]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/drm2/i915/intel_dp.c
Update LLDB snapshot to upstream r225923 (git 2b588ecd)
[FreeBSD/FreeBSD.git] / sys / dev / drm2 / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <dev/drm2/drmP.h>
32 #include <dev/drm2/drm.h>
33 #include <dev/drm2/drm_crtc.h>
34 #include <dev/drm2/drm_crtc_helper.h>
35 #include <dev/drm2/i915/i915_drm.h>
36 #include <dev/drm2/i915/i915_drv.h>
37 #include <dev/drm2/i915/intel_drv.h>
38 #include <dev/drm2/drm_dp_helper.h>
39
40 #define DP_RECEIVER_CAP_SIZE    0xf
41 #define DP_LINK_STATUS_SIZE     6
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 #define DP_LINK_CONFIGURATION_SIZE      9
45
46 struct intel_dp {
47         struct intel_encoder base;
48         uint32_t output_reg;
49         uint32_t DP;
50         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
51         bool has_audio;
52         enum hdmi_force_audio force_audio;
53         uint32_t color_range;
54         int dpms_mode;
55         uint8_t link_bw;
56         uint8_t lane_count;
57         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
58         device_t dp_iic_bus;
59         device_t adapter;
60         bool is_pch_edp;
61         uint8_t train_set[4];
62         int panel_power_up_delay;
63         int panel_power_down_delay;
64         int panel_power_cycle_delay;
65         int backlight_on_delay;
66         int backlight_off_delay;
67         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
68         struct timeout_task panel_vdd_task;
69         bool want_panel_vdd;
70 };
71
72 /**
73  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
74  * @intel_dp: DP struct
75  *
76  * If a CPU or PCH DP output is attached to an eDP panel, this function
77  * will return true, and false otherwise.
78  */
79 static bool is_edp(struct intel_dp *intel_dp)
80 {
81         return intel_dp->base.type == INTEL_OUTPUT_EDP;
82 }
83
84 /**
85  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
86  * @intel_dp: DP struct
87  *
88  * Returns true if the given DP struct corresponds to a PCH DP port attached
89  * to an eDP panel, false otherwise.  Helpful for determining whether we
90  * may need FDI resources for a given DP output or not.
91  */
92 static bool is_pch_edp(struct intel_dp *intel_dp)
93 {
94         return intel_dp->is_pch_edp;
95 }
96
97 /**
98  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
99  * @intel_dp: DP struct
100  *
101  * Returns true if the given DP struct corresponds to a CPU eDP port.
102  */
103 static bool is_cpu_edp(struct intel_dp *intel_dp)
104 {
105         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
106 }
107
108 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
109 {
110         return container_of(encoder, struct intel_dp, base.base);
111 }
112
113 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
114 {
115         return container_of(intel_attached_encoder(connector),
116                             struct intel_dp, base);
117 }
118
119 /**
120  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
121  * @encoder: DRM encoder
122  *
123  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
124  * by intel_display.c.
125  */
126 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
127 {
128         struct intel_dp *intel_dp;
129
130         if (!encoder)
131                 return false;
132
133         intel_dp = enc_to_intel_dp(encoder);
134
135         return is_pch_edp(intel_dp);
136 }
137
138 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
140 static void intel_dp_link_down(struct intel_dp *intel_dp);
141
142 void
143 intel_edp_link_config(struct intel_encoder *intel_encoder,
144                        int *lane_num, int *link_bw)
145 {
146         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
147
148         *lane_num = intel_dp->lane_count;
149         if (intel_dp->link_bw == DP_LINK_BW_1_62)
150                 *link_bw = 162000;
151         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
152                 *link_bw = 270000;
153 }
154
155 static int
156 intel_dp_max_lane_count(struct intel_dp *intel_dp)
157 {
158         int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
159         switch (max_lane_count) {
160         case 1: case 2: case 4:
161                 break;
162         default:
163                 max_lane_count = 4;
164         }
165         return max_lane_count;
166 }
167
168 static int
169 intel_dp_max_link_bw(struct intel_dp *intel_dp)
170 {
171         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
172
173         switch (max_link_bw) {
174         case DP_LINK_BW_1_62:
175         case DP_LINK_BW_2_7:
176                 break;
177         default:
178                 max_link_bw = DP_LINK_BW_1_62;
179                 break;
180         }
181         return max_link_bw;
182 }
183
184 static int
185 intel_dp_link_clock(uint8_t link_bw)
186 {
187         if (link_bw == DP_LINK_BW_2_7)
188                 return 270000;
189         else
190                 return 162000;
191 }
192
193 /*
194  * The units on the numbers in the next two are... bizarre.  Examples will
195  * make it clearer; this one parallels an example in the eDP spec.
196  *
197  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
198  *
199  *     270000 * 1 * 8 / 10 == 216000
200  *
201  * The actual data capacity of that configuration is 2.16Gbit/s, so the
202  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
203  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
204  * 119000.  At 18bpp that's 2142000 kilobits per second.
205  *
206  * Thus the strange-looking division by 10 in intel_dp_link_required, to
207  * get the result in decakilobits instead of kilobits.
208  */
209
210 static int
211 intel_dp_link_required(int pixel_clock, int bpp)
212 {
213         return (pixel_clock * bpp + 9) / 10;
214 }
215
216 static int
217 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
218 {
219         return (max_link_clock * max_lanes * 8) / 10;
220 }
221
222 static bool
223 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
224                           const struct drm_display_mode *mode,
225                           struct drm_display_mode *adjusted_mode)
226 {
227         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
228         int max_lanes = intel_dp_max_lane_count(intel_dp);
229         int max_rate, mode_rate;
230
231         mode_rate = intel_dp_link_required(mode->clock, 24);
232         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
233
234         if (mode_rate > max_rate) {
235                 mode_rate = intel_dp_link_required(mode->clock, 18);
236                 if (mode_rate > max_rate)
237                         return false;
238
239                 if (adjusted_mode)
240                         adjusted_mode->private_flags
241                                 |= INTEL_MODE_DP_FORCE_6BPC;
242
243                 return true;
244         }
245
246         return true;
247 }
248
249 static int
250 intel_dp_mode_valid(struct drm_connector *connector,
251                     struct drm_display_mode *mode)
252 {
253         struct intel_dp *intel_dp = intel_attached_dp(connector);
254
255         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
256                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
257                         return MODE_PANEL;
258
259                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
260                         return MODE_PANEL;
261         }
262
263         if (!intel_dp_adjust_dithering(intel_dp, mode, NULL))
264                 return MODE_CLOCK_HIGH;
265
266         if (mode->clock < 10000)
267                 return MODE_CLOCK_LOW;
268
269         return MODE_OK;
270 }
271
272 static uint32_t
273 pack_aux(uint8_t *src, int src_bytes)
274 {
275         int     i;
276         uint32_t v = 0;
277
278         if (src_bytes > 4)
279                 src_bytes = 4;
280         for (i = 0; i < src_bytes; i++)
281                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
282         return v;
283 }
284
285 static void
286 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
287 {
288         int i;
289         if (dst_bytes > 4)
290                 dst_bytes = 4;
291         for (i = 0; i < dst_bytes; i++)
292                 dst[i] = src >> ((3-i) * 8);
293 }
294
295 /* hrawclock is 1/4 the FSB frequency */
296 static int
297 intel_hrawclk(struct drm_device *dev)
298 {
299         struct drm_i915_private *dev_priv = dev->dev_private;
300         uint32_t clkcfg;
301
302         clkcfg = I915_READ(CLKCFG);
303         switch (clkcfg & CLKCFG_FSB_MASK) {
304         case CLKCFG_FSB_400:
305                 return 100;
306         case CLKCFG_FSB_533:
307                 return 133;
308         case CLKCFG_FSB_667:
309                 return 166;
310         case CLKCFG_FSB_800:
311                 return 200;
312         case CLKCFG_FSB_1067:
313                 return 266;
314         case CLKCFG_FSB_1333:
315                 return 333;
316         /* these two are just a guess; one of them might be right */
317         case CLKCFG_FSB_1600:
318         case CLKCFG_FSB_1600_ALT:
319                 return 400;
320         default:
321                 return 133;
322         }
323 }
324
325 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
326 {
327         struct drm_device *dev = intel_dp->base.base.dev;
328         struct drm_i915_private *dev_priv = dev->dev_private;
329
330         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
331 }
332
333 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
334 {
335         struct drm_device *dev = intel_dp->base.base.dev;
336         struct drm_i915_private *dev_priv = dev->dev_private;
337
338         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
339 }
340
341 static void
342 intel_dp_check_edp(struct intel_dp *intel_dp)
343 {
344         struct drm_device *dev = intel_dp->base.base.dev;
345         struct drm_i915_private *dev_priv = dev->dev_private;
346
347         if (!is_edp(intel_dp))
348                 return;
349         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
350                 printf("eDP powered off while attempting aux channel communication.\n");
351                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
352                               I915_READ(PCH_PP_STATUS),
353                               I915_READ(PCH_PP_CONTROL));
354         }
355 }
356
357 static int
358 intel_dp_aux_ch(struct intel_dp *intel_dp,
359                 uint8_t *send, int send_bytes,
360                 uint8_t *recv, int recv_size)
361 {
362         uint32_t output_reg = intel_dp->output_reg;
363         struct drm_device *dev = intel_dp->base.base.dev;
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         uint32_t ch_ctl = output_reg + 0x10;
366         uint32_t ch_data = ch_ctl + 4;
367         int i;
368         int recv_bytes;
369         uint32_t status;
370         uint32_t aux_clock_divider;
371         int try, precharge = 5;
372
373         intel_dp_check_edp(intel_dp);
374         /* The clock divider is based off the hrawclk,
375          * and would like to run at 2MHz. So, take the
376          * hrawclk value and divide by 2 and use that
377          *
378          * Note that PCH attached eDP panels should use a 125MHz input
379          * clock divider.
380          */
381         if (is_cpu_edp(intel_dp)) {
382                 if (IS_GEN6(dev) || IS_GEN7(dev))
383                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
384                 else
385                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
386         } else if (HAS_PCH_SPLIT(dev))
387                 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
388         else
389                 aux_clock_divider = intel_hrawclk(dev) / 2;
390
391         /* Try to wait for any previous AUX channel activity */
392         for (try = 0; try < 3; try++) {
393                 status = I915_READ(ch_ctl);
394                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
395                         break;
396                 drm_msleep(1, "915ach");
397         }
398
399         if (try == 3) {
400                 printf("dp_aux_ch not started status 0x%08x\n",
401                      I915_READ(ch_ctl));
402                 return -EBUSY;
403         }
404
405         /* Must try at least 3 times according to DP spec */
406         for (try = 0; try < 5; try++) {
407                 /* Load the send data into the aux channel data registers */
408                 for (i = 0; i < send_bytes; i += 4)
409                         I915_WRITE(ch_data + i,
410                                    pack_aux(send + i, send_bytes - i));
411
412                 /* Send the command and wait for it to complete */
413                 I915_WRITE(ch_ctl,
414                            DP_AUX_CH_CTL_SEND_BUSY |
415                            DP_AUX_CH_CTL_TIME_OUT_400us |
416                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
417                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
418                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
419                            DP_AUX_CH_CTL_DONE |
420                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
421                            DP_AUX_CH_CTL_RECEIVE_ERROR);
422                 for (;;) {
423                         status = I915_READ(ch_ctl);
424                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
425                                 break;
426                         DELAY(100);
427                 }
428
429                 /* Clear done status and any errors */
430                 I915_WRITE(ch_ctl,
431                            status |
432                            DP_AUX_CH_CTL_DONE |
433                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
434                            DP_AUX_CH_CTL_RECEIVE_ERROR);
435
436                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
437                               DP_AUX_CH_CTL_RECEIVE_ERROR))
438                         continue;
439                 if (status & DP_AUX_CH_CTL_DONE)
440                         break;
441         }
442
443         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
444                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
445                 return -EBUSY;
446         }
447
448         /* Check for timeout or receive error.
449          * Timeouts occur when the sink is not connected
450          */
451         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
452                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
453                 return -EIO;
454         }
455
456         /* Timeouts occur when the device isn't connected, so they're
457          * "normal" -- don't fill the kernel log with these */
458         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
459                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
460                 return -ETIMEDOUT;
461         }
462
463         /* Unload any bytes sent back from the other side */
464         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
465                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
466         if (recv_bytes > recv_size)
467                 recv_bytes = recv_size;
468
469         for (i = 0; i < recv_bytes; i += 4)
470                 unpack_aux(I915_READ(ch_data + i),
471                            recv + i, recv_bytes - i);
472
473         return recv_bytes;
474 }
475
476 /* Write data to the aux channel in native mode */
477 static int
478 intel_dp_aux_native_write(struct intel_dp *intel_dp,
479                           uint16_t address, uint8_t *send, int send_bytes)
480 {
481         int ret;
482         uint8_t msg[20];
483         int msg_bytes;
484         uint8_t ack;
485
486         intel_dp_check_edp(intel_dp);
487         if (send_bytes > 16)
488                 return -1;
489         msg[0] = AUX_NATIVE_WRITE << 4;
490         msg[1] = address >> 8;
491         msg[2] = address & 0xff;
492         msg[3] = send_bytes - 1;
493         memcpy(&msg[4], send, send_bytes);
494         msg_bytes = send_bytes + 4;
495         for (;;) {
496                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
497                 if (ret < 0)
498                         return ret;
499                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
500                         break;
501                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
502                         DELAY(100);
503                 else
504                         return -EIO;
505         }
506         return send_bytes;
507 }
508
509 /* Write a single byte to the aux channel in native mode */
510 static int
511 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
512                             uint16_t address, uint8_t byte)
513 {
514         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
515 }
516
517 /* read bytes from a native aux channel */
518 static int
519 intel_dp_aux_native_read(struct intel_dp *intel_dp,
520                          uint16_t address, uint8_t *recv, int recv_bytes)
521 {
522         uint8_t msg[4];
523         int msg_bytes;
524         uint8_t reply[20];
525         int reply_bytes;
526         uint8_t ack;
527         int ret;
528
529         intel_dp_check_edp(intel_dp);
530         msg[0] = AUX_NATIVE_READ << 4;
531         msg[1] = address >> 8;
532         msg[2] = address & 0xff;
533         msg[3] = recv_bytes - 1;
534
535         msg_bytes = 4;
536         reply_bytes = recv_bytes + 1;
537
538         for (;;) {
539                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
540                                       reply, reply_bytes);
541                 if (ret == 0)
542                         return -EPROTO;
543                 if (ret < 0)
544                         return ret;
545                 ack = reply[0];
546                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
547                         memcpy(recv, reply + 1, ret - 1);
548                         return ret - 1;
549                 }
550                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
551                         DELAY(100);
552                 else
553                         return -EIO;
554         }
555 }
556
557 static int
558 intel_dp_i2c_aux_ch(device_t idev, int mode, uint8_t write_byte,
559     uint8_t *read_byte)
560 {
561         struct iic_dp_aux_data *data;
562         struct intel_dp *intel_dp;
563         uint16_t address;
564         uint8_t msg[5];
565         uint8_t reply[2];
566         unsigned retry;
567         int msg_bytes;
568         int reply_bytes;
569         int ret;
570
571         data = device_get_softc(idev);
572         intel_dp = data->priv;
573         address = data->address;
574
575         intel_dp_check_edp(intel_dp);
576         /* Set up the command byte */
577         if (mode & MODE_I2C_READ)
578                 msg[0] = AUX_I2C_READ << 4;
579         else
580                 msg[0] = AUX_I2C_WRITE << 4;
581
582         if (!(mode & MODE_I2C_STOP))
583                 msg[0] |= AUX_I2C_MOT << 4;
584
585         msg[1] = address >> 8;
586         msg[2] = address;
587
588         switch (mode) {
589         case MODE_I2C_WRITE:
590                 msg[3] = 0;
591                 msg[4] = write_byte;
592                 msg_bytes = 5;
593                 reply_bytes = 1;
594                 break;
595         case MODE_I2C_READ:
596                 msg[3] = 0;
597                 msg_bytes = 4;
598                 reply_bytes = 2;
599                 break;
600         default:
601                 msg_bytes = 3;
602                 reply_bytes = 1;
603                 break;
604         }
605
606         for (retry = 0; retry < 5; retry++) {
607                 ret = intel_dp_aux_ch(intel_dp,
608                                       msg, msg_bytes,
609                                       reply, reply_bytes);
610                 if (ret < 0) {
611                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
612                         return (ret);
613                 }
614
615                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
616                 case AUX_NATIVE_REPLY_ACK:
617                         /* I2C-over-AUX Reply field is only valid
618                          * when paired with AUX ACK.
619                          */
620                         break;
621                 case AUX_NATIVE_REPLY_NACK:
622                         DRM_DEBUG_KMS("aux_ch native nack\n");
623                         return (-EREMOTEIO);
624                 case AUX_NATIVE_REPLY_DEFER:
625                         DELAY(100);
626                         continue;
627                 default:
628                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
629                                   reply[0]);
630                         return (-EREMOTEIO);
631                 }
632
633                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
634                 case AUX_I2C_REPLY_ACK:
635                         if (mode == MODE_I2C_READ) {
636                                 *read_byte = reply[1];
637                         }
638                         return (0/*reply_bytes - 1*/);
639                 case AUX_I2C_REPLY_NACK:
640                         DRM_DEBUG_KMS("aux_i2c nack\n");
641                         return (-EREMOTEIO);
642                 case AUX_I2C_REPLY_DEFER:
643                         DRM_DEBUG_KMS("aux_i2c defer\n");
644                         DELAY(100);
645                         break;
646                 default:
647                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
648                         return (-EREMOTEIO);
649                 }
650         }
651
652         DRM_ERROR("too many retries, giving up\n");
653         return (-EREMOTEIO);
654 }
655
656 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
657 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
658
659 static int
660 intel_dp_i2c_init(struct intel_dp *intel_dp,
661                   struct intel_connector *intel_connector, const char *name)
662 {
663         int ret;
664
665         DRM_DEBUG_KMS("i2c_init %s\n", name);
666
667         ironlake_edp_panel_vdd_on(intel_dp);
668         ret = iic_dp_aux_add_bus(intel_connector->base.dev->device, name,
669             intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
670             &intel_dp->adapter);
671         ironlake_edp_panel_vdd_off(intel_dp, false);
672         return (ret);
673 }
674
675 static bool
676 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
677                     struct drm_display_mode *adjusted_mode)
678 {
679         struct drm_device *dev = encoder->dev;
680         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
681         int lane_count, clock;
682         int max_lane_count = intel_dp_max_lane_count(intel_dp);
683         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
684         int bpp, mode_rate;
685         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
686
687         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
688                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
689                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
690                                         mode, adjusted_mode);
691                 /*
692                  * the mode->clock is used to calculate the Data&Link M/N
693                  * of the pipe. For the eDP the fixed clock should be used.
694                  */
695                 mode->clock = intel_dp->panel_fixed_mode->clock;
696         }
697
698         DRM_DEBUG_KMS("DP link computation with max lane count %i "
699                       "max bw %02x pixel clock %iKHz\n",
700                       max_lane_count, bws[max_clock], mode->clock);
701
702         if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, adjusted_mode))
703                 return false;
704
705         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
706         mode_rate = intel_dp_link_required(mode->clock, bpp);
707
708         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
709                 for (clock = 0; clock <= max_clock; clock++) {
710                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
711
712                         if (mode_rate <= link_avail) {
713                                 intel_dp->link_bw = bws[clock];
714                                 intel_dp->lane_count = lane_count;
715                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
716                                 DRM_DEBUG_KMS("DP link bw %02x lane "
717                                                 "count %d clock %d bpp %d\n",
718                                        intel_dp->link_bw, intel_dp->lane_count,
719                                        adjusted_mode->clock, bpp);
720                                 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
721                                               mode_rate, link_avail);
722                                 return true;
723                         }
724                 }
725         }
726
727         return false;
728 }
729
730 struct intel_dp_m_n {
731         uint32_t        tu;
732         uint32_t        gmch_m;
733         uint32_t        gmch_n;
734         uint32_t        link_m;
735         uint32_t        link_n;
736 };
737
738 static void
739 intel_reduce_ratio(uint32_t *num, uint32_t *den)
740 {
741         while (*num > 0xffffff || *den > 0xffffff) {
742                 *num >>= 1;
743                 *den >>= 1;
744         }
745 }
746
747 static void
748 intel_dp_compute_m_n(int bpp,
749                      int nlanes,
750                      int pixel_clock,
751                      int link_clock,
752                      struct intel_dp_m_n *m_n)
753 {
754         m_n->tu = 64;
755         m_n->gmch_m = (pixel_clock * bpp) >> 3;
756         m_n->gmch_n = link_clock * nlanes;
757         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
758         m_n->link_m = pixel_clock;
759         m_n->link_n = link_clock;
760         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
761 }
762
763 void
764 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
765                  struct drm_display_mode *adjusted_mode)
766 {
767         struct drm_device *dev = crtc->dev;
768         struct drm_mode_config *mode_config = &dev->mode_config;
769         struct drm_encoder *encoder;
770         struct drm_i915_private *dev_priv = dev->dev_private;
771         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
772         int lane_count = 4;
773         struct intel_dp_m_n m_n;
774         int pipe = intel_crtc->pipe;
775
776         /*
777          * Find the lane count in the intel_encoder private
778          */
779         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
780                 struct intel_dp *intel_dp;
781
782                 if (encoder->crtc != crtc)
783                         continue;
784
785                 intel_dp = enc_to_intel_dp(encoder);
786                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
787                     intel_dp->base.type == INTEL_OUTPUT_EDP)
788                 {
789                         lane_count = intel_dp->lane_count;
790                         break;
791                 }
792         }
793
794         /*
795          * Compute the GMCH and Link ratios. The '3' here is
796          * the number of bytes_per_pixel post-LUT, which we always
797          * set up for 8-bits of R/G/B, or 3 bytes total.
798          */
799         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
800                              mode->clock, adjusted_mode->clock, &m_n);
801
802         if (HAS_PCH_SPLIT(dev)) {
803                 I915_WRITE(TRANSDATA_M1(pipe),
804                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
805                            m_n.gmch_m);
806                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
807                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
808                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
809         } else {
810                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
811                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
812                            m_n.gmch_m);
813                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
814                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
815                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
816         }
817 }
818
819 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
820 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
821
822 static void
823 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
824                   struct drm_display_mode *adjusted_mode)
825 {
826         struct drm_device *dev = encoder->dev;
827         struct drm_i915_private *dev_priv = dev->dev_private;
828         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
829         struct drm_crtc *crtc = intel_dp->base.base.crtc;
830         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
831
832         /* Turn on the eDP PLL if needed */
833         if (is_edp(intel_dp)) {
834                 if (!is_pch_edp(intel_dp))
835                         ironlake_edp_pll_on(encoder);
836                 else
837                         ironlake_edp_pll_off(encoder);
838         }
839
840         /*
841          * There are four kinds of DP registers:
842          *
843          *      IBX PCH
844          *      SNB CPU
845          *      IVB CPU
846          *      CPT PCH
847          *
848          * IBX PCH and CPU are the same for almost everything,
849          * except that the CPU DP PLL is configured in this
850          * register
851          *
852          * CPT PCH is quite different, having many bits moved
853          * to the TRANS_DP_CTL register instead. That
854          * configuration happens (oddly) in ironlake_pch_enable
855          */
856
857         /* Preserve the BIOS-computed detected bit. This is
858          * supposed to be read-only.
859          */
860         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
861         intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
862
863         /* Handle DP bits in common between all three register formats */
864
865         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
866
867         switch (intel_dp->lane_count) {
868         case 1:
869                 intel_dp->DP |= DP_PORT_WIDTH_1;
870                 break;
871         case 2:
872                 intel_dp->DP |= DP_PORT_WIDTH_2;
873                 break;
874         case 4:
875                 intel_dp->DP |= DP_PORT_WIDTH_4;
876                 break;
877         }
878         if (intel_dp->has_audio) {
879                 DRM_DEBUG_KMS("Enabling DP audio on pipe %c\n",
880                                  pipe_name(intel_crtc->pipe));
881                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
882                 intel_write_eld(encoder, adjusted_mode);
883         }
884         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
885         intel_dp->link_configuration[0] = intel_dp->link_bw;
886         intel_dp->link_configuration[1] = intel_dp->lane_count;
887         /*
888          * Check for DPCD version > 1.1 and enhanced framing support
889          */
890         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
891             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
892                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
893         }
894
895         /* Split out the IBX/CPU vs CPT settings */
896
897         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
898                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
899                         intel_dp->DP |= DP_SYNC_HS_HIGH;
900                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
901                         intel_dp->DP |= DP_SYNC_VS_HIGH;
902                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
903
904                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
905                         intel_dp->DP |= DP_ENHANCED_FRAMING;
906
907                 intel_dp->DP |= intel_crtc->pipe << 29;
908
909                 /* don't miss out required setting for eDP */
910                 intel_dp->DP |= DP_PLL_ENABLE;
911                 if (adjusted_mode->clock < 200000)
912                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
913                 else
914                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
915         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
916                 intel_dp->DP |= intel_dp->color_range;
917
918                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
919                         intel_dp->DP |= DP_SYNC_HS_HIGH;
920                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
921                         intel_dp->DP |= DP_SYNC_VS_HIGH;
922                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
923
924                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
925                         intel_dp->DP |= DP_ENHANCED_FRAMING;
926
927                 if (intel_crtc->pipe == 1)
928                         intel_dp->DP |= DP_PIPEB_SELECT;
929
930                 if (is_cpu_edp(intel_dp)) {
931                         /* don't miss out required setting for eDP */
932                         intel_dp->DP |= DP_PLL_ENABLE;
933                         if (adjusted_mode->clock < 200000)
934                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
935                         else
936                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
937                 }
938         } else {
939                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
940         }
941 }
942
943 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
944 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
945
946 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
947 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
948
949 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
950 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
951
952 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
953                                        u32 mask,
954                                        u32 value)
955 {
956         struct drm_device *dev = intel_dp->base.base.dev;
957         struct drm_i915_private *dev_priv = dev->dev_private;
958
959         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
960                       mask, value,
961                       I915_READ(PCH_PP_STATUS),
962                       I915_READ(PCH_PP_CONTROL));
963
964         if (_intel_wait_for(dev,
965             (I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10, "915iwp")) {
966                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
967                           I915_READ(PCH_PP_STATUS),
968                           I915_READ(PCH_PP_CONTROL));
969         }
970 }
971
972 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
973 {
974         DRM_DEBUG_KMS("Wait for panel power on\n");
975         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
976 }
977
978 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
979 {
980         DRM_DEBUG_KMS("Wait for panel power off time\n");
981         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
982 }
983
984 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
985 {
986         DRM_DEBUG_KMS("Wait for panel power cycle\n");
987         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
988 }
989
990
991 /* Read the current pp_control value, unlocking the register if it
992  * is locked
993  */
994
995 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
996 {
997         u32     control = I915_READ(PCH_PP_CONTROL);
998
999         control &= ~PANEL_UNLOCK_MASK;
1000         control |= PANEL_UNLOCK_REGS;
1001         return control;
1002 }
1003
1004 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1005 {
1006         struct drm_device *dev = intel_dp->base.base.dev;
1007         struct drm_i915_private *dev_priv = dev->dev_private;
1008         u32 pp;
1009
1010         if (!is_edp(intel_dp))
1011                 return;
1012         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1013
1014         if (intel_dp->want_panel_vdd)
1015                 printf("eDP VDD already requested on\n");
1016
1017         intel_dp->want_panel_vdd = true;
1018
1019         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1020                 DRM_DEBUG_KMS("eDP VDD already on\n");
1021                 return;
1022         }
1023
1024         if (!ironlake_edp_have_panel_power(intel_dp))
1025                 ironlake_wait_panel_power_cycle(intel_dp);
1026
1027         pp = ironlake_get_pp_control(dev_priv);
1028         pp |= EDP_FORCE_VDD;
1029         I915_WRITE(PCH_PP_CONTROL, pp);
1030         POSTING_READ(PCH_PP_CONTROL);
1031         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1032                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1033
1034         /*
1035          * If the panel wasn't on, delay before accessing aux channel
1036          */
1037         if (!ironlake_edp_have_panel_power(intel_dp)) {
1038                 DRM_DEBUG_KMS("eDP was not running\n");
1039                 drm_msleep(intel_dp->panel_power_up_delay, "915edpon");
1040         }
1041 }
1042
1043 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1044 {
1045         struct drm_device *dev = intel_dp->base.base.dev;
1046         struct drm_i915_private *dev_priv = dev->dev_private;
1047         u32 pp;
1048
1049         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1050                 pp = ironlake_get_pp_control(dev_priv);
1051                 pp &= ~EDP_FORCE_VDD;
1052                 I915_WRITE(PCH_PP_CONTROL, pp);
1053                 POSTING_READ(PCH_PP_CONTROL);
1054
1055                 /* Make sure sequencer is idle before allowing subsequent activity */
1056                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1057                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1058
1059                 drm_msleep(intel_dp->panel_power_down_delay, "915vddo");
1060         }
1061 }
1062
1063 static void ironlake_panel_vdd_work(void *arg, int pending __unused)
1064 {
1065         struct intel_dp *intel_dp = arg;
1066         struct drm_device *dev = intel_dp->base.base.dev;
1067
1068         sx_xlock(&dev->mode_config.mutex);
1069         ironlake_panel_vdd_off_sync(intel_dp);
1070         sx_xunlock(&dev->mode_config.mutex);
1071 }
1072
1073 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1074 {
1075         if (!is_edp(intel_dp))
1076                 return;
1077
1078         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1079         if (!intel_dp->want_panel_vdd)
1080                 printf("eDP VDD not forced on\n");
1081
1082         intel_dp->want_panel_vdd = false;
1083
1084         if (sync) {
1085                 ironlake_panel_vdd_off_sync(intel_dp);
1086         } else {
1087                 /*
1088                  * Queue the timer to fire a long
1089                  * time from now (relative to the power down delay)
1090                  * to keep the panel power up across a sequence of operations
1091                  */
1092                 struct drm_i915_private *dev_priv = intel_dp->base.base.dev->dev_private;
1093                 taskqueue_enqueue_timeout(dev_priv->tq,
1094                     &intel_dp->panel_vdd_task,
1095                     msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1096         }
1097 }
1098
1099 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1100 {
1101         struct drm_device *dev = intel_dp->base.base.dev;
1102         struct drm_i915_private *dev_priv = dev->dev_private;
1103         u32 pp;
1104
1105         if (!is_edp(intel_dp))
1106                 return;
1107
1108         DRM_DEBUG_KMS("Turn eDP power on\n");
1109
1110         if (ironlake_edp_have_panel_power(intel_dp)) {
1111                 DRM_DEBUG_KMS("eDP power already on\n");
1112                 return;
1113         }
1114
1115         ironlake_wait_panel_power_cycle(intel_dp);
1116
1117         pp = ironlake_get_pp_control(dev_priv);
1118         if (IS_GEN5(dev)) {
1119                 /* ILK workaround: disable reset around power sequence */
1120                 pp &= ~PANEL_POWER_RESET;
1121                 I915_WRITE(PCH_PP_CONTROL, pp);
1122                 POSTING_READ(PCH_PP_CONTROL);
1123         }
1124
1125         pp |= POWER_TARGET_ON;
1126         if (!IS_GEN5(dev))
1127                 pp |= PANEL_POWER_RESET;
1128
1129         I915_WRITE(PCH_PP_CONTROL, pp);
1130         POSTING_READ(PCH_PP_CONTROL);
1131
1132         ironlake_wait_panel_on(intel_dp);
1133
1134         if (IS_GEN5(dev)) {
1135                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1136                 I915_WRITE(PCH_PP_CONTROL, pp);
1137                 POSTING_READ(PCH_PP_CONTROL);
1138         }
1139 }
1140
1141 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1142 {
1143         struct drm_device *dev = intel_dp->base.base.dev;
1144         struct drm_i915_private *dev_priv = dev->dev_private;
1145         u32 pp;
1146
1147         if (!is_edp(intel_dp))
1148                 return;
1149
1150         DRM_DEBUG_KMS("Turn eDP power off\n");
1151
1152         if (intel_dp->want_panel_vdd)
1153                 printf("Cannot turn power off while VDD is on\n");
1154         ironlake_panel_vdd_off_sync(intel_dp); /* finish any pending work */
1155
1156         pp = ironlake_get_pp_control(dev_priv);
1157         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1158         I915_WRITE(PCH_PP_CONTROL, pp);
1159         POSTING_READ(PCH_PP_CONTROL);
1160
1161         ironlake_wait_panel_off(intel_dp);
1162 }
1163
1164 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1165 {
1166         struct drm_device *dev = intel_dp->base.base.dev;
1167         struct drm_i915_private *dev_priv = dev->dev_private;
1168         u32 pp;
1169
1170         if (!is_edp(intel_dp))
1171                 return;
1172
1173         DRM_DEBUG_KMS("\n");
1174         /*
1175          * If we enable the backlight right away following a panel power
1176          * on, we may see slight flicker as the panel syncs with the eDP
1177          * link.  So delay a bit to make sure the image is solid before
1178          * allowing it to appear.
1179          */
1180         drm_msleep(intel_dp->backlight_on_delay, "915ebo");
1181         pp = ironlake_get_pp_control(dev_priv);
1182         pp |= EDP_BLC_ENABLE;
1183         I915_WRITE(PCH_PP_CONTROL, pp);
1184         POSTING_READ(PCH_PP_CONTROL);
1185 }
1186
1187 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1188 {
1189         struct drm_device *dev = intel_dp->base.base.dev;
1190         struct drm_i915_private *dev_priv = dev->dev_private;
1191         u32 pp;
1192
1193         if (!is_edp(intel_dp))
1194                 return;
1195
1196         DRM_DEBUG_KMS("\n");
1197         pp = ironlake_get_pp_control(dev_priv);
1198         pp &= ~EDP_BLC_ENABLE;
1199         I915_WRITE(PCH_PP_CONTROL, pp);
1200         POSTING_READ(PCH_PP_CONTROL);
1201         drm_msleep(intel_dp->backlight_off_delay, "915bo1");
1202 }
1203
1204 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1205 {
1206         struct drm_device *dev = encoder->dev;
1207         struct drm_i915_private *dev_priv = dev->dev_private;
1208         u32 dpa_ctl;
1209
1210         DRM_DEBUG_KMS("\n");
1211         dpa_ctl = I915_READ(DP_A);
1212         dpa_ctl |= DP_PLL_ENABLE;
1213         I915_WRITE(DP_A, dpa_ctl);
1214         POSTING_READ(DP_A);
1215         DELAY(200);
1216 }
1217
1218 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1219 {
1220         struct drm_device *dev = encoder->dev;
1221         struct drm_i915_private *dev_priv = dev->dev_private;
1222         u32 dpa_ctl;
1223
1224         dpa_ctl = I915_READ(DP_A);
1225         dpa_ctl &= ~DP_PLL_ENABLE;
1226         I915_WRITE(DP_A, dpa_ctl);
1227         POSTING_READ(DP_A);
1228         DELAY(200);
1229 }
1230
1231 /* If the sink supports it, try to set the power state appropriately */
1232 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1233 {
1234         int ret, i;
1235
1236         /* Should have a valid DPCD by this point */
1237         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1238                 return;
1239
1240         if (mode != DRM_MODE_DPMS_ON) {
1241                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1242                                                   DP_SET_POWER_D3);
1243                 if (ret != 1)
1244                         DRM_DEBUG("failed to write sink power state\n");
1245         } else {
1246                 /*
1247                  * When turning on, we need to retry for 1ms to give the sink
1248                  * time to wake up.
1249                  */
1250                 for (i = 0; i < 3; i++) {
1251                         ret = intel_dp_aux_native_write_1(intel_dp,
1252                                                           DP_SET_POWER,
1253                                                           DP_SET_POWER_D0);
1254                         if (ret == 1)
1255                                 break;
1256                         drm_msleep(1, "915dps");
1257                 }
1258         }
1259 }
1260
1261 static void intel_dp_prepare(struct drm_encoder *encoder)
1262 {
1263         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1264
1265         ironlake_edp_backlight_off(intel_dp);
1266         ironlake_edp_panel_off(intel_dp);
1267
1268         /* Wake up the sink first */
1269         ironlake_edp_panel_vdd_on(intel_dp);
1270         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1271         intel_dp_link_down(intel_dp);
1272         ironlake_edp_panel_vdd_off(intel_dp, false);
1273
1274         /* Make sure the panel is off before trying to
1275          * change the mode
1276          */
1277 }
1278
1279 static void intel_dp_commit(struct drm_encoder *encoder)
1280 {
1281         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1282         struct drm_device *dev = encoder->dev;
1283         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1284
1285         ironlake_edp_panel_vdd_on(intel_dp);
1286         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1287         intel_dp_start_link_train(intel_dp);
1288         ironlake_edp_panel_on(intel_dp);
1289         ironlake_edp_panel_vdd_off(intel_dp, true);
1290         intel_dp_complete_link_train(intel_dp);
1291         ironlake_edp_backlight_on(intel_dp);
1292
1293         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1294
1295         if (HAS_PCH_CPT(dev))
1296                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1297 }
1298
1299 static void
1300 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1301 {
1302         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1303         struct drm_device *dev = encoder->dev;
1304         struct drm_i915_private *dev_priv = dev->dev_private;
1305         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1306
1307         if (mode != DRM_MODE_DPMS_ON) {
1308                 ironlake_edp_backlight_off(intel_dp);
1309                 ironlake_edp_panel_off(intel_dp);
1310
1311                 ironlake_edp_panel_vdd_on(intel_dp);
1312                 intel_dp_sink_dpms(intel_dp, mode);
1313                 intel_dp_link_down(intel_dp);
1314                 ironlake_edp_panel_vdd_off(intel_dp, false);
1315
1316                 if (is_cpu_edp(intel_dp))
1317                         ironlake_edp_pll_off(encoder);
1318         } else {
1319                 if (is_cpu_edp(intel_dp))
1320                         ironlake_edp_pll_on(encoder);
1321
1322                 ironlake_edp_panel_vdd_on(intel_dp);
1323                 intel_dp_sink_dpms(intel_dp, mode);
1324                 if (!(dp_reg & DP_PORT_EN)) {
1325                         intel_dp_start_link_train(intel_dp);
1326                         ironlake_edp_panel_on(intel_dp);
1327                         ironlake_edp_panel_vdd_off(intel_dp, true);
1328                         intel_dp_complete_link_train(intel_dp);
1329                 } else
1330                         ironlake_edp_panel_vdd_off(intel_dp, false);
1331                 ironlake_edp_backlight_on(intel_dp);
1332         }
1333         intel_dp->dpms_mode = mode;
1334 }
1335 /*
1336  * Native read with retry for link status and receiver capability reads for
1337  * cases where the sink may still be asleep.
1338  */
1339 static bool
1340 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1341                                uint8_t *recv, int recv_bytes)
1342 {
1343         int ret, i;
1344
1345         /*
1346          * Sinks are *supposed* to come up within 1ms from an off state,
1347          * but we're also supposed to retry 3 times per the spec.
1348          */
1349         for (i = 0; i < 3; i++) {
1350                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1351                                                recv_bytes);
1352                 if (ret == recv_bytes)
1353                         return true;
1354                 drm_msleep(1, "915dpl");
1355         }
1356
1357         return false;
1358 }
1359
1360 /*
1361  * Fetch AUX CH registers 0x202 - 0x207 which contain
1362  * link status information
1363  */
1364 static bool
1365 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1366 {
1367         return intel_dp_aux_native_read_retry(intel_dp,
1368                                               DP_LANE0_1_STATUS,
1369                                               link_status,
1370                                               DP_LINK_STATUS_SIZE);
1371 }
1372
1373 static uint8_t
1374 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1375                      int r)
1376 {
1377         return link_status[r - DP_LANE0_1_STATUS];
1378 }
1379
1380 static uint8_t
1381 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1382                                  int lane)
1383 {
1384         int         s = ((lane & 1) ?
1385                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1386                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1387         uint8_t l = adjust_request[lane>>1];
1388
1389         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1390 }
1391
1392 static uint8_t
1393 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1394                                       int lane)
1395 {
1396         int         s = ((lane & 1) ?
1397                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1398                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1399         uint8_t l = adjust_request[lane>>1];
1400
1401         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1402 }
1403
1404
1405 #if 0
1406 static char     *voltage_names[] = {
1407         "0.4V", "0.6V", "0.8V", "1.2V"
1408 };
1409 static char     *pre_emph_names[] = {
1410         "0dB", "3.5dB", "6dB", "9.5dB"
1411 };
1412 static char     *link_train_names[] = {
1413         "pattern 1", "pattern 2", "idle", "off"
1414 };
1415 #endif
1416
1417 /*
1418  * These are source-specific values; current Intel hardware supports
1419  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1420  */
1421
1422 static uint8_t
1423 intel_dp_voltage_max(struct intel_dp *intel_dp)
1424 {
1425         struct drm_device *dev = intel_dp->base.base.dev;
1426
1427         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1428                 return DP_TRAIN_VOLTAGE_SWING_800;
1429         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1430                 return DP_TRAIN_VOLTAGE_SWING_1200;
1431         else
1432                 return DP_TRAIN_VOLTAGE_SWING_800;
1433 }
1434
1435 static uint8_t
1436 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1437 {
1438         struct drm_device *dev = intel_dp->base.base.dev;
1439
1440         if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1441                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1442                 case DP_TRAIN_VOLTAGE_SWING_400:
1443                         return DP_TRAIN_PRE_EMPHASIS_6;
1444                 case DP_TRAIN_VOLTAGE_SWING_600:
1445                 case DP_TRAIN_VOLTAGE_SWING_800:
1446                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1447                 default:
1448                         return DP_TRAIN_PRE_EMPHASIS_0;
1449                 }
1450         } else {
1451                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1452                 case DP_TRAIN_VOLTAGE_SWING_400:
1453                         return DP_TRAIN_PRE_EMPHASIS_6;
1454                 case DP_TRAIN_VOLTAGE_SWING_600:
1455                         return DP_TRAIN_PRE_EMPHASIS_6;
1456                 case DP_TRAIN_VOLTAGE_SWING_800:
1457                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1458                 case DP_TRAIN_VOLTAGE_SWING_1200:
1459                 default:
1460                         return DP_TRAIN_PRE_EMPHASIS_0;
1461                 }
1462         }
1463 }
1464
1465 static void
1466 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1467 {
1468         uint8_t v = 0;
1469         uint8_t p = 0;
1470         int lane;
1471         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1472         uint8_t voltage_max;
1473         uint8_t preemph_max;
1474
1475         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1476                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1477                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1478
1479                 if (this_v > v)
1480                         v = this_v;
1481                 if (this_p > p)
1482                         p = this_p;
1483         }
1484
1485         voltage_max = intel_dp_voltage_max(intel_dp);
1486         if (v >= voltage_max)
1487                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1488
1489         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1490         if (p >= preemph_max)
1491                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1492
1493         for (lane = 0; lane < 4; lane++)
1494                 intel_dp->train_set[lane] = v | p;
1495 }
1496
1497 static uint32_t
1498 intel_dp_signal_levels(uint8_t train_set)
1499 {
1500         uint32_t        signal_levels = 0;
1501
1502         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1503         case DP_TRAIN_VOLTAGE_SWING_400:
1504         default:
1505                 signal_levels |= DP_VOLTAGE_0_4;
1506                 break;
1507         case DP_TRAIN_VOLTAGE_SWING_600:
1508                 signal_levels |= DP_VOLTAGE_0_6;
1509                 break;
1510         case DP_TRAIN_VOLTAGE_SWING_800:
1511                 signal_levels |= DP_VOLTAGE_0_8;
1512                 break;
1513         case DP_TRAIN_VOLTAGE_SWING_1200:
1514                 signal_levels |= DP_VOLTAGE_1_2;
1515                 break;
1516         }
1517         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1518         case DP_TRAIN_PRE_EMPHASIS_0:
1519         default:
1520                 signal_levels |= DP_PRE_EMPHASIS_0;
1521                 break;
1522         case DP_TRAIN_PRE_EMPHASIS_3_5:
1523                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1524                 break;
1525         case DP_TRAIN_PRE_EMPHASIS_6:
1526                 signal_levels |= DP_PRE_EMPHASIS_6;
1527                 break;
1528         case DP_TRAIN_PRE_EMPHASIS_9_5:
1529                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1530                 break;
1531         }
1532         return signal_levels;
1533 }
1534
1535 /* Gen6's DP voltage swing and pre-emphasis control */
1536 static uint32_t
1537 intel_gen6_edp_signal_levels(uint8_t train_set)
1538 {
1539         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1540                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1541         switch (signal_levels) {
1542         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1543         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1544                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1545         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1546                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1547         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1548         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1549                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1550         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1551         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1552                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1553         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1554         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1555                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1556         default:
1557                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1558                               "0x%x\n", signal_levels);
1559                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1560         }
1561 }
1562
1563 /* Gen7's DP voltage swing and pre-emphasis control */
1564 static uint32_t
1565 intel_gen7_edp_signal_levels(uint8_t train_set)
1566 {
1567         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1568                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1569         switch (signal_levels) {
1570         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1571                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1572         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1573                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1574         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1575                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1576
1577         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1578                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1579         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1580                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1581
1582         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1583                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1584         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1585                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1586
1587         default:
1588                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1589                               "0x%x\n", signal_levels);
1590                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1591         }
1592 }
1593
1594 static uint8_t
1595 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1596                       int lane)
1597 {
1598         int s = (lane & 1) * 4;
1599         uint8_t l = link_status[lane>>1];
1600
1601         return (l >> s) & 0xf;
1602 }
1603
1604 /* Check for clock recovery is done on all channels */
1605 static bool
1606 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1607 {
1608         int lane;
1609         uint8_t lane_status;
1610
1611         for (lane = 0; lane < lane_count; lane++) {
1612                 lane_status = intel_get_lane_status(link_status, lane);
1613                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1614                         return false;
1615         }
1616         return true;
1617 }
1618
1619 /* Check to see if channel eq is done on all channels */
1620 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1621                          DP_LANE_CHANNEL_EQ_DONE|\
1622                          DP_LANE_SYMBOL_LOCKED)
1623 static bool
1624 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1625 {
1626         uint8_t lane_align;
1627         uint8_t lane_status;
1628         int lane;
1629
1630         lane_align = intel_dp_link_status(link_status,
1631                                           DP_LANE_ALIGN_STATUS_UPDATED);
1632         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1633                 return false;
1634         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1635                 lane_status = intel_get_lane_status(link_status, lane);
1636                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1637                         return false;
1638         }
1639         return true;
1640 }
1641
1642 static bool
1643 intel_dp_set_link_train(struct intel_dp *intel_dp,
1644                         uint32_t dp_reg_value,
1645                         uint8_t dp_train_pat)
1646 {
1647         struct drm_device *dev = intel_dp->base.base.dev;
1648         struct drm_i915_private *dev_priv = dev->dev_private;
1649         int ret;
1650
1651         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1652         POSTING_READ(intel_dp->output_reg);
1653
1654         intel_dp_aux_native_write_1(intel_dp,
1655                                     DP_TRAINING_PATTERN_SET,
1656                                     dp_train_pat);
1657
1658         ret = intel_dp_aux_native_write(intel_dp,
1659                                         DP_TRAINING_LANE0_SET,
1660                                         intel_dp->train_set,
1661                                         intel_dp->lane_count);
1662         if (ret != intel_dp->lane_count)
1663                 return false;
1664
1665         return true;
1666 }
1667
1668 /* Enable corresponding port and start training pattern 1 */
1669 static void
1670 intel_dp_start_link_train(struct intel_dp *intel_dp)
1671 {
1672         struct drm_device *dev = intel_dp->base.base.dev;
1673         struct drm_i915_private *dev_priv = dev->dev_private;
1674         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1675         int i;
1676         uint8_t voltage;
1677         bool clock_recovery = false;
1678         int voltage_tries, loop_tries;
1679         u32 reg;
1680         uint32_t DP = intel_dp->DP;
1681
1682         /* Enable output, wait for it to become active */
1683         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1684         POSTING_READ(intel_dp->output_reg);
1685         intel_wait_for_vblank(dev, intel_crtc->pipe);
1686
1687         /* Write the link configuration data */
1688         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1689                                   intel_dp->link_configuration,
1690                                   DP_LINK_CONFIGURATION_SIZE);
1691
1692         DP |= DP_PORT_EN;
1693
1694         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1695                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1696         else
1697                 DP &= ~DP_LINK_TRAIN_MASK;
1698         memset(intel_dp->train_set, 0, 4);
1699         voltage = 0xff;
1700         voltage_tries = 0;
1701         loop_tries = 0;
1702         clock_recovery = false;
1703         for (;;) {
1704                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1705                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1706                 uint32_t    signal_levels;
1707
1708
1709                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1710                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1711                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1712                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1713                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1714                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1715                 } else {
1716                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1717                         DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1718                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1719                 }
1720
1721                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1722                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1723                 else
1724                         reg = DP | DP_LINK_TRAIN_PAT_1;
1725
1726                 if (!intel_dp_set_link_train(intel_dp, reg,
1727                                              DP_TRAINING_PATTERN_1))
1728                         break;
1729                 /* Set training pattern 1 */
1730
1731                 DELAY(100);
1732                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1733                         DRM_ERROR("failed to get link status\n");
1734                         break;
1735                 }
1736
1737                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1738                         DRM_DEBUG_KMS("clock recovery OK\n");
1739                         clock_recovery = true;
1740                         break;
1741                 }
1742
1743                 /* Check to see if we've tried the max voltage */
1744                 for (i = 0; i < intel_dp->lane_count; i++)
1745                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1746                                 break;
1747                 if (i == intel_dp->lane_count) {
1748                         ++loop_tries;
1749                         if (loop_tries == 5) {
1750                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1751                                 break;
1752                         }
1753                         memset(intel_dp->train_set, 0, 4);
1754                         voltage_tries = 0;
1755                         continue;
1756                 }
1757
1758                 /* Check to see if we've tried the same voltage 5 times */
1759                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1760                         ++voltage_tries;
1761                         if (voltage_tries == 5) {
1762                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1763                                 break;
1764                         }
1765                 } else
1766                         voltage_tries = 0;
1767                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1768
1769                 /* Compute new intel_dp->train_set as requested by target */
1770                 intel_get_adjust_train(intel_dp, link_status);
1771         }
1772
1773         intel_dp->DP = DP;
1774 }
1775
1776 static void
1777 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1778 {
1779         struct drm_device *dev = intel_dp->base.base.dev;
1780         struct drm_i915_private *dev_priv = dev->dev_private;
1781         bool channel_eq = false;
1782         int tries, cr_tries;
1783         u32 reg;
1784         uint32_t DP = intel_dp->DP;
1785
1786         /* channel equalization */
1787         tries = 0;
1788         cr_tries = 0;
1789         channel_eq = false;
1790         for (;;) {
1791                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1792                 uint32_t    signal_levels;
1793                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1794
1795                 if (cr_tries > 5) {
1796                         DRM_ERROR("failed to train DP, aborting\n");
1797                         intel_dp_link_down(intel_dp);
1798                         break;
1799                 }
1800
1801                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1802                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1803                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1804                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1805                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1806                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1807                 } else {
1808                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1809                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1810                 }
1811
1812                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1813                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1814                 else
1815                         reg = DP | DP_LINK_TRAIN_PAT_2;
1816
1817                 /* channel eq pattern */
1818                 if (!intel_dp_set_link_train(intel_dp, reg,
1819                                              DP_TRAINING_PATTERN_2))
1820                         break;
1821
1822                 DELAY(400);
1823                 if (!intel_dp_get_link_status(intel_dp, link_status))
1824                         break;
1825
1826                 /* Make sure clock is still ok */
1827                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1828                         intel_dp_start_link_train(intel_dp);
1829                         cr_tries++;
1830                         continue;
1831                 }
1832
1833                 if (intel_channel_eq_ok(intel_dp, link_status)) {
1834                         channel_eq = true;
1835                         break;
1836                 }
1837
1838                 /* Try 5 times, then try clock recovery if that fails */
1839                 if (tries > 5) {
1840                         intel_dp_link_down(intel_dp);
1841                         intel_dp_start_link_train(intel_dp);
1842                         tries = 0;
1843                         cr_tries++;
1844                         continue;
1845                 }
1846
1847                 /* Compute new intel_dp->train_set as requested by target */
1848                 intel_get_adjust_train(intel_dp, link_status);
1849                 ++tries;
1850         }
1851
1852         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1853                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1854         else
1855                 reg = DP | DP_LINK_TRAIN_OFF;
1856
1857         I915_WRITE(intel_dp->output_reg, reg);
1858         POSTING_READ(intel_dp->output_reg);
1859         intel_dp_aux_native_write_1(intel_dp,
1860                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1861 }
1862
1863 static void
1864 intel_dp_link_down(struct intel_dp *intel_dp)
1865 {
1866         struct drm_device *dev = intel_dp->base.base.dev;
1867         struct drm_i915_private *dev_priv = dev->dev_private;
1868         uint32_t DP = intel_dp->DP;
1869
1870         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1871                 return;
1872
1873         DRM_DEBUG_KMS("\n");
1874
1875         if (is_edp(intel_dp)) {
1876                 DP &= ~DP_PLL_ENABLE;
1877                 I915_WRITE(intel_dp->output_reg, DP);
1878                 POSTING_READ(intel_dp->output_reg);
1879                 DELAY(100);
1880         }
1881
1882         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1883                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1884                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1885         } else {
1886                 DP &= ~DP_LINK_TRAIN_MASK;
1887                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1888         }
1889         POSTING_READ(intel_dp->output_reg);
1890
1891         drm_msleep(17, "915dlo");
1892
1893         if (is_edp(intel_dp)) {
1894                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1895                         DP |= DP_LINK_TRAIN_OFF_CPT;
1896                 else
1897                         DP |= DP_LINK_TRAIN_OFF;
1898         }
1899
1900
1901         if (!HAS_PCH_CPT(dev) &&
1902             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1903                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1904
1905                 /* Hardware workaround: leaving our transcoder select
1906                  * set to transcoder B while it's off will prevent the
1907                  * corresponding HDMI output on transcoder A.
1908                  *
1909                  * Combine this with another hardware workaround:
1910                  * transcoder select bit can only be cleared while the
1911                  * port is enabled.
1912                  */
1913                 DP &= ~DP_PIPEB_SELECT;
1914                 I915_WRITE(intel_dp->output_reg, DP);
1915
1916                 /* Changes to enable or select take place the vblank
1917                  * after being written.
1918                  */
1919                 if (crtc == NULL) {
1920                         /* We can arrive here never having been attached
1921                          * to a CRTC, for instance, due to inheriting
1922                          * random state from the BIOS.
1923                          *
1924                          * If the pipe is not running, play safe and
1925                          * wait for the clocks to stabilise before
1926                          * continuing.
1927                          */
1928                         POSTING_READ(intel_dp->output_reg);
1929                         drm_msleep(50, "915dla");
1930                 } else
1931                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1932         }
1933
1934         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1935         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1936         POSTING_READ(intel_dp->output_reg);
1937         drm_msleep(intel_dp->panel_power_down_delay, "915ldo");
1938 }
1939
1940 static bool
1941 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1942 {
1943         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1944                                            sizeof(intel_dp->dpcd)) &&
1945             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1946                 return true;
1947         }
1948
1949         return false;
1950 }
1951
1952 static void
1953 intel_dp_probe_oui(struct intel_dp *intel_dp)
1954 {
1955         u8 buf[3];
1956
1957         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1958                 return;
1959
1960         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1961                 DRM_DEBUG_KMS("Sink OUI: %02x%02x%02x\n",
1962                               buf[0], buf[1], buf[2]);
1963
1964         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1965                 DRM_DEBUG_KMS("Branch OUI: %02x%02x%02x\n",
1966                               buf[0], buf[1], buf[2]);
1967 }
1968
1969 static bool
1970 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1971 {
1972         int ret;
1973
1974         ret = intel_dp_aux_native_read_retry(intel_dp,
1975                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
1976                                              sink_irq_vector, 1);
1977         if (!ret)
1978                 return false;
1979
1980         return true;
1981 }
1982
1983 static void
1984 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1985 {
1986         /* NAK by default */
1987         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1988 }
1989
1990 /*
1991  * According to DP spec
1992  * 5.1.2:
1993  *  1. Read DPCD
1994  *  2. Configure link according to Receiver Capabilities
1995  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1996  *  4. Check link status on receipt of hot-plug interrupt
1997  */
1998
1999 static void
2000 intel_dp_check_link_status(struct intel_dp *intel_dp)
2001 {
2002         u8 sink_irq_vector;
2003         u8 link_status[DP_LINK_STATUS_SIZE];
2004
2005         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
2006                 return;
2007
2008         if (!intel_dp->base.base.crtc)
2009                 return;
2010
2011         /* Try to read receiver status if the link appears to be up */
2012         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2013                 intel_dp_link_down(intel_dp);
2014                 return;
2015         }
2016
2017         /* Now read the DPCD to see if it's actually running */
2018         if (!intel_dp_get_dpcd(intel_dp)) {
2019                 intel_dp_link_down(intel_dp);
2020                 return;
2021         }
2022
2023         /* Try to read the source of the interrupt */
2024         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2025             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2026                 /* Clear interrupt source */
2027                 intel_dp_aux_native_write_1(intel_dp,
2028                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2029                                             sink_irq_vector);
2030
2031                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2032                         intel_dp_handle_test_request(intel_dp);
2033                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2034                         DRM_DEBUG_KMS("CP or sink specific irq unhandled\n");
2035         }
2036
2037         if (!intel_channel_eq_ok(intel_dp, link_status)) {
2038                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2039                               drm_get_encoder_name(&intel_dp->base.base));
2040                 intel_dp_start_link_train(intel_dp);
2041                 intel_dp_complete_link_train(intel_dp);
2042         }
2043 }
2044
2045 static enum drm_connector_status
2046 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2047 {
2048         if (intel_dp_get_dpcd(intel_dp))
2049                 return connector_status_connected;
2050         return connector_status_disconnected;
2051 }
2052
2053 static enum drm_connector_status
2054 ironlake_dp_detect(struct intel_dp *intel_dp)
2055 {
2056         enum drm_connector_status status;
2057
2058         /* Can't disconnect eDP, but you can close the lid... */
2059         if (is_edp(intel_dp)) {
2060                 status = intel_panel_detect(intel_dp->base.base.dev);
2061                 if (status == connector_status_unknown)
2062                         status = connector_status_connected;
2063                 return status;
2064         }
2065
2066         return intel_dp_detect_dpcd(intel_dp);
2067 }
2068
2069 static enum drm_connector_status
2070 g4x_dp_detect(struct intel_dp *intel_dp)
2071 {
2072         struct drm_device *dev = intel_dp->base.base.dev;
2073         struct drm_i915_private *dev_priv = dev->dev_private;
2074         uint32_t temp, bit;
2075
2076         switch (intel_dp->output_reg) {
2077         case DP_B:
2078                 bit = DPB_HOTPLUG_INT_STATUS;
2079                 break;
2080         case DP_C:
2081                 bit = DPC_HOTPLUG_INT_STATUS;
2082                 break;
2083         case DP_D:
2084                 bit = DPD_HOTPLUG_INT_STATUS;
2085                 break;
2086         default:
2087                 return connector_status_unknown;
2088         }
2089
2090         temp = I915_READ(PORT_HOTPLUG_STAT);
2091
2092         if ((temp & bit) == 0)
2093                 return connector_status_disconnected;
2094
2095         return intel_dp_detect_dpcd(intel_dp);
2096 }
2097
2098 static struct edid *
2099 intel_dp_get_edid(struct drm_connector *connector, device_t adapter)
2100 {
2101         struct intel_dp *intel_dp = intel_attached_dp(connector);
2102         struct edid     *edid;
2103
2104         ironlake_edp_panel_vdd_on(intel_dp);
2105         edid = drm_get_edid(connector, adapter);
2106         ironlake_edp_panel_vdd_off(intel_dp, false);
2107         return edid;
2108 }
2109
2110 static int
2111 intel_dp_get_edid_modes(struct drm_connector *connector, device_t adapter)
2112 {
2113         struct intel_dp *intel_dp = intel_attached_dp(connector);
2114         int     ret;
2115
2116         ironlake_edp_panel_vdd_on(intel_dp);
2117         ret = intel_ddc_get_modes(connector, adapter);
2118         ironlake_edp_panel_vdd_off(intel_dp, false);
2119         return ret;
2120 }
2121
2122
2123 /**
2124  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2125  *
2126  * \return true if DP port is connected.
2127  * \return false if DP port is disconnected.
2128  */
2129 static enum drm_connector_status
2130 intel_dp_detect(struct drm_connector *connector, bool force)
2131 {
2132         struct intel_dp *intel_dp = intel_attached_dp(connector);
2133         struct drm_device *dev = intel_dp->base.base.dev;
2134         enum drm_connector_status status;
2135         struct edid *edid = NULL;
2136
2137         intel_dp->has_audio = false;
2138
2139         if (HAS_PCH_SPLIT(dev))
2140                 status = ironlake_dp_detect(intel_dp);
2141         else
2142                 status = g4x_dp_detect(intel_dp);
2143         if (status != connector_status_connected)
2144                 return status;
2145
2146         intel_dp_probe_oui(intel_dp);
2147
2148         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2149                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2150         } else {
2151                 edid = intel_dp_get_edid(connector, intel_dp->adapter);
2152                 if (edid) {
2153                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2154                         connector->display_info.raw_edid = NULL;
2155                         free(edid, DRM_MEM_KMS);
2156                 }
2157         }
2158
2159         return connector_status_connected;
2160 }
2161
2162 static int intel_dp_get_modes(struct drm_connector *connector)
2163 {
2164         struct intel_dp *intel_dp = intel_attached_dp(connector);
2165         struct drm_device *dev = intel_dp->base.base.dev;
2166         struct drm_i915_private *dev_priv = dev->dev_private;
2167         int ret;
2168
2169         /* We should parse the EDID data and find out if it has an audio sink
2170          */
2171
2172         ret = intel_dp_get_edid_modes(connector, intel_dp->adapter);
2173         if (ret) {
2174                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2175                         struct drm_display_mode *newmode;
2176                         list_for_each_entry(newmode, &connector->probed_modes,
2177                                             head) {
2178                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2179                                         intel_dp->panel_fixed_mode =
2180                                                 drm_mode_duplicate(dev, newmode);
2181                                         break;
2182                                 }
2183                         }
2184                 }
2185                 return ret;
2186         }
2187
2188         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2189         if (is_edp(intel_dp)) {
2190                 /* initialize panel mode from VBT if available for eDP */
2191                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2192                         intel_dp->panel_fixed_mode =
2193                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2194                         if (intel_dp->panel_fixed_mode) {
2195                                 intel_dp->panel_fixed_mode->type |=
2196                                         DRM_MODE_TYPE_PREFERRED;
2197                         }
2198                 }
2199                 if (intel_dp->panel_fixed_mode) {
2200                         struct drm_display_mode *mode;
2201                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2202                         drm_mode_probed_add(connector, mode);
2203                         return 1;
2204                 }
2205         }
2206         return 0;
2207 }
2208
2209 static bool
2210 intel_dp_detect_audio(struct drm_connector *connector)
2211 {
2212         struct intel_dp *intel_dp = intel_attached_dp(connector);
2213         struct edid *edid;
2214         bool has_audio = false;
2215
2216         edid = intel_dp_get_edid(connector, intel_dp->adapter);
2217         if (edid) {
2218                 has_audio = drm_detect_monitor_audio(edid);
2219
2220                 connector->display_info.raw_edid = NULL;
2221                 free(edid, DRM_MEM_KMS);
2222         }
2223
2224         return has_audio;
2225 }
2226
2227 static int
2228 intel_dp_set_property(struct drm_connector *connector,
2229                       struct drm_property *property,
2230                       uint64_t val)
2231 {
2232         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2233         struct intel_dp *intel_dp = intel_attached_dp(connector);
2234         int ret;
2235
2236         ret = drm_connector_property_set_value(connector, property, val);
2237         if (ret)
2238                 return ret;
2239
2240         if (property == dev_priv->force_audio_property) {
2241                 int i = val;
2242                 bool has_audio;
2243
2244                 if (i == intel_dp->force_audio)
2245                         return 0;
2246
2247                 intel_dp->force_audio = i;
2248
2249                 if (i == HDMI_AUDIO_AUTO)
2250                         has_audio = intel_dp_detect_audio(connector);
2251                 else
2252                         has_audio = (i == HDMI_AUDIO_ON);
2253
2254                 if (has_audio == intel_dp->has_audio)
2255                         return 0;
2256
2257                 intel_dp->has_audio = has_audio;
2258                 goto done;
2259         }
2260
2261         if (property == dev_priv->broadcast_rgb_property) {
2262                 if (val == !!intel_dp->color_range)
2263                         return 0;
2264
2265                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2266                 goto done;
2267         }
2268
2269         return -EINVAL;
2270
2271 done:
2272         if (intel_dp->base.base.crtc) {
2273                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2274                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2275                                          crtc->x, crtc->y,
2276                                          crtc->fb);
2277         }
2278
2279         return 0;
2280 }
2281
2282 static void
2283 intel_dp_destroy(struct drm_connector *connector)
2284 {
2285         struct drm_device *dev = connector->dev;
2286
2287         if (intel_dpd_is_edp(dev))
2288                 intel_panel_destroy_backlight(dev);
2289
2290 #if 0
2291         drm_sysfs_connector_remove(connector);
2292 #endif
2293         drm_connector_cleanup(connector);
2294         free(connector, DRM_MEM_KMS);
2295 }
2296
2297 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2298 {
2299         struct drm_device *dev;
2300         struct intel_dp *intel_dp;
2301
2302         intel_dp = enc_to_intel_dp(encoder);
2303         dev = encoder->dev;
2304
2305         if (intel_dp->dp_iic_bus != NULL) {
2306                 if (intel_dp->adapter != NULL) {
2307                         device_delete_child(intel_dp->dp_iic_bus,
2308                             intel_dp->adapter);
2309                 }
2310                 device_delete_child(dev->device, intel_dp->dp_iic_bus);
2311         }
2312         drm_encoder_cleanup(encoder);
2313         if (is_edp(intel_dp)) {
2314                 struct drm_i915_private *dev_priv = intel_dp->base.base.dev->dev_private;
2315
2316                 taskqueue_cancel_timeout(dev_priv->tq,
2317                     &intel_dp->panel_vdd_task, NULL);
2318                 taskqueue_drain_timeout(dev_priv->tq,
2319                     &intel_dp->panel_vdd_task);
2320                 ironlake_panel_vdd_off_sync(intel_dp);
2321         }
2322         free(intel_dp, DRM_MEM_KMS);
2323 }
2324
2325 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2326         .dpms = intel_dp_dpms,
2327         .mode_fixup = intel_dp_mode_fixup,
2328         .prepare = intel_dp_prepare,
2329         .mode_set = intel_dp_mode_set,
2330         .commit = intel_dp_commit,
2331 };
2332
2333 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2334         .dpms = drm_helper_connector_dpms,
2335         .detect = intel_dp_detect,
2336         .fill_modes = drm_helper_probe_single_connector_modes,
2337         .set_property = intel_dp_set_property,
2338         .destroy = intel_dp_destroy,
2339 };
2340
2341 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2342         .get_modes = intel_dp_get_modes,
2343         .mode_valid = intel_dp_mode_valid,
2344         .best_encoder = intel_best_encoder,
2345 };
2346
2347 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2348         .destroy = intel_dp_encoder_destroy,
2349 };
2350
2351 static void
2352 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2353 {
2354         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2355
2356         intel_dp_check_link_status(intel_dp);
2357 }
2358
2359 /* Return which DP Port should be selected for Transcoder DP control */
2360 int
2361 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2362 {
2363         struct drm_device *dev = crtc->dev;
2364         struct drm_mode_config *mode_config = &dev->mode_config;
2365         struct drm_encoder *encoder;
2366
2367         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2368                 struct intel_dp *intel_dp;
2369
2370                 if (encoder->crtc != crtc)
2371                         continue;
2372
2373                 intel_dp = enc_to_intel_dp(encoder);
2374                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2375                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2376                         return intel_dp->output_reg;
2377         }
2378
2379         return -1;
2380 }
2381
2382 /* check the VBT to see whether the eDP is on DP-D port */
2383 bool intel_dpd_is_edp(struct drm_device *dev)
2384 {
2385         struct drm_i915_private *dev_priv = dev->dev_private;
2386         struct child_device_config *p_child;
2387         int i;
2388
2389         if (!dev_priv->child_dev_num)
2390                 return false;
2391
2392         for (i = 0; i < dev_priv->child_dev_num; i++) {
2393                 p_child = dev_priv->child_dev + i;
2394
2395                 if (p_child->dvo_port == PORT_IDPD &&
2396                     p_child->device_type == DEVICE_TYPE_eDP)
2397                         return true;
2398         }
2399         return false;
2400 }
2401
2402 static void
2403 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2404 {
2405         intel_attach_force_audio_property(connector);
2406         intel_attach_broadcast_rgb_property(connector);
2407 }
2408
2409 void
2410 intel_dp_init(struct drm_device *dev, int output_reg)
2411 {
2412         struct drm_i915_private *dev_priv = dev->dev_private;
2413         struct drm_connector *connector;
2414         struct intel_dp *intel_dp;
2415         struct intel_encoder *intel_encoder;
2416         struct intel_connector *intel_connector;
2417         const char *name = NULL;
2418         int type;
2419
2420         intel_dp = malloc(sizeof(struct intel_dp), DRM_MEM_KMS,
2421             M_WAITOK | M_ZERO);
2422
2423         intel_dp->output_reg = output_reg;
2424         intel_dp->dpms_mode = -1;
2425
2426         intel_connector = malloc(sizeof(struct intel_connector), DRM_MEM_KMS,
2427             M_WAITOK | M_ZERO);
2428         intel_encoder = &intel_dp->base;
2429
2430         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2431                 if (intel_dpd_is_edp(dev))
2432                         intel_dp->is_pch_edp = true;
2433
2434         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2435                 type = DRM_MODE_CONNECTOR_eDP;
2436                 intel_encoder->type = INTEL_OUTPUT_EDP;
2437         } else {
2438                 type = DRM_MODE_CONNECTOR_DisplayPort;
2439                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2440         }
2441
2442         connector = &intel_connector->base;
2443         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2444         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2445
2446         connector->polled = DRM_CONNECTOR_POLL_HPD;
2447
2448         if (output_reg == DP_B || output_reg == PCH_DP_B)
2449                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2450         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2451                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2452         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2453                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2454
2455         if (is_edp(intel_dp)) {
2456                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2457                 TIMEOUT_TASK_INIT(dev_priv->tq, &intel_dp->panel_vdd_task, 0,
2458                     ironlake_panel_vdd_work, intel_dp);
2459         }
2460
2461         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2462
2463         connector->interlace_allowed = true;
2464         connector->doublescan_allowed = 0;
2465
2466         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2467                          DRM_MODE_ENCODER_TMDS);
2468         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2469
2470         intel_connector_attach_encoder(intel_connector, intel_encoder);
2471 #if 0
2472         drm_sysfs_connector_add(connector);
2473 #endif
2474
2475         /* Set up the DDC bus. */
2476         switch (output_reg) {
2477                 case DP_A:
2478                         name = "DPDDC-A";
2479                         break;
2480                 case DP_B:
2481                 case PCH_DP_B:
2482                         dev_priv->hotplug_supported_mask |=
2483                                 HDMIB_HOTPLUG_INT_STATUS;
2484                         name = "DPDDC-B";
2485                         break;
2486                 case DP_C:
2487                 case PCH_DP_C:
2488                         dev_priv->hotplug_supported_mask |=
2489                                 HDMIC_HOTPLUG_INT_STATUS;
2490                         name = "DPDDC-C";
2491                         break;
2492                 case DP_D:
2493                 case PCH_DP_D:
2494                         dev_priv->hotplug_supported_mask |=
2495                                 HDMID_HOTPLUG_INT_STATUS;
2496                         name = "DPDDC-D";
2497                         break;
2498         }
2499
2500         /* Cache some DPCD data in the eDP case */
2501         if (is_edp(intel_dp)) {
2502                 bool ret;
2503                 struct edp_power_seq    cur, vbt;
2504                 u32 pp_on, pp_off, pp_div;
2505
2506                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2507                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2508                 pp_div = I915_READ(PCH_PP_DIVISOR);
2509
2510                 if (!pp_on || !pp_off || !pp_div) {
2511                         DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2512                         intel_dp_encoder_destroy(&intel_dp->base.base);
2513                         intel_dp_destroy(&intel_connector->base);
2514                         return;
2515                 }
2516
2517                 /* Pull timing values out of registers */
2518                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2519                         PANEL_POWER_UP_DELAY_SHIFT;
2520
2521                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2522                         PANEL_LIGHT_ON_DELAY_SHIFT;
2523
2524                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2525                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2526
2527                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2528                         PANEL_POWER_DOWN_DELAY_SHIFT;
2529
2530                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2531                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2532
2533                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2534                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2535
2536                 vbt = dev_priv->edp.pps;
2537
2538                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2539                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2540
2541 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2542
2543                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2544                 intel_dp->backlight_on_delay = get_delay(t8);
2545                 intel_dp->backlight_off_delay = get_delay(t9);
2546                 intel_dp->panel_power_down_delay = get_delay(t10);
2547                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2548
2549                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2550                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2551                               intel_dp->panel_power_cycle_delay);
2552
2553                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2554                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2555
2556                 ironlake_edp_panel_vdd_on(intel_dp);
2557                 ret = intel_dp_get_dpcd(intel_dp);
2558                 ironlake_edp_panel_vdd_off(intel_dp, false);
2559
2560                 if (ret) {
2561                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2562                                 dev_priv->no_aux_handshake =
2563                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2564                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2565                 } else {
2566                         /* if this fails, presume the device is a ghost */
2567                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2568                         intel_dp_encoder_destroy(&intel_dp->base.base);
2569                         intel_dp_destroy(&intel_connector->base);
2570                         return;
2571                 }
2572         }
2573
2574         intel_dp_i2c_init(intel_dp, intel_connector, name);
2575
2576         intel_encoder->hot_plug = intel_dp_hot_plug;
2577
2578         if (is_edp(intel_dp)) {
2579                 dev_priv->int_edp_connector = connector;
2580                 intel_panel_setup_backlight(dev);
2581         }
2582
2583         intel_dp_add_properties(intel_dp, connector);
2584
2585         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2586          * 0xd.  Failure to do so will result in spurious interrupts being
2587          * generated on the port when a cable is not attached.
2588          */
2589         if (IS_G4X(dev) && !IS_GM45(dev)) {
2590                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2591                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2592         }
2593 }