]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/e1000/e1000_api.c
- Switch releng/11.3 to -RELEASE.
[FreeBSD/FreeBSD.git] / sys / dev / e1000 / e1000_api.c
1 /******************************************************************************
2
3   Copyright (c) 2001-2015, Intel Corporation 
4   All rights reserved.
5   
6   Redistribution and use in source and binary forms, with or without 
7   modification, are permitted provided that the following conditions are met:
8   
9    1. Redistributions of source code must retain the above copyright notice, 
10       this list of conditions and the following disclaimer.
11   
12    2. Redistributions in binary form must reproduce the above copyright 
13       notice, this list of conditions and the following disclaimer in the 
14       documentation and/or other materials provided with the distribution.
15   
16    3. Neither the name of the Intel Corporation nor the names of its 
17       contributors may be used to endorse or promote products derived from 
18       this software without specific prior written permission.
19   
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31
32 ******************************************************************************/
33 /*$FreeBSD$*/
34
35 #include "e1000_api.h"
36
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46         s32 ret_val = E1000_SUCCESS;
47
48         if (hw->mac.ops.init_params) {
49                 ret_val = hw->mac.ops.init_params(hw);
50                 if (ret_val) {
51                         DEBUGOUT("MAC Initialization Error\n");
52                         goto out;
53                 }
54         } else {
55                 DEBUGOUT("mac.init_mac_params was NULL\n");
56                 ret_val = -E1000_ERR_CONFIG;
57         }
58
59 out:
60         return ret_val;
61 }
62
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72         s32 ret_val = E1000_SUCCESS;
73
74         if (hw->nvm.ops.init_params) {
75                 ret_val = hw->nvm.ops.init_params(hw);
76                 if (ret_val) {
77                         DEBUGOUT("NVM Initialization Error\n");
78                         goto out;
79                 }
80         } else {
81                 DEBUGOUT("nvm.init_nvm_params was NULL\n");
82                 ret_val = -E1000_ERR_CONFIG;
83         }
84
85 out:
86         return ret_val;
87 }
88
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98         s32 ret_val = E1000_SUCCESS;
99
100         if (hw->phy.ops.init_params) {
101                 ret_val = hw->phy.ops.init_params(hw);
102                 if (ret_val) {
103                         DEBUGOUT("PHY Initialization Error\n");
104                         goto out;
105                 }
106         } else {
107                 DEBUGOUT("phy.init_phy_params was NULL\n");
108                 ret_val =  -E1000_ERR_CONFIG;
109         }
110
111 out:
112         return ret_val;
113 }
114
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124         s32 ret_val = E1000_SUCCESS;
125
126         if (hw->mbx.ops.init_params) {
127                 ret_val = hw->mbx.ops.init_params(hw);
128                 if (ret_val) {
129                         DEBUGOUT("Mailbox Initialization Error\n");
130                         goto out;
131                 }
132         } else {
133                 DEBUGOUT("mbx.init_mbx_params was NULL\n");
134                 ret_val =  -E1000_ERR_CONFIG;
135         }
136
137 out:
138         return ret_val;
139 }
140
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152         struct e1000_mac_info *mac = &hw->mac;
153         s32 ret_val = E1000_SUCCESS;
154
155         DEBUGFUNC("e1000_set_mac_type");
156
157         switch (hw->device_id) {
158         case E1000_DEV_ID_82542:
159                 mac->type = e1000_82542;
160                 break;
161         case E1000_DEV_ID_82543GC_FIBER:
162         case E1000_DEV_ID_82543GC_COPPER:
163                 mac->type = e1000_82543;
164                 break;
165         case E1000_DEV_ID_82544EI_COPPER:
166         case E1000_DEV_ID_82544EI_FIBER:
167         case E1000_DEV_ID_82544GC_COPPER:
168         case E1000_DEV_ID_82544GC_LOM:
169                 mac->type = e1000_82544;
170                 break;
171         case E1000_DEV_ID_82540EM:
172         case E1000_DEV_ID_82540EM_LOM:
173         case E1000_DEV_ID_82540EP:
174         case E1000_DEV_ID_82540EP_LOM:
175         case E1000_DEV_ID_82540EP_LP:
176                 mac->type = e1000_82540;
177                 break;
178         case E1000_DEV_ID_82545EM_COPPER:
179         case E1000_DEV_ID_82545EM_FIBER:
180                 mac->type = e1000_82545;
181                 break;
182         case E1000_DEV_ID_82545GM_COPPER:
183         case E1000_DEV_ID_82545GM_FIBER:
184         case E1000_DEV_ID_82545GM_SERDES:
185                 mac->type = e1000_82545_rev_3;
186                 break;
187         case E1000_DEV_ID_82546EB_COPPER:
188         case E1000_DEV_ID_82546EB_FIBER:
189         case E1000_DEV_ID_82546EB_QUAD_COPPER:
190                 mac->type = e1000_82546;
191                 break;
192         case E1000_DEV_ID_82546GB_COPPER:
193         case E1000_DEV_ID_82546GB_FIBER:
194         case E1000_DEV_ID_82546GB_SERDES:
195         case E1000_DEV_ID_82546GB_PCIE:
196         case E1000_DEV_ID_82546GB_QUAD_COPPER:
197         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198                 mac->type = e1000_82546_rev_3;
199                 break;
200         case E1000_DEV_ID_82541EI:
201         case E1000_DEV_ID_82541EI_MOBILE:
202         case E1000_DEV_ID_82541ER_LOM:
203                 mac->type = e1000_82541;
204                 break;
205         case E1000_DEV_ID_82541ER:
206         case E1000_DEV_ID_82541GI:
207         case E1000_DEV_ID_82541GI_LF:
208         case E1000_DEV_ID_82541GI_MOBILE:
209                 mac->type = e1000_82541_rev_2;
210                 break;
211         case E1000_DEV_ID_82547EI:
212         case E1000_DEV_ID_82547EI_MOBILE:
213                 mac->type = e1000_82547;
214                 break;
215         case E1000_DEV_ID_82547GI:
216                 mac->type = e1000_82547_rev_2;
217                 break;
218         case E1000_DEV_ID_82571EB_COPPER:
219         case E1000_DEV_ID_82571EB_FIBER:
220         case E1000_DEV_ID_82571EB_SERDES:
221         case E1000_DEV_ID_82571EB_SERDES_DUAL:
222         case E1000_DEV_ID_82571EB_SERDES_QUAD:
223         case E1000_DEV_ID_82571EB_QUAD_COPPER:
224         case E1000_DEV_ID_82571PT_QUAD_COPPER:
225         case E1000_DEV_ID_82571EB_QUAD_FIBER:
226         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227                 mac->type = e1000_82571;
228                 break;
229         case E1000_DEV_ID_82572EI:
230         case E1000_DEV_ID_82572EI_COPPER:
231         case E1000_DEV_ID_82572EI_FIBER:
232         case E1000_DEV_ID_82572EI_SERDES:
233                 mac->type = e1000_82572;
234                 break;
235         case E1000_DEV_ID_82573E:
236         case E1000_DEV_ID_82573E_IAMT:
237         case E1000_DEV_ID_82573L:
238                 mac->type = e1000_82573;
239                 break;
240         case E1000_DEV_ID_82574L:
241         case E1000_DEV_ID_82574LA:
242                 mac->type = e1000_82574;
243                 break;
244         case E1000_DEV_ID_82583V:
245                 mac->type = e1000_82583;
246                 break;
247         case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249         case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250         case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251                 mac->type = e1000_80003es2lan;
252                 break;
253         case E1000_DEV_ID_ICH8_IFE:
254         case E1000_DEV_ID_ICH8_IFE_GT:
255         case E1000_DEV_ID_ICH8_IFE_G:
256         case E1000_DEV_ID_ICH8_IGP_M:
257         case E1000_DEV_ID_ICH8_IGP_M_AMT:
258         case E1000_DEV_ID_ICH8_IGP_AMT:
259         case E1000_DEV_ID_ICH8_IGP_C:
260         case E1000_DEV_ID_ICH8_82567V_3:
261                 mac->type = e1000_ich8lan;
262                 break;
263         case E1000_DEV_ID_ICH9_IFE:
264         case E1000_DEV_ID_ICH9_IFE_GT:
265         case E1000_DEV_ID_ICH9_IFE_G:
266         case E1000_DEV_ID_ICH9_IGP_M:
267         case E1000_DEV_ID_ICH9_IGP_M_AMT:
268         case E1000_DEV_ID_ICH9_IGP_M_V:
269         case E1000_DEV_ID_ICH9_IGP_AMT:
270         case E1000_DEV_ID_ICH9_BM:
271         case E1000_DEV_ID_ICH9_IGP_C:
272         case E1000_DEV_ID_ICH10_R_BM_LM:
273         case E1000_DEV_ID_ICH10_R_BM_LF:
274         case E1000_DEV_ID_ICH10_R_BM_V:
275                 mac->type = e1000_ich9lan;
276                 break;
277         case E1000_DEV_ID_ICH10_D_BM_LM:
278         case E1000_DEV_ID_ICH10_D_BM_LF:
279         case E1000_DEV_ID_ICH10_D_BM_V:
280                 mac->type = e1000_ich10lan;
281                 break;
282         case E1000_DEV_ID_PCH_D_HV_DM:
283         case E1000_DEV_ID_PCH_D_HV_DC:
284         case E1000_DEV_ID_PCH_M_HV_LM:
285         case E1000_DEV_ID_PCH_M_HV_LC:
286                 mac->type = e1000_pchlan;
287                 break;
288         case E1000_DEV_ID_PCH2_LV_LM:
289         case E1000_DEV_ID_PCH2_LV_V:
290                 mac->type = e1000_pch2lan;
291                 break;
292         case E1000_DEV_ID_PCH_LPT_I217_LM:
293         case E1000_DEV_ID_PCH_LPT_I217_V:
294         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295         case E1000_DEV_ID_PCH_LPTLP_I218_V:
296         case E1000_DEV_ID_PCH_I218_LM2:
297         case E1000_DEV_ID_PCH_I218_V2:
298         case E1000_DEV_ID_PCH_I218_LM3:
299         case E1000_DEV_ID_PCH_I218_V3:
300                 mac->type = e1000_pch_lpt;
301                 break;
302         case E1000_DEV_ID_PCH_SPT_I219_LM:
303         case E1000_DEV_ID_PCH_SPT_I219_V:
304         case E1000_DEV_ID_PCH_SPT_I219_LM2:
305         case E1000_DEV_ID_PCH_SPT_I219_V2:
306         case E1000_DEV_ID_PCH_LBG_I219_LM3:
307         case E1000_DEV_ID_PCH_SPT_I219_LM4:
308         case E1000_DEV_ID_PCH_SPT_I219_V4:
309         case E1000_DEV_ID_PCH_SPT_I219_LM5:
310         case E1000_DEV_ID_PCH_SPT_I219_V5:
311                 mac->type = e1000_pch_spt;
312                 break;
313         case E1000_DEV_ID_PCH_CNP_I219_LM6:
314         case E1000_DEV_ID_PCH_CNP_I219_V6:
315         case E1000_DEV_ID_PCH_CNP_I219_LM7:
316         case E1000_DEV_ID_PCH_CNP_I219_V7:
317         case E1000_DEV_ID_PCH_ICP_I219_LM8:
318         case E1000_DEV_ID_PCH_ICP_I219_V8:
319         case E1000_DEV_ID_PCH_ICP_I219_LM9:
320         case E1000_DEV_ID_PCH_ICP_I219_V9:
321                 mac->type = e1000_pch_cnp;
322                 break;
323         case E1000_DEV_ID_82575EB_COPPER:
324         case E1000_DEV_ID_82575EB_FIBER_SERDES:
325         case E1000_DEV_ID_82575GB_QUAD_COPPER:
326                 mac->type = e1000_82575;
327                 break;
328         case E1000_DEV_ID_82576:
329         case E1000_DEV_ID_82576_FIBER:
330         case E1000_DEV_ID_82576_SERDES:
331         case E1000_DEV_ID_82576_QUAD_COPPER:
332         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
333         case E1000_DEV_ID_82576_NS:
334         case E1000_DEV_ID_82576_NS_SERDES:
335         case E1000_DEV_ID_82576_SERDES_QUAD:
336                 mac->type = e1000_82576;
337                 break;
338         case E1000_DEV_ID_82580_COPPER:
339         case E1000_DEV_ID_82580_FIBER:
340         case E1000_DEV_ID_82580_SERDES:
341         case E1000_DEV_ID_82580_SGMII:
342         case E1000_DEV_ID_82580_COPPER_DUAL:
343         case E1000_DEV_ID_82580_QUAD_FIBER:
344         case E1000_DEV_ID_DH89XXCC_SGMII:
345         case E1000_DEV_ID_DH89XXCC_SERDES:
346         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
347         case E1000_DEV_ID_DH89XXCC_SFP:
348                 mac->type = e1000_82580;
349                 break;
350         case E1000_DEV_ID_I350_COPPER:
351         case E1000_DEV_ID_I350_FIBER:
352         case E1000_DEV_ID_I350_SERDES:
353         case E1000_DEV_ID_I350_SGMII:
354         case E1000_DEV_ID_I350_DA4:
355                 mac->type = e1000_i350;
356                 break;
357         case E1000_DEV_ID_I210_COPPER_FLASHLESS:
358         case E1000_DEV_ID_I210_SERDES_FLASHLESS:
359         case E1000_DEV_ID_I210_COPPER:
360         case E1000_DEV_ID_I210_COPPER_OEM1:
361         case E1000_DEV_ID_I210_COPPER_IT:
362         case E1000_DEV_ID_I210_FIBER:
363         case E1000_DEV_ID_I210_SERDES:
364         case E1000_DEV_ID_I210_SGMII:
365                 mac->type = e1000_i210;
366                 break;
367         case E1000_DEV_ID_I211_COPPER:
368                 mac->type = e1000_i211;
369                 break;
370         case E1000_DEV_ID_82576_VF:
371         case E1000_DEV_ID_82576_VF_HV:
372                 mac->type = e1000_vfadapt;
373                 break;
374         case E1000_DEV_ID_I350_VF:
375         case E1000_DEV_ID_I350_VF_HV:
376                 mac->type = e1000_vfadapt_i350;
377                 break;
378
379         case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
380         case E1000_DEV_ID_I354_SGMII:
381         case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
382                 mac->type = e1000_i354;
383                 break;
384         default:
385                 /* Should never have loaded on this device */
386                 ret_val = -E1000_ERR_MAC_INIT;
387                 break;
388         }
389
390         return ret_val;
391 }
392
393 /**
394  *  e1000_setup_init_funcs - Initializes function pointers
395  *  @hw: pointer to the HW structure
396  *  @init_device: TRUE will initialize the rest of the function pointers
397  *                getting the device ready for use.  FALSE will only set
398  *                MAC type and the function pointers for the other init
399  *                functions.  Passing FALSE will not generate any hardware
400  *                reads or writes.
401  *
402  *  This function must be called by a driver in order to use the rest
403  *  of the 'shared' code files. Called by drivers only.
404  **/
405 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
406 {
407         s32 ret_val;
408
409         /* Can't do much good without knowing the MAC type. */
410         ret_val = e1000_set_mac_type(hw);
411         if (ret_val) {
412                 DEBUGOUT("ERROR: MAC type could not be set properly.\n");
413                 goto out;
414         }
415
416         if (!hw->hw_addr) {
417                 DEBUGOUT("ERROR: Registers not mapped\n");
418                 ret_val = -E1000_ERR_CONFIG;
419                 goto out;
420         }
421
422         /*
423          * Init function pointers to generic implementations. We do this first
424          * allowing a driver module to override it afterward.
425          */
426         e1000_init_mac_ops_generic(hw);
427         e1000_init_phy_ops_generic(hw);
428         e1000_init_nvm_ops_generic(hw);
429         e1000_init_mbx_ops_generic(hw);
430
431         /*
432          * Set up the init function pointers. These are functions within the
433          * adapter family file that sets up function pointers for the rest of
434          * the functions in that family.
435          */
436         switch (hw->mac.type) {
437         case e1000_82542:
438                 e1000_init_function_pointers_82542(hw);
439                 break;
440         case e1000_82543:
441         case e1000_82544:
442                 e1000_init_function_pointers_82543(hw);
443                 break;
444         case e1000_82540:
445         case e1000_82545:
446         case e1000_82545_rev_3:
447         case e1000_82546:
448         case e1000_82546_rev_3:
449                 e1000_init_function_pointers_82540(hw);
450                 break;
451         case e1000_82541:
452         case e1000_82541_rev_2:
453         case e1000_82547:
454         case e1000_82547_rev_2:
455                 e1000_init_function_pointers_82541(hw);
456                 break;
457         case e1000_82571:
458         case e1000_82572:
459         case e1000_82573:
460         case e1000_82574:
461         case e1000_82583:
462                 e1000_init_function_pointers_82571(hw);
463                 break;
464         case e1000_80003es2lan:
465                 e1000_init_function_pointers_80003es2lan(hw);
466                 break;
467         case e1000_ich8lan:
468         case e1000_ich9lan:
469         case e1000_ich10lan:
470         case e1000_pchlan:
471         case e1000_pch2lan:
472         case e1000_pch_lpt:
473         case e1000_pch_spt:
474         case e1000_pch_cnp:
475                 e1000_init_function_pointers_ich8lan(hw);
476                 break;
477         case e1000_82575:
478         case e1000_82576:
479         case e1000_82580:
480         case e1000_i350:
481         case e1000_i354:
482                 e1000_init_function_pointers_82575(hw);
483                 break;
484         case e1000_i210:
485         case e1000_i211:
486                 e1000_init_function_pointers_i210(hw);
487                 break;
488         case e1000_vfadapt:
489                 e1000_init_function_pointers_vf(hw);
490                 break;
491         case e1000_vfadapt_i350:
492                 e1000_init_function_pointers_vf(hw);
493                 break;
494         default:
495                 DEBUGOUT("Hardware not supported\n");
496                 ret_val = -E1000_ERR_CONFIG;
497                 break;
498         }
499
500         /*
501          * Initialize the rest of the function pointers. These require some
502          * register reads/writes in some cases.
503          */
504         if (!(ret_val) && init_device) {
505                 ret_val = e1000_init_mac_params(hw);
506                 if (ret_val)
507                         goto out;
508
509                 ret_val = e1000_init_nvm_params(hw);
510                 if (ret_val)
511                         goto out;
512
513                 ret_val = e1000_init_phy_params(hw);
514                 if (ret_val)
515                         goto out;
516
517                 ret_val = e1000_init_mbx_params(hw);
518                 if (ret_val)
519                         goto out;
520         }
521
522 out:
523         return ret_val;
524 }
525
526 /**
527  *  e1000_get_bus_info - Obtain bus information for adapter
528  *  @hw: pointer to the HW structure
529  *
530  *  This will obtain information about the HW bus for which the
531  *  adapter is attached and stores it in the hw structure. This is a
532  *  function pointer entry point called by drivers.
533  **/
534 s32 e1000_get_bus_info(struct e1000_hw *hw)
535 {
536         if (hw->mac.ops.get_bus_info)
537                 return hw->mac.ops.get_bus_info(hw);
538
539         return E1000_SUCCESS;
540 }
541
542 /**
543  *  e1000_clear_vfta - Clear VLAN filter table
544  *  @hw: pointer to the HW structure
545  *
546  *  This clears the VLAN filter table on the adapter. This is a function
547  *  pointer entry point called by drivers.
548  **/
549 void e1000_clear_vfta(struct e1000_hw *hw)
550 {
551         if (hw->mac.ops.clear_vfta)
552                 hw->mac.ops.clear_vfta(hw);
553 }
554
555 /**
556  *  e1000_write_vfta - Write value to VLAN filter table
557  *  @hw: pointer to the HW structure
558  *  @offset: the 32-bit offset in which to write the value to.
559  *  @value: the 32-bit value to write at location offset.
560  *
561  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
562  *  table. This is a function pointer entry point called by drivers.
563  **/
564 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
565 {
566         if (hw->mac.ops.write_vfta)
567                 hw->mac.ops.write_vfta(hw, offset, value);
568 }
569
570 /**
571  *  e1000_update_mc_addr_list - Update Multicast addresses
572  *  @hw: pointer to the HW structure
573  *  @mc_addr_list: array of multicast addresses to program
574  *  @mc_addr_count: number of multicast addresses to program
575  *
576  *  Updates the Multicast Table Array.
577  *  The caller must have a packed mc_addr_list of multicast addresses.
578  **/
579 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
580                                u32 mc_addr_count)
581 {
582         if (hw->mac.ops.update_mc_addr_list)
583                 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
584                                                 mc_addr_count);
585 }
586
587 /**
588  *  e1000_force_mac_fc - Force MAC flow control
589  *  @hw: pointer to the HW structure
590  *
591  *  Force the MAC's flow control settings. Currently no func pointer exists
592  *  and all implementations are handled in the generic version of this
593  *  function.
594  **/
595 s32 e1000_force_mac_fc(struct e1000_hw *hw)
596 {
597         return e1000_force_mac_fc_generic(hw);
598 }
599
600 /**
601  *  e1000_check_for_link - Check/Store link connection
602  *  @hw: pointer to the HW structure
603  *
604  *  This checks the link condition of the adapter and stores the
605  *  results in the hw->mac structure. This is a function pointer entry
606  *  point called by drivers.
607  **/
608 s32 e1000_check_for_link(struct e1000_hw *hw)
609 {
610         if (hw->mac.ops.check_for_link)
611                 return hw->mac.ops.check_for_link(hw);
612
613         return -E1000_ERR_CONFIG;
614 }
615
616 /**
617  *  e1000_check_mng_mode - Check management mode
618  *  @hw: pointer to the HW structure
619  *
620  *  This checks if the adapter has manageability enabled.
621  *  This is a function pointer entry point called by drivers.
622  **/
623 bool e1000_check_mng_mode(struct e1000_hw *hw)
624 {
625         if (hw->mac.ops.check_mng_mode)
626                 return hw->mac.ops.check_mng_mode(hw);
627
628         return FALSE;
629 }
630
631 /**
632  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
633  *  @hw: pointer to the HW structure
634  *  @buffer: pointer to the host interface
635  *  @length: size of the buffer
636  *
637  *  Writes the DHCP information to the host interface.
638  **/
639 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
640 {
641         return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
642 }
643
644 /**
645  *  e1000_reset_hw - Reset hardware
646  *  @hw: pointer to the HW structure
647  *
648  *  This resets the hardware into a known state. This is a function pointer
649  *  entry point called by drivers.
650  **/
651 s32 e1000_reset_hw(struct e1000_hw *hw)
652 {
653         if (hw->mac.ops.reset_hw)
654                 return hw->mac.ops.reset_hw(hw);
655
656         return -E1000_ERR_CONFIG;
657 }
658
659 /**
660  *  e1000_init_hw - Initialize hardware
661  *  @hw: pointer to the HW structure
662  *
663  *  This inits the hardware readying it for operation. This is a function
664  *  pointer entry point called by drivers.
665  **/
666 s32 e1000_init_hw(struct e1000_hw *hw)
667 {
668         if (hw->mac.ops.init_hw)
669                 return hw->mac.ops.init_hw(hw);
670
671         return -E1000_ERR_CONFIG;
672 }
673
674 /**
675  *  e1000_setup_link - Configures link and flow control
676  *  @hw: pointer to the HW structure
677  *
678  *  This configures link and flow control settings for the adapter. This
679  *  is a function pointer entry point called by drivers. While modules can
680  *  also call this, they probably call their own version of this function.
681  **/
682 s32 e1000_setup_link(struct e1000_hw *hw)
683 {
684         if (hw->mac.ops.setup_link)
685                 return hw->mac.ops.setup_link(hw);
686
687         return -E1000_ERR_CONFIG;
688 }
689
690 /**
691  *  e1000_get_speed_and_duplex - Returns current speed and duplex
692  *  @hw: pointer to the HW structure
693  *  @speed: pointer to a 16-bit value to store the speed
694  *  @duplex: pointer to a 16-bit value to store the duplex.
695  *
696  *  This returns the speed and duplex of the adapter in the two 'out'
697  *  variables passed in. This is a function pointer entry point called
698  *  by drivers.
699  **/
700 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
701 {
702         if (hw->mac.ops.get_link_up_info)
703                 return hw->mac.ops.get_link_up_info(hw, speed, duplex);
704
705         return -E1000_ERR_CONFIG;
706 }
707
708 /**
709  *  e1000_setup_led - Configures SW controllable LED
710  *  @hw: pointer to the HW structure
711  *
712  *  This prepares the SW controllable LED for use and saves the current state
713  *  of the LED so it can be later restored. This is a function pointer entry
714  *  point called by drivers.
715  **/
716 s32 e1000_setup_led(struct e1000_hw *hw)
717 {
718         if (hw->mac.ops.setup_led)
719                 return hw->mac.ops.setup_led(hw);
720
721         return E1000_SUCCESS;
722 }
723
724 /**
725  *  e1000_cleanup_led - Restores SW controllable LED
726  *  @hw: pointer to the HW structure
727  *
728  *  This restores the SW controllable LED to the value saved off by
729  *  e1000_setup_led. This is a function pointer entry point called by drivers.
730  **/
731 s32 e1000_cleanup_led(struct e1000_hw *hw)
732 {
733         if (hw->mac.ops.cleanup_led)
734                 return hw->mac.ops.cleanup_led(hw);
735
736         return E1000_SUCCESS;
737 }
738
739 /**
740  *  e1000_blink_led - Blink SW controllable LED
741  *  @hw: pointer to the HW structure
742  *
743  *  This starts the adapter LED blinking. Request the LED to be setup first
744  *  and cleaned up after. This is a function pointer entry point called by
745  *  drivers.
746  **/
747 s32 e1000_blink_led(struct e1000_hw *hw)
748 {
749         if (hw->mac.ops.blink_led)
750                 return hw->mac.ops.blink_led(hw);
751
752         return E1000_SUCCESS;
753 }
754
755 /**
756  *  e1000_id_led_init - store LED configurations in SW
757  *  @hw: pointer to the HW structure
758  *
759  *  Initializes the LED config in SW. This is a function pointer entry point
760  *  called by drivers.
761  **/
762 s32 e1000_id_led_init(struct e1000_hw *hw)
763 {
764         if (hw->mac.ops.id_led_init)
765                 return hw->mac.ops.id_led_init(hw);
766
767         return E1000_SUCCESS;
768 }
769
770 /**
771  *  e1000_led_on - Turn on SW controllable LED
772  *  @hw: pointer to the HW structure
773  *
774  *  Turns the SW defined LED on. This is a function pointer entry point
775  *  called by drivers.
776  **/
777 s32 e1000_led_on(struct e1000_hw *hw)
778 {
779         if (hw->mac.ops.led_on)
780                 return hw->mac.ops.led_on(hw);
781
782         return E1000_SUCCESS;
783 }
784
785 /**
786  *  e1000_led_off - Turn off SW controllable LED
787  *  @hw: pointer to the HW structure
788  *
789  *  Turns the SW defined LED off. This is a function pointer entry point
790  *  called by drivers.
791  **/
792 s32 e1000_led_off(struct e1000_hw *hw)
793 {
794         if (hw->mac.ops.led_off)
795                 return hw->mac.ops.led_off(hw);
796
797         return E1000_SUCCESS;
798 }
799
800 /**
801  *  e1000_reset_adaptive - Reset adaptive IFS
802  *  @hw: pointer to the HW structure
803  *
804  *  Resets the adaptive IFS. Currently no func pointer exists and all
805  *  implementations are handled in the generic version of this function.
806  **/
807 void e1000_reset_adaptive(struct e1000_hw *hw)
808 {
809         e1000_reset_adaptive_generic(hw);
810 }
811
812 /**
813  *  e1000_update_adaptive - Update adaptive IFS
814  *  @hw: pointer to the HW structure
815  *
816  *  Updates adapter IFS. Currently no func pointer exists and all
817  *  implementations are handled in the generic version of this function.
818  **/
819 void e1000_update_adaptive(struct e1000_hw *hw)
820 {
821         e1000_update_adaptive_generic(hw);
822 }
823
824 /**
825  *  e1000_disable_pcie_master - Disable PCI-Express master access
826  *  @hw: pointer to the HW structure
827  *
828  *  Disables PCI-Express master access and verifies there are no pending
829  *  requests. Currently no func pointer exists and all implementations are
830  *  handled in the generic version of this function.
831  **/
832 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
833 {
834         return e1000_disable_pcie_master_generic(hw);
835 }
836
837 /**
838  *  e1000_config_collision_dist - Configure collision distance
839  *  @hw: pointer to the HW structure
840  *
841  *  Configures the collision distance to the default value and is used
842  *  during link setup.
843  **/
844 void e1000_config_collision_dist(struct e1000_hw *hw)
845 {
846         if (hw->mac.ops.config_collision_dist)
847                 hw->mac.ops.config_collision_dist(hw);
848 }
849
850 /**
851  *  e1000_rar_set - Sets a receive address register
852  *  @hw: pointer to the HW structure
853  *  @addr: address to set the RAR to
854  *  @index: the RAR to set
855  *
856  *  Sets a Receive Address Register (RAR) to the specified address.
857  **/
858 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
859 {
860         if (hw->mac.ops.rar_set)
861                 return hw->mac.ops.rar_set(hw, addr, index);
862
863         return E1000_SUCCESS;
864 }
865
866 /**
867  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
868  *  @hw: pointer to the HW structure
869  *
870  *  Ensures that the MDI/MDIX SW state is valid.
871  **/
872 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
873 {
874         if (hw->mac.ops.validate_mdi_setting)
875                 return hw->mac.ops.validate_mdi_setting(hw);
876
877         return E1000_SUCCESS;
878 }
879
880 /**
881  *  e1000_hash_mc_addr - Determines address location in multicast table
882  *  @hw: pointer to the HW structure
883  *  @mc_addr: Multicast address to hash.
884  *
885  *  This hashes an address to determine its location in the multicast
886  *  table. Currently no func pointer exists and all implementations
887  *  are handled in the generic version of this function.
888  **/
889 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
890 {
891         return e1000_hash_mc_addr_generic(hw, mc_addr);
892 }
893
894 /**
895  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
896  *  @hw: pointer to the HW structure
897  *
898  *  Enables packet filtering on transmit packets if manageability is enabled
899  *  and host interface is enabled.
900  *  Currently no func pointer exists and all implementations are handled in the
901  *  generic version of this function.
902  **/
903 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
904 {
905         return e1000_enable_tx_pkt_filtering_generic(hw);
906 }
907
908 /**
909  *  e1000_mng_host_if_write - Writes to the manageability host interface
910  *  @hw: pointer to the HW structure
911  *  @buffer: pointer to the host interface buffer
912  *  @length: size of the buffer
913  *  @offset: location in the buffer to write to
914  *  @sum: sum of the data (not checksum)
915  *
916  *  This function writes the buffer content at the offset given on the host if.
917  *  It also does alignment considerations to do the writes in most efficient
918  *  way.  Also fills up the sum of the buffer in *buffer parameter.
919  **/
920 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
921                             u16 offset, u8 *sum)
922 {
923         return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
924 }
925
926 /**
927  *  e1000_mng_write_cmd_header - Writes manageability command header
928  *  @hw: pointer to the HW structure
929  *  @hdr: pointer to the host interface command header
930  *
931  *  Writes the command header after does the checksum calculation.
932  **/
933 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
934                                struct e1000_host_mng_command_header *hdr)
935 {
936         return e1000_mng_write_cmd_header_generic(hw, hdr);
937 }
938
939 /**
940  *  e1000_mng_enable_host_if - Checks host interface is enabled
941  *  @hw: pointer to the HW structure
942  *
943  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
944  *
945  *  This function checks whether the HOST IF is enabled for command operation
946  *  and also checks whether the previous command is completed.  It busy waits
947  *  in case of previous command is not completed.
948  **/
949 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
950 {
951         return e1000_mng_enable_host_if_generic(hw);
952 }
953
954 /**
955  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
956  *  @hw: pointer to the HW structure
957  *  @itr: u32 indicating itr value
958  *
959  *  Set the OBFF timer based on the given interrupt rate.
960  **/
961 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
962 {
963         if (hw->mac.ops.set_obff_timer)
964                 return hw->mac.ops.set_obff_timer(hw, itr);
965
966         return E1000_SUCCESS;
967 }
968
969 /**
970  *  e1000_check_reset_block - Verifies PHY can be reset
971  *  @hw: pointer to the HW structure
972  *
973  *  Checks if the PHY is in a state that can be reset or if manageability
974  *  has it tied up. This is a function pointer entry point called by drivers.
975  **/
976 s32 e1000_check_reset_block(struct e1000_hw *hw)
977 {
978         if (hw->phy.ops.check_reset_block)
979                 return hw->phy.ops.check_reset_block(hw);
980
981         return E1000_SUCCESS;
982 }
983
984 /**
985  *  e1000_read_phy_reg - Reads PHY register
986  *  @hw: pointer to the HW structure
987  *  @offset: the register to read
988  *  @data: the buffer to store the 16-bit read.
989  *
990  *  Reads the PHY register and returns the value in data.
991  *  This is a function pointer entry point called by drivers.
992  **/
993 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
994 {
995         if (hw->phy.ops.read_reg)
996                 return hw->phy.ops.read_reg(hw, offset, data);
997
998         return E1000_SUCCESS;
999 }
1000
1001 /**
1002  *  e1000_write_phy_reg - Writes PHY register
1003  *  @hw: pointer to the HW structure
1004  *  @offset: the register to write
1005  *  @data: the value to write.
1006  *
1007  *  Writes the PHY register at offset with the value in data.
1008  *  This is a function pointer entry point called by drivers.
1009  **/
1010 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1011 {
1012         if (hw->phy.ops.write_reg)
1013                 return hw->phy.ops.write_reg(hw, offset, data);
1014
1015         return E1000_SUCCESS;
1016 }
1017
1018 /**
1019  *  e1000_release_phy - Generic release PHY
1020  *  @hw: pointer to the HW structure
1021  *
1022  *  Return if silicon family does not require a semaphore when accessing the
1023  *  PHY.
1024  **/
1025 void e1000_release_phy(struct e1000_hw *hw)
1026 {
1027         if (hw->phy.ops.release)
1028                 hw->phy.ops.release(hw);
1029 }
1030
1031 /**
1032  *  e1000_acquire_phy - Generic acquire PHY
1033  *  @hw: pointer to the HW structure
1034  *
1035  *  Return success if silicon family does not require a semaphore when
1036  *  accessing the PHY.
1037  **/
1038 s32 e1000_acquire_phy(struct e1000_hw *hw)
1039 {
1040         if (hw->phy.ops.acquire)
1041                 return hw->phy.ops.acquire(hw);
1042
1043         return E1000_SUCCESS;
1044 }
1045
1046 /**
1047  *  e1000_cfg_on_link_up - Configure PHY upon link up
1048  *  @hw: pointer to the HW structure
1049  **/
1050 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1051 {
1052         if (hw->phy.ops.cfg_on_link_up)
1053                 return hw->phy.ops.cfg_on_link_up(hw);
1054
1055         return E1000_SUCCESS;
1056 }
1057
1058 /**
1059  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1060  *  @hw: pointer to the HW structure
1061  *  @offset: the register to read
1062  *  @data: the location to store the 16-bit value read.
1063  *
1064  *  Reads a register out of the Kumeran interface. Currently no func pointer
1065  *  exists and all implementations are handled in the generic version of
1066  *  this function.
1067  **/
1068 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1069 {
1070         return e1000_read_kmrn_reg_generic(hw, offset, data);
1071 }
1072
1073 /**
1074  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1075  *  @hw: pointer to the HW structure
1076  *  @offset: the register to write
1077  *  @data: the value to write.
1078  *
1079  *  Writes a register to the Kumeran interface. Currently no func pointer
1080  *  exists and all implementations are handled in the generic version of
1081  *  this function.
1082  **/
1083 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1084 {
1085         return e1000_write_kmrn_reg_generic(hw, offset, data);
1086 }
1087
1088 /**
1089  *  e1000_get_cable_length - Retrieves cable length estimation
1090  *  @hw: pointer to the HW structure
1091  *
1092  *  This function estimates the cable length and stores them in
1093  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1094  *  entry point called by drivers.
1095  **/
1096 s32 e1000_get_cable_length(struct e1000_hw *hw)
1097 {
1098         if (hw->phy.ops.get_cable_length)
1099                 return hw->phy.ops.get_cable_length(hw);
1100
1101         return E1000_SUCCESS;
1102 }
1103
1104 /**
1105  *  e1000_get_phy_info - Retrieves PHY information from registers
1106  *  @hw: pointer to the HW structure
1107  *
1108  *  This function gets some information from various PHY registers and
1109  *  populates hw->phy values with it. This is a function pointer entry
1110  *  point called by drivers.
1111  **/
1112 s32 e1000_get_phy_info(struct e1000_hw *hw)
1113 {
1114         if (hw->phy.ops.get_info)
1115                 return hw->phy.ops.get_info(hw);
1116
1117         return E1000_SUCCESS;
1118 }
1119
1120 /**
1121  *  e1000_phy_hw_reset - Hard PHY reset
1122  *  @hw: pointer to the HW structure
1123  *
1124  *  Performs a hard PHY reset. This is a function pointer entry point called
1125  *  by drivers.
1126  **/
1127 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1128 {
1129         if (hw->phy.ops.reset)
1130                 return hw->phy.ops.reset(hw);
1131
1132         return E1000_SUCCESS;
1133 }
1134
1135 /**
1136  *  e1000_phy_commit - Soft PHY reset
1137  *  @hw: pointer to the HW structure
1138  *
1139  *  Performs a soft PHY reset on those that apply. This is a function pointer
1140  *  entry point called by drivers.
1141  **/
1142 s32 e1000_phy_commit(struct e1000_hw *hw)
1143 {
1144         if (hw->phy.ops.commit)
1145                 return hw->phy.ops.commit(hw);
1146
1147         return E1000_SUCCESS;
1148 }
1149
1150 /**
1151  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1152  *  @hw: pointer to the HW structure
1153  *  @active: boolean used to enable/disable lplu
1154  *
1155  *  Success returns 0, Failure returns 1
1156  *
1157  *  The low power link up (lplu) state is set to the power management level D0
1158  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1159  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1160  *  is used during Dx states where the power conservation is most important.
1161  *  During driver activity, SmartSpeed should be enabled so performance is
1162  *  maintained.  This is a function pointer entry point called by drivers.
1163  **/
1164 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1165 {
1166         if (hw->phy.ops.set_d0_lplu_state)
1167                 return hw->phy.ops.set_d0_lplu_state(hw, active);
1168
1169         return E1000_SUCCESS;
1170 }
1171
1172 /**
1173  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1174  *  @hw: pointer to the HW structure
1175  *  @active: boolean used to enable/disable lplu
1176  *
1177  *  Success returns 0, Failure returns 1
1178  *
1179  *  The low power link up (lplu) state is set to the power management level D3
1180  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1181  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1182  *  is used during Dx states where the power conservation is most important.
1183  *  During driver activity, SmartSpeed should be enabled so performance is
1184  *  maintained.  This is a function pointer entry point called by drivers.
1185  **/
1186 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1187 {
1188         if (hw->phy.ops.set_d3_lplu_state)
1189                 return hw->phy.ops.set_d3_lplu_state(hw, active);
1190
1191         return E1000_SUCCESS;
1192 }
1193
1194 /**
1195  *  e1000_read_mac_addr - Reads MAC address
1196  *  @hw: pointer to the HW structure
1197  *
1198  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1199  *  Currently no func pointer exists and all implementations are handled in the
1200  *  generic version of this function.
1201  **/
1202 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1203 {
1204         if (hw->mac.ops.read_mac_addr)
1205                 return hw->mac.ops.read_mac_addr(hw);
1206
1207         return e1000_read_mac_addr_generic(hw);
1208 }
1209
1210 /**
1211  *  e1000_read_pba_string - Read device part number string
1212  *  @hw: pointer to the HW structure
1213  *  @pba_num: pointer to device part number
1214  *  @pba_num_size: size of part number buffer
1215  *
1216  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1217  *  the value in pba_num.
1218  *  Currently no func pointer exists and all implementations are handled in the
1219  *  generic version of this function.
1220  **/
1221 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1222 {
1223         return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1224 }
1225
1226 /**
1227  *  e1000_read_pba_length - Read device part number string length
1228  *  @hw: pointer to the HW structure
1229  *  @pba_num_size: size of part number buffer
1230  *
1231  *  Reads the product board assembly (PBA) number length from the EEPROM and
1232  *  stores the value in pba_num.
1233  *  Currently no func pointer exists and all implementations are handled in the
1234  *  generic version of this function.
1235  **/
1236 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1237 {
1238         return e1000_read_pba_length_generic(hw, pba_num_size);
1239 }
1240
1241 /**
1242  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1243  *  @hw: pointer to the HW structure
1244  *
1245  *  Validates the NVM checksum is correct. This is a function pointer entry
1246  *  point called by drivers.
1247  **/
1248 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1249 {
1250         if (hw->nvm.ops.validate)
1251                 return hw->nvm.ops.validate(hw);
1252
1253         return -E1000_ERR_CONFIG;
1254 }
1255
1256 /**
1257  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1258  *  @hw: pointer to the HW structure
1259  *
1260  *  Updates the NVM checksum. Currently no func pointer exists and all
1261  *  implementations are handled in the generic version of this function.
1262  **/
1263 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1264 {
1265         if (hw->nvm.ops.update)
1266                 return hw->nvm.ops.update(hw);
1267
1268         return -E1000_ERR_CONFIG;
1269 }
1270
1271 /**
1272  *  e1000_reload_nvm - Reloads EEPROM
1273  *  @hw: pointer to the HW structure
1274  *
1275  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1276  *  extended control register.
1277  **/
1278 void e1000_reload_nvm(struct e1000_hw *hw)
1279 {
1280         if (hw->nvm.ops.reload)
1281                 hw->nvm.ops.reload(hw);
1282 }
1283
1284 /**
1285  *  e1000_read_nvm - Reads NVM (EEPROM)
1286  *  @hw: pointer to the HW structure
1287  *  @offset: the word offset to read
1288  *  @words: number of 16-bit words to read
1289  *  @data: pointer to the properly sized buffer for the data.
1290  *
1291  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1292  *  pointer entry point called by drivers.
1293  **/
1294 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1295 {
1296         if (hw->nvm.ops.read)
1297                 return hw->nvm.ops.read(hw, offset, words, data);
1298
1299         return -E1000_ERR_CONFIG;
1300 }
1301
1302 /**
1303  *  e1000_write_nvm - Writes to NVM (EEPROM)
1304  *  @hw: pointer to the HW structure
1305  *  @offset: the word offset to read
1306  *  @words: number of 16-bit words to write
1307  *  @data: pointer to the properly sized buffer for the data.
1308  *
1309  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1310  *  pointer entry point called by drivers.
1311  **/
1312 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1313 {
1314         if (hw->nvm.ops.write)
1315                 return hw->nvm.ops.write(hw, offset, words, data);
1316
1317         return E1000_SUCCESS;
1318 }
1319
1320 /**
1321  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1322  *  @hw: pointer to the HW structure
1323  *  @reg: 32bit register offset
1324  *  @offset: the register to write
1325  *  @data: the value to write.
1326  *
1327  *  Writes the PHY register at offset with the value in data.
1328  *  This is a function pointer entry point called by drivers.
1329  **/
1330 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1331                               u8 data)
1332 {
1333         return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1334 }
1335
1336 /**
1337  * e1000_power_up_phy - Restores link in case of PHY power down
1338  * @hw: pointer to the HW structure
1339  *
1340  * The phy may be powered down to save power, to turn off link when the
1341  * driver is unloaded, or wake on lan is not enabled (among others).
1342  **/
1343 void e1000_power_up_phy(struct e1000_hw *hw)
1344 {
1345         if (hw->phy.ops.power_up)
1346                 hw->phy.ops.power_up(hw);
1347
1348         e1000_setup_link(hw);
1349 }
1350
1351 /**
1352  * e1000_power_down_phy - Power down PHY
1353  * @hw: pointer to the HW structure
1354  *
1355  * The phy may be powered down to save power, to turn off link when the
1356  * driver is unloaded, or wake on lan is not enabled (among others).
1357  **/
1358 void e1000_power_down_phy(struct e1000_hw *hw)
1359 {
1360         if (hw->phy.ops.power_down)
1361                 hw->phy.ops.power_down(hw);
1362 }
1363
1364 /**
1365  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1366  *  @hw: pointer to the HW structure
1367  *
1368  *  Power on the optics and PCS.
1369  **/
1370 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1371 {
1372         if (hw->mac.ops.power_up_serdes)
1373                 hw->mac.ops.power_up_serdes(hw);
1374 }
1375
1376 /**
1377  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1378  *  @hw: pointer to the HW structure
1379  *
1380  *  Shutdown the optics and PCS on driver unload.
1381  **/
1382 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1383 {
1384         if (hw->mac.ops.shutdown_serdes)
1385                 hw->mac.ops.shutdown_serdes(hw);
1386 }
1387