]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/drm2/i915/intel_pm.c
Remove drm2 modules.
[FreeBSD/FreeBSD.git] / sys / dev / drm2 / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <dev/drm2/drmP.h>
32 #include <dev/drm2/i915/i915_drv.h>
33 #include <dev/drm2/i915/intel_drv.h>
34 #include <sys/kdb.h>
35 #include <machine/clock.h>
36
37 #define FORCEWAKE_ACK_TIMEOUT_MS 2
38
39 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
40  * framebuffer contents in-memory, aiming at reducing the required bandwidth
41  * during in-memory transfers and, therefore, reduce the power packet.
42  *
43  * The benefits of FBC are mostly visible with solid backgrounds and
44  * variation-less patterns.
45  *
46  * FBC-related functionality can be enabled by the means of the
47  * i915.i915_enable_fbc parameter
48  */
49
50 static bool intel_crtc_active(struct drm_crtc *crtc)
51 {
52         /* Be paranoid as we can arrive here with only partial
53          * state retrieved from the hardware during setup.
54          */
55         return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
56 }
57
58 static void i8xx_disable_fbc(struct drm_device *dev)
59 {
60         struct drm_i915_private *dev_priv = dev->dev_private;
61         u32 fbc_ctl;
62
63         /* Disable compression */
64         fbc_ctl = I915_READ(FBC_CONTROL);
65         if ((fbc_ctl & FBC_CTL_EN) == 0)
66                 return;
67
68         fbc_ctl &= ~FBC_CTL_EN;
69         I915_WRITE(FBC_CONTROL, fbc_ctl);
70
71         /* Wait for compressing bit to clear */
72         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
73                 DRM_DEBUG_KMS("FBC idle timed out\n");
74                 return;
75         }
76
77         DRM_DEBUG_KMS("disabled FBC\n");
78 }
79
80 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
81 {
82         struct drm_device *dev = crtc->dev;
83         struct drm_i915_private *dev_priv = dev->dev_private;
84         struct drm_framebuffer *fb = crtc->fb;
85         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
86         struct drm_i915_gem_object *obj = intel_fb->obj;
87         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
88         int cfb_pitch;
89         int plane, i;
90         u32 fbc_ctl, fbc_ctl2;
91
92         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
93         if (fb->pitches[0] < cfb_pitch)
94                 cfb_pitch = fb->pitches[0];
95
96         /* FBC_CTL wants 64B units */
97         cfb_pitch = (cfb_pitch / 64) - 1;
98         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
99
100         /* Clear old tags */
101         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
102                 I915_WRITE(FBC_TAG + (i * 4), 0);
103
104         /* Set it up... */
105         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
106         fbc_ctl2 |= plane;
107         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
108         I915_WRITE(FBC_FENCE_OFF, crtc->y);
109
110         /* enable it... */
111         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
112         if (IS_I945GM(dev))
113                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
114         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
115         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
116         fbc_ctl |= obj->fence_reg;
117         I915_WRITE(FBC_CONTROL, fbc_ctl);
118
119         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
120                       cfb_pitch, crtc->y, intel_crtc->plane);
121 }
122
123 static bool i8xx_fbc_enabled(struct drm_device *dev)
124 {
125         struct drm_i915_private *dev_priv = dev->dev_private;
126
127         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
128 }
129
130 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
131 {
132         struct drm_device *dev = crtc->dev;
133         struct drm_i915_private *dev_priv = dev->dev_private;
134         struct drm_framebuffer *fb = crtc->fb;
135         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
136         struct drm_i915_gem_object *obj = intel_fb->obj;
137         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
138         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
139         unsigned long stall_watermark = 200;
140         u32 dpfc_ctl;
141
142         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
143         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
144         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
145
146         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
147                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
148                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
149         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
150
151         /* enable it... */
152         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
153
154         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
155 }
156
157 static void g4x_disable_fbc(struct drm_device *dev)
158 {
159         struct drm_i915_private *dev_priv = dev->dev_private;
160         u32 dpfc_ctl;
161
162         /* Disable compression */
163         dpfc_ctl = I915_READ(DPFC_CONTROL);
164         if (dpfc_ctl & DPFC_CTL_EN) {
165                 dpfc_ctl &= ~DPFC_CTL_EN;
166                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
167
168                 DRM_DEBUG_KMS("disabled FBC\n");
169         }
170 }
171
172 static bool g4x_fbc_enabled(struct drm_device *dev)
173 {
174         struct drm_i915_private *dev_priv = dev->dev_private;
175
176         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
177 }
178
179 static void sandybridge_blit_fbc_update(struct drm_device *dev)
180 {
181         struct drm_i915_private *dev_priv = dev->dev_private;
182         u32 blt_ecoskpd;
183
184         /* Make sure blitter notifies FBC of writes */
185         gen6_gt_force_wake_get(dev_priv);
186         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
187         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
188                 GEN6_BLITTER_LOCK_SHIFT;
189         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
190         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
191         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
192         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
193                          GEN6_BLITTER_LOCK_SHIFT);
194         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
195         POSTING_READ(GEN6_BLITTER_ECOSKPD);
196         gen6_gt_force_wake_put(dev_priv);
197 }
198
199 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
200 {
201         struct drm_device *dev = crtc->dev;
202         struct drm_i915_private *dev_priv = dev->dev_private;
203         struct drm_framebuffer *fb = crtc->fb;
204         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
205         struct drm_i915_gem_object *obj = intel_fb->obj;
206         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
207         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
208         unsigned long stall_watermark = 200;
209         u32 dpfc_ctl;
210
211         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
212         dpfc_ctl &= DPFC_RESERVED;
213         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
214         /* Set persistent mode for front-buffer rendering, ala X. */
215         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
216         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
217         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
218
219         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
220                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
221                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
222         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
223         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
224         /* enable it... */
225         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
226
227         if (IS_GEN6(dev)) {
228                 I915_WRITE(SNB_DPFC_CTL_SA,
229                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
230                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
231                 sandybridge_blit_fbc_update(dev);
232         }
233
234         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
235 }
236
237 static void ironlake_disable_fbc(struct drm_device *dev)
238 {
239         struct drm_i915_private *dev_priv = dev->dev_private;
240         u32 dpfc_ctl;
241
242         /* Disable compression */
243         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
244         if (dpfc_ctl & DPFC_CTL_EN) {
245                 dpfc_ctl &= ~DPFC_CTL_EN;
246                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
247
248                 DRM_DEBUG_KMS("disabled FBC\n");
249         }
250 }
251
252 static bool ironlake_fbc_enabled(struct drm_device *dev)
253 {
254         struct drm_i915_private *dev_priv = dev->dev_private;
255
256         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
257 }
258
259 bool intel_fbc_enabled(struct drm_device *dev)
260 {
261         struct drm_i915_private *dev_priv = dev->dev_private;
262
263         if (!dev_priv->display.fbc_enabled)
264                 return false;
265
266         return dev_priv->display.fbc_enabled(dev);
267 }
268
269 static void intel_fbc_work_fn(void *arg, int pending)
270 {
271         struct intel_fbc_work *work = arg;
272         struct drm_device *dev = work->crtc->dev;
273         struct drm_i915_private *dev_priv = dev->dev_private;
274
275         DRM_LOCK(dev);
276         if (work == dev_priv->fbc_work) {
277                 /* Double check that we haven't switched fb without cancelling
278                  * the prior work.
279                  */
280                 if (work->crtc->fb == work->fb) {
281                         dev_priv->display.enable_fbc(work->crtc,
282                                                      work->interval);
283
284                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
285                         dev_priv->cfb_fb = work->crtc->fb->base.id;
286                         dev_priv->cfb_y = work->crtc->y;
287                 }
288
289                 dev_priv->fbc_work = NULL;
290         }
291         DRM_UNLOCK(dev);
292
293         free(work, DRM_MEM_KMS);
294 }
295
296 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
297 {
298         if (dev_priv->fbc_work == NULL)
299                 return;
300
301         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
302
303         /* Synchronisation is provided by struct_mutex and checking of
304          * dev_priv->fbc_work, so we can perform the cancellation
305          * entirely asynchronously.
306          */
307         if (taskqueue_cancel_timeout(dev_priv->wq, &dev_priv->fbc_work->work,
308             NULL) == 0)
309                 /* tasklet was killed before being run, clean up */
310                 free(dev_priv->fbc_work, DRM_MEM_KMS);
311
312         /* Mark the work as no longer wanted so that if it does
313          * wake-up (because the work was already running and waiting
314          * for our mutex), it will discover that is no longer
315          * necessary to run.
316          */
317         dev_priv->fbc_work = NULL;
318 }
319
320 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
321 {
322         struct intel_fbc_work *work;
323         struct drm_device *dev = crtc->dev;
324         struct drm_i915_private *dev_priv = dev->dev_private;
325
326         if (!dev_priv->display.enable_fbc)
327                 return;
328
329         intel_cancel_fbc_work(dev_priv);
330
331         work = malloc(sizeof *work, DRM_MEM_KMS, M_WAITOK | M_ZERO);
332         if (work == NULL) {
333                 dev_priv->display.enable_fbc(crtc, interval);
334                 return;
335         }
336
337         work->crtc = crtc;
338         work->fb = crtc->fb;
339         work->interval = interval;
340         TIMEOUT_TASK_INIT(dev_priv->wq, &work->work, 0, intel_fbc_work_fn,
341             work);
342
343         dev_priv->fbc_work = work;
344
345         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
346
347         /* Delay the actual enabling to let pageflipping cease and the
348          * display to settle before starting the compression. Note that
349          * this delay also serves a second purpose: it allows for a
350          * vblank to pass after disabling the FBC before we attempt
351          * to modify the control registers.
352          *
353          * A more complicated solution would involve tracking vblanks
354          * following the termination of the page-flipping sequence
355          * and indeed performing the enable as a co-routine and not
356          * waiting synchronously upon the vblank.
357          */
358         taskqueue_enqueue_timeout(dev_priv->wq, &work->work,
359             msecs_to_jiffies(50));
360 }
361
362 void intel_disable_fbc(struct drm_device *dev)
363 {
364         struct drm_i915_private *dev_priv = dev->dev_private;
365
366         intel_cancel_fbc_work(dev_priv);
367
368         if (!dev_priv->display.disable_fbc)
369                 return;
370
371         dev_priv->display.disable_fbc(dev);
372         dev_priv->cfb_plane = -1;
373 }
374
375 /**
376  * intel_update_fbc - enable/disable FBC as needed
377  * @dev: the drm_device
378  *
379  * Set up the framebuffer compression hardware at mode set time.  We
380  * enable it if possible:
381  *   - plane A only (on pre-965)
382  *   - no pixel mulitply/line duplication
383  *   - no alpha buffer discard
384  *   - no dual wide
385  *   - framebuffer <= 2048 in width, 1536 in height
386  *
387  * We can't assume that any compression will take place (worst case),
388  * so the compressed buffer has to be the same size as the uncompressed
389  * one.  It also must reside (along with the line length buffer) in
390  * stolen memory.
391  *
392  * We need to enable/disable FBC on a global basis.
393  */
394 void intel_update_fbc(struct drm_device *dev)
395 {
396         struct drm_i915_private *dev_priv = dev->dev_private;
397         struct drm_crtc *crtc = NULL, *tmp_crtc;
398         struct intel_crtc *intel_crtc;
399         struct drm_framebuffer *fb;
400         struct intel_framebuffer *intel_fb;
401         struct drm_i915_gem_object *obj;
402         int enable_fbc;
403
404         if (!i915_powersave)
405                 return;
406
407         if (!I915_HAS_FBC(dev))
408                 return;
409
410         /*
411          * If FBC is already on, we just have to verify that we can
412          * keep it that way...
413          * Need to disable if:
414          *   - more than one pipe is active
415          *   - changing FBC params (stride, fence, mode)
416          *   - new fb is too large to fit in compressed buffer
417          *   - going to an unsupported config (interlace, pixel multiply, etc.)
418          */
419         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
420                 if (intel_crtc_active(tmp_crtc) &&
421                     !to_intel_crtc(tmp_crtc)->primary_disabled) {
422                         if (crtc) {
423                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
424                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
425                                 goto out_disable;
426                         }
427                         crtc = tmp_crtc;
428                 }
429         }
430
431         if (!crtc || crtc->fb == NULL) {
432                 DRM_DEBUG_KMS("no output, disabling\n");
433                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
434                 goto out_disable;
435         }
436
437         intel_crtc = to_intel_crtc(crtc);
438         fb = crtc->fb;
439         intel_fb = to_intel_framebuffer(fb);
440         obj = intel_fb->obj;
441
442         enable_fbc = i915_enable_fbc;
443         if (enable_fbc < 0) {
444                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
445                 enable_fbc = 1;
446                 if (INTEL_INFO(dev)->gen <= 6)
447                         enable_fbc = 0;
448         }
449         if (!enable_fbc) {
450                 DRM_DEBUG_KMS("fbc disabled per module param\n");
451                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
452                 goto out_disable;
453         }
454         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
455                 DRM_DEBUG_KMS("framebuffer too large, disabling "
456                               "compression\n");
457                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
458                 goto out_disable;
459         }
460         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
461             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
462                 DRM_DEBUG_KMS("mode incompatible with compression, "
463                               "disabling\n");
464                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
465                 goto out_disable;
466         }
467         if ((crtc->mode.hdisplay > 2048) ||
468             (crtc->mode.vdisplay > 1536)) {
469                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
470                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
471                 goto out_disable;
472         }
473         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
474                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
475                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
476                 goto out_disable;
477         }
478
479         /* The use of a CPU fence is mandatory in order to detect writes
480          * by the CPU to the scanout and trigger updates to the FBC.
481          */
482         if (obj->tiling_mode != I915_TILING_X ||
483             obj->fence_reg == I915_FENCE_REG_NONE) {
484                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
485                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
486                 goto out_disable;
487         }
488
489         /* If the kernel debugger is active, always disable compression */
490         if (kdb_active)
491                 goto out_disable;
492
493         /* If the scanout has not changed, don't modify the FBC settings.
494          * Note that we make the fundamental assumption that the fb->obj
495          * cannot be unpinned (and have its GTT offset and fence revoked)
496          * without first being decoupled from the scanout and FBC disabled.
497          */
498         if (dev_priv->cfb_plane == intel_crtc->plane &&
499             dev_priv->cfb_fb == fb->base.id &&
500             dev_priv->cfb_y == crtc->y)
501                 return;
502
503         if (intel_fbc_enabled(dev)) {
504                 /* We update FBC along two paths, after changing fb/crtc
505                  * configuration (modeswitching) and after page-flipping
506                  * finishes. For the latter, we know that not only did
507                  * we disable the FBC at the start of the page-flip
508                  * sequence, but also more than one vblank has passed.
509                  *
510                  * For the former case of modeswitching, it is possible
511                  * to switch between two FBC valid configurations
512                  * instantaneously so we do need to disable the FBC
513                  * before we can modify its control registers. We also
514                  * have to wait for the next vblank for that to take
515                  * effect. However, since we delay enabling FBC we can
516                  * assume that a vblank has passed since disabling and
517                  * that we can safely alter the registers in the deferred
518                  * callback.
519                  *
520                  * In the scenario that we go from a valid to invalid
521                  * and then back to valid FBC configuration we have
522                  * no strict enforcement that a vblank occurred since
523                  * disabling the FBC. However, along all current pipe
524                  * disabling paths we do need to wait for a vblank at
525                  * some point. And we wait before enabling FBC anyway.
526                  */
527                 DRM_DEBUG_KMS("disabling active FBC for update\n");
528                 intel_disable_fbc(dev);
529         }
530
531         intel_enable_fbc(crtc, 500);
532         return;
533
534 out_disable:
535         /* Multiple disables should be harmless */
536         if (intel_fbc_enabled(dev)) {
537                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
538                 intel_disable_fbc(dev);
539         }
540 }
541
542 static void i915_pineview_get_mem_freq(struct drm_device *dev)
543 {
544         drm_i915_private_t *dev_priv = dev->dev_private;
545         u32 tmp;
546
547         tmp = I915_READ(CLKCFG);
548
549         switch (tmp & CLKCFG_FSB_MASK) {
550         case CLKCFG_FSB_533:
551                 dev_priv->fsb_freq = 533; /* 133*4 */
552                 break;
553         case CLKCFG_FSB_800:
554                 dev_priv->fsb_freq = 800; /* 200*4 */
555                 break;
556         case CLKCFG_FSB_667:
557                 dev_priv->fsb_freq =  667; /* 167*4 */
558                 break;
559         case CLKCFG_FSB_400:
560                 dev_priv->fsb_freq = 400; /* 100*4 */
561                 break;
562         }
563
564         switch (tmp & CLKCFG_MEM_MASK) {
565         case CLKCFG_MEM_533:
566                 dev_priv->mem_freq = 533;
567                 break;
568         case CLKCFG_MEM_667:
569                 dev_priv->mem_freq = 667;
570                 break;
571         case CLKCFG_MEM_800:
572                 dev_priv->mem_freq = 800;
573                 break;
574         }
575
576         /* detect pineview DDR3 setting */
577         tmp = I915_READ(CSHRDDR3CTL);
578         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
579 }
580
581 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
582 {
583         drm_i915_private_t *dev_priv = dev->dev_private;
584         u16 ddrpll, csipll;
585
586         ddrpll = I915_READ16(DDRMPLL1);
587         csipll = I915_READ16(CSIPLL0);
588
589         switch (ddrpll & 0xff) {
590         case 0xc:
591                 dev_priv->mem_freq = 800;
592                 break;
593         case 0x10:
594                 dev_priv->mem_freq = 1066;
595                 break;
596         case 0x14:
597                 dev_priv->mem_freq = 1333;
598                 break;
599         case 0x18:
600                 dev_priv->mem_freq = 1600;
601                 break;
602         default:
603                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
604                                  ddrpll & 0xff);
605                 dev_priv->mem_freq = 0;
606                 break;
607         }
608
609         dev_priv->ips.r_t = dev_priv->mem_freq;
610
611         switch (csipll & 0x3ff) {
612         case 0x00c:
613                 dev_priv->fsb_freq = 3200;
614                 break;
615         case 0x00e:
616                 dev_priv->fsb_freq = 3733;
617                 break;
618         case 0x010:
619                 dev_priv->fsb_freq = 4266;
620                 break;
621         case 0x012:
622                 dev_priv->fsb_freq = 4800;
623                 break;
624         case 0x014:
625                 dev_priv->fsb_freq = 5333;
626                 break;
627         case 0x016:
628                 dev_priv->fsb_freq = 5866;
629                 break;
630         case 0x018:
631                 dev_priv->fsb_freq = 6400;
632                 break;
633         default:
634                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
635                                  csipll & 0x3ff);
636                 dev_priv->fsb_freq = 0;
637                 break;
638         }
639
640         if (dev_priv->fsb_freq == 3200) {
641                 dev_priv->ips.c_m = 0;
642         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
643                 dev_priv->ips.c_m = 1;
644         } else {
645                 dev_priv->ips.c_m = 2;
646         }
647 }
648
649 static const struct cxsr_latency cxsr_latency_table[] = {
650         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
651         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
652         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
653         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
654         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
655
656         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
657         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
658         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
659         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
660         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
661
662         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
663         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
664         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
665         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
666         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
667
668         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
669         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
670         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
671         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
672         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
673
674         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
675         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
676         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
677         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
678         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
679
680         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
681         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
682         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
683         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
684         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
685 };
686
687 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
688                                                          int is_ddr3,
689                                                          int fsb,
690                                                          int mem)
691 {
692         const struct cxsr_latency *latency;
693         int i;
694
695         if (fsb == 0 || mem == 0)
696                 return NULL;
697
698         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
699                 latency = &cxsr_latency_table[i];
700                 if (is_desktop == latency->is_desktop &&
701                     is_ddr3 == latency->is_ddr3 &&
702                     fsb == latency->fsb_freq && mem == latency->mem_freq)
703                         return latency;
704         }
705
706         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
707
708         return NULL;
709 }
710
711 static void pineview_disable_cxsr(struct drm_device *dev)
712 {
713         struct drm_i915_private *dev_priv = dev->dev_private;
714
715         /* deactivate cxsr */
716         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
717 }
718
719 /*
720  * Latency for FIFO fetches is dependent on several factors:
721  *   - memory configuration (speed, channels)
722  *   - chipset
723  *   - current MCH state
724  * It can be fairly high in some situations, so here we assume a fairly
725  * pessimal value.  It's a tradeoff between extra memory fetches (if we
726  * set this value too high, the FIFO will fetch frequently to stay full)
727  * and power consumption (set it too low to save power and we might see
728  * FIFO underruns and display "flicker").
729  *
730  * A value of 5us seems to be a good balance; safe for very low end
731  * platforms but not overly aggressive on lower latency configs.
732  */
733 static const int latency_ns = 5000;
734
735 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
736 {
737         struct drm_i915_private *dev_priv = dev->dev_private;
738         uint32_t dsparb = I915_READ(DSPARB);
739         int size;
740
741         size = dsparb & 0x7f;
742         if (plane)
743                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
744
745         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
746                       plane ? "B" : "A", size);
747
748         return size;
749 }
750
751 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
752 {
753         struct drm_i915_private *dev_priv = dev->dev_private;
754         uint32_t dsparb = I915_READ(DSPARB);
755         int size;
756
757         size = dsparb & 0x1ff;
758         if (plane)
759                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
760         size >>= 1; /* Convert to cachelines */
761
762         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
763                       plane ? "B" : "A", size);
764
765         return size;
766 }
767
768 static int i845_get_fifo_size(struct drm_device *dev, int plane)
769 {
770         struct drm_i915_private *dev_priv = dev->dev_private;
771         uint32_t dsparb = I915_READ(DSPARB);
772         int size;
773
774         size = dsparb & 0x7f;
775         size >>= 2; /* Convert to cachelines */
776
777         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
778                       plane ? "B" : "A",
779                       size);
780
781         return size;
782 }
783
784 static int i830_get_fifo_size(struct drm_device *dev, int plane)
785 {
786         struct drm_i915_private *dev_priv = dev->dev_private;
787         uint32_t dsparb = I915_READ(DSPARB);
788         int size;
789
790         size = dsparb & 0x7f;
791         size >>= 1; /* Convert to cachelines */
792
793         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
794                       plane ? "B" : "A", size);
795
796         return size;
797 }
798
799 /* Pineview has different values for various configs */
800 static const struct intel_watermark_params pineview_display_wm = {
801         PINEVIEW_DISPLAY_FIFO,
802         PINEVIEW_MAX_WM,
803         PINEVIEW_DFT_WM,
804         PINEVIEW_GUARD_WM,
805         PINEVIEW_FIFO_LINE_SIZE
806 };
807 static const struct intel_watermark_params pineview_display_hplloff_wm = {
808         PINEVIEW_DISPLAY_FIFO,
809         PINEVIEW_MAX_WM,
810         PINEVIEW_DFT_HPLLOFF_WM,
811         PINEVIEW_GUARD_WM,
812         PINEVIEW_FIFO_LINE_SIZE
813 };
814 static const struct intel_watermark_params pineview_cursor_wm = {
815         PINEVIEW_CURSOR_FIFO,
816         PINEVIEW_CURSOR_MAX_WM,
817         PINEVIEW_CURSOR_DFT_WM,
818         PINEVIEW_CURSOR_GUARD_WM,
819         PINEVIEW_FIFO_LINE_SIZE,
820 };
821 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
822         PINEVIEW_CURSOR_FIFO,
823         PINEVIEW_CURSOR_MAX_WM,
824         PINEVIEW_CURSOR_DFT_WM,
825         PINEVIEW_CURSOR_GUARD_WM,
826         PINEVIEW_FIFO_LINE_SIZE
827 };
828 static const struct intel_watermark_params g4x_wm_info = {
829         G4X_FIFO_SIZE,
830         G4X_MAX_WM,
831         G4X_MAX_WM,
832         2,
833         G4X_FIFO_LINE_SIZE,
834 };
835 static const struct intel_watermark_params g4x_cursor_wm_info = {
836         I965_CURSOR_FIFO,
837         I965_CURSOR_MAX_WM,
838         I965_CURSOR_DFT_WM,
839         2,
840         G4X_FIFO_LINE_SIZE,
841 };
842 static const struct intel_watermark_params valleyview_wm_info = {
843         VALLEYVIEW_FIFO_SIZE,
844         VALLEYVIEW_MAX_WM,
845         VALLEYVIEW_MAX_WM,
846         2,
847         G4X_FIFO_LINE_SIZE,
848 };
849 static const struct intel_watermark_params valleyview_cursor_wm_info = {
850         I965_CURSOR_FIFO,
851         VALLEYVIEW_CURSOR_MAX_WM,
852         I965_CURSOR_DFT_WM,
853         2,
854         G4X_FIFO_LINE_SIZE,
855 };
856 static const struct intel_watermark_params i965_cursor_wm_info = {
857         I965_CURSOR_FIFO,
858         I965_CURSOR_MAX_WM,
859         I965_CURSOR_DFT_WM,
860         2,
861         I915_FIFO_LINE_SIZE,
862 };
863 static const struct intel_watermark_params i945_wm_info = {
864         I945_FIFO_SIZE,
865         I915_MAX_WM,
866         1,
867         2,
868         I915_FIFO_LINE_SIZE
869 };
870 static const struct intel_watermark_params i915_wm_info = {
871         I915_FIFO_SIZE,
872         I915_MAX_WM,
873         1,
874         2,
875         I915_FIFO_LINE_SIZE
876 };
877 static const struct intel_watermark_params i855_wm_info = {
878         I855GM_FIFO_SIZE,
879         I915_MAX_WM,
880         1,
881         2,
882         I830_FIFO_LINE_SIZE
883 };
884 static const struct intel_watermark_params i830_wm_info = {
885         I830_FIFO_SIZE,
886         I915_MAX_WM,
887         1,
888         2,
889         I830_FIFO_LINE_SIZE
890 };
891
892 static const struct intel_watermark_params ironlake_display_wm_info = {
893         ILK_DISPLAY_FIFO,
894         ILK_DISPLAY_MAXWM,
895         ILK_DISPLAY_DFTWM,
896         2,
897         ILK_FIFO_LINE_SIZE
898 };
899 static const struct intel_watermark_params ironlake_cursor_wm_info = {
900         ILK_CURSOR_FIFO,
901         ILK_CURSOR_MAXWM,
902         ILK_CURSOR_DFTWM,
903         2,
904         ILK_FIFO_LINE_SIZE
905 };
906 static const struct intel_watermark_params ironlake_display_srwm_info = {
907         ILK_DISPLAY_SR_FIFO,
908         ILK_DISPLAY_MAX_SRWM,
909         ILK_DISPLAY_DFT_SRWM,
910         2,
911         ILK_FIFO_LINE_SIZE
912 };
913 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
914         ILK_CURSOR_SR_FIFO,
915         ILK_CURSOR_MAX_SRWM,
916         ILK_CURSOR_DFT_SRWM,
917         2,
918         ILK_FIFO_LINE_SIZE
919 };
920
921 static const struct intel_watermark_params sandybridge_display_wm_info = {
922         SNB_DISPLAY_FIFO,
923         SNB_DISPLAY_MAXWM,
924         SNB_DISPLAY_DFTWM,
925         2,
926         SNB_FIFO_LINE_SIZE
927 };
928 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
929         SNB_CURSOR_FIFO,
930         SNB_CURSOR_MAXWM,
931         SNB_CURSOR_DFTWM,
932         2,
933         SNB_FIFO_LINE_SIZE
934 };
935 static const struct intel_watermark_params sandybridge_display_srwm_info = {
936         SNB_DISPLAY_SR_FIFO,
937         SNB_DISPLAY_MAX_SRWM,
938         SNB_DISPLAY_DFT_SRWM,
939         2,
940         SNB_FIFO_LINE_SIZE
941 };
942 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
943         SNB_CURSOR_SR_FIFO,
944         SNB_CURSOR_MAX_SRWM,
945         SNB_CURSOR_DFT_SRWM,
946         2,
947         SNB_FIFO_LINE_SIZE
948 };
949
950
951 /**
952  * intel_calculate_wm - calculate watermark level
953  * @clock_in_khz: pixel clock
954  * @wm: chip FIFO params
955  * @pixel_size: display pixel size
956  * @latency_ns: memory latency for the platform
957  *
958  * Calculate the watermark level (the level at which the display plane will
959  * start fetching from memory again).  Each chip has a different display
960  * FIFO size and allocation, so the caller needs to figure that out and pass
961  * in the correct intel_watermark_params structure.
962  *
963  * As the pixel clock runs, the FIFO will be drained at a rate that depends
964  * on the pixel size.  When it reaches the watermark level, it'll start
965  * fetching FIFO line sized based chunks from memory until the FIFO fills
966  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
967  * will occur, and a display engine hang could result.
968  */
969 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
970                                         const struct intel_watermark_params *wm,
971                                         int fifo_size,
972                                         int pixel_size,
973                                         unsigned long latency_ns)
974 {
975         long entries_required, wm_size;
976
977         /*
978          * Note: we need to make sure we don't overflow for various clock &
979          * latency values.
980          * clocks go from a few thousand to several hundred thousand.
981          * latency is usually a few thousand
982          */
983         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
984                 1000;
985         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
986
987         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
988
989         wm_size = fifo_size - (entries_required + wm->guard_size);
990
991         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
992
993         /* Don't promote wm_size to unsigned... */
994         if (wm_size > (long)wm->max_wm)
995                 wm_size = wm->max_wm;
996         if (wm_size <= 0)
997                 wm_size = wm->default_wm;
998         return wm_size;
999 }
1000
1001 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1002 {
1003         struct drm_crtc *crtc, *enabled = NULL;
1004
1005         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1006                 if (intel_crtc_active(crtc)) {
1007                         if (enabled)
1008                                 return NULL;
1009                         enabled = crtc;
1010                 }
1011         }
1012
1013         return enabled;
1014 }
1015
1016 static void pineview_update_wm(struct drm_device *dev)
1017 {
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         struct drm_crtc *crtc;
1020         const struct cxsr_latency *latency;
1021         u32 reg;
1022         unsigned long wm;
1023
1024         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1025                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1026         if (!latency) {
1027                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1028                 pineview_disable_cxsr(dev);
1029                 return;
1030         }
1031
1032         crtc = single_enabled_crtc(dev);
1033         if (crtc) {
1034                 int clock = crtc->mode.clock;
1035                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1036
1037                 /* Display SR */
1038                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1039                                         pineview_display_wm.fifo_size,
1040                                         pixel_size, latency->display_sr);
1041                 reg = I915_READ(DSPFW1);
1042                 reg &= ~DSPFW_SR_MASK;
1043                 reg |= wm << DSPFW_SR_SHIFT;
1044                 I915_WRITE(DSPFW1, reg);
1045                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1046
1047                 /* cursor SR */
1048                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1049                                         pineview_display_wm.fifo_size,
1050                                         pixel_size, latency->cursor_sr);
1051                 reg = I915_READ(DSPFW3);
1052                 reg &= ~DSPFW_CURSOR_SR_MASK;
1053                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1054                 I915_WRITE(DSPFW3, reg);
1055
1056                 /* Display HPLL off SR */
1057                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1058                                         pineview_display_hplloff_wm.fifo_size,
1059                                         pixel_size, latency->display_hpll_disable);
1060                 reg = I915_READ(DSPFW3);
1061                 reg &= ~DSPFW_HPLL_SR_MASK;
1062                 reg |= wm & DSPFW_HPLL_SR_MASK;
1063                 I915_WRITE(DSPFW3, reg);
1064
1065                 /* cursor HPLL off SR */
1066                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1067                                         pineview_display_hplloff_wm.fifo_size,
1068                                         pixel_size, latency->cursor_hpll_disable);
1069                 reg = I915_READ(DSPFW3);
1070                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1071                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1072                 I915_WRITE(DSPFW3, reg);
1073                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1074
1075                 /* activate cxsr */
1076                 I915_WRITE(DSPFW3,
1077                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1078                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1079         } else {
1080                 pineview_disable_cxsr(dev);
1081                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1082         }
1083 }
1084
1085 static bool g4x_compute_wm0(struct drm_device *dev,
1086                             int plane,
1087                             const struct intel_watermark_params *display,
1088                             int display_latency_ns,
1089                             const struct intel_watermark_params *cursor,
1090                             int cursor_latency_ns,
1091                             int *plane_wm,
1092                             int *cursor_wm)
1093 {
1094         struct drm_crtc *crtc;
1095         int htotal, hdisplay, clock, pixel_size;
1096         int line_time_us, line_count;
1097         int entries, tlb_miss;
1098
1099         crtc = intel_get_crtc_for_plane(dev, plane);
1100         if (!intel_crtc_active(crtc)) {
1101                 *cursor_wm = cursor->guard_size;
1102                 *plane_wm = display->guard_size;
1103                 return false;
1104         }
1105
1106         htotal = crtc->mode.htotal;
1107         hdisplay = crtc->mode.hdisplay;
1108         clock = crtc->mode.clock;
1109         pixel_size = crtc->fb->bits_per_pixel / 8;
1110
1111         /* Use the small buffer method to calculate plane watermark */
1112         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1113         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1114         if (tlb_miss > 0)
1115                 entries += tlb_miss;
1116         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1117         *plane_wm = entries + display->guard_size;
1118         if (*plane_wm > (int)display->max_wm)
1119                 *plane_wm = display->max_wm;
1120
1121         /* Use the large buffer method to calculate cursor watermark */
1122         line_time_us = ((htotal * 1000) / clock);
1123         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1124         entries = line_count * 64 * pixel_size;
1125         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1126         if (tlb_miss > 0)
1127                 entries += tlb_miss;
1128         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1129         *cursor_wm = entries + cursor->guard_size;
1130         if (*cursor_wm > (int)cursor->max_wm)
1131                 *cursor_wm = (int)cursor->max_wm;
1132
1133         return true;
1134 }
1135
1136 /*
1137  * Check the wm result.
1138  *
1139  * If any calculated watermark values is larger than the maximum value that
1140  * can be programmed into the associated watermark register, that watermark
1141  * must be disabled.
1142  */
1143 static bool g4x_check_srwm(struct drm_device *dev,
1144                            int display_wm, int cursor_wm,
1145                            const struct intel_watermark_params *display,
1146                            const struct intel_watermark_params *cursor)
1147 {
1148         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1149                       display_wm, cursor_wm);
1150
1151         if (display_wm > display->max_wm) {
1152                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1153                               display_wm, display->max_wm);
1154                 return false;
1155         }
1156
1157         if (cursor_wm > cursor->max_wm) {
1158                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1159                               cursor_wm, cursor->max_wm);
1160                 return false;
1161         }
1162
1163         if (!(display_wm || cursor_wm)) {
1164                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1165                 return false;
1166         }
1167
1168         return true;
1169 }
1170
1171 static bool g4x_compute_srwm(struct drm_device *dev,
1172                              int plane,
1173                              int latency_ns,
1174                              const struct intel_watermark_params *display,
1175                              const struct intel_watermark_params *cursor,
1176                              int *display_wm, int *cursor_wm)
1177 {
1178         struct drm_crtc *crtc;
1179         int hdisplay, htotal, pixel_size, clock;
1180         unsigned long line_time_us;
1181         int line_count, line_size;
1182         int small, large;
1183         int entries;
1184
1185         if (!latency_ns) {
1186                 *display_wm = *cursor_wm = 0;
1187                 return false;
1188         }
1189
1190         crtc = intel_get_crtc_for_plane(dev, plane);
1191         hdisplay = crtc->mode.hdisplay;
1192         htotal = crtc->mode.htotal;
1193         clock = crtc->mode.clock;
1194         pixel_size = crtc->fb->bits_per_pixel / 8;
1195
1196         line_time_us = (htotal * 1000) / clock;
1197         line_count = (latency_ns / line_time_us + 1000) / 1000;
1198         line_size = hdisplay * pixel_size;
1199
1200         /* Use the minimum of the small and large buffer method for primary */
1201         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1202         large = line_count * line_size;
1203
1204         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1205         *display_wm = entries + display->guard_size;
1206
1207         /* calculate the self-refresh watermark for display cursor */
1208         entries = line_count * pixel_size * 64;
1209         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1210         *cursor_wm = entries + cursor->guard_size;
1211
1212         return g4x_check_srwm(dev,
1213                               *display_wm, *cursor_wm,
1214                               display, cursor);
1215 }
1216
1217 static bool vlv_compute_drain_latency(struct drm_device *dev,
1218                                      int plane,
1219                                      int *plane_prec_mult,
1220                                      int *plane_dl,
1221                                      int *cursor_prec_mult,
1222                                      int *cursor_dl)
1223 {
1224         struct drm_crtc *crtc;
1225         int clock, pixel_size;
1226         int entries;
1227
1228         crtc = intel_get_crtc_for_plane(dev, plane);
1229         if (!intel_crtc_active(crtc))
1230                 return false;
1231
1232         clock = crtc->mode.clock;       /* VESA DOT Clock */
1233         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1234
1235         entries = (clock / 1000) * pixel_size;
1236         *plane_prec_mult = (entries > 256) ?
1237                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1238         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1239                                                      pixel_size);
1240
1241         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1242         *cursor_prec_mult = (entries > 256) ?
1243                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1244         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1245
1246         return true;
1247 }
1248
1249 /*
1250  * Update drain latency registers of memory arbiter
1251  *
1252  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1253  * to be programmed. Each plane has a drain latency multiplier and a drain
1254  * latency value.
1255  */
1256
1257 static void vlv_update_drain_latency(struct drm_device *dev)
1258 {
1259         struct drm_i915_private *dev_priv = dev->dev_private;
1260         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1261         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1262         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1263                                                         either 16 or 32 */
1264
1265         /* For plane A, Cursor A */
1266         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1267                                       &cursor_prec_mult, &cursora_dl)) {
1268                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1269                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1270                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1271                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1272
1273                 I915_WRITE(VLV_DDL1, cursora_prec |
1274                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1275                                 planea_prec | planea_dl);
1276         }
1277
1278         /* For plane B, Cursor B */
1279         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1280                                       &cursor_prec_mult, &cursorb_dl)) {
1281                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1282                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1283                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1284                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1285
1286                 I915_WRITE(VLV_DDL2, cursorb_prec |
1287                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1288                                 planeb_prec | planeb_dl);
1289         }
1290 }
1291
1292 #define single_plane_enabled(mask) ((mask) != 0 && powerof2(mask))
1293
1294 static void valleyview_update_wm(struct drm_device *dev)
1295 {
1296         static const int sr_latency_ns = 12000;
1297         struct drm_i915_private *dev_priv = dev->dev_private;
1298         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1299         int plane_sr, cursor_sr;
1300         int ignore_plane_sr, ignore_cursor_sr;
1301         unsigned int enabled = 0;
1302
1303         vlv_update_drain_latency(dev);
1304
1305         if (g4x_compute_wm0(dev, 0,
1306                             &valleyview_wm_info, latency_ns,
1307                             &valleyview_cursor_wm_info, latency_ns,
1308                             &planea_wm, &cursora_wm))
1309                 enabled |= 1;
1310
1311         if (g4x_compute_wm0(dev, 1,
1312                             &valleyview_wm_info, latency_ns,
1313                             &valleyview_cursor_wm_info, latency_ns,
1314                             &planeb_wm, &cursorb_wm))
1315                 enabled |= 2;
1316
1317         if (single_plane_enabled(enabled) &&
1318             g4x_compute_srwm(dev, ffs(enabled) - 1,
1319                              sr_latency_ns,
1320                              &valleyview_wm_info,
1321                              &valleyview_cursor_wm_info,
1322                              &plane_sr, &ignore_cursor_sr) &&
1323             g4x_compute_srwm(dev, ffs(enabled) - 1,
1324                              2*sr_latency_ns,
1325                              &valleyview_wm_info,
1326                              &valleyview_cursor_wm_info,
1327                              &ignore_plane_sr, &cursor_sr)) {
1328                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1329         } else {
1330                 I915_WRITE(FW_BLC_SELF_VLV,
1331                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1332                 plane_sr = cursor_sr = 0;
1333         }
1334
1335         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1336                       planea_wm, cursora_wm,
1337                       planeb_wm, cursorb_wm,
1338                       plane_sr, cursor_sr);
1339
1340         I915_WRITE(DSPFW1,
1341                    (plane_sr << DSPFW_SR_SHIFT) |
1342                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1343                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1344                    planea_wm);
1345         I915_WRITE(DSPFW2,
1346                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1347                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1348         I915_WRITE(DSPFW3,
1349                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1350                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1351 }
1352
1353 static void g4x_update_wm(struct drm_device *dev)
1354 {
1355         static const int sr_latency_ns = 12000;
1356         struct drm_i915_private *dev_priv = dev->dev_private;
1357         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1358         int plane_sr, cursor_sr;
1359         unsigned int enabled = 0;
1360
1361         if (g4x_compute_wm0(dev, 0,
1362                             &g4x_wm_info, latency_ns,
1363                             &g4x_cursor_wm_info, latency_ns,
1364                             &planea_wm, &cursora_wm))
1365                 enabled |= 1;
1366
1367         if (g4x_compute_wm0(dev, 1,
1368                             &g4x_wm_info, latency_ns,
1369                             &g4x_cursor_wm_info, latency_ns,
1370                             &planeb_wm, &cursorb_wm))
1371                 enabled |= 2;
1372
1373         if (single_plane_enabled(enabled) &&
1374             g4x_compute_srwm(dev, ffs(enabled) - 1,
1375                              sr_latency_ns,
1376                              &g4x_wm_info,
1377                              &g4x_cursor_wm_info,
1378                              &plane_sr, &cursor_sr)) {
1379                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1380         } else {
1381                 I915_WRITE(FW_BLC_SELF,
1382                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1383                 plane_sr = cursor_sr = 0;
1384         }
1385
1386         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1387                       planea_wm, cursora_wm,
1388                       planeb_wm, cursorb_wm,
1389                       plane_sr, cursor_sr);
1390
1391         I915_WRITE(DSPFW1,
1392                    (plane_sr << DSPFW_SR_SHIFT) |
1393                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1394                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1395                    planea_wm);
1396         I915_WRITE(DSPFW2,
1397                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1398                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1399         /* HPLL off in SR has some issues on G4x... disable it */
1400         I915_WRITE(DSPFW3,
1401                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1402                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1403 }
1404
1405 static void i965_update_wm(struct drm_device *dev)
1406 {
1407         struct drm_i915_private *dev_priv = dev->dev_private;
1408         struct drm_crtc *crtc;
1409         int srwm = 1;
1410         int cursor_sr = 16;
1411
1412         /* Calc sr entries for one plane configs */
1413         crtc = single_enabled_crtc(dev);
1414         if (crtc) {
1415                 /* self-refresh has much higher latency */
1416                 static const int sr_latency_ns = 12000;
1417                 int clock = crtc->mode.clock;
1418                 int htotal = crtc->mode.htotal;
1419                 int hdisplay = crtc->mode.hdisplay;
1420                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1421                 unsigned long line_time_us;
1422                 int entries;
1423
1424                 line_time_us = ((htotal * 1000) / clock);
1425
1426                 /* Use ns/us then divide to preserve precision */
1427                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1428                         pixel_size * hdisplay;
1429                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1430                 srwm = I965_FIFO_SIZE - entries;
1431                 if (srwm < 0)
1432                         srwm = 1;
1433                 srwm &= 0x1ff;
1434                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1435                               entries, srwm);
1436
1437                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1438                         pixel_size * 64;
1439                 entries = DIV_ROUND_UP(entries,
1440                                           i965_cursor_wm_info.cacheline_size);
1441                 cursor_sr = i965_cursor_wm_info.fifo_size -
1442                         (entries + i965_cursor_wm_info.guard_size);
1443
1444                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1445                         cursor_sr = i965_cursor_wm_info.max_wm;
1446
1447                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1448                               "cursor %d\n", srwm, cursor_sr);
1449
1450                 if (IS_CRESTLINE(dev))
1451                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1452         } else {
1453                 /* Turn off self refresh if both pipes are enabled */
1454                 if (IS_CRESTLINE(dev))
1455                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1456                                    & ~FW_BLC_SELF_EN);
1457         }
1458
1459         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1460                       srwm);
1461
1462         /* 965 has limitations... */
1463         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1464                    (8 << 16) | (8 << 8) | (8 << 0));
1465         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1466         /* update cursor SR watermark */
1467         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1468 }
1469
1470 static void i9xx_update_wm(struct drm_device *dev)
1471 {
1472         struct drm_i915_private *dev_priv = dev->dev_private;
1473         const struct intel_watermark_params *wm_info;
1474         uint32_t fwater_lo;
1475         uint32_t fwater_hi;
1476         int cwm, srwm = 1;
1477         int fifo_size;
1478         int planea_wm, planeb_wm;
1479         struct drm_crtc *crtc, *enabled = NULL;
1480
1481         if (IS_I945GM(dev))
1482                 wm_info = &i945_wm_info;
1483         else if (!IS_GEN2(dev))
1484                 wm_info = &i915_wm_info;
1485         else
1486                 wm_info = &i855_wm_info;
1487
1488         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1489         crtc = intel_get_crtc_for_plane(dev, 0);
1490         if (intel_crtc_active(crtc)) {
1491                 int cpp = crtc->fb->bits_per_pixel / 8;
1492                 if (IS_GEN2(dev))
1493                         cpp = 4;
1494
1495                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1496                                                wm_info, fifo_size, cpp,
1497                                                latency_ns);
1498                 enabled = crtc;
1499         } else
1500                 planea_wm = fifo_size - wm_info->guard_size;
1501
1502         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1503         crtc = intel_get_crtc_for_plane(dev, 1);
1504         if (intel_crtc_active(crtc)) {
1505                 int cpp = crtc->fb->bits_per_pixel / 8;
1506                 if (IS_GEN2(dev))
1507                         cpp = 4;
1508
1509                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1510                                                wm_info, fifo_size, cpp,
1511                                                latency_ns);
1512                 if (enabled == NULL)
1513                         enabled = crtc;
1514                 else
1515                         enabled = NULL;
1516         } else
1517                 planeb_wm = fifo_size - wm_info->guard_size;
1518
1519         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1520
1521         /*
1522          * Overlay gets an aggressive default since video jitter is bad.
1523          */
1524         cwm = 2;
1525
1526         /* Play safe and disable self-refresh before adjusting watermarks. */
1527         if (IS_I945G(dev) || IS_I945GM(dev))
1528                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1529         else if (IS_I915GM(dev))
1530                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1531
1532         /* Calc sr entries for one plane configs */
1533         if (HAS_FW_BLC(dev) && enabled) {
1534                 /* self-refresh has much higher latency */
1535                 static const int sr_latency_ns = 6000;
1536                 int clock = enabled->mode.clock;
1537                 int htotal = enabled->mode.htotal;
1538                 int hdisplay = enabled->mode.hdisplay;
1539                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1540                 unsigned long line_time_us;
1541                 int entries;
1542
1543                 line_time_us = (htotal * 1000) / clock;
1544
1545                 /* Use ns/us then divide to preserve precision */
1546                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1547                         pixel_size * hdisplay;
1548                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1549                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1550                 srwm = wm_info->fifo_size - entries;
1551                 if (srwm < 0)
1552                         srwm = 1;
1553
1554                 if (IS_I945G(dev) || IS_I945GM(dev))
1555                         I915_WRITE(FW_BLC_SELF,
1556                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1557                 else if (IS_I915GM(dev))
1558                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1559         }
1560
1561         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1562                       planea_wm, planeb_wm, cwm, srwm);
1563
1564         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1565         fwater_hi = (cwm & 0x1f);
1566
1567         /* Set request length to 8 cachelines per fetch */
1568         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1569         fwater_hi = fwater_hi | (1 << 8);
1570
1571         I915_WRITE(FW_BLC, fwater_lo);
1572         I915_WRITE(FW_BLC2, fwater_hi);
1573
1574         if (HAS_FW_BLC(dev)) {
1575                 if (enabled) {
1576                         if (IS_I945G(dev) || IS_I945GM(dev))
1577                                 I915_WRITE(FW_BLC_SELF,
1578                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1579                         else if (IS_I915GM(dev))
1580                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1581                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1582                 } else
1583                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1584         }
1585 }
1586
1587 static void i830_update_wm(struct drm_device *dev)
1588 {
1589         struct drm_i915_private *dev_priv = dev->dev_private;
1590         struct drm_crtc *crtc;
1591         uint32_t fwater_lo;
1592         int planea_wm;
1593
1594         crtc = single_enabled_crtc(dev);
1595         if (crtc == NULL)
1596                 return;
1597
1598         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1599                                        dev_priv->display.get_fifo_size(dev, 0),
1600                                        4, latency_ns);
1601         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1602         fwater_lo |= (3<<8) | planea_wm;
1603
1604         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1605
1606         I915_WRITE(FW_BLC, fwater_lo);
1607 }
1608
1609 #define ILK_LP0_PLANE_LATENCY           700
1610 #define ILK_LP0_CURSOR_LATENCY          1300
1611
1612 /*
1613  * Check the wm result.
1614  *
1615  * If any calculated watermark values is larger than the maximum value that
1616  * can be programmed into the associated watermark register, that watermark
1617  * must be disabled.
1618  */
1619 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1620                                 int fbc_wm, int display_wm, int cursor_wm,
1621                                 const struct intel_watermark_params *display,
1622                                 const struct intel_watermark_params *cursor)
1623 {
1624         struct drm_i915_private *dev_priv = dev->dev_private;
1625
1626         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1627                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1628
1629         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1630                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1631                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1632
1633                 /* fbc has it's own way to disable FBC WM */
1634                 I915_WRITE(DISP_ARB_CTL,
1635                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1636                 return false;
1637         }
1638
1639         if (display_wm > display->max_wm) {
1640                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1641                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1642                 return false;
1643         }
1644
1645         if (cursor_wm > cursor->max_wm) {
1646                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1647                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1648                 return false;
1649         }
1650
1651         if (!(fbc_wm || display_wm || cursor_wm)) {
1652                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1653                 return false;
1654         }
1655
1656         return true;
1657 }
1658
1659 /*
1660  * Compute watermark values of WM[1-3],
1661  */
1662 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1663                                   int latency_ns,
1664                                   const struct intel_watermark_params *display,
1665                                   const struct intel_watermark_params *cursor,
1666                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1667 {
1668         struct drm_crtc *crtc;
1669         unsigned long line_time_us;
1670         int hdisplay, htotal, pixel_size, clock;
1671         int line_count, line_size;
1672         int small, large;
1673         int entries;
1674
1675         if (!latency_ns) {
1676                 *fbc_wm = *display_wm = *cursor_wm = 0;
1677                 return false;
1678         }
1679
1680         crtc = intel_get_crtc_for_plane(dev, plane);
1681         hdisplay = crtc->mode.hdisplay;
1682         htotal = crtc->mode.htotal;
1683         clock = crtc->mode.clock;
1684         pixel_size = crtc->fb->bits_per_pixel / 8;
1685
1686         line_time_us = (htotal * 1000) / clock;
1687         line_count = (latency_ns / line_time_us + 1000) / 1000;
1688         line_size = hdisplay * pixel_size;
1689
1690         /* Use the minimum of the small and large buffer method for primary */
1691         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1692         large = line_count * line_size;
1693
1694         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1695         *display_wm = entries + display->guard_size;
1696
1697         /*
1698          * Spec says:
1699          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1700          */
1701         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1702
1703         /* calculate the self-refresh watermark for display cursor */
1704         entries = line_count * pixel_size * 64;
1705         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1706         *cursor_wm = entries + cursor->guard_size;
1707
1708         return ironlake_check_srwm(dev, level,
1709                                    *fbc_wm, *display_wm, *cursor_wm,
1710                                    display, cursor);
1711 }
1712
1713 static void ironlake_update_wm(struct drm_device *dev)
1714 {
1715         struct drm_i915_private *dev_priv = dev->dev_private;
1716         int fbc_wm, plane_wm, cursor_wm;
1717         unsigned int enabled;
1718
1719         enabled = 0;
1720         if (g4x_compute_wm0(dev, 0,
1721                             &ironlake_display_wm_info,
1722                             ILK_LP0_PLANE_LATENCY,
1723                             &ironlake_cursor_wm_info,
1724                             ILK_LP0_CURSOR_LATENCY,
1725                             &plane_wm, &cursor_wm)) {
1726                 I915_WRITE(WM0_PIPEA_ILK,
1727                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1728                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1729                               " plane %d, " "cursor: %d\n",
1730                               plane_wm, cursor_wm);
1731                 enabled |= 1;
1732         }
1733
1734         if (g4x_compute_wm0(dev, 1,
1735                             &ironlake_display_wm_info,
1736                             ILK_LP0_PLANE_LATENCY,
1737                             &ironlake_cursor_wm_info,
1738                             ILK_LP0_CURSOR_LATENCY,
1739                             &plane_wm, &cursor_wm)) {
1740                 I915_WRITE(WM0_PIPEB_ILK,
1741                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1742                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1743                               " plane %d, cursor: %d\n",
1744                               plane_wm, cursor_wm);
1745                 enabled |= 2;
1746         }
1747
1748         /*
1749          * Calculate and update the self-refresh watermark only when one
1750          * display plane is used.
1751          */
1752         I915_WRITE(WM3_LP_ILK, 0);
1753         I915_WRITE(WM2_LP_ILK, 0);
1754         I915_WRITE(WM1_LP_ILK, 0);
1755
1756         if (!single_plane_enabled(enabled))
1757                 return;
1758         enabled = ffs(enabled) - 1;
1759
1760         /* WM1 */
1761         if (!ironlake_compute_srwm(dev, 1, enabled,
1762                                    ILK_READ_WM1_LATENCY() * 500,
1763                                    &ironlake_display_srwm_info,
1764                                    &ironlake_cursor_srwm_info,
1765                                    &fbc_wm, &plane_wm, &cursor_wm))
1766                 return;
1767
1768         I915_WRITE(WM1_LP_ILK,
1769                    WM1_LP_SR_EN |
1770                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1771                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1772                    (plane_wm << WM1_LP_SR_SHIFT) |
1773                    cursor_wm);
1774
1775         /* WM2 */
1776         if (!ironlake_compute_srwm(dev, 2, enabled,
1777                                    ILK_READ_WM2_LATENCY() * 500,
1778                                    &ironlake_display_srwm_info,
1779                                    &ironlake_cursor_srwm_info,
1780                                    &fbc_wm, &plane_wm, &cursor_wm))
1781                 return;
1782
1783         I915_WRITE(WM2_LP_ILK,
1784                    WM2_LP_EN |
1785                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1786                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1787                    (plane_wm << WM1_LP_SR_SHIFT) |
1788                    cursor_wm);
1789
1790         /*
1791          * WM3 is unsupported on ILK, probably because we don't have latency
1792          * data for that power state
1793          */
1794 }
1795
1796 static void sandybridge_update_wm(struct drm_device *dev)
1797 {
1798         struct drm_i915_private *dev_priv = dev->dev_private;
1799         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1800         u32 val;
1801         int fbc_wm, plane_wm, cursor_wm;
1802         unsigned int enabled;
1803
1804         enabled = 0;
1805         if (g4x_compute_wm0(dev, 0,
1806                             &sandybridge_display_wm_info, latency,
1807                             &sandybridge_cursor_wm_info, latency,
1808                             &plane_wm, &cursor_wm)) {
1809                 val = I915_READ(WM0_PIPEA_ILK);
1810                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1811                 I915_WRITE(WM0_PIPEA_ILK, val |
1812                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1813                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1814                               " plane %d, " "cursor: %d\n",
1815                               plane_wm, cursor_wm);
1816                 enabled |= 1;
1817         }
1818
1819         if (g4x_compute_wm0(dev, 1,
1820                             &sandybridge_display_wm_info, latency,
1821                             &sandybridge_cursor_wm_info, latency,
1822                             &plane_wm, &cursor_wm)) {
1823                 val = I915_READ(WM0_PIPEB_ILK);
1824                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1825                 I915_WRITE(WM0_PIPEB_ILK, val |
1826                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1827                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1828                               " plane %d, cursor: %d\n",
1829                               plane_wm, cursor_wm);
1830                 enabled |= 2;
1831         }
1832
1833         /*
1834          * Calculate and update the self-refresh watermark only when one
1835          * display plane is used.
1836          *
1837          * SNB support 3 levels of watermark.
1838          *
1839          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1840          * and disabled in the descending order
1841          *
1842          */
1843         I915_WRITE(WM3_LP_ILK, 0);
1844         I915_WRITE(WM2_LP_ILK, 0);
1845         I915_WRITE(WM1_LP_ILK, 0);
1846
1847         if (!single_plane_enabled(enabled) ||
1848             dev_priv->sprite_scaling_enabled)
1849                 return;
1850         enabled = ffs(enabled) - 1;
1851
1852         /* WM1 */
1853         if (!ironlake_compute_srwm(dev, 1, enabled,
1854                                    SNB_READ_WM1_LATENCY() * 500,
1855                                    &sandybridge_display_srwm_info,
1856                                    &sandybridge_cursor_srwm_info,
1857                                    &fbc_wm, &plane_wm, &cursor_wm))
1858                 return;
1859
1860         I915_WRITE(WM1_LP_ILK,
1861                    WM1_LP_SR_EN |
1862                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1863                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1864                    (plane_wm << WM1_LP_SR_SHIFT) |
1865                    cursor_wm);
1866
1867         /* WM2 */
1868         if (!ironlake_compute_srwm(dev, 2, enabled,
1869                                    SNB_READ_WM2_LATENCY() * 500,
1870                                    &sandybridge_display_srwm_info,
1871                                    &sandybridge_cursor_srwm_info,
1872                                    &fbc_wm, &plane_wm, &cursor_wm))
1873                 return;
1874
1875         I915_WRITE(WM2_LP_ILK,
1876                    WM2_LP_EN |
1877                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1878                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1879                    (plane_wm << WM1_LP_SR_SHIFT) |
1880                    cursor_wm);
1881
1882         /* WM3 */
1883         if (!ironlake_compute_srwm(dev, 3, enabled,
1884                                    SNB_READ_WM3_LATENCY() * 500,
1885                                    &sandybridge_display_srwm_info,
1886                                    &sandybridge_cursor_srwm_info,
1887                                    &fbc_wm, &plane_wm, &cursor_wm))
1888                 return;
1889
1890         I915_WRITE(WM3_LP_ILK,
1891                    WM3_LP_EN |
1892                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1893                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1894                    (plane_wm << WM1_LP_SR_SHIFT) |
1895                    cursor_wm);
1896 }
1897
1898 static void ivybridge_update_wm(struct drm_device *dev)
1899 {
1900         struct drm_i915_private *dev_priv = dev->dev_private;
1901         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1902         u32 val;
1903         int fbc_wm, plane_wm, cursor_wm;
1904         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1905         unsigned int enabled;
1906
1907         enabled = 0;
1908         if (g4x_compute_wm0(dev, 0,
1909                             &sandybridge_display_wm_info, latency,
1910                             &sandybridge_cursor_wm_info, latency,
1911                             &plane_wm, &cursor_wm)) {
1912                 val = I915_READ(WM0_PIPEA_ILK);
1913                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1914                 I915_WRITE(WM0_PIPEA_ILK, val |
1915                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1916                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1917                               " plane %d, " "cursor: %d\n",
1918                               plane_wm, cursor_wm);
1919                 enabled |= 1;
1920         }
1921
1922         if (g4x_compute_wm0(dev, 1,
1923                             &sandybridge_display_wm_info, latency,
1924                             &sandybridge_cursor_wm_info, latency,
1925                             &plane_wm, &cursor_wm)) {
1926                 val = I915_READ(WM0_PIPEB_ILK);
1927                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1928                 I915_WRITE(WM0_PIPEB_ILK, val |
1929                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1930                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1931                               " plane %d, cursor: %d\n",
1932                               plane_wm, cursor_wm);
1933                 enabled |= 2;
1934         }
1935
1936         if (g4x_compute_wm0(dev, 2,
1937                             &sandybridge_display_wm_info, latency,
1938                             &sandybridge_cursor_wm_info, latency,
1939                             &plane_wm, &cursor_wm)) {
1940                 val = I915_READ(WM0_PIPEC_IVB);
1941                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1942                 I915_WRITE(WM0_PIPEC_IVB, val |
1943                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1944                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1945                               " plane %d, cursor: %d\n",
1946                               plane_wm, cursor_wm);
1947                 enabled |= 3;
1948         }
1949
1950         /*
1951          * Calculate and update the self-refresh watermark only when one
1952          * display plane is used.
1953          *
1954          * SNB support 3 levels of watermark.
1955          *
1956          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1957          * and disabled in the descending order
1958          *
1959          */
1960         I915_WRITE(WM3_LP_ILK, 0);
1961         I915_WRITE(WM2_LP_ILK, 0);
1962         I915_WRITE(WM1_LP_ILK, 0);
1963
1964         if (!single_plane_enabled(enabled) ||
1965             dev_priv->sprite_scaling_enabled)
1966                 return;
1967         enabled = ffs(enabled) - 1;
1968
1969         /* WM1 */
1970         if (!ironlake_compute_srwm(dev, 1, enabled,
1971                                    SNB_READ_WM1_LATENCY() * 500,
1972                                    &sandybridge_display_srwm_info,
1973                                    &sandybridge_cursor_srwm_info,
1974                                    &fbc_wm, &plane_wm, &cursor_wm))
1975                 return;
1976
1977         I915_WRITE(WM1_LP_ILK,
1978                    WM1_LP_SR_EN |
1979                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1980                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1981                    (plane_wm << WM1_LP_SR_SHIFT) |
1982                    cursor_wm);
1983
1984         /* WM2 */
1985         if (!ironlake_compute_srwm(dev, 2, enabled,
1986                                    SNB_READ_WM2_LATENCY() * 500,
1987                                    &sandybridge_display_srwm_info,
1988                                    &sandybridge_cursor_srwm_info,
1989                                    &fbc_wm, &plane_wm, &cursor_wm))
1990                 return;
1991
1992         I915_WRITE(WM2_LP_ILK,
1993                    WM2_LP_EN |
1994                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1995                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1996                    (plane_wm << WM1_LP_SR_SHIFT) |
1997                    cursor_wm);
1998
1999         /* WM3, note we have to correct the cursor latency */
2000         if (!ironlake_compute_srwm(dev, 3, enabled,
2001                                    SNB_READ_WM3_LATENCY() * 500,
2002                                    &sandybridge_display_srwm_info,
2003                                    &sandybridge_cursor_srwm_info,
2004                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2005             !ironlake_compute_srwm(dev, 3, enabled,
2006                                    2 * SNB_READ_WM3_LATENCY() * 500,
2007                                    &sandybridge_display_srwm_info,
2008                                    &sandybridge_cursor_srwm_info,
2009                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2010                 return;
2011
2012         I915_WRITE(WM3_LP_ILK,
2013                    WM3_LP_EN |
2014                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2015                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2016                    (plane_wm << WM1_LP_SR_SHIFT) |
2017                    cursor_wm);
2018 }
2019
2020 static void
2021 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2022                                  struct drm_display_mode *mode)
2023 {
2024         struct drm_i915_private *dev_priv = dev->dev_private;
2025         u32 temp;
2026
2027         temp = I915_READ(PIPE_WM_LINETIME(pipe));
2028         temp &= ~PIPE_WM_LINETIME_MASK;
2029
2030         /* The WM are computed with base on how long it takes to fill a single
2031          * row at the given clock rate, multiplied by 8.
2032          * */
2033         temp |= PIPE_WM_LINETIME_TIME(
2034                 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2035
2036         /* IPS watermarks are only used by pipe A, and are ignored by
2037          * pipes B and C.  They are calculated similarly to the common
2038          * linetime values, except that we are using CD clock frequency
2039          * in MHz instead of pixel rate for the division.
2040          *
2041          * This is a placeholder for the IPS watermark calculation code.
2042          */
2043
2044         I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2045 }
2046
2047 static bool
2048 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2049                               uint32_t sprite_width, int pixel_size,
2050                               const struct intel_watermark_params *display,
2051                               int display_latency_ns, int *sprite_wm)
2052 {
2053         struct drm_crtc *crtc;
2054         int clock;
2055         int entries, tlb_miss;
2056
2057         crtc = intel_get_crtc_for_plane(dev, plane);
2058         if (!intel_crtc_active(crtc)) {
2059                 *sprite_wm = display->guard_size;
2060                 return false;
2061         }
2062
2063         clock = crtc->mode.clock;
2064
2065         /* Use the small buffer method to calculate the sprite watermark */
2066         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2067         tlb_miss = display->fifo_size*display->cacheline_size -
2068                 sprite_width * 8;
2069         if (tlb_miss > 0)
2070                 entries += tlb_miss;
2071         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2072         *sprite_wm = entries + display->guard_size;
2073         if (*sprite_wm > (int)display->max_wm)
2074                 *sprite_wm = display->max_wm;
2075
2076         return true;
2077 }
2078
2079 static bool
2080 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2081                                 uint32_t sprite_width, int pixel_size,
2082                                 const struct intel_watermark_params *display,
2083                                 int latency_ns, int *sprite_wm)
2084 {
2085         struct drm_crtc *crtc;
2086         unsigned long line_time_us;
2087         int clock;
2088         int line_count, line_size;
2089         int small, large;
2090         int entries;
2091
2092         if (!latency_ns) {
2093                 *sprite_wm = 0;
2094                 return false;
2095         }
2096
2097         crtc = intel_get_crtc_for_plane(dev, plane);
2098         clock = crtc->mode.clock;
2099         if (!clock) {
2100                 *sprite_wm = 0;
2101                 return false;
2102         }
2103
2104         line_time_us = (sprite_width * 1000) / clock;
2105         if (!line_time_us) {
2106                 *sprite_wm = 0;
2107                 return false;
2108         }
2109
2110         line_count = (latency_ns / line_time_us + 1000) / 1000;
2111         line_size = sprite_width * pixel_size;
2112
2113         /* Use the minimum of the small and large buffer method for primary */
2114         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2115         large = line_count * line_size;
2116
2117         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2118         *sprite_wm = entries + display->guard_size;
2119
2120         return *sprite_wm > 0x3ff ? false : true;
2121 }
2122
2123 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2124                                          uint32_t sprite_width, int pixel_size)
2125 {
2126         struct drm_i915_private *dev_priv = dev->dev_private;
2127         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
2128         u32 val;
2129         int sprite_wm, reg;
2130         int ret;
2131
2132         switch (pipe) {
2133         case 0:
2134                 reg = WM0_PIPEA_ILK;
2135                 break;
2136         case 1:
2137                 reg = WM0_PIPEB_ILK;
2138                 break;
2139         case 2:
2140                 reg = WM0_PIPEC_IVB;
2141                 break;
2142         default:
2143                 return; /* bad pipe */
2144         }
2145
2146         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2147                                             &sandybridge_display_wm_info,
2148                                             latency, &sprite_wm);
2149         if (!ret) {
2150                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2151                               pipe);
2152                 return;
2153         }
2154
2155         val = I915_READ(reg);
2156         val &= ~WM0_PIPE_SPRITE_MASK;
2157         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2158         DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2159
2160
2161         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2162                                               pixel_size,
2163                                               &sandybridge_display_srwm_info,
2164                                               SNB_READ_WM1_LATENCY() * 500,
2165                                               &sprite_wm);
2166         if (!ret) {
2167                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2168                               pipe);
2169                 return;
2170         }
2171         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2172
2173         /* Only IVB has two more LP watermarks for sprite */
2174         if (!IS_IVYBRIDGE(dev))
2175                 return;
2176
2177         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2178                                               pixel_size,
2179                                               &sandybridge_display_srwm_info,
2180                                               SNB_READ_WM2_LATENCY() * 500,
2181                                               &sprite_wm);
2182         if (!ret) {
2183                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2184                               pipe);
2185                 return;
2186         }
2187         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2188
2189         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2190                                               pixel_size,
2191                                               &sandybridge_display_srwm_info,
2192                                               SNB_READ_WM3_LATENCY() * 500,
2193                                               &sprite_wm);
2194         if (!ret) {
2195                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2196                               pipe);
2197                 return;
2198         }
2199         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2200 }
2201
2202 /**
2203  * intel_update_watermarks - update FIFO watermark values based on current modes
2204  *
2205  * Calculate watermark values for the various WM regs based on current mode
2206  * and plane configuration.
2207  *
2208  * There are several cases to deal with here:
2209  *   - normal (i.e. non-self-refresh)
2210  *   - self-refresh (SR) mode
2211  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2212  *   - lines are small relative to FIFO size (buffer can hold more than 2
2213  *     lines), so need to account for TLB latency
2214  *
2215  *   The normal calculation is:
2216  *     watermark = dotclock * bytes per pixel * latency
2217  *   where latency is platform & configuration dependent (we assume pessimal
2218  *   values here).
2219  *
2220  *   The SR calculation is:
2221  *     watermark = (trunc(latency/line time)+1) * surface width *
2222  *       bytes per pixel
2223  *   where
2224  *     line time = htotal / dotclock
2225  *     surface width = hdisplay for normal plane and 64 for cursor
2226  *   and latency is assumed to be high, as above.
2227  *
2228  * The final value programmed to the register should always be rounded up,
2229  * and include an extra 2 entries to account for clock crossings.
2230  *
2231  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2232  * to set the non-SR watermarks to 8.
2233  */
2234 void intel_update_watermarks(struct drm_device *dev)
2235 {
2236         struct drm_i915_private *dev_priv = dev->dev_private;
2237
2238         if (dev_priv->display.update_wm)
2239                 dev_priv->display.update_wm(dev);
2240 }
2241
2242 void intel_update_linetime_watermarks(struct drm_device *dev,
2243                 int pipe, struct drm_display_mode *mode)
2244 {
2245         struct drm_i915_private *dev_priv = dev->dev_private;
2246
2247         if (dev_priv->display.update_linetime_wm)
2248                 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2249 }
2250
2251 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2252                                     uint32_t sprite_width, int pixel_size)
2253 {
2254         struct drm_i915_private *dev_priv = dev->dev_private;
2255
2256         if (dev_priv->display.update_sprite_wm)
2257                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2258                                                    pixel_size);
2259 }
2260
2261 static struct drm_i915_gem_object *
2262 intel_alloc_context_page(struct drm_device *dev)
2263 {
2264         struct drm_i915_gem_object *ctx;
2265         int ret;
2266
2267         DRM_LOCK_ASSERT(dev);
2268
2269         ctx = i915_gem_alloc_object(dev, 4096);
2270         if (!ctx) {
2271                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2272                 return NULL;
2273         }
2274
2275         ret = i915_gem_object_pin(ctx, 4096, true, false);
2276         if (ret) {
2277                 DRM_ERROR("failed to pin power context: %d\n", ret);
2278                 goto err_unref;
2279         }
2280
2281         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2282         if (ret) {
2283                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2284                 goto err_unpin;
2285         }
2286
2287         return ctx;
2288
2289 err_unpin:
2290         i915_gem_object_unpin(ctx);
2291 err_unref:
2292         drm_gem_object_unreference(&ctx->base);
2293         DRM_UNLOCK(dev);
2294         return NULL;
2295 }
2296
2297 /**
2298  * Lock protecting IPS related data structures
2299  */
2300 struct mtx mchdev_lock;
2301 MTX_SYSINIT(mchdev, &mchdev_lock, "mchdev", MTX_DEF);
2302
2303 /* Global for IPS driver to get at the current i915 device. Protected by
2304  * mchdev_lock. */
2305 static struct drm_i915_private *i915_mch_dev;
2306
2307 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2308 {
2309         struct drm_i915_private *dev_priv = dev->dev_private;
2310         u16 rgvswctl;
2311
2312         mtx_assert(&mchdev_lock, MA_OWNED);
2313
2314         rgvswctl = I915_READ16(MEMSWCTL);
2315         if (rgvswctl & MEMCTL_CMD_STS) {
2316                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2317                 return false; /* still busy with another command */
2318         }
2319
2320         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2321                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2322         I915_WRITE16(MEMSWCTL, rgvswctl);
2323         POSTING_READ16(MEMSWCTL);
2324
2325         rgvswctl |= MEMCTL_CMD_STS;
2326         I915_WRITE16(MEMSWCTL, rgvswctl);
2327
2328         return true;
2329 }
2330
2331 static void ironlake_enable_drps(struct drm_device *dev)
2332 {
2333         struct drm_i915_private *dev_priv = dev->dev_private;
2334         u32 rgvmodectl = I915_READ(MEMMODECTL);
2335         u8 fmax, fmin, fstart, vstart;
2336
2337         mtx_lock(&mchdev_lock);
2338
2339         /* Enable temp reporting */
2340         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2341         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2342
2343         /* 100ms RC evaluation intervals */
2344         I915_WRITE(RCUPEI, 100000);
2345         I915_WRITE(RCDNEI, 100000);
2346
2347         /* Set max/min thresholds to 90ms and 80ms respectively */
2348         I915_WRITE(RCBMAXAVG, 90000);
2349         I915_WRITE(RCBMINAVG, 80000);
2350
2351         I915_WRITE(MEMIHYST, 1);
2352
2353         /* Set up min, max, and cur for interrupt handling */
2354         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2355         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2356         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2357                 MEMMODE_FSTART_SHIFT;
2358
2359         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2360                 PXVFREQ_PX_SHIFT;
2361
2362         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2363         dev_priv->ips.fstart = fstart;
2364
2365         dev_priv->ips.max_delay = fstart;
2366         dev_priv->ips.min_delay = fmin;
2367         dev_priv->ips.cur_delay = fstart;
2368
2369         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2370                          fmax, fmin, fstart);
2371
2372         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2373
2374         /*
2375          * Interrupts will be enabled in ironlake_irq_postinstall
2376          */
2377
2378         I915_WRITE(VIDSTART, vstart);
2379         POSTING_READ(VIDSTART);
2380
2381         rgvmodectl |= MEMMODE_SWMODE_EN;
2382         I915_WRITE(MEMMODECTL, rgvmodectl);
2383
2384         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2385                 DRM_ERROR("stuck trying to change perf mode\n");
2386         mdelay(1);
2387
2388         ironlake_set_drps(dev, fstart);
2389
2390         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2391                 I915_READ(0x112e0);
2392         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2393         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2394         getrawmonotonic(&dev_priv->ips.last_time2);
2395
2396         mtx_unlock(&mchdev_lock);
2397 }
2398
2399 static void ironlake_disable_drps(struct drm_device *dev)
2400 {
2401         struct drm_i915_private *dev_priv = dev->dev_private;
2402         u16 rgvswctl;
2403
2404         mtx_lock(&mchdev_lock);
2405
2406         rgvswctl = I915_READ16(MEMSWCTL);
2407
2408         /* Ack interrupts, disable EFC interrupt */
2409         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2410         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2411         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2412         I915_WRITE(DEIIR, DE_PCU_EVENT);
2413         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2414
2415         /* Go back to the starting frequency */
2416         ironlake_set_drps(dev, dev_priv->ips.fstart);
2417         mdelay(1);
2418         rgvswctl |= MEMCTL_CMD_STS;
2419         I915_WRITE(MEMSWCTL, rgvswctl);
2420         mdelay(1);
2421
2422         mtx_unlock(&mchdev_lock);
2423 }
2424
2425 /* There's a funny hw issue where the hw returns all 0 when reading from
2426  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2427  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2428  * all limits and the gpu stuck at whatever frequency it is at atm).
2429  */
2430 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2431 {
2432         u32 limits;
2433
2434         limits = 0;
2435
2436         if (*val >= dev_priv->rps.max_delay)
2437                 *val = dev_priv->rps.max_delay;
2438         limits |= dev_priv->rps.max_delay << 24;
2439
2440         /* Only set the down limit when we've reached the lowest level to avoid
2441          * getting more interrupts, otherwise leave this clear. This prevents a
2442          * race in the hw when coming out of rc6: There's a tiny window where
2443          * the hw runs at the minimal clock before selecting the desired
2444          * frequency, if the down threshold expires in that window we will not
2445          * receive a down interrupt. */
2446         if (*val <= dev_priv->rps.min_delay) {
2447                 *val = dev_priv->rps.min_delay;
2448                 limits |= dev_priv->rps.min_delay << 16;
2449         }
2450
2451         return limits;
2452 }
2453
2454 void gen6_set_rps(struct drm_device *dev, u8 val)
2455 {
2456         struct drm_i915_private *dev_priv = dev->dev_private;
2457         u32 limits = gen6_rps_limits(dev_priv, &val);
2458
2459         sx_assert(&dev_priv->rps.hw_lock, SA_XLOCKED);
2460         WARN_ON(val > dev_priv->rps.max_delay);
2461         WARN_ON(val < dev_priv->rps.min_delay);
2462
2463         if (val == dev_priv->rps.cur_delay)
2464                 return;
2465
2466         I915_WRITE(GEN6_RPNSWREQ,
2467                    GEN6_FREQUENCY(val) |
2468                    GEN6_OFFSET(0) |
2469                    GEN6_AGGRESSIVE_TURBO);
2470
2471         /* Make sure we continue to get interrupts
2472          * until we hit the minimum or maximum frequencies.
2473          */
2474         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2475
2476         POSTING_READ(GEN6_RPNSWREQ);
2477
2478         dev_priv->rps.cur_delay = val;
2479 }
2480
2481 static void gen6_disable_rps(struct drm_device *dev)
2482 {
2483         struct drm_i915_private *dev_priv = dev->dev_private;
2484
2485         I915_WRITE(GEN6_RC_CONTROL, 0);
2486         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2487         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2488         I915_WRITE(GEN6_PMIER, 0);
2489         /* Complete PM interrupt masking here doesn't race with the rps work
2490          * item again unmasking PM interrupts because that is using a different
2491          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2492          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2493
2494         mtx_lock(&dev_priv->rps.lock);
2495         dev_priv->rps.pm_iir = 0;
2496         mtx_unlock(&dev_priv->rps.lock);
2497
2498         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2499 }
2500
2501 int intel_enable_rc6(const struct drm_device *dev)
2502 {
2503         /* Respect the kernel parameter if it is set */
2504         if (i915_enable_rc6 >= 0)
2505                 return i915_enable_rc6;
2506
2507         /* Disable RC6 on Ironlake */
2508         if (INTEL_INFO(dev)->gen == 5)
2509                 return 0;
2510
2511         if (IS_HASWELL(dev)) {
2512                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2513                 return INTEL_RC6_ENABLE;
2514         }
2515
2516         /* snb/ivb have more than one rc6 state. */
2517         if (INTEL_INFO(dev)->gen == 6) {
2518                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2519                 return INTEL_RC6_ENABLE;
2520         }
2521
2522         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2523         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2524 }
2525
2526 static void gen6_enable_rps(struct drm_device *dev)
2527 {
2528         struct drm_i915_private *dev_priv = dev->dev_private;
2529         struct intel_ring_buffer *ring;
2530         u32 rp_state_cap;
2531         u32 gt_perf_status;
2532         u32 rc6vids, pcu_mbox, rc6_mask = 0;
2533         u32 gtfifodbg;
2534         int rc6_mode;
2535         int i, ret;
2536
2537         sx_assert(&dev_priv->rps.hw_lock, SA_XLOCKED);
2538
2539         /* Here begins a magic sequence of register writes to enable
2540          * auto-downclocking.
2541          *
2542          * Perhaps there might be some value in exposing these to
2543          * userspace...
2544          */
2545         I915_WRITE(GEN6_RC_STATE, 0);
2546
2547         /* Clear the DBG now so we don't confuse earlier errors */
2548         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2549                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2550                 I915_WRITE(GTFIFODBG, gtfifodbg);
2551         }
2552
2553         gen6_gt_force_wake_get(dev_priv);
2554
2555         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2556         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2557
2558         /* In units of 100MHz */
2559         dev_priv->rps.max_delay = rp_state_cap & 0xff;
2560         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2561         dev_priv->rps.cur_delay = 0;
2562
2563         /* disable the counters and set deterministic thresholds */
2564         I915_WRITE(GEN6_RC_CONTROL, 0);
2565
2566         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2567         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2568         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2569         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2570         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2571
2572         for_each_ring(ring, dev_priv, i)
2573                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2574
2575         I915_WRITE(GEN6_RC_SLEEP, 0);
2576         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2577         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2578         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2579         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2580
2581         /* Check if we are enabling RC6 */
2582         rc6_mode = intel_enable_rc6(dev_priv->dev);
2583         if (rc6_mode & INTEL_RC6_ENABLE)
2584                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2585
2586         /* We don't use those on Haswell */
2587         if (!IS_HASWELL(dev)) {
2588                 if (rc6_mode & INTEL_RC6p_ENABLE)
2589                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2590
2591                 if (rc6_mode & INTEL_RC6pp_ENABLE)
2592                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2593         }
2594
2595         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2596                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2597                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2598                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2599
2600         I915_WRITE(GEN6_RC_CONTROL,
2601                    rc6_mask |
2602                    GEN6_RC_CTL_EI_MODE(1) |
2603                    GEN6_RC_CTL_HW_ENABLE);
2604
2605         I915_WRITE(GEN6_RPNSWREQ,
2606                    GEN6_FREQUENCY(10) |
2607                    GEN6_OFFSET(0) |
2608                    GEN6_AGGRESSIVE_TURBO);
2609         I915_WRITE(GEN6_RC_VIDEO_FREQ,
2610                    GEN6_FREQUENCY(12));
2611
2612         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2613         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2614                    dev_priv->rps.max_delay << 24 |
2615                    dev_priv->rps.min_delay << 16);
2616
2617         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2618         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2619         I915_WRITE(GEN6_RP_UP_EI, 66000);
2620         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2621
2622         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2623         I915_WRITE(GEN6_RP_CONTROL,
2624                    GEN6_RP_MEDIA_TURBO |
2625                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
2626                    GEN6_RP_MEDIA_IS_GFX |
2627                    GEN6_RP_ENABLE |
2628                    GEN6_RP_UP_BUSY_AVG |
2629                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2630
2631         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2632         if (!ret) {
2633                 pcu_mbox = 0;
2634                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2635                 if (ret && pcu_mbox & (1<<31)) { /* OC supported */
2636                         dev_priv->rps.max_delay = pcu_mbox & 0xff;
2637                         DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2638                 }
2639         } else {
2640                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2641         }
2642
2643         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2644
2645         /* requires MSI enabled */
2646         I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2647         mtx_lock(&dev_priv->rps.lock);
2648         WARN_ON(dev_priv->rps.pm_iir != 0);
2649         I915_WRITE(GEN6_PMIMR, 0);
2650         mtx_unlock(&dev_priv->rps.lock);
2651         /* enable all PM interrupts */
2652         I915_WRITE(GEN6_PMINTRMSK, 0);
2653
2654         rc6vids = 0;
2655         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2656         if (IS_GEN6(dev) && ret) {
2657                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2658         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2659                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2660                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2661                 rc6vids &= 0xffff00;
2662                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2663                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2664                 if (ret)
2665                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2666         }
2667
2668         gen6_gt_force_wake_put(dev_priv);
2669 }
2670
2671 static void gen6_update_ring_freq(struct drm_device *dev)
2672 {
2673         struct drm_i915_private *dev_priv = dev->dev_private;
2674         int min_freq = 15;
2675         int gpu_freq;
2676         unsigned int ia_freq, max_ia_freq;
2677         int scaling_factor = 180;
2678
2679         sx_assert(&dev_priv->rps.hw_lock, SA_XLOCKED);
2680
2681 #ifdef FREEBSD_WIP
2682         max_ia_freq = cpufreq_quick_get_max(0);
2683         /*
2684          * Default to measured freq if none found, PCU will ensure we don't go
2685          * over
2686          */
2687         if (!max_ia_freq)
2688                 max_ia_freq = tsc_khz;
2689 #else
2690         uint64_t freq;
2691         freq = atomic_load_acq_64(&tsc_freq);
2692         max_ia_freq = freq / 1000;
2693 #endif /* FREEBSD_WIP */
2694
2695         /* Convert from kHz to MHz */
2696         max_ia_freq /= 1000;
2697
2698         /*
2699          * For each potential GPU frequency, load a ring frequency we'd like
2700          * to use for memory access.  We do this by specifying the IA frequency
2701          * the PCU should use as a reference to determine the ring frequency.
2702          */
2703         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2704              gpu_freq--) {
2705                 int diff = dev_priv->rps.max_delay - gpu_freq;
2706
2707                 /*
2708                  * For GPU frequencies less than 750MHz, just use the lowest
2709                  * ring freq.
2710                  */
2711                 if (gpu_freq < min_freq)
2712                         ia_freq = 800;
2713                 else
2714                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2715                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2716                 ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
2717
2718                 sandybridge_pcode_write(dev_priv,
2719                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2720                                         ia_freq | gpu_freq);
2721         }
2722 }
2723
2724 void ironlake_teardown_rc6(struct drm_device *dev)
2725 {
2726         struct drm_i915_private *dev_priv = dev->dev_private;
2727
2728         if (dev_priv->ips.renderctx) {
2729                 i915_gem_object_unpin(dev_priv->ips.renderctx);
2730                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2731                 dev_priv->ips.renderctx = NULL;
2732         }
2733
2734         if (dev_priv->ips.pwrctx) {
2735                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
2736                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2737                 dev_priv->ips.pwrctx = NULL;
2738         }
2739 }
2740
2741 static void ironlake_disable_rc6(struct drm_device *dev)
2742 {
2743         struct drm_i915_private *dev_priv = dev->dev_private;
2744
2745         if (I915_READ(PWRCTXA)) {
2746                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2747                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2748                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2749                          50);
2750
2751                 I915_WRITE(PWRCTXA, 0);
2752                 POSTING_READ(PWRCTXA);
2753
2754                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2755                 POSTING_READ(RSTDBYCTL);
2756         }
2757 }
2758
2759 static int ironlake_setup_rc6(struct drm_device *dev)
2760 {
2761         struct drm_i915_private *dev_priv = dev->dev_private;
2762
2763         if (dev_priv->ips.renderctx == NULL)
2764                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2765         if (!dev_priv->ips.renderctx)
2766                 return -ENOMEM;
2767
2768         if (dev_priv->ips.pwrctx == NULL)
2769                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2770         if (!dev_priv->ips.pwrctx) {
2771                 ironlake_teardown_rc6(dev);
2772                 return -ENOMEM;
2773         }
2774
2775         return 0;
2776 }
2777
2778 static void ironlake_enable_rc6(struct drm_device *dev)
2779 {
2780         struct drm_i915_private *dev_priv = dev->dev_private;
2781         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2782         bool was_interruptible;
2783         int ret;
2784
2785         /* rc6 disabled by default due to repeated reports of hanging during
2786          * boot and resume.
2787          */
2788         if (!intel_enable_rc6(dev))
2789                 return;
2790
2791         DRM_LOCK_ASSERT(dev);
2792
2793         ret = ironlake_setup_rc6(dev);
2794         if (ret)
2795                 return;
2796
2797         was_interruptible = dev_priv->mm.interruptible;
2798         dev_priv->mm.interruptible = false;
2799
2800         /*
2801          * GPU can automatically power down the render unit if given a page
2802          * to save state.
2803          */
2804         ret = intel_ring_begin(ring, 6);
2805         if (ret) {
2806                 ironlake_teardown_rc6(dev);
2807                 dev_priv->mm.interruptible = was_interruptible;
2808                 return;
2809         }
2810
2811         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2812         intel_ring_emit(ring, MI_SET_CONTEXT);
2813         intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
2814                         MI_MM_SPACE_GTT |
2815                         MI_SAVE_EXT_STATE_EN |
2816                         MI_RESTORE_EXT_STATE_EN |
2817                         MI_RESTORE_INHIBIT);
2818         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2819         intel_ring_emit(ring, MI_NOOP);
2820         intel_ring_emit(ring, MI_FLUSH);
2821         intel_ring_advance(ring);
2822
2823         /*
2824          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2825          * does an implicit flush, combined with MI_FLUSH above, it should be
2826          * safe to assume that renderctx is valid
2827          */
2828         ret = intel_ring_idle(ring);
2829         dev_priv->mm.interruptible = was_interruptible;
2830         if (ret) {
2831                 DRM_ERROR("failed to enable ironlake power power savings\n");
2832                 ironlake_teardown_rc6(dev);
2833                 return;
2834         }
2835
2836         I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2837         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2838 }
2839
2840 static unsigned long intel_pxfreq(u32 vidfreq)
2841 {
2842         unsigned long freq;
2843         int div = (vidfreq & 0x3f0000) >> 16;
2844         int post = (vidfreq & 0x3000) >> 12;
2845         int pre = (vidfreq & 0x7);
2846
2847         if (!pre)
2848                 return 0;
2849
2850         freq = ((div * 133333) / ((1<<post) * pre));
2851
2852         return freq;
2853 }
2854
2855 static const struct cparams {
2856         u16 i;
2857         u16 t;
2858         u16 m;
2859         u16 c;
2860 } cparams[] = {
2861         { 1, 1333, 301, 28664 },
2862         { 1, 1066, 294, 24460 },
2863         { 1, 800, 294, 25192 },
2864         { 0, 1333, 276, 27605 },
2865         { 0, 1066, 276, 27605 },
2866         { 0, 800, 231, 23784 },
2867 };
2868
2869 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2870 {
2871         u64 total_count, diff, ret;
2872         u32 count1, count2, count3, m = 0, c = 0;
2873         unsigned long now = jiffies_to_msecs(jiffies), diff1;
2874         int i;
2875
2876         mtx_assert(&mchdev_lock, MA_OWNED);
2877
2878         diff1 = now - dev_priv->ips.last_time1;
2879
2880         /* Prevent division-by-zero if we are asking too fast.
2881          * Also, we don't get interesting results if we are polling
2882          * faster than once in 10ms, so just return the saved value
2883          * in such cases.
2884          */
2885         if (diff1 <= 10)
2886                 return dev_priv->ips.chipset_power;
2887
2888         count1 = I915_READ(DMIEC);
2889         count2 = I915_READ(DDREC);
2890         count3 = I915_READ(CSIEC);
2891
2892         total_count = count1 + count2 + count3;
2893
2894         /* FIXME: handle per-counter overflow */
2895         if (total_count < dev_priv->ips.last_count1) {
2896                 diff = ~0UL - dev_priv->ips.last_count1;
2897                 diff += total_count;
2898         } else {
2899                 diff = total_count - dev_priv->ips.last_count1;
2900         }
2901
2902         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2903                 if (cparams[i].i == dev_priv->ips.c_m &&
2904                     cparams[i].t == dev_priv->ips.r_t) {
2905                         m = cparams[i].m;
2906                         c = cparams[i].c;
2907                         break;
2908                 }
2909         }
2910
2911         diff = div_u64(diff, diff1);
2912         ret = ((m * diff) + c);
2913         ret = div_u64(ret, 10);
2914
2915         dev_priv->ips.last_count1 = total_count;
2916         dev_priv->ips.last_time1 = now;
2917
2918         dev_priv->ips.chipset_power = ret;
2919
2920         return ret;
2921 }
2922
2923 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2924 {
2925         unsigned long val;
2926
2927         if (dev_priv->info->gen != 5)
2928                 return 0;
2929
2930         mtx_lock(&mchdev_lock);
2931
2932         val = __i915_chipset_val(dev_priv);
2933
2934         mtx_unlock(&mchdev_lock);
2935
2936         return val;
2937 }
2938
2939 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2940 {
2941         unsigned long m, x, b;
2942         u32 tsfs;
2943
2944         tsfs = I915_READ(TSFS);
2945
2946         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2947         x = I915_READ8(I915_TR1);
2948
2949         b = tsfs & TSFS_INTR_MASK;
2950
2951         return ((m * x) / 127) - b;
2952 }
2953
2954 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2955 {
2956         static const struct v_table {
2957                 u16 vd; /* in .1 mil */
2958                 u16 vm; /* in .1 mil */
2959         } v_table[] = {
2960                 { 0, 0, },
2961                 { 375, 0, },
2962                 { 500, 0, },
2963                 { 625, 0, },
2964                 { 750, 0, },
2965                 { 875, 0, },
2966                 { 1000, 0, },
2967                 { 1125, 0, },
2968                 { 4125, 3000, },
2969                 { 4125, 3000, },
2970                 { 4125, 3000, },
2971                 { 4125, 3000, },
2972                 { 4125, 3000, },
2973                 { 4125, 3000, },
2974                 { 4125, 3000, },
2975                 { 4125, 3000, },
2976                 { 4125, 3000, },
2977                 { 4125, 3000, },
2978                 { 4125, 3000, },
2979                 { 4125, 3000, },
2980                 { 4125, 3000, },
2981                 { 4125, 3000, },
2982                 { 4125, 3000, },
2983                 { 4125, 3000, },
2984                 { 4125, 3000, },
2985                 { 4125, 3000, },
2986                 { 4125, 3000, },
2987                 { 4125, 3000, },
2988                 { 4125, 3000, },
2989                 { 4125, 3000, },
2990                 { 4125, 3000, },
2991                 { 4125, 3000, },
2992                 { 4250, 3125, },
2993                 { 4375, 3250, },
2994                 { 4500, 3375, },
2995                 { 4625, 3500, },
2996                 { 4750, 3625, },
2997                 { 4875, 3750, },
2998                 { 5000, 3875, },
2999                 { 5125, 4000, },
3000                 { 5250, 4125, },
3001                 { 5375, 4250, },
3002                 { 5500, 4375, },
3003                 { 5625, 4500, },
3004                 { 5750, 4625, },
3005                 { 5875, 4750, },
3006                 { 6000, 4875, },
3007                 { 6125, 5000, },
3008                 { 6250, 5125, },
3009                 { 6375, 5250, },
3010                 { 6500, 5375, },
3011                 { 6625, 5500, },
3012                 { 6750, 5625, },
3013                 { 6875, 5750, },
3014                 { 7000, 5875, },
3015                 { 7125, 6000, },
3016                 { 7250, 6125, },
3017                 { 7375, 6250, },
3018                 { 7500, 6375, },
3019                 { 7625, 6500, },
3020                 { 7750, 6625, },
3021                 { 7875, 6750, },
3022                 { 8000, 6875, },
3023                 { 8125, 7000, },
3024                 { 8250, 7125, },
3025                 { 8375, 7250, },
3026                 { 8500, 7375, },
3027                 { 8625, 7500, },
3028                 { 8750, 7625, },
3029                 { 8875, 7750, },
3030                 { 9000, 7875, },
3031                 { 9125, 8000, },
3032                 { 9250, 8125, },
3033                 { 9375, 8250, },
3034                 { 9500, 8375, },
3035                 { 9625, 8500, },
3036                 { 9750, 8625, },
3037                 { 9875, 8750, },
3038                 { 10000, 8875, },
3039                 { 10125, 9000, },
3040                 { 10250, 9125, },
3041                 { 10375, 9250, },
3042                 { 10500, 9375, },
3043                 { 10625, 9500, },
3044                 { 10750, 9625, },
3045                 { 10875, 9750, },
3046                 { 11000, 9875, },
3047                 { 11125, 10000, },
3048                 { 11250, 10125, },
3049                 { 11375, 10250, },
3050                 { 11500, 10375, },
3051                 { 11625, 10500, },
3052                 { 11750, 10625, },
3053                 { 11875, 10750, },
3054                 { 12000, 10875, },
3055                 { 12125, 11000, },
3056                 { 12250, 11125, },
3057                 { 12375, 11250, },
3058                 { 12500, 11375, },
3059                 { 12625, 11500, },
3060                 { 12750, 11625, },
3061                 { 12875, 11750, },
3062                 { 13000, 11875, },
3063                 { 13125, 12000, },
3064                 { 13250, 12125, },
3065                 { 13375, 12250, },
3066                 { 13500, 12375, },
3067                 { 13625, 12500, },
3068                 { 13750, 12625, },
3069                 { 13875, 12750, },
3070                 { 14000, 12875, },
3071                 { 14125, 13000, },
3072                 { 14250, 13125, },
3073                 { 14375, 13250, },
3074                 { 14500, 13375, },
3075                 { 14625, 13500, },
3076                 { 14750, 13625, },
3077                 { 14875, 13750, },
3078                 { 15000, 13875, },
3079                 { 15125, 14000, },
3080                 { 15250, 14125, },
3081                 { 15375, 14250, },
3082                 { 15500, 14375, },
3083                 { 15625, 14500, },
3084                 { 15750, 14625, },
3085                 { 15875, 14750, },
3086                 { 16000, 14875, },
3087                 { 16125, 15000, },
3088         };
3089         if (dev_priv->info->is_mobile)
3090                 return v_table[pxvid].vm;
3091         else
3092                 return v_table[pxvid].vd;
3093 }
3094
3095 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3096 {
3097         struct timespec now, diff1;
3098         u64 diff;
3099         unsigned long diffms;
3100         u32 count;
3101
3102         mtx_assert(&mchdev_lock, MA_OWNED);
3103
3104         nanotime(&now);
3105         timespecsub(&now, &dev_priv->ips.last_time2, &diff1);
3106
3107         /* Don't divide by 0 */
3108         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3109         if (!diffms)
3110                 return;
3111
3112         count = I915_READ(GFXEC);
3113
3114         if (count < dev_priv->ips.last_count2) {
3115                 diff = ~0UL - dev_priv->ips.last_count2;
3116                 diff += count;
3117         } else {
3118                 diff = count - dev_priv->ips.last_count2;
3119         }
3120
3121         dev_priv->ips.last_count2 = count;
3122         dev_priv->ips.last_time2 = now;
3123
3124         /* More magic constants... */
3125         diff = diff * 1181;
3126         diff = div_u64(diff, diffms * 10);
3127         dev_priv->ips.gfx_power = diff;
3128 }
3129
3130 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3131 {
3132         if (dev_priv->info->gen != 5)
3133                 return;
3134
3135         mtx_lock(&mchdev_lock);
3136
3137         __i915_update_gfx_val(dev_priv);
3138
3139         mtx_unlock(&mchdev_lock);
3140 }
3141
3142 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3143 {
3144         unsigned long t, corr, state1, corr2, state2;
3145         u32 pxvid, ext_v;
3146
3147         mtx_assert(&mchdev_lock, MA_OWNED);
3148
3149         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3150         pxvid = (pxvid >> 24) & 0x7f;
3151         ext_v = pvid_to_extvid(dev_priv, pxvid);
3152
3153         state1 = ext_v;
3154
3155         t = i915_mch_val(dev_priv);
3156
3157         /* Revel in the empirically derived constants */
3158
3159         /* Correction factor in 1/100000 units */
3160         if (t > 80)
3161                 corr = ((t * 2349) + 135940);
3162         else if (t >= 50)
3163                 corr = ((t * 964) + 29317);
3164         else /* < 50 */
3165                 corr = ((t * 301) + 1004);
3166
3167         corr = corr * ((150142 * state1) / 10000 - 78642);
3168         corr /= 100000;
3169         corr2 = (corr * dev_priv->ips.corr);
3170
3171         state2 = (corr2 * state1) / 10000;
3172         state2 /= 100; /* convert to mW */
3173
3174         __i915_update_gfx_val(dev_priv);
3175
3176         return dev_priv->ips.gfx_power + state2;
3177 }
3178
3179 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3180 {
3181         unsigned long val;
3182
3183         if (dev_priv->info->gen != 5)
3184                 return 0;
3185
3186         mtx_lock(&mchdev_lock);
3187
3188         val = __i915_gfx_val(dev_priv);
3189
3190         mtx_unlock(&mchdev_lock);
3191
3192         return val;
3193 }
3194
3195 /**
3196  * i915_read_mch_val - return value for IPS use
3197  *
3198  * Calculate and return a value for the IPS driver to use when deciding whether
3199  * we have thermal and power headroom to increase CPU or GPU power budget.
3200  */
3201 unsigned long i915_read_mch_val(void)
3202 {
3203         struct drm_i915_private *dev_priv;
3204         unsigned long chipset_val, graphics_val, ret = 0;
3205
3206         mtx_lock(&mchdev_lock);
3207         if (!i915_mch_dev)
3208                 goto out_unlock;
3209         dev_priv = i915_mch_dev;
3210
3211         chipset_val = __i915_chipset_val(dev_priv);
3212         graphics_val = __i915_gfx_val(dev_priv);
3213
3214         ret = chipset_val + graphics_val;
3215
3216 out_unlock:
3217         mtx_unlock(&mchdev_lock);
3218
3219         return ret;
3220 }
3221 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3222
3223 /**
3224  * i915_gpu_raise - raise GPU frequency limit
3225  *
3226  * Raise the limit; IPS indicates we have thermal headroom.
3227  */
3228 bool i915_gpu_raise(void)
3229 {
3230         struct drm_i915_private *dev_priv;
3231         bool ret = true;
3232
3233         mtx_lock(&mchdev_lock);
3234         if (!i915_mch_dev) {
3235                 ret = false;
3236                 goto out_unlock;
3237         }
3238         dev_priv = i915_mch_dev;
3239
3240         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3241                 dev_priv->ips.max_delay--;
3242
3243 out_unlock:
3244         mtx_unlock(&mchdev_lock);
3245
3246         return ret;
3247 }
3248 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3249
3250 /**
3251  * i915_gpu_lower - lower GPU frequency limit
3252  *
3253  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3254  * frequency maximum.
3255  */
3256 bool i915_gpu_lower(void)
3257 {
3258         struct drm_i915_private *dev_priv;
3259         bool ret = true;
3260
3261         mtx_lock(&mchdev_lock);
3262         if (!i915_mch_dev) {
3263                 ret = false;
3264                 goto out_unlock;
3265         }
3266         dev_priv = i915_mch_dev;
3267
3268         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3269                 dev_priv->ips.max_delay++;
3270
3271 out_unlock:
3272         mtx_unlock(&mchdev_lock);
3273
3274         return ret;
3275 }
3276 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3277
3278 /**
3279  * i915_gpu_busy - indicate GPU business to IPS
3280  *
3281  * Tell the IPS driver whether or not the GPU is busy.
3282  */
3283 bool i915_gpu_busy(void)
3284 {
3285         struct drm_i915_private *dev_priv;
3286         struct intel_ring_buffer *ring;
3287         bool ret = false;
3288         int i;
3289
3290         mtx_lock(&mchdev_lock);
3291         if (!i915_mch_dev)
3292                 goto out_unlock;
3293         dev_priv = i915_mch_dev;
3294
3295         for_each_ring(ring, dev_priv, i)
3296                 ret |= !list_empty(&ring->request_list);
3297
3298 out_unlock:
3299         mtx_unlock(&mchdev_lock);
3300
3301         return ret;
3302 }
3303 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3304
3305 /**
3306  * i915_gpu_turbo_disable - disable graphics turbo
3307  *
3308  * Disable graphics turbo by resetting the max frequency and setting the
3309  * current frequency to the default.
3310  */
3311 bool i915_gpu_turbo_disable(void)
3312 {
3313         struct drm_i915_private *dev_priv;
3314         bool ret = true;
3315
3316         mtx_lock(&mchdev_lock);
3317         if (!i915_mch_dev) {
3318                 ret = false;
3319                 goto out_unlock;
3320         }
3321         dev_priv = i915_mch_dev;
3322
3323         dev_priv->ips.max_delay = dev_priv->ips.fstart;
3324
3325         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3326                 ret = false;
3327
3328 out_unlock:
3329         mtx_unlock(&mchdev_lock);
3330
3331         return ret;
3332 }
3333 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3334
3335 #ifdef FREEBSD_WIP
3336 /**
3337  * Tells the intel_ips driver that the i915 driver is now loaded, if
3338  * IPS got loaded first.
3339  *
3340  * This awkward dance is so that neither module has to depend on the
3341  * other in order for IPS to do the appropriate communication of
3342  * GPU turbo limits to i915.
3343  */
3344 static void
3345 ips_ping_for_i915_load(void)
3346 {
3347         void (*link)(void);
3348
3349         link = symbol_get(ips_link_to_i915_driver);
3350         if (link) {
3351                 link();
3352                 symbol_put(ips_link_to_i915_driver);
3353         }
3354 }
3355 #endif /* FREEBSD_WIP */
3356
3357 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3358 {
3359         /* We only register the i915 ips part with intel-ips once everything is
3360          * set up, to avoid intel-ips sneaking in and reading bogus values. */
3361         mtx_lock(&mchdev_lock);
3362         i915_mch_dev = dev_priv;
3363         mtx_unlock(&mchdev_lock);
3364
3365 #ifdef FREEBSD_WIP
3366         ips_ping_for_i915_load();
3367 #endif /* FREEBSD_WIP */
3368 }
3369
3370 void intel_gpu_ips_teardown(void)
3371 {
3372         mtx_lock(&mchdev_lock);
3373         i915_mch_dev = NULL;
3374         mtx_unlock(&mchdev_lock);
3375 }
3376 static void intel_init_emon(struct drm_device *dev)
3377 {
3378         struct drm_i915_private *dev_priv = dev->dev_private;
3379         u32 lcfuse;
3380         u8 pxw[16];
3381         int i;
3382
3383         /* Disable to program */
3384         I915_WRITE(ECR, 0);
3385         POSTING_READ(ECR);
3386
3387         /* Program energy weights for various events */
3388         I915_WRITE(SDEW, 0x15040d00);
3389         I915_WRITE(CSIEW0, 0x007f0000);
3390         I915_WRITE(CSIEW1, 0x1e220004);
3391         I915_WRITE(CSIEW2, 0x04000004);
3392
3393         for (i = 0; i < 5; i++)
3394                 I915_WRITE(PEW + (i * 4), 0);
3395         for (i = 0; i < 3; i++)
3396                 I915_WRITE(DEW + (i * 4), 0);
3397
3398         /* Program P-state weights to account for frequency power adjustment */
3399         for (i = 0; i < 16; i++) {
3400                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3401                 unsigned long freq = intel_pxfreq(pxvidfreq);
3402                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3403                         PXVFREQ_PX_SHIFT;
3404                 unsigned long val;
3405
3406                 val = vid * vid;
3407                 val *= (freq / 1000);
3408                 val *= 255;
3409                 val /= (127*127*900);
3410                 if (val > 0xff)
3411                         DRM_ERROR("bad pxval: %ld\n", val);
3412                 pxw[i] = val;
3413         }
3414         /* Render standby states get 0 weight */
3415         pxw[14] = 0;
3416         pxw[15] = 0;
3417
3418         for (i = 0; i < 4; i++) {
3419                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3420                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3421                 I915_WRITE(PXW + (i * 4), val);
3422         }
3423
3424         /* Adjust magic regs to magic values (more experimental results) */
3425         I915_WRITE(OGW0, 0);
3426         I915_WRITE(OGW1, 0);
3427         I915_WRITE(EG0, 0x00007f00);
3428         I915_WRITE(EG1, 0x0000000e);
3429         I915_WRITE(EG2, 0x000e0000);
3430         I915_WRITE(EG3, 0x68000300);
3431         I915_WRITE(EG4, 0x42000000);
3432         I915_WRITE(EG5, 0x00140031);
3433         I915_WRITE(EG6, 0);
3434         I915_WRITE(EG7, 0);
3435
3436         for (i = 0; i < 8; i++)
3437                 I915_WRITE(PXWL + (i * 4), 0);
3438
3439         /* Enable PMON + select events */
3440         I915_WRITE(ECR, 0x80000019);
3441
3442         lcfuse = I915_READ(LCFUSE02);
3443
3444         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3445 }
3446
3447 void intel_disable_gt_powersave(struct drm_device *dev)
3448 {
3449         struct drm_i915_private *dev_priv = dev->dev_private;
3450
3451         if (IS_IRONLAKE_M(dev)) {
3452                 ironlake_disable_drps(dev);
3453                 ironlake_disable_rc6(dev);
3454         } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3455                 taskqueue_cancel_timeout(dev_priv->wq, &dev_priv->rps.delayed_resume_work, NULL);
3456                 sx_xlock(&dev_priv->rps.hw_lock);
3457                 gen6_disable_rps(dev);
3458                 sx_xunlock(&dev_priv->rps.hw_lock);
3459         }
3460 }
3461
3462 static void intel_gen6_powersave_work(void *arg, int pending)
3463 {
3464         struct drm_i915_private *dev_priv = arg;
3465         struct drm_device *dev = dev_priv->dev;
3466
3467         sx_xlock(&dev_priv->rps.hw_lock);
3468         gen6_enable_rps(dev);
3469         gen6_update_ring_freq(dev);
3470         sx_xunlock(&dev_priv->rps.hw_lock);
3471 }
3472
3473 void intel_enable_gt_powersave(struct drm_device *dev)
3474 {
3475         struct drm_i915_private *dev_priv = dev->dev_private;
3476
3477         if (IS_IRONLAKE_M(dev)) {
3478                 ironlake_enable_drps(dev);
3479                 ironlake_enable_rc6(dev);
3480                 intel_init_emon(dev);
3481         } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3482                 /*
3483                  * PCU communication is slow and this doesn't need to be
3484                  * done at any specific time, so do this out of our fast path
3485                  * to make resume and init faster.
3486                  */
3487                 taskqueue_enqueue_timeout(dev_priv->wq, &dev_priv->rps.delayed_resume_work,
3488                     round_jiffies_up_relative(HZ));
3489         }
3490 }
3491
3492 static void ibx_init_clock_gating(struct drm_device *dev)
3493 {
3494         struct drm_i915_private *dev_priv = dev->dev_private;
3495
3496         /*
3497          * On Ibex Peak and Cougar Point, we need to disable clock
3498          * gating for the panel power sequencer or it will fail to
3499          * start up when no ports are active.
3500          */
3501         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3502 }
3503
3504 static void ironlake_init_clock_gating(struct drm_device *dev)
3505 {
3506         struct drm_i915_private *dev_priv = dev->dev_private;
3507         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3508
3509         /* Required for FBC */
3510         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3511                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3512                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3513
3514         I915_WRITE(PCH_3DCGDIS0,
3515                    MARIUNIT_CLOCK_GATE_DISABLE |
3516                    SVSMUNIT_CLOCK_GATE_DISABLE);
3517         I915_WRITE(PCH_3DCGDIS1,
3518                    VFMUNIT_CLOCK_GATE_DISABLE);
3519
3520         /*
3521          * According to the spec the following bits should be set in
3522          * order to enable memory self-refresh
3523          * The bit 22/21 of 0x42004
3524          * The bit 5 of 0x42020
3525          * The bit 15 of 0x45000
3526          */
3527         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3528                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
3529                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3530         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3531         I915_WRITE(DISP_ARB_CTL,
3532                    (I915_READ(DISP_ARB_CTL) |
3533                     DISP_FBC_WM_DIS));
3534         I915_WRITE(WM3_LP_ILK, 0);
3535         I915_WRITE(WM2_LP_ILK, 0);
3536         I915_WRITE(WM1_LP_ILK, 0);
3537
3538         /*
3539          * Based on the document from hardware guys the following bits
3540          * should be set unconditionally in order to enable FBC.
3541          * The bit 22 of 0x42000
3542          * The bit 22 of 0x42004
3543          * The bit 7,8,9 of 0x42020.
3544          */
3545         if (IS_IRONLAKE_M(dev)) {
3546                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3547                            I915_READ(ILK_DISPLAY_CHICKEN1) |
3548                            ILK_FBCQ_DIS);
3549                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3550                            I915_READ(ILK_DISPLAY_CHICKEN2) |
3551                            ILK_DPARB_GATE);
3552         }
3553
3554         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3555
3556         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3557                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3558                    ILK_ELPIN_409_SELECT);
3559         I915_WRITE(_3D_CHICKEN2,
3560                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3561                    _3D_CHICKEN2_WM_READ_PIPELINED);
3562
3563         /* WaDisableRenderCachePipelinedFlush */
3564         I915_WRITE(CACHE_MODE_0,
3565                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3566
3567         ibx_init_clock_gating(dev);
3568 }
3569
3570 static void cpt_init_clock_gating(struct drm_device *dev)
3571 {
3572         struct drm_i915_private *dev_priv = dev->dev_private;
3573         int pipe;
3574         uint32_t val;
3575
3576         /*
3577          * On Ibex Peak and Cougar Point, we need to disable clock
3578          * gating for the panel power sequencer or it will fail to
3579          * start up when no ports are active.
3580          */
3581         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3582         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3583                    DPLS_EDP_PPS_FIX_DIS);
3584         /* The below fixes the weird display corruption, a few pixels shifted
3585          * downward, on (only) LVDS of some HP laptops with IVY.
3586          */
3587         for_each_pipe(pipe) {
3588                 val = TRANS_CHICKEN2_TIMING_OVERRIDE;
3589                 if (dev_priv->fdi_rx_polarity_inverted)
3590                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3591                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
3592         }
3593         /* WADP0ClockGatingDisable */
3594         for_each_pipe(pipe) {
3595                 I915_WRITE(TRANS_CHICKEN1(pipe),
3596                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3597         }
3598 }
3599
3600 static void gen6_init_clock_gating(struct drm_device *dev)
3601 {
3602         struct drm_i915_private *dev_priv = dev->dev_private;
3603         int pipe;
3604         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3605
3606         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3607
3608         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3609                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3610                    ILK_ELPIN_409_SELECT);
3611
3612         /* WaDisableHiZPlanesWhenMSAAEnabled */
3613         I915_WRITE(_3D_CHICKEN,
3614                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3615
3616         /* WaSetupGtModeTdRowDispatch */
3617         if (IS_SNB_GT1(dev))
3618                 I915_WRITE(GEN6_GT_MODE,
3619                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3620
3621         I915_WRITE(WM3_LP_ILK, 0);
3622         I915_WRITE(WM2_LP_ILK, 0);
3623         I915_WRITE(WM1_LP_ILK, 0);
3624
3625         I915_WRITE(CACHE_MODE_0,
3626                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3627
3628         I915_WRITE(GEN6_UCGCTL1,
3629                    I915_READ(GEN6_UCGCTL1) |
3630                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3631                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3632
3633         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3634          * gating disable must be set.  Failure to set it results in
3635          * flickering pixels due to Z write ordering failures after
3636          * some amount of runtime in the Mesa "fire" demo, and Unigine
3637          * Sanctuary and Tropics, and apparently anything else with
3638          * alpha test or pixel discard.
3639          *
3640          * According to the spec, bit 11 (RCCUNIT) must also be set,
3641          * but we didn't debug actual testcases to find it out.
3642          *
3643          * Also apply WaDisableVDSUnitClockGating and
3644          * WaDisableRCPBUnitClockGating.
3645          */
3646         I915_WRITE(GEN6_UCGCTL2,
3647                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3648                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3649                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3650
3651         /* Bspec says we need to always set all mask bits. */
3652         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3653                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3654
3655         /*
3656          * According to the spec the following bits should be
3657          * set in order to enable memory self-refresh and fbc:
3658          * The bit21 and bit22 of 0x42000
3659          * The bit21 and bit22 of 0x42004
3660          * The bit5 and bit7 of 0x42020
3661          * The bit14 of 0x70180
3662          * The bit14 of 0x71180
3663          */
3664         I915_WRITE(ILK_DISPLAY_CHICKEN1,
3665                    I915_READ(ILK_DISPLAY_CHICKEN1) |
3666                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3667         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3668                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3669                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3670         I915_WRITE(ILK_DSPCLK_GATE_D,
3671                    I915_READ(ILK_DSPCLK_GATE_D) |
3672                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3673                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3674
3675
3676 #ifdef FREEBSD_WIP
3677         /* NOTE Linux<->FreeBSD: Disable GEN6_MBCTL write.
3678          *
3679          * This arrived in Linux 3.6 in commit
3680          * b4ae3f22d238617ca11610b29fde16cf8c0bc6e0 and causes significantly
3681          * increased power consumption after kldloading i915kms.ko on FreeBSD
3682          * on (some) Sandy Bridge laptops. A Thinkpad X220 reported about 11W
3683          * after booting while idle at the vt(4) console and about double that
3684          * after loading the driver.
3685          *
3686          * There were reports in Linux of increased consumption after a suspend
3687          * and resume cycle due to that change.
3688          *
3689          * Linux bug reports:
3690          * https://bugs.freedesktop.org/show_bug.cgi?id=54089
3691          * https://bugzilla.kernel.org/show_bug.cgi?id=58971
3692          *
3693          * This suspend and resume issue is reportedly fixed in Linux with
3694          * commits 7dcd2677ea912573d9ed4bcd629b0023b2d11505 and
3695          * 7dcd2677ea912573d9ed4bcd629b0023b2d11505 (Linux 3.11). However, I
3696          * found that those changes did not help on FreeBSD, where increased
3697          * power consumption is observed after loading i915kms.ko without
3698          * suspending and resuming.
3699          *
3700          * This workaround should be removed after updating to a future Linux
3701          * i915 version and verifying normal power consumption on Sandy Bridge.
3702          */
3703
3704         /* WaMbcDriverBootEnable */
3705         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3706                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3707 #endif /* FREEBSD_WIP */
3708
3709         for_each_pipe(pipe) {
3710                 I915_WRITE(DSPCNTR(pipe),
3711                            I915_READ(DSPCNTR(pipe)) |
3712                            DISPPLANE_TRICKLE_FEED_DISABLE);
3713                 intel_flush_display_plane(dev_priv, pipe);
3714         }
3715
3716         /* The default value should be 0x200 according to docs, but the two
3717          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3718         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3719         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3720
3721         cpt_init_clock_gating(dev);
3722 }
3723
3724 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3725 {
3726         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3727
3728         reg &= ~GEN7_FF_SCHED_MASK;
3729         reg |= GEN7_FF_TS_SCHED_HW;
3730         reg |= GEN7_FF_VS_SCHED_HW;
3731         reg |= GEN7_FF_DS_SCHED_HW;
3732
3733         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3734 }
3735
3736 static void lpt_init_clock_gating(struct drm_device *dev)
3737 {
3738         struct drm_i915_private *dev_priv = dev->dev_private;
3739
3740         /*
3741          * TODO: this bit should only be enabled when really needed, then
3742          * disabled when not needed anymore in order to save power.
3743          */
3744         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3745                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
3746                            I915_READ(SOUTH_DSPCLK_GATE_D) |
3747                            PCH_LP_PARTITION_LEVEL_DISABLE);
3748 }
3749
3750 static void haswell_init_clock_gating(struct drm_device *dev)
3751 {
3752         struct drm_i915_private *dev_priv = dev->dev_private;
3753         int pipe;
3754
3755         I915_WRITE(WM3_LP_ILK, 0);
3756         I915_WRITE(WM2_LP_ILK, 0);
3757         I915_WRITE(WM1_LP_ILK, 0);
3758
3759         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3760          * This implements the WaDisableRCZUnitClockGating workaround.
3761          */
3762         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3763
3764         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3765         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3766                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3767
3768         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3769         I915_WRITE(GEN7_L3CNTLREG1,
3770                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3771         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3772                         GEN7_WA_L3_CHICKEN_MODE);
3773
3774         /* This is required by WaCatErrorRejectionIssue */
3775         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3776                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3777                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3778
3779         for_each_pipe(pipe) {
3780                 I915_WRITE(DSPCNTR(pipe),
3781                            I915_READ(DSPCNTR(pipe)) |
3782                            DISPPLANE_TRICKLE_FEED_DISABLE);
3783                 intel_flush_display_plane(dev_priv, pipe);
3784         }
3785
3786         gen7_setup_fixed_func_scheduler(dev_priv);
3787
3788         /* WaDisable4x2SubspanOptimization */
3789         I915_WRITE(CACHE_MODE_1,
3790                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3791
3792         /* WaMbcDriverBootEnable */
3793         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3794                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3795
3796         /* XXX: This is a workaround for early silicon revisions and should be
3797          * removed later.
3798          */
3799         I915_WRITE(WM_DBG,
3800                         I915_READ(WM_DBG) |
3801                         WM_DBG_DISALLOW_MULTIPLE_LP |
3802                         WM_DBG_DISALLOW_SPRITE |
3803                         WM_DBG_DISALLOW_MAXFIFO);
3804
3805         lpt_init_clock_gating(dev);
3806 }
3807
3808 static void ivybridge_init_clock_gating(struct drm_device *dev)
3809 {
3810         struct drm_i915_private *dev_priv = dev->dev_private;
3811         int pipe;
3812         uint32_t snpcr;
3813
3814         I915_WRITE(WM3_LP_ILK, 0);
3815         I915_WRITE(WM2_LP_ILK, 0);
3816         I915_WRITE(WM1_LP_ILK, 0);
3817
3818         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3819
3820         /* WaDisableEarlyCull */
3821         I915_WRITE(_3D_CHICKEN3,
3822                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3823
3824         /* WaDisableBackToBackFlipFix */
3825         I915_WRITE(IVB_CHICKEN3,
3826                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3827                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3828
3829         /* WaDisablePSDDualDispatchEnable */
3830         if (IS_IVB_GT1(dev))
3831                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3832                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3833         else
3834                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3835                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3836
3837         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3838         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3839                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3840
3841         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3842         I915_WRITE(GEN7_L3CNTLREG1,
3843                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3844         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3845                    GEN7_WA_L3_CHICKEN_MODE);
3846         if (IS_IVB_GT1(dev))
3847                 I915_WRITE(GEN7_ROW_CHICKEN2,
3848                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3849         else
3850                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3851                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3852
3853
3854         /* WaForceL3Serialization */
3855         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3856                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3857
3858         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3859          * gating disable must be set.  Failure to set it results in
3860          * flickering pixels due to Z write ordering failures after
3861          * some amount of runtime in the Mesa "fire" demo, and Unigine
3862          * Sanctuary and Tropics, and apparently anything else with
3863          * alpha test or pixel discard.
3864          *
3865          * According to the spec, bit 11 (RCCUNIT) must also be set,
3866          * but we didn't debug actual testcases to find it out.
3867          *
3868          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3869          * This implements the WaDisableRCZUnitClockGating workaround.
3870          */
3871         I915_WRITE(GEN6_UCGCTL2,
3872                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3873                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3874
3875         /* This is required by WaCatErrorRejectionIssue */
3876         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3877                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3878                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3879
3880         for_each_pipe(pipe) {
3881                 I915_WRITE(DSPCNTR(pipe),
3882                            I915_READ(DSPCNTR(pipe)) |
3883                            DISPPLANE_TRICKLE_FEED_DISABLE);
3884                 intel_flush_display_plane(dev_priv, pipe);
3885         }
3886
3887         /* WaMbcDriverBootEnable */
3888         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3889                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3890
3891         gen7_setup_fixed_func_scheduler(dev_priv);
3892
3893         /* WaDisable4x2SubspanOptimization */
3894         I915_WRITE(CACHE_MODE_1,
3895                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3896
3897         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3898         snpcr &= ~GEN6_MBC_SNPCR_MASK;
3899         snpcr |= GEN6_MBC_SNPCR_MED;
3900         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3901
3902         cpt_init_clock_gating(dev);
3903 }
3904
3905 static void valleyview_init_clock_gating(struct drm_device *dev)
3906 {
3907         struct drm_i915_private *dev_priv = dev->dev_private;
3908         int pipe;
3909
3910         I915_WRITE(WM3_LP_ILK, 0);
3911         I915_WRITE(WM2_LP_ILK, 0);
3912         I915_WRITE(WM1_LP_ILK, 0);
3913
3914         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3915
3916         /* WaDisableEarlyCull */
3917         I915_WRITE(_3D_CHICKEN3,
3918                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3919
3920         /* WaDisableBackToBackFlipFix */
3921         I915_WRITE(IVB_CHICKEN3,
3922                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3923                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3924
3925         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3926                    _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3927
3928         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3929         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3930                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3931
3932         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3933         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3934         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3935
3936         /* WaForceL3Serialization */
3937         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3938                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3939
3940         /* WaDisableDopClockGating */
3941         I915_WRITE(GEN7_ROW_CHICKEN2,
3942                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3943
3944         /* WaForceL3Serialization */
3945         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3946                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3947
3948         /* This is required by WaCatErrorRejectionIssue */
3949         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3950                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3951                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3952
3953         /* WaMbcDriverBootEnable */
3954         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3955                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3956
3957
3958         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3959          * gating disable must be set.  Failure to set it results in
3960          * flickering pixels due to Z write ordering failures after
3961          * some amount of runtime in the Mesa "fire" demo, and Unigine
3962          * Sanctuary and Tropics, and apparently anything else with
3963          * alpha test or pixel discard.
3964          *
3965          * According to the spec, bit 11 (RCCUNIT) must also be set,
3966          * but we didn't debug actual testcases to find it out.
3967          *
3968          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3969          * This implements the WaDisableRCZUnitClockGating workaround.
3970          *
3971          * Also apply WaDisableVDSUnitClockGating and
3972          * WaDisableRCPBUnitClockGating.
3973          */
3974         I915_WRITE(GEN6_UCGCTL2,
3975                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3976                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3977                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3978                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3979                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3980
3981         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3982
3983         for_each_pipe(pipe) {
3984                 I915_WRITE(DSPCNTR(pipe),
3985                            I915_READ(DSPCNTR(pipe)) |
3986                            DISPPLANE_TRICKLE_FEED_DISABLE);
3987                 intel_flush_display_plane(dev_priv, pipe);
3988         }
3989
3990         I915_WRITE(CACHE_MODE_1,
3991                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3992
3993         /*
3994          * On ValleyView, the GUnit needs to signal the GT
3995          * when flip and other events complete.  So enable
3996          * all the GUnit->GT interrupts here
3997          */
3998         I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3999                    PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
4000                    SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
4001                    PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
4002                    PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
4003                    SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
4004                    PLANEA_FLIPDONE_INT_EN);
4005
4006         /*
4007          * WaDisableVLVClockGating_VBIIssue
4008          * Disable clock gating on th GCFG unit to prevent a delay
4009          * in the reporting of vblank events.
4010          */
4011         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
4012 }
4013
4014 static void g4x_init_clock_gating(struct drm_device *dev)
4015 {
4016         struct drm_i915_private *dev_priv = dev->dev_private;
4017         uint32_t dspclk_gate;
4018
4019         I915_WRITE(RENCLK_GATE_D1, 0);
4020         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4021                    GS_UNIT_CLOCK_GATE_DISABLE |
4022                    CL_UNIT_CLOCK_GATE_DISABLE);
4023         I915_WRITE(RAMCLK_GATE_D, 0);
4024         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4025                 OVRUNIT_CLOCK_GATE_DISABLE |
4026                 OVCUNIT_CLOCK_GATE_DISABLE;
4027         if (IS_GM45(dev))
4028                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4029         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4030
4031         /* WaDisableRenderCachePipelinedFlush */
4032         I915_WRITE(CACHE_MODE_0,
4033                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4034 }
4035
4036 static void crestline_init_clock_gating(struct drm_device *dev)
4037 {
4038         struct drm_i915_private *dev_priv = dev->dev_private;
4039
4040         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4041         I915_WRITE(RENCLK_GATE_D2, 0);
4042         I915_WRITE(DSPCLK_GATE_D, 0);
4043         I915_WRITE(RAMCLK_GATE_D, 0);
4044         I915_WRITE16(DEUC, 0);
4045 }
4046
4047 static void broadwater_init_clock_gating(struct drm_device *dev)
4048 {
4049         struct drm_i915_private *dev_priv = dev->dev_private;
4050
4051         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4052                    I965_RCC_CLOCK_GATE_DISABLE |
4053                    I965_RCPB_CLOCK_GATE_DISABLE |
4054                    I965_ISC_CLOCK_GATE_DISABLE |
4055                    I965_FBC_CLOCK_GATE_DISABLE);
4056         I915_WRITE(RENCLK_GATE_D2, 0);
4057 }
4058
4059 static void gen3_init_clock_gating(struct drm_device *dev)
4060 {
4061         struct drm_i915_private *dev_priv = dev->dev_private;
4062         u32 dstate = I915_READ(D_STATE);
4063
4064         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4065                 DSTATE_DOT_CLOCK_GATING;
4066         I915_WRITE(D_STATE, dstate);
4067
4068         if (IS_PINEVIEW(dev))
4069                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4070
4071         /* IIR "flip pending" means done if this bit is set */
4072         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4073 }
4074
4075 static void i85x_init_clock_gating(struct drm_device *dev)
4076 {
4077         struct drm_i915_private *dev_priv = dev->dev_private;
4078
4079         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4080 }
4081
4082 static void i830_init_clock_gating(struct drm_device *dev)
4083 {
4084         struct drm_i915_private *dev_priv = dev->dev_private;
4085
4086         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4087 }
4088
4089 void intel_init_clock_gating(struct drm_device *dev)
4090 {
4091         struct drm_i915_private *dev_priv = dev->dev_private;
4092
4093         dev_priv->display.init_clock_gating(dev);
4094 }
4095
4096 /* Starting with Haswell, we have different power wells for
4097  * different parts of the GPU. This attempts to enable them all.
4098  */
4099 void intel_init_power_wells(struct drm_device *dev)
4100 {
4101         struct drm_i915_private *dev_priv = dev->dev_private;
4102         unsigned long power_wells[] = {
4103                 HSW_PWR_WELL_CTL1,
4104                 HSW_PWR_WELL_CTL2,
4105                 HSW_PWR_WELL_CTL4
4106         };
4107         int i;
4108
4109         if (!IS_HASWELL(dev))
4110                 return;
4111
4112         DRM_LOCK(dev);
4113
4114         for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
4115                 int well = I915_READ(power_wells[i]);
4116
4117                 if ((well & HSW_PWR_WELL_STATE) == 0) {
4118                         I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
4119                         if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
4120                                 DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
4121                 }
4122         }
4123
4124         DRM_UNLOCK(dev);
4125 }
4126
4127 /* Set up chip specific power management-related functions */
4128 void intel_init_pm(struct drm_device *dev)
4129 {
4130         struct drm_i915_private *dev_priv = dev->dev_private;
4131
4132         if (I915_HAS_FBC(dev)) {
4133                 if (HAS_PCH_SPLIT(dev)) {
4134                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4135                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
4136                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
4137                 } else if (IS_GM45(dev)) {
4138                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4139                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4140                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4141                 } else if (IS_CRESTLINE(dev)) {
4142                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4143                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4144                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4145                 }
4146                 /* 855GM needs testing */
4147         }
4148
4149         /* For cxsr */
4150         if (IS_PINEVIEW(dev))
4151                 i915_pineview_get_mem_freq(dev);
4152         else if (IS_GEN5(dev))
4153                 i915_ironlake_get_mem_freq(dev);
4154
4155         /* For FIFO watermark updates */
4156         if (HAS_PCH_SPLIT(dev)) {
4157                 if (IS_GEN5(dev)) {
4158                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4159                                 dev_priv->display.update_wm = ironlake_update_wm;
4160                         else {
4161                                 DRM_DEBUG_KMS("Failed to get proper latency. "
4162                                               "Disable CxSR\n");
4163                                 dev_priv->display.update_wm = NULL;
4164                         }
4165                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4166                 } else if (IS_GEN6(dev)) {
4167                         if (SNB_READ_WM0_LATENCY()) {
4168                                 dev_priv->display.update_wm = sandybridge_update_wm;
4169                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4170                         } else {
4171                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4172                                               "Disable CxSR\n");
4173                                 dev_priv->display.update_wm = NULL;
4174                         }
4175                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4176                 } else if (IS_IVYBRIDGE(dev)) {
4177                         /* FIXME: detect B0+ stepping and use auto training */
4178                         if (SNB_READ_WM0_LATENCY()) {
4179                                 dev_priv->display.update_wm = ivybridge_update_wm;
4180                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4181                         } else {
4182                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4183                                               "Disable CxSR\n");
4184                                 dev_priv->display.update_wm = NULL;
4185                         }
4186                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4187                 } else if (IS_HASWELL(dev)) {
4188                         if (SNB_READ_WM0_LATENCY()) {
4189                                 dev_priv->display.update_wm = sandybridge_update_wm;
4190                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4191                                 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4192                         } else {
4193                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4194                                               "Disable CxSR\n");
4195                                 dev_priv->display.update_wm = NULL;
4196                         }
4197                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4198                 } else
4199                         dev_priv->display.update_wm = NULL;
4200         } else if (IS_VALLEYVIEW(dev)) {
4201                 dev_priv->display.update_wm = valleyview_update_wm;
4202                 dev_priv->display.init_clock_gating =
4203                         valleyview_init_clock_gating;
4204         } else if (IS_PINEVIEW(dev)) {
4205                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4206                                             dev_priv->is_ddr3,
4207                                             dev_priv->fsb_freq,
4208                                             dev_priv->mem_freq)) {
4209                         DRM_INFO("failed to find known CxSR latency "
4210                                  "(found ddr%s fsb freq %d, mem freq %d), "
4211                                  "disabling CxSR\n",
4212                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
4213                                  dev_priv->fsb_freq, dev_priv->mem_freq);
4214                         /* Disable CxSR and never update its watermark again */
4215                         pineview_disable_cxsr(dev);
4216                         dev_priv->display.update_wm = NULL;
4217                 } else
4218                         dev_priv->display.update_wm = pineview_update_wm;
4219                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4220         } else if (IS_G4X(dev)) {
4221                 dev_priv->display.update_wm = g4x_update_wm;
4222                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4223         } else if (IS_GEN4(dev)) {
4224                 dev_priv->display.update_wm = i965_update_wm;
4225                 if (IS_CRESTLINE(dev))
4226                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4227                 else if (IS_BROADWATER(dev))
4228                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4229         } else if (IS_GEN3(dev)) {
4230                 dev_priv->display.update_wm = i9xx_update_wm;
4231                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4232                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4233         } else if (IS_I865G(dev)) {
4234                 dev_priv->display.update_wm = i830_update_wm;
4235                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4236                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4237         } else if (IS_I85X(dev)) {
4238                 dev_priv->display.update_wm = i9xx_update_wm;
4239                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4240                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4241         } else {
4242                 dev_priv->display.update_wm = i830_update_wm;
4243                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4244                 if (IS_845G(dev))
4245                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4246                 else
4247                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4248         }
4249 }
4250
4251 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4252 {
4253         u32 gt_thread_status_mask;
4254
4255         if (IS_HASWELL(dev_priv->dev))
4256                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4257         else
4258                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4259
4260         /* w/a for a sporadic read returning 0 by waiting for the GT
4261          * thread to wake up.
4262          */
4263         if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4264                 DRM_ERROR("GT thread status wait timed out\n");
4265 }
4266
4267 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4268 {
4269         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4270         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4271 }
4272
4273 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4274 {
4275         u32 forcewake_ack;
4276
4277         if (IS_HASWELL(dev_priv->dev))
4278                 forcewake_ack = FORCEWAKE_ACK_HSW;
4279         else
4280                 forcewake_ack = FORCEWAKE_ACK;
4281
4282         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4283                             FORCEWAKE_ACK_TIMEOUT_MS))
4284                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4285
4286         I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
4287         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4288
4289         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4290                             FORCEWAKE_ACK_TIMEOUT_MS))
4291                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4292
4293         __gen6_gt_wait_for_thread_c0(dev_priv);
4294 }
4295
4296 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4297 {
4298         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4299         /* something from same cacheline, but !FORCEWAKE_MT */
4300         POSTING_READ(ECOBUS);
4301 }
4302
4303 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4304 {
4305         u32 forcewake_ack;
4306
4307         if (IS_HASWELL(dev_priv->dev))
4308                 forcewake_ack = FORCEWAKE_ACK_HSW;
4309         else
4310                 forcewake_ack = FORCEWAKE_MT_ACK;
4311
4312         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4313                             FORCEWAKE_ACK_TIMEOUT_MS))
4314                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4315
4316         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4317         /* something from same cacheline, but !FORCEWAKE_MT */
4318         POSTING_READ(ECOBUS);
4319
4320         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4321                             FORCEWAKE_ACK_TIMEOUT_MS))
4322                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4323
4324         __gen6_gt_wait_for_thread_c0(dev_priv);
4325 }
4326
4327 /*
4328  * Generally this is called implicitly by the register read function. However,
4329  * if some sequence requires the GT to not power down then this function should
4330  * be called at the beginning of the sequence followed by a call to
4331  * gen6_gt_force_wake_put() at the end of the sequence.
4332  */
4333 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4334 {
4335
4336         mtx_lock(&dev_priv->gt_lock);
4337         if (dev_priv->forcewake_count++ == 0)
4338                 dev_priv->gt.force_wake_get(dev_priv);
4339         mtx_unlock(&dev_priv->gt_lock);
4340 }
4341
4342 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4343 {
4344         u32 gtfifodbg;
4345         gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4346         if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4347              "MMIO read or write has been dropped %x\n", gtfifodbg))
4348                 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4349 }
4350
4351 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4352 {
4353         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4354         /* something from same cacheline, but !FORCEWAKE */
4355         POSTING_READ(ECOBUS);
4356         gen6_gt_check_fifodbg(dev_priv);
4357 }
4358
4359 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4360 {
4361         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4362         /* something from same cacheline, but !FORCEWAKE_MT */
4363         POSTING_READ(ECOBUS);
4364         gen6_gt_check_fifodbg(dev_priv);
4365 }
4366
4367 /*
4368  * see gen6_gt_force_wake_get()
4369  */
4370 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4371 {
4372
4373         mtx_lock(&dev_priv->gt_lock);
4374         if (--dev_priv->forcewake_count == 0)
4375                 dev_priv->gt.force_wake_put(dev_priv);
4376         mtx_unlock(&dev_priv->gt_lock);
4377 }
4378
4379 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4380 {
4381         int ret = 0;
4382
4383         if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4384                 int loop = 500;
4385                 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4386                 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4387                         udelay(10);
4388                         fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4389                 }
4390                 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4391                         ++ret;
4392                 dev_priv->gt_fifo_count = fifo;
4393         }
4394         dev_priv->gt_fifo_count--;
4395
4396         return ret;
4397 }
4398
4399 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4400 {
4401         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4402         /* something from same cacheline, but !FORCEWAKE_VLV */
4403         POSTING_READ(FORCEWAKE_ACK_VLV);
4404 }
4405
4406 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4407 {
4408         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4409                             FORCEWAKE_ACK_TIMEOUT_MS))
4410                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4411
4412         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4413
4414         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4415                             FORCEWAKE_ACK_TIMEOUT_MS))
4416                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4417
4418         __gen6_gt_wait_for_thread_c0(dev_priv);
4419 }
4420
4421 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4422 {
4423         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4424         /* something from same cacheline, but !FORCEWAKE_VLV */
4425         POSTING_READ(FORCEWAKE_ACK_VLV);
4426         gen6_gt_check_fifodbg(dev_priv);
4427 }
4428
4429 void intel_gt_reset(struct drm_device *dev)
4430 {
4431         struct drm_i915_private *dev_priv = dev->dev_private;
4432
4433         if (IS_VALLEYVIEW(dev)) {
4434                 vlv_force_wake_reset(dev_priv);
4435         } else if (INTEL_INFO(dev)->gen >= 6) {
4436                 __gen6_gt_force_wake_reset(dev_priv);
4437                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4438                         __gen6_gt_force_wake_mt_reset(dev_priv);
4439         }
4440 }
4441
4442 void intel_gt_init(struct drm_device *dev)
4443 {
4444         struct drm_i915_private *dev_priv = dev->dev_private;
4445
4446         mtx_init(&dev_priv->gt_lock, "i915_gt_lock", NULL, MTX_DEF);
4447
4448         intel_gt_reset(dev);
4449
4450         if (IS_VALLEYVIEW(dev)) {
4451                 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4452                 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4453         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4454                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4455                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4456         } else if (IS_GEN6(dev)) {
4457                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4458                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4459         }
4460         TIMEOUT_TASK_INIT(dev_priv->wq, &dev_priv->rps.delayed_resume_work, 0,
4461             intel_gen6_powersave_work, dev_priv);
4462 }
4463
4464 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4465 {
4466         sx_assert(&dev_priv->rps.hw_lock, SA_XLOCKED);
4467
4468         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4469                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4470                 return -EAGAIN;
4471         }
4472
4473         I915_WRITE(GEN6_PCODE_DATA, *val);
4474         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4475
4476         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4477                      500)) {
4478                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4479                 return -ETIMEDOUT;
4480         }
4481
4482         *val = I915_READ(GEN6_PCODE_DATA);
4483         I915_WRITE(GEN6_PCODE_DATA, 0);
4484
4485         return 0;
4486 }
4487
4488 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4489 {
4490         sx_assert(&dev_priv->rps.hw_lock, SA_XLOCKED);
4491
4492         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4493                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4494                 return -EAGAIN;
4495         }
4496
4497         I915_WRITE(GEN6_PCODE_DATA, val);
4498         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4499
4500         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4501                      500)) {
4502                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4503                 return -ETIMEDOUT;
4504         }
4505
4506         I915_WRITE(GEN6_PCODE_DATA, 0);
4507
4508         return 0;
4509 }