]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/e1000/e1000_ich8lan.c
ssh: update to OpenSSH 9.1p1
[FreeBSD/FreeBSD.git] / sys / dev / e1000 / e1000_ich8lan.c
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3
4   Copyright (c) 2001-2020, Intel Corporation
5   All rights reserved.
6
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32
33 ******************************************************************************/
34 /*$FreeBSD$*/
35
36 /* 82562G 10/100 Network Connection
37  * 82562G-2 10/100 Network Connection
38  * 82562GT 10/100 Network Connection
39  * 82562GT-2 10/100 Network Connection
40  * 82562V 10/100 Network Connection
41  * 82562V-2 10/100 Network Connection
42  * 82566DC-2 Gigabit Network Connection
43  * 82566DC Gigabit Network Connection
44  * 82566DM-2 Gigabit Network Connection
45  * 82566DM Gigabit Network Connection
46  * 82566MC Gigabit Network Connection
47  * 82566MM Gigabit Network Connection
48  * 82567LM Gigabit Network Connection
49  * 82567LF Gigabit Network Connection
50  * 82567V Gigabit Network Connection
51  * 82567LM-2 Gigabit Network Connection
52  * 82567LF-2 Gigabit Network Connection
53  * 82567V-2 Gigabit Network Connection
54  * 82567LF-3 Gigabit Network Connection
55  * 82567LM-3 Gigabit Network Connection
56  * 82567LM-4 Gigabit Network Connection
57  * 82577LM Gigabit Network Connection
58  * 82577LC Gigabit Network Connection
59  * 82578DM Gigabit Network Connection
60  * 82578DC Gigabit Network Connection
61  * 82579LM Gigabit Network Connection
62  * 82579V Gigabit Network Connection
63  * Ethernet Connection I217-LM
64  * Ethernet Connection I217-V
65  * Ethernet Connection I218-V
66  * Ethernet Connection I218-LM
67  * Ethernet Connection (2) I218-LM
68  * Ethernet Connection (2) I218-V
69  * Ethernet Connection (3) I218-LM
70  * Ethernet Connection (3) I218-V
71  */
72
73 #include "e1000_api.h"
74
75 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
76 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
77 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
78 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
80 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
81 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
82 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
83 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
84 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
85                                               u8 *mc_addr_list,
86                                               u32 mc_addr_count);
87 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
89 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
90 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
91                                             bool active);
92 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
93                                             bool active);
94 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
95                                    u16 words, u16 *data);
96 static s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
97                                u16 *data);
98 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
99                                     u16 words, u16 *data);
100 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
101 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
102 static s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
103 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
104                                             u16 *data);
105 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
106 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
108 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
109 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
110 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
111 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
112 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
113                                            u16 *speed, u16 *duplex);
114 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
115 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
116 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
117 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
118 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
119 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
120 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
121 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
122 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
123 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
124 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
125 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
127                                           u32 offset, u8 *data);
128 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
129                                           u8 size, u16 *data);
130 static s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
131                                             u32 *data);
132 static s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
133                                            u32 offset, u32 *data);
134 static s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
135                                              u32 offset, u32 data);
136 static s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
137                                                   u32 offset, u32 dword);
138 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
139                                           u32 offset, u16 *data);
140 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
141                                                  u32 offset, u8 byte);
142 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
143 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
144 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
145 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
146 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
147 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
148 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
149
150 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
151 /* Offset 04h HSFSTS */
152 union ich8_hws_flash_status {
153         struct ich8_hsfsts {
154                 u16 flcdone:1; /* bit 0 Flash Cycle Done */
155                 u16 flcerr:1; /* bit 1 Flash Cycle Error */
156                 u16 dael:1; /* bit 2 Direct Access error Log */
157                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
158                 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
159                 u16 reserved1:2; /* bit 13:6 Reserved */
160                 u16 reserved2:6; /* bit 13:6 Reserved */
161                 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
162                 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
163         } hsf_status;
164         u16 regval;
165 };
166
167 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
168 /* Offset 06h FLCTL */
169 union ich8_hws_flash_ctrl {
170         struct ich8_hsflctl {
171                 u16 flcgo:1;   /* 0 Flash Cycle Go */
172                 u16 flcycle:2;   /* 2:1 Flash Cycle */
173                 u16 reserved:5;   /* 7:3 Reserved  */
174                 u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
175                 u16 flockdn:6;   /* 15:10 Reserved */
176         } hsf_ctrl;
177         u16 regval;
178 };
179
180 /* ICH Flash Region Access Permissions */
181 union ich8_hws_flash_regacc {
182         struct ich8_flracc {
183                 u32 grra:8; /* 0:7 GbE region Read Access */
184                 u32 grwa:8; /* 8:15 GbE region Write Access */
185                 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
186                 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
187         } hsf_flregacc;
188         u16 regval;
189 };
190
191 /**
192  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
193  *  @hw: pointer to the HW structure
194  *
195  *  Test access to the PHY registers by reading the PHY ID registers.  If
196  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
197  *  otherwise assume the read PHY ID is correct if it is valid.
198  *
199  *  Assumes the sw/fw/hw semaphore is already acquired.
200  **/
201 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
202 {
203         u16 phy_reg = 0;
204         u32 phy_id = 0;
205         s32 ret_val = 0;
206         u16 retry_count;
207         u32 mac_reg = 0;
208
209         for (retry_count = 0; retry_count < 2; retry_count++) {
210                 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
211                 if (ret_val || (phy_reg == 0xFFFF))
212                         continue;
213                 phy_id = (u32)(phy_reg << 16);
214
215                 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
216                 if (ret_val || (phy_reg == 0xFFFF)) {
217                         phy_id = 0;
218                         continue;
219                 }
220                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
221                 break;
222         }
223
224         if (hw->phy.id) {
225                 if  (hw->phy.id == phy_id)
226                         goto out;
227         } else if (phy_id) {
228                 hw->phy.id = phy_id;
229                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
230                 goto out;
231         }
232
233         /* In case the PHY needs to be in mdio slow mode,
234          * set slow mode and try to get the PHY id again.
235          */
236         if (hw->mac.type < e1000_pch_lpt) {
237                 hw->phy.ops.release(hw);
238                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
239                 if (!ret_val)
240                         ret_val = e1000_get_phy_id(hw);
241                 hw->phy.ops.acquire(hw);
242         }
243
244         if (ret_val)
245                 return false;
246 out:
247         if (hw->mac.type >= e1000_pch_lpt) {
248                 /* Only unforce SMBus if ME is not active */
249                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
250                     E1000_ICH_FWSM_FW_VALID)) {
251                         /* Unforce SMBus mode in PHY */
252                         hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
253                         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
254                         hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
255
256                         /* Unforce SMBus mode in MAC */
257                         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
258                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
259                         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
260                 }
261         }
262
263         return true;
264 }
265
266 /**
267  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
268  *  @hw: pointer to the HW structure
269  *
270  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
271  *  used to reset the PHY to a quiescent state when necessary.
272  **/
273 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
274 {
275         u32 mac_reg;
276
277         DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
278
279         /* Set Phy Config Counter to 50msec */
280         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
281         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
282         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
283         E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
284
285         /* Toggle LANPHYPC Value bit */
286         mac_reg = E1000_READ_REG(hw, E1000_CTRL);
287         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
288         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
289         E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
290         E1000_WRITE_FLUSH(hw);
291         msec_delay(1);
292         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
293         E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
294         E1000_WRITE_FLUSH(hw);
295
296         if (hw->mac.type < e1000_pch_lpt) {
297                 msec_delay(50);
298         } else {
299                 u16 count = 20;
300
301                 do {
302                         msec_delay(5);
303                 } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
304                            E1000_CTRL_EXT_LPCD) && count--);
305
306                 msec_delay(30);
307         }
308 }
309
310 /**
311  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
312  *  @hw: pointer to the HW structure
313  *
314  *  Workarounds/flow necessary for PHY initialization during driver load
315  *  and resume paths.
316  **/
317 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
318 {
319         u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
320         s32 ret_val;
321
322         DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
323
324         /* Gate automatic PHY configuration by hardware on managed and
325          * non-managed 82579 and newer adapters.
326          */
327         e1000_gate_hw_phy_config_ich8lan(hw, true);
328
329         /* It is not possible to be certain of the current state of ULP
330          * so forcibly disable it.
331          */
332         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
333         e1000_disable_ulp_lpt_lp(hw, TRUE);
334
335         ret_val = hw->phy.ops.acquire(hw);
336         if (ret_val) {
337                 DEBUGOUT("Failed to initialize PHY flow\n");
338                 goto out;
339         }
340
341         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
342          * inaccessible and resetting the PHY is not blocked, toggle the
343          * LANPHYPC Value bit to force the interconnect to PCIe mode.
344          */
345         switch (hw->mac.type) {
346         case e1000_pch_lpt:
347         case e1000_pch_spt:
348         case e1000_pch_cnp:
349         case e1000_pch_tgp:
350         case e1000_pch_adp:
351         case e1000_pch_mtp:
352                 if (e1000_phy_is_accessible_pchlan(hw))
353                         break;
354
355                 /* Before toggling LANPHYPC, see if PHY is accessible by
356                  * forcing MAC to SMBus mode first.
357                  */
358                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
359                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
360                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
361
362                 /* Wait 50 milliseconds for MAC to finish any retries
363                  * that it might be trying to perform from previous
364                  * attempts to acknowledge any phy read requests.
365                  */
366                  msec_delay(50);
367
368                 /* FALLTHROUGH */
369         case e1000_pch2lan:
370                 if (e1000_phy_is_accessible_pchlan(hw))
371                         break;
372
373                 /* FALLTHROUGH */
374         case e1000_pchlan:
375                 if ((hw->mac.type == e1000_pchlan) &&
376                     (fwsm & E1000_ICH_FWSM_FW_VALID))
377                         break;
378
379                 if (hw->phy.ops.check_reset_block(hw)) {
380                         DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
381                         ret_val = -E1000_ERR_PHY;
382                         break;
383                 }
384
385                 /* Toggle LANPHYPC Value bit */
386                 e1000_toggle_lanphypc_pch_lpt(hw);
387                 if (hw->mac.type >= e1000_pch_lpt) {
388                         if (e1000_phy_is_accessible_pchlan(hw))
389                                 break;
390
391                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
392                          * so ensure that the MAC is also out of SMBus mode
393                          */
394                         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
395                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
396                         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
397
398                         if (e1000_phy_is_accessible_pchlan(hw))
399                                 break;
400
401                         ret_val = -E1000_ERR_PHY;
402                 }
403                 break;
404         default:
405                 break;
406         }
407
408         hw->phy.ops.release(hw);
409         if (!ret_val) {
410
411                 /* Check to see if able to reset PHY.  Print error if not */
412                 if (hw->phy.ops.check_reset_block(hw)) {
413                         ERROR_REPORT("Reset blocked by ME\n");
414                         goto out;
415                 }
416
417                 /* Reset the PHY before any access to it.  Doing so, ensures
418                  * that the PHY is in a known good state before we read/write
419                  * PHY registers.  The generic reset is sufficient here,
420                  * because we haven't determined the PHY type yet.
421                  */
422                 ret_val = e1000_phy_hw_reset_generic(hw);
423                 if (ret_val)
424                         goto out;
425
426                 /* On a successful reset, possibly need to wait for the PHY
427                  * to quiesce to an accessible state before returning control
428                  * to the calling function.  If the PHY does not quiesce, then
429                  * return E1000E_BLK_PHY_RESET, as this is the condition that
430                  *  the PHY is in.
431                  */
432                 ret_val = hw->phy.ops.check_reset_block(hw);
433                 if (ret_val)
434                         ERROR_REPORT("ME blocked access to PHY after reset\n");
435         }
436
437 out:
438         /* Ungate automatic PHY configuration on non-managed 82579 */
439         if ((hw->mac.type == e1000_pch2lan) &&
440             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
441                 msec_delay(10);
442                 e1000_gate_hw_phy_config_ich8lan(hw, false);
443         }
444
445         return ret_val;
446 }
447
448 /**
449  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
450  *  @hw: pointer to the HW structure
451  *
452  *  Initialize family-specific PHY parameters and function pointers.
453  **/
454 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
455 {
456         struct e1000_phy_info *phy = &hw->phy;
457         s32 ret_val;
458
459         DEBUGFUNC("e1000_init_phy_params_pchlan");
460
461         phy->addr               = 1;
462         phy->reset_delay_us     = 100;
463
464         phy->ops.acquire        = e1000_acquire_swflag_ich8lan;
465         phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
466         phy->ops.get_cfg_done   = e1000_get_cfg_done_ich8lan;
467         phy->ops.set_page       = e1000_set_page_igp;
468         phy->ops.read_reg       = e1000_read_phy_reg_hv;
469         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
470         phy->ops.read_reg_page  = e1000_read_phy_reg_page_hv;
471         phy->ops.release        = e1000_release_swflag_ich8lan;
472         phy->ops.reset          = e1000_phy_hw_reset_ich8lan;
473         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
474         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
475         phy->ops.write_reg      = e1000_write_phy_reg_hv;
476         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
477         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
478         phy->ops.power_up       = e1000_power_up_phy_copper;
479         phy->ops.power_down     = e1000_power_down_phy_copper_ich8lan;
480         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
481
482         phy->id = e1000_phy_unknown;
483
484         ret_val = e1000_init_phy_workarounds_pchlan(hw);
485         if (ret_val)
486                 return ret_val;
487
488         if (phy->id == e1000_phy_unknown)
489                 switch (hw->mac.type) {
490                 default:
491                         ret_val = e1000_get_phy_id(hw);
492                         if (ret_val)
493                                 return ret_val;
494                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
495                                 break;
496                         /* FALLTHROUGH */
497                 case e1000_pch2lan:
498                 case e1000_pch_lpt:
499                 case e1000_pch_spt:
500                 case e1000_pch_cnp:
501                 case e1000_pch_tgp:
502                 case e1000_pch_adp:
503                 case e1000_pch_mtp:
504                         /* In case the PHY needs to be in mdio slow mode,
505                          * set slow mode and try to get the PHY id again.
506                          */
507                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
508                         if (ret_val)
509                                 return ret_val;
510                         ret_val = e1000_get_phy_id(hw);
511                         if (ret_val)
512                                 return ret_val;
513                         break;
514                 }
515         phy->type = e1000_get_phy_type_from_id(phy->id);
516
517         switch (phy->type) {
518         case e1000_phy_82577:
519         case e1000_phy_82579:
520         case e1000_phy_i217:
521                 phy->ops.check_polarity = e1000_check_polarity_82577;
522                 phy->ops.force_speed_duplex =
523                         e1000_phy_force_speed_duplex_82577;
524                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
525                 phy->ops.get_info = e1000_get_phy_info_82577;
526                 phy->ops.commit = e1000_phy_sw_reset_generic;
527                 break;
528         case e1000_phy_82578:
529                 phy->ops.check_polarity = e1000_check_polarity_m88;
530                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
531                 phy->ops.get_cable_length = e1000_get_cable_length_m88;
532                 phy->ops.get_info = e1000_get_phy_info_m88;
533                 break;
534         default:
535                 ret_val = -E1000_ERR_PHY;
536                 break;
537         }
538
539         return ret_val;
540 }
541
542 /**
543  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
544  *  @hw: pointer to the HW structure
545  *
546  *  Initialize family-specific PHY parameters and function pointers.
547  **/
548 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
549 {
550         struct e1000_phy_info *phy = &hw->phy;
551         s32 ret_val;
552         u16 i = 0;
553
554         DEBUGFUNC("e1000_init_phy_params_ich8lan");
555
556         phy->addr               = 1;
557         phy->reset_delay_us     = 100;
558
559         phy->ops.acquire        = e1000_acquire_swflag_ich8lan;
560         phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
561         phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
562         phy->ops.get_cfg_done   = e1000_get_cfg_done_ich8lan;
563         phy->ops.read_reg       = e1000_read_phy_reg_igp;
564         phy->ops.release        = e1000_release_swflag_ich8lan;
565         phy->ops.reset          = e1000_phy_hw_reset_ich8lan;
566         phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
567         phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
568         phy->ops.write_reg      = e1000_write_phy_reg_igp;
569         phy->ops.power_up       = e1000_power_up_phy_copper;
570         phy->ops.power_down     = e1000_power_down_phy_copper_ich8lan;
571
572         /* We may need to do this twice - once for IGP and if that fails,
573          * we'll set BM func pointers and try again
574          */
575         ret_val = e1000_determine_phy_address(hw);
576         if (ret_val) {
577                 phy->ops.write_reg = e1000_write_phy_reg_bm;
578                 phy->ops.read_reg  = e1000_read_phy_reg_bm;
579                 ret_val = e1000_determine_phy_address(hw);
580                 if (ret_val) {
581                         DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
582                         return ret_val;
583                 }
584         }
585
586         phy->id = 0;
587         while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
588                (i++ < 100)) {
589                 msec_delay(1);
590                 ret_val = e1000_get_phy_id(hw);
591                 if (ret_val)
592                         return ret_val;
593         }
594
595         /* Verify phy id */
596         switch (phy->id) {
597         case IGP03E1000_E_PHY_ID:
598                 phy->type = e1000_phy_igp_3;
599                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
600                 phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
601                 phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
602                 phy->ops.get_info = e1000_get_phy_info_igp;
603                 phy->ops.check_polarity = e1000_check_polarity_igp;
604                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
605                 break;
606         case IFE_E_PHY_ID:
607         case IFE_PLUS_E_PHY_ID:
608         case IFE_C_E_PHY_ID:
609                 phy->type = e1000_phy_ife;
610                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
611                 phy->ops.get_info = e1000_get_phy_info_ife;
612                 phy->ops.check_polarity = e1000_check_polarity_ife;
613                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
614                 break;
615         case BME1000_E_PHY_ID:
616                 phy->type = e1000_phy_bm;
617                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
618                 phy->ops.read_reg = e1000_read_phy_reg_bm;
619                 phy->ops.write_reg = e1000_write_phy_reg_bm;
620                 phy->ops.commit = e1000_phy_sw_reset_generic;
621                 phy->ops.get_info = e1000_get_phy_info_m88;
622                 phy->ops.check_polarity = e1000_check_polarity_m88;
623                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
624                 break;
625         default:
626                 return -E1000_ERR_PHY;
627                 break;
628         }
629
630         return E1000_SUCCESS;
631 }
632
633 /**
634  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
635  *  @hw: pointer to the HW structure
636  *
637  *  Initialize family-specific NVM parameters and function
638  *  pointers.
639  **/
640 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
641 {
642         struct e1000_nvm_info *nvm = &hw->nvm;
643         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
644         u32 gfpreg, sector_base_addr, sector_end_addr;
645         u16 i;
646         u32 nvm_size;
647
648         DEBUGFUNC("e1000_init_nvm_params_ich8lan");
649
650         nvm->type = e1000_nvm_flash_sw;
651
652         if (hw->mac.type >= e1000_pch_spt) {
653                 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
654                  * STRAP register. This is because in SPT the GbE Flash region
655                  * is no longer accessed through the flash registers. Instead,
656                  * the mechanism has changed, and the Flash region access
657                  * registers are now implemented in GbE memory space.
658                  */
659                 nvm->flash_base_addr = 0;
660                 nvm_size =
661                     (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
662                     * NVM_SIZE_MULTIPLIER;
663                 nvm->flash_bank_size = nvm_size / 2;
664                 /* Adjust to word count */
665                 nvm->flash_bank_size /= sizeof(u16);
666                 /* Set the base address for flash register access */
667                 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
668         } else {
669                 /* Can't read flash registers if register set isn't mapped. */
670                 if (!hw->flash_address) {
671                         DEBUGOUT("ERROR: Flash registers not mapped\n");
672                         return -E1000_ERR_CONFIG;
673                 }
674
675                 gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
676
677                 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
678                  * Add 1 to sector_end_addr since this sector is included in
679                  * the overall size.
680                  */
681                 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
682                 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
683
684                 /* flash_base_addr is byte-aligned */
685                 nvm->flash_base_addr = sector_base_addr
686                                        << FLASH_SECTOR_ADDR_SHIFT;
687
688                 /* find total size of the NVM, then cut in half since the total
689                  * size represents two separate NVM banks.
690                  */
691                 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
692                                         << FLASH_SECTOR_ADDR_SHIFT);
693                 nvm->flash_bank_size /= 2;
694                 /* Adjust to word count */
695                 nvm->flash_bank_size /= sizeof(u16);
696         }
697
698         nvm->word_size = E1000_SHADOW_RAM_WORDS;
699
700         /* Clear shadow ram */
701         for (i = 0; i < nvm->word_size; i++) {
702                 dev_spec->shadow_ram[i].modified = false;
703                 dev_spec->shadow_ram[i].value    = 0xFFFF;
704         }
705
706         /* Function Pointers */
707         nvm->ops.acquire        = e1000_acquire_nvm_ich8lan;
708         nvm->ops.release        = e1000_release_nvm_ich8lan;
709         if (hw->mac.type >= e1000_pch_spt) {
710                 nvm->ops.read   = e1000_read_nvm_spt;
711                 nvm->ops.update = e1000_update_nvm_checksum_spt;
712         } else {
713                 nvm->ops.read   = e1000_read_nvm_ich8lan;
714                 nvm->ops.update = e1000_update_nvm_checksum_ich8lan;
715         }
716         nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
717         nvm->ops.validate       = e1000_validate_nvm_checksum_ich8lan;
718         nvm->ops.write          = e1000_write_nvm_ich8lan;
719
720         return E1000_SUCCESS;
721 }
722
723 /**
724  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
725  *  @hw: pointer to the HW structure
726  *
727  *  Initialize family-specific MAC parameters and function
728  *  pointers.
729  **/
730 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
731 {
732         struct e1000_mac_info *mac = &hw->mac;
733
734         DEBUGFUNC("e1000_init_mac_params_ich8lan");
735
736         /* Set media type function pointer */
737         hw->phy.media_type = e1000_media_type_copper;
738
739         /* Set mta register count */
740         mac->mta_reg_count = 32;
741         /* Set rar entry count */
742         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
743         if (mac->type == e1000_ich8lan)
744                 mac->rar_entry_count--;
745         /* Set if part includes ASF firmware */
746         mac->asf_firmware_present = true;
747         /* FWSM register */
748         mac->has_fwsm = true;
749         /* ARC subsystem not supported */
750         mac->arc_subsystem_valid = false;
751         /* Adaptive IFS supported */
752         mac->adaptive_ifs = true;
753
754         /* Function pointers */
755
756         /* bus type/speed/width */
757         mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
758         /* function id */
759         mac->ops.set_lan_id = e1000_set_lan_id_single_port;
760         /* reset */
761         mac->ops.reset_hw = e1000_reset_hw_ich8lan;
762         /* hw initialization */
763         mac->ops.init_hw = e1000_init_hw_ich8lan;
764         /* link setup */
765         mac->ops.setup_link = e1000_setup_link_ich8lan;
766         /* physical interface setup */
767         mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
768         /* check for link */
769         mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
770         /* link info */
771         mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
772         /* multicast address update */
773         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
774         /* clear hardware counters */
775         mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
776
777         /* LED and other operations */
778         switch (mac->type) {
779         case e1000_ich8lan:
780         case e1000_ich9lan:
781         case e1000_ich10lan:
782                 /* check management mode */
783                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
784                 /* ID LED init */
785                 mac->ops.id_led_init = e1000_id_led_init_generic;
786                 /* blink LED */
787                 mac->ops.blink_led = e1000_blink_led_generic;
788                 /* setup LED */
789                 mac->ops.setup_led = e1000_setup_led_generic;
790                 /* cleanup LED */
791                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
792                 /* turn on/off LED */
793                 mac->ops.led_on = e1000_led_on_ich8lan;
794                 mac->ops.led_off = e1000_led_off_ich8lan;
795                 break;
796         case e1000_pch2lan:
797                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
798                 mac->ops.rar_set = e1000_rar_set_pch2lan;
799                 /* FALLTHROUGH */
800         case e1000_pch_lpt:
801         case e1000_pch_spt:
802         case e1000_pch_cnp:
803         case e1000_pch_tgp:
804         case e1000_pch_adp:
805         case e1000_pch_mtp:
806                 /* multicast address update for pch2 */
807                 mac->ops.update_mc_addr_list =
808                         e1000_update_mc_addr_list_pch2lan;
809                 /* FALLTHROUGH */
810         case e1000_pchlan:
811                 /* check management mode */
812                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
813                 /* ID LED init */
814                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
815                 /* setup LED */
816                 mac->ops.setup_led = e1000_setup_led_pchlan;
817                 /* cleanup LED */
818                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
819                 /* turn on/off LED */
820                 mac->ops.led_on = e1000_led_on_pchlan;
821                 mac->ops.led_off = e1000_led_off_pchlan;
822                 break;
823         default:
824                 break;
825         }
826
827         if (mac->type >= e1000_pch_lpt) {
828                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
829                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
830                 mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
831                 mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
832         }
833
834         /* Enable PCS Lock-loss workaround for ICH8 */
835         if (mac->type == e1000_ich8lan)
836                 e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
837
838         return E1000_SUCCESS;
839 }
840
841 /**
842  *  __e1000_access_emi_reg_locked - Read/write EMI register
843  *  @hw: pointer to the HW structure
844  *  @address: EMI address to program
845  *  @data: pointer to value to read/write from/to the EMI address
846  *  @read: boolean flag to indicate read or write
847  *
848  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
849  **/
850 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
851                                          u16 *data, bool read)
852 {
853         s32 ret_val;
854
855         DEBUGFUNC("__e1000_access_emi_reg_locked");
856
857         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
858         if (ret_val)
859                 return ret_val;
860
861         if (read)
862                 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
863                                                       data);
864         else
865                 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
866                                                        *data);
867
868         return ret_val;
869 }
870
871 /**
872  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
873  *  @hw: pointer to the HW structure
874  *  @addr: EMI address to program
875  *  @data: value to be read from the EMI address
876  *
877  *  Assumes the SW/FW/HW Semaphore is already acquired.
878  **/
879 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
880 {
881         DEBUGFUNC("e1000_read_emi_reg_locked");
882
883         return __e1000_access_emi_reg_locked(hw, addr, data, true);
884 }
885
886 /**
887  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
888  *  @hw: pointer to the HW structure
889  *  @addr: EMI address to program
890  *  @data: value to be written to the EMI address
891  *
892  *  Assumes the SW/FW/HW Semaphore is already acquired.
893  **/
894 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
895 {
896         DEBUGFUNC("e1000_read_emi_reg_locked");
897
898         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
899 }
900
901 /**
902  *  e1000_set_eee_pchlan - Enable/disable EEE support
903  *  @hw: pointer to the HW structure
904  *
905  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
906  *  the link and the EEE capabilities of the link partner.  The LPI Control
907  *  register bits will remain set only if/when link is up.
908  *
909  *  EEE LPI must not be asserted earlier than one second after link is up.
910  *  On 82579, EEE LPI should not be enabled until such time otherwise there
911  *  can be link issues with some switches.  Other devices can have EEE LPI
912  *  enabled immediately upon link up since they have a timer in hardware which
913  *  prevents LPI from being asserted too early.
914  **/
915 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
916 {
917         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
918         s32 ret_val;
919         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
920
921         DEBUGFUNC("e1000_set_eee_pchlan");
922
923         switch (hw->phy.type) {
924         case e1000_phy_82579:
925                 lpa = I82579_EEE_LP_ABILITY;
926                 pcs_status = I82579_EEE_PCS_STATUS;
927                 adv_addr = I82579_EEE_ADVERTISEMENT;
928                 break;
929         case e1000_phy_i217:
930                 lpa = I217_EEE_LP_ABILITY;
931                 pcs_status = I217_EEE_PCS_STATUS;
932                 adv_addr = I217_EEE_ADVERTISEMENT;
933                 break;
934         default:
935                 return E1000_SUCCESS;
936         }
937
938         ret_val = hw->phy.ops.acquire(hw);
939         if (ret_val)
940                 return ret_val;
941
942         ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
943         if (ret_val)
944                 goto release;
945
946         /* Clear bits that enable EEE in various speeds */
947         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
948
949         /* Enable EEE if not disabled by user */
950         if (!dev_spec->eee_disable) {
951                 /* Save off link partner's EEE ability */
952                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
953                                                     &dev_spec->eee_lp_ability);
954                 if (ret_val)
955                         goto release;
956
957                 /* Read EEE advertisement */
958                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
959                 if (ret_val)
960                         goto release;
961
962                 /* Enable EEE only for speeds in which the link partner is
963                  * EEE capable and for which we advertise EEE.
964                  */
965                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
966                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
967
968                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
969                         hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
970                         if (data & NWAY_LPAR_100TX_FD_CAPS)
971                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
972                         else
973                                 /* EEE is not supported in 100Half, so ignore
974                                  * partner's EEE in 100 ability if full-duplex
975                                  * is not advertised.
976                                  */
977                                 dev_spec->eee_lp_ability &=
978                                     ~I82579_EEE_100_SUPPORTED;
979                 }
980         }
981
982         if (hw->phy.type == e1000_phy_82579) {
983                 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
984                                                     &data);
985                 if (ret_val)
986                         goto release;
987
988                 data &= ~I82579_LPI_100_PLL_SHUT;
989                 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
990                                                      data);
991         }
992
993         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
994         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
995         if (ret_val)
996                 goto release;
997
998         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
999 release:
1000         hw->phy.ops.release(hw);
1001
1002         return ret_val;
1003 }
1004
1005 /**
1006  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
1007  *  @hw:   pointer to the HW structure
1008  *  @link: link up bool flag
1009  *
1010  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
1011  *  preventing further DMA write requests.  Workaround the issue by disabling
1012  *  the de-assertion of the clock request when in 1Gpbs mode.
1013  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1014  *  speeds in order to avoid Tx hangs.
1015  **/
1016 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1017 {
1018         u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1019         u32 status = E1000_READ_REG(hw, E1000_STATUS);
1020         s32 ret_val = E1000_SUCCESS;
1021         u16 reg;
1022
1023         if (link && (status & E1000_STATUS_SPEED_1000)) {
1024                 ret_val = hw->phy.ops.acquire(hw);
1025                 if (ret_val)
1026                         return ret_val;
1027
1028                 ret_val =
1029                     e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1030                                                &reg);
1031                 if (ret_val)
1032                         goto release;
1033
1034                 ret_val =
1035                     e1000_write_kmrn_reg_locked(hw,
1036                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
1037                                                 reg &
1038                                                 ~E1000_KMRNCTRLSTA_K1_ENABLE);
1039                 if (ret_val)
1040                         goto release;
1041
1042                 usec_delay(10);
1043
1044                 E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1045                                 fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1046
1047                 ret_val =
1048                     e1000_write_kmrn_reg_locked(hw,
1049                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
1050                                                 reg);
1051 release:
1052                 hw->phy.ops.release(hw);
1053         } else {
1054                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
1055                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1056
1057                 if ((hw->phy.revision > 5) || !link ||
1058                     ((status & E1000_STATUS_SPEED_100) &&
1059                      (status & E1000_STATUS_FD)))
1060                         goto update_fextnvm6;
1061
1062                 ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1063                 if (ret_val)
1064                         return ret_val;
1065
1066                 /* Clear link status transmit timeout */
1067                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1068
1069                 if (status & E1000_STATUS_SPEED_100) {
1070                         /* Set inband Tx timeout to 5x10us for 100Half */
1071                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1072
1073                         /* Do not extend the K1 entry latency for 100Half */
1074                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1075                 } else {
1076                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
1077                         reg |= 50 <<
1078                                I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1079
1080                         /* Extend the K1 entry latency for 10 Mbps */
1081                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1082                 }
1083
1084                 ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1085                 if (ret_val)
1086                         return ret_val;
1087
1088 update_fextnvm6:
1089                 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1090         }
1091
1092         return ret_val;
1093 }
1094
1095 static u64 e1000_ltr2ns(u16 ltr)
1096 {
1097         u32 value, scale;
1098
1099         /* Determine the latency in nsec based on the LTR value & scale */
1100         value = ltr & E1000_LTRV_VALUE_MASK;
1101         scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1102
1103         return value * (1ULL << (scale * E1000_LTRV_SCALE_FACTOR));
1104 }
1105
1106 /**
1107  *  e1000_platform_pm_pch_lpt - Set platform power management values
1108  *  @hw: pointer to the HW structure
1109  *  @link: bool indicating link status
1110  *
1111  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1112  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1113  *  when link is up (which must not exceed the maximum latency supported
1114  *  by the platform), otherwise specify there is no LTR requirement.
1115  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1116  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1117  *  Capability register set, on this device LTR is set by writing the
1118  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1119  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1120  *  message to the PMC.
1121  *
1122  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1123  *  high-water mark.
1124  **/
1125 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1126 {
1127         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1128                   link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1129         u16 lat_enc = 0;        /* latency encoded */
1130         s32 obff_hwm = 0;
1131
1132         DEBUGFUNC("e1000_platform_pm_pch_lpt");
1133
1134         if (link) {
1135                 u16 speed, duplex, scale = 0;
1136                 u16 max_snoop, max_nosnoop;
1137                 u16 max_ltr_enc;        /* max LTR latency encoded */
1138                 s64 lat_ns;
1139                 s64 value;
1140                 u32 rxa;
1141
1142                 if (!hw->mac.max_frame_size) {
1143                         DEBUGOUT("max_frame_size not set.\n");
1144                         return -E1000_ERR_CONFIG;
1145                 }
1146
1147                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1148                 if (!speed) {
1149                         DEBUGOUT("Speed not set.\n");
1150                         return -E1000_ERR_CONFIG;
1151                 }
1152
1153                 /* Rx Packet Buffer Allocation size (KB) */
1154                 rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1155
1156                 /* Determine the maximum latency tolerated by the device.
1157                  *
1158                  * Per the PCIe spec, the tolerated latencies are encoded as
1159                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1160                  * a 10-bit value (0-1023) to provide a range from 1 ns to
1161                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1162                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1163                  */
1164                 lat_ns = ((s64)rxa * 1024 -
1165                           (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1166                 if (lat_ns < 0)
1167                         lat_ns = 0;
1168                 else
1169                         lat_ns /= speed;
1170                 value = lat_ns;
1171
1172                 while (value > E1000_LTRV_VALUE_MASK) {
1173                         scale++;
1174                         value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1175                 }
1176                 if (scale > E1000_LTRV_SCALE_MAX) {
1177                         DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1178                         return -E1000_ERR_CONFIG;
1179                 }
1180                 lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1181
1182                 /* Determine the maximum latency tolerated by the platform */
1183                 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1184                 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1185                 max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1186
1187                 if (lat_enc > max_ltr_enc) {
1188                         lat_enc = max_ltr_enc;
1189                         lat_ns = e1000_ltr2ns(max_ltr_enc);
1190                 }
1191
1192                 if (lat_ns) {
1193                         lat_ns *= speed * 1000;
1194                         lat_ns /= 8;
1195                         lat_ns /= 1000000000;
1196                         obff_hwm = (s32)(rxa - lat_ns);
1197                 }
1198                 if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1199                         DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1200                         return -E1000_ERR_CONFIG;
1201                 }
1202         }
1203
1204         /* Set Snoop and No-Snoop latencies the same */
1205         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1206         E1000_WRITE_REG(hw, E1000_LTRV, reg);
1207
1208         /* Set OBFF high water mark */
1209         reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1210         reg |= obff_hwm;
1211         E1000_WRITE_REG(hw, E1000_SVT, reg);
1212
1213         /* Enable OBFF */
1214         reg = E1000_READ_REG(hw, E1000_SVCR);
1215         reg |= E1000_SVCR_OFF_EN;
1216         /* Always unblock interrupts to the CPU even when the system is
1217          * in OBFF mode. This ensures that small round-robin traffic
1218          * (like ping) does not get dropped or experience long latency.
1219          */
1220         reg |= E1000_SVCR_OFF_MASKINT;
1221         E1000_WRITE_REG(hw, E1000_SVCR, reg);
1222
1223         return E1000_SUCCESS;
1224 }
1225
1226 /**
1227  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1228  *  @hw: pointer to the HW structure
1229  *  @itr: interrupt throttling rate
1230  *
1231  *  Configure OBFF with the updated interrupt rate.
1232  **/
1233 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1234 {
1235         u32 svcr;
1236         s32 timer;
1237
1238         DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1239
1240         /* Convert ITR value into microseconds for OBFF timer */
1241         timer = itr & E1000_ITR_MASK;
1242         timer = (timer * E1000_ITR_MULT) / 1000;
1243
1244         if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1245                 DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1246                 return -E1000_ERR_CONFIG;
1247         }
1248
1249         svcr = E1000_READ_REG(hw, E1000_SVCR);
1250         svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1251         svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1252         E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1253
1254         return E1000_SUCCESS;
1255 }
1256
1257 /**
1258  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1259  *  @hw: pointer to the HW structure
1260  *  @to_sx: boolean indicating a system power state transition to Sx
1261  *
1262  *  When link is down, configure ULP mode to significantly reduce the power
1263  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1264  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1265  *  system, configure the ULP mode by software.
1266  */
1267 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1268 {
1269         u32 mac_reg;
1270         s32 ret_val = E1000_SUCCESS;
1271         u16 phy_reg;
1272         u16 oem_reg = 0;
1273
1274         if ((hw->mac.type < e1000_pch_lpt) ||
1275             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1276             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1277             (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1278             (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1279             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1280                 return 0;
1281
1282         if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1283                 /* Request ME configure ULP mode in the PHY */
1284                 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1285                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1286                 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1287
1288                 goto out;
1289         }
1290
1291         if (!to_sx) {
1292                 int i = 0;
1293
1294                 /* Poll up to 5 seconds for Cable Disconnected indication */
1295                 while (!(E1000_READ_REG(hw, E1000_FEXT) &
1296                          E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1297                         /* Bail if link is re-acquired */
1298                         if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1299                                 return -E1000_ERR_PHY;
1300
1301                         if (i++ == 100)
1302                                 break;
1303
1304                         msec_delay(50);
1305                 }
1306                 DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1307                          (E1000_READ_REG(hw, E1000_FEXT) &
1308                           E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1309                          i * 50);
1310                 if (!(E1000_READ_REG(hw, E1000_FEXT) &
1311                     E1000_FEXT_PHY_CABLE_DISCONNECTED))
1312                         return 0;
1313
1314         }
1315
1316         ret_val = hw->phy.ops.acquire(hw);
1317         if (ret_val)
1318                 goto out;
1319
1320         /* Force SMBus mode in PHY */
1321         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1322         if (ret_val)
1323                 goto release;
1324         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1325         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1326
1327         /* Force SMBus mode in MAC */
1328         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1329         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1330         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1331
1332         /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1333          * LPLU and disable Gig speed when entering ULP
1334          */
1335         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1336                 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1337                                                        &oem_reg);
1338                 if (ret_val)
1339                         goto release;
1340
1341                 phy_reg = oem_reg;
1342                 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1343
1344                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1345                                                         phy_reg);
1346
1347                 if (ret_val)
1348                         goto release;
1349         }
1350
1351         /* Set Inband ULP Exit, Reset to SMBus mode and
1352          * Disable SMBus Release on PERST# in PHY
1353          */
1354         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1355         if (ret_val)
1356                 goto release;
1357         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1358                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1359         if (to_sx) {
1360                 if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1361                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1362                 else
1363                         phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1364
1365                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1366                 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1367         } else {
1368                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1369                 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1370                 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1371         }
1372         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1373
1374         /* Set Disable SMBus Release on PERST# in MAC */
1375         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1376         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1377         E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1378
1379         /* Commit ULP changes in PHY by starting auto ULP configuration */
1380         phy_reg |= I218_ULP_CONFIG1_START;
1381         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1382
1383         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1384             to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1385                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1386                                                         oem_reg);
1387                 if (ret_val)
1388                         goto release;
1389         }
1390
1391 release:
1392         hw->phy.ops.release(hw);
1393 out:
1394         if (ret_val)
1395                 DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1396         else
1397                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1398
1399         return ret_val;
1400 }
1401
1402 /**
1403  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1404  *  @hw: pointer to the HW structure
1405  *  @force: boolean indicating whether or not to force disabling ULP
1406  *
1407  *  Un-configure ULP mode when link is up, the system is transitioned from
1408  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1409  *  system, poll for an indication from ME that ULP has been un-configured.
1410  *  If not on an ME enabled system, un-configure the ULP mode by software.
1411  *
1412  *  During nominal operation, this function is called when link is acquired
1413  *  to disable ULP mode (force=false); otherwise, for example when unloading
1414  *  the driver or during Sx->S0 transitions, this is called with force=true
1415  *  to forcibly disable ULP.
1416  */
1417 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1418 {
1419         s32 ret_val = E1000_SUCCESS;
1420         u8 ulp_exit_timeout = 30;
1421         u32 mac_reg;
1422         u16 phy_reg;
1423         int i = 0;
1424
1425         if ((hw->mac.type < e1000_pch_lpt) ||
1426             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1427             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1428             (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1429             (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1430             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1431                 return 0;
1432
1433         if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1434                 if (force) {
1435                         /* Request ME un-configure ULP mode in the PHY */
1436                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1437                         mac_reg &= ~E1000_H2ME_ULP;
1438                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1439                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1440                 }
1441
1442                 if (hw->mac.type == e1000_pch_cnp)
1443                         ulp_exit_timeout = 100;
1444
1445                 while (E1000_READ_REG(hw, E1000_FWSM) &
1446                        E1000_FWSM_ULP_CFG_DONE) {
1447                         if (i++ == ulp_exit_timeout) {
1448                                 ret_val = -E1000_ERR_PHY;
1449                                 goto out;
1450                         }
1451
1452                         msec_delay(10);
1453                 }
1454                 DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1455
1456                 if (force) {
1457                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1458                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1459                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1460                 } else {
1461                         /* Clear H2ME.ULP after ME ULP configuration */
1462                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1463                         mac_reg &= ~E1000_H2ME_ULP;
1464                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1465                 }
1466
1467                 goto out;
1468         }
1469
1470         ret_val = hw->phy.ops.acquire(hw);
1471         if (ret_val)
1472                 goto out;
1473
1474         if (force)
1475                 /* Toggle LANPHYPC Value bit */
1476                 e1000_toggle_lanphypc_pch_lpt(hw);
1477
1478         /* Unforce SMBus mode in PHY */
1479         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1480         if (ret_val) {
1481                 /* The MAC might be in PCIe mode, so temporarily force to
1482                  * SMBus mode in order to access the PHY.
1483                  */
1484                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1485                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1486                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1487
1488                 msec_delay(50);
1489
1490                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1491                                                        &phy_reg);
1492                 if (ret_val)
1493                         goto release;
1494         }
1495         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1496         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1497
1498         /* Unforce SMBus mode in MAC */
1499         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1500         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1501         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1502
1503         /* When ULP mode was previously entered, K1 was disabled by the
1504          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1505          */
1506         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1507         if (ret_val)
1508                 goto release;
1509         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1510         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1511
1512         /* Clear ULP enabled configuration */
1513         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1514         if (ret_val)
1515                 goto release;
1516         phy_reg &= ~(I218_ULP_CONFIG1_IND |
1517                      I218_ULP_CONFIG1_STICKY_ULP |
1518                      I218_ULP_CONFIG1_RESET_TO_SMBUS |
1519                      I218_ULP_CONFIG1_WOL_HOST |
1520                      I218_ULP_CONFIG1_INBAND_EXIT |
1521                      I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1522                      I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1523                      I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1524         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1525
1526         /* Commit ULP changes by starting auto ULP configuration */
1527         phy_reg |= I218_ULP_CONFIG1_START;
1528         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1529
1530         /* Clear Disable SMBus Release on PERST# in MAC */
1531         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1532         mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1533         E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1534
1535 release:
1536         hw->phy.ops.release(hw);
1537         if (force) {
1538                 hw->phy.ops.reset(hw);
1539                 msec_delay(50);
1540         }
1541 out:
1542         if (ret_val)
1543                 DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1544         else
1545                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1546
1547         return ret_val;
1548 }
1549
1550 /**
1551  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1552  *  @hw: pointer to the HW structure
1553  *
1554  *  Checks to see of the link status of the hardware has changed.  If a
1555  *  change in link status has been detected, then we read the PHY registers
1556  *  to get the current speed/duplex if link exists.
1557  **/
1558 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1559 {
1560         struct e1000_mac_info *mac = &hw->mac;
1561         s32 ret_val, tipg_reg = 0;
1562         u16 emi_addr, emi_val = 0;
1563         bool link;
1564         u16 phy_reg;
1565
1566         DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1567
1568         /* We only want to go out to the PHY registers to see if Auto-Neg
1569          * has completed and/or if our link status has changed.  The
1570          * get_link_status flag is set upon receiving a Link Status
1571          * Change or Rx Sequence Error interrupt.
1572          */
1573         if (!mac->get_link_status)
1574                 return E1000_SUCCESS;
1575
1576         /* First we want to see if the MII Status Register reports
1577          * link.  If so, then we want to get the current speed/duplex
1578          * of the PHY.
1579          */
1580         ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1581         if (ret_val)
1582                 return ret_val;
1583
1584         if (hw->mac.type == e1000_pchlan) {
1585                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1586                 if (ret_val)
1587                         return ret_val;
1588         }
1589
1590         /* When connected at 10Mbps half-duplex, some parts are excessively
1591          * aggressive resulting in many collisions. To avoid this, increase
1592          * the IPG and reduce Rx latency in the PHY.
1593          */
1594         if ((hw->mac.type >= e1000_pch2lan) && link) {
1595                 u16 speed, duplex;
1596
1597                 e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1598                 tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1599                 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1600
1601                 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1602                         tipg_reg |= 0xFF;
1603                         /* Reduce Rx latency in analog PHY */
1604                         emi_val = 0;
1605                 } else if (hw->mac.type >= e1000_pch_spt &&
1606                            duplex == FULL_DUPLEX && speed != SPEED_1000) {
1607                         tipg_reg |= 0xC;
1608                         emi_val = 1;
1609                 } else {
1610                         /* Roll back the default values */
1611                         tipg_reg |= 0x08;
1612                         emi_val = 1;
1613                 }
1614
1615                 E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1616
1617                 ret_val = hw->phy.ops.acquire(hw);
1618                 if (ret_val)
1619                         return ret_val;
1620
1621                 if (hw->mac.type == e1000_pch2lan)
1622                         emi_addr = I82579_RX_CONFIG;
1623                 else
1624                         emi_addr = I217_RX_CONFIG;
1625                 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1626
1627
1628                 if (hw->mac.type >= e1000_pch_lpt) {
1629                         hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1630                                                     &phy_reg);
1631                         phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1632                         if (speed == SPEED_100 || speed == SPEED_10)
1633                                 phy_reg |= 0x3E8;
1634                         else
1635                                 phy_reg |= 0xFA;
1636                         hw->phy.ops.write_reg_locked(hw,
1637                                                      I217_PLL_CLOCK_GATE_REG,
1638                                                      phy_reg);
1639
1640                         if (speed == SPEED_1000) {
1641                                 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1642                                                             &phy_reg);
1643
1644                                 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1645
1646                                 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1647                                                              phy_reg);
1648                                 }
1649                  }
1650                 hw->phy.ops.release(hw);
1651
1652                 if (ret_val)
1653                         return ret_val;
1654
1655                 if (hw->mac.type >= e1000_pch_spt) {
1656                         u16 data;
1657                         u16 ptr_gap;
1658
1659                         if (speed == SPEED_1000) {
1660                                 ret_val = hw->phy.ops.acquire(hw);
1661                                 if (ret_val)
1662                                         return ret_val;
1663
1664                                 ret_val = hw->phy.ops.read_reg_locked(hw,
1665                                                               PHY_REG(776, 20),
1666                                                               &data);
1667                                 if (ret_val) {
1668                                         hw->phy.ops.release(hw);
1669                                         return ret_val;
1670                                 }
1671
1672                                 ptr_gap = (data & (0x3FF << 2)) >> 2;
1673                                 if (ptr_gap < 0x18) {
1674                                         data &= ~(0x3FF << 2);
1675                                         data |= (0x18 << 2);
1676                                         ret_val =
1677                                                 hw->phy.ops.write_reg_locked(hw,
1678                                                         PHY_REG(776, 20), data);
1679                                 }
1680                                 hw->phy.ops.release(hw);
1681                                 if (ret_val)
1682                                         return ret_val;
1683                         } else {
1684                                 ret_val = hw->phy.ops.acquire(hw);
1685                                 if (ret_val)
1686                                         return ret_val;
1687
1688                                 ret_val = hw->phy.ops.write_reg_locked(hw,
1689                                                              PHY_REG(776, 20),
1690                                                              0xC023);
1691                                 hw->phy.ops.release(hw);
1692                                 if (ret_val)
1693                                         return ret_val;
1694
1695                         }
1696                 }
1697         }
1698
1699         /* I217 Packet Loss issue:
1700          * ensure that FEXTNVM4 Beacon Duration is set correctly
1701          * on power up.
1702          * Set the Beacon Duration for I217 to 8 usec
1703          */
1704         if (hw->mac.type >= e1000_pch_lpt) {
1705                 u32 mac_reg;
1706
1707                 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1708                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1709                 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1710                 E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1711         }
1712
1713         /* Work-around I218 hang issue */
1714         if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1715             (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1716             (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1717             (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1718                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1719                 if (ret_val)
1720                         return ret_val;
1721         }
1722         if (hw->mac.type >= e1000_pch_lpt) {
1723                 /* Set platform power management values for
1724                  * Latency Tolerance Reporting (LTR)
1725                  * Optimized Buffer Flush/Fill (OBFF)
1726                  */
1727                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1728                 if (ret_val)
1729                         return ret_val;
1730         }
1731         /* Clear link partner's EEE ability */
1732         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1733
1734         if (hw->mac.type >= e1000_pch_lpt) {
1735                 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1736
1737                 if (hw->mac.type == e1000_pch_spt) {
1738                         /* FEXTNVM6 K1-off workaround - for SPT only */
1739                         u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1740
1741                         if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1742                                 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1743                         else
1744                                 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1745                 }
1746
1747                 if (hw->dev_spec.ich8lan.disable_k1_off == true)
1748                         fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1749
1750                 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1751
1752                 /* Configure K0s minimum time */
1753                 e1000_configure_k0s_lpt(hw, K1_ENTRY_LATENCY, K1_MIN_TIME);
1754         }
1755
1756         if (!link)
1757                 return E1000_SUCCESS; /* No link detected */
1758
1759         mac->get_link_status = false;
1760
1761         switch (hw->mac.type) {
1762         case e1000_pch2lan:
1763                 ret_val = e1000_k1_workaround_lv(hw);
1764                 if (ret_val)
1765                         return ret_val;
1766                 /* FALLTHROUGH */
1767         case e1000_pchlan:
1768                 if (hw->phy.type == e1000_phy_82578) {
1769                         ret_val = e1000_link_stall_workaround_hv(hw);
1770                         if (ret_val)
1771                                 return ret_val;
1772                 }
1773
1774                 /* Workaround for PCHx parts in half-duplex:
1775                  * Set the number of preambles removed from the packet
1776                  * when it is passed from the PHY to the MAC to prevent
1777                  * the MAC from misinterpreting the packet type.
1778                  */
1779                 hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1780                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1781
1782                 if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1783                     E1000_STATUS_FD)
1784                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1785
1786                 hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1787                 break;
1788         default:
1789                 break;
1790         }
1791
1792         /* Check if there was DownShift, must be checked
1793          * immediately after link-up
1794          */
1795         e1000_check_downshift_generic(hw);
1796
1797         /* Enable/Disable EEE after link up */
1798         if (hw->phy.type > e1000_phy_82579) {
1799                 ret_val = e1000_set_eee_pchlan(hw);
1800                 if (ret_val)
1801                         return ret_val;
1802         }
1803
1804         /* If we are forcing speed/duplex, then we simply return since
1805          * we have already determined whether we have link or not.
1806          */
1807         if (!mac->autoneg)
1808                 return -E1000_ERR_CONFIG;
1809
1810         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1811          * of MAC speed/duplex configuration.  So we only need to
1812          * configure Collision Distance in the MAC.
1813          */
1814         mac->ops.config_collision_dist(hw);
1815
1816         /* Configure Flow Control now that Auto-Neg has completed.
1817          * First, we need to restore the desired flow control
1818          * settings because we may have had to re-autoneg with a
1819          * different link partner.
1820          */
1821         ret_val = e1000_config_fc_after_link_up_generic(hw);
1822         if (ret_val)
1823                 DEBUGOUT("Error configuring flow control\n");
1824
1825         return ret_val;
1826 }
1827
1828 /**
1829  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1830  *  @hw: pointer to the HW structure
1831  *
1832  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1833  **/
1834 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1835 {
1836         DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1837
1838         hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1839         hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1840         switch (hw->mac.type) {
1841         case e1000_ich8lan:
1842         case e1000_ich9lan:
1843         case e1000_ich10lan:
1844                 hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1845                 break;
1846         case e1000_pchlan:
1847         case e1000_pch2lan:
1848         case e1000_pch_lpt:
1849         case e1000_pch_spt:
1850         case e1000_pch_cnp:
1851         case e1000_pch_tgp:
1852         case e1000_pch_adp:
1853         case e1000_pch_mtp:
1854                 hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1855                 break;
1856         default:
1857                 break;
1858         }
1859 }
1860
1861 /**
1862  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1863  *  @hw: pointer to the HW structure
1864  *
1865  *  Acquires the mutex for performing NVM operations.
1866  **/
1867 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1868 {
1869         DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1870
1871         ASSERT_CTX_LOCK_HELD(hw);
1872
1873         return E1000_SUCCESS;
1874 }
1875
1876 /**
1877  *  e1000_release_nvm_ich8lan - Release NVM mutex
1878  *  @hw: pointer to the HW structure
1879  *
1880  *  Releases the mutex used while performing NVM operations.
1881  **/
1882 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1883 {
1884         DEBUGFUNC("e1000_release_nvm_ich8lan");
1885
1886         ASSERT_CTX_LOCK_HELD(hw);
1887 }
1888
1889 /**
1890  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1891  *  @hw: pointer to the HW structure
1892  *
1893  *  Acquires the software control flag for performing PHY and select
1894  *  MAC CSR accesses.
1895  **/
1896 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1897 {
1898         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1899         s32 ret_val = E1000_SUCCESS;
1900
1901         DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1902
1903         ASSERT_CTX_LOCK_HELD(hw);
1904
1905         while (timeout) {
1906                 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1907                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1908                         break;
1909
1910                 msec_delay_irq(1);
1911                 timeout--;
1912         }
1913
1914         if (!timeout) {
1915                 DEBUGOUT("SW has already locked the resource.\n");
1916                 ret_val = -E1000_ERR_CONFIG;
1917                 goto out;
1918         }
1919
1920         timeout = SW_FLAG_TIMEOUT;
1921
1922         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1923         E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1924
1925         while (timeout) {
1926                 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1927                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1928                         break;
1929
1930                 msec_delay_irq(1);
1931                 timeout--;
1932         }
1933
1934         if (!timeout) {
1935                 DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1936                           E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1937                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1938                 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1939                 ret_val = -E1000_ERR_CONFIG;
1940                 goto out;
1941         }
1942
1943 out:
1944         return ret_val;
1945 }
1946
1947 /**
1948  *  e1000_release_swflag_ich8lan - Release software control flag
1949  *  @hw: pointer to the HW structure
1950  *
1951  *  Releases the software control flag for performing PHY and select
1952  *  MAC CSR accesses.
1953  **/
1954 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1955 {
1956         u32 extcnf_ctrl;
1957
1958         DEBUGFUNC("e1000_release_swflag_ich8lan");
1959
1960         extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1961
1962         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1963                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1964                 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1965         } else {
1966                 DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1967         }
1968 }
1969
1970 /**
1971  *  e1000_check_mng_mode_ich8lan - Checks management mode
1972  *  @hw: pointer to the HW structure
1973  *
1974  *  This checks if the adapter has any manageability enabled.
1975  *  This is a function pointer entry point only called by read/write
1976  *  routines for the PHY and NVM parts.
1977  **/
1978 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1979 {
1980         u32 fwsm;
1981
1982         DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1983
1984         fwsm = E1000_READ_REG(hw, E1000_FWSM);
1985
1986         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1987                ((fwsm & E1000_FWSM_MODE_MASK) ==
1988                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1989 }
1990
1991 /**
1992  *  e1000_check_mng_mode_pchlan - Checks management mode
1993  *  @hw: pointer to the HW structure
1994  *
1995  *  This checks if the adapter has iAMT enabled.
1996  *  This is a function pointer entry point only called by read/write
1997  *  routines for the PHY and NVM parts.
1998  **/
1999 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
2000 {
2001         u32 fwsm;
2002
2003         DEBUGFUNC("e1000_check_mng_mode_pchlan");
2004
2005         fwsm = E1000_READ_REG(hw, E1000_FWSM);
2006
2007         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
2008                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
2009 }
2010
2011 /**
2012  *  e1000_rar_set_pch2lan - Set receive address register
2013  *  @hw: pointer to the HW structure
2014  *  @addr: pointer to the receive address
2015  *  @index: receive address array register
2016  *
2017  *  Sets the receive address array register at index to the address passed
2018  *  in by addr.  For 82579, RAR[0] is the base address register that is to
2019  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2020  *  Use SHRA[0-3] in place of those reserved for ME.
2021  **/
2022 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2023 {
2024         u32 rar_low, rar_high;
2025
2026         DEBUGFUNC("e1000_rar_set_pch2lan");
2027
2028         /* HW expects these in little endian so we reverse the byte order
2029          * from network order (big endian) to little endian
2030          */
2031         rar_low = ((u32) addr[0] |
2032                    ((u32) addr[1] << 8) |
2033                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2034
2035         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2036
2037         /* If MAC address zero, no need to set the AV bit */
2038         if (rar_low || rar_high)
2039                 rar_high |= E1000_RAH_AV;
2040
2041         if (index == 0) {
2042                 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2043                 E1000_WRITE_FLUSH(hw);
2044                 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2045                 E1000_WRITE_FLUSH(hw);
2046                 return E1000_SUCCESS;
2047         }
2048
2049         /* RAR[1-6] are owned by manageability.  Skip those and program the
2050          * next address into the SHRA register array.
2051          */
2052         if (index < (u32) (hw->mac.rar_entry_count)) {
2053                 s32 ret_val;
2054
2055                 ret_val = e1000_acquire_swflag_ich8lan(hw);
2056                 if (ret_val)
2057                         goto out;
2058
2059                 E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
2060                 E1000_WRITE_FLUSH(hw);
2061                 E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
2062                 E1000_WRITE_FLUSH(hw);
2063
2064                 e1000_release_swflag_ich8lan(hw);
2065
2066                 /* verify the register updates */
2067                 if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
2068                     (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
2069                         return E1000_SUCCESS;
2070
2071                 DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2072                          (index - 1), E1000_READ_REG(hw, E1000_FWSM));
2073         }
2074
2075 out:
2076         DEBUGOUT1("Failed to write receive address at index %d\n", index);
2077         return -E1000_ERR_CONFIG;
2078 }
2079
2080 /**
2081  *  e1000_rar_set_pch_lpt - Set receive address registers
2082  *  @hw: pointer to the HW structure
2083  *  @addr: pointer to the receive address
2084  *  @index: receive address array register
2085  *
2086  *  Sets the receive address register array at index to the address passed
2087  *  in by addr. For LPT, RAR[0] is the base address register that is to
2088  *  contain the MAC address. SHRA[0-10] are the shared receive address
2089  *  registers that are shared between the Host and manageability engine (ME).
2090  **/
2091 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2092 {
2093         u32 rar_low, rar_high;
2094         u32 wlock_mac;
2095
2096         DEBUGFUNC("e1000_rar_set_pch_lpt");
2097
2098         /* HW expects these in little endian so we reverse the byte order
2099          * from network order (big endian) to little endian
2100          */
2101         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2102                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2103
2104         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2105
2106         /* If MAC address zero, no need to set the AV bit */
2107         if (rar_low || rar_high)
2108                 rar_high |= E1000_RAH_AV;
2109
2110         if (index == 0) {
2111                 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2112                 E1000_WRITE_FLUSH(hw);
2113                 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2114                 E1000_WRITE_FLUSH(hw);
2115                 return E1000_SUCCESS;
2116         }
2117
2118         /* The manageability engine (ME) can lock certain SHRAR registers that
2119          * it is using - those registers are unavailable for use.
2120          */
2121         if (index < hw->mac.rar_entry_count) {
2122                 wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2123                             E1000_FWSM_WLOCK_MAC_MASK;
2124                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2125
2126                 /* Check if all SHRAR registers are locked */
2127                 if (wlock_mac == 1)
2128                         goto out;
2129
2130                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
2131                         s32 ret_val;
2132
2133                         ret_val = e1000_acquire_swflag_ich8lan(hw);
2134
2135                         if (ret_val)
2136                                 goto out;
2137
2138                         E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2139                                         rar_low);
2140                         E1000_WRITE_FLUSH(hw);
2141                         E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2142                                         rar_high);
2143                         E1000_WRITE_FLUSH(hw);
2144
2145                         e1000_release_swflag_ich8lan(hw);
2146
2147                         /* verify the register updates */
2148                         if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2149                             (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2150                                 return E1000_SUCCESS;
2151                 }
2152         }
2153
2154 out:
2155         DEBUGOUT1("Failed to write receive address at index %d\n", index);
2156         return -E1000_ERR_CONFIG;
2157 }
2158
2159 /**
2160  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2161  *  @hw: pointer to the HW structure
2162  *  @mc_addr_list: array of multicast addresses to program
2163  *  @mc_addr_count: number of multicast addresses to program
2164  *
2165  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2166  *  The caller must have a packed mc_addr_list of multicast addresses.
2167  **/
2168 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2169                                               u8 *mc_addr_list,
2170                                               u32 mc_addr_count)
2171 {
2172         u16 phy_reg = 0;
2173         int i;
2174         s32 ret_val;
2175
2176         DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2177
2178         e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2179
2180         ret_val = hw->phy.ops.acquire(hw);
2181         if (ret_val)
2182                 return;
2183
2184         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2185         if (ret_val)
2186                 goto release;
2187
2188         for (i = 0; i < hw->mac.mta_reg_count; i++) {
2189                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2190                                            (u16)(hw->mac.mta_shadow[i] &
2191                                                  0xFFFF));
2192                 hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2193                                            (u16)((hw->mac.mta_shadow[i] >> 16) &
2194                                                  0xFFFF));
2195         }
2196
2197         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2198
2199 release:
2200         hw->phy.ops.release(hw);
2201 }
2202
2203 /**
2204  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2205  *  @hw: pointer to the HW structure
2206  *
2207  *  Checks if firmware is blocking the reset of the PHY.
2208  *  This is a function pointer entry point only called by
2209  *  reset routines.
2210  **/
2211 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2212 {
2213         u32 fwsm;
2214         bool blocked = false;
2215         int i = 0;
2216
2217         DEBUGFUNC("e1000_check_reset_block_ich8lan");
2218
2219         do {
2220                 fwsm = E1000_READ_REG(hw, E1000_FWSM);
2221                 if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2222                         blocked = true;
2223                         msec_delay(10);
2224                         continue;
2225                 }
2226                 blocked = false;
2227         } while (blocked && (i++ < 30));
2228         return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2229 }
2230
2231 /**
2232  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2233  *  @hw: pointer to the HW structure
2234  *
2235  *  Assumes semaphore already acquired.
2236  *
2237  **/
2238 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2239 {
2240         u16 phy_data;
2241         u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2242         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2243                 E1000_STRAP_SMT_FREQ_SHIFT;
2244         s32 ret_val;
2245
2246         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2247
2248         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2249         if (ret_val)
2250                 return ret_val;
2251
2252         phy_data &= ~HV_SMB_ADDR_MASK;
2253         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2254         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2255
2256         if (hw->phy.type == e1000_phy_i217) {
2257                 /* Restore SMBus frequency */
2258                 if (freq--) {
2259                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2260                         phy_data |= (freq & (1 << 0)) <<
2261                                 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2262                         phy_data |= (freq & (1 << 1)) <<
2263                                 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2264                 } else {
2265                         DEBUGOUT("Unsupported SMB frequency in PHY\n");
2266                 }
2267         }
2268
2269         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2270 }
2271
2272 /**
2273  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2274  *  @hw:   pointer to the HW structure
2275  *
2276  *  SW should configure the LCD from the NVM extended configuration region
2277  *  as a workaround for certain parts.
2278  **/
2279 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2280 {
2281         struct e1000_phy_info *phy = &hw->phy;
2282         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2283         s32 ret_val = E1000_SUCCESS;
2284         u16 word_addr, reg_data, reg_addr, phy_page = 0;
2285
2286         DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2287
2288         /* Initialize the PHY from the NVM on ICH platforms.  This
2289          * is needed due to an issue where the NVM configuration is
2290          * not properly autoloaded after power transitions.
2291          * Therefore, after each PHY reset, we will load the
2292          * configuration data out of the NVM manually.
2293          */
2294         switch (hw->mac.type) {
2295         case e1000_ich8lan:
2296                 if (phy->type != e1000_phy_igp_3)
2297                         return ret_val;
2298
2299                 if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2300                     (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2301                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2302                         break;
2303                 }
2304                 /* FALLTHROUGH */
2305         case e1000_pchlan:
2306         case e1000_pch2lan:
2307         case e1000_pch_lpt:
2308         case e1000_pch_spt:
2309         case e1000_pch_cnp:
2310         case e1000_pch_tgp:
2311         case e1000_pch_adp:
2312         case e1000_pch_mtp:
2313                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2314                 break;
2315         default:
2316                 return ret_val;
2317         }
2318
2319         ret_val = hw->phy.ops.acquire(hw);
2320         if (ret_val)
2321                 return ret_val;
2322
2323         data = E1000_READ_REG(hw, E1000_FEXTNVM);
2324         if (!(data & sw_cfg_mask))
2325                 goto release;
2326
2327         /* Make sure HW does not configure LCD from PHY
2328          * extended configuration before SW configuration
2329          */
2330         data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2331         if ((hw->mac.type < e1000_pch2lan) &&
2332             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2333                         goto release;
2334
2335         cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2336         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2337         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2338         if (!cnf_size)
2339                 goto release;
2340
2341         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2342         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2343
2344         if (((hw->mac.type == e1000_pchlan) &&
2345              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2346             (hw->mac.type > e1000_pchlan)) {
2347                 /* HW configures the SMBus address and LEDs when the
2348                  * OEM and LCD Write Enable bits are set in the NVM.
2349                  * When both NVM bits are cleared, SW will configure
2350                  * them instead.
2351                  */
2352                 ret_val = e1000_write_smbus_addr(hw);
2353                 if (ret_val)
2354                         goto release;
2355
2356                 data = E1000_READ_REG(hw, E1000_LEDCTL);
2357                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2358                                                         (u16)data);
2359                 if (ret_val)
2360                         goto release;
2361         }
2362
2363         /* Configure LCD from extended configuration region. */
2364
2365         /* cnf_base_addr is in DWORD */
2366         word_addr = (u16)(cnf_base_addr << 1);
2367
2368         for (i = 0; i < cnf_size; i++) {
2369                 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2370                                            &reg_data);
2371                 if (ret_val)
2372                         goto release;
2373
2374                 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2375                                            1, &reg_addr);
2376                 if (ret_val)
2377                         goto release;
2378
2379                 /* Save off the PHY page for future writes. */
2380                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2381                         phy_page = reg_data;
2382                         continue;
2383                 }
2384
2385                 reg_addr &= PHY_REG_MASK;
2386                 reg_addr |= phy_page;
2387
2388                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2389                                                     reg_data);
2390                 if (ret_val)
2391                         goto release;
2392         }
2393
2394 release:
2395         hw->phy.ops.release(hw);
2396         return ret_val;
2397 }
2398
2399 /**
2400  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2401  *  @hw:   pointer to the HW structure
2402  *  @link: link up bool flag
2403  *
2404  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2405  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2406  *  If link is down, the function will restore the default K1 setting located
2407  *  in the NVM.
2408  **/
2409 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2410 {
2411         s32 ret_val = E1000_SUCCESS;
2412         u16 status_reg = 0;
2413         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2414
2415         DEBUGFUNC("e1000_k1_gig_workaround_hv");
2416
2417         if (hw->mac.type != e1000_pchlan)
2418                 return E1000_SUCCESS;
2419
2420         /* Wrap the whole flow with the sw flag */
2421         ret_val = hw->phy.ops.acquire(hw);
2422         if (ret_val)
2423                 return ret_val;
2424
2425         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2426         if (link) {
2427                 if (hw->phy.type == e1000_phy_82578) {
2428                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2429                                                               &status_reg);
2430                         if (ret_val)
2431                                 goto release;
2432
2433                         status_reg &= (BM_CS_STATUS_LINK_UP |
2434                                        BM_CS_STATUS_RESOLVED |
2435                                        BM_CS_STATUS_SPEED_MASK);
2436
2437                         if (status_reg == (BM_CS_STATUS_LINK_UP |
2438                                            BM_CS_STATUS_RESOLVED |
2439                                            BM_CS_STATUS_SPEED_1000))
2440                                 k1_enable = false;
2441                 }
2442
2443                 if (hw->phy.type == e1000_phy_82577) {
2444                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2445                                                               &status_reg);
2446                         if (ret_val)
2447                                 goto release;
2448
2449                         status_reg &= (HV_M_STATUS_LINK_UP |
2450                                        HV_M_STATUS_AUTONEG_COMPLETE |
2451                                        HV_M_STATUS_SPEED_MASK);
2452
2453                         if (status_reg == (HV_M_STATUS_LINK_UP |
2454                                            HV_M_STATUS_AUTONEG_COMPLETE |
2455                                            HV_M_STATUS_SPEED_1000))
2456                                 k1_enable = false;
2457                 }
2458
2459                 /* Link stall fix for link up */
2460                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2461                                                        0x0100);
2462                 if (ret_val)
2463                         goto release;
2464
2465         } else {
2466                 /* Link stall fix for link down */
2467                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2468                                                        0x4100);
2469                 if (ret_val)
2470                         goto release;
2471         }
2472
2473         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2474
2475 release:
2476         hw->phy.ops.release(hw);
2477
2478         return ret_val;
2479 }
2480
2481 /**
2482  *  e1000_configure_k1_ich8lan - Configure K1 power state
2483  *  @hw: pointer to the HW structure
2484  *  @k1_enable: K1 state to configure
2485  *
2486  *  Configure the K1 power state based on the provided parameter.
2487  *  Assumes semaphore already acquired.
2488  *
2489  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2490  **/
2491 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2492 {
2493         s32 ret_val;
2494         u32 ctrl_reg = 0;
2495         u32 ctrl_ext = 0;
2496         u32 reg = 0;
2497         u16 kmrn_reg = 0;
2498
2499         DEBUGFUNC("e1000_configure_k1_ich8lan");
2500
2501         ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2502                                              &kmrn_reg);
2503         if (ret_val)
2504                 return ret_val;
2505
2506         if (k1_enable)
2507                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2508         else
2509                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2510
2511         ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2512                                               kmrn_reg);
2513         if (ret_val)
2514                 return ret_val;
2515
2516         usec_delay(20);
2517         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2518         ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2519
2520         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2521         reg |= E1000_CTRL_FRCSPD;
2522         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2523
2524         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2525         E1000_WRITE_FLUSH(hw);
2526         usec_delay(20);
2527         E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2528         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2529         E1000_WRITE_FLUSH(hw);
2530         usec_delay(20);
2531
2532         return E1000_SUCCESS;
2533 }
2534
2535 /**
2536  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2537  *  @hw:       pointer to the HW structure
2538  *  @d0_state: boolean if entering d0 or d3 device state
2539  *
2540  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2541  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2542  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2543  **/
2544 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2545 {
2546         s32 ret_val = 0;
2547         u32 mac_reg;
2548         u16 oem_reg;
2549
2550         DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2551
2552         if (hw->mac.type < e1000_pchlan)
2553                 return ret_val;
2554
2555         ret_val = hw->phy.ops.acquire(hw);
2556         if (ret_val)
2557                 return ret_val;
2558
2559         if (hw->mac.type == e1000_pchlan) {
2560                 mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2561                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2562                         goto release;
2563         }
2564
2565         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2566         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2567                 goto release;
2568
2569         mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2570
2571         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2572         if (ret_val)
2573                 goto release;
2574
2575         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2576
2577         if (d0_state) {
2578                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2579                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2580
2581                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2582                         oem_reg |= HV_OEM_BITS_LPLU;
2583         } else {
2584                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2585                     E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2586                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2587
2588                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2589                     E1000_PHY_CTRL_NOND0A_LPLU))
2590                         oem_reg |= HV_OEM_BITS_LPLU;
2591         }
2592
2593         /* Set Restart auto-neg to activate the bits */
2594         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2595             !hw->phy.ops.check_reset_block(hw))
2596                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2597
2598         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2599
2600 release:
2601         hw->phy.ops.release(hw);
2602
2603         return ret_val;
2604 }
2605
2606
2607 /**
2608  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2609  *  @hw:   pointer to the HW structure
2610  **/
2611 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2612 {
2613         s32 ret_val;
2614         u16 data;
2615
2616         DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2617
2618         ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2619         if (ret_val)
2620                 return ret_val;
2621
2622         data |= HV_KMRN_MDIO_SLOW;
2623
2624         ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2625
2626         return ret_val;
2627 }
2628
2629 /**
2630  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2631  *  done after every PHY reset.
2632  *  @hw: pointer to the HW structure
2633  **/
2634 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2635 {
2636         s32 ret_val = E1000_SUCCESS;
2637         u16 phy_data;
2638
2639         DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2640
2641         if (hw->mac.type != e1000_pchlan)
2642                 return E1000_SUCCESS;
2643
2644         /* Set MDIO slow mode before any other MDIO access */
2645         if (hw->phy.type == e1000_phy_82577) {
2646                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2647                 if (ret_val)
2648                         return ret_val;
2649         }
2650
2651         if (((hw->phy.type == e1000_phy_82577) &&
2652              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2653             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2654                 /* Disable generation of early preamble */
2655                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2656                 if (ret_val)
2657                         return ret_val;
2658
2659                 /* Preamble tuning for SSC */
2660                 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2661                                                 0xA204);
2662                 if (ret_val)
2663                         return ret_val;
2664         }
2665
2666         if (hw->phy.type == e1000_phy_82578) {
2667                 /* Return registers to default by doing a soft reset then
2668                  * writing 0x3140 to the control register.
2669                  */
2670                 if (hw->phy.revision < 2) {
2671                         e1000_phy_sw_reset_generic(hw);
2672                         ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2673                                                         0x3140);
2674                         if (ret_val)
2675                                 return ret_val;
2676                 }
2677         }
2678
2679         /* Select page 0 */
2680         ret_val = hw->phy.ops.acquire(hw);
2681         if (ret_val)
2682                 return ret_val;
2683
2684         hw->phy.addr = 1;
2685         ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2686         hw->phy.ops.release(hw);
2687         if (ret_val)
2688                 return ret_val;
2689
2690         /* Configure the K1 Si workaround during phy reset assuming there is
2691          * link so that it disables K1 if link is in 1Gbps.
2692          */
2693         ret_val = e1000_k1_gig_workaround_hv(hw, true);
2694         if (ret_val)
2695                 return ret_val;
2696
2697         /* Workaround for link disconnects on a busy hub in half duplex */
2698         ret_val = hw->phy.ops.acquire(hw);
2699         if (ret_val)
2700                 return ret_val;
2701         ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2702         if (ret_val)
2703                 goto release;
2704         ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2705                                                phy_data & 0x00FF);
2706         if (ret_val)
2707                 goto release;
2708
2709         /* set MSE higher to enable link to stay up when noise is high */
2710         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2711 release:
2712         hw->phy.ops.release(hw);
2713
2714         return ret_val;
2715 }
2716
2717 /**
2718  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2719  *  @hw:   pointer to the HW structure
2720  **/
2721 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2722 {
2723         u32 mac_reg;
2724         u16 i, phy_reg = 0;
2725         s32 ret_val;
2726
2727         DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2728
2729         ret_val = hw->phy.ops.acquire(hw);
2730         if (ret_val)
2731                 return;
2732         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2733         if (ret_val)
2734                 goto release;
2735
2736         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2737         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2738                 mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2739                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2740                                            (u16)(mac_reg & 0xFFFF));
2741                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2742                                            (u16)((mac_reg >> 16) & 0xFFFF));
2743
2744                 mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2745                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2746                                            (u16)(mac_reg & 0xFFFF));
2747                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2748                                            (u16)((mac_reg & E1000_RAH_AV)
2749                                                  >> 16));
2750         }
2751
2752         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2753
2754 release:
2755         hw->phy.ops.release(hw);
2756 }
2757
2758 static u32 e1000_calc_rx_da_crc(u8 mac[])
2759 {
2760         u32 poly = 0xEDB88320;  /* Polynomial for 802.3 CRC calculation */
2761         u32 i, j, mask, crc;
2762
2763         DEBUGFUNC("e1000_calc_rx_da_crc");
2764
2765         crc = 0xffffffff;
2766         for (i = 0; i < 6; i++) {
2767                 crc = crc ^ mac[i];
2768                 for (j = 8; j > 0; j--) {
2769                         mask = (crc & 1) * (-1);
2770                         crc = (crc >> 1) ^ (poly & mask);
2771                 }
2772         }
2773         return ~crc;
2774 }
2775
2776 /**
2777  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2778  *  with 82579 PHY
2779  *  @hw: pointer to the HW structure
2780  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2781  **/
2782 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2783 {
2784         s32 ret_val = E1000_SUCCESS;
2785         u16 phy_reg, data;
2786         u32 mac_reg;
2787         u16 i;
2788
2789         DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2790
2791         if (hw->mac.type < e1000_pch2lan)
2792                 return E1000_SUCCESS;
2793
2794         /* disable Rx path while enabling/disabling workaround */
2795         hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2796         ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2797                                         phy_reg | (1 << 14));
2798         if (ret_val)
2799                 return ret_val;
2800
2801         if (enable) {
2802                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2803                  * SHRAL/H) and initial CRC values to the MAC
2804                  */
2805                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2806                         u8 mac_addr[ETHER_ADDR_LEN] = {0};
2807                         u32 addr_high, addr_low;
2808
2809                         addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2810                         if (!(addr_high & E1000_RAH_AV))
2811                                 continue;
2812                         addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2813                         mac_addr[0] = (addr_low & 0xFF);
2814                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2815                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2816                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2817                         mac_addr[4] = (addr_high & 0xFF);
2818                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2819
2820                         E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2821                                         e1000_calc_rx_da_crc(mac_addr));
2822                 }
2823
2824                 /* Write Rx addresses to the PHY */
2825                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2826
2827                 /* Enable jumbo frame workaround in the MAC */
2828                 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2829                 mac_reg &= ~(1 << 14);
2830                 mac_reg |= (7 << 15);
2831                 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2832
2833                 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2834                 mac_reg |= E1000_RCTL_SECRC;
2835                 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2836
2837                 ret_val = e1000_read_kmrn_reg_generic(hw,
2838                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2839                                                 &data);
2840                 if (ret_val)
2841                         return ret_val;
2842                 ret_val = e1000_write_kmrn_reg_generic(hw,
2843                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2844                                                 data | (1 << 0));
2845                 if (ret_val)
2846                         return ret_val;
2847                 ret_val = e1000_read_kmrn_reg_generic(hw,
2848                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2849                                                 &data);
2850                 if (ret_val)
2851                         return ret_val;
2852                 data &= ~(0xF << 8);
2853                 data |= (0xB << 8);
2854                 ret_val = e1000_write_kmrn_reg_generic(hw,
2855                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2856                                                 data);
2857                 if (ret_val)
2858                         return ret_val;
2859
2860                 /* Enable jumbo frame workaround in the PHY */
2861                 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2862                 data &= ~(0x7F << 5);
2863                 data |= (0x37 << 5);
2864                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2865                 if (ret_val)
2866                         return ret_val;
2867                 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2868                 data &= ~(1 << 13);
2869                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2870                 if (ret_val)
2871                         return ret_val;
2872                 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2873                 data &= ~(0x3FF << 2);
2874                 data |= (E1000_TX_PTR_GAP << 2);
2875                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2876                 if (ret_val)
2877                         return ret_val;
2878                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2879                 if (ret_val)
2880                         return ret_val;
2881                 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2882                 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2883                                                 (1 << 10));
2884                 if (ret_val)
2885                         return ret_val;
2886         } else {
2887                 /* Write MAC register values back to h/w defaults */
2888                 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2889                 mac_reg &= ~(0xF << 14);
2890                 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2891
2892                 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2893                 mac_reg &= ~E1000_RCTL_SECRC;
2894                 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2895
2896                 ret_val = e1000_read_kmrn_reg_generic(hw,
2897                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2898                                                 &data);
2899                 if (ret_val)
2900                         return ret_val;
2901                 ret_val = e1000_write_kmrn_reg_generic(hw,
2902                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2903                                                 data & ~(1 << 0));
2904                 if (ret_val)
2905                         return ret_val;
2906                 ret_val = e1000_read_kmrn_reg_generic(hw,
2907                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2908                                                 &data);
2909                 if (ret_val)
2910                         return ret_val;
2911                 data &= ~(0xF << 8);
2912                 data |= (0xB << 8);
2913                 ret_val = e1000_write_kmrn_reg_generic(hw,
2914                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2915                                                 data);
2916                 if (ret_val)
2917                         return ret_val;
2918
2919                 /* Write PHY register values back to h/w defaults */
2920                 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2921                 data &= ~(0x7F << 5);
2922                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2923                 if (ret_val)
2924                         return ret_val;
2925                 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2926                 data |= (1 << 13);
2927                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2928                 if (ret_val)
2929                         return ret_val;
2930                 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2931                 data &= ~(0x3FF << 2);
2932                 data |= (0x8 << 2);
2933                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2934                 if (ret_val)
2935                         return ret_val;
2936                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2937                 if (ret_val)
2938                         return ret_val;
2939                 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2940                 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2941                                                 ~(1 << 10));
2942                 if (ret_val)
2943                         return ret_val;
2944         }
2945
2946         /* re-enable Rx path after enabling/disabling workaround */
2947         return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2948                                      ~(1 << 14));
2949 }
2950
2951 /**
2952  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2953  *  done after every PHY reset.
2954  *  @hw: pointer to the HW structure
2955  **/
2956 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2957 {
2958         s32 ret_val = E1000_SUCCESS;
2959
2960         DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2961
2962         if (hw->mac.type != e1000_pch2lan)
2963                 return E1000_SUCCESS;
2964
2965         /* Set MDIO slow mode before any other MDIO access */
2966         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2967         if (ret_val)
2968                 return ret_val;
2969
2970         ret_val = hw->phy.ops.acquire(hw);
2971         if (ret_val)
2972                 return ret_val;
2973         /* set MSE higher to enable link to stay up when noise is high */
2974         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2975         if (ret_val)
2976                 goto release;
2977         /* drop link after 5 times MSE threshold was reached */
2978         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2979 release:
2980         hw->phy.ops.release(hw);
2981
2982         return ret_val;
2983 }
2984
2985 /**
2986  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2987  *  @hw:   pointer to the HW structure
2988  *
2989  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2990  *  Disable K1 for 1000 and 100 speeds
2991  **/
2992 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2993 {
2994         s32 ret_val = E1000_SUCCESS;
2995         u16 status_reg = 0;
2996
2997         DEBUGFUNC("e1000_k1_workaround_lv");
2998
2999         if (hw->mac.type != e1000_pch2lan)
3000                 return E1000_SUCCESS;
3001
3002         /* Set K1 beacon duration based on 10Mbs speed */
3003         ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
3004         if (ret_val)
3005                 return ret_val;
3006
3007         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
3008             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
3009                 if (status_reg &
3010                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
3011                         u16 pm_phy_reg;
3012
3013                         /* LV 1G/100 Packet drop issue wa  */
3014                         ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
3015                                                        &pm_phy_reg);
3016                         if (ret_val)
3017                                 return ret_val;
3018                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
3019                         ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
3020                                                         pm_phy_reg);
3021                         if (ret_val)
3022                                 return ret_val;
3023                 } else {
3024                         u32 mac_reg;
3025                         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
3026                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
3027                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
3028                         E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
3029                 }
3030         }
3031
3032         return ret_val;
3033 }
3034
3035 /**
3036  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
3037  *  @hw:   pointer to the HW structure
3038  *  @gate: boolean set to true to gate, false to ungate
3039  *
3040  *  Gate/ungate the automatic PHY configuration via hardware; perform
3041  *  the configuration via software instead.
3042  **/
3043 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
3044 {
3045         u32 extcnf_ctrl;
3046
3047         DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
3048
3049         if (hw->mac.type < e1000_pch2lan)
3050                 return;
3051
3052         extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
3053
3054         if (gate)
3055                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3056         else
3057                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3058
3059         E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
3060 }
3061
3062 /**
3063  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
3064  *  @hw: pointer to the HW structure
3065  *
3066  *  Check the appropriate indication the MAC has finished configuring the
3067  *  PHY after a software reset.
3068  **/
3069 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
3070 {
3071         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
3072
3073         DEBUGFUNC("e1000_lan_init_done_ich8lan");
3074
3075         /* Wait for basic configuration completes before proceeding */
3076         do {
3077                 data = E1000_READ_REG(hw, E1000_STATUS);
3078                 data &= E1000_STATUS_LAN_INIT_DONE;
3079                 usec_delay(100);
3080         } while ((!data) && --loop);
3081
3082         /* If basic configuration is incomplete before the above loop
3083          * count reaches 0, loading the configuration from NVM will
3084          * leave the PHY in a bad state possibly resulting in no link.
3085          */
3086         if (loop == 0)
3087                 DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
3088
3089         /* Clear the Init Done bit for the next init event */
3090         data = E1000_READ_REG(hw, E1000_STATUS);
3091         data &= ~E1000_STATUS_LAN_INIT_DONE;
3092         E1000_WRITE_REG(hw, E1000_STATUS, data);
3093 }
3094
3095 /**
3096  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3097  *  @hw: pointer to the HW structure
3098  **/
3099 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3100 {
3101         s32 ret_val = E1000_SUCCESS;
3102         u16 reg;
3103
3104         DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3105
3106         if (hw->phy.ops.check_reset_block(hw))
3107                 return E1000_SUCCESS;
3108
3109         /* Allow time for h/w to get to quiescent state after reset */
3110         msec_delay(10);
3111
3112         /* Perform any necessary post-reset workarounds */
3113         switch (hw->mac.type) {
3114         case e1000_pchlan:
3115                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3116                 if (ret_val)
3117                         return ret_val;
3118                 break;
3119         case e1000_pch2lan:
3120                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3121                 if (ret_val)
3122                         return ret_val;
3123                 break;
3124         default:
3125                 break;
3126         }
3127
3128         /* Clear the host wakeup bit after lcd reset */
3129         if (hw->mac.type >= e1000_pchlan) {
3130                 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3131                 reg &= ~BM_WUC_HOST_WU_BIT;
3132                 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3133         }
3134
3135         /* Configure the LCD with the extended configuration region in NVM */
3136         ret_val = e1000_sw_lcd_config_ich8lan(hw);
3137         if (ret_val)
3138                 return ret_val;
3139
3140         /* Configure the LCD with the OEM bits in NVM */
3141         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
3142
3143         if (hw->mac.type == e1000_pch2lan) {
3144                 /* Ungate automatic PHY configuration on non-managed 82579 */
3145                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
3146                     E1000_ICH_FWSM_FW_VALID)) {
3147                         msec_delay(10);
3148                         e1000_gate_hw_phy_config_ich8lan(hw, false);
3149                 }
3150
3151                 /* Set EEE LPI Update Timer to 200usec */
3152                 ret_val = hw->phy.ops.acquire(hw);
3153                 if (ret_val)
3154                         return ret_val;
3155                 ret_val = e1000_write_emi_reg_locked(hw,
3156                                                      I82579_LPI_UPDATE_TIMER,
3157                                                      0x1387);
3158                 hw->phy.ops.release(hw);
3159         }
3160
3161         return ret_val;
3162 }
3163
3164 /**
3165  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3166  *  @hw: pointer to the HW structure
3167  *
3168  *  Resets the PHY
3169  *  This is a function pointer entry point called by drivers
3170  *  or other shared routines.
3171  **/
3172 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3173 {
3174         s32 ret_val = E1000_SUCCESS;
3175
3176         DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3177
3178         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
3179         if ((hw->mac.type == e1000_pch2lan) &&
3180             !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3181                 e1000_gate_hw_phy_config_ich8lan(hw, true);
3182
3183         ret_val = e1000_phy_hw_reset_generic(hw);
3184         if (ret_val)
3185                 return ret_val;
3186
3187         return e1000_post_phy_reset_ich8lan(hw);
3188 }
3189
3190 /**
3191  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3192  *  @hw: pointer to the HW structure
3193  *  @active: true to enable LPLU, false to disable
3194  *
3195  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3196  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3197  *  the phy speed. This function will manually set the LPLU bit and restart
3198  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3199  *  since it configures the same bit.
3200  **/
3201 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3202 {
3203         s32 ret_val;
3204         u16 oem_reg;
3205
3206         DEBUGFUNC("e1000_set_lplu_state_pchlan");
3207         ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3208         if (ret_val)
3209                 return ret_val;
3210
3211         if (active)
3212                 oem_reg |= HV_OEM_BITS_LPLU;
3213         else
3214                 oem_reg &= ~HV_OEM_BITS_LPLU;
3215
3216         if (!hw->phy.ops.check_reset_block(hw))
3217                 oem_reg |= HV_OEM_BITS_RESTART_AN;
3218
3219         return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3220 }
3221
3222 /**
3223  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3224  *  @hw: pointer to the HW structure
3225  *  @active: true to enable LPLU, false to disable
3226  *
3227  *  Sets the LPLU D0 state according to the active flag.  When
3228  *  activating LPLU this function also disables smart speed
3229  *  and vice versa.  LPLU will not be activated unless the
3230  *  device autonegotiation advertisement meets standards of
3231  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3232  *  This is a function pointer entry point only called by
3233  *  PHY setup routines.
3234  **/
3235 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3236 {
3237         struct e1000_phy_info *phy = &hw->phy;
3238         u32 phy_ctrl;
3239         s32 ret_val = E1000_SUCCESS;
3240         u16 data;
3241
3242         DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3243
3244         if (phy->type == e1000_phy_ife)
3245                 return E1000_SUCCESS;
3246
3247         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3248
3249         if (active) {
3250                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3251                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3252
3253                 if (phy->type != e1000_phy_igp_3)
3254                         return E1000_SUCCESS;
3255
3256                 /* Call gig speed drop workaround on LPLU before accessing
3257                  * any PHY registers
3258                  */
3259                 if (hw->mac.type == e1000_ich8lan)
3260                         e1000_gig_downshift_workaround_ich8lan(hw);
3261
3262                 /* When LPLU is enabled, we should disable SmartSpeed */
3263                 ret_val = phy->ops.read_reg(hw,
3264                                             IGP01E1000_PHY_PORT_CONFIG,
3265                                             &data);
3266                 if (ret_val)
3267                         return ret_val;
3268                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3269                 ret_val = phy->ops.write_reg(hw,
3270                                              IGP01E1000_PHY_PORT_CONFIG,
3271                                              data);
3272                 if (ret_val)
3273                         return ret_val;
3274         } else {
3275                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3276                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3277
3278                 if (phy->type != e1000_phy_igp_3)
3279                         return E1000_SUCCESS;
3280
3281                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3282                  * during Dx states where the power conservation is most
3283                  * important.  During driver activity we should enable
3284                  * SmartSpeed, so performance is maintained.
3285                  */
3286                 if (phy->smart_speed == e1000_smart_speed_on) {
3287                         ret_val = phy->ops.read_reg(hw,
3288                                                     IGP01E1000_PHY_PORT_CONFIG,
3289                                                     &data);
3290                         if (ret_val)
3291                                 return ret_val;
3292
3293                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3294                         ret_val = phy->ops.write_reg(hw,
3295                                                      IGP01E1000_PHY_PORT_CONFIG,
3296                                                      data);
3297                         if (ret_val)
3298                                 return ret_val;
3299                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3300                         ret_val = phy->ops.read_reg(hw,
3301                                                     IGP01E1000_PHY_PORT_CONFIG,
3302                                                     &data);
3303                         if (ret_val)
3304                                 return ret_val;
3305
3306                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3307                         ret_val = phy->ops.write_reg(hw,
3308                                                      IGP01E1000_PHY_PORT_CONFIG,
3309                                                      data);
3310                         if (ret_val)
3311                                 return ret_val;
3312                 }
3313         }
3314
3315         return E1000_SUCCESS;
3316 }
3317
3318 /**
3319  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3320  *  @hw: pointer to the HW structure
3321  *  @active: true to enable LPLU, false to disable
3322  *
3323  *  Sets the LPLU D3 state according to the active flag.  When
3324  *  activating LPLU this function also disables smart speed
3325  *  and vice versa.  LPLU will not be activated unless the
3326  *  device autonegotiation advertisement meets standards of
3327  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3328  *  This is a function pointer entry point only called by
3329  *  PHY setup routines.
3330  **/
3331 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3332 {
3333         struct e1000_phy_info *phy = &hw->phy;
3334         u32 phy_ctrl;
3335         s32 ret_val = E1000_SUCCESS;
3336         u16 data;
3337
3338         DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3339
3340         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3341
3342         if (!active) {
3343                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3344                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3345
3346                 if (phy->type != e1000_phy_igp_3)
3347                         return E1000_SUCCESS;
3348
3349                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3350                  * during Dx states where the power conservation is most
3351                  * important.  During driver activity we should enable
3352                  * SmartSpeed, so performance is maintained.
3353                  */
3354                 if (phy->smart_speed == e1000_smart_speed_on) {
3355                         ret_val = phy->ops.read_reg(hw,
3356                                                     IGP01E1000_PHY_PORT_CONFIG,
3357                                                     &data);
3358                         if (ret_val)
3359                                 return ret_val;
3360
3361                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3362                         ret_val = phy->ops.write_reg(hw,
3363                                                      IGP01E1000_PHY_PORT_CONFIG,
3364                                                      data);
3365                         if (ret_val)
3366                                 return ret_val;
3367                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3368                         ret_val = phy->ops.read_reg(hw,
3369                                                     IGP01E1000_PHY_PORT_CONFIG,
3370                                                     &data);
3371                         if (ret_val)
3372                                 return ret_val;
3373
3374                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3375                         ret_val = phy->ops.write_reg(hw,
3376                                                      IGP01E1000_PHY_PORT_CONFIG,
3377                                                      data);
3378                         if (ret_val)
3379                                 return ret_val;
3380                 }
3381         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3382                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3383                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3384                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3385                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3386
3387                 if (phy->type != e1000_phy_igp_3)
3388                         return E1000_SUCCESS;
3389
3390                 /* Call gig speed drop workaround on LPLU before accessing
3391                  * any PHY registers
3392                  */
3393                 if (hw->mac.type == e1000_ich8lan)
3394                         e1000_gig_downshift_workaround_ich8lan(hw);
3395
3396                 /* When LPLU is enabled, we should disable SmartSpeed */
3397                 ret_val = phy->ops.read_reg(hw,
3398                                             IGP01E1000_PHY_PORT_CONFIG,
3399                                             &data);
3400                 if (ret_val)
3401                         return ret_val;
3402
3403                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3404                 ret_val = phy->ops.write_reg(hw,
3405                                              IGP01E1000_PHY_PORT_CONFIG,
3406                                              data);
3407         }
3408
3409         return ret_val;
3410 }
3411
3412 /**
3413  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3414  *  @hw: pointer to the HW structure
3415  *  @bank:  pointer to the variable that returns the active bank
3416  *
3417  *  Reads signature byte from the NVM using the flash access registers.
3418  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3419  **/
3420 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3421 {
3422         u32 eecd;
3423         struct e1000_nvm_info *nvm = &hw->nvm;
3424         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3425         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3426         u32 nvm_dword = 0;
3427         u8 sig_byte = 0;
3428         s32 ret_val;
3429
3430         DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3431
3432         switch (hw->mac.type) {
3433         case e1000_pch_spt:
3434         case e1000_pch_cnp:
3435         case e1000_pch_tgp:
3436         case e1000_pch_adp:
3437         case e1000_pch_mtp:
3438                 bank1_offset = nvm->flash_bank_size;
3439                 act_offset = E1000_ICH_NVM_SIG_WORD;
3440
3441                 /* set bank to 0 in case flash read fails */
3442                 *bank = 0;
3443
3444                 /* Check bank 0 */
3445                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3446                                                          &nvm_dword);
3447                 if (ret_val)
3448                         return ret_val;
3449                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3450                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3451                     E1000_ICH_NVM_SIG_VALUE) {
3452                         *bank = 0;
3453                         return E1000_SUCCESS;
3454                 }
3455
3456                 /* Check bank 1 */
3457                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3458                                                          bank1_offset,
3459                                                          &nvm_dword);
3460                 if (ret_val)
3461                         return ret_val;
3462                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3463                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3464                     E1000_ICH_NVM_SIG_VALUE) {
3465                         *bank = 1;
3466                         return E1000_SUCCESS;
3467                 }
3468
3469                 DEBUGOUT("ERROR: No valid NVM bank present\n");
3470                 return -E1000_ERR_NVM;
3471         case e1000_ich8lan:
3472         case e1000_ich9lan:
3473                 eecd = E1000_READ_REG(hw, E1000_EECD);
3474                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3475                     E1000_EECD_SEC1VAL_VALID_MASK) {
3476                         if (eecd & E1000_EECD_SEC1VAL)
3477                                 *bank = 1;
3478                         else
3479                                 *bank = 0;
3480
3481                         return E1000_SUCCESS;
3482                 }
3483                 DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3484                 /* FALLTHROUGH */
3485         default:
3486                 /* set bank to 0 in case flash read fails */
3487                 *bank = 0;
3488
3489                 /* Check bank 0 */
3490                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3491                                                         &sig_byte);
3492                 if (ret_val)
3493                         return ret_val;
3494                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3495                     E1000_ICH_NVM_SIG_VALUE) {
3496                         *bank = 0;
3497                         return E1000_SUCCESS;
3498                 }
3499
3500                 /* Check bank 1 */
3501                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3502                                                         bank1_offset,
3503                                                         &sig_byte);
3504                 if (ret_val)
3505                         return ret_val;
3506                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3507                     E1000_ICH_NVM_SIG_VALUE) {
3508                         *bank = 1;
3509                         return E1000_SUCCESS;
3510                 }
3511
3512                 DEBUGOUT("ERROR: No valid NVM bank present\n");
3513                 return -E1000_ERR_NVM;
3514         }
3515 }
3516
3517 /**
3518  *  e1000_read_nvm_spt - NVM access for SPT
3519  *  @hw: pointer to the HW structure
3520  *  @offset: The offset (in bytes) of the word(s) to read.
3521  *  @words: Size of data to read in words.
3522  *  @data: pointer to the word(s) to read at offset.
3523  *
3524  *  Reads a word(s) from the NVM
3525  **/
3526 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3527                               u16 *data)
3528 {
3529         struct e1000_nvm_info *nvm = &hw->nvm;
3530         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3531         u32 act_offset;
3532         s32 ret_val = E1000_SUCCESS;
3533         u32 bank = 0;
3534         u32 dword = 0;
3535         u16 offset_to_read;
3536         u16 i;
3537
3538         DEBUGFUNC("e1000_read_nvm_spt");
3539
3540         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3541             (words == 0)) {
3542                 DEBUGOUT("nvm parameter(s) out of bounds\n");
3543                 ret_val = -E1000_ERR_NVM;
3544                 goto out;
3545         }
3546
3547         nvm->ops.acquire(hw);
3548
3549         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3550         if (ret_val != E1000_SUCCESS) {
3551                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3552                 bank = 0;
3553         }
3554
3555         act_offset = (bank) ? nvm->flash_bank_size : 0;
3556         act_offset += offset;
3557
3558         ret_val = E1000_SUCCESS;
3559
3560         for (i = 0; i < words; i += 2) {
3561                 if (words - i == 1) {
3562                         if (dev_spec->shadow_ram[offset + i].modified) {
3563                                 data[i] =
3564                                     dev_spec->shadow_ram[offset + i].value;
3565                         } else {
3566                                 offset_to_read = act_offset + i -
3567                                                  ((act_offset + i) % 2);
3568                                 ret_val =
3569                                    e1000_read_flash_dword_ich8lan(hw,
3570                                                                  offset_to_read,
3571                                                                  &dword);
3572                                 if (ret_val)
3573                                         break;
3574                                 if ((act_offset + i) % 2 == 0)
3575                                         data[i] = (u16)(dword & 0xFFFF);
3576                                 else
3577                                         data[i] = (u16)((dword >> 16) & 0xFFFF);
3578                         }
3579                 } else {
3580                         offset_to_read = act_offset + i;
3581                         if (!(dev_spec->shadow_ram[offset + i].modified) ||
3582                             !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3583                                 ret_val =
3584                                    e1000_read_flash_dword_ich8lan(hw,
3585                                                                  offset_to_read,
3586                                                                  &dword);
3587                                 if (ret_val)
3588                                         break;
3589                         }
3590                         if (dev_spec->shadow_ram[offset + i].modified)
3591                                 data[i] =
3592                                     dev_spec->shadow_ram[offset + i].value;
3593                         else
3594                                 data[i] = (u16)(dword & 0xFFFF);
3595                         if (dev_spec->shadow_ram[offset + i + 1].modified)
3596                                 data[i + 1] =
3597                                    dev_spec->shadow_ram[offset + i + 1].value;
3598                         else
3599                                 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3600                 }
3601         }
3602
3603         nvm->ops.release(hw);
3604
3605 out:
3606         if (ret_val)
3607                 DEBUGOUT1("NVM read error: %d\n", ret_val);
3608
3609         return ret_val;
3610 }
3611
3612 /**
3613  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3614  *  @hw: pointer to the HW structure
3615  *  @offset: The offset (in bytes) of the word(s) to read.
3616  *  @words: Size of data to read in words
3617  *  @data: Pointer to the word(s) to read at offset.
3618  *
3619  *  Reads a word(s) from the NVM using the flash access registers.
3620  **/
3621 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3622                                   u16 *data)
3623 {
3624         struct e1000_nvm_info *nvm = &hw->nvm;
3625         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3626         u32 act_offset;
3627         s32 ret_val = E1000_SUCCESS;
3628         u32 bank = 0;
3629         u16 i, word;
3630
3631         DEBUGFUNC("e1000_read_nvm_ich8lan");
3632
3633         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3634             (words == 0)) {
3635                 DEBUGOUT("nvm parameter(s) out of bounds\n");
3636                 ret_val = -E1000_ERR_NVM;
3637                 goto out;
3638         }
3639
3640         nvm->ops.acquire(hw);
3641
3642         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3643         if (ret_val != E1000_SUCCESS) {
3644                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3645                 bank = 0;
3646         }
3647
3648         act_offset = (bank) ? nvm->flash_bank_size : 0;
3649         act_offset += offset;
3650
3651         ret_val = E1000_SUCCESS;
3652         for (i = 0; i < words; i++) {
3653                 if (dev_spec->shadow_ram[offset + i].modified) {
3654                         data[i] = dev_spec->shadow_ram[offset + i].value;
3655                 } else {
3656                         ret_val = e1000_read_flash_word_ich8lan(hw,
3657                                                                 act_offset + i,
3658                                                                 &word);
3659                         if (ret_val)
3660                                 break;
3661                         data[i] = word;
3662                 }
3663         }
3664
3665         nvm->ops.release(hw);
3666
3667 out:
3668         if (ret_val)
3669                 DEBUGOUT1("NVM read error: %d\n", ret_val);
3670
3671         return ret_val;
3672 }
3673
3674 /**
3675  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3676  *  @hw: pointer to the HW structure
3677  *
3678  *  This function does initial flash setup so that a new read/write/erase cycle
3679  *  can be started.
3680  **/
3681 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3682 {
3683         union ich8_hws_flash_status hsfsts;
3684         s32 ret_val = -E1000_ERR_NVM;
3685
3686         DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3687
3688         hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3689
3690         /* Check if the flash descriptor is valid */
3691         if (!hsfsts.hsf_status.fldesvalid) {
3692                 DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3693                 return -E1000_ERR_NVM;
3694         }
3695
3696         /* Clear FCERR and DAEL in hw status by writing 1 */
3697         hsfsts.hsf_status.flcerr = 1;
3698         hsfsts.hsf_status.dael = 1;
3699         if (hw->mac.type >= e1000_pch_spt)
3700                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3701                                       hsfsts.regval & 0xFFFF);
3702         else
3703                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3704
3705         /* Either we should have a hardware SPI cycle in progress
3706          * bit to check against, in order to start a new cycle or
3707          * FDONE bit should be changed in the hardware so that it
3708          * is 1 after hardware reset, which can then be used as an
3709          * indication whether a cycle is in progress or has been
3710          * completed.
3711          */
3712
3713         if (!hsfsts.hsf_status.flcinprog) {
3714                 /* There is no cycle running at present,
3715                  * so we can start a cycle.
3716                  * Begin by setting Flash Cycle Done.
3717                  */
3718                 hsfsts.hsf_status.flcdone = 1;
3719                 if (hw->mac.type >= e1000_pch_spt)
3720                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3721                                               hsfsts.regval & 0xFFFF);
3722                 else
3723                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3724                                                 hsfsts.regval);
3725                 ret_val = E1000_SUCCESS;
3726         } else {
3727                 s32 i;
3728
3729                 /* Otherwise poll for sometime so the current
3730                  * cycle has a chance to end before giving up.
3731                  */
3732                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3733                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3734                                                               ICH_FLASH_HSFSTS);
3735                         if (!hsfsts.hsf_status.flcinprog) {
3736                                 ret_val = E1000_SUCCESS;
3737                                 break;
3738                         }
3739                         usec_delay(1);
3740                 }
3741                 if (ret_val == E1000_SUCCESS) {
3742                         /* Successful in waiting for previous cycle to timeout,
3743                          * now set the Flash Cycle Done.
3744                          */
3745                         hsfsts.hsf_status.flcdone = 1;
3746                         if (hw->mac.type >= e1000_pch_spt)
3747                                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3748                                                       hsfsts.regval & 0xFFFF);
3749                         else
3750                                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3751                                                         hsfsts.regval);
3752                 } else {
3753                         DEBUGOUT("Flash controller busy, cannot get access\n");
3754                 }
3755         }
3756
3757         return ret_val;
3758 }
3759
3760 /**
3761  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3762  *  @hw: pointer to the HW structure
3763  *  @timeout: maximum time to wait for completion
3764  *
3765  *  This function starts a flash cycle and waits for its completion.
3766  **/
3767 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3768 {
3769         union ich8_hws_flash_ctrl hsflctl;
3770         union ich8_hws_flash_status hsfsts;
3771         u32 i = 0;
3772
3773         DEBUGFUNC("e1000_flash_cycle_ich8lan");
3774
3775         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3776         if (hw->mac.type >= e1000_pch_spt)
3777                 hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3778         else
3779                 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3780         hsflctl.hsf_ctrl.flcgo = 1;
3781
3782         if (hw->mac.type >= e1000_pch_spt)
3783                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3784                                       hsflctl.regval << 16);
3785         else
3786                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3787
3788         /* wait till FDONE bit is set to 1 */
3789         do {
3790                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3791                 if (hsfsts.hsf_status.flcdone)
3792                         break;
3793                 usec_delay(1);
3794         } while (i++ < timeout);
3795
3796         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3797                 return E1000_SUCCESS;
3798
3799         return -E1000_ERR_NVM;
3800 }
3801
3802 /**
3803  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3804  *  @hw: pointer to the HW structure
3805  *  @offset: offset to data location
3806  *  @data: pointer to the location for storing the data
3807  *
3808  *  Reads the flash dword at offset into data.  Offset is converted
3809  *  to bytes before read.
3810  **/
3811 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3812                                           u32 *data)
3813 {
3814         DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3815
3816         if (!data)
3817                 return -E1000_ERR_NVM;
3818
3819         /* Must convert word offset into bytes. */
3820         offset <<= 1;
3821
3822         return e1000_read_flash_data32_ich8lan(hw, offset, data);
3823 }
3824
3825 /**
3826  *  e1000_read_flash_word_ich8lan - Read word from flash
3827  *  @hw: pointer to the HW structure
3828  *  @offset: offset to data location
3829  *  @data: pointer to the location for storing the data
3830  *
3831  *  Reads the flash word at offset into data.  Offset is converted
3832  *  to bytes before read.
3833  **/
3834 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3835                                          u16 *data)
3836 {
3837         DEBUGFUNC("e1000_read_flash_word_ich8lan");
3838
3839         if (!data)
3840                 return -E1000_ERR_NVM;
3841
3842         /* Must convert offset into bytes. */
3843         offset <<= 1;
3844
3845         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3846 }
3847
3848 /**
3849  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3850  *  @hw: pointer to the HW structure
3851  *  @offset: The offset of the byte to read.
3852  *  @data: Pointer to a byte to store the value read.
3853  *
3854  *  Reads a single byte from the NVM using the flash access registers.
3855  **/
3856 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3857                                          u8 *data)
3858 {
3859         s32 ret_val;
3860         u16 word = 0;
3861
3862         /* In SPT, only 32 bits access is supported,
3863          * so this function should not be called.
3864          */
3865         if (hw->mac.type >= e1000_pch_spt)
3866                 return -E1000_ERR_NVM;
3867         else
3868                 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3869
3870         if (ret_val)
3871                 return ret_val;
3872
3873         *data = (u8)word;
3874
3875         return E1000_SUCCESS;
3876 }
3877
3878 /**
3879  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3880  *  @hw: pointer to the HW structure
3881  *  @offset: The offset (in bytes) of the byte or word to read.
3882  *  @size: Size of data to read, 1=byte 2=word
3883  *  @data: Pointer to the word to store the value read.
3884  *
3885  *  Reads a byte or word from the NVM using the flash access registers.
3886  **/
3887 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3888                                          u8 size, u16 *data)
3889 {
3890         union ich8_hws_flash_status hsfsts;
3891         union ich8_hws_flash_ctrl hsflctl;
3892         u32 flash_linear_addr;
3893         u32 flash_data = 0;
3894         s32 ret_val = -E1000_ERR_NVM;
3895         u8 count = 0;
3896
3897         DEBUGFUNC("e1000_read_flash_data_ich8lan");
3898
3899         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3900                 return -E1000_ERR_NVM;
3901         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3902                              hw->nvm.flash_base_addr);
3903
3904         do {
3905                 usec_delay(1);
3906                 /* Steps */
3907                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3908                 if (ret_val != E1000_SUCCESS)
3909                         break;
3910                 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3911
3912                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3913                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3914                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3915                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3916                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3917
3918                 ret_val = e1000_flash_cycle_ich8lan(hw,
3919                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
3920
3921                 /* Check if FCERR is set to 1, if set to 1, clear it
3922                  * and try the whole sequence a few more times, else
3923                  * read in (shift in) the Flash Data0, the order is
3924                  * least significant byte first msb to lsb
3925                  */
3926                 if (ret_val == E1000_SUCCESS) {
3927                         flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3928                         if (size == 1)
3929                                 *data = (u8)(flash_data & 0x000000FF);
3930                         else if (size == 2)
3931                                 *data = (u16)(flash_data & 0x0000FFFF);
3932                         break;
3933                 } else {
3934                         /* If we've gotten here, then things are probably
3935                          * completely hosed, but if the error condition is
3936                          * detected, it won't hurt to give it another try...
3937                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3938                          */
3939                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3940                                                               ICH_FLASH_HSFSTS);
3941                         if (hsfsts.hsf_status.flcerr) {
3942                                 /* Repeat for some time before giving up. */
3943                                 continue;
3944                         } else if (!hsfsts.hsf_status.flcdone) {
3945                                 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3946                                 break;
3947                         }
3948                 }
3949         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3950
3951         return ret_val;
3952 }
3953
3954 /**
3955  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3956  *  @hw: pointer to the HW structure
3957  *  @offset: The offset (in bytes) of the dword to read.
3958  *  @data: Pointer to the dword to store the value read.
3959  *
3960  *  Reads a byte or word from the NVM using the flash access registers.
3961  **/
3962 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3963                                            u32 *data)
3964 {
3965         union ich8_hws_flash_status hsfsts;
3966         union ich8_hws_flash_ctrl hsflctl;
3967         u32 flash_linear_addr;
3968         s32 ret_val = -E1000_ERR_NVM;
3969         u8 count = 0;
3970
3971         DEBUGFUNC("e1000_read_flash_data_ich8lan");
3972
3973                 if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3974                     hw->mac.type < e1000_pch_spt)
3975                         return -E1000_ERR_NVM;
3976         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3977                              hw->nvm.flash_base_addr);
3978
3979         do {
3980                 usec_delay(1);
3981                 /* Steps */
3982                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3983                 if (ret_val != E1000_SUCCESS)
3984                         break;
3985                 /* In SPT, This register is in Lan memory space, not flash.
3986                  * Therefore, only 32 bit access is supported
3987                  */
3988                 hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3989
3990                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3991                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3992                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3993                 /* In SPT, This register is in Lan memory space, not flash.
3994                  * Therefore, only 32 bit access is supported
3995                  */
3996                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3997                                       (u32)hsflctl.regval << 16);
3998                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3999
4000                 ret_val = e1000_flash_cycle_ich8lan(hw,
4001                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
4002
4003                 /* Check if FCERR is set to 1, if set to 1, clear it
4004                  * and try the whole sequence a few more times, else
4005                  * read in (shift in) the Flash Data0, the order is
4006                  * least significant byte first msb to lsb
4007                  */
4008                 if (ret_val == E1000_SUCCESS) {
4009                         *data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
4010                         break;
4011                 } else {
4012                         /* If we've gotten here, then things are probably
4013                          * completely hosed, but if the error condition is
4014                          * detected, it won't hurt to give it another try...
4015                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
4016                          */
4017                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4018                                                               ICH_FLASH_HSFSTS);
4019                         if (hsfsts.hsf_status.flcerr) {
4020                                 /* Repeat for some time before giving up. */
4021                                 continue;
4022                         } else if (!hsfsts.hsf_status.flcdone) {
4023                                 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4024                                 break;
4025                         }
4026                 }
4027         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4028
4029         return ret_val;
4030 }
4031
4032 /**
4033  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
4034  *  @hw: pointer to the HW structure
4035  *  @offset: The offset (in bytes) of the word(s) to write.
4036  *  @words: Size of data to write in words
4037  *  @data: Pointer to the word(s) to write at offset.
4038  *
4039  *  Writes a byte or word to the NVM using the flash access registers.
4040  **/
4041 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
4042                                    u16 *data)
4043 {
4044         struct e1000_nvm_info *nvm = &hw->nvm;
4045         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4046         u16 i;
4047
4048         DEBUGFUNC("e1000_write_nvm_ich8lan");
4049
4050         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
4051             (words == 0)) {
4052                 DEBUGOUT("nvm parameter(s) out of bounds\n");
4053                 return -E1000_ERR_NVM;
4054         }
4055
4056         nvm->ops.acquire(hw);
4057
4058         for (i = 0; i < words; i++) {
4059                 dev_spec->shadow_ram[offset + i].modified = true;
4060                 dev_spec->shadow_ram[offset + i].value = data[i];
4061         }
4062
4063         nvm->ops.release(hw);
4064
4065         return E1000_SUCCESS;
4066 }
4067
4068 /**
4069  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
4070  *  @hw: pointer to the HW structure
4071  *
4072  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4073  *  which writes the checksum to the shadow ram.  The changes in the shadow
4074  *  ram are then committed to the EEPROM by processing each bank at a time
4075  *  checking for the modified bit and writing only the pending changes.
4076  *  After a successful commit, the shadow ram is cleared and is ready for
4077  *  future writes.
4078  **/
4079 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
4080 {
4081         struct e1000_nvm_info *nvm = &hw->nvm;
4082         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4083         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4084         s32 ret_val;
4085         u32 dword = 0;
4086
4087         DEBUGFUNC("e1000_update_nvm_checksum_spt");
4088
4089         ret_val = e1000_update_nvm_checksum_generic(hw);
4090         if (ret_val)
4091                 goto out;
4092
4093         if (nvm->type != e1000_nvm_flash_sw)
4094                 goto out;
4095
4096         nvm->ops.acquire(hw);
4097
4098         /* We're writing to the opposite bank so if we're on bank 1,
4099          * write to bank 0 etc.  We also need to erase the segment that
4100          * is going to be written
4101          */
4102         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4103         if (ret_val != E1000_SUCCESS) {
4104                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4105                 bank = 0;
4106         }
4107
4108         if (bank == 0) {
4109                 new_bank_offset = nvm->flash_bank_size;
4110                 old_bank_offset = 0;
4111                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4112                 if (ret_val)
4113                         goto release;
4114         } else {
4115                 old_bank_offset = nvm->flash_bank_size;
4116                 new_bank_offset = 0;
4117                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4118                 if (ret_val)
4119                         goto release;
4120         }
4121         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4122                 /* Determine whether to write the value stored
4123                  * in the other NVM bank or a modified value stored
4124                  * in the shadow RAM
4125                  */
4126                 ret_val = e1000_read_flash_dword_ich8lan(hw,
4127                                                          i + old_bank_offset,
4128                                                          &dword);
4129
4130                 if (dev_spec->shadow_ram[i].modified) {
4131                         dword &= 0xffff0000;
4132                         dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4133                 }
4134                 if (dev_spec->shadow_ram[i + 1].modified) {
4135                         dword &= 0x0000ffff;
4136                         dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4137                                   << 16);
4138                 }
4139                 if (ret_val)
4140                         break;
4141
4142                 /* If the word is 0x13, then make sure the signature bits
4143                  * (15:14) are 11b until the commit has completed.
4144                  * This will allow us to write 10b which indicates the
4145                  * signature is valid.  We want to do this after the write
4146                  * has completed so that we don't mark the segment valid
4147                  * while the write is still in progress
4148                  */
4149                 if (i == E1000_ICH_NVM_SIG_WORD - 1)
4150                         dword |= E1000_ICH_NVM_SIG_MASK << 16;
4151
4152                 /* Convert offset to bytes. */
4153                 act_offset = (i + new_bank_offset) << 1;
4154
4155                 usec_delay(100);
4156
4157                 /* Write the data to the new bank. Offset in words*/
4158                 act_offset = i + new_bank_offset;
4159                 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4160                                                                 dword);
4161                 if (ret_val)
4162                         break;
4163          }
4164
4165         /* Don't bother writing the segment valid bits if sector
4166          * programming failed.
4167          */
4168         if (ret_val) {
4169                 DEBUGOUT("Flash commit failed.\n");
4170                 goto release;
4171         }
4172
4173         /* Finally validate the new segment by setting bit 15:14
4174          * to 10b in word 0x13 , this can be done without an
4175          * erase as well since these bits are 11 to start with
4176          * and we need to change bit 14 to 0b
4177          */
4178         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4179
4180         /*offset in words but we read dword*/
4181         --act_offset;
4182         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4183
4184         if (ret_val)
4185                 goto release;
4186
4187         dword &= 0xBFFFFFFF;
4188         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4189
4190         if (ret_val)
4191                 goto release;
4192
4193         /* offset in words but we read dword*/
4194         act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4195         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4196
4197         if (ret_val)
4198                 goto release;
4199
4200         dword &= 0x00FFFFFF;
4201         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4202
4203         if (ret_val)
4204                 goto release;
4205
4206         /* Great!  Everything worked, we can now clear the cached entries. */
4207         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4208                 dev_spec->shadow_ram[i].modified = false;
4209                 dev_spec->shadow_ram[i].value = 0xFFFF;
4210         }
4211
4212 release:
4213         nvm->ops.release(hw);
4214
4215         /* Reload the EEPROM, or else modifications will not appear
4216          * until after the next adapter reset.
4217          */
4218         if (!ret_val) {
4219                 nvm->ops.reload(hw);
4220                 msec_delay(10);
4221         }
4222
4223 out:
4224         if (ret_val)
4225                 DEBUGOUT1("NVM update error: %d\n", ret_val);
4226
4227         return ret_val;
4228 }
4229
4230 /**
4231  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4232  *  @hw: pointer to the HW structure
4233  *
4234  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4235  *  which writes the checksum to the shadow ram.  The changes in the shadow
4236  *  ram are then committed to the EEPROM by processing each bank at a time
4237  *  checking for the modified bit and writing only the pending changes.
4238  *  After a successful commit, the shadow ram is cleared and is ready for
4239  *  future writes.
4240  **/
4241 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4242 {
4243         struct e1000_nvm_info *nvm = &hw->nvm;
4244         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4245         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4246         s32 ret_val;
4247         u16 data = 0;
4248
4249         DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4250
4251         ret_val = e1000_update_nvm_checksum_generic(hw);
4252         if (ret_val)
4253                 goto out;
4254
4255         if (nvm->type != e1000_nvm_flash_sw)
4256                 goto out;
4257
4258         nvm->ops.acquire(hw);
4259
4260         /* We're writing to the opposite bank so if we're on bank 1,
4261          * write to bank 0 etc.  We also need to erase the segment that
4262          * is going to be written
4263          */
4264         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4265         if (ret_val != E1000_SUCCESS) {
4266                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4267                 bank = 0;
4268         }
4269
4270         if (bank == 0) {
4271                 new_bank_offset = nvm->flash_bank_size;
4272                 old_bank_offset = 0;
4273                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4274                 if (ret_val)
4275                         goto release;
4276         } else {
4277                 old_bank_offset = nvm->flash_bank_size;
4278                 new_bank_offset = 0;
4279                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4280                 if (ret_val)
4281                         goto release;
4282         }
4283         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4284                 if (dev_spec->shadow_ram[i].modified) {
4285                         data = dev_spec->shadow_ram[i].value;
4286                 } else {
4287                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
4288                                                                 old_bank_offset,
4289                                                                 &data);
4290                         if (ret_val)
4291                                 break;
4292                 }
4293                 /* If the word is 0x13, then make sure the signature bits
4294                  * (15:14) are 11b until the commit has completed.
4295                  * This will allow us to write 10b which indicates the
4296                  * signature is valid.  We want to do this after the write
4297                  * has completed so that we don't mark the segment valid
4298                  * while the write is still in progress
4299                  */
4300                 if (i == E1000_ICH_NVM_SIG_WORD)
4301                         data |= E1000_ICH_NVM_SIG_MASK;
4302
4303                 /* Convert offset to bytes. */
4304                 act_offset = (i + new_bank_offset) << 1;
4305
4306                 usec_delay(100);
4307
4308                 /* Write the bytes to the new bank. */
4309                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4310                                                                act_offset,
4311                                                                (u8)data);
4312                 if (ret_val)
4313                         break;
4314
4315                 usec_delay(100);
4316                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4317                                                           act_offset + 1,
4318                                                           (u8)(data >> 8));
4319                 if (ret_val)
4320                         break;
4321          }
4322
4323         /* Don't bother writing the segment valid bits if sector
4324          * programming failed.
4325          */
4326         if (ret_val) {
4327                 DEBUGOUT("Flash commit failed.\n");
4328                 goto release;
4329         }
4330
4331         /* Finally validate the new segment by setting bit 15:14
4332          * to 10b in word 0x13 , this can be done without an
4333          * erase as well since these bits are 11 to start with
4334          * and we need to change bit 14 to 0b
4335          */
4336         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4337         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4338         if (ret_val)
4339                 goto release;
4340
4341         data &= 0xBFFF;
4342         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4343                                                        (u8)(data >> 8));
4344         if (ret_val)
4345                 goto release;
4346
4347         /* And invalidate the previously valid segment by setting
4348          * its signature word (0x13) high_byte to 0b. This can be
4349          * done without an erase because flash erase sets all bits
4350          * to 1's. We can write 1's to 0's without an erase
4351          */
4352         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4353
4354         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4355
4356         if (ret_val)
4357                 goto release;
4358
4359         /* Great!  Everything worked, we can now clear the cached entries. */
4360         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4361                 dev_spec->shadow_ram[i].modified = false;
4362                 dev_spec->shadow_ram[i].value = 0xFFFF;
4363         }
4364
4365 release:
4366         nvm->ops.release(hw);
4367
4368         /* Reload the EEPROM, or else modifications will not appear
4369          * until after the next adapter reset.
4370          */
4371         if (!ret_val) {
4372                 nvm->ops.reload(hw);
4373                 msec_delay(10);
4374         }
4375
4376 out:
4377         if (ret_val)
4378                 DEBUGOUT1("NVM update error: %d\n", ret_val);
4379
4380         return ret_val;
4381 }
4382
4383 /**
4384  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4385  *  @hw: pointer to the HW structure
4386  *
4387  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4388  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4389  *  calculated, in which case we need to calculate the checksum and set bit 6.
4390  **/
4391 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4392 {
4393         s32 ret_val;
4394         u16 data;
4395         u16 word;
4396         u16 valid_csum_mask;
4397
4398         DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4399
4400         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4401          * the checksum needs to be fixed.  This bit is an indication that
4402          * the NVM was prepared by OEM software and did not calculate
4403          * the checksum...a likely scenario.
4404          */
4405         switch (hw->mac.type) {
4406         case e1000_pch_lpt:
4407         case e1000_pch_spt:
4408         case e1000_pch_cnp:
4409         case e1000_pch_tgp:
4410         case e1000_pch_adp:
4411         case e1000_pch_mtp:
4412                 word = NVM_COMPAT;
4413                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4414                 break;
4415         default:
4416                 word = NVM_FUTURE_INIT_WORD1;
4417                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4418                 break;
4419         }
4420
4421         ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4422         if (ret_val)
4423                 return ret_val;
4424
4425         if (!(data & valid_csum_mask)) {
4426                 data |= valid_csum_mask;
4427                 ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4428                 if (ret_val)
4429                         return ret_val;
4430                 ret_val = hw->nvm.ops.update(hw);
4431                 if (ret_val)
4432                         return ret_val;
4433         }
4434
4435         return e1000_validate_nvm_checksum_generic(hw);
4436 }
4437
4438 /**
4439  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4440  *  @hw: pointer to the HW structure
4441  *  @offset: The offset (in bytes) of the byte/word to read.
4442  *  @size: Size of data to read, 1=byte 2=word
4443  *  @data: The byte(s) to write to the NVM.
4444  *
4445  *  Writes one/two bytes to the NVM using the flash access registers.
4446  **/
4447 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4448                                           u8 size, u16 data)
4449 {
4450         union ich8_hws_flash_status hsfsts;
4451         union ich8_hws_flash_ctrl hsflctl;
4452         u32 flash_linear_addr;
4453         u32 flash_data = 0;
4454         s32 ret_val;
4455         u8 count = 0;
4456
4457         DEBUGFUNC("e1000_write_ich8_data");
4458
4459         if (hw->mac.type >= e1000_pch_spt) {
4460                 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4461                         return -E1000_ERR_NVM;
4462         } else {
4463                 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4464                         return -E1000_ERR_NVM;
4465         }
4466
4467         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4468                              hw->nvm.flash_base_addr);
4469
4470         do {
4471                 usec_delay(1);
4472                 /* Steps */
4473                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4474                 if (ret_val != E1000_SUCCESS)
4475                         break;
4476                 /* In SPT, This register is in Lan memory space, not
4477                  * flash.  Therefore, only 32 bit access is supported
4478                  */
4479                 if (hw->mac.type >= e1000_pch_spt)
4480                         hsflctl.regval =
4481                             E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
4482                 else
4483                         hsflctl.regval =
4484                             E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4485
4486                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4487                 hsflctl.hsf_ctrl.fldbcount = size - 1;
4488                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4489                 /* In SPT, This register is in Lan memory space,
4490                  * not flash.  Therefore, only 32 bit access is
4491                  * supported
4492                  */
4493                 if (hw->mac.type >= e1000_pch_spt)
4494                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4495                                               hsflctl.regval << 16);
4496                 else
4497                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4498                                                 hsflctl.regval);
4499
4500                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4501
4502                 if (size == 1)
4503                         flash_data = (u32)data & 0x00FF;
4504                 else
4505                         flash_data = (u32)data;
4506
4507                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4508
4509                 /* check if FCERR is set to 1 , if set to 1, clear it
4510                  * and try the whole sequence a few more times else done
4511                  */
4512                 ret_val =
4513                     e1000_flash_cycle_ich8lan(hw,
4514                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4515                 if (ret_val == E1000_SUCCESS)
4516                         break;
4517
4518                 /* If we're here, then things are most likely
4519                  * completely hosed, but if the error condition
4520                  * is detected, it won't hurt to give it another
4521                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4522                  */
4523                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4524                 if (hsfsts.hsf_status.flcerr)
4525                         /* Repeat for some time before giving up. */
4526                         continue;
4527                 if (!hsfsts.hsf_status.flcdone) {
4528                         DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4529                         break;
4530                 }
4531         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4532
4533         return ret_val;
4534 }
4535
4536 /**
4537 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4538 *  @hw: pointer to the HW structure
4539 *  @offset: The offset (in bytes) of the dwords to read.
4540 *  @data: The 4 bytes to write to the NVM.
4541 *
4542 *  Writes one/two/four bytes to the NVM using the flash access registers.
4543 **/
4544 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4545                                             u32 data)
4546 {
4547         union ich8_hws_flash_status hsfsts;
4548         union ich8_hws_flash_ctrl hsflctl;
4549         u32 flash_linear_addr;
4550         s32 ret_val;
4551         u8 count = 0;
4552
4553         DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4554
4555         if (hw->mac.type >= e1000_pch_spt) {
4556                 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4557                         return -E1000_ERR_NVM;
4558         }
4559         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4560                              hw->nvm.flash_base_addr);
4561         do {
4562                 usec_delay(1);
4563                 /* Steps */
4564                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4565                 if (ret_val != E1000_SUCCESS)
4566                         break;
4567
4568                 /* In SPT, This register is in Lan memory space, not
4569                  * flash.  Therefore, only 32 bit access is supported
4570                  */
4571                 if (hw->mac.type >= e1000_pch_spt)
4572                         hsflctl.regval = E1000_READ_FLASH_REG(hw,
4573                                                               ICH_FLASH_HSFSTS)
4574                                          >> 16;
4575                 else
4576                         hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4577                                                               ICH_FLASH_HSFCTL);
4578
4579                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4580                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4581
4582                 /* In SPT, This register is in Lan memory space,
4583                  * not flash.  Therefore, only 32 bit access is
4584                  * supported
4585                  */
4586                 if (hw->mac.type >= e1000_pch_spt)
4587                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4588                                               hsflctl.regval << 16);
4589                 else
4590                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4591                                                 hsflctl.regval);
4592
4593                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4594
4595                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4596
4597                 /* check if FCERR is set to 1 , if set to 1, clear it
4598                  * and try the whole sequence a few more times else done
4599                  */
4600                 ret_val = e1000_flash_cycle_ich8lan(hw,
4601                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4602
4603                 if (ret_val == E1000_SUCCESS)
4604                         break;
4605
4606                 /* If we're here, then things are most likely
4607                  * completely hosed, but if the error condition
4608                  * is detected, it won't hurt to give it another
4609                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4610                  */
4611                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4612
4613                 if (hsfsts.hsf_status.flcerr)
4614                         /* Repeat for some time before giving up. */
4615                         continue;
4616                 if (!hsfsts.hsf_status.flcdone) {
4617                         DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4618                         break;
4619                 }
4620         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4621
4622         return ret_val;
4623 }
4624
4625 /**
4626  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4627  *  @hw: pointer to the HW structure
4628  *  @offset: The index of the byte to read.
4629  *  @data: The byte to write to the NVM.
4630  *
4631  *  Writes a single byte to the NVM using the flash access registers.
4632  **/
4633 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4634                                           u8 data)
4635 {
4636         u16 word = (u16)data;
4637
4638         DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4639
4640         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4641 }
4642
4643 /**
4644 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4645 *  @hw: pointer to the HW structure
4646 *  @offset: The offset of the word to write.
4647 *  @dword: The dword to write to the NVM.
4648 *
4649 *  Writes a single dword to the NVM using the flash access registers.
4650 *  Goes through a retry algorithm before giving up.
4651 **/
4652 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4653                                                  u32 offset, u32 dword)
4654 {
4655         s32 ret_val;
4656         u16 program_retries;
4657
4658         DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4659
4660         /* Must convert word offset into bytes. */
4661         offset <<= 1;
4662
4663         ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4664
4665         if (!ret_val)
4666                 return ret_val;
4667         for (program_retries = 0; program_retries < 100; program_retries++) {
4668                 DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4669                 usec_delay(100);
4670                 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4671                 if (ret_val == E1000_SUCCESS)
4672                         break;
4673         }
4674         if (program_retries == 100)
4675                 return -E1000_ERR_NVM;
4676
4677         return E1000_SUCCESS;
4678 }
4679
4680 /**
4681  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4682  *  @hw: pointer to the HW structure
4683  *  @offset: The offset of the byte to write.
4684  *  @byte: The byte to write to the NVM.
4685  *
4686  *  Writes a single byte to the NVM using the flash access registers.
4687  *  Goes through a retry algorithm before giving up.
4688  **/
4689 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4690                                                 u32 offset, u8 byte)
4691 {
4692         s32 ret_val;
4693         u16 program_retries;
4694
4695         DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4696
4697         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4698         if (!ret_val)
4699                 return ret_val;
4700
4701         for (program_retries = 0; program_retries < 100; program_retries++) {
4702                 DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4703                 usec_delay(100);
4704                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4705                 if (ret_val == E1000_SUCCESS)
4706                         break;
4707         }
4708         if (program_retries == 100)
4709                 return -E1000_ERR_NVM;
4710
4711         return E1000_SUCCESS;
4712 }
4713
4714 /**
4715  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4716  *  @hw: pointer to the HW structure
4717  *  @bank: 0 for first bank, 1 for second bank, etc.
4718  *
4719  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4720  *  bank N is 4096 * N + flash_reg_addr.
4721  **/
4722 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4723 {
4724         struct e1000_nvm_info *nvm = &hw->nvm;
4725         union ich8_hws_flash_status hsfsts;
4726         union ich8_hws_flash_ctrl hsflctl;
4727         u32 flash_linear_addr;
4728         /* bank size is in 16bit words - adjust to bytes */
4729         u32 flash_bank_size = nvm->flash_bank_size * 2;
4730         s32 ret_val;
4731         s32 count = 0;
4732         s32 j, iteration, sector_size;
4733
4734         DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4735
4736         hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4737
4738         /* Determine HW Sector size: Read BERASE bits of hw flash status
4739          * register
4740          * 00: The Hw sector is 256 bytes, hence we need to erase 16
4741          *     consecutive sectors.  The start index for the nth Hw sector
4742          *     can be calculated as = bank * 4096 + n * 256
4743          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4744          *     The start index for the nth Hw sector can be calculated
4745          *     as = bank * 4096
4746          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4747          *     (ich9 only, otherwise error condition)
4748          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4749          */
4750         switch (hsfsts.hsf_status.berasesz) {
4751         case 0:
4752                 /* Hw sector size 256 */
4753                 sector_size = ICH_FLASH_SEG_SIZE_256;
4754                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4755                 break;
4756         case 1:
4757                 sector_size = ICH_FLASH_SEG_SIZE_4K;
4758                 iteration = 1;
4759                 break;
4760         case 2:
4761                 sector_size = ICH_FLASH_SEG_SIZE_8K;
4762                 iteration = 1;
4763                 break;
4764         case 3:
4765                 sector_size = ICH_FLASH_SEG_SIZE_64K;
4766                 iteration = 1;
4767                 break;
4768         default:
4769                 return -E1000_ERR_NVM;
4770         }
4771
4772         /* Start with the base address, then add the sector offset. */
4773         flash_linear_addr = hw->nvm.flash_base_addr;
4774         flash_linear_addr += (bank) ? flash_bank_size : 0;
4775
4776         for (j = 0; j < iteration; j++) {
4777                 do {
4778                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4779
4780                         /* Steps */
4781                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4782                         if (ret_val)
4783                                 return ret_val;
4784
4785                         /* Write a value 11 (block Erase) in Flash
4786                          * Cycle field in hw flash control
4787                          */
4788                         if (hw->mac.type >= e1000_pch_spt)
4789                                 hsflctl.regval =
4790                                     E1000_READ_FLASH_REG(hw,
4791                                                          ICH_FLASH_HSFSTS)>>16;
4792                         else
4793                                 hsflctl.regval =
4794                                     E1000_READ_FLASH_REG16(hw,
4795                                                            ICH_FLASH_HSFCTL);
4796
4797                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4798                         if (hw->mac.type >= e1000_pch_spt)
4799                                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4800                                                       hsflctl.regval << 16);
4801                         else
4802                                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4803                                                         hsflctl.regval);
4804
4805                         /* Write the last 24 bits of an index within the
4806                          * block into Flash Linear address field in Flash
4807                          * Address.
4808                          */
4809                         flash_linear_addr += (j * sector_size);
4810                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4811                                               flash_linear_addr);
4812
4813                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4814                         if (ret_val == E1000_SUCCESS)
4815                                 break;
4816
4817                         /* Check if FCERR is set to 1.  If 1,
4818                          * clear it and try the whole sequence
4819                          * a few more times else Done
4820                          */
4821                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4822                                                       ICH_FLASH_HSFSTS);
4823                         if (hsfsts.hsf_status.flcerr)
4824                                 /* repeat for some time before giving up */
4825                                 continue;
4826                         else if (!hsfsts.hsf_status.flcdone)
4827                                 return ret_val;
4828                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4829         }
4830
4831         return E1000_SUCCESS;
4832 }
4833
4834 /**
4835  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4836  *  @hw: pointer to the HW structure
4837  *  @data: Pointer to the LED settings
4838  *
4839  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4840  *  settings is all 0's or F's, set the LED default to a valid LED default
4841  *  setting.
4842  **/
4843 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4844 {
4845         s32 ret_val;
4846
4847         DEBUGFUNC("e1000_valid_led_default_ich8lan");
4848
4849         ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4850         if (ret_val) {
4851                 DEBUGOUT("NVM Read Error\n");
4852                 return ret_val;
4853         }
4854
4855         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4856                 *data = ID_LED_DEFAULT_ICH8LAN;
4857
4858         return E1000_SUCCESS;
4859 }
4860
4861 /**
4862  *  e1000_id_led_init_pchlan - store LED configurations
4863  *  @hw: pointer to the HW structure
4864  *
4865  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4866  *  the PHY LED configuration register.
4867  *
4868  *  PCH also does not have an "always on" or "always off" mode which
4869  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4870  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4871  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4872  *  link based on logic in e1000_led_[on|off]_pchlan().
4873  **/
4874 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4875 {
4876         struct e1000_mac_info *mac = &hw->mac;
4877         s32 ret_val;
4878         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4879         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4880         u16 data, i, temp, shift;
4881
4882         DEBUGFUNC("e1000_id_led_init_pchlan");
4883
4884         /* Get default ID LED modes */
4885         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4886         if (ret_val)
4887                 return ret_val;
4888
4889         mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4890         mac->ledctl_mode1 = mac->ledctl_default;
4891         mac->ledctl_mode2 = mac->ledctl_default;
4892
4893         for (i = 0; i < 4; i++) {
4894                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4895                 shift = (i * 5);
4896                 switch (temp) {
4897                 case ID_LED_ON1_DEF2:
4898                 case ID_LED_ON1_ON2:
4899                 case ID_LED_ON1_OFF2:
4900                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4901                         mac->ledctl_mode1 |= (ledctl_on << shift);
4902                         break;
4903                 case ID_LED_OFF1_DEF2:
4904                 case ID_LED_OFF1_ON2:
4905                 case ID_LED_OFF1_OFF2:
4906                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4907                         mac->ledctl_mode1 |= (ledctl_off << shift);
4908                         break;
4909                 default:
4910                         /* Do nothing */
4911                         break;
4912                 }
4913                 switch (temp) {
4914                 case ID_LED_DEF1_ON2:
4915                 case ID_LED_ON1_ON2:
4916                 case ID_LED_OFF1_ON2:
4917                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4918                         mac->ledctl_mode2 |= (ledctl_on << shift);
4919                         break;
4920                 case ID_LED_DEF1_OFF2:
4921                 case ID_LED_ON1_OFF2:
4922                 case ID_LED_OFF1_OFF2:
4923                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4924                         mac->ledctl_mode2 |= (ledctl_off << shift);
4925                         break;
4926                 default:
4927                         /* Do nothing */
4928                         break;
4929                 }
4930         }
4931
4932         return E1000_SUCCESS;
4933 }
4934
4935 /**
4936  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4937  *  @hw: pointer to the HW structure
4938  *
4939  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4940  *  register, so the bus width is hard coded.
4941  **/
4942 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4943 {
4944         struct e1000_bus_info *bus = &hw->bus;
4945         s32 ret_val;
4946
4947         DEBUGFUNC("e1000_get_bus_info_ich8lan");
4948
4949         ret_val = e1000_get_bus_info_pcie_generic(hw);
4950
4951         /* ICH devices are "PCI Express"-ish.  They have
4952          * a configuration space, but do not contain
4953          * PCI Express Capability registers, so bus width
4954          * must be hardcoded.
4955          */
4956         if (bus->width == e1000_bus_width_unknown)
4957                 bus->width = e1000_bus_width_pcie_x1;
4958
4959         return ret_val;
4960 }
4961
4962 /**
4963  *  e1000_reset_hw_ich8lan - Reset the hardware
4964  *  @hw: pointer to the HW structure
4965  *
4966  *  Does a full reset of the hardware which includes a reset of the PHY and
4967  *  MAC.
4968  **/
4969 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4970 {
4971         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4972         u16 kum_cfg;
4973         u32 ctrl, reg;
4974         s32 ret_val;
4975         u16 pci_cfg;
4976
4977         DEBUGFUNC("e1000_reset_hw_ich8lan");
4978
4979         /* Prevent the PCI-E bus from sticking if there is no TLP connection
4980          * on the last TLP read/write transaction when MAC is reset.
4981          */
4982         ret_val = e1000_disable_pcie_master_generic(hw);
4983         if (ret_val)
4984                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
4985
4986         DEBUGOUT("Masking off all interrupts\n");
4987         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4988
4989         /* Disable the Transmit and Receive units.  Then delay to allow
4990          * any pending transactions to complete before we hit the MAC
4991          * with the global reset.
4992          */
4993         E1000_WRITE_REG(hw, E1000_RCTL, 0);
4994         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4995         E1000_WRITE_FLUSH(hw);
4996
4997         msec_delay(10);
4998
4999         /* Workaround for ICH8 bit corruption issue in FIFO memory */
5000         if (hw->mac.type == e1000_ich8lan) {
5001                 /* Set Tx and Rx buffer allocation to 8k apiece. */
5002                 E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
5003                 /* Set Packet Buffer Size to 16k. */
5004                 E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
5005         }
5006
5007         if (hw->mac.type == e1000_pchlan) {
5008                 /* Save the NVM K1 bit setting*/
5009                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
5010                 if (ret_val)
5011                         return ret_val;
5012
5013                 if (kum_cfg & E1000_NVM_K1_ENABLE)
5014                         dev_spec->nvm_k1_enabled = true;
5015                 else
5016                         dev_spec->nvm_k1_enabled = false;
5017         }
5018
5019         ctrl = E1000_READ_REG(hw, E1000_CTRL);
5020
5021         if (!hw->phy.ops.check_reset_block(hw)) {
5022                 /* Full-chip reset requires MAC and PHY reset at the same
5023                  * time to make sure the interface between MAC and the
5024                  * external PHY is reset.
5025                  */
5026                 ctrl |= E1000_CTRL_PHY_RST;
5027
5028                 /* Gate automatic PHY configuration by hardware on
5029                  * non-managed 82579
5030                  */
5031                 if ((hw->mac.type == e1000_pch2lan) &&
5032                     !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
5033                         e1000_gate_hw_phy_config_ich8lan(hw, true);
5034         }
5035         ret_val = e1000_acquire_swflag_ich8lan(hw);
5036
5037         /* Read from EXTCNF_CTRL in e1000_acquire_swflag_ich8lan function
5038          * may occur during global reset and cause system hang.
5039          * Configuration space access creates the needed delay.
5040          * Write to E1000_STRAP RO register E1000_PCI_VENDOR_ID_REGISTER value
5041          * insures configuration space read is done before global reset.
5042          */
5043         e1000_read_pci_cfg(hw, E1000_PCI_VENDOR_ID_REGISTER, &pci_cfg);
5044         E1000_WRITE_REG(hw, E1000_STRAP, pci_cfg);
5045         DEBUGOUT("Issuing a global reset to ich8lan\n");
5046         E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
5047         /* cannot issue a flush here because it hangs the hardware */
5048         msec_delay(20);
5049
5050         /* Configuration space access improve HW level time sync mechanism.
5051          * Write to E1000_STRAP RO register E1000_PCI_VENDOR_ID_REGISTER
5052          * value to insure configuration space read is done
5053          * before any access to mac register.
5054          */
5055         e1000_read_pci_cfg(hw, E1000_PCI_VENDOR_ID_REGISTER, &pci_cfg);
5056         E1000_WRITE_REG(hw, E1000_STRAP, pci_cfg);
5057
5058         /* Set Phy Config Counter to 50msec */
5059         if (hw->mac.type == e1000_pch2lan) {
5060                 reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
5061                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
5062                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
5063                 E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
5064         }
5065
5066
5067         if (ctrl & E1000_CTRL_PHY_RST) {
5068                 ret_val = hw->phy.ops.get_cfg_done(hw);
5069                 if (ret_val)
5070                         return ret_val;
5071
5072                 ret_val = e1000_post_phy_reset_ich8lan(hw);
5073                 if (ret_val)
5074                         return ret_val;
5075         }
5076
5077         /* For PCH, this write will make sure that any noise
5078          * will be detected as a CRC error and be dropped rather than show up
5079          * as a bad packet to the DMA engine.
5080          */
5081         if (hw->mac.type == e1000_pchlan)
5082                 E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
5083
5084         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
5085         E1000_READ_REG(hw, E1000_ICR);
5086
5087         reg = E1000_READ_REG(hw, E1000_KABGTXD);
5088         reg |= E1000_KABGTXD_BGSQLBIAS;
5089         E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
5090
5091         return E1000_SUCCESS;
5092 }
5093
5094 /**
5095  *  e1000_init_hw_ich8lan - Initialize the hardware
5096  *  @hw: pointer to the HW structure
5097  *
5098  *  Prepares the hardware for transmit and receive by doing the following:
5099  *   - initialize hardware bits
5100  *   - initialize LED identification
5101  *   - setup receive address registers
5102  *   - setup flow control
5103  *   - setup transmit descriptors
5104  *   - clear statistics
5105  **/
5106 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5107 {
5108         struct e1000_mac_info *mac = &hw->mac;
5109         u32 ctrl_ext, txdctl, snoop;
5110         s32 ret_val;
5111         u16 i;
5112
5113         DEBUGFUNC("e1000_init_hw_ich8lan");
5114
5115         e1000_initialize_hw_bits_ich8lan(hw);
5116
5117         /* Initialize identification LED */
5118         ret_val = mac->ops.id_led_init(hw);
5119         /* An error is not fatal and we should not stop init due to this */
5120         if (ret_val)
5121                 DEBUGOUT("Error initializing identification LED\n");
5122
5123         /* Setup the receive address. */
5124         e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5125
5126         /* Zero out the Multicast HASH table */
5127         DEBUGOUT("Zeroing the MTA\n");
5128         for (i = 0; i < mac->mta_reg_count; i++)
5129                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5130
5131         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
5132          * the ME.  Disable wakeup by clearing the host wakeup bit.
5133          * Reset the phy after disabling host wakeup to reset the Rx buffer.
5134          */
5135         if (hw->phy.type == e1000_phy_82578) {
5136                 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5137                 i &= ~BM_WUC_HOST_WU_BIT;
5138                 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5139                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
5140                 if (ret_val)
5141                         return ret_val;
5142         }
5143
5144         /* Setup link and flow control */
5145         ret_val = mac->ops.setup_link(hw);
5146
5147         /* Set the transmit descriptor write-back policy for both queues */
5148         txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5149         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5150                   E1000_TXDCTL_FULL_TX_DESC_WB);
5151         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5152                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5153         E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5154         txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5155         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5156                   E1000_TXDCTL_FULL_TX_DESC_WB);
5157         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5158                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5159         E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5160
5161         /* ICH8 has opposite polarity of no_snoop bits.
5162          * By default, we should use snoop behavior.
5163          */
5164         if (mac->type == e1000_ich8lan)
5165                 snoop = PCIE_ICH8_SNOOP_ALL;
5166         else
5167                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5168         e1000_set_pcie_no_snoop_generic(hw, snoop);
5169
5170         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5171         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5172         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5173
5174         /* Clear all of the statistics registers (clear on read).  It is
5175          * important that we do this after we have tried to establish link
5176          * because the symbol error count will increment wildly if there
5177          * is no link.
5178          */
5179         e1000_clear_hw_cntrs_ich8lan(hw);
5180
5181         return ret_val;
5182 }
5183
5184 /**
5185  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5186  *  @hw: pointer to the HW structure
5187  *
5188  *  Sets/Clears required hardware bits necessary for correctly setting up the
5189  *  hardware for transmit and receive.
5190  **/
5191 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5192 {
5193         u32 reg;
5194
5195         DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5196
5197         /* Extended Device Control */
5198         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5199         reg |= (1 << 22);
5200         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
5201         if (hw->mac.type >= e1000_pchlan)
5202                 reg |= E1000_CTRL_EXT_PHYPDEN;
5203         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5204
5205         /* Transmit Descriptor Control 0 */
5206         reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5207         reg |= (1 << 22);
5208         E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5209
5210         /* Transmit Descriptor Control 1 */
5211         reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5212         reg |= (1 << 22);
5213         E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5214
5215         /* Transmit Arbitration Control 0 */
5216         reg = E1000_READ_REG(hw, E1000_TARC(0));
5217         if (hw->mac.type == e1000_ich8lan)
5218                 reg |= (1 << 28) | (1 << 29);
5219         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5220         E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5221
5222         /* Transmit Arbitration Control 1 */
5223         reg = E1000_READ_REG(hw, E1000_TARC(1));
5224         if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5225                 reg &= ~(1 << 28);
5226         else
5227                 reg |= (1 << 28);
5228         reg |= (1 << 24) | (1 << 26) | (1 << 30);
5229         E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5230
5231         /* Device Status */
5232         if (hw->mac.type == e1000_ich8lan) {
5233                 reg = E1000_READ_REG(hw, E1000_STATUS);
5234                 reg &= ~(1U << 31);
5235                 E1000_WRITE_REG(hw, E1000_STATUS, reg);
5236         }
5237
5238         /* work-around descriptor data corruption issue during nfs v2 udp
5239          * traffic, just disable the nfs filtering capability
5240          */
5241         reg = E1000_READ_REG(hw, E1000_RFCTL);
5242         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5243
5244         /* Disable IPv6 extension header parsing because some malformed
5245          * IPv6 headers can hang the Rx.
5246          */
5247         if (hw->mac.type == e1000_ich8lan)
5248                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5249         E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5250
5251         /* Enable ECC on Lynxpoint */
5252         if (hw->mac.type >= e1000_pch_lpt) {
5253                 reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5254                 reg |= E1000_PBECCSTS_ECC_ENABLE;
5255                 E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5256
5257                 reg = E1000_READ_REG(hw, E1000_CTRL);
5258                 reg |= E1000_CTRL_MEHE;
5259                 E1000_WRITE_REG(hw, E1000_CTRL, reg);
5260         }
5261
5262         return;
5263 }
5264
5265 /**
5266  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5267  *  @hw: pointer to the HW structure
5268  *
5269  *  Determines which flow control settings to use, then configures flow
5270  *  control.  Calls the appropriate media-specific link configuration
5271  *  function.  Assuming the adapter has a valid link partner, a valid link
5272  *  should be established.  Assumes the hardware has previously been reset
5273  *  and the transmitter and receiver are not enabled.
5274  **/
5275 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5276 {
5277         s32 ret_val;
5278
5279         DEBUGFUNC("e1000_setup_link_ich8lan");
5280
5281         /* ICH parts do not have a word in the NVM to determine
5282          * the default flow control setting, so we explicitly
5283          * set it to full.
5284          */
5285         if (hw->fc.requested_mode == e1000_fc_default)
5286                 hw->fc.requested_mode = e1000_fc_full;
5287
5288         /* Save off the requested flow control mode for use later.  Depending
5289          * on the link partner's capabilities, we may or may not use this mode.
5290          */
5291         hw->fc.current_mode = hw->fc.requested_mode;
5292
5293         DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5294                 hw->fc.current_mode);
5295
5296         if (!hw->phy.ops.check_reset_block(hw)) {
5297                 /* Continue to configure the copper link. */
5298                 ret_val = hw->mac.ops.setup_physical_interface(hw);
5299                 if (ret_val)
5300                         return ret_val;
5301         }
5302
5303         E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5304         if ((hw->phy.type == e1000_phy_82578) ||
5305             (hw->phy.type == e1000_phy_82579) ||
5306             (hw->phy.type == e1000_phy_i217) ||
5307             (hw->phy.type == e1000_phy_82577)) {
5308                 E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5309
5310                 ret_val = hw->phy.ops.write_reg(hw,
5311                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
5312                                              hw->fc.pause_time);
5313                 if (ret_val)
5314                         return ret_val;
5315         }
5316
5317         return e1000_set_fc_watermarks_generic(hw);
5318 }
5319
5320 /**
5321  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5322  *  @hw: pointer to the HW structure
5323  *
5324  *  Configures the kumeran interface to the PHY to wait the appropriate time
5325  *  when polling the PHY, then call the generic setup_copper_link to finish
5326  *  configuring the copper link.
5327  **/
5328 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5329 {
5330         u32 ctrl;
5331         s32 ret_val;
5332         u16 reg_data;
5333
5334         DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5335
5336         ctrl = E1000_READ_REG(hw, E1000_CTRL);
5337         ctrl |= E1000_CTRL_SLU;
5338         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5339         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5340
5341         /* Set the mac to wait the maximum time between each iteration
5342          * and increase the max iterations when polling the phy;
5343          * this fixes erroneous timeouts at 10Mbps.
5344          */
5345         ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5346                                                0xFFFF);
5347         if (ret_val)
5348                 return ret_val;
5349         ret_val = e1000_read_kmrn_reg_generic(hw,
5350                                               E1000_KMRNCTRLSTA_INBAND_PARAM,
5351                                               &reg_data);
5352         if (ret_val)
5353                 return ret_val;
5354         reg_data |= 0x3F;
5355         ret_val = e1000_write_kmrn_reg_generic(hw,
5356                                                E1000_KMRNCTRLSTA_INBAND_PARAM,
5357                                                reg_data);
5358         if (ret_val)
5359                 return ret_val;
5360
5361         switch (hw->phy.type) {
5362         case e1000_phy_igp_3:
5363                 ret_val = e1000_copper_link_setup_igp(hw);
5364                 if (ret_val)
5365                         return ret_val;
5366                 break;
5367         case e1000_phy_bm:
5368         case e1000_phy_82578:
5369                 ret_val = e1000_copper_link_setup_m88(hw);
5370                 if (ret_val)
5371                         return ret_val;
5372                 break;
5373         case e1000_phy_82577:
5374         case e1000_phy_82579:
5375                 ret_val = e1000_copper_link_setup_82577(hw);
5376                 if (ret_val)
5377                         return ret_val;
5378                 break;
5379         case e1000_phy_ife:
5380                 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5381                                                &reg_data);
5382                 if (ret_val)
5383                         return ret_val;
5384
5385                 reg_data &= ~IFE_PMC_AUTO_MDIX;
5386
5387                 switch (hw->phy.mdix) {
5388                 case 1:
5389                         reg_data &= ~IFE_PMC_FORCE_MDIX;
5390                         break;
5391                 case 2:
5392                         reg_data |= IFE_PMC_FORCE_MDIX;
5393                         break;
5394                 case 0:
5395                 default:
5396                         reg_data |= IFE_PMC_AUTO_MDIX;
5397                         break;
5398                 }
5399                 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5400                                                 reg_data);
5401                 if (ret_val)
5402                         return ret_val;
5403                 break;
5404         default:
5405                 break;
5406         }
5407
5408         return e1000_setup_copper_link_generic(hw);
5409 }
5410
5411 /**
5412  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5413  *  @hw: pointer to the HW structure
5414  *
5415  *  Calls the PHY specific link setup function and then calls the
5416  *  generic setup_copper_link to finish configuring the link for
5417  *  Lynxpoint PCH devices
5418  **/
5419 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5420 {
5421         u32 ctrl;
5422         s32 ret_val;
5423
5424         DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5425
5426         ctrl = E1000_READ_REG(hw, E1000_CTRL);
5427         ctrl |= E1000_CTRL_SLU;
5428         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5429         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5430
5431         ret_val = e1000_copper_link_setup_82577(hw);
5432         if (ret_val)
5433                 return ret_val;
5434
5435         return e1000_setup_copper_link_generic(hw);
5436 }
5437
5438 /**
5439  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5440  *  @hw: pointer to the HW structure
5441  *  @speed: pointer to store current link speed
5442  *  @duplex: pointer to store the current link duplex
5443  *
5444  *  Calls the generic get_speed_and_duplex to retrieve the current link
5445  *  information and then calls the Kumeran lock loss workaround for links at
5446  *  gigabit speeds.
5447  **/
5448 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5449                                           u16 *duplex)
5450 {
5451         s32 ret_val;
5452
5453         DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5454
5455         ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5456         if (ret_val)
5457                 return ret_val;
5458
5459         if ((hw->mac.type == e1000_ich8lan) &&
5460             (hw->phy.type == e1000_phy_igp_3) &&
5461             (*speed == SPEED_1000)) {
5462                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5463         }
5464
5465         return ret_val;
5466 }
5467
5468 /**
5469  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5470  *  @hw: pointer to the HW structure
5471  *
5472  *  Work-around for 82566 Kumeran PCS lock loss:
5473  *  On link status change (i.e. PCI reset, speed change) and link is up and
5474  *  speed is gigabit-
5475  *    0) if workaround is optionally disabled do nothing
5476  *    1) wait 1ms for Kumeran link to come up
5477  *    2) check Kumeran Diagnostic register PCS lock loss bit
5478  *    3) if not set the link is locked (all is good), otherwise...
5479  *    4) reset the PHY
5480  *    5) repeat up to 10 times
5481  *  Note: this is only called for IGP3 copper when speed is 1gb.
5482  **/
5483 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5484 {
5485         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5486         u32 phy_ctrl;
5487         s32 ret_val;
5488         u16 i, data;
5489         bool link;
5490
5491         DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5492
5493         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5494                 return E1000_SUCCESS;
5495
5496         /* Make sure link is up before proceeding.  If not just return.
5497          * Attempting this while link is negotiating fouled up link
5498          * stability
5499          */
5500         ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5501         if (!link)
5502                 return E1000_SUCCESS;
5503
5504         for (i = 0; i < 10; i++) {
5505                 /* read once to clear */
5506                 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5507                 if (ret_val)
5508                         return ret_val;
5509                 /* and again to get new status */
5510                 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5511                 if (ret_val)
5512                         return ret_val;
5513
5514                 /* check for PCS lock */
5515                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5516                         return E1000_SUCCESS;
5517
5518                 /* Issue PHY reset */
5519                 hw->phy.ops.reset(hw);
5520                 msec_delay_irq(5);
5521         }
5522         /* Disable GigE link negotiation */
5523         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5524         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5525                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5526         E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5527
5528         /* Call gig speed drop workaround on Gig disable before accessing
5529          * any PHY registers
5530          */
5531         e1000_gig_downshift_workaround_ich8lan(hw);
5532
5533         /* unable to acquire PCS lock */
5534         return -E1000_ERR_PHY;
5535 }
5536
5537 /**
5538  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5539  *  @hw: pointer to the HW structure
5540  *  @state: boolean value used to set the current Kumeran workaround state
5541  *
5542  *  If ICH8, set the current Kumeran workaround state (enabled - true
5543  *  /disabled - false).
5544  **/
5545 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5546                                                  bool state)
5547 {
5548         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5549
5550         DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5551
5552         if (hw->mac.type != e1000_ich8lan) {
5553                 DEBUGOUT("Workaround applies to ICH8 only.\n");
5554                 return;
5555         }
5556
5557         dev_spec->kmrn_lock_loss_workaround_enabled = state;
5558
5559         return;
5560 }
5561
5562 /**
5563  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5564  *  @hw: pointer to the HW structure
5565  *
5566  *  Workaround for 82566 power-down on D3 entry:
5567  *    1) disable gigabit link
5568  *    2) write VR power-down enable
5569  *    3) read it back
5570  *  Continue if successful, else issue LCD reset and repeat
5571  **/
5572 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5573 {
5574         u32 reg;
5575         u16 data;
5576         u8  retry = 0;
5577
5578         DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5579
5580         if (hw->phy.type != e1000_phy_igp_3)
5581                 return;
5582
5583         /* Try the workaround twice (if needed) */
5584         do {
5585                 /* Disable link */
5586                 reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5587                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5588                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5589                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5590
5591                 /* Call gig speed drop workaround on Gig disable before
5592                  * accessing any PHY registers
5593                  */
5594                 if (hw->mac.type == e1000_ich8lan)
5595                         e1000_gig_downshift_workaround_ich8lan(hw);
5596
5597                 /* Write VR power-down enable */
5598                 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5599                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5600                 hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5601                                       data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5602
5603                 /* Read it back and test */
5604                 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5605                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5606                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5607                         break;
5608
5609                 /* Issue PHY reset and repeat at most one more time */
5610                 reg = E1000_READ_REG(hw, E1000_CTRL);
5611                 E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5612                 retry++;
5613         } while (retry);
5614 }
5615
5616 /**
5617  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5618  *  @hw: pointer to the HW structure
5619  *
5620  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5621  *  LPLU, Gig disable, MDIC PHY reset):
5622  *    1) Set Kumeran Near-end loopback
5623  *    2) Clear Kumeran Near-end loopback
5624  *  Should only be called for ICH8[m] devices with any 1G Phy.
5625  **/
5626 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5627 {
5628         s32 ret_val;
5629         u16 reg_data = 0;
5630
5631         DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5632
5633         if ((hw->mac.type != e1000_ich8lan) ||
5634             (hw->phy.type == e1000_phy_ife))
5635                 return;
5636
5637         ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5638                                               &reg_data);
5639         if (ret_val)
5640                 return;
5641         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5642         ret_val = e1000_write_kmrn_reg_generic(hw,
5643                                                E1000_KMRNCTRLSTA_DIAG_OFFSET,
5644                                                reg_data);
5645         if (ret_val)
5646                 return;
5647         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5648         e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5649                                      reg_data);
5650 }
5651
5652 /**
5653  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5654  *  @hw: pointer to the HW structure
5655  *
5656  *  During S0 to Sx transition, it is possible the link remains at gig
5657  *  instead of negotiating to a lower speed.  Before going to Sx, set
5658  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5659  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5660  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5661  *  needs to be written.
5662  *  Parts that support (and are linked to a partner which support) EEE in
5663  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5664  *  than 10Mbps w/o EEE.
5665  **/
5666 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5667 {
5668         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5669         u32 phy_ctrl;
5670         s32 ret_val;
5671
5672         DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5673
5674         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5675         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5676
5677         if (hw->phy.type == e1000_phy_i217) {
5678                 u16 phy_reg, device_id = hw->device_id;
5679
5680                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5681                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5682                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5683                     (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5684                     (hw->mac.type >= e1000_pch_spt)) {
5685                         u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5686
5687                         E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5688                                         fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5689                 }
5690
5691                 ret_val = hw->phy.ops.acquire(hw);
5692                 if (ret_val)
5693                         goto out;
5694
5695                 if (!dev_spec->eee_disable) {
5696                         u16 eee_advert;
5697
5698                         ret_val =
5699                             e1000_read_emi_reg_locked(hw,
5700                                                       I217_EEE_ADVERTISEMENT,
5701                                                       &eee_advert);
5702                         if (ret_val)
5703                                 goto release;
5704
5705                         /* Disable LPLU if both link partners support 100BaseT
5706                          * EEE and 100Full is advertised on both ends of the
5707                          * link, and enable Auto Enable LPI since there will
5708                          * be no driver to enable LPI while in Sx.
5709                          */
5710                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5711                             (dev_spec->eee_lp_ability &
5712                              I82579_EEE_100_SUPPORTED) &&
5713                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5714                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5715                                               E1000_PHY_CTRL_NOND0A_LPLU);
5716
5717                                 /* Set Auto Enable LPI after link up */
5718                                 hw->phy.ops.read_reg_locked(hw,
5719                                                             I217_LPI_GPIO_CTRL,
5720                                                             &phy_reg);
5721                                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5722                                 hw->phy.ops.write_reg_locked(hw,
5723                                                              I217_LPI_GPIO_CTRL,
5724                                                              phy_reg);
5725                         }
5726                 }
5727
5728                 /* For i217 Intel Rapid Start Technology support,
5729                  * when the system is going into Sx and no manageability engine
5730                  * is present, the driver must configure proxy to reset only on
5731                  * power good.  LPI (Low Power Idle) state must also reset only
5732                  * on power good, as well as the MTA (Multicast table array).
5733                  * The SMBus release must also be disabled on LCD reset.
5734                  */
5735                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
5736                       E1000_ICH_FWSM_FW_VALID)) {
5737                         /* Enable proxy to reset only on power good. */
5738                         hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5739                                                     &phy_reg);
5740                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5741                         hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5742                                                      phy_reg);
5743
5744                         /* Set bit enable LPI (EEE) to reset only on
5745                          * power good.
5746                         */
5747                         hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5748                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5749                         hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5750
5751                         /* Disable the SMB release on LCD reset. */
5752                         hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5753                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5754                         hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5755                 }
5756
5757                 /* Enable MTA to reset for Intel Rapid Start Technology
5758                  * Support
5759                  */
5760                 hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5761                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5762                 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5763
5764 release:
5765                 hw->phy.ops.release(hw);
5766         }
5767 out:
5768         E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5769
5770         if (hw->mac.type == e1000_ich8lan)
5771                 e1000_gig_downshift_workaround_ich8lan(hw);
5772
5773         if (hw->mac.type >= e1000_pchlan) {
5774                 e1000_oem_bits_config_ich8lan(hw, false);
5775
5776                 /* Reset PHY to activate OEM bits on 82577/8 */
5777                 if (hw->mac.type == e1000_pchlan)
5778                         e1000_phy_hw_reset_generic(hw);
5779
5780                 ret_val = hw->phy.ops.acquire(hw);
5781                 if (ret_val)
5782                         return;
5783                 e1000_write_smbus_addr(hw);
5784                 hw->phy.ops.release(hw);
5785         }
5786
5787         return;
5788 }
5789
5790 /**
5791  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5792  *  @hw: pointer to the HW structure
5793  *
5794  *  During Sx to S0 transitions on non-managed devices or managed devices
5795  *  on which PHY resets are not blocked, if the PHY registers cannot be
5796  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5797  *  the PHY.
5798  *  On i217, setup Intel Rapid Start Technology.
5799  **/
5800 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5801 {
5802         s32 ret_val;
5803
5804         DEBUGFUNC("e1000_resume_workarounds_pchlan");
5805         if (hw->mac.type < e1000_pch2lan)
5806                 return E1000_SUCCESS;
5807
5808         ret_val = e1000_init_phy_workarounds_pchlan(hw);
5809         if (ret_val) {
5810                 DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5811                 return ret_val;
5812         }
5813
5814         /* For i217 Intel Rapid Start Technology support when the system
5815          * is transitioning from Sx and no manageability engine is present
5816          * configure SMBus to restore on reset, disable proxy, and enable
5817          * the reset on MTA (Multicast table array).
5818          */
5819         if (hw->phy.type == e1000_phy_i217) {
5820                 u16 phy_reg;
5821
5822                 ret_val = hw->phy.ops.acquire(hw);
5823                 if (ret_val) {
5824                         DEBUGOUT("Failed to setup iRST\n");
5825                         return ret_val;
5826                 }
5827
5828                 /* Clear Auto Enable LPI after link up */
5829                 hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5830                 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5831                 hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5832
5833                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
5834                     E1000_ICH_FWSM_FW_VALID)) {
5835                         /* Restore clear on SMB if no manageability engine
5836                          * is present
5837                          */
5838                         ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5839                                                               &phy_reg);
5840                         if (ret_val)
5841                                 goto release;
5842                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5843                         hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5844
5845                         /* Disable Proxy */
5846                         hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5847                 }
5848                 /* Enable reset on MTA */
5849                 ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5850                                                       &phy_reg);
5851                 if (ret_val)
5852                         goto release;
5853                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5854                 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5855 release:
5856                 if (ret_val)
5857                         DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5858                 hw->phy.ops.release(hw);
5859                 return ret_val;
5860         }
5861         return E1000_SUCCESS;
5862 }
5863
5864 /**
5865  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5866  *  @hw: pointer to the HW structure
5867  *
5868  *  Return the LED back to the default configuration.
5869  **/
5870 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5871 {
5872         DEBUGFUNC("e1000_cleanup_led_ich8lan");
5873
5874         if (hw->phy.type == e1000_phy_ife)
5875                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5876                                              0);
5877
5878         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5879         return E1000_SUCCESS;
5880 }
5881
5882 /**
5883  *  e1000_led_on_ich8lan - Turn LEDs on
5884  *  @hw: pointer to the HW structure
5885  *
5886  *  Turn on the LEDs.
5887  **/
5888 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5889 {
5890         DEBUGFUNC("e1000_led_on_ich8lan");
5891
5892         if (hw->phy.type == e1000_phy_ife)
5893                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5894                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5895
5896         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5897         return E1000_SUCCESS;
5898 }
5899
5900 /**
5901  *  e1000_led_off_ich8lan - Turn LEDs off
5902  *  @hw: pointer to the HW structure
5903  *
5904  *  Turn off the LEDs.
5905  **/
5906 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5907 {
5908         DEBUGFUNC("e1000_led_off_ich8lan");
5909
5910         if (hw->phy.type == e1000_phy_ife)
5911                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5912                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5913
5914         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5915         return E1000_SUCCESS;
5916 }
5917
5918 /**
5919  *  e1000_setup_led_pchlan - Configures SW controllable LED
5920  *  @hw: pointer to the HW structure
5921  *
5922  *  This prepares the SW controllable LED for use.
5923  **/
5924 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5925 {
5926         DEBUGFUNC("e1000_setup_led_pchlan");
5927
5928         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5929                                      (u16)hw->mac.ledctl_mode1);
5930 }
5931
5932 /**
5933  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5934  *  @hw: pointer to the HW structure
5935  *
5936  *  Return the LED back to the default configuration.
5937  **/
5938 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5939 {
5940         DEBUGFUNC("e1000_cleanup_led_pchlan");
5941
5942         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5943                                      (u16)hw->mac.ledctl_default);
5944 }
5945
5946 /**
5947  *  e1000_led_on_pchlan - Turn LEDs on
5948  *  @hw: pointer to the HW structure
5949  *
5950  *  Turn on the LEDs.
5951  **/
5952 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5953 {
5954         u16 data = (u16)hw->mac.ledctl_mode2;
5955         u32 i, led;
5956
5957         DEBUGFUNC("e1000_led_on_pchlan");
5958
5959         /* If no link, then turn LED on by setting the invert bit
5960          * for each LED that's mode is "link_up" in ledctl_mode2.
5961          */
5962         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5963                 for (i = 0; i < 3; i++) {
5964                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5965                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5966                             E1000_LEDCTL_MODE_LINK_UP)
5967                                 continue;
5968                         if (led & E1000_PHY_LED0_IVRT)
5969                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5970                         else
5971                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5972                 }
5973         }
5974
5975         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5976 }
5977
5978 /**
5979  *  e1000_led_off_pchlan - Turn LEDs off
5980  *  @hw: pointer to the HW structure
5981  *
5982  *  Turn off the LEDs.
5983  **/
5984 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5985 {
5986         u16 data = (u16)hw->mac.ledctl_mode1;
5987         u32 i, led;
5988
5989         DEBUGFUNC("e1000_led_off_pchlan");
5990
5991         /* If no link, then turn LED off by clearing the invert bit
5992          * for each LED that's mode is "link_up" in ledctl_mode1.
5993          */
5994         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5995                 for (i = 0; i < 3; i++) {
5996                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5997                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5998                             E1000_LEDCTL_MODE_LINK_UP)
5999                                 continue;
6000                         if (led & E1000_PHY_LED0_IVRT)
6001                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
6002                         else
6003                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
6004                 }
6005         }
6006
6007         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
6008 }
6009
6010 /**
6011  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
6012  *  @hw: pointer to the HW structure
6013  *
6014  *  Read appropriate register for the config done bit for completion status
6015  *  and configure the PHY through s/w for EEPROM-less parts.
6016  *
6017  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
6018  *  config done bit, so only an error is logged and continues.  If we were
6019  *  to return with error, EEPROM-less silicon would not be able to be reset
6020  *  or change link.
6021  **/
6022 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
6023 {
6024         s32 ret_val = E1000_SUCCESS;
6025         u32 bank = 0;
6026         u32 status;
6027
6028         DEBUGFUNC("e1000_get_cfg_done_ich8lan");
6029
6030         e1000_get_cfg_done_generic(hw);
6031
6032         /* Wait for indication from h/w that it has completed basic config */
6033         if (hw->mac.type >= e1000_ich10lan) {
6034                 e1000_lan_init_done_ich8lan(hw);
6035         } else {
6036                 ret_val = e1000_get_auto_rd_done_generic(hw);
6037                 if (ret_val) {
6038                         /* When auto config read does not complete, do not
6039                          * return with an error. This can happen in situations
6040                          * where there is no eeprom and prevents getting link.
6041                          */
6042                         DEBUGOUT("Auto Read Done did not complete\n");
6043                         ret_val = E1000_SUCCESS;
6044                 }
6045         }
6046
6047         /* Clear PHY Reset Asserted bit */
6048         status = E1000_READ_REG(hw, E1000_STATUS);
6049         if (status & E1000_STATUS_PHYRA)
6050                 E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
6051         else
6052                 DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
6053
6054         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
6055         if (hw->mac.type <= e1000_ich9lan) {
6056                 if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
6057                     (hw->phy.type == e1000_phy_igp_3)) {
6058                         e1000_phy_init_script_igp3(hw);
6059                 }
6060         } else {
6061                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
6062                         /* Maybe we should do a basic PHY config */
6063                         DEBUGOUT("EEPROM not present\n");
6064                         ret_val = -E1000_ERR_CONFIG;
6065                 }
6066         }
6067
6068         return ret_val;
6069 }
6070
6071 /**
6072  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
6073  * @hw: pointer to the HW structure
6074  *
6075  * In the case of a PHY power down to save power, or to turn off link during a
6076  * driver unload, or wake on lan is not enabled, remove the link.
6077  **/
6078 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
6079 {
6080         /* If the management interface is not enabled, then power down */
6081         if (!(hw->mac.ops.check_mng_mode(hw) ||
6082               hw->phy.ops.check_reset_block(hw)))
6083                 e1000_power_down_phy_copper(hw);
6084
6085         return;
6086 }
6087
6088 /**
6089  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
6090  *  @hw: pointer to the HW structure
6091  *
6092  *  Clears hardware counters specific to the silicon family and calls
6093  *  clear_hw_cntrs_generic to clear all general purpose counters.
6094  **/
6095 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6096 {
6097         u16 phy_data;
6098         s32 ret_val;
6099
6100         DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6101
6102         e1000_clear_hw_cntrs_base_generic(hw);
6103
6104         E1000_READ_REG(hw, E1000_ALGNERRC);
6105         E1000_READ_REG(hw, E1000_RXERRC);
6106         E1000_READ_REG(hw, E1000_TNCRS);
6107         E1000_READ_REG(hw, E1000_CEXTERR);
6108         E1000_READ_REG(hw, E1000_TSCTC);
6109         E1000_READ_REG(hw, E1000_TSCTFC);
6110
6111         E1000_READ_REG(hw, E1000_MGTPRC);
6112         E1000_READ_REG(hw, E1000_MGTPDC);
6113         E1000_READ_REG(hw, E1000_MGTPTC);
6114
6115         E1000_READ_REG(hw, E1000_IAC);
6116         E1000_READ_REG(hw, E1000_ICRXOC);
6117
6118         /* Clear PHY statistics registers */
6119         if ((hw->phy.type == e1000_phy_82578) ||
6120             (hw->phy.type == e1000_phy_82579) ||
6121             (hw->phy.type == e1000_phy_i217) ||
6122             (hw->phy.type == e1000_phy_82577)) {
6123                 ret_val = hw->phy.ops.acquire(hw);
6124                 if (ret_val)
6125                         return;
6126                 ret_val = hw->phy.ops.set_page(hw,
6127                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
6128                 if (ret_val)
6129                         goto release;
6130                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6131                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6132                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6133                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6134                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6135                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6136                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6137                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6138                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6139                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6140                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6141                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6142                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6143                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6144 release:
6145                 hw->phy.ops.release(hw);
6146         }
6147 }
6148
6149 /**
6150  *  e1000_configure_k0s_lpt - Configure K0s power state
6151  *  @hw: pointer to the HW structure
6152  *  @entry_latency: Tx idle period for entering K0s - valid values are 0 to 3.
6153  *      0 corresponds to 128ns, each value over 0 doubles the duration.
6154  *  @min_time: Minimum Tx idle period allowed  - valid values are 0 to 4.
6155  *      0 corresponds to 128ns, each value over 0 doubles the duration.
6156  *
6157  *  Configure the K1 power state based on the provided parameter.
6158  *  Assumes semaphore already acquired.
6159  *
6160  *  Success returns 0, Failure returns:
6161  *      -E1000_ERR_PHY (-2) in case of access error
6162  *      -E1000_ERR_PARAM (-4) in case of parameters error
6163  **/
6164 s32 e1000_configure_k0s_lpt(struct e1000_hw *hw, u8 entry_latency, u8 min_time)
6165 {
6166         s32 ret_val;
6167         u16 kmrn_reg = 0;
6168
6169         DEBUGFUNC("e1000_configure_k0s_lpt");
6170
6171         if (entry_latency > 3 || min_time > 4)
6172                 return -E1000_ERR_PARAM;
6173
6174         ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL,
6175                                              &kmrn_reg);
6176         if (ret_val)
6177                 return ret_val;
6178
6179         /* for now don't touch the latency */
6180         kmrn_reg &= ~(E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_MASK);
6181         kmrn_reg |= ((min_time << E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_SHIFT));
6182
6183         ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL,
6184                                               kmrn_reg);
6185         if (ret_val)
6186                 return ret_val;
6187
6188         return E1000_SUCCESS;
6189 }