]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/drm2/i915/intel_ringbuffer.c
Revert drm2 removal.
[FreeBSD/FreeBSD.git] / sys / dev / drm2 / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32
33 #include <dev/drm2/drmP.h>
34 #include <dev/drm2/i915/i915_drv.h>
35 #include <dev/drm2/i915/i915_drm.h>
36 #include <dev/drm2/i915/intel_drv.h>
37 #include <sys/sched.h>
38 #include <sys/sf_buf.h>
39
40 /*
41  * 965+ support PIPE_CONTROL commands, which provide finer grained control
42  * over cache flushing.
43  */
44 struct pipe_control {
45         struct drm_i915_gem_object *obj;
46         volatile u32 *cpu_page;
47         u32 gtt_offset;
48 };
49
50 static inline int ring_space(struct intel_ring_buffer *ring)
51 {
52         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
53         if (space < 0)
54                 space += ring->size;
55         return space;
56 }
57
58 static int
59 gen2_render_ring_flush(struct intel_ring_buffer *ring,
60                        u32      invalidate_domains,
61                        u32      flush_domains)
62 {
63         u32 cmd;
64         int ret;
65
66         cmd = MI_FLUSH;
67         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
68                 cmd |= MI_NO_WRITE_FLUSH;
69
70         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
71                 cmd |= MI_READ_FLUSH;
72
73         ret = intel_ring_begin(ring, 2);
74         if (ret)
75                 return ret;
76
77         intel_ring_emit(ring, cmd);
78         intel_ring_emit(ring, MI_NOOP);
79         intel_ring_advance(ring);
80
81         return 0;
82 }
83
84 static int
85 gen4_render_ring_flush(struct intel_ring_buffer *ring,
86                        u32      invalidate_domains,
87                        u32      flush_domains)
88 {
89         struct drm_device *dev = ring->dev;
90         u32 cmd;
91         int ret;
92
93         /*
94          * read/write caches:
95          *
96          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
97          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
98          * also flushed at 2d versus 3d pipeline switches.
99          *
100          * read-only caches:
101          *
102          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
103          * MI_READ_FLUSH is set, and is always flushed on 965.
104          *
105          * I915_GEM_DOMAIN_COMMAND may not exist?
106          *
107          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
108          * invalidated when MI_EXE_FLUSH is set.
109          *
110          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
111          * invalidated with every MI_FLUSH.
112          *
113          * TLBs:
114          *
115          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
116          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
117          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
118          * are flushed at any MI_FLUSH.
119          */
120
121         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
122         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
123                 cmd &= ~MI_NO_WRITE_FLUSH;
124         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
125                 cmd |= MI_EXE_FLUSH;
126
127         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
128             (IS_G4X(dev) || IS_GEN5(dev)))
129                 cmd |= MI_INVALIDATE_ISP;
130
131         ret = intel_ring_begin(ring, 2);
132         if (ret)
133                 return ret;
134
135         intel_ring_emit(ring, cmd);
136         intel_ring_emit(ring, MI_NOOP);
137         intel_ring_advance(ring);
138
139         return 0;
140 }
141
142 /**
143  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
144  * implementing two workarounds on gen6.  From section 1.4.7.1
145  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
146  *
147  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
148  * produced by non-pipelined state commands), software needs to first
149  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
150  * 0.
151  *
152  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
153  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
154  *
155  * And the workaround for these two requires this workaround first:
156  *
157  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
158  * BEFORE the pipe-control with a post-sync op and no write-cache
159  * flushes.
160  *
161  * And this last workaround is tricky because of the requirements on
162  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
163  * volume 2 part 1:
164  *
165  *     "1 of the following must also be set:
166  *      - Render Target Cache Flush Enable ([12] of DW1)
167  *      - Depth Cache Flush Enable ([0] of DW1)
168  *      - Stall at Pixel Scoreboard ([1] of DW1)
169  *      - Depth Stall ([13] of DW1)
170  *      - Post-Sync Operation ([13] of DW1)
171  *      - Notify Enable ([8] of DW1)"
172  *
173  * The cache flushes require the workaround flush that triggered this
174  * one, so we can't use it.  Depth stall would trigger the same.
175  * Post-sync nonzero is what triggered this second workaround, so we
176  * can't use that one either.  Notify enable is IRQs, which aren't
177  * really our business.  That leaves only stall at scoreboard.
178  */
179 static int
180 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
181 {
182         struct pipe_control *pc = ring->private;
183         u32 scratch_addr = pc->gtt_offset + 128;
184         int ret;
185
186
187         ret = intel_ring_begin(ring, 6);
188         if (ret)
189                 return ret;
190
191         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
192         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
193                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
194         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
195         intel_ring_emit(ring, 0); /* low dword */
196         intel_ring_emit(ring, 0); /* high dword */
197         intel_ring_emit(ring, MI_NOOP);
198         intel_ring_advance(ring);
199
200         ret = intel_ring_begin(ring, 6);
201         if (ret)
202                 return ret;
203
204         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
205         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
206         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
207         intel_ring_emit(ring, 0);
208         intel_ring_emit(ring, 0);
209         intel_ring_emit(ring, MI_NOOP);
210         intel_ring_advance(ring);
211
212         return 0;
213 }
214
215 static int
216 gen6_render_ring_flush(struct intel_ring_buffer *ring,
217                          u32 invalidate_domains, u32 flush_domains)
218 {
219         u32 flags = 0;
220         struct pipe_control *pc = ring->private;
221         u32 scratch_addr = pc->gtt_offset + 128;
222         int ret;
223
224         /* Force SNB workarounds for PIPE_CONTROL flushes */
225         ret = intel_emit_post_sync_nonzero_flush(ring);
226         if (ret)
227                 return ret;
228
229         /* Just flush everything.  Experiments have shown that reducing the
230          * number of bits based on the write domains has little performance
231          * impact.
232          */
233         if (flush_domains) {
234                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
235                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
236                 /*
237                  * Ensure that any following seqno writes only happen
238                  * when the render cache is indeed flushed.
239                  */
240                 flags |= PIPE_CONTROL_CS_STALL;
241         }
242         if (invalidate_domains) {
243                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
244                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
245                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
246                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
247                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
248                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
249                 /*
250                  * TLB invalidate requires a post-sync write.
251                  */
252                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
253         }
254
255         ret = intel_ring_begin(ring, 4);
256         if (ret)
257                 return ret;
258
259         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
260         intel_ring_emit(ring, flags);
261         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
262         intel_ring_emit(ring, 0);
263         intel_ring_advance(ring);
264
265         return 0;
266 }
267
268 static int
269 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
270 {
271         int ret;
272
273         ret = intel_ring_begin(ring, 4);
274         if (ret)
275                 return ret;
276
277         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
278         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
279                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
280         intel_ring_emit(ring, 0);
281         intel_ring_emit(ring, 0);
282         intel_ring_advance(ring);
283
284         return 0;
285 }
286
287 static int
288 gen7_render_ring_flush(struct intel_ring_buffer *ring,
289                        u32 invalidate_domains, u32 flush_domains)
290 {
291         u32 flags = 0;
292         struct pipe_control *pc = ring->private;
293         u32 scratch_addr = pc->gtt_offset + 128;
294         int ret;
295
296         /*
297          * Ensure that any following seqno writes only happen when the render
298          * cache is indeed flushed.
299          *
300          * Workaround: 4th PIPE_CONTROL command (except the ones with only
301          * read-cache invalidate bits set) must have the CS_STALL bit set. We
302          * don't try to be clever and just set it unconditionally.
303          */
304         flags |= PIPE_CONTROL_CS_STALL;
305
306         /* Just flush everything.  Experiments have shown that reducing the
307          * number of bits based on the write domains has little performance
308          * impact.
309          */
310         if (flush_domains) {
311                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
312                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
313         }
314         if (invalidate_domains) {
315                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
316                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
317                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
318                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
319                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
320                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
321                 /*
322                  * TLB invalidate requires a post-sync write.
323                  */
324                 flags |= PIPE_CONTROL_QW_WRITE;
325
326                 /* Workaround: we must issue a pipe_control with CS-stall bit
327                  * set before a pipe_control command that has the state cache
328                  * invalidate bit set. */
329                 gen7_render_ring_cs_stall_wa(ring);
330         }
331
332         ret = intel_ring_begin(ring, 4);
333         if (ret)
334                 return ret;
335
336         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
337         intel_ring_emit(ring, flags);
338         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
339         intel_ring_emit(ring, 0);
340         intel_ring_advance(ring);
341
342         return 0;
343 }
344
345 static void ring_write_tail(struct intel_ring_buffer *ring,
346                             u32 value)
347 {
348         drm_i915_private_t *dev_priv = ring->dev->dev_private;
349         I915_WRITE_TAIL(ring, value);
350 }
351
352 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
353 {
354         drm_i915_private_t *dev_priv = ring->dev->dev_private;
355         u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
356                         RING_ACTHD(ring->mmio_base) : ACTHD;
357
358         return I915_READ(acthd_reg);
359 }
360
361 static int init_ring_common(struct intel_ring_buffer *ring)
362 {
363         struct drm_device *dev = ring->dev;
364         drm_i915_private_t *dev_priv = dev->dev_private;
365         struct drm_i915_gem_object *obj = ring->obj;
366         int ret = 0;
367         u32 head;
368
369         if (HAS_FORCE_WAKE(dev))
370                 gen6_gt_force_wake_get(dev_priv);
371
372         /* Stop the ring if it's running. */
373         I915_WRITE_CTL(ring, 0);
374         I915_WRITE_HEAD(ring, 0);
375         ring->write_tail(ring, 0);
376
377         head = I915_READ_HEAD(ring) & HEAD_ADDR;
378
379         /* G45 ring initialization fails to reset head to zero */
380         if (head != 0) {
381                 DRM_DEBUG_KMS("%s head not reset to zero "
382                               "ctl %08x head %08x tail %08x start %08x\n",
383                               ring->name,
384                               I915_READ_CTL(ring),
385                               I915_READ_HEAD(ring),
386                               I915_READ_TAIL(ring),
387                               I915_READ_START(ring));
388
389                 I915_WRITE_HEAD(ring, 0);
390
391                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
392                         DRM_ERROR("failed to set %s head to zero "
393                                   "ctl %08x head %08x tail %08x start %08x\n",
394                                   ring->name,
395                                   I915_READ_CTL(ring),
396                                   I915_READ_HEAD(ring),
397                                   I915_READ_TAIL(ring),
398                                   I915_READ_START(ring));
399                 }
400         }
401
402         /* Initialize the ring. This must happen _after_ we've cleared the ring
403          * registers with the above sequence (the readback of the HEAD registers
404          * also enforces ordering), otherwise the hw might lose the new ring
405          * register values. */
406         I915_WRITE_START(ring, obj->gtt_offset);
407         I915_WRITE_CTL(ring,
408                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
409                         | RING_VALID);
410
411         /* If the head is still not zero, the ring is dead */
412         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
413                      I915_READ_START(ring) == obj->gtt_offset &&
414                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
415                 DRM_ERROR("%s initialization failed "
416                                 "ctl %08x head %08x tail %08x start %08x\n",
417                                 ring->name,
418                                 I915_READ_CTL(ring),
419                                 I915_READ_HEAD(ring),
420                                 I915_READ_TAIL(ring),
421                                 I915_READ_START(ring));
422                 ret = -EIO;
423                 goto out;
424         }
425
426         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
427                 i915_kernel_lost_context(ring->dev);
428         else {
429                 ring->head = I915_READ_HEAD(ring);
430                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
431                 ring->space = ring_space(ring);
432                 ring->last_retired_head = -1;
433         }
434
435 out:
436         if (HAS_FORCE_WAKE(dev))
437                 gen6_gt_force_wake_put(dev_priv);
438
439         return ret;
440 }
441
442 static int
443 init_pipe_control(struct intel_ring_buffer *ring)
444 {
445         struct pipe_control *pc;
446         struct drm_i915_gem_object *obj;
447         int ret;
448
449         if (ring->private)
450                 return 0;
451
452         pc = malloc(sizeof(*pc), DRM_I915_GEM, M_WAITOK);
453         if (!pc)
454                 return -ENOMEM;
455
456         obj = i915_gem_alloc_object(ring->dev, 4096);
457         if (obj == NULL) {
458                 DRM_ERROR("Failed to allocate seqno page\n");
459                 ret = -ENOMEM;
460                 goto err;
461         }
462
463         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
464
465         ret = i915_gem_object_pin(obj, 4096, true, false);
466         if (ret)
467                 goto err_unref;
468
469         pc->gtt_offset = obj->gtt_offset;
470         pc->cpu_page = (uint32_t *)kva_alloc(PAGE_SIZE);
471         if (pc->cpu_page == NULL)
472                 goto err_unpin;
473         pmap_qenter((uintptr_t)pc->cpu_page, &obj->pages[0], 1);
474         pmap_invalidate_cache_range((vm_offset_t)pc->cpu_page,
475             (vm_offset_t)pc->cpu_page + PAGE_SIZE, FALSE);
476
477         pc->obj = obj;
478         ring->private = pc;
479         return 0;
480
481 err_unpin:
482         i915_gem_object_unpin(obj);
483 err_unref:
484         drm_gem_object_unreference(&obj->base);
485 err:
486         free(pc, DRM_I915_GEM);
487         return ret;
488 }
489
490 static void
491 cleanup_pipe_control(struct intel_ring_buffer *ring)
492 {
493         struct pipe_control *pc = ring->private;
494         struct drm_i915_gem_object *obj;
495
496         if (!ring->private)
497                 return;
498
499         obj = pc->obj;
500
501         pmap_qremove((vm_offset_t)pc->cpu_page, 1);
502         kva_free((uintptr_t)pc->cpu_page, PAGE_SIZE);
503         i915_gem_object_unpin(obj);
504         drm_gem_object_unreference(&obj->base);
505
506         free(pc, DRM_I915_GEM);
507         ring->private = NULL;
508 }
509
510 static int init_render_ring(struct intel_ring_buffer *ring)
511 {
512         struct drm_device *dev = ring->dev;
513         struct drm_i915_private *dev_priv = dev->dev_private;
514         int ret = init_ring_common(ring);
515
516         if (INTEL_INFO(dev)->gen > 3)
517                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
518
519         /* We need to disable the AsyncFlip performance optimisations in order
520          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
521          * programmed to '1' on all products.
522          */
523         if (INTEL_INFO(dev)->gen >= 6)
524                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
525
526         /* Required for the hardware to program scanline values for waiting */
527         if (INTEL_INFO(dev)->gen == 6)
528                 I915_WRITE(GFX_MODE,
529                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
530
531         if (IS_GEN7(dev))
532                 I915_WRITE(GFX_MODE_GEN7,
533                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
534                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
535
536         if (INTEL_INFO(dev)->gen >= 5) {
537                 ret = init_pipe_control(ring);
538                 if (ret)
539                         return ret;
540         }
541
542         if (IS_GEN6(dev)) {
543                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
544                  * "If this bit is set, STCunit will have LRA as replacement
545                  *  policy. [...] This bit must be reset.  LRA replacement
546                  *  policy is not supported."
547                  */
548                 I915_WRITE(CACHE_MODE_0,
549                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
550
551                 /* This is not explicitly set for GEN6, so read the register.
552                  * see intel_ring_mi_set_context() for why we care.
553                  * TODO: consider explicitly setting the bit for GEN5
554                  */
555                 ring->itlb_before_ctx_switch =
556                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
557         }
558
559         if (INTEL_INFO(dev)->gen >= 6)
560                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
561
562         if (HAS_L3_GPU_CACHE(dev))
563                 I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
564
565         return ret;
566 }
567
568 static void render_ring_cleanup(struct intel_ring_buffer *ring)
569 {
570         struct drm_device *dev = ring->dev;
571
572         if (!ring->private)
573                 return;
574
575         if (HAS_BROKEN_CS_TLB(dev))
576                 drm_gem_object_unreference(to_gem_object(ring->private));
577
578         cleanup_pipe_control(ring);
579 }
580
581 static void
582 update_mboxes(struct intel_ring_buffer *ring,
583               u32 mmio_offset)
584 {
585         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
586         intel_ring_emit(ring, mmio_offset);
587         intel_ring_emit(ring, ring->outstanding_lazy_request);
588 }
589
590 /**
591  * gen6_add_request - Update the semaphore mailbox registers
592  * 
593  * @ring - ring that is adding a request
594  * @seqno - return seqno stuck into the ring
595  *
596  * Update the mailbox registers in the *other* rings with the current seqno.
597  * This acts like a signal in the canonical semaphore.
598  */
599 static int
600 gen6_add_request(struct intel_ring_buffer *ring)
601 {
602         u32 mbox1_reg;
603         u32 mbox2_reg;
604         int ret;
605
606         ret = intel_ring_begin(ring, 10);
607         if (ret)
608                 return ret;
609
610         mbox1_reg = ring->signal_mbox[0];
611         mbox2_reg = ring->signal_mbox[1];
612
613         update_mboxes(ring, mbox1_reg);
614         update_mboxes(ring, mbox2_reg);
615         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
616         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
617         intel_ring_emit(ring, ring->outstanding_lazy_request);
618         intel_ring_emit(ring, MI_USER_INTERRUPT);
619         intel_ring_advance(ring);
620
621         return 0;
622 }
623
624 /**
625  * intel_ring_sync - sync the waiter to the signaller on seqno
626  *
627  * @waiter - ring that is waiting
628  * @signaller - ring which has, or will signal
629  * @seqno - seqno which the waiter will block on
630  */
631 static int
632 gen6_ring_sync(struct intel_ring_buffer *waiter,
633                struct intel_ring_buffer *signaller,
634                u32 seqno)
635 {
636         int ret;
637         u32 dw1 = MI_SEMAPHORE_MBOX |
638                   MI_SEMAPHORE_COMPARE |
639                   MI_SEMAPHORE_REGISTER;
640
641         /* Throughout all of the GEM code, seqno passed implies our current
642          * seqno is >= the last seqno executed. However for hardware the
643          * comparison is strictly greater than.
644          */
645         seqno -= 1;
646
647         WARN_ON(signaller->semaphore_register[waiter->id] ==
648                 MI_SEMAPHORE_SYNC_INVALID);
649
650         ret = intel_ring_begin(waiter, 4);
651         if (ret)
652                 return ret;
653
654         intel_ring_emit(waiter,
655                         dw1 | signaller->semaphore_register[waiter->id]);
656         intel_ring_emit(waiter, seqno);
657         intel_ring_emit(waiter, 0);
658         intel_ring_emit(waiter, MI_NOOP);
659         intel_ring_advance(waiter);
660
661         return 0;
662 }
663
664 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
665 do {                                                                    \
666         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
667                  PIPE_CONTROL_DEPTH_STALL);                             \
668         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
669         intel_ring_emit(ring__, 0);                                                     \
670         intel_ring_emit(ring__, 0);                                                     \
671 } while (0)
672
673 static int
674 pc_render_add_request(struct intel_ring_buffer *ring)
675 {
676         struct pipe_control *pc = ring->private;
677         u32 scratch_addr = pc->gtt_offset + 128;
678         int ret;
679
680         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
681          * incoherent with writes to memory, i.e. completely fubar,
682          * so we need to use PIPE_NOTIFY instead.
683          *
684          * However, we also need to workaround the qword write
685          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
686          * memory before requesting an interrupt.
687          */
688         ret = intel_ring_begin(ring, 32);
689         if (ret)
690                 return ret;
691
692         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
693                         PIPE_CONTROL_WRITE_FLUSH |
694                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
695         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
696         intel_ring_emit(ring, ring->outstanding_lazy_request);
697         intel_ring_emit(ring, 0);
698         PIPE_CONTROL_FLUSH(ring, scratch_addr);
699         scratch_addr += 128; /* write to separate cachelines */
700         PIPE_CONTROL_FLUSH(ring, scratch_addr);
701         scratch_addr += 128;
702         PIPE_CONTROL_FLUSH(ring, scratch_addr);
703         scratch_addr += 128;
704         PIPE_CONTROL_FLUSH(ring, scratch_addr);
705         scratch_addr += 128;
706         PIPE_CONTROL_FLUSH(ring, scratch_addr);
707         scratch_addr += 128;
708         PIPE_CONTROL_FLUSH(ring, scratch_addr);
709
710         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
711                         PIPE_CONTROL_WRITE_FLUSH |
712                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
713                         PIPE_CONTROL_NOTIFY);
714         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
715         intel_ring_emit(ring, ring->outstanding_lazy_request);
716         intel_ring_emit(ring, 0);
717         intel_ring_advance(ring);
718
719         return 0;
720 }
721
722 static u32
723 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
724 {
725         /* Workaround to force correct ordering between irq and seqno writes on
726          * ivb (and maybe also on snb) by reading from a CS register (like
727          * ACTHD) before reading the status page. */
728         if (!lazy_coherency)
729                 intel_ring_get_active_head(ring);
730         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
731 }
732
733 static u32
734 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
735 {
736         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
737 }
738
739 static u32
740 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
741 {
742         struct pipe_control *pc = ring->private;
743         return pc->cpu_page[0];
744 }
745
746 static bool
747 gen5_ring_get_irq(struct intel_ring_buffer *ring)
748 {
749         struct drm_device *dev = ring->dev;
750         drm_i915_private_t *dev_priv = dev->dev_private;
751
752         if (!dev->irq_enabled)
753                 return false;
754
755         mtx_lock(&dev_priv->irq_lock);
756         if (ring->irq_refcount++ == 0) {
757                 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
758                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
759                 POSTING_READ(GTIMR);
760         }
761         mtx_unlock(&dev_priv->irq_lock);
762
763         return true;
764 }
765
766 static void
767 gen5_ring_put_irq(struct intel_ring_buffer *ring)
768 {
769         struct drm_device *dev = ring->dev;
770         drm_i915_private_t *dev_priv = dev->dev_private;
771
772         mtx_lock(&dev_priv->irq_lock);
773         if (--ring->irq_refcount == 0) {
774                 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
775                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
776                 POSTING_READ(GTIMR);
777         }
778         mtx_unlock(&dev_priv->irq_lock);
779 }
780
781 static bool
782 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
783 {
784         struct drm_device *dev = ring->dev;
785         drm_i915_private_t *dev_priv = dev->dev_private;
786
787         if (!dev->irq_enabled)
788                 return false;
789
790         mtx_lock(&dev_priv->irq_lock);
791         if (ring->irq_refcount++ == 0) {
792                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
793                 I915_WRITE(IMR, dev_priv->irq_mask);
794                 POSTING_READ(IMR);
795         }
796         mtx_unlock(&dev_priv->irq_lock);
797
798         return true;
799 }
800
801 static void
802 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
803 {
804         struct drm_device *dev = ring->dev;
805         drm_i915_private_t *dev_priv = dev->dev_private;
806
807         mtx_lock(&dev_priv->irq_lock);
808         if (--ring->irq_refcount == 0) {
809                 dev_priv->irq_mask |= ring->irq_enable_mask;
810                 I915_WRITE(IMR, dev_priv->irq_mask);
811                 POSTING_READ(IMR);
812         }
813         mtx_unlock(&dev_priv->irq_lock);
814 }
815
816 static bool
817 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
818 {
819         struct drm_device *dev = ring->dev;
820         drm_i915_private_t *dev_priv = dev->dev_private;
821
822         if (!dev->irq_enabled)
823                 return false;
824
825         mtx_lock(&dev_priv->irq_lock);
826         if (ring->irq_refcount++ == 0) {
827                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
828                 I915_WRITE16(IMR, dev_priv->irq_mask);
829                 POSTING_READ16(IMR);
830         }
831         mtx_unlock(&dev_priv->irq_lock);
832
833         return true;
834 }
835
836 static void
837 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
838 {
839         struct drm_device *dev = ring->dev;
840         drm_i915_private_t *dev_priv = dev->dev_private;
841
842         mtx_lock(&dev_priv->irq_lock);
843         if (--ring->irq_refcount == 0) {
844                 dev_priv->irq_mask |= ring->irq_enable_mask;
845                 I915_WRITE16(IMR, dev_priv->irq_mask);
846                 POSTING_READ16(IMR);
847         }
848         mtx_unlock(&dev_priv->irq_lock);
849 }
850
851 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
852 {
853         struct drm_device *dev = ring->dev;
854         drm_i915_private_t *dev_priv = ring->dev->dev_private;
855         u32 mmio = 0;
856
857         /* The ring status page addresses are no longer next to the rest of
858          * the ring registers as of gen7.
859          */
860         if (IS_GEN7(dev)) {
861                 switch (ring->id) {
862                 case RCS:
863                         mmio = RENDER_HWS_PGA_GEN7;
864                         break;
865                 case BCS:
866                         mmio = BLT_HWS_PGA_GEN7;
867                         break;
868                 case VCS:
869                         mmio = BSD_HWS_PGA_GEN7;
870                         break;
871                 }
872         } else if (IS_GEN6(ring->dev)) {
873                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
874         } else {
875                 mmio = RING_HWS_PGA(ring->mmio_base);
876         }
877
878         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
879         POSTING_READ(mmio);
880 }
881
882 static int
883 bsd_ring_flush(struct intel_ring_buffer *ring,
884                u32     invalidate_domains,
885                u32     flush_domains)
886 {
887         int ret;
888
889         ret = intel_ring_begin(ring, 2);
890         if (ret)
891                 return ret;
892
893         intel_ring_emit(ring, MI_FLUSH);
894         intel_ring_emit(ring, MI_NOOP);
895         intel_ring_advance(ring);
896         return 0;
897 }
898
899 static int
900 i9xx_add_request(struct intel_ring_buffer *ring)
901 {
902         int ret;
903
904         ret = intel_ring_begin(ring, 4);
905         if (ret)
906                 return ret;
907
908         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
909         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
910         intel_ring_emit(ring, ring->outstanding_lazy_request);
911         intel_ring_emit(ring, MI_USER_INTERRUPT);
912         intel_ring_advance(ring);
913
914         return 0;
915 }
916
917 static bool
918 gen6_ring_get_irq(struct intel_ring_buffer *ring)
919 {
920         struct drm_device *dev = ring->dev;
921         drm_i915_private_t *dev_priv = dev->dev_private;
922
923         if (!dev->irq_enabled)
924                return false;
925
926         /* It looks like we need to prevent the gt from suspending while waiting
927          * for an notifiy irq, otherwise irqs seem to get lost on at least the
928          * blt/bsd rings on ivb. */
929         gen6_gt_force_wake_get(dev_priv);
930
931         mtx_lock(&dev_priv->irq_lock);
932         if (ring->irq_refcount++ == 0) {
933                 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
934                         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask |
935                                                 GEN6_RENDER_L3_PARITY_ERROR));
936                 else
937                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
938                 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
939                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
940                 POSTING_READ(GTIMR);
941         }
942         mtx_unlock(&dev_priv->irq_lock);
943
944         return true;
945 }
946
947 static void
948 gen6_ring_put_irq(struct intel_ring_buffer *ring)
949 {
950         struct drm_device *dev = ring->dev;
951         drm_i915_private_t *dev_priv = dev->dev_private;
952
953         mtx_lock(&dev_priv->irq_lock);
954         if (--ring->irq_refcount == 0) {
955                 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
956                         I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
957                 else
958                         I915_WRITE_IMR(ring, ~0);
959                 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
960                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
961                 POSTING_READ(GTIMR);
962         }
963         mtx_unlock(&dev_priv->irq_lock);
964
965         gen6_gt_force_wake_put(dev_priv);
966 }
967
968 static int
969 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
970                          u32 offset, u32 length,
971                          unsigned flags)
972 {
973         int ret;
974
975         ret = intel_ring_begin(ring, 2);
976         if (ret)
977                 return ret;
978
979         intel_ring_emit(ring,
980                         MI_BATCH_BUFFER_START |
981                         MI_BATCH_GTT |
982                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
983         intel_ring_emit(ring, offset);
984         intel_ring_advance(ring);
985
986         return 0;
987 }
988
989 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
990 #define I830_BATCH_LIMIT (256*1024)
991 static int
992 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
993                                 u32 offset, u32 len,
994                                 unsigned flags)
995 {
996         int ret;
997
998         if (flags & I915_DISPATCH_PINNED) {
999                 ret = intel_ring_begin(ring, 4);
1000                 if (ret)
1001                         return ret;
1002
1003                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1004                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1005                 intel_ring_emit(ring, offset + len - 8);
1006                 intel_ring_emit(ring, MI_NOOP);
1007                 intel_ring_advance(ring);
1008         } else {
1009                 struct drm_i915_gem_object *obj = ring->private;
1010                 u32 cs_offset = obj->gtt_offset;
1011
1012                 if (len > I830_BATCH_LIMIT)
1013                         return -ENOSPC;
1014
1015                 ret = intel_ring_begin(ring, 9+3);
1016                 if (ret)
1017                         return ret;
1018                 /* Blit the batch (which has now all relocs applied) to the stable batch
1019                  * scratch bo area (so that the CS never stumbles over its tlb
1020                  * invalidation bug) ... */
1021                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1022                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1023                                 XY_SRC_COPY_BLT_WRITE_RGB);
1024                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1025                 intel_ring_emit(ring, 0);
1026                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1027                 intel_ring_emit(ring, cs_offset);
1028                 intel_ring_emit(ring, 0);
1029                 intel_ring_emit(ring, 4096);
1030                 intel_ring_emit(ring, offset);
1031                 intel_ring_emit(ring, MI_FLUSH);
1032
1033                 /* ... and execute it. */
1034                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1035                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1036                 intel_ring_emit(ring, cs_offset + len - 8);
1037                 intel_ring_advance(ring);
1038         }
1039
1040         return 0;
1041 }
1042
1043 static int
1044 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1045                          u32 offset, u32 len,
1046                          unsigned flags)
1047 {
1048         int ret;
1049
1050         ret = intel_ring_begin(ring, 2);
1051         if (ret)
1052                 return ret;
1053
1054         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1055         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1056         intel_ring_advance(ring);
1057
1058         return 0;
1059 }
1060
1061 static void cleanup_status_page(struct intel_ring_buffer *ring)
1062 {
1063         struct drm_i915_gem_object *obj;
1064
1065         obj = ring->status_page.obj;
1066         if (obj == NULL)
1067                 return;
1068
1069         pmap_qremove((vm_offset_t)ring->status_page.page_addr, 1);
1070         kva_free((vm_offset_t)ring->status_page.page_addr,
1071             PAGE_SIZE);
1072         i915_gem_object_unpin(obj);
1073         drm_gem_object_unreference(&obj->base);
1074         ring->status_page.obj = NULL;
1075 }
1076
1077 static int init_status_page(struct intel_ring_buffer *ring)
1078 {
1079         struct drm_device *dev = ring->dev;
1080         struct drm_i915_gem_object *obj;
1081         int ret;
1082
1083         obj = i915_gem_alloc_object(dev, 4096);
1084         if (obj == NULL) {
1085                 DRM_ERROR("Failed to allocate status page\n");
1086                 ret = -ENOMEM;
1087                 goto err;
1088         }
1089
1090         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1091
1092         ret = i915_gem_object_pin(obj, 4096, true, false);
1093         if (ret != 0) {
1094                 goto err_unref;
1095         }
1096
1097         ring->status_page.gfx_addr = obj->gtt_offset;
1098         ring->status_page.page_addr = (void *)kva_alloc(PAGE_SIZE);
1099         if (ring->status_page.page_addr == NULL) {
1100                 ret = -ENOMEM;
1101                 goto err_unpin;
1102         }
1103         pmap_qenter((vm_offset_t)ring->status_page.page_addr, &obj->pages[0],
1104             1);
1105         pmap_invalidate_cache_range((vm_offset_t)ring->status_page.page_addr,
1106             (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE, FALSE);
1107         ring->status_page.obj = obj;
1108         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1109
1110         intel_ring_setup_status_page(ring);
1111         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1112                         ring->name, ring->status_page.gfx_addr);
1113
1114         return 0;
1115
1116 err_unpin:
1117         i915_gem_object_unpin(obj);
1118 err_unref:
1119         drm_gem_object_unreference(&obj->base);
1120 err:
1121         return ret;
1122 }
1123
1124 static int init_phys_hws_pga(struct intel_ring_buffer *ring)
1125 {
1126         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1127         u32 addr;
1128
1129         if (!dev_priv->status_page_dmah) {
1130                 dev_priv->status_page_dmah =
1131                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE, BUS_SPACE_MAXADDR);
1132                 if (!dev_priv->status_page_dmah)
1133                         return -ENOMEM;
1134         }
1135
1136         addr = dev_priv->status_page_dmah->busaddr;
1137         if (INTEL_INFO(ring->dev)->gen >= 4)
1138                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
1139         I915_WRITE(HWS_PGA, addr);
1140
1141         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1142         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1143
1144         return 0;
1145 }
1146
1147 static int intel_init_ring_buffer(struct drm_device *dev,
1148                                   struct intel_ring_buffer *ring)
1149 {
1150         struct drm_i915_gem_object *obj;
1151         struct drm_i915_private *dev_priv = dev->dev_private;
1152         int ret;
1153
1154         ring->dev = dev;
1155         INIT_LIST_HEAD(&ring->active_list);
1156         INIT_LIST_HEAD(&ring->request_list);
1157         ring->size = 32 * PAGE_SIZE;
1158         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1159
1160 #ifdef __linux__
1161         init_waitqueue_head(&ring->irq_queue);
1162 #endif
1163
1164         if (I915_NEED_GFX_HWS(dev)) {
1165                 ret = init_status_page(ring);
1166                 if (ret)
1167                         return ret;
1168         } else {
1169                 BUG_ON(ring->id != RCS);
1170                 ret = init_phys_hws_pga(ring);
1171                 if (ret)
1172                         return ret;
1173         }
1174
1175         obj = i915_gem_alloc_object(dev, ring->size);
1176         if (obj == NULL) {
1177                 DRM_ERROR("Failed to allocate ringbuffer\n");
1178                 ret = -ENOMEM;
1179                 goto err_hws;
1180         }
1181
1182         ring->obj = obj;
1183
1184         ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
1185         if (ret)
1186                 goto err_unref;
1187
1188         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1189         if (ret)
1190                 goto err_unpin;
1191
1192         ring->virtual_start =
1193                 pmap_mapdev_attr(
1194                     dev_priv->mm.gtt->gma_bus_addr + obj->gtt_offset, ring->size,
1195                     VM_MEMATTR_WRITE_COMBINING);
1196         if (ring->virtual_start == NULL) {
1197                 DRM_ERROR("Failed to map ringbuffer.\n");
1198                 ret = -EINVAL;
1199                 goto err_unpin;
1200         }
1201
1202         ret = ring->init(ring);
1203         if (ret)
1204                 goto err_unmap;
1205
1206         /* Workaround an erratum on the i830 which causes a hang if
1207          * the TAIL pointer points to within the last 2 cachelines
1208          * of the buffer.
1209          */
1210         ring->effective_size = ring->size;
1211         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1212                 ring->effective_size -= 128;
1213
1214         return 0;
1215
1216 err_unmap:
1217         pmap_unmapdev((vm_offset_t)ring->virtual_start, ring->size);
1218 err_unpin:
1219         i915_gem_object_unpin(obj);
1220 err_unref:
1221         drm_gem_object_unreference(&obj->base);
1222         ring->obj = NULL;
1223 err_hws:
1224         cleanup_status_page(ring);
1225         return ret;
1226 }
1227
1228 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1229 {
1230         struct drm_i915_private *dev_priv;
1231         int ret;
1232
1233         if (ring->obj == NULL)
1234                 return;
1235
1236         /* Disable the ring buffer. The ring must be idle at this point */
1237         dev_priv = ring->dev->dev_private;
1238         ret = intel_ring_idle(ring);
1239         if (ret)
1240                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1241                           ring->name, ret);
1242
1243         I915_WRITE_CTL(ring, 0);
1244
1245         pmap_unmapdev((vm_offset_t)ring->virtual_start, ring->size);
1246
1247         i915_gem_object_unpin(ring->obj);
1248         drm_gem_object_unreference(&ring->obj->base);
1249         ring->obj = NULL;
1250
1251         if (ring->cleanup)
1252                 ring->cleanup(ring);
1253
1254         cleanup_status_page(ring);
1255 }
1256
1257 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1258 {
1259         int ret;
1260
1261         ret = i915_wait_seqno(ring, seqno);
1262         if (!ret)
1263                 i915_gem_retire_requests_ring(ring);
1264
1265         return ret;
1266 }
1267
1268 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1269 {
1270         struct drm_i915_gem_request *request;
1271         u32 seqno = 0;
1272         int ret;
1273
1274         i915_gem_retire_requests_ring(ring);
1275
1276         if (ring->last_retired_head != -1) {
1277                 ring->head = ring->last_retired_head;
1278                 ring->last_retired_head = -1;
1279                 ring->space = ring_space(ring);
1280                 if (ring->space >= n)
1281                         return 0;
1282         }
1283
1284         list_for_each_entry(request, &ring->request_list, list) {
1285                 int space;
1286
1287                 if (request->tail == -1)
1288                         continue;
1289
1290                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1291                 if (space < 0)
1292                         space += ring->size;
1293                 if (space >= n) {
1294                         seqno = request->seqno;
1295                         break;
1296                 }
1297
1298                 /* Consume this request in case we need more space than
1299                  * is available and so need to prevent a race between
1300                  * updating last_retired_head and direct reads of
1301                  * I915_RING_HEAD. It also provides a nice sanity check.
1302                  */
1303                 request->tail = -1;
1304         }
1305
1306         if (seqno == 0)
1307                 return -ENOSPC;
1308
1309         ret = intel_ring_wait_seqno(ring, seqno);
1310         if (ret)
1311                 return ret;
1312
1313         if (WARN_ON(ring->last_retired_head == -1))
1314                 return -ENOSPC;
1315
1316         ring->head = ring->last_retired_head;
1317         ring->last_retired_head = -1;
1318         ring->space = ring_space(ring);
1319         if (WARN_ON(ring->space < n))
1320                 return -ENOSPC;
1321
1322         return 0;
1323 }
1324
1325 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1326 {
1327         struct drm_device *dev = ring->dev;
1328         struct drm_i915_private *dev_priv = dev->dev_private;
1329         unsigned long end;
1330         int ret;
1331
1332         ret = intel_ring_wait_request(ring, n);
1333         if (ret != -ENOSPC)
1334                 return ret;
1335
1336         CTR1(KTR_DRM, "ring_wait_begin %s", ring->name);
1337         /* With GEM the hangcheck timer should kick us out of the loop,
1338          * leaving it early runs the risk of corrupting GEM state (due
1339          * to running on almost untested codepaths). But on resume
1340          * timers don't work yet, so prevent a complete hang in that
1341          * case by choosing an insanely large timeout. */
1342         end = jiffies + 60 * HZ;
1343
1344         do {
1345                 ring->head = I915_READ_HEAD(ring);
1346                 ring->space = ring_space(ring);
1347                 if (ring->space >= n) {
1348                         CTR1(KTR_DRM, "ring_wait_end %s", ring->name);
1349                         return 0;
1350                 }
1351
1352                 if (dev->primary->master) {
1353                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1354                         if (master_priv->sarea_priv)
1355                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1356                 }
1357
1358                 DRM_MSLEEP(1);
1359
1360                 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1361                 if (ret) {
1362                         CTR1(KTR_DRM, "ring_wait_end %s wedged", ring->name);
1363                         return ret;
1364                 }
1365         } while (!time_after(jiffies, end));
1366         CTR1(KTR_DRM, "ring_wait_end %s busy", ring->name);
1367         return -EBUSY;
1368 }
1369
1370 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1371 {
1372         uint32_t __iomem *virt;
1373         int rem = ring->size - ring->tail;
1374
1375         if (ring->space < rem) {
1376                 int ret = ring_wait_for_space(ring, rem);
1377                 if (ret)
1378                         return ret;
1379         }
1380
1381         virt = (uint32_t *)((char *)ring->virtual_start + ring->tail);
1382         rem /= 4;
1383         while (rem--)
1384                 iowrite32(MI_NOOP, virt++);
1385
1386         ring->tail = 0;
1387         ring->space = ring_space(ring);
1388
1389         return 0;
1390 }
1391
1392 int intel_ring_idle(struct intel_ring_buffer *ring)
1393 {
1394         u32 seqno;
1395         int ret;
1396
1397         /* We need to add any requests required to flush the objects and ring */
1398         if (ring->outstanding_lazy_request) {
1399                 ret = i915_add_request(ring, NULL, NULL);
1400                 if (ret)
1401                         return ret;
1402         }
1403
1404         /* Wait upon the last request to be completed */
1405         if (list_empty(&ring->request_list))
1406                 return 0;
1407
1408         seqno = list_entry(ring->request_list.prev,
1409                            struct drm_i915_gem_request,
1410                            list)->seqno;
1411
1412         return i915_wait_seqno(ring, seqno);
1413 }
1414
1415 static int
1416 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1417 {
1418         if (ring->outstanding_lazy_request)
1419                 return 0;
1420
1421         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1422 }
1423
1424 int intel_ring_begin(struct intel_ring_buffer *ring,
1425                      int num_dwords)
1426 {
1427         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1428         int n = 4*num_dwords;
1429         int ret;
1430
1431         ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1432         if (ret)
1433                 return ret;
1434
1435         /* Preallocate the olr before touching the ring */
1436         ret = intel_ring_alloc_seqno(ring);
1437         if (ret)
1438                 return ret;
1439
1440         if (unlikely(ring->tail + n > ring->effective_size)) {
1441                 ret = intel_wrap_ring_buffer(ring);
1442                 if (unlikely(ret))
1443                         return ret;
1444         }
1445
1446         if (unlikely(ring->space < n)) {
1447                 ret = ring_wait_for_space(ring, n);
1448                 if (unlikely(ret))
1449                         return ret;
1450         }
1451
1452         ring->space -= n;
1453         return 0;
1454 }
1455
1456 void intel_ring_advance(struct intel_ring_buffer *ring)
1457 {
1458         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1459
1460         ring->tail &= ring->size - 1;
1461         if (dev_priv->stop_rings & intel_ring_flag(ring))
1462                 return;
1463         ring->write_tail(ring, ring->tail);
1464 }
1465
1466
1467 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1468                                      u32 value)
1469 {
1470         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1471
1472        /* Every tail move must follow the sequence below */
1473
1474         /* Disable notification that the ring is IDLE. The GT
1475          * will then assume that it is busy and bring it out of rc6.
1476          */
1477         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1478                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1479
1480         /* Clear the context id. Here be magic! */
1481         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1482
1483         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1484         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1485                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1486                      50))
1487                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1488
1489         /* Now that the ring is fully powered up, update the tail */
1490         I915_WRITE_TAIL(ring, value);
1491         POSTING_READ(RING_TAIL(ring->mmio_base));
1492
1493         /* Let the ring send IDLE messages to the GT again,
1494          * and so let it sleep to conserve power when idle.
1495          */
1496         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1497                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1498 }
1499
1500 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1501                            u32 invalidate, u32 flush)
1502 {
1503         uint32_t cmd;
1504         int ret;
1505
1506         ret = intel_ring_begin(ring, 4);
1507         if (ret)
1508                 return ret;
1509
1510         cmd = MI_FLUSH_DW;
1511         /*
1512          * Bspec vol 1c.5 - video engine command streamer:
1513          * "If ENABLED, all TLBs will be invalidated once the flush
1514          * operation is complete. This bit is only valid when the
1515          * Post-Sync Operation field is a value of 1h or 3h."
1516          */
1517         if (invalidate & I915_GEM_GPU_DOMAINS)
1518                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1519                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1520         intel_ring_emit(ring, cmd);
1521         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1522         intel_ring_emit(ring, 0);
1523         intel_ring_emit(ring, MI_NOOP);
1524         intel_ring_advance(ring);
1525         return 0;
1526 }
1527
1528 static int
1529 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1530                               u32 offset, u32 len,
1531                               unsigned flags)
1532 {
1533         int ret;
1534
1535         ret = intel_ring_begin(ring, 2);
1536         if (ret)
1537                 return ret;
1538
1539         intel_ring_emit(ring,
1540                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1541                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1542         /* bit0-7 is the length on GEN6+ */
1543         intel_ring_emit(ring, offset);
1544         intel_ring_advance(ring);
1545
1546         return 0;
1547 }
1548
1549 static int
1550 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1551                               u32 offset, u32 len,
1552                               unsigned flags)
1553 {
1554         int ret;
1555
1556         ret = intel_ring_begin(ring, 2);
1557         if (ret)
1558                 return ret;
1559
1560         intel_ring_emit(ring,
1561                         MI_BATCH_BUFFER_START |
1562                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1563         /* bit0-7 is the length on GEN6+ */
1564         intel_ring_emit(ring, offset);
1565         intel_ring_advance(ring);
1566
1567         return 0;
1568 }
1569
1570 /* Blitter support (SandyBridge+) */
1571
1572 static int blt_ring_flush(struct intel_ring_buffer *ring,
1573                           u32 invalidate, u32 flush)
1574 {
1575         uint32_t cmd;
1576         int ret;
1577
1578         ret = intel_ring_begin(ring, 4);
1579         if (ret)
1580                 return ret;
1581
1582         cmd = MI_FLUSH_DW;
1583         /*
1584          * Bspec vol 1c.3 - blitter engine command streamer:
1585          * "If ENABLED, all TLBs will be invalidated once the flush
1586          * operation is complete. This bit is only valid when the
1587          * Post-Sync Operation field is a value of 1h or 3h."
1588          */
1589         if (invalidate & I915_GEM_DOMAIN_RENDER)
1590                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1591                         MI_FLUSH_DW_OP_STOREDW;
1592         intel_ring_emit(ring, cmd);
1593         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1594         intel_ring_emit(ring, 0);
1595         intel_ring_emit(ring, MI_NOOP);
1596         intel_ring_advance(ring);
1597         return 0;
1598 }
1599
1600 int intel_init_render_ring_buffer(struct drm_device *dev)
1601 {
1602         drm_i915_private_t *dev_priv = dev->dev_private;
1603         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1604
1605         ring->name = "render ring";
1606         ring->id = RCS;
1607         ring->mmio_base = RENDER_RING_BASE;
1608
1609         if (INTEL_INFO(dev)->gen >= 6) {
1610                 ring->add_request = gen6_add_request;
1611                 ring->flush = gen7_render_ring_flush;
1612                 if (INTEL_INFO(dev)->gen == 6)
1613                         ring->flush = gen6_render_ring_flush;
1614                 ring->irq_get = gen6_ring_get_irq;
1615                 ring->irq_put = gen6_ring_put_irq;
1616                 ring->irq_enable_mask = GT_USER_INTERRUPT;
1617                 ring->get_seqno = gen6_ring_get_seqno;
1618                 ring->sync_to = gen6_ring_sync;
1619                 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_INVALID;
1620                 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_RV;
1621                 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_RB;
1622                 ring->signal_mbox[0] = GEN6_VRSYNC;
1623                 ring->signal_mbox[1] = GEN6_BRSYNC;
1624         } else if (IS_GEN5(dev)) {
1625                 ring->add_request = pc_render_add_request;
1626                 ring->flush = gen4_render_ring_flush;
1627                 ring->get_seqno = pc_render_get_seqno;
1628                 ring->irq_get = gen5_ring_get_irq;
1629                 ring->irq_put = gen5_ring_put_irq;
1630                 ring->irq_enable_mask = GT_USER_INTERRUPT | GT_PIPE_NOTIFY;
1631         } else {
1632                 ring->add_request = i9xx_add_request;
1633                 if (INTEL_INFO(dev)->gen < 4)
1634                         ring->flush = gen2_render_ring_flush;
1635                 else
1636                         ring->flush = gen4_render_ring_flush;
1637                 ring->get_seqno = ring_get_seqno;
1638                 if (IS_GEN2(dev)) {
1639                         ring->irq_get = i8xx_ring_get_irq;
1640                         ring->irq_put = i8xx_ring_put_irq;
1641                 } else {
1642                         ring->irq_get = i9xx_ring_get_irq;
1643                         ring->irq_put = i9xx_ring_put_irq;
1644                 }
1645                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1646         }
1647         ring->write_tail = ring_write_tail;
1648         if (IS_HASWELL(dev))
1649                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1650         else if (INTEL_INFO(dev)->gen >= 6)
1651                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1652         else if (INTEL_INFO(dev)->gen >= 4)
1653                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1654         else if (IS_I830(dev) || IS_845G(dev))
1655                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1656         else
1657                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1658         ring->init = init_render_ring;
1659         ring->cleanup = render_ring_cleanup;
1660
1661         /* Workaround batchbuffer to combat CS tlb bug. */
1662         if (HAS_BROKEN_CS_TLB(dev)) {
1663                 struct drm_i915_gem_object *obj;
1664                 int ret;
1665
1666                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1667                 if (obj == NULL) {
1668                         DRM_ERROR("Failed to allocate batch bo\n");
1669                         return -ENOMEM;
1670                 }
1671
1672                 ret = i915_gem_object_pin(obj, 0, true, false);
1673                 if (ret != 0) {
1674                         drm_gem_object_unreference(&obj->base);
1675                         DRM_ERROR("Failed to ping batch bo\n");
1676                         return ret;
1677                 }
1678
1679                 ring->private = obj;
1680         }
1681
1682         return intel_init_ring_buffer(dev, ring);
1683 }
1684
1685 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1686 {
1687         drm_i915_private_t *dev_priv = dev->dev_private;
1688         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1689         int ret;
1690
1691         ring->name = "render ring";
1692         ring->id = RCS;
1693         ring->mmio_base = RENDER_RING_BASE;
1694
1695         if (INTEL_INFO(dev)->gen >= 6) {
1696                 /* non-kms not supported on gen6+ */
1697                 return -ENODEV;
1698         }
1699
1700         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1701          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1702          * the special gen5 functions. */
1703         ring->add_request = i9xx_add_request;
1704         if (INTEL_INFO(dev)->gen < 4)
1705                 ring->flush = gen2_render_ring_flush;
1706         else
1707                 ring->flush = gen4_render_ring_flush;
1708         ring->get_seqno = ring_get_seqno;
1709         if (IS_GEN2(dev)) {
1710                 ring->irq_get = i8xx_ring_get_irq;
1711                 ring->irq_put = i8xx_ring_put_irq;
1712         } else {
1713                 ring->irq_get = i9xx_ring_get_irq;
1714                 ring->irq_put = i9xx_ring_put_irq;
1715         }
1716         ring->irq_enable_mask = I915_USER_INTERRUPT;
1717         ring->write_tail = ring_write_tail;
1718         if (INTEL_INFO(dev)->gen >= 4)
1719                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1720         else if (IS_I830(dev) || IS_845G(dev))
1721                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1722         else
1723                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1724         ring->init = init_render_ring;
1725         ring->cleanup = render_ring_cleanup;
1726
1727         ring->dev = dev;
1728         INIT_LIST_HEAD(&ring->active_list);
1729         INIT_LIST_HEAD(&ring->request_list);
1730
1731         ring->size = size;
1732         ring->effective_size = ring->size;
1733         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1734                 ring->effective_size -= 128;
1735
1736         ring->virtual_start = pmap_mapdev_attr(start, size,
1737             VM_MEMATTR_WRITE_COMBINING);
1738         if (ring->virtual_start == NULL) {
1739                 DRM_ERROR("can not ioremap virtual address for"
1740                           " ring buffer\n");
1741                 return -ENOMEM;
1742         }
1743
1744         if (!I915_NEED_GFX_HWS(dev)) {
1745                 ret = init_phys_hws_pga(ring);
1746                 if (ret)
1747                         return ret;
1748         }
1749
1750         return 0;
1751 }
1752
1753 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1754 {
1755         drm_i915_private_t *dev_priv = dev->dev_private;
1756         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1757
1758         ring->name = "bsd ring";
1759         ring->id = VCS;
1760
1761         ring->write_tail = ring_write_tail;
1762         if (IS_GEN6(dev) || IS_GEN7(dev)) {
1763                 ring->mmio_base = GEN6_BSD_RING_BASE;
1764                 /* gen6 bsd needs a special wa for tail updates */
1765                 if (IS_GEN6(dev))
1766                         ring->write_tail = gen6_bsd_ring_write_tail;
1767                 ring->flush = gen6_ring_flush;
1768                 ring->add_request = gen6_add_request;
1769                 ring->get_seqno = gen6_ring_get_seqno;
1770                 ring->irq_enable_mask = GEN6_BSD_USER_INTERRUPT;
1771                 ring->irq_get = gen6_ring_get_irq;
1772                 ring->irq_put = gen6_ring_put_irq;
1773                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1774                 ring->sync_to = gen6_ring_sync;
1775                 ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_VR;
1776                 ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_INVALID;
1777                 ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_VB;
1778                 ring->signal_mbox[0] = GEN6_RVSYNC;
1779                 ring->signal_mbox[1] = GEN6_BVSYNC;
1780         } else {
1781                 ring->mmio_base = BSD_RING_BASE;
1782                 ring->flush = bsd_ring_flush;
1783                 ring->add_request = i9xx_add_request;
1784                 ring->get_seqno = ring_get_seqno;
1785                 if (IS_GEN5(dev)) {
1786                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1787                         ring->irq_get = gen5_ring_get_irq;
1788                         ring->irq_put = gen5_ring_put_irq;
1789                 } else {
1790                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1791                         ring->irq_get = i9xx_ring_get_irq;
1792                         ring->irq_put = i9xx_ring_put_irq;
1793                 }
1794                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1795         }
1796         ring->init = init_ring_common;
1797
1798         return intel_init_ring_buffer(dev, ring);
1799 }
1800
1801 int intel_init_blt_ring_buffer(struct drm_device *dev)
1802 {
1803         drm_i915_private_t *dev_priv = dev->dev_private;
1804         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1805
1806         ring->name = "blitter ring";
1807         ring->id = BCS;
1808
1809         ring->mmio_base = BLT_RING_BASE;
1810         ring->write_tail = ring_write_tail;
1811         ring->flush = blt_ring_flush;
1812         ring->add_request = gen6_add_request;
1813         ring->get_seqno = gen6_ring_get_seqno;
1814         ring->irq_enable_mask = GEN6_BLITTER_USER_INTERRUPT;
1815         ring->irq_get = gen6_ring_get_irq;
1816         ring->irq_put = gen6_ring_put_irq;
1817         ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1818         ring->sync_to = gen6_ring_sync;
1819         ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_BR;
1820         ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_BV;
1821         ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_INVALID;
1822         ring->signal_mbox[0] = GEN6_RBSYNC;
1823         ring->signal_mbox[1] = GEN6_VBSYNC;
1824         ring->init = init_ring_common;
1825
1826         return intel_init_ring_buffer(dev, ring);
1827 }
1828
1829 int
1830 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1831 {
1832         int ret;
1833
1834         if (!ring->gpu_caches_dirty)
1835                 return 0;
1836
1837         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1838         if (ret)
1839                 return ret;
1840
1841         ring->gpu_caches_dirty = false;
1842         return 0;
1843 }
1844
1845 int
1846 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
1847 {
1848         uint32_t flush_domains;
1849         int ret;
1850
1851         flush_domains = 0;
1852         if (ring->gpu_caches_dirty)
1853                 flush_domains = I915_GEM_GPU_DOMAINS;
1854
1855         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1856         if (ret)
1857                 return ret;
1858
1859         ring->gpu_caches_dirty = false;
1860         return 0;
1861 }