
9537         int i;
9538
9539         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9540         for_each_pipe(i) {
9541                 seq_printf(m, "Pipe [%d]:\n", i);
9542                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9543                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9544                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9545                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9546                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9547                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9548                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9549                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9550
9551                 seq_printf(m, "Plane [%d]:\n", i);
9552                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9553                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9554                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9555                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9556                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9557                 if (INTEL_INFO(dev)->gen >= 4) {
9558                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9559                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9560                 }
9561
9562                 seq_printf(m, "Cursor [%d]:\n", i);
9563                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9564                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9565                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9566         }
9567 }
9568 //#endif