]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/e1000/e1000_ich8lan.c
Merge OpenSSL 1.0.2d.
[FreeBSD/FreeBSD.git] / sys / dev / e1000 / e1000_ich8lan.c
1 /******************************************************************************
2
3   Copyright (c) 2001-2015, Intel Corporation 
4   All rights reserved.
5   
6   Redistribution and use in source and binary forms, with or without 
7   modification, are permitted provided that the following conditions are met:
8   
9    1. Redistributions of source code must retain the above copyright notice, 
10       this list of conditions and the following disclaimer.
11   
12    2. Redistributions in binary form must reproduce the above copyright 
13       notice, this list of conditions and the following disclaimer in the 
14       documentation and/or other materials provided with the distribution.
15   
16    3. Neither the name of the Intel Corporation nor the names of its 
17       contributors may be used to endorse or promote products derived from 
18       this software without specific prior written permission.
19   
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31
32 ******************************************************************************/
33 /*$FreeBSD$*/
34
35 /* 82562G 10/100 Network Connection
36  * 82562G-2 10/100 Network Connection
37  * 82562GT 10/100 Network Connection
38  * 82562GT-2 10/100 Network Connection
39  * 82562V 10/100 Network Connection
40  * 82562V-2 10/100 Network Connection
41  * 82566DC-2 Gigabit Network Connection
42  * 82566DC Gigabit Network Connection
43  * 82566DM-2 Gigabit Network Connection
44  * 82566DM Gigabit Network Connection
45  * 82566MC Gigabit Network Connection
46  * 82566MM Gigabit Network Connection
47  * 82567LM Gigabit Network Connection
48  * 82567LF Gigabit Network Connection
49  * 82567V Gigabit Network Connection
50  * 82567LM-2 Gigabit Network Connection
51  * 82567LF-2 Gigabit Network Connection
52  * 82567V-2 Gigabit Network Connection
53  * 82567LF-3 Gigabit Network Connection
54  * 82567LM-3 Gigabit Network Connection
55  * 82567LM-4 Gigabit Network Connection
56  * 82577LM Gigabit Network Connection
57  * 82577LC Gigabit Network Connection
58  * 82578DM Gigabit Network Connection
59  * 82578DC Gigabit Network Connection
60  * 82579LM Gigabit Network Connection
61  * 82579V Gigabit Network Connection
62  * Ethernet Connection I217-LM
63  * Ethernet Connection I217-V
64  * Ethernet Connection I218-V
65  * Ethernet Connection I218-LM
66  * Ethernet Connection (2) I218-LM
67  * Ethernet Connection (2) I218-V
68  * Ethernet Connection (3) I218-LM
69  * Ethernet Connection (3) I218-V
70  */
71
72 #include "e1000_api.h"
73
74 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
75 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
76 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
77 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
78 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
80 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
81 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
82 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
83 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
84                                               u8 *mc_addr_list,
85                                               u32 mc_addr_count);
86 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
87 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
89 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
90                                             bool active);
91 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
92                                             bool active);
93 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
94                                    u16 words, u16 *data);
95 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
96                                     u16 words, u16 *data);
97 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
98 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
99 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
100                                             u16 *data);
101 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
102 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
103 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
104 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
105 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
106 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
108 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
109                                            u16 *speed, u16 *duplex);
110 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
111 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
112 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
113 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
114 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
115 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
116 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
117 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
118 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
119 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
120 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
121 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
122 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
123                                           u32 offset, u8 *data);
124 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125                                           u8 size, u16 *data);
126 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
127                                           u32 offset, u16 *data);
128 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
129                                                  u32 offset, u8 byte);
130 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
131 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
132 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
133 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
134 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
135 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
136 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
137
138 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
139 /* Offset 04h HSFSTS */
140 union ich8_hws_flash_status {
141         struct ich8_hsfsts {
142                 u16 flcdone:1; /* bit 0 Flash Cycle Done */
143                 u16 flcerr:1; /* bit 1 Flash Cycle Error */
144                 u16 dael:1; /* bit 2 Direct Access error Log */
145                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
146                 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
147                 u16 reserved1:2; /* bit 13:6 Reserved */
148                 u16 reserved2:6; /* bit 13:6 Reserved */
149                 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
150                 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
151         } hsf_status;
152         u16 regval;
153 };
154
155 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
156 /* Offset 06h FLCTL */
157 union ich8_hws_flash_ctrl {
158         struct ich8_hsflctl {
159                 u16 flcgo:1;   /* 0 Flash Cycle Go */
160                 u16 flcycle:2;   /* 2:1 Flash Cycle */
161                 u16 reserved:5;   /* 7:3 Reserved  */
162                 u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
163                 u16 flockdn:6;   /* 15:10 Reserved */
164         } hsf_ctrl;
165         u16 regval;
166 };
167
168 /* ICH Flash Region Access Permissions */
169 union ich8_hws_flash_regacc {
170         struct ich8_flracc {
171                 u32 grra:8; /* 0:7 GbE region Read Access */
172                 u32 grwa:8; /* 8:15 GbE region Write Access */
173                 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
174                 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
175         } hsf_flregacc;
176         u16 regval;
177 };
178
179 /**
180  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
181  *  @hw: pointer to the HW structure
182  *
183  *  Test access to the PHY registers by reading the PHY ID registers.  If
184  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
185  *  otherwise assume the read PHY ID is correct if it is valid.
186  *
187  *  Assumes the sw/fw/hw semaphore is already acquired.
188  **/
189 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
190 {
191         u16 phy_reg = 0;
192         u32 phy_id = 0;
193         s32 ret_val = 0;
194         u16 retry_count;
195         u32 mac_reg = 0;
196
197         for (retry_count = 0; retry_count < 2; retry_count++) {
198                 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
199                 if (ret_val || (phy_reg == 0xFFFF))
200                         continue;
201                 phy_id = (u32)(phy_reg << 16);
202
203                 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
204                 if (ret_val || (phy_reg == 0xFFFF)) {
205                         phy_id = 0;
206                         continue;
207                 }
208                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
209                 break;
210         }
211
212         if (hw->phy.id) {
213                 if  (hw->phy.id == phy_id)
214                         goto out;
215         } else if (phy_id) {
216                 hw->phy.id = phy_id;
217                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
218                 goto out;
219         }
220
221         /* In case the PHY needs to be in mdio slow mode,
222          * set slow mode and try to get the PHY id again.
223          */
224         if (hw->mac.type < e1000_pch_lpt) {
225                 hw->phy.ops.release(hw);
226                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
227                 if (!ret_val)
228                         ret_val = e1000_get_phy_id(hw);
229                 hw->phy.ops.acquire(hw);
230         }
231
232         if (ret_val)
233                 return FALSE;
234 out:
235         if (hw->mac.type == e1000_pch_lpt) {
236                 /* Unforce SMBus mode in PHY */
237                 hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
238                 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
239                 hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
240
241                 /* Unforce SMBus mode in MAC */
242                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
243                 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
244                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
245         }
246
247         return TRUE;
248 }
249
250 /**
251  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
252  *  @hw: pointer to the HW structure
253  *
254  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
255  *  used to reset the PHY to a quiescent state when necessary.
256  **/
257 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
258 {
259         u32 mac_reg;
260
261         DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
262
263         /* Set Phy Config Counter to 50msec */
264         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
265         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
266         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
267         E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
268
269         /* Toggle LANPHYPC Value bit */
270         mac_reg = E1000_READ_REG(hw, E1000_CTRL);
271         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
272         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
273         E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
274         E1000_WRITE_FLUSH(hw);
275         usec_delay(10);
276         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
277         E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
278         E1000_WRITE_FLUSH(hw);
279
280         if (hw->mac.type < e1000_pch_lpt) {
281                 msec_delay(50);
282         } else {
283                 u16 count = 20;
284
285                 do {
286                         msec_delay(5);
287                 } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
288                            E1000_CTRL_EXT_LPCD) && count--);
289
290                 msec_delay(30);
291         }
292 }
293
294 /**
295  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
296  *  @hw: pointer to the HW structure
297  *
298  *  Workarounds/flow necessary for PHY initialization during driver load
299  *  and resume paths.
300  **/
301 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
302 {
303         u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
304         s32 ret_val;
305
306         DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
307
308         /* Gate automatic PHY configuration by hardware on managed and
309          * non-managed 82579 and newer adapters.
310          */
311         e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
312
313         /* It is not possible to be certain of the current state of ULP
314          * so forcibly disable it.
315          */
316         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
317         e1000_disable_ulp_lpt_lp(hw, TRUE);
318
319         ret_val = hw->phy.ops.acquire(hw);
320         if (ret_val) {
321                 DEBUGOUT("Failed to initialize PHY flow\n");
322                 goto out;
323         }
324
325         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
326          * inaccessible and resetting the PHY is not blocked, toggle the
327          * LANPHYPC Value bit to force the interconnect to PCIe mode.
328          */
329         switch (hw->mac.type) {
330         case e1000_pch_lpt:
331                 if (e1000_phy_is_accessible_pchlan(hw))
332                         break;
333
334                 /* Before toggling LANPHYPC, see if PHY is accessible by
335                  * forcing MAC to SMBus mode first.
336                  */
337                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
338                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
339                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
340
341                 /* Wait 50 milliseconds for MAC to finish any retries
342                  * that it might be trying to perform from previous
343                  * attempts to acknowledge any phy read requests.
344                  */
345                  msec_delay(50);
346
347                 /* fall-through */
348         case e1000_pch2lan:
349                 if (e1000_phy_is_accessible_pchlan(hw))
350                         break;
351
352                 /* fall-through */
353         case e1000_pchlan:
354                 if ((hw->mac.type == e1000_pchlan) &&
355                     (fwsm & E1000_ICH_FWSM_FW_VALID))
356                         break;
357
358                 if (hw->phy.ops.check_reset_block(hw)) {
359                         DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
360                         ret_val = -E1000_ERR_PHY;
361                         break;
362                 }
363
364                 /* Toggle LANPHYPC Value bit */
365                 e1000_toggle_lanphypc_pch_lpt(hw);
366                 if (hw->mac.type >= e1000_pch_lpt) {
367                         if (e1000_phy_is_accessible_pchlan(hw))
368                                 break;
369
370                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
371                          * so ensure that the MAC is also out of SMBus mode
372                          */
373                         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
374                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
375                         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
376
377                         if (e1000_phy_is_accessible_pchlan(hw))
378                                 break;
379
380                         ret_val = -E1000_ERR_PHY;
381                 }
382                 break;
383         default:
384                 break;
385         }
386
387         hw->phy.ops.release(hw);
388         if (!ret_val) {
389
390                 /* Check to see if able to reset PHY.  Print error if not */
391                 if (hw->phy.ops.check_reset_block(hw)) {
392                         ERROR_REPORT("Reset blocked by ME\n");
393                         goto out;
394                 }
395
396                 /* Reset the PHY before any access to it.  Doing so, ensures
397                  * that the PHY is in a known good state before we read/write
398                  * PHY registers.  The generic reset is sufficient here,
399                  * because we haven't determined the PHY type yet.
400                  */
401                 ret_val = e1000_phy_hw_reset_generic(hw);
402                 if (ret_val)
403                         goto out;
404
405                 /* On a successful reset, possibly need to wait for the PHY
406                  * to quiesce to an accessible state before returning control
407                  * to the calling function.  If the PHY does not quiesce, then
408                  * return E1000E_BLK_PHY_RESET, as this is the condition that
409                  *  the PHY is in.
410                  */
411                 ret_val = hw->phy.ops.check_reset_block(hw);
412                 if (ret_val)
413                         ERROR_REPORT("ME blocked access to PHY after reset\n");
414         }
415
416 out:
417         /* Ungate automatic PHY configuration on non-managed 82579 */
418         if ((hw->mac.type == e1000_pch2lan) &&
419             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
420                 msec_delay(10);
421                 e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
422         }
423
424         return ret_val;
425 }
426
427 /**
428  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
429  *  @hw: pointer to the HW structure
430  *
431  *  Initialize family-specific PHY parameters and function pointers.
432  **/
433 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
434 {
435         struct e1000_phy_info *phy = &hw->phy;
436         s32 ret_val;
437
438         DEBUGFUNC("e1000_init_phy_params_pchlan");
439
440         phy->addr               = 1;
441         phy->reset_delay_us     = 100;
442
443         phy->ops.acquire        = e1000_acquire_swflag_ich8lan;
444         phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
445         phy->ops.get_cfg_done   = e1000_get_cfg_done_ich8lan;
446         phy->ops.set_page       = e1000_set_page_igp;
447         phy->ops.read_reg       = e1000_read_phy_reg_hv;
448         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449         phy->ops.read_reg_page  = e1000_read_phy_reg_page_hv;
450         phy->ops.release        = e1000_release_swflag_ich8lan;
451         phy->ops.reset          = e1000_phy_hw_reset_ich8lan;
452         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
453         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
454         phy->ops.write_reg      = e1000_write_phy_reg_hv;
455         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
456         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
457         phy->ops.power_up       = e1000_power_up_phy_copper;
458         phy->ops.power_down     = e1000_power_down_phy_copper_ich8lan;
459         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
460
461         phy->id = e1000_phy_unknown;
462
463         ret_val = e1000_init_phy_workarounds_pchlan(hw);
464         if (ret_val)
465                 return ret_val;
466
467         if (phy->id == e1000_phy_unknown)
468                 switch (hw->mac.type) {
469                 default:
470                         ret_val = e1000_get_phy_id(hw);
471                         if (ret_val)
472                                 return ret_val;
473                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
474                                 break;
475                         /* fall-through */
476                 case e1000_pch2lan:
477                 case e1000_pch_lpt:
478                         /* In case the PHY needs to be in mdio slow mode,
479                          * set slow mode and try to get the PHY id again.
480                          */
481                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
482                         if (ret_val)
483                                 return ret_val;
484                         ret_val = e1000_get_phy_id(hw);
485                         if (ret_val)
486                                 return ret_val;
487                         break;
488                 }
489         phy->type = e1000_get_phy_type_from_id(phy->id);
490
491         switch (phy->type) {
492         case e1000_phy_82577:
493         case e1000_phy_82579:
494         case e1000_phy_i217:
495                 phy->ops.check_polarity = e1000_check_polarity_82577;
496                 phy->ops.force_speed_duplex =
497                         e1000_phy_force_speed_duplex_82577;
498                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
499                 phy->ops.get_info = e1000_get_phy_info_82577;
500                 phy->ops.commit = e1000_phy_sw_reset_generic;
501                 break;
502         case e1000_phy_82578:
503                 phy->ops.check_polarity = e1000_check_polarity_m88;
504                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
505                 phy->ops.get_cable_length = e1000_get_cable_length_m88;
506                 phy->ops.get_info = e1000_get_phy_info_m88;
507                 break;
508         default:
509                 ret_val = -E1000_ERR_PHY;
510                 break;
511         }
512
513         return ret_val;
514 }
515
516 /**
517  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
518  *  @hw: pointer to the HW structure
519  *
520  *  Initialize family-specific PHY parameters and function pointers.
521  **/
522 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
523 {
524         struct e1000_phy_info *phy = &hw->phy;
525         s32 ret_val;
526         u16 i = 0;
527
528         DEBUGFUNC("e1000_init_phy_params_ich8lan");
529
530         phy->addr               = 1;
531         phy->reset_delay_us     = 100;
532
533         phy->ops.acquire        = e1000_acquire_swflag_ich8lan;
534         phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
535         phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
536         phy->ops.get_cfg_done   = e1000_get_cfg_done_ich8lan;
537         phy->ops.read_reg       = e1000_read_phy_reg_igp;
538         phy->ops.release        = e1000_release_swflag_ich8lan;
539         phy->ops.reset          = e1000_phy_hw_reset_ich8lan;
540         phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
541         phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
542         phy->ops.write_reg      = e1000_write_phy_reg_igp;
543         phy->ops.power_up       = e1000_power_up_phy_copper;
544         phy->ops.power_down     = e1000_power_down_phy_copper_ich8lan;
545
546         /* We may need to do this twice - once for IGP and if that fails,
547          * we'll set BM func pointers and try again
548          */
549         ret_val = e1000_determine_phy_address(hw);
550         if (ret_val) {
551                 phy->ops.write_reg = e1000_write_phy_reg_bm;
552                 phy->ops.read_reg  = e1000_read_phy_reg_bm;
553                 ret_val = e1000_determine_phy_address(hw);
554                 if (ret_val) {
555                         DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
556                         return ret_val;
557                 }
558         }
559
560         phy->id = 0;
561         while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
562                (i++ < 100)) {
563                 msec_delay(1);
564                 ret_val = e1000_get_phy_id(hw);
565                 if (ret_val)
566                         return ret_val;
567         }
568
569         /* Verify phy id */
570         switch (phy->id) {
571         case IGP03E1000_E_PHY_ID:
572                 phy->type = e1000_phy_igp_3;
573                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
574                 phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
575                 phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
576                 phy->ops.get_info = e1000_get_phy_info_igp;
577                 phy->ops.check_polarity = e1000_check_polarity_igp;
578                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
579                 break;
580         case IFE_E_PHY_ID:
581         case IFE_PLUS_E_PHY_ID:
582         case IFE_C_E_PHY_ID:
583                 phy->type = e1000_phy_ife;
584                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
585                 phy->ops.get_info = e1000_get_phy_info_ife;
586                 phy->ops.check_polarity = e1000_check_polarity_ife;
587                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
588                 break;
589         case BME1000_E_PHY_ID:
590                 phy->type = e1000_phy_bm;
591                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
592                 phy->ops.read_reg = e1000_read_phy_reg_bm;
593                 phy->ops.write_reg = e1000_write_phy_reg_bm;
594                 phy->ops.commit = e1000_phy_sw_reset_generic;
595                 phy->ops.get_info = e1000_get_phy_info_m88;
596                 phy->ops.check_polarity = e1000_check_polarity_m88;
597                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
598                 break;
599         default:
600                 return -E1000_ERR_PHY;
601                 break;
602         }
603
604         return E1000_SUCCESS;
605 }
606
607 /**
608  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
609  *  @hw: pointer to the HW structure
610  *
611  *  Initialize family-specific NVM parameters and function
612  *  pointers.
613  **/
614 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
615 {
616         struct e1000_nvm_info *nvm = &hw->nvm;
617         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
618         u32 gfpreg, sector_base_addr, sector_end_addr;
619         u16 i;
620
621         DEBUGFUNC("e1000_init_nvm_params_ich8lan");
622
623         /* Can't read flash registers if the register set isn't mapped. */
624         nvm->type = e1000_nvm_flash_sw;
625         if (!hw->flash_address) {
626                 DEBUGOUT("ERROR: Flash registers not mapped\n");
627                 return -E1000_ERR_CONFIG;
628         }
629
630         gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
631
632         /* sector_X_addr is a "sector"-aligned address (4096 bytes)
633          * Add 1 to sector_end_addr since this sector is included in
634          * the overall size.
635          */
636         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638
639         /* flash_base_addr is byte-aligned */
640         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
641
642         /* find total size of the NVM, then cut in half since the total
643          * size represents two separate NVM banks.
644          */
645         nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
646                                 << FLASH_SECTOR_ADDR_SHIFT);
647         nvm->flash_bank_size /= 2;
648         /* Adjust to word count */
649         nvm->flash_bank_size /= sizeof(u16);
650
651         nvm->word_size = E1000_SHADOW_RAM_WORDS;
652
653         /* Clear shadow ram */
654         for (i = 0; i < nvm->word_size; i++) {
655                 dev_spec->shadow_ram[i].modified = FALSE;
656                 dev_spec->shadow_ram[i].value    = 0xFFFF;
657         }
658
659         E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
660         E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
661
662         /* Function Pointers */
663         nvm->ops.acquire        = e1000_acquire_nvm_ich8lan;
664         nvm->ops.release        = e1000_release_nvm_ich8lan;
665         nvm->ops.read           = e1000_read_nvm_ich8lan;
666         nvm->ops.update         = e1000_update_nvm_checksum_ich8lan;
667         nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
668         nvm->ops.validate       = e1000_validate_nvm_checksum_ich8lan;
669         nvm->ops.write          = e1000_write_nvm_ich8lan;
670
671         return E1000_SUCCESS;
672 }
673
674 /**
675  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
676  *  @hw: pointer to the HW structure
677  *
678  *  Initialize family-specific MAC parameters and function
679  *  pointers.
680  **/
681 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
682 {
683         struct e1000_mac_info *mac = &hw->mac;
684 #if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
685         u16 pci_cfg;
686 #endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
687
688         DEBUGFUNC("e1000_init_mac_params_ich8lan");
689
690         /* Set media type function pointer */
691         hw->phy.media_type = e1000_media_type_copper;
692
693         /* Set mta register count */
694         mac->mta_reg_count = 32;
695         /* Set rar entry count */
696         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
697         if (mac->type == e1000_ich8lan)
698                 mac->rar_entry_count--;
699         /* Set if part includes ASF firmware */
700         mac->asf_firmware_present = TRUE;
701         /* FWSM register */
702         mac->has_fwsm = TRUE;
703         /* ARC subsystem not supported */
704         mac->arc_subsystem_valid = FALSE;
705         /* Adaptive IFS supported */
706         mac->adaptive_ifs = TRUE;
707
708         /* Function pointers */
709
710         /* bus type/speed/width */
711         mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
712         /* function id */
713         mac->ops.set_lan_id = e1000_set_lan_id_single_port;
714         /* reset */
715         mac->ops.reset_hw = e1000_reset_hw_ich8lan;
716         /* hw initialization */
717         mac->ops.init_hw = e1000_init_hw_ich8lan;
718         /* link setup */
719         mac->ops.setup_link = e1000_setup_link_ich8lan;
720         /* physical interface setup */
721         mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
722         /* check for link */
723         mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
724         /* link info */
725         mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
726         /* multicast address update */
727         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
728         /* clear hardware counters */
729         mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
730
731         /* LED and other operations */
732         switch (mac->type) {
733         case e1000_ich8lan:
734         case e1000_ich9lan:
735         case e1000_ich10lan:
736                 /* check management mode */
737                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
738                 /* ID LED init */
739                 mac->ops.id_led_init = e1000_id_led_init_generic;
740                 /* blink LED */
741                 mac->ops.blink_led = e1000_blink_led_generic;
742                 /* setup LED */
743                 mac->ops.setup_led = e1000_setup_led_generic;
744                 /* cleanup LED */
745                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
746                 /* turn on/off LED */
747                 mac->ops.led_on = e1000_led_on_ich8lan;
748                 mac->ops.led_off = e1000_led_off_ich8lan;
749                 break;
750         case e1000_pch2lan:
751                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
752                 mac->ops.rar_set = e1000_rar_set_pch2lan;
753                 /* fall-through */
754         case e1000_pch_lpt:
755                 /* multicast address update for pch2 */
756                 mac->ops.update_mc_addr_list =
757                         e1000_update_mc_addr_list_pch2lan;
758         case e1000_pchlan:
759 #if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
760                 /* save PCH revision_id */
761                 e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg);
762                 hw->revision_id = (u8)(pci_cfg &= 0x000F);
763 #endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
764                 /* check management mode */
765                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
766                 /* ID LED init */
767                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
768                 /* setup LED */
769                 mac->ops.setup_led = e1000_setup_led_pchlan;
770                 /* cleanup LED */
771                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
772                 /* turn on/off LED */
773                 mac->ops.led_on = e1000_led_on_pchlan;
774                 mac->ops.led_off = e1000_led_off_pchlan;
775                 break;
776         default:
777                 break;
778         }
779
780         if (mac->type == e1000_pch_lpt) {
781                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
782                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
783                 mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
784                 mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
785         }
786
787         /* Enable PCS Lock-loss workaround for ICH8 */
788         if (mac->type == e1000_ich8lan)
789                 e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
790
791         return E1000_SUCCESS;
792 }
793
794 /**
795  *  __e1000_access_emi_reg_locked - Read/write EMI register
796  *  @hw: pointer to the HW structure
797  *  @addr: EMI address to program
798  *  @data: pointer to value to read/write from/to the EMI address
799  *  @read: boolean flag to indicate read or write
800  *
801  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
802  **/
803 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
804                                          u16 *data, bool read)
805 {
806         s32 ret_val;
807
808         DEBUGFUNC("__e1000_access_emi_reg_locked");
809
810         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
811         if (ret_val)
812                 return ret_val;
813
814         if (read)
815                 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
816                                                       data);
817         else
818                 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
819                                                        *data);
820
821         return ret_val;
822 }
823
824 /**
825  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
826  *  @hw: pointer to the HW structure
827  *  @addr: EMI address to program
828  *  @data: value to be read from the EMI address
829  *
830  *  Assumes the SW/FW/HW Semaphore is already acquired.
831  **/
832 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
833 {
834         DEBUGFUNC("e1000_read_emi_reg_locked");
835
836         return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
837 }
838
839 /**
840  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
841  *  @hw: pointer to the HW structure
842  *  @addr: EMI address to program
843  *  @data: value to be written to the EMI address
844  *
845  *  Assumes the SW/FW/HW Semaphore is already acquired.
846  **/
847 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
848 {
849         DEBUGFUNC("e1000_read_emi_reg_locked");
850
851         return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
852 }
853
854 /**
855  *  e1000_set_eee_pchlan - Enable/disable EEE support
856  *  @hw: pointer to the HW structure
857  *
858  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
859  *  the link and the EEE capabilities of the link partner.  The LPI Control
860  *  register bits will remain set only if/when link is up.
861  *
862  *  EEE LPI must not be asserted earlier than one second after link is up.
863  *  On 82579, EEE LPI should not be enabled until such time otherwise there
864  *  can be link issues with some switches.  Other devices can have EEE LPI
865  *  enabled immediately upon link up since they have a timer in hardware which
866  *  prevents LPI from being asserted too early.
867  **/
868 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
869 {
870         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
871         s32 ret_val;
872         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
873
874         DEBUGFUNC("e1000_set_eee_pchlan");
875
876         switch (hw->phy.type) {
877         case e1000_phy_82579:
878                 lpa = I82579_EEE_LP_ABILITY;
879                 pcs_status = I82579_EEE_PCS_STATUS;
880                 adv_addr = I82579_EEE_ADVERTISEMENT;
881                 break;
882         case e1000_phy_i217:
883                 lpa = I217_EEE_LP_ABILITY;
884                 pcs_status = I217_EEE_PCS_STATUS;
885                 adv_addr = I217_EEE_ADVERTISEMENT;
886                 break;
887         default:
888                 return E1000_SUCCESS;
889         }
890
891         ret_val = hw->phy.ops.acquire(hw);
892         if (ret_val)
893                 return ret_val;
894
895         ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
896         if (ret_val)
897                 goto release;
898
899         /* Clear bits that enable EEE in various speeds */
900         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
901
902         /* Enable EEE if not disabled by user */
903         if (!dev_spec->eee_disable) {
904                 /* Save off link partner's EEE ability */
905                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
906                                                     &dev_spec->eee_lp_ability);
907                 if (ret_val)
908                         goto release;
909
910                 /* Read EEE advertisement */
911                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
912                 if (ret_val)
913                         goto release;
914
915                 /* Enable EEE only for speeds in which the link partner is
916                  * EEE capable and for which we advertise EEE.
917                  */
918                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
919                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
920
921                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
922                         hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
923                         if (data & NWAY_LPAR_100TX_FD_CAPS)
924                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
925                         else
926                                 /* EEE is not supported in 100Half, so ignore
927                                  * partner's EEE in 100 ability if full-duplex
928                                  * is not advertised.
929                                  */
930                                 dev_spec->eee_lp_ability &=
931                                     ~I82579_EEE_100_SUPPORTED;
932                 }
933         }
934
935         if (hw->phy.type == e1000_phy_82579) {
936                 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
937                                                     &data);
938                 if (ret_val)
939                         goto release;
940
941                 data &= ~I82579_LPI_100_PLL_SHUT;
942                 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
943                                                      data);
944         }
945
946         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
947         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
948         if (ret_val)
949                 goto release;
950
951         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
952 release:
953         hw->phy.ops.release(hw);
954
955         return ret_val;
956 }
957
958 /**
959  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
960  *  @hw:   pointer to the HW structure
961  *  @link: link up bool flag
962  *
963  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
964  *  preventing further DMA write requests.  Workaround the issue by disabling
965  *  the de-assertion of the clock request when in 1Gpbs mode.
966  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
967  *  speeds in order to avoid Tx hangs.
968  **/
969 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
970 {
971         u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
972         u32 status = E1000_READ_REG(hw, E1000_STATUS);
973         s32 ret_val = E1000_SUCCESS;
974         u16 reg;
975
976         if (link && (status & E1000_STATUS_SPEED_1000)) {
977                 ret_val = hw->phy.ops.acquire(hw);
978                 if (ret_val)
979                         return ret_val;
980
981                 ret_val =
982                     e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
983                                                &reg);
984                 if (ret_val)
985                         goto release;
986
987                 ret_val =
988                     e1000_write_kmrn_reg_locked(hw,
989                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
990                                                 reg &
991                                                 ~E1000_KMRNCTRLSTA_K1_ENABLE);
992                 if (ret_val)
993                         goto release;
994
995                 usec_delay(10);
996
997                 E1000_WRITE_REG(hw, E1000_FEXTNVM6,
998                                 fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
999
1000                 ret_val =
1001                     e1000_write_kmrn_reg_locked(hw,
1002                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
1003                                                 reg);
1004 release:
1005                 hw->phy.ops.release(hw);
1006         } else {
1007                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
1008                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1009
1010                 if (!link || ((status & E1000_STATUS_SPEED_100) &&
1011                               (status & E1000_STATUS_FD)))
1012                         goto update_fextnvm6;
1013
1014                 ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1015                 if (ret_val)
1016                         return ret_val;
1017
1018                 /* Clear link status transmit timeout */
1019                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1020
1021                 if (status & E1000_STATUS_SPEED_100) {
1022                         /* Set inband Tx timeout to 5x10us for 100Half */
1023                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1024
1025                         /* Do not extend the K1 entry latency for 100Half */
1026                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1027                 } else {
1028                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
1029                         reg |= 50 <<
1030                                I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1031
1032                         /* Extend the K1 entry latency for 10 Mbps */
1033                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1034                 }
1035
1036                 ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1037                 if (ret_val)
1038                         return ret_val;
1039
1040 update_fextnvm6:
1041                 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1042         }
1043
1044         return ret_val;
1045 }
1046
1047 static u64 e1000_ltr2ns(u16 ltr)
1048 {
1049         u32 value, scale;
1050
1051         /* Determine the latency in nsec based on the LTR value & scale */
1052         value = ltr & E1000_LTRV_VALUE_MASK;
1053         scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1054
1055         return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1056 }
1057
1058 /**
1059  *  e1000_platform_pm_pch_lpt - Set platform power management values
1060  *  @hw: pointer to the HW structure
1061  *  @link: bool indicating link status
1062  *
1063  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1064  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1065  *  when link is up (which must not exceed the maximum latency supported
1066  *  by the platform), otherwise specify there is no LTR requirement.
1067  *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1068  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1069  *  Capability register set, on this device LTR is set by writing the
1070  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1071  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1072  *  message to the PMC.
1073  *
1074  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1075  *  high-water mark.
1076  **/
1077 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1078 {
1079         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1080                   link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1081         u16 lat_enc = 0;        /* latency encoded */
1082         s32 obff_hwm = 0;
1083
1084         DEBUGFUNC("e1000_platform_pm_pch_lpt");
1085
1086         if (link) {
1087                 u16 speed, duplex, scale = 0;
1088                 u16 max_snoop, max_nosnoop;
1089                 u16 max_ltr_enc;        /* max LTR latency encoded */
1090                 s64 lat_ns;
1091                 s64 value;
1092                 u32 rxa;
1093
1094                 if (!hw->mac.max_frame_size) {
1095                         DEBUGOUT("max_frame_size not set.\n");
1096                         return -E1000_ERR_CONFIG;
1097                 }
1098
1099                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1100                 if (!speed) {
1101                         DEBUGOUT("Speed not set.\n");
1102                         return -E1000_ERR_CONFIG;
1103                 }
1104
1105                 /* Rx Packet Buffer Allocation size (KB) */
1106                 rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1107
1108                 /* Determine the maximum latency tolerated by the device.
1109                  *
1110                  * Per the PCIe spec, the tolerated latencies are encoded as
1111                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1112                  * a 10-bit value (0-1023) to provide a range from 1 ns to
1113                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1114                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1115                  */
1116                 lat_ns = ((s64)rxa * 1024 -
1117                           (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1118                 if (lat_ns < 0)
1119                         lat_ns = 0;
1120                 else
1121                         lat_ns /= speed;
1122                 value = lat_ns;
1123
1124                 while (value > E1000_LTRV_VALUE_MASK) {
1125                         scale++;
1126                         value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1127                 }
1128                 if (scale > E1000_LTRV_SCALE_MAX) {
1129                         DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1130                         return -E1000_ERR_CONFIG;
1131                 }
1132                 lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1133
1134                 /* Determine the maximum latency tolerated by the platform */
1135                 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1136                 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1137                 max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1138
1139                 if (lat_enc > max_ltr_enc) {
1140                         lat_enc = max_ltr_enc;
1141                         lat_ns = e1000_ltr2ns(max_ltr_enc);
1142                 }
1143
1144                 if (lat_ns) {
1145                         lat_ns *= speed * 1000;
1146                         lat_ns /= 8;
1147                         lat_ns /= 1000000000;
1148                         obff_hwm = (s32)(rxa - lat_ns);
1149                 }
1150                 if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1151                         DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1152                         return -E1000_ERR_CONFIG;
1153                 }
1154         }
1155
1156         /* Set Snoop and No-Snoop latencies the same */
1157         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1158         E1000_WRITE_REG(hw, E1000_LTRV, reg);
1159
1160         /* Set OBFF high water mark */
1161         reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1162         reg |= obff_hwm;
1163         E1000_WRITE_REG(hw, E1000_SVT, reg);
1164
1165         /* Enable OBFF */
1166         reg = E1000_READ_REG(hw, E1000_SVCR);
1167         reg |= E1000_SVCR_OFF_EN;
1168         /* Always unblock interrupts to the CPU even when the system is
1169          * in OBFF mode. This ensures that small round-robin traffic
1170          * (like ping) does not get dropped or experience long latency.
1171          */
1172         reg |= E1000_SVCR_OFF_MASKINT;
1173         E1000_WRITE_REG(hw, E1000_SVCR, reg);
1174
1175         return E1000_SUCCESS;
1176 }
1177
1178 /**
1179  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1180  *  @hw: pointer to the HW structure
1181  *  @itr: interrupt throttling rate
1182  *
1183  *  Configure OBFF with the updated interrupt rate.
1184  **/
1185 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1186 {
1187         u32 svcr;
1188         s32 timer;
1189
1190         DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1191
1192         /* Convert ITR value into microseconds for OBFF timer */
1193         timer = itr & E1000_ITR_MASK;
1194         timer = (timer * E1000_ITR_MULT) / 1000;
1195
1196         if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1197                 DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1198                 return -E1000_ERR_CONFIG;
1199         }
1200
1201         svcr = E1000_READ_REG(hw, E1000_SVCR);
1202         svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1203         svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1204         E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1205
1206         return E1000_SUCCESS;
1207 }
1208
1209 /**
1210  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1211  *  @hw: pointer to the HW structure
1212  *  @to_sx: boolean indicating a system power state transition to Sx
1213  *
1214  *  When link is down, configure ULP mode to significantly reduce the power
1215  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1216  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1217  *  system, configure the ULP mode by software.
1218  */
1219 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1220 {
1221         u32 mac_reg;
1222         s32 ret_val = E1000_SUCCESS;
1223         u16 phy_reg;
1224
1225         if ((hw->mac.type < e1000_pch_lpt) ||
1226             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1227             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1228             (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1229             (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1230             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1231                 return 0;
1232
1233         if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1234                 /* Request ME configure ULP mode in the PHY */
1235                 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1236                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1237                 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1238
1239                 goto out;
1240         }
1241
1242         if (!to_sx) {
1243                 int i = 0;
1244
1245                 /* Poll up to 5 seconds for Cable Disconnected indication */
1246                 while (!(E1000_READ_REG(hw, E1000_FEXT) &
1247                          E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1248                         /* Bail if link is re-acquired */
1249                         if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1250                                 return -E1000_ERR_PHY;
1251
1252                         if (i++ == 100)
1253                                 break;
1254
1255                         msec_delay(50);
1256                 }
1257                 DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1258                          (E1000_READ_REG(hw, E1000_FEXT) &
1259                           E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1260                          i * 50);
1261         }
1262
1263         ret_val = hw->phy.ops.acquire(hw);
1264         if (ret_val)
1265                 goto out;
1266
1267         /* Force SMBus mode in PHY */
1268         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1269         if (ret_val)
1270                 goto release;
1271         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1272         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1273
1274         /* Force SMBus mode in MAC */
1275         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1276         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1277         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1278
1279         /* Set Inband ULP Exit, Reset to SMBus mode and
1280          * Disable SMBus Release on PERST# in PHY
1281          */
1282         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1283         if (ret_val)
1284                 goto release;
1285         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1286                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1287         if (to_sx) {
1288                 if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1289                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1290
1291                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1292         } else {
1293                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1294         }
1295         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1296
1297         /* Set Disable SMBus Release on PERST# in MAC */
1298         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1299         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1300         E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1301
1302         /* Commit ULP changes in PHY by starting auto ULP configuration */
1303         phy_reg |= I218_ULP_CONFIG1_START;
1304         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1305 release:
1306         hw->phy.ops.release(hw);
1307 out:
1308         if (ret_val)
1309                 DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1310         else
1311                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1312
1313         return ret_val;
1314 }
1315
1316 /**
1317  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1318  *  @hw: pointer to the HW structure
1319  *  @force: boolean indicating whether or not to force disabling ULP
1320  *
1321  *  Un-configure ULP mode when link is up, the system is transitioned from
1322  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1323  *  system, poll for an indication from ME that ULP has been un-configured.
1324  *  If not on an ME enabled system, un-configure the ULP mode by software.
1325  *
1326  *  During nominal operation, this function is called when link is acquired
1327  *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1328  *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1329  *  to forcibly disable ULP.
1330  */
1331 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1332 {
1333         s32 ret_val = E1000_SUCCESS;
1334         u32 mac_reg;
1335         u16 phy_reg;
1336         int i = 0;
1337
1338         if ((hw->mac.type < e1000_pch_lpt) ||
1339             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1340             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1341             (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1342             (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1343             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1344                 return 0;
1345
1346         if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1347                 if (force) {
1348                         /* Request ME un-configure ULP mode in the PHY */
1349                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1350                         mac_reg &= ~E1000_H2ME_ULP;
1351                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1352                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1353                 }
1354
1355                 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1356                 while (E1000_READ_REG(hw, E1000_FWSM) &
1357                        E1000_FWSM_ULP_CFG_DONE) {
1358                         if (i++ == 10) {
1359                                 ret_val = -E1000_ERR_PHY;
1360                                 goto out;
1361                         }
1362
1363                         msec_delay(10);
1364                 }
1365                 DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1366
1367                 if (force) {
1368                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1369                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1370                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1371                 } else {
1372                         /* Clear H2ME.ULP after ME ULP configuration */
1373                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1374                         mac_reg &= ~E1000_H2ME_ULP;
1375                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1376                 }
1377
1378                 goto out;
1379         }
1380
1381         ret_val = hw->phy.ops.acquire(hw);
1382         if (ret_val)
1383                 goto out;
1384
1385         if (force)
1386                 /* Toggle LANPHYPC Value bit */
1387                 e1000_toggle_lanphypc_pch_lpt(hw);
1388
1389         /* Unforce SMBus mode in PHY */
1390         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1391         if (ret_val) {
1392                 /* The MAC might be in PCIe mode, so temporarily force to
1393                  * SMBus mode in order to access the PHY.
1394                  */
1395                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1396                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1397                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1398
1399                 msec_delay(50);
1400
1401                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1402                                                        &phy_reg);
1403                 if (ret_val)
1404                         goto release;
1405         }
1406         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1407         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1408
1409         /* Unforce SMBus mode in MAC */
1410         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1411         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1412         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1413
1414         /* When ULP mode was previously entered, K1 was disabled by the
1415          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1416          */
1417         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1418         if (ret_val)
1419                 goto release;
1420         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1421         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1422
1423         /* Clear ULP enabled configuration */
1424         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1425         if (ret_val)
1426                 goto release;
1427                 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1428                              I218_ULP_CONFIG1_STICKY_ULP |
1429                              I218_ULP_CONFIG1_RESET_TO_SMBUS |
1430                              I218_ULP_CONFIG1_WOL_HOST |
1431                              I218_ULP_CONFIG1_INBAND_EXIT |
1432                              I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1433                 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1434
1435                 /* Commit ULP changes by starting auto ULP configuration */
1436                 phy_reg |= I218_ULP_CONFIG1_START;
1437                 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1438
1439                 /* Clear Disable SMBus Release on PERST# in MAC */
1440                 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1441                 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1442                 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1443
1444 release:
1445         hw->phy.ops.release(hw);
1446         if (force) {
1447                 hw->phy.ops.reset(hw);
1448                 msec_delay(50);
1449         }
1450 out:
1451         if (ret_val)
1452                 DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1453         else
1454                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1455
1456         return ret_val;
1457 }
1458
1459 /**
1460  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1461  *  @hw: pointer to the HW structure
1462  *
1463  *  Checks to see of the link status of the hardware has changed.  If a
1464  *  change in link status has been detected, then we read the PHY registers
1465  *  to get the current speed/duplex if link exists.
1466  **/
1467 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1468 {
1469         struct e1000_mac_info *mac = &hw->mac;
1470         s32 ret_val;
1471         bool link;
1472         u16 phy_reg;
1473
1474         DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1475
1476         /* We only want to go out to the PHY registers to see if Auto-Neg
1477          * has completed and/or if our link status has changed.  The
1478          * get_link_status flag is set upon receiving a Link Status
1479          * Change or Rx Sequence Error interrupt.
1480          */
1481         if (!mac->get_link_status)
1482                 return E1000_SUCCESS;
1483
1484                 /* First we want to see if the MII Status Register reports
1485                  * link.  If so, then we want to get the current speed/duplex
1486                  * of the PHY.
1487                  */
1488                 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1489                 if (ret_val)
1490                         return ret_val;
1491
1492         if (hw->mac.type == e1000_pchlan) {
1493                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1494                 if (ret_val)
1495                         return ret_val;
1496         }
1497
1498         /* When connected at 10Mbps half-duplex, some parts are excessively
1499          * aggressive resulting in many collisions. To avoid this, increase
1500          * the IPG and reduce Rx latency in the PHY.
1501          */
1502         if (((hw->mac.type == e1000_pch2lan) ||
1503              (hw->mac.type == e1000_pch_lpt)) && link) {
1504                 u32 reg;
1505                 reg = E1000_READ_REG(hw, E1000_STATUS);
1506                 if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1507                         u16 emi_addr;
1508
1509                         reg = E1000_READ_REG(hw, E1000_TIPG);
1510                         reg &= ~E1000_TIPG_IPGT_MASK;
1511                         reg |= 0xFF;
1512                         E1000_WRITE_REG(hw, E1000_TIPG, reg);
1513
1514                         /* Reduce Rx latency in analog PHY */
1515                         ret_val = hw->phy.ops.acquire(hw);
1516                         if (ret_val)
1517                                 return ret_val;
1518
1519                         if (hw->mac.type == e1000_pch2lan)
1520                                 emi_addr = I82579_RX_CONFIG;
1521                         else
1522                                 emi_addr = I217_RX_CONFIG;
1523                         ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
1524
1525                         hw->phy.ops.release(hw);
1526
1527                         if (ret_val)
1528                                 return ret_val;
1529                 }
1530         }
1531
1532         /* Work-around I218 hang issue */
1533         if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1534             (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1535             (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1536             (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1537                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1538                 if (ret_val)
1539                         return ret_val;
1540         }
1541         if (hw->mac.type == e1000_pch_lpt) {
1542                 /* Set platform power management values for
1543                  * Latency Tolerance Reporting (LTR)
1544                  * Optimized Buffer Flush/Fill (OBFF)
1545                  */
1546                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1547                 if (ret_val)
1548                         return ret_val;
1549         }
1550
1551         /* Clear link partner's EEE ability */
1552         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1553
1554         if (!link)
1555                 return E1000_SUCCESS; /* No link detected */
1556
1557         mac->get_link_status = FALSE;
1558
1559         switch (hw->mac.type) {
1560         case e1000_pch2lan:
1561                 ret_val = e1000_k1_workaround_lv(hw);
1562                 if (ret_val)
1563                         return ret_val;
1564                 /* fall-thru */
1565         case e1000_pchlan:
1566                 if (hw->phy.type == e1000_phy_82578) {
1567                         ret_val = e1000_link_stall_workaround_hv(hw);
1568                         if (ret_val)
1569                                 return ret_val;
1570                 }
1571
1572                 /* Workaround for PCHx parts in half-duplex:
1573                  * Set the number of preambles removed from the packet
1574                  * when it is passed from the PHY to the MAC to prevent
1575                  * the MAC from misinterpreting the packet type.
1576                  */
1577                 hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1578                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1579
1580                 if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1581                     E1000_STATUS_FD)
1582                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1583
1584                 hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1585                 break;
1586         default:
1587                 break;
1588         }
1589
1590         /* Check if there was DownShift, must be checked
1591          * immediately after link-up
1592          */
1593         e1000_check_downshift_generic(hw);
1594
1595         /* Enable/Disable EEE after link up */
1596         if (hw->phy.type > e1000_phy_82579) {
1597                 ret_val = e1000_set_eee_pchlan(hw);
1598                 if (ret_val)
1599                         return ret_val;
1600         }
1601
1602         /* If we are forcing speed/duplex, then we simply return since
1603          * we have already determined whether we have link or not.
1604          */
1605         if (!mac->autoneg)
1606                 return -E1000_ERR_CONFIG;
1607
1608         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1609          * of MAC speed/duplex configuration.  So we only need to
1610          * configure Collision Distance in the MAC.
1611          */
1612         mac->ops.config_collision_dist(hw);
1613
1614         /* Configure Flow Control now that Auto-Neg has completed.
1615          * First, we need to restore the desired flow control
1616          * settings because we may have had to re-autoneg with a
1617          * different link partner.
1618          */
1619         ret_val = e1000_config_fc_after_link_up_generic(hw);
1620         if (ret_val)
1621                 DEBUGOUT("Error configuring flow control\n");
1622
1623         return ret_val;
1624 }
1625
1626 /**
1627  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1628  *  @hw: pointer to the HW structure
1629  *
1630  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1631  **/
1632 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1633 {
1634         DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1635
1636         hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1637         hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1638         switch (hw->mac.type) {
1639         case e1000_ich8lan:
1640         case e1000_ich9lan:
1641         case e1000_ich10lan:
1642                 hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1643                 break;
1644         case e1000_pchlan:
1645         case e1000_pch2lan:
1646         case e1000_pch_lpt:
1647                 hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1648                 break;
1649         default:
1650                 break;
1651         }
1652 }
1653
1654 /**
1655  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1656  *  @hw: pointer to the HW structure
1657  *
1658  *  Acquires the mutex for performing NVM operations.
1659  **/
1660 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1661 {
1662         DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1663
1664         E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1665
1666         return E1000_SUCCESS;
1667 }
1668
1669 /**
1670  *  e1000_release_nvm_ich8lan - Release NVM mutex
1671  *  @hw: pointer to the HW structure
1672  *
1673  *  Releases the mutex used while performing NVM operations.
1674  **/
1675 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1676 {
1677         DEBUGFUNC("e1000_release_nvm_ich8lan");
1678
1679         E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1680
1681         return;
1682 }
1683
1684 /**
1685  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1686  *  @hw: pointer to the HW structure
1687  *
1688  *  Acquires the software control flag for performing PHY and select
1689  *  MAC CSR accesses.
1690  **/
1691 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1692 {
1693         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1694         s32 ret_val = E1000_SUCCESS;
1695
1696         DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1697
1698         E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1699
1700         while (timeout) {
1701                 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1702                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1703                         break;
1704
1705                 msec_delay_irq(1);
1706                 timeout--;
1707         }
1708
1709         if (!timeout) {
1710                 DEBUGOUT("SW has already locked the resource.\n");
1711                 ret_val = -E1000_ERR_CONFIG;
1712                 goto out;
1713         }
1714
1715         timeout = SW_FLAG_TIMEOUT;
1716
1717         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1718         E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1719
1720         while (timeout) {
1721                 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1722                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1723                         break;
1724
1725                 msec_delay_irq(1);
1726                 timeout--;
1727         }
1728
1729         if (!timeout) {
1730                 DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1731                           E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1732                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1733                 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1734                 ret_val = -E1000_ERR_CONFIG;
1735                 goto out;
1736         }
1737
1738 out:
1739         if (ret_val)
1740                 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1741
1742         return ret_val;
1743 }
1744
1745 /**
1746  *  e1000_release_swflag_ich8lan - Release software control flag
1747  *  @hw: pointer to the HW structure
1748  *
1749  *  Releases the software control flag for performing PHY and select
1750  *  MAC CSR accesses.
1751  **/
1752 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1753 {
1754         u32 extcnf_ctrl;
1755
1756         DEBUGFUNC("e1000_release_swflag_ich8lan");
1757
1758         extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1759
1760         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1761                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1762                 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1763         } else {
1764                 DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1765         }
1766
1767         E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1768
1769         return;
1770 }
1771
1772 /**
1773  *  e1000_check_mng_mode_ich8lan - Checks management mode
1774  *  @hw: pointer to the HW structure
1775  *
1776  *  This checks if the adapter has any manageability enabled.
1777  *  This is a function pointer entry point only called by read/write
1778  *  routines for the PHY and NVM parts.
1779  **/
1780 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1781 {
1782         u32 fwsm;
1783
1784         DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1785
1786         fwsm = E1000_READ_REG(hw, E1000_FWSM);
1787
1788         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1789                ((fwsm & E1000_FWSM_MODE_MASK) ==
1790                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1791 }
1792
1793 /**
1794  *  e1000_check_mng_mode_pchlan - Checks management mode
1795  *  @hw: pointer to the HW structure
1796  *
1797  *  This checks if the adapter has iAMT enabled.
1798  *  This is a function pointer entry point only called by read/write
1799  *  routines for the PHY and NVM parts.
1800  **/
1801 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1802 {
1803         u32 fwsm;
1804
1805         DEBUGFUNC("e1000_check_mng_mode_pchlan");
1806
1807         fwsm = E1000_READ_REG(hw, E1000_FWSM);
1808
1809         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1810                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1811 }
1812
1813 /**
1814  *  e1000_rar_set_pch2lan - Set receive address register
1815  *  @hw: pointer to the HW structure
1816  *  @addr: pointer to the receive address
1817  *  @index: receive address array register
1818  *
1819  *  Sets the receive address array register at index to the address passed
1820  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1821  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1822  *  Use SHRA[0-3] in place of those reserved for ME.
1823  **/
1824 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1825 {
1826         u32 rar_low, rar_high;
1827
1828         DEBUGFUNC("e1000_rar_set_pch2lan");
1829
1830         /* HW expects these in little endian so we reverse the byte order
1831          * from network order (big endian) to little endian
1832          */
1833         rar_low = ((u32) addr[0] |
1834                    ((u32) addr[1] << 8) |
1835                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1836
1837         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1838
1839         /* If MAC address zero, no need to set the AV bit */
1840         if (rar_low || rar_high)
1841                 rar_high |= E1000_RAH_AV;
1842
1843         if (index == 0) {
1844                 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1845                 E1000_WRITE_FLUSH(hw);
1846                 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1847                 E1000_WRITE_FLUSH(hw);
1848                 return E1000_SUCCESS;
1849         }
1850
1851         /* RAR[1-6] are owned by manageability.  Skip those and program the
1852          * next address into the SHRA register array.
1853          */
1854         if (index < (u32) (hw->mac.rar_entry_count)) {
1855                 s32 ret_val;
1856
1857                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1858                 if (ret_val)
1859                         goto out;
1860
1861                 E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
1862                 E1000_WRITE_FLUSH(hw);
1863                 E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
1864                 E1000_WRITE_FLUSH(hw);
1865
1866                 e1000_release_swflag_ich8lan(hw);
1867
1868                 /* verify the register updates */
1869                 if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
1870                     (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
1871                         return E1000_SUCCESS;
1872
1873                 DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1874                          (index - 1), E1000_READ_REG(hw, E1000_FWSM));
1875         }
1876
1877 out:
1878         DEBUGOUT1("Failed to write receive address at index %d\n", index);
1879         return -E1000_ERR_CONFIG;
1880 }
1881
1882 /**
1883  *  e1000_rar_set_pch_lpt - Set receive address registers
1884  *  @hw: pointer to the HW structure
1885  *  @addr: pointer to the receive address
1886  *  @index: receive address array register
1887  *
1888  *  Sets the receive address register array at index to the address passed
1889  *  in by addr. For LPT, RAR[0] is the base address register that is to
1890  *  contain the MAC address. SHRA[0-10] are the shared receive address
1891  *  registers that are shared between the Host and manageability engine (ME).
1892  **/
1893 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1894 {
1895         u32 rar_low, rar_high;
1896         u32 wlock_mac;
1897
1898         DEBUGFUNC("e1000_rar_set_pch_lpt");
1899
1900         /* HW expects these in little endian so we reverse the byte order
1901          * from network order (big endian) to little endian
1902          */
1903         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
1904                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1905
1906         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1907
1908         /* If MAC address zero, no need to set the AV bit */
1909         if (rar_low || rar_high)
1910                 rar_high |= E1000_RAH_AV;
1911
1912         if (index == 0) {
1913                 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1914                 E1000_WRITE_FLUSH(hw);
1915                 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1916                 E1000_WRITE_FLUSH(hw);
1917                 return E1000_SUCCESS;
1918         }
1919
1920         /* The manageability engine (ME) can lock certain SHRAR registers that
1921          * it is using - those registers are unavailable for use.
1922          */
1923         if (index < hw->mac.rar_entry_count) {
1924                 wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
1925                             E1000_FWSM_WLOCK_MAC_MASK;
1926                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1927
1928                 /* Check if all SHRAR registers are locked */
1929                 if (wlock_mac == 1)
1930                         goto out;
1931
1932                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1933                         s32 ret_val;
1934
1935                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1936
1937                         if (ret_val)
1938                                 goto out;
1939
1940                         E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
1941                                         rar_low);
1942                         E1000_WRITE_FLUSH(hw);
1943                         E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
1944                                         rar_high);
1945                         E1000_WRITE_FLUSH(hw);
1946
1947                         e1000_release_swflag_ich8lan(hw);
1948
1949                         /* verify the register updates */
1950                         if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1951                             (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
1952                                 return E1000_SUCCESS;
1953                 }
1954         }
1955
1956 out:
1957         DEBUGOUT1("Failed to write receive address at index %d\n", index);
1958         return -E1000_ERR_CONFIG;
1959 }
1960
1961 /**
1962  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
1963  *  @hw: pointer to the HW structure
1964  *  @mc_addr_list: array of multicast addresses to program
1965  *  @mc_addr_count: number of multicast addresses to program
1966  *
1967  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
1968  *  The caller must have a packed mc_addr_list of multicast addresses.
1969  **/
1970 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
1971                                               u8 *mc_addr_list,
1972                                               u32 mc_addr_count)
1973 {
1974         u16 phy_reg = 0;
1975         int i;
1976         s32 ret_val;
1977
1978         DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
1979
1980         e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
1981
1982         ret_val = hw->phy.ops.acquire(hw);
1983         if (ret_val)
1984                 return;
1985
1986         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1987         if (ret_val)
1988                 goto release;
1989
1990         for (i = 0; i < hw->mac.mta_reg_count; i++) {
1991                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
1992                                            (u16)(hw->mac.mta_shadow[i] &
1993                                                  0xFFFF));
1994                 hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
1995                                            (u16)((hw->mac.mta_shadow[i] >> 16) &
1996                                                  0xFFFF));
1997         }
1998
1999         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2000
2001 release:
2002         hw->phy.ops.release(hw);
2003 }
2004
2005 /**
2006  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2007  *  @hw: pointer to the HW structure
2008  *
2009  *  Checks if firmware is blocking the reset of the PHY.
2010  *  This is a function pointer entry point only called by
2011  *  reset routines.
2012  **/
2013 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2014 {
2015         u32 fwsm;
2016         bool blocked = FALSE;
2017         int i = 0;
2018
2019         DEBUGFUNC("e1000_check_reset_block_ich8lan");
2020
2021         do {
2022                 fwsm = E1000_READ_REG(hw, E1000_FWSM);
2023                 if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2024                         blocked = TRUE;
2025                         msec_delay(10);
2026                         continue;
2027                 }
2028                 blocked = FALSE;
2029         } while (blocked && (i++ < 10));
2030         return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2031 }
2032
2033 /**
2034  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2035  *  @hw: pointer to the HW structure
2036  *
2037  *  Assumes semaphore already acquired.
2038  *
2039  **/
2040 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2041 {
2042         u16 phy_data;
2043         u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2044         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2045                 E1000_STRAP_SMT_FREQ_SHIFT;
2046         s32 ret_val;
2047
2048         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2049
2050         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2051         if (ret_val)
2052                 return ret_val;
2053
2054         phy_data &= ~HV_SMB_ADDR_MASK;
2055         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2056         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2057
2058         if (hw->phy.type == e1000_phy_i217) {
2059                 /* Restore SMBus frequency */
2060                 if (freq--) {
2061                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2062                         phy_data |= (freq & (1 << 0)) <<
2063                                 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2064                         phy_data |= (freq & (1 << 1)) <<
2065                                 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2066                 } else {
2067                         DEBUGOUT("Unsupported SMB frequency in PHY\n");
2068                 }
2069         }
2070
2071         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2072 }
2073
2074 /**
2075  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2076  *  @hw:   pointer to the HW structure
2077  *
2078  *  SW should configure the LCD from the NVM extended configuration region
2079  *  as a workaround for certain parts.
2080  **/
2081 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2082 {
2083         struct e1000_phy_info *phy = &hw->phy;
2084         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2085         s32 ret_val = E1000_SUCCESS;
2086         u16 word_addr, reg_data, reg_addr, phy_page = 0;
2087
2088         DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2089
2090         /* Initialize the PHY from the NVM on ICH platforms.  This
2091          * is needed due to an issue where the NVM configuration is
2092          * not properly autoloaded after power transitions.
2093          * Therefore, after each PHY reset, we will load the
2094          * configuration data out of the NVM manually.
2095          */
2096         switch (hw->mac.type) {
2097         case e1000_ich8lan:
2098                 if (phy->type != e1000_phy_igp_3)
2099                         return ret_val;
2100
2101                 if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2102                     (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2103                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2104                         break;
2105                 }
2106                 /* Fall-thru */
2107         case e1000_pchlan:
2108         case e1000_pch2lan:
2109         case e1000_pch_lpt:
2110                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2111                 break;
2112         default:
2113                 return ret_val;
2114         }
2115
2116         ret_val = hw->phy.ops.acquire(hw);
2117         if (ret_val)
2118                 return ret_val;
2119
2120         data = E1000_READ_REG(hw, E1000_FEXTNVM);
2121         if (!(data & sw_cfg_mask))
2122                 goto release;
2123
2124         /* Make sure HW does not configure LCD from PHY
2125          * extended configuration before SW configuration
2126          */
2127         data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2128         if ((hw->mac.type < e1000_pch2lan) &&
2129             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2130                         goto release;
2131
2132         cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2133         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2134         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2135         if (!cnf_size)
2136                 goto release;
2137
2138         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2139         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2140
2141         if (((hw->mac.type == e1000_pchlan) &&
2142              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2143             (hw->mac.type > e1000_pchlan)) {
2144                 /* HW configures the SMBus address and LEDs when the
2145                  * OEM and LCD Write Enable bits are set in the NVM.
2146                  * When both NVM bits are cleared, SW will configure
2147                  * them instead.
2148                  */
2149                 ret_val = e1000_write_smbus_addr(hw);
2150                 if (ret_val)
2151                         goto release;
2152
2153                 data = E1000_READ_REG(hw, E1000_LEDCTL);
2154                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2155                                                         (u16)data);
2156                 if (ret_val)
2157                         goto release;
2158         }
2159
2160         /* Configure LCD from extended configuration region. */
2161
2162         /* cnf_base_addr is in DWORD */
2163         word_addr = (u16)(cnf_base_addr << 1);
2164
2165         for (i = 0; i < cnf_size; i++) {
2166                 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2167                                            &reg_data);
2168                 if (ret_val)
2169                         goto release;
2170
2171                 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2172                                            1, &reg_addr);
2173                 if (ret_val)
2174                         goto release;
2175
2176                 /* Save off the PHY page for future writes. */
2177                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2178                         phy_page = reg_data;
2179                         continue;
2180                 }
2181
2182                 reg_addr &= PHY_REG_MASK;
2183                 reg_addr |= phy_page;
2184
2185                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2186                                                     reg_data);
2187                 if (ret_val)
2188                         goto release;
2189         }
2190
2191 release:
2192         hw->phy.ops.release(hw);
2193         return ret_val;
2194 }
2195
2196 /**
2197  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2198  *  @hw:   pointer to the HW structure
2199  *  @link: link up bool flag
2200  *
2201  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2202  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2203  *  If link is down, the function will restore the default K1 setting located
2204  *  in the NVM.
2205  **/
2206 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2207 {
2208         s32 ret_val = E1000_SUCCESS;
2209         u16 status_reg = 0;
2210         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2211
2212         DEBUGFUNC("e1000_k1_gig_workaround_hv");
2213
2214         if (hw->mac.type != e1000_pchlan)
2215                 return E1000_SUCCESS;
2216
2217         /* Wrap the whole flow with the sw flag */
2218         ret_val = hw->phy.ops.acquire(hw);
2219         if (ret_val)
2220                 return ret_val;
2221
2222         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2223         if (link) {
2224                 if (hw->phy.type == e1000_phy_82578) {
2225                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2226                                                               &status_reg);
2227                         if (ret_val)
2228                                 goto release;
2229
2230                         status_reg &= (BM_CS_STATUS_LINK_UP |
2231                                        BM_CS_STATUS_RESOLVED |
2232                                        BM_CS_STATUS_SPEED_MASK);
2233
2234                         if (status_reg == (BM_CS_STATUS_LINK_UP |
2235                                            BM_CS_STATUS_RESOLVED |
2236                                            BM_CS_STATUS_SPEED_1000))
2237                                 k1_enable = FALSE;
2238                 }
2239
2240                 if (hw->phy.type == e1000_phy_82577) {
2241                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2242                                                               &status_reg);
2243                         if (ret_val)
2244                                 goto release;
2245
2246                         status_reg &= (HV_M_STATUS_LINK_UP |
2247                                        HV_M_STATUS_AUTONEG_COMPLETE |
2248                                        HV_M_STATUS_SPEED_MASK);
2249
2250                         if (status_reg == (HV_M_STATUS_LINK_UP |
2251                                            HV_M_STATUS_AUTONEG_COMPLETE |
2252                                            HV_M_STATUS_SPEED_1000))
2253                                 k1_enable = FALSE;
2254                 }
2255
2256                 /* Link stall fix for link up */
2257                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2258                                                        0x0100);
2259                 if (ret_val)
2260                         goto release;
2261
2262         } else {
2263                 /* Link stall fix for link down */
2264                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2265                                                        0x4100);
2266                 if (ret_val)
2267                         goto release;
2268         }
2269
2270         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2271
2272 release:
2273         hw->phy.ops.release(hw);
2274
2275         return ret_val;
2276 }
2277
2278 /**
2279  *  e1000_configure_k1_ich8lan - Configure K1 power state
2280  *  @hw: pointer to the HW structure
2281  *  @enable: K1 state to configure
2282  *
2283  *  Configure the K1 power state based on the provided parameter.
2284  *  Assumes semaphore already acquired.
2285  *
2286  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2287  **/
2288 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2289 {
2290         s32 ret_val;
2291         u32 ctrl_reg = 0;
2292         u32 ctrl_ext = 0;
2293         u32 reg = 0;
2294         u16 kmrn_reg = 0;
2295
2296         DEBUGFUNC("e1000_configure_k1_ich8lan");
2297
2298         ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2299                                              &kmrn_reg);
2300         if (ret_val)
2301                 return ret_val;
2302
2303         if (k1_enable)
2304                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2305         else
2306                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2307
2308         ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2309                                               kmrn_reg);
2310         if (ret_val)
2311                 return ret_val;
2312
2313         usec_delay(20);
2314         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2315         ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2316
2317         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2318         reg |= E1000_CTRL_FRCSPD;
2319         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2320
2321         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2322         E1000_WRITE_FLUSH(hw);
2323         usec_delay(20);
2324         E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2325         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2326         E1000_WRITE_FLUSH(hw);
2327         usec_delay(20);
2328
2329         return E1000_SUCCESS;
2330 }
2331
2332 /**
2333  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2334  *  @hw:       pointer to the HW structure
2335  *  @d0_state: boolean if entering d0 or d3 device state
2336  *
2337  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2338  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2339  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2340  **/
2341 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2342 {
2343         s32 ret_val = 0;
2344         u32 mac_reg;
2345         u16 oem_reg;
2346
2347         DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2348
2349         if (hw->mac.type < e1000_pchlan)
2350                 return ret_val;
2351
2352         ret_val = hw->phy.ops.acquire(hw);
2353         if (ret_val)
2354                 return ret_val;
2355
2356         if (hw->mac.type == e1000_pchlan) {
2357                 mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2358                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2359                         goto release;
2360         }
2361
2362         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2363         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2364                 goto release;
2365
2366         mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2367
2368         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2369         if (ret_val)
2370                 goto release;
2371
2372         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2373
2374         if (d0_state) {
2375                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2376                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2377
2378                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2379                         oem_reg |= HV_OEM_BITS_LPLU;
2380         } else {
2381                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2382                     E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2383                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2384
2385                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2386                     E1000_PHY_CTRL_NOND0A_LPLU))
2387                         oem_reg |= HV_OEM_BITS_LPLU;
2388         }
2389
2390         /* Set Restart auto-neg to activate the bits */
2391         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2392             !hw->phy.ops.check_reset_block(hw))
2393                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2394
2395         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2396
2397 release:
2398         hw->phy.ops.release(hw);
2399
2400         return ret_val;
2401 }
2402
2403
2404 /**
2405  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2406  *  @hw:   pointer to the HW structure
2407  **/
2408 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2409 {
2410         s32 ret_val;
2411         u16 data;
2412
2413         DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2414
2415         ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2416         if (ret_val)
2417                 return ret_val;
2418
2419         data |= HV_KMRN_MDIO_SLOW;
2420
2421         ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2422
2423         return ret_val;
2424 }
2425
2426 /**
2427  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2428  *  done after every PHY reset.
2429  **/
2430 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2431 {
2432         s32 ret_val = E1000_SUCCESS;
2433         u16 phy_data;
2434
2435         DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2436
2437         if (hw->mac.type != e1000_pchlan)
2438                 return E1000_SUCCESS;
2439
2440         /* Set MDIO slow mode before any other MDIO access */
2441         if (hw->phy.type == e1000_phy_82577) {
2442                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2443                 if (ret_val)
2444                         return ret_val;
2445         }
2446
2447         if (((hw->phy.type == e1000_phy_82577) &&
2448              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2449             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2450                 /* Disable generation of early preamble */
2451                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2452                 if (ret_val)
2453                         return ret_val;
2454
2455                 /* Preamble tuning for SSC */
2456                 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2457                                                 0xA204);
2458                 if (ret_val)
2459                         return ret_val;
2460         }
2461
2462         if (hw->phy.type == e1000_phy_82578) {
2463                 /* Return registers to default by doing a soft reset then
2464                  * writing 0x3140 to the control register.
2465                  */
2466                 if (hw->phy.revision < 2) {
2467                         e1000_phy_sw_reset_generic(hw);
2468                         ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2469                                                         0x3140);
2470                 }
2471         }
2472
2473         /* Select page 0 */
2474         ret_val = hw->phy.ops.acquire(hw);
2475         if (ret_val)
2476                 return ret_val;
2477
2478         hw->phy.addr = 1;
2479         ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2480         hw->phy.ops.release(hw);
2481         if (ret_val)
2482                 return ret_val;
2483
2484         /* Configure the K1 Si workaround during phy reset assuming there is
2485          * link so that it disables K1 if link is in 1Gbps.
2486          */
2487         ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2488         if (ret_val)
2489                 return ret_val;
2490
2491         /* Workaround for link disconnects on a busy hub in half duplex */
2492         ret_val = hw->phy.ops.acquire(hw);
2493         if (ret_val)
2494                 return ret_val;
2495         ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2496         if (ret_val)
2497                 goto release;
2498         ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2499                                                phy_data & 0x00FF);
2500         if (ret_val)
2501                 goto release;
2502
2503         /* set MSE higher to enable link to stay up when noise is high */
2504         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2505 release:
2506         hw->phy.ops.release(hw);
2507
2508         return ret_val;
2509 }
2510
2511 /**
2512  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2513  *  @hw:   pointer to the HW structure
2514  **/
2515 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2516 {
2517         u32 mac_reg;
2518         u16 i, phy_reg = 0;
2519         s32 ret_val;
2520
2521         DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2522
2523         ret_val = hw->phy.ops.acquire(hw);
2524         if (ret_val)
2525                 return;
2526         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2527         if (ret_val)
2528                 goto release;
2529
2530         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2531         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2532                 mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2533                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2534                                            (u16)(mac_reg & 0xFFFF));
2535                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2536                                            (u16)((mac_reg >> 16) & 0xFFFF));
2537
2538                 mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2539                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2540                                            (u16)(mac_reg & 0xFFFF));
2541                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2542                                            (u16)((mac_reg & E1000_RAH_AV)
2543                                                  >> 16));
2544         }
2545
2546         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2547
2548 release:
2549         hw->phy.ops.release(hw);
2550 }
2551
2552 static u32 e1000_calc_rx_da_crc(u8 mac[])
2553 {
2554         u32 poly = 0xEDB88320;  /* Polynomial for 802.3 CRC calculation */
2555         u32 i, j, mask, crc;
2556
2557         DEBUGFUNC("e1000_calc_rx_da_crc");
2558
2559         crc = 0xffffffff;
2560         for (i = 0; i < 6; i++) {
2561                 crc = crc ^ mac[i];
2562                 for (j = 8; j > 0; j--) {
2563                         mask = (crc & 1) * (-1);
2564                         crc = (crc >> 1) ^ (poly & mask);
2565                 }
2566         }
2567         return ~crc;
2568 }
2569
2570 /**
2571  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2572  *  with 82579 PHY
2573  *  @hw: pointer to the HW structure
2574  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2575  **/
2576 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2577 {
2578         s32 ret_val = E1000_SUCCESS;
2579         u16 phy_reg, data;
2580         u32 mac_reg;
2581         u16 i;
2582
2583         DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2584
2585         if (hw->mac.type < e1000_pch2lan)
2586                 return E1000_SUCCESS;
2587
2588         /* disable Rx path while enabling/disabling workaround */
2589         hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2590         ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2591                                         phy_reg | (1 << 14));
2592         if (ret_val)
2593                 return ret_val;
2594
2595         if (enable) {
2596                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2597                  * SHRAL/H) and initial CRC values to the MAC
2598                  */
2599                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2600                         u8 mac_addr[ETH_ADDR_LEN] = {0};
2601                         u32 addr_high, addr_low;
2602
2603                         addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2604                         if (!(addr_high & E1000_RAH_AV))
2605                                 continue;
2606                         addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2607                         mac_addr[0] = (addr_low & 0xFF);
2608                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2609                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2610                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2611                         mac_addr[4] = (addr_high & 0xFF);
2612                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2613
2614                         E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2615                                         e1000_calc_rx_da_crc(mac_addr));
2616                 }
2617
2618                 /* Write Rx addresses to the PHY */
2619                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2620
2621                 /* Enable jumbo frame workaround in the MAC */
2622                 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2623                 mac_reg &= ~(1 << 14);
2624                 mac_reg |= (7 << 15);
2625                 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2626
2627                 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2628                 mac_reg |= E1000_RCTL_SECRC;
2629                 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2630
2631                 ret_val = e1000_read_kmrn_reg_generic(hw,
2632                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2633                                                 &data);
2634                 if (ret_val)
2635                         return ret_val;
2636                 ret_val = e1000_write_kmrn_reg_generic(hw,
2637                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638                                                 data | (1 << 0));
2639                 if (ret_val)
2640                         return ret_val;
2641                 ret_val = e1000_read_kmrn_reg_generic(hw,
2642                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2643                                                 &data);
2644                 if (ret_val)
2645                         return ret_val;
2646                 data &= ~(0xF << 8);
2647                 data |= (0xB << 8);
2648                 ret_val = e1000_write_kmrn_reg_generic(hw,
2649                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2650                                                 data);
2651                 if (ret_val)
2652                         return ret_val;
2653
2654                 /* Enable jumbo frame workaround in the PHY */
2655                 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2656                 data &= ~(0x7F << 5);
2657                 data |= (0x37 << 5);
2658                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2659                 if (ret_val)
2660                         return ret_val;
2661                 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2662                 data &= ~(1 << 13);
2663                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2664                 if (ret_val)
2665                         return ret_val;
2666                 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2667                 data &= ~(0x3FF << 2);
2668                 data |= (E1000_TX_PTR_GAP << 2);
2669                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2670                 if (ret_val)
2671                         return ret_val;
2672                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2673                 if (ret_val)
2674                         return ret_val;
2675                 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2676                 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2677                                                 (1 << 10));
2678                 if (ret_val)
2679                         return ret_val;
2680         } else {
2681                 /* Write MAC register values back to h/w defaults */
2682                 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2683                 mac_reg &= ~(0xF << 14);
2684                 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2685
2686                 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2687                 mac_reg &= ~E1000_RCTL_SECRC;
2688                 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2689
2690                 ret_val = e1000_read_kmrn_reg_generic(hw,
2691                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2692                                                 &data);
2693                 if (ret_val)
2694                         return ret_val;
2695                 ret_val = e1000_write_kmrn_reg_generic(hw,
2696                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2697                                                 data & ~(1 << 0));
2698                 if (ret_val)
2699                         return ret_val;
2700                 ret_val = e1000_read_kmrn_reg_generic(hw,
2701                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2702                                                 &data);
2703                 if (ret_val)
2704                         return ret_val;
2705                 data &= ~(0xF << 8);
2706                 data |= (0xB << 8);
2707                 ret_val = e1000_write_kmrn_reg_generic(hw,
2708                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2709                                                 data);
2710                 if (ret_val)
2711                         return ret_val;
2712
2713                 /* Write PHY register values back to h/w defaults */
2714                 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2715                 data &= ~(0x7F << 5);
2716                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2717                 if (ret_val)
2718                         return ret_val;
2719                 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2720                 data |= (1 << 13);
2721                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2722                 if (ret_val)
2723                         return ret_val;
2724                 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2725                 data &= ~(0x3FF << 2);
2726                 data |= (0x8 << 2);
2727                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2728                 if (ret_val)
2729                         return ret_val;
2730                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2731                 if (ret_val)
2732                         return ret_val;
2733                 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2734                 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2735                                                 ~(1 << 10));
2736                 if (ret_val)
2737                         return ret_val;
2738         }
2739
2740         /* re-enable Rx path after enabling/disabling workaround */
2741         return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2742                                      ~(1 << 14));
2743 }
2744
2745 /**
2746  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2747  *  done after every PHY reset.
2748  **/
2749 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2750 {
2751         s32 ret_val = E1000_SUCCESS;
2752
2753         DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2754
2755         if (hw->mac.type != e1000_pch2lan)
2756                 return E1000_SUCCESS;
2757
2758         /* Set MDIO slow mode before any other MDIO access */
2759         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2760         if (ret_val)
2761                 return ret_val;
2762
2763         ret_val = hw->phy.ops.acquire(hw);
2764         if (ret_val)
2765                 return ret_val;
2766         /* set MSE higher to enable link to stay up when noise is high */
2767         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2768         if (ret_val)
2769                 goto release;
2770         /* drop link after 5 times MSE threshold was reached */
2771         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2772 release:
2773         hw->phy.ops.release(hw);
2774
2775         return ret_val;
2776 }
2777
2778 /**
2779  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2780  *  @hw:   pointer to the HW structure
2781  *
2782  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2783  *  Disable K1 for 1000 and 100 speeds
2784  **/
2785 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2786 {
2787         s32 ret_val = E1000_SUCCESS;
2788         u16 status_reg = 0;
2789
2790         DEBUGFUNC("e1000_k1_workaround_lv");
2791
2792         if (hw->mac.type != e1000_pch2lan)
2793                 return E1000_SUCCESS;
2794
2795         /* Set K1 beacon duration based on 10Mbs speed */
2796         ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2797         if (ret_val)
2798                 return ret_val;
2799
2800         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2801             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2802                 if (status_reg &
2803                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2804                         u16 pm_phy_reg;
2805
2806                         /* LV 1G/100 Packet drop issue wa  */
2807                         ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2808                                                        &pm_phy_reg);
2809                         if (ret_val)
2810                                 return ret_val;
2811                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2812                         ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
2813                                                         pm_phy_reg);
2814                         if (ret_val)
2815                                 return ret_val;
2816                 } else {
2817                         u32 mac_reg;
2818                         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
2819                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2820                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2821                         E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
2822                 }
2823         }
2824
2825         return ret_val;
2826 }
2827
2828 /**
2829  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2830  *  @hw:   pointer to the HW structure
2831  *  @gate: boolean set to TRUE to gate, FALSE to ungate
2832  *
2833  *  Gate/ungate the automatic PHY configuration via hardware; perform
2834  *  the configuration via software instead.
2835  **/
2836 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2837 {
2838         u32 extcnf_ctrl;
2839
2840         DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
2841
2842         if (hw->mac.type < e1000_pch2lan)
2843                 return;
2844
2845         extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2846
2847         if (gate)
2848                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2849         else
2850                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2851
2852         E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
2853 }
2854
2855 /**
2856  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2857  *  @hw: pointer to the HW structure
2858  *
2859  *  Check the appropriate indication the MAC has finished configuring the
2860  *  PHY after a software reset.
2861  **/
2862 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2863 {
2864         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2865
2866         DEBUGFUNC("e1000_lan_init_done_ich8lan");
2867
2868         /* Wait for basic configuration completes before proceeding */
2869         do {
2870                 data = E1000_READ_REG(hw, E1000_STATUS);
2871                 data &= E1000_STATUS_LAN_INIT_DONE;
2872                 usec_delay(100);
2873         } while ((!data) && --loop);
2874
2875         /* If basic configuration is incomplete before the above loop
2876          * count reaches 0, loading the configuration from NVM will
2877          * leave the PHY in a bad state possibly resulting in no link.
2878          */
2879         if (loop == 0)
2880                 DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
2881
2882         /* Clear the Init Done bit for the next init event */
2883         data = E1000_READ_REG(hw, E1000_STATUS);
2884         data &= ~E1000_STATUS_LAN_INIT_DONE;
2885         E1000_WRITE_REG(hw, E1000_STATUS, data);
2886 }
2887
2888 /**
2889  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2890  *  @hw: pointer to the HW structure
2891  **/
2892 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2893 {
2894         s32 ret_val = E1000_SUCCESS;
2895         u16 reg;
2896
2897         DEBUGFUNC("e1000_post_phy_reset_ich8lan");
2898
2899         if (hw->phy.ops.check_reset_block(hw))
2900                 return E1000_SUCCESS;
2901
2902         /* Allow time for h/w to get to quiescent state after reset */
2903         msec_delay(10);
2904
2905         /* Perform any necessary post-reset workarounds */
2906         switch (hw->mac.type) {
2907         case e1000_pchlan:
2908                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2909                 if (ret_val)
2910                         return ret_val;
2911                 break;
2912         case e1000_pch2lan:
2913                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2914                 if (ret_val)
2915                         return ret_val;
2916                 break;
2917         default:
2918                 break;
2919         }
2920
2921         /* Clear the host wakeup bit after lcd reset */
2922         if (hw->mac.type >= e1000_pchlan) {
2923                 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
2924                 reg &= ~BM_WUC_HOST_WU_BIT;
2925                 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
2926         }
2927
2928         /* Configure the LCD with the extended configuration region in NVM */
2929         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2930         if (ret_val)
2931                 return ret_val;
2932
2933         /* Configure the LCD with the OEM bits in NVM */
2934         ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
2935
2936         if (hw->mac.type == e1000_pch2lan) {
2937                 /* Ungate automatic PHY configuration on non-managed 82579 */
2938                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
2939                     E1000_ICH_FWSM_FW_VALID)) {
2940                         msec_delay(10);
2941                         e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
2942                 }
2943
2944                 /* Set EEE LPI Update Timer to 200usec */
2945                 ret_val = hw->phy.ops.acquire(hw);
2946                 if (ret_val)
2947                         return ret_val;
2948                 ret_val = e1000_write_emi_reg_locked(hw,
2949                                                      I82579_LPI_UPDATE_TIMER,
2950                                                      0x1387);
2951                 hw->phy.ops.release(hw);
2952         }
2953
2954         return ret_val;
2955 }
2956
2957 /**
2958  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2959  *  @hw: pointer to the HW structure
2960  *
2961  *  Resets the PHY
2962  *  This is a function pointer entry point called by drivers
2963  *  or other shared routines.
2964  **/
2965 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2966 {
2967         s32 ret_val = E1000_SUCCESS;
2968
2969         DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
2970
2971         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2972         if ((hw->mac.type == e1000_pch2lan) &&
2973             !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
2974                 e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
2975
2976         ret_val = e1000_phy_hw_reset_generic(hw);
2977         if (ret_val)
2978                 return ret_val;
2979
2980         return e1000_post_phy_reset_ich8lan(hw);
2981 }
2982
2983 /**
2984  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2985  *  @hw: pointer to the HW structure
2986  *  @active: TRUE to enable LPLU, FALSE to disable
2987  *
2988  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2989  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2990  *  the phy speed. This function will manually set the LPLU bit and restart
2991  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2992  *  since it configures the same bit.
2993  **/
2994 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2995 {
2996         s32 ret_val;
2997         u16 oem_reg;
2998
2999         DEBUGFUNC("e1000_set_lplu_state_pchlan");
3000         ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3001         if (ret_val)
3002                 return ret_val;
3003
3004         if (active)
3005                 oem_reg |= HV_OEM_BITS_LPLU;
3006         else
3007                 oem_reg &= ~HV_OEM_BITS_LPLU;
3008
3009         if (!hw->phy.ops.check_reset_block(hw))
3010                 oem_reg |= HV_OEM_BITS_RESTART_AN;
3011
3012         return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3013 }
3014
3015 /**
3016  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3017  *  @hw: pointer to the HW structure
3018  *  @active: TRUE to enable LPLU, FALSE to disable
3019  *
3020  *  Sets the LPLU D0 state according to the active flag.  When
3021  *  activating LPLU this function also disables smart speed
3022  *  and vice versa.  LPLU will not be activated unless the
3023  *  device autonegotiation advertisement meets standards of
3024  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3025  *  This is a function pointer entry point only called by
3026  *  PHY setup routines.
3027  **/
3028 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3029 {
3030         struct e1000_phy_info *phy = &hw->phy;
3031         u32 phy_ctrl;
3032         s32 ret_val = E1000_SUCCESS;
3033         u16 data;
3034
3035         DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3036
3037         if (phy->type == e1000_phy_ife)
3038                 return E1000_SUCCESS;
3039
3040         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3041
3042         if (active) {
3043                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3044                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3045
3046                 if (phy->type != e1000_phy_igp_3)
3047                         return E1000_SUCCESS;
3048
3049                 /* Call gig speed drop workaround on LPLU before accessing
3050                  * any PHY registers
3051                  */
3052                 if (hw->mac.type == e1000_ich8lan)
3053                         e1000_gig_downshift_workaround_ich8lan(hw);
3054
3055                 /* When LPLU is enabled, we should disable SmartSpeed */
3056                 ret_val = phy->ops.read_reg(hw,
3057                                             IGP01E1000_PHY_PORT_CONFIG,
3058                                             &data);
3059                 if (ret_val)
3060                         return ret_val;
3061                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3062                 ret_val = phy->ops.write_reg(hw,
3063                                              IGP01E1000_PHY_PORT_CONFIG,
3064                                              data);
3065                 if (ret_val)
3066                         return ret_val;
3067         } else {
3068                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3069                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3070
3071                 if (phy->type != e1000_phy_igp_3)
3072                         return E1000_SUCCESS;
3073
3074                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3075                  * during Dx states where the power conservation is most
3076                  * important.  During driver activity we should enable
3077                  * SmartSpeed, so performance is maintained.
3078                  */
3079                 if (phy->smart_speed == e1000_smart_speed_on) {
3080                         ret_val = phy->ops.read_reg(hw,
3081                                                     IGP01E1000_PHY_PORT_CONFIG,
3082                                                     &data);
3083                         if (ret_val)
3084                                 return ret_val;
3085
3086                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3087                         ret_val = phy->ops.write_reg(hw,
3088                                                      IGP01E1000_PHY_PORT_CONFIG,
3089                                                      data);
3090                         if (ret_val)
3091                                 return ret_val;
3092                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3093                         ret_val = phy->ops.read_reg(hw,
3094                                                     IGP01E1000_PHY_PORT_CONFIG,
3095                                                     &data);
3096                         if (ret_val)
3097                                 return ret_val;
3098
3099                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3100                         ret_val = phy->ops.write_reg(hw,
3101                                                      IGP01E1000_PHY_PORT_CONFIG,
3102                                                      data);
3103                         if (ret_val)
3104                                 return ret_val;
3105                 }
3106         }
3107
3108         return E1000_SUCCESS;
3109 }
3110
3111 /**
3112  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3113  *  @hw: pointer to the HW structure
3114  *  @active: TRUE to enable LPLU, FALSE to disable
3115  *
3116  *  Sets the LPLU D3 state according to the active flag.  When
3117  *  activating LPLU this function also disables smart speed
3118  *  and vice versa.  LPLU will not be activated unless the
3119  *  device autonegotiation advertisement meets standards of
3120  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3121  *  This is a function pointer entry point only called by
3122  *  PHY setup routines.
3123  **/
3124 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3125 {
3126         struct e1000_phy_info *phy = &hw->phy;
3127         u32 phy_ctrl;
3128         s32 ret_val = E1000_SUCCESS;
3129         u16 data;
3130
3131         DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3132
3133         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3134
3135         if (!active) {
3136                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3137                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3138
3139                 if (phy->type != e1000_phy_igp_3)
3140                         return E1000_SUCCESS;
3141
3142                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3143                  * during Dx states where the power conservation is most
3144                  * important.  During driver activity we should enable
3145                  * SmartSpeed, so performance is maintained.
3146                  */
3147                 if (phy->smart_speed == e1000_smart_speed_on) {
3148                         ret_val = phy->ops.read_reg(hw,
3149                                                     IGP01E1000_PHY_PORT_CONFIG,
3150                                                     &data);
3151                         if (ret_val)
3152                                 return ret_val;
3153
3154                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3155                         ret_val = phy->ops.write_reg(hw,
3156                                                      IGP01E1000_PHY_PORT_CONFIG,
3157                                                      data);
3158                         if (ret_val)
3159                                 return ret_val;
3160                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3161                         ret_val = phy->ops.read_reg(hw,
3162                                                     IGP01E1000_PHY_PORT_CONFIG,
3163                                                     &data);
3164                         if (ret_val)
3165                                 return ret_val;
3166
3167                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3168                         ret_val = phy->ops.write_reg(hw,
3169                                                      IGP01E1000_PHY_PORT_CONFIG,
3170                                                      data);
3171                         if (ret_val)
3172                                 return ret_val;
3173                 }
3174         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3175                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3176                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3177                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3178                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3179
3180                 if (phy->type != e1000_phy_igp_3)
3181                         return E1000_SUCCESS;
3182
3183                 /* Call gig speed drop workaround on LPLU before accessing
3184                  * any PHY registers
3185                  */
3186                 if (hw->mac.type == e1000_ich8lan)
3187                         e1000_gig_downshift_workaround_ich8lan(hw);
3188
3189                 /* When LPLU is enabled, we should disable SmartSpeed */
3190                 ret_val = phy->ops.read_reg(hw,
3191                                             IGP01E1000_PHY_PORT_CONFIG,
3192                                             &data);
3193                 if (ret_val)
3194                         return ret_val;
3195
3196                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3197                 ret_val = phy->ops.write_reg(hw,
3198                                              IGP01E1000_PHY_PORT_CONFIG,
3199                                              data);
3200         }
3201
3202         return ret_val;
3203 }
3204
3205 /**
3206  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3207  *  @hw: pointer to the HW structure
3208  *  @bank:  pointer to the variable that returns the active bank
3209  *
3210  *  Reads signature byte from the NVM using the flash access registers.
3211  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3212  **/
3213 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3214 {
3215         u32 eecd;
3216         struct e1000_nvm_info *nvm = &hw->nvm;
3217         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3218         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3219         u8 sig_byte = 0;
3220         s32 ret_val;
3221
3222         DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3223
3224         switch (hw->mac.type) {
3225         case e1000_ich8lan:
3226         case e1000_ich9lan:
3227                 eecd = E1000_READ_REG(hw, E1000_EECD);
3228                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3229                     E1000_EECD_SEC1VAL_VALID_MASK) {
3230                         if (eecd & E1000_EECD_SEC1VAL)
3231                                 *bank = 1;
3232                         else
3233                                 *bank = 0;
3234
3235                         return E1000_SUCCESS;
3236                 }
3237                 DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3238                 /* fall-thru */
3239         default:
3240                 /* set bank to 0 in case flash read fails */
3241                 *bank = 0;
3242
3243                 /* Check bank 0 */
3244                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3245                                                         &sig_byte);
3246                 if (ret_val)
3247                         return ret_val;
3248                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3249                     E1000_ICH_NVM_SIG_VALUE) {
3250                         *bank = 0;
3251                         return E1000_SUCCESS;
3252                 }
3253
3254                 /* Check bank 1 */
3255                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3256                                                         bank1_offset,
3257                                                         &sig_byte);
3258                 if (ret_val)
3259                         return ret_val;
3260                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3261                     E1000_ICH_NVM_SIG_VALUE) {
3262                         *bank = 1;
3263                         return E1000_SUCCESS;
3264                 }
3265
3266                 DEBUGOUT("ERROR: No valid NVM bank present\n");
3267                 return -E1000_ERR_NVM;
3268         }
3269 }
3270
3271 /**
3272  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3273  *  @hw: pointer to the HW structure
3274  *  @offset: The offset (in bytes) of the word(s) to read.
3275  *  @words: Size of data to read in words
3276  *  @data: Pointer to the word(s) to read at offset.
3277  *
3278  *  Reads a word(s) from the NVM using the flash access registers.
3279  **/
3280 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3281                                   u16 *data)
3282 {
3283         struct e1000_nvm_info *nvm = &hw->nvm;
3284         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3285         u32 act_offset;
3286         s32 ret_val = E1000_SUCCESS;
3287         u32 bank = 0;
3288         u16 i, word;
3289
3290         DEBUGFUNC("e1000_read_nvm_ich8lan");
3291
3292         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3293             (words == 0)) {
3294                 DEBUGOUT("nvm parameter(s) out of bounds\n");
3295                 ret_val = -E1000_ERR_NVM;
3296                 goto out;
3297         }
3298
3299         nvm->ops.acquire(hw);
3300
3301         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3302         if (ret_val != E1000_SUCCESS) {
3303                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3304                 bank = 0;
3305         }
3306
3307         act_offset = (bank) ? nvm->flash_bank_size : 0;
3308         act_offset += offset;
3309
3310         ret_val = E1000_SUCCESS;
3311         for (i = 0; i < words; i++) {
3312                 if (dev_spec->shadow_ram[offset+i].modified) {
3313                         data[i] = dev_spec->shadow_ram[offset+i].value;
3314                 } else {
3315                         ret_val = e1000_read_flash_word_ich8lan(hw,
3316                                                                 act_offset + i,
3317                                                                 &word);
3318                         if (ret_val)
3319                                 break;
3320                         data[i] = word;
3321                 }
3322         }
3323
3324         nvm->ops.release(hw);
3325
3326 out:
3327         if (ret_val)
3328                 DEBUGOUT1("NVM read error: %d\n", ret_val);
3329
3330         return ret_val;
3331 }
3332
3333 /**
3334  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3335  *  @hw: pointer to the HW structure
3336  *
3337  *  This function does initial flash setup so that a new read/write/erase cycle
3338  *  can be started.
3339  **/
3340 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3341 {
3342         union ich8_hws_flash_status hsfsts;
3343         s32 ret_val = -E1000_ERR_NVM;
3344
3345         DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3346
3347         hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3348
3349         /* Check if the flash descriptor is valid */
3350         if (!hsfsts.hsf_status.fldesvalid) {
3351                 DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3352                 return -E1000_ERR_NVM;
3353         }
3354
3355         /* Clear FCERR and DAEL in hw status by writing 1 */
3356         hsfsts.hsf_status.flcerr = 1;
3357         hsfsts.hsf_status.dael = 1;
3358         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3359
3360         /* Either we should have a hardware SPI cycle in progress
3361          * bit to check against, in order to start a new cycle or
3362          * FDONE bit should be changed in the hardware so that it
3363          * is 1 after hardware reset, which can then be used as an
3364          * indication whether a cycle is in progress or has been
3365          * completed.
3366          */
3367
3368         if (!hsfsts.hsf_status.flcinprog) {
3369                 /* There is no cycle running at present,
3370                  * so we can start a cycle.
3371                  * Begin by setting Flash Cycle Done.
3372                  */
3373                 hsfsts.hsf_status.flcdone = 1;
3374                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3375                 ret_val = E1000_SUCCESS;
3376         } else {
3377                 s32 i;
3378
3379                 /* Otherwise poll for sometime so the current
3380                  * cycle has a chance to end before giving up.
3381                  */
3382                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3383                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3384                                                               ICH_FLASH_HSFSTS);
3385                         if (!hsfsts.hsf_status.flcinprog) {
3386                                 ret_val = E1000_SUCCESS;
3387                                 break;
3388                         }
3389                         usec_delay(1);
3390                 }
3391                 if (ret_val == E1000_SUCCESS) {
3392                         /* Successful in waiting for previous cycle to timeout,
3393                          * now set the Flash Cycle Done.
3394                          */
3395                         hsfsts.hsf_status.flcdone = 1;
3396                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3397                                                 hsfsts.regval);
3398                 } else {
3399                         DEBUGOUT("Flash controller busy, cannot get access\n");
3400                 }
3401         }
3402
3403         return ret_val;
3404 }
3405
3406 /**
3407  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3408  *  @hw: pointer to the HW structure
3409  *  @timeout: maximum time to wait for completion
3410  *
3411  *  This function starts a flash cycle and waits for its completion.
3412  **/
3413 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3414 {
3415         union ich8_hws_flash_ctrl hsflctl;
3416         union ich8_hws_flash_status hsfsts;
3417         u32 i = 0;
3418
3419         DEBUGFUNC("e1000_flash_cycle_ich8lan");
3420
3421         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3422         hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3423         hsflctl.hsf_ctrl.flcgo = 1;
3424
3425         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3426
3427         /* wait till FDONE bit is set to 1 */
3428         do {
3429                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3430                 if (hsfsts.hsf_status.flcdone)
3431                         break;
3432                 usec_delay(1);
3433         } while (i++ < timeout);
3434
3435         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3436                 return E1000_SUCCESS;
3437
3438         return -E1000_ERR_NVM;
3439 }
3440
3441 /**
3442  *  e1000_read_flash_word_ich8lan - Read word from flash
3443  *  @hw: pointer to the HW structure
3444  *  @offset: offset to data location
3445  *  @data: pointer to the location for storing the data
3446  *
3447  *  Reads the flash word at offset into data.  Offset is converted
3448  *  to bytes before read.
3449  **/
3450 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3451                                          u16 *data)
3452 {
3453         DEBUGFUNC("e1000_read_flash_word_ich8lan");
3454
3455         if (!data)
3456                 return -E1000_ERR_NVM;
3457
3458         /* Must convert offset into bytes. */
3459         offset <<= 1;
3460
3461         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3462 }
3463
3464 /**
3465  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3466  *  @hw: pointer to the HW structure
3467  *  @offset: The offset of the byte to read.
3468  *  @data: Pointer to a byte to store the value read.
3469  *
3470  *  Reads a single byte from the NVM using the flash access registers.
3471  **/
3472 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3473                                          u8 *data)
3474 {
3475         s32 ret_val;
3476         u16 word = 0;
3477
3478         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3479
3480         if (ret_val)
3481                 return ret_val;
3482
3483         *data = (u8)word;
3484
3485         return E1000_SUCCESS;
3486 }
3487
3488 /**
3489  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3490  *  @hw: pointer to the HW structure
3491  *  @offset: The offset (in bytes) of the byte or word to read.
3492  *  @size: Size of data to read, 1=byte 2=word
3493  *  @data: Pointer to the word to store the value read.
3494  *
3495  *  Reads a byte or word from the NVM using the flash access registers.
3496  **/
3497 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3498                                          u8 size, u16 *data)
3499 {
3500         union ich8_hws_flash_status hsfsts;
3501         union ich8_hws_flash_ctrl hsflctl;
3502         u32 flash_linear_addr;
3503         u32 flash_data = 0;
3504         s32 ret_val = -E1000_ERR_NVM;
3505         u8 count = 0;
3506
3507         DEBUGFUNC("e1000_read_flash_data_ich8lan");
3508
3509         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3510                 return -E1000_ERR_NVM;
3511         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3512                              hw->nvm.flash_base_addr);
3513
3514         do {
3515                 usec_delay(1);
3516                 /* Steps */
3517                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3518                 if (ret_val != E1000_SUCCESS)
3519                         break;
3520                 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3521
3522                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3523                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3524                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3525                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3526                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3527
3528                 ret_val = e1000_flash_cycle_ich8lan(hw,
3529                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
3530
3531                 /* Check if FCERR is set to 1, if set to 1, clear it
3532                  * and try the whole sequence a few more times, else
3533                  * read in (shift in) the Flash Data0, the order is
3534                  * least significant byte first msb to lsb
3535                  */
3536                 if (ret_val == E1000_SUCCESS) {
3537                         flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3538                         if (size == 1)
3539                                 *data = (u8)(flash_data & 0x000000FF);
3540                         else if (size == 2)
3541                                 *data = (u16)(flash_data & 0x0000FFFF);
3542                         break;
3543                 } else {
3544                         /* If we've gotten here, then things are probably
3545                          * completely hosed, but if the error condition is
3546                          * detected, it won't hurt to give it another try...
3547                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3548                          */
3549                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3550                                                               ICH_FLASH_HSFSTS);
3551                         if (hsfsts.hsf_status.flcerr) {
3552                                 /* Repeat for some time before giving up. */
3553                                 continue;
3554                         } else if (!hsfsts.hsf_status.flcdone) {
3555                                 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3556                                 break;
3557                         }
3558                 }
3559         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3560
3561         return ret_val;
3562 }
3563
3564
3565 /**
3566  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3567  *  @hw: pointer to the HW structure
3568  *  @offset: The offset (in bytes) of the word(s) to write.
3569  *  @words: Size of data to write in words
3570  *  @data: Pointer to the word(s) to write at offset.
3571  *
3572  *  Writes a byte or word to the NVM using the flash access registers.
3573  **/
3574 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3575                                    u16 *data)
3576 {
3577         struct e1000_nvm_info *nvm = &hw->nvm;
3578         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3579         u16 i;
3580
3581         DEBUGFUNC("e1000_write_nvm_ich8lan");
3582
3583         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3584             (words == 0)) {
3585                 DEBUGOUT("nvm parameter(s) out of bounds\n");
3586                 return -E1000_ERR_NVM;
3587         }
3588
3589         nvm->ops.acquire(hw);
3590
3591         for (i = 0; i < words; i++) {
3592                 dev_spec->shadow_ram[offset+i].modified = TRUE;
3593                 dev_spec->shadow_ram[offset+i].value = data[i];
3594         }
3595
3596         nvm->ops.release(hw);
3597
3598         return E1000_SUCCESS;
3599 }
3600
3601 /**
3602  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3603  *  @hw: pointer to the HW structure
3604  *
3605  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3606  *  which writes the checksum to the shadow ram.  The changes in the shadow
3607  *  ram are then committed to the EEPROM by processing each bank at a time
3608  *  checking for the modified bit and writing only the pending changes.
3609  *  After a successful commit, the shadow ram is cleared and is ready for
3610  *  future writes.
3611  **/
3612 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3613 {
3614         struct e1000_nvm_info *nvm = &hw->nvm;
3615         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3616         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3617         s32 ret_val;
3618         u16 data = 0;
3619
3620         DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
3621
3622         ret_val = e1000_update_nvm_checksum_generic(hw);
3623         if (ret_val)
3624                 goto out;
3625
3626         if (nvm->type != e1000_nvm_flash_sw)
3627                 goto out;
3628
3629         nvm->ops.acquire(hw);
3630
3631         /* We're writing to the opposite bank so if we're on bank 1,
3632          * write to bank 0 etc.  We also need to erase the segment that
3633          * is going to be written
3634          */
3635         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3636         if (ret_val != E1000_SUCCESS) {
3637                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3638                 bank = 0;
3639         }
3640
3641         if (bank == 0) {
3642                 new_bank_offset = nvm->flash_bank_size;
3643                 old_bank_offset = 0;
3644                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3645                 if (ret_val)
3646                         goto release;
3647         } else {
3648                 old_bank_offset = nvm->flash_bank_size;
3649                 new_bank_offset = 0;
3650                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3651                 if (ret_val)
3652                         goto release;
3653         }
3654         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3655                 if (dev_spec->shadow_ram[i].modified) {
3656                         data = dev_spec->shadow_ram[i].value;
3657                 } else {
3658                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
3659                                                                 old_bank_offset,
3660                                                                 &data);
3661                         if (ret_val)
3662                                 break;
3663                 }
3664                 /* If the word is 0x13, then make sure the signature bits
3665                  * (15:14) are 11b until the commit has completed.
3666                  * This will allow us to write 10b which indicates the
3667                  * signature is valid.  We want to do this after the write
3668                  * has completed so that we don't mark the segment valid
3669                  * while the write is still in progress
3670                  */
3671                 if (i == E1000_ICH_NVM_SIG_WORD)
3672                         data |= E1000_ICH_NVM_SIG_MASK;
3673
3674                 /* Convert offset to bytes. */
3675                 act_offset = (i + new_bank_offset) << 1;
3676
3677                 usec_delay(100);
3678
3679                 /* Write the bytes to the new bank. */
3680                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3681                                                                act_offset,
3682                                                                (u8)data);
3683                 if (ret_val)
3684                         break;
3685
3686                 usec_delay(100);
3687                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3688                                                           act_offset + 1,
3689                                                           (u8)(data >> 8));
3690                 if (ret_val)
3691                         break;
3692          }
3693
3694         /* Don't bother writing the segment valid bits if sector
3695          * programming failed.
3696          */
3697         if (ret_val) {
3698                 DEBUGOUT("Flash commit failed.\n");
3699                 goto release;
3700         }
3701
3702         /* Finally validate the new segment by setting bit 15:14
3703          * to 10b in word 0x13 , this can be done without an
3704          * erase as well since these bits are 11 to start with
3705          * and we need to change bit 14 to 0b
3706          */
3707         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3708         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3709         if (ret_val)
3710                 goto release;
3711
3712         data &= 0xBFFF;
3713         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
3714                                                        (u8)(data >> 8));
3715         if (ret_val)
3716                 goto release;
3717
3718         /* And invalidate the previously valid segment by setting
3719          * its signature word (0x13) high_byte to 0b. This can be
3720          * done without an erase because flash erase sets all bits
3721          * to 1's. We can write 1's to 0's without an erase
3722          */
3723         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3724
3725         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3726
3727         if (ret_val)
3728                 goto release;
3729
3730         /* Great!  Everything worked, we can now clear the cached entries. */
3731         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3732                 dev_spec->shadow_ram[i].modified = FALSE;
3733                 dev_spec->shadow_ram[i].value = 0xFFFF;
3734         }
3735
3736 release:
3737         nvm->ops.release(hw);
3738
3739         /* Reload the EEPROM, or else modifications will not appear
3740          * until after the next adapter reset.
3741          */
3742         if (!ret_val) {
3743                 nvm->ops.reload(hw);
3744                 msec_delay(10);
3745         }
3746
3747 out:
3748         if (ret_val)
3749                 DEBUGOUT1("NVM update error: %d\n", ret_val);
3750
3751         return ret_val;
3752 }
3753
3754 /**
3755  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3756  *  @hw: pointer to the HW structure
3757  *
3758  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3759  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3760  *  calculated, in which case we need to calculate the checksum and set bit 6.
3761  **/
3762 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3763 {
3764         s32 ret_val;
3765         u16 data;
3766         u16 word;
3767         u16 valid_csum_mask;
3768
3769         DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
3770
3771         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3772          * the checksum needs to be fixed.  This bit is an indication that
3773          * the NVM was prepared by OEM software and did not calculate
3774          * the checksum...a likely scenario.
3775          */
3776         switch (hw->mac.type) {
3777         case e1000_pch_lpt:
3778                 word = NVM_COMPAT;
3779                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3780                 break;
3781         default:
3782                 word = NVM_FUTURE_INIT_WORD1;
3783                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3784                 break;
3785         }
3786
3787         ret_val = hw->nvm.ops.read(hw, word, 1, &data);
3788         if (ret_val)
3789                 return ret_val;
3790
3791         if (!(data & valid_csum_mask)) {
3792                 data |= valid_csum_mask;
3793                 ret_val = hw->nvm.ops.write(hw, word, 1, &data);
3794                 if (ret_val)
3795                         return ret_val;
3796                 ret_val = hw->nvm.ops.update(hw);
3797                 if (ret_val)
3798                         return ret_val;
3799         }
3800
3801         return e1000_validate_nvm_checksum_generic(hw);
3802 }
3803
3804 /**
3805  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3806  *  @hw: pointer to the HW structure
3807  *  @offset: The offset (in bytes) of the byte/word to read.
3808  *  @size: Size of data to read, 1=byte 2=word
3809  *  @data: The byte(s) to write to the NVM.
3810  *
3811  *  Writes one/two bytes to the NVM using the flash access registers.
3812  **/
3813 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3814                                           u8 size, u16 data)
3815 {
3816         union ich8_hws_flash_status hsfsts;
3817         union ich8_hws_flash_ctrl hsflctl;
3818         u32 flash_linear_addr;
3819         u32 flash_data = 0;
3820         s32 ret_val;
3821         u8 count = 0;
3822
3823         DEBUGFUNC("e1000_write_ich8_data");
3824
3825         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3826                 return -E1000_ERR_NVM;
3827
3828         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3829                              hw->nvm.flash_base_addr);
3830
3831         do {
3832                 usec_delay(1);
3833                 /* Steps */
3834                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3835                 if (ret_val != E1000_SUCCESS)
3836                         break;
3837                 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3838
3839                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3840                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3841                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3842                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3843
3844                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3845
3846                 if (size == 1)
3847                         flash_data = (u32)data & 0x00FF;
3848                 else
3849                         flash_data = (u32)data;
3850
3851                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
3852
3853                 /* check if FCERR is set to 1 , if set to 1, clear it
3854                  * and try the whole sequence a few more times else done
3855                  */
3856                 ret_val =
3857                     e1000_flash_cycle_ich8lan(hw,
3858                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3859                 if (ret_val == E1000_SUCCESS)
3860                         break;
3861
3862                 /* If we're here, then things are most likely
3863                  * completely hosed, but if the error condition
3864                  * is detected, it won't hurt to give it another
3865                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3866                  */
3867                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3868                 if (hsfsts.hsf_status.flcerr)
3869                         /* Repeat for some time before giving up. */
3870                         continue;
3871                 if (!hsfsts.hsf_status.flcdone) {
3872                         DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3873                         break;
3874                 }
3875         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3876
3877         return ret_val;
3878 }
3879
3880
3881 /**
3882  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3883  *  @hw: pointer to the HW structure
3884  *  @offset: The index of the byte to read.
3885  *  @data: The byte to write to the NVM.
3886  *
3887  *  Writes a single byte to the NVM using the flash access registers.
3888  **/
3889 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3890                                           u8 data)
3891 {
3892         u16 word = (u16)data;
3893
3894         DEBUGFUNC("e1000_write_flash_byte_ich8lan");
3895
3896         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3897 }
3898
3899
3900
3901 /**
3902  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3903  *  @hw: pointer to the HW structure
3904  *  @offset: The offset of the byte to write.
3905  *  @byte: The byte to write to the NVM.
3906  *
3907  *  Writes a single byte to the NVM using the flash access registers.
3908  *  Goes through a retry algorithm before giving up.
3909  **/
3910 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3911                                                 u32 offset, u8 byte)
3912 {
3913         s32 ret_val;
3914         u16 program_retries;
3915
3916         DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
3917
3918         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3919         if (!ret_val)
3920                 return ret_val;
3921
3922         for (program_retries = 0; program_retries < 100; program_retries++) {
3923                 DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
3924                 usec_delay(100);
3925                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3926                 if (ret_val == E1000_SUCCESS)
3927                         break;
3928         }
3929         if (program_retries == 100)
3930                 return -E1000_ERR_NVM;
3931
3932         return E1000_SUCCESS;
3933 }
3934
3935 /**
3936  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3937  *  @hw: pointer to the HW structure
3938  *  @bank: 0 for first bank, 1 for second bank, etc.
3939  *
3940  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3941  *  bank N is 4096 * N + flash_reg_addr.
3942  **/
3943 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3944 {
3945         struct e1000_nvm_info *nvm = &hw->nvm;
3946         union ich8_hws_flash_status hsfsts;
3947         union ich8_hws_flash_ctrl hsflctl;
3948         u32 flash_linear_addr;
3949         /* bank size is in 16bit words - adjust to bytes */
3950         u32 flash_bank_size = nvm->flash_bank_size * 2;
3951         s32 ret_val;
3952         s32 count = 0;
3953         s32 j, iteration, sector_size;
3954
3955         DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
3956
3957         hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3958
3959         /* Determine HW Sector size: Read BERASE bits of hw flash status
3960          * register
3961          * 00: The Hw sector is 256 bytes, hence we need to erase 16
3962          *     consecutive sectors.  The start index for the nth Hw sector
3963          *     can be calculated as = bank * 4096 + n * 256
3964          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3965          *     The start index for the nth Hw sector can be calculated
3966          *     as = bank * 4096
3967          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3968          *     (ich9 only, otherwise error condition)
3969          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3970          */
3971         switch (hsfsts.hsf_status.berasesz) {
3972         case 0:
3973                 /* Hw sector size 256 */
3974                 sector_size = ICH_FLASH_SEG_SIZE_256;
3975                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3976                 break;
3977         case 1:
3978                 sector_size = ICH_FLASH_SEG_SIZE_4K;
3979                 iteration = 1;
3980                 break;
3981         case 2:
3982                 sector_size = ICH_FLASH_SEG_SIZE_8K;
3983                 iteration = 1;
3984                 break;
3985         case 3:
3986                 sector_size = ICH_FLASH_SEG_SIZE_64K;
3987                 iteration = 1;
3988                 break;
3989         default:
3990                 return -E1000_ERR_NVM;
3991         }
3992
3993         /* Start with the base address, then add the sector offset. */
3994         flash_linear_addr = hw->nvm.flash_base_addr;
3995         flash_linear_addr += (bank) ? flash_bank_size : 0;
3996
3997         for (j = 0; j < iteration; j++) {
3998                 do {
3999                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4000
4001                         /* Steps */
4002                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4003                         if (ret_val)
4004                                 return ret_val;
4005
4006                         /* Write a value 11 (block Erase) in Flash
4007                          * Cycle field in hw flash control
4008                          */
4009                         hsflctl.regval =
4010                             E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4011
4012                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4013                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4014                                                 hsflctl.regval);
4015
4016                         /* Write the last 24 bits of an index within the
4017                          * block into Flash Linear address field in Flash
4018                          * Address.
4019                          */
4020                         flash_linear_addr += (j * sector_size);
4021                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4022                                               flash_linear_addr);
4023
4024                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4025                         if (ret_val == E1000_SUCCESS)
4026                                 break;
4027
4028                         /* Check if FCERR is set to 1.  If 1,
4029                          * clear it and try the whole sequence
4030                          * a few more times else Done
4031                          */
4032                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4033                                                       ICH_FLASH_HSFSTS);
4034                         if (hsfsts.hsf_status.flcerr)
4035                                 /* repeat for some time before giving up */
4036                                 continue;
4037                         else if (!hsfsts.hsf_status.flcdone)
4038                                 return ret_val;
4039                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4040         }
4041
4042         return E1000_SUCCESS;
4043 }
4044
4045 /**
4046  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4047  *  @hw: pointer to the HW structure
4048  *  @data: Pointer to the LED settings
4049  *
4050  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4051  *  settings is all 0's or F's, set the LED default to a valid LED default
4052  *  setting.
4053  **/
4054 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4055 {
4056         s32 ret_val;
4057
4058         DEBUGFUNC("e1000_valid_led_default_ich8lan");
4059
4060         ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4061         if (ret_val) {
4062                 DEBUGOUT("NVM Read Error\n");
4063                 return ret_val;
4064         }
4065
4066         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4067                 *data = ID_LED_DEFAULT_ICH8LAN;
4068
4069         return E1000_SUCCESS;
4070 }
4071
4072 /**
4073  *  e1000_id_led_init_pchlan - store LED configurations
4074  *  @hw: pointer to the HW structure
4075  *
4076  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4077  *  the PHY LED configuration register.
4078  *
4079  *  PCH also does not have an "always on" or "always off" mode which
4080  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4081  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4082  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4083  *  link based on logic in e1000_led_[on|off]_pchlan().
4084  **/
4085 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4086 {
4087         struct e1000_mac_info *mac = &hw->mac;
4088         s32 ret_val;
4089         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4090         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4091         u16 data, i, temp, shift;
4092
4093         DEBUGFUNC("e1000_id_led_init_pchlan");
4094
4095         /* Get default ID LED modes */
4096         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4097         if (ret_val)
4098                 return ret_val;
4099
4100         mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4101         mac->ledctl_mode1 = mac->ledctl_default;
4102         mac->ledctl_mode2 = mac->ledctl_default;
4103
4104         for (i = 0; i < 4; i++) {
4105                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4106                 shift = (i * 5);
4107                 switch (temp) {
4108                 case ID_LED_ON1_DEF2:
4109                 case ID_LED_ON1_ON2:
4110                 case ID_LED_ON1_OFF2:
4111                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4112                         mac->ledctl_mode1 |= (ledctl_on << shift);
4113                         break;
4114                 case ID_LED_OFF1_DEF2:
4115                 case ID_LED_OFF1_ON2:
4116                 case ID_LED_OFF1_OFF2:
4117                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4118                         mac->ledctl_mode1 |= (ledctl_off << shift);
4119                         break;
4120                 default:
4121                         /* Do nothing */
4122                         break;
4123                 }
4124                 switch (temp) {
4125                 case ID_LED_DEF1_ON2:
4126                 case ID_LED_ON1_ON2:
4127                 case ID_LED_OFF1_ON2:
4128                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4129                         mac->ledctl_mode2 |= (ledctl_on << shift);
4130                         break;
4131                 case ID_LED_DEF1_OFF2:
4132                 case ID_LED_ON1_OFF2:
4133                 case ID_LED_OFF1_OFF2:
4134                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4135                         mac->ledctl_mode2 |= (ledctl_off << shift);
4136                         break;
4137                 default:
4138                         /* Do nothing */
4139                         break;
4140                 }
4141         }
4142
4143         return E1000_SUCCESS;
4144 }
4145
4146 /**
4147  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4148  *  @hw: pointer to the HW structure
4149  *
4150  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4151  *  register, so the the bus width is hard coded.
4152  **/
4153 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4154 {
4155         struct e1000_bus_info *bus = &hw->bus;
4156         s32 ret_val;
4157
4158         DEBUGFUNC("e1000_get_bus_info_ich8lan");
4159
4160         ret_val = e1000_get_bus_info_pcie_generic(hw);
4161
4162         /* ICH devices are "PCI Express"-ish.  They have
4163          * a configuration space, but do not contain
4164          * PCI Express Capability registers, so bus width
4165          * must be hardcoded.
4166          */
4167         if (bus->width == e1000_bus_width_unknown)
4168                 bus->width = e1000_bus_width_pcie_x1;
4169
4170         return ret_val;
4171 }
4172
4173 /**
4174  *  e1000_reset_hw_ich8lan - Reset the hardware
4175  *  @hw: pointer to the HW structure
4176  *
4177  *  Does a full reset of the hardware which includes a reset of the PHY and
4178  *  MAC.
4179  **/
4180 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4181 {
4182         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4183         u16 kum_cfg;
4184         u32 ctrl, reg;
4185         s32 ret_val;
4186
4187         DEBUGFUNC("e1000_reset_hw_ich8lan");
4188
4189         /* Prevent the PCI-E bus from sticking if there is no TLP connection
4190          * on the last TLP read/write transaction when MAC is reset.
4191          */
4192         ret_val = e1000_disable_pcie_master_generic(hw);
4193         if (ret_val)
4194                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
4195
4196         DEBUGOUT("Masking off all interrupts\n");
4197         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4198
4199         /* Disable the Transmit and Receive units.  Then delay to allow
4200          * any pending transactions to complete before we hit the MAC
4201          * with the global reset.
4202          */
4203         E1000_WRITE_REG(hw, E1000_RCTL, 0);
4204         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4205         E1000_WRITE_FLUSH(hw);
4206
4207         msec_delay(10);
4208
4209         /* Workaround for ICH8 bit corruption issue in FIFO memory */
4210         if (hw->mac.type == e1000_ich8lan) {
4211                 /* Set Tx and Rx buffer allocation to 8k apiece. */
4212                 E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4213                 /* Set Packet Buffer Size to 16k. */
4214                 E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4215         }
4216
4217         if (hw->mac.type == e1000_pchlan) {
4218                 /* Save the NVM K1 bit setting*/
4219                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4220                 if (ret_val)
4221                         return ret_val;
4222
4223                 if (kum_cfg & E1000_NVM_K1_ENABLE)
4224                         dev_spec->nvm_k1_enabled = TRUE;
4225                 else
4226                         dev_spec->nvm_k1_enabled = FALSE;
4227         }
4228
4229         ctrl = E1000_READ_REG(hw, E1000_CTRL);
4230
4231         if (!hw->phy.ops.check_reset_block(hw)) {
4232                 /* Full-chip reset requires MAC and PHY reset at the same
4233                  * time to make sure the interface between MAC and the
4234                  * external PHY is reset.
4235                  */
4236                 ctrl |= E1000_CTRL_PHY_RST;
4237
4238                 /* Gate automatic PHY configuration by hardware on
4239                  * non-managed 82579
4240                  */
4241                 if ((hw->mac.type == e1000_pch2lan) &&
4242                     !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
4243                         e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
4244         }
4245         ret_val = e1000_acquire_swflag_ich8lan(hw);
4246         DEBUGOUT("Issuing a global reset to ich8lan\n");
4247         E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
4248         /* cannot issue a flush here because it hangs the hardware */
4249         msec_delay(20);
4250
4251         /* Set Phy Config Counter to 50msec */
4252         if (hw->mac.type == e1000_pch2lan) {
4253                 reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
4254                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4255                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4256                 E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
4257         }
4258
4259         if (!ret_val)
4260                 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
4261
4262         if (ctrl & E1000_CTRL_PHY_RST) {
4263                 ret_val = hw->phy.ops.get_cfg_done(hw);
4264                 if (ret_val)
4265                         return ret_val;
4266
4267                 ret_val = e1000_post_phy_reset_ich8lan(hw);
4268                 if (ret_val)
4269                         return ret_val;
4270         }
4271
4272         /* For PCH, this write will make sure that any noise
4273          * will be detected as a CRC error and be dropped rather than show up
4274          * as a bad packet to the DMA engine.
4275          */
4276         if (hw->mac.type == e1000_pchlan)
4277                 E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
4278
4279         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4280         E1000_READ_REG(hw, E1000_ICR);
4281
4282         reg = E1000_READ_REG(hw, E1000_KABGTXD);
4283         reg |= E1000_KABGTXD_BGSQLBIAS;
4284         E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
4285
4286         return E1000_SUCCESS;
4287 }
4288
4289 /**
4290  *  e1000_init_hw_ich8lan - Initialize the hardware
4291  *  @hw: pointer to the HW structure
4292  *
4293  *  Prepares the hardware for transmit and receive by doing the following:
4294  *   - initialize hardware bits
4295  *   - initialize LED identification
4296  *   - setup receive address registers
4297  *   - setup flow control
4298  *   - setup transmit descriptors
4299  *   - clear statistics
4300  **/
4301 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4302 {
4303         struct e1000_mac_info *mac = &hw->mac;
4304         u32 ctrl_ext, txdctl, snoop;
4305         s32 ret_val;
4306         u16 i;
4307
4308         DEBUGFUNC("e1000_init_hw_ich8lan");
4309
4310         e1000_initialize_hw_bits_ich8lan(hw);
4311
4312         /* Initialize identification LED */
4313         ret_val = mac->ops.id_led_init(hw);
4314         /* An error is not fatal and we should not stop init due to this */
4315         if (ret_val)
4316                 DEBUGOUT("Error initializing identification LED\n");
4317
4318         /* Setup the receive address. */
4319         e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
4320
4321         /* Zero out the Multicast HASH table */
4322         DEBUGOUT("Zeroing the MTA\n");
4323         for (i = 0; i < mac->mta_reg_count; i++)
4324                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4325
4326         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4327          * the ME.  Disable wakeup by clearing the host wakeup bit.
4328          * Reset the phy after disabling host wakeup to reset the Rx buffer.
4329          */
4330         if (hw->phy.type == e1000_phy_82578) {
4331                 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
4332                 i &= ~BM_WUC_HOST_WU_BIT;
4333                 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
4334                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4335                 if (ret_val)
4336                         return ret_val;
4337         }
4338
4339         /* Setup link and flow control */
4340         ret_val = mac->ops.setup_link(hw);
4341
4342         /* Set the transmit descriptor write-back policy for both queues */
4343         txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
4344         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4345                   E1000_TXDCTL_FULL_TX_DESC_WB);
4346         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4347                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4348         E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
4349         txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
4350         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4351                   E1000_TXDCTL_FULL_TX_DESC_WB);
4352         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4353                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4354         E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
4355
4356         /* ICH8 has opposite polarity of no_snoop bits.
4357          * By default, we should use snoop behavior.
4358          */
4359         if (mac->type == e1000_ich8lan)
4360                 snoop = PCIE_ICH8_SNOOP_ALL;
4361         else
4362                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
4363         e1000_set_pcie_no_snoop_generic(hw, snoop);
4364
4365         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4366         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4367         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4368
4369         /* Clear all of the statistics registers (clear on read).  It is
4370          * important that we do this after we have tried to establish link
4371          * because the symbol error count will increment wildly if there
4372          * is no link.
4373          */
4374         e1000_clear_hw_cntrs_ich8lan(hw);
4375
4376         return ret_val;
4377 }
4378
4379 /**
4380  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4381  *  @hw: pointer to the HW structure
4382  *
4383  *  Sets/Clears required hardware bits necessary for correctly setting up the
4384  *  hardware for transmit and receive.
4385  **/
4386 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4387 {
4388         u32 reg;
4389
4390         DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
4391
4392         /* Extended Device Control */
4393         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
4394         reg |= (1 << 22);
4395         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4396         if (hw->mac.type >= e1000_pchlan)
4397                 reg |= E1000_CTRL_EXT_PHYPDEN;
4398         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
4399
4400         /* Transmit Descriptor Control 0 */
4401         reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
4402         reg |= (1 << 22);
4403         E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
4404
4405         /* Transmit Descriptor Control 1 */
4406         reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
4407         reg |= (1 << 22);
4408         E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
4409
4410         /* Transmit Arbitration Control 0 */
4411         reg = E1000_READ_REG(hw, E1000_TARC(0));
4412         if (hw->mac.type == e1000_ich8lan)
4413                 reg |= (1 << 28) | (1 << 29);
4414         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4415         E1000_WRITE_REG(hw, E1000_TARC(0), reg);
4416
4417         /* Transmit Arbitration Control 1 */
4418         reg = E1000_READ_REG(hw, E1000_TARC(1));
4419         if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
4420                 reg &= ~(1 << 28);
4421         else
4422                 reg |= (1 << 28);
4423         reg |= (1 << 24) | (1 << 26) | (1 << 30);
4424         E1000_WRITE_REG(hw, E1000_TARC(1), reg);
4425
4426         /* Device Status */
4427         if (hw->mac.type == e1000_ich8lan) {
4428                 reg = E1000_READ_REG(hw, E1000_STATUS);
4429                 reg &= ~(1 << 31);
4430                 E1000_WRITE_REG(hw, E1000_STATUS, reg);
4431         }
4432
4433         /* work-around descriptor data corruption issue during nfs v2 udp
4434          * traffic, just disable the nfs filtering capability
4435          */
4436         reg = E1000_READ_REG(hw, E1000_RFCTL);
4437         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4438
4439         /* Disable IPv6 extension header parsing because some malformed
4440          * IPv6 headers can hang the Rx.
4441          */
4442         if (hw->mac.type == e1000_ich8lan)
4443                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4444         E1000_WRITE_REG(hw, E1000_RFCTL, reg);
4445
4446         /* Enable ECC on Lynxpoint */
4447         if (hw->mac.type == e1000_pch_lpt) {
4448                 reg = E1000_READ_REG(hw, E1000_PBECCSTS);
4449                 reg |= E1000_PBECCSTS_ECC_ENABLE;
4450                 E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
4451
4452                 reg = E1000_READ_REG(hw, E1000_CTRL);
4453                 reg |= E1000_CTRL_MEHE;
4454                 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4455         }
4456
4457         return;
4458 }
4459
4460 /**
4461  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4462  *  @hw: pointer to the HW structure
4463  *
4464  *  Determines which flow control settings to use, then configures flow
4465  *  control.  Calls the appropriate media-specific link configuration
4466  *  function.  Assuming the adapter has a valid link partner, a valid link
4467  *  should be established.  Assumes the hardware has previously been reset
4468  *  and the transmitter and receiver are not enabled.
4469  **/
4470 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4471 {
4472         s32 ret_val;
4473
4474         DEBUGFUNC("e1000_setup_link_ich8lan");
4475
4476         if (hw->phy.ops.check_reset_block(hw))
4477                 return E1000_SUCCESS;
4478
4479         /* ICH parts do not have a word in the NVM to determine
4480          * the default flow control setting, so we explicitly
4481          * set it to full.
4482          */
4483         if (hw->fc.requested_mode == e1000_fc_default)
4484                 hw->fc.requested_mode = e1000_fc_full;
4485
4486         /* Save off the requested flow control mode for use later.  Depending
4487          * on the link partner's capabilities, we may or may not use this mode.
4488          */
4489         hw->fc.current_mode = hw->fc.requested_mode;
4490
4491         DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
4492                 hw->fc.current_mode);
4493
4494         /* Continue to configure the copper link. */
4495         ret_val = hw->mac.ops.setup_physical_interface(hw);
4496         if (ret_val)
4497                 return ret_val;
4498
4499         E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
4500         if ((hw->phy.type == e1000_phy_82578) ||
4501             (hw->phy.type == e1000_phy_82579) ||
4502             (hw->phy.type == e1000_phy_i217) ||
4503             (hw->phy.type == e1000_phy_82577)) {
4504                 E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
4505
4506                 ret_val = hw->phy.ops.write_reg(hw,
4507                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
4508                                              hw->fc.pause_time);
4509                 if (ret_val)
4510                         return ret_val;
4511         }
4512
4513         return e1000_set_fc_watermarks_generic(hw);
4514 }
4515
4516 /**
4517  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4518  *  @hw: pointer to the HW structure
4519  *
4520  *  Configures the kumeran interface to the PHY to wait the appropriate time
4521  *  when polling the PHY, then call the generic setup_copper_link to finish
4522  *  configuring the copper link.
4523  **/
4524 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4525 {
4526         u32 ctrl;
4527         s32 ret_val;
4528         u16 reg_data;
4529
4530         DEBUGFUNC("e1000_setup_copper_link_ich8lan");
4531
4532         ctrl = E1000_READ_REG(hw, E1000_CTRL);
4533         ctrl |= E1000_CTRL_SLU;
4534         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4535         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4536
4537         /* Set the mac to wait the maximum time between each iteration
4538          * and increase the max iterations when polling the phy;
4539          * this fixes erroneous timeouts at 10Mbps.
4540          */
4541         ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
4542                                                0xFFFF);
4543         if (ret_val)
4544                 return ret_val;
4545         ret_val = e1000_read_kmrn_reg_generic(hw,
4546                                               E1000_KMRNCTRLSTA_INBAND_PARAM,
4547                                               &reg_data);
4548         if (ret_val)
4549                 return ret_val;
4550         reg_data |= 0x3F;
4551         ret_val = e1000_write_kmrn_reg_generic(hw,
4552                                                E1000_KMRNCTRLSTA_INBAND_PARAM,
4553                                                reg_data);
4554         if (ret_val)
4555                 return ret_val;
4556
4557         switch (hw->phy.type) {
4558         case e1000_phy_igp_3:
4559                 ret_val = e1000_copper_link_setup_igp(hw);
4560                 if (ret_val)
4561                         return ret_val;
4562                 break;
4563         case e1000_phy_bm:
4564         case e1000_phy_82578:
4565                 ret_val = e1000_copper_link_setup_m88(hw);
4566                 if (ret_val)
4567                         return ret_val;
4568                 break;
4569         case e1000_phy_82577:
4570         case e1000_phy_82579:
4571                 ret_val = e1000_copper_link_setup_82577(hw);
4572                 if (ret_val)
4573                         return ret_val;
4574                 break;
4575         case e1000_phy_ife:
4576                 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
4577                                                &reg_data);
4578                 if (ret_val)
4579                         return ret_val;
4580
4581                 reg_data &= ~IFE_PMC_AUTO_MDIX;
4582
4583                 switch (hw->phy.mdix) {
4584                 case 1:
4585                         reg_data &= ~IFE_PMC_FORCE_MDIX;
4586                         break;
4587                 case 2:
4588                         reg_data |= IFE_PMC_FORCE_MDIX;
4589                         break;
4590                 case 0:
4591                 default:
4592                         reg_data |= IFE_PMC_AUTO_MDIX;
4593                         break;
4594                 }
4595                 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
4596                                                 reg_data);
4597                 if (ret_val)
4598                         return ret_val;
4599                 break;
4600         default:
4601                 break;
4602         }
4603
4604         return e1000_setup_copper_link_generic(hw);
4605 }
4606
4607 /**
4608  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4609  *  @hw: pointer to the HW structure
4610  *
4611  *  Calls the PHY specific link setup function and then calls the
4612  *  generic setup_copper_link to finish configuring the link for
4613  *  Lynxpoint PCH devices
4614  **/
4615 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4616 {
4617         u32 ctrl;
4618         s32 ret_val;
4619
4620         DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
4621
4622         ctrl = E1000_READ_REG(hw, E1000_CTRL);
4623         ctrl |= E1000_CTRL_SLU;
4624         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4625         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4626
4627         ret_val = e1000_copper_link_setup_82577(hw);
4628         if (ret_val)
4629                 return ret_val;
4630
4631         return e1000_setup_copper_link_generic(hw);
4632 }
4633
4634 /**
4635  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4636  *  @hw: pointer to the HW structure
4637  *  @speed: pointer to store current link speed
4638  *  @duplex: pointer to store the current link duplex
4639  *
4640  *  Calls the generic get_speed_and_duplex to retrieve the current link
4641  *  information and then calls the Kumeran lock loss workaround for links at
4642  *  gigabit speeds.
4643  **/
4644 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4645                                           u16 *duplex)
4646 {
4647         s32 ret_val;
4648
4649         DEBUGFUNC("e1000_get_link_up_info_ich8lan");
4650
4651         ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
4652         if (ret_val)
4653                 return ret_val;
4654
4655         if ((hw->mac.type == e1000_ich8lan) &&
4656             (hw->phy.type == e1000_phy_igp_3) &&
4657             (*speed == SPEED_1000)) {
4658                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4659         }
4660
4661         return ret_val;
4662 }
4663
4664 /**
4665  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4666  *  @hw: pointer to the HW structure
4667  *
4668  *  Work-around for 82566 Kumeran PCS lock loss:
4669  *  On link status change (i.e. PCI reset, speed change) and link is up and
4670  *  speed is gigabit-
4671  *    0) if workaround is optionally disabled do nothing
4672  *    1) wait 1ms for Kumeran link to come up
4673  *    2) check Kumeran Diagnostic register PCS lock loss bit
4674  *    3) if not set the link is locked (all is good), otherwise...
4675  *    4) reset the PHY
4676  *    5) repeat up to 10 times
4677  *  Note: this is only called for IGP3 copper when speed is 1gb.
4678  **/
4679 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4680 {
4681         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4682         u32 phy_ctrl;
4683         s32 ret_val;
4684         u16 i, data;
4685         bool link;
4686
4687         DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
4688
4689         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4690                 return E1000_SUCCESS;
4691
4692         /* Make sure link is up before proceeding.  If not just return.
4693          * Attempting this while link is negotiating fouled up link
4694          * stability
4695          */
4696         ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
4697         if (!link)
4698                 return E1000_SUCCESS;
4699
4700         for (i = 0; i < 10; i++) {
4701                 /* read once to clear */
4702                 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4703                 if (ret_val)
4704                         return ret_val;
4705                 /* and again to get new status */
4706                 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4707                 if (ret_val)
4708                         return ret_val;
4709
4710                 /* check for PCS lock */
4711                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4712                         return E1000_SUCCESS;
4713
4714                 /* Issue PHY reset */
4715                 hw->phy.ops.reset(hw);
4716                 msec_delay_irq(5);
4717         }
4718         /* Disable GigE link negotiation */
4719         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4720         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4721                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4722         E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4723
4724         /* Call gig speed drop workaround on Gig disable before accessing
4725          * any PHY registers
4726          */
4727         e1000_gig_downshift_workaround_ich8lan(hw);
4728
4729         /* unable to acquire PCS lock */
4730         return -E1000_ERR_PHY;
4731 }
4732
4733 /**
4734  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4735  *  @hw: pointer to the HW structure
4736  *  @state: boolean value used to set the current Kumeran workaround state
4737  *
4738  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
4739  *  /disabled - FALSE).
4740  **/
4741 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4742                                                  bool state)
4743 {
4744         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4745
4746         DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
4747
4748         if (hw->mac.type != e1000_ich8lan) {
4749                 DEBUGOUT("Workaround applies to ICH8 only.\n");
4750                 return;
4751         }
4752
4753         dev_spec->kmrn_lock_loss_workaround_enabled = state;
4754
4755         return;
4756 }
4757
4758 /**
4759  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4760  *  @hw: pointer to the HW structure
4761  *
4762  *  Workaround for 82566 power-down on D3 entry:
4763  *    1) disable gigabit link
4764  *    2) write VR power-down enable
4765  *    3) read it back
4766  *  Continue if successful, else issue LCD reset and repeat
4767  **/
4768 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4769 {
4770         u32 reg;
4771         u16 data;
4772         u8  retry = 0;
4773
4774         DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
4775
4776         if (hw->phy.type != e1000_phy_igp_3)
4777                 return;
4778
4779         /* Try the workaround twice (if needed) */
4780         do {
4781                 /* Disable link */
4782                 reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
4783                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4784                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4785                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
4786
4787                 /* Call gig speed drop workaround on Gig disable before
4788                  * accessing any PHY registers
4789                  */
4790                 if (hw->mac.type == e1000_ich8lan)
4791                         e1000_gig_downshift_workaround_ich8lan(hw);
4792
4793                 /* Write VR power-down enable */
4794                 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4795                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4796                 hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
4797                                       data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4798
4799                 /* Read it back and test */
4800                 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4801                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4802                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4803                         break;
4804
4805                 /* Issue PHY reset and repeat at most one more time */
4806                 reg = E1000_READ_REG(hw, E1000_CTRL);
4807                 E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
4808                 retry++;
4809         } while (retry);
4810 }
4811
4812 /**
4813  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4814  *  @hw: pointer to the HW structure
4815  *
4816  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4817  *  LPLU, Gig disable, MDIC PHY reset):
4818  *    1) Set Kumeran Near-end loopback
4819  *    2) Clear Kumeran Near-end loopback
4820  *  Should only be called for ICH8[m] devices with any 1G Phy.
4821  **/
4822 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4823 {
4824         s32 ret_val;
4825         u16 reg_data;
4826
4827         DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
4828
4829         if ((hw->mac.type != e1000_ich8lan) ||
4830             (hw->phy.type == e1000_phy_ife))
4831                 return;
4832
4833         ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4834                                               &reg_data);
4835         if (ret_val)
4836                 return;
4837         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4838         ret_val = e1000_write_kmrn_reg_generic(hw,
4839                                                E1000_KMRNCTRLSTA_DIAG_OFFSET,
4840                                                reg_data);
4841         if (ret_val)
4842                 return;
4843         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4844         e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4845                                      reg_data);
4846 }
4847
4848 /**
4849  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4850  *  @hw: pointer to the HW structure
4851  *
4852  *  During S0 to Sx transition, it is possible the link remains at gig
4853  *  instead of negotiating to a lower speed.  Before going to Sx, set
4854  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4855  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4856  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4857  *  needs to be written.
4858  *  Parts that support (and are linked to a partner which support) EEE in
4859  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4860  *  than 10Mbps w/o EEE.
4861  **/
4862 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4863 {
4864         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4865         u32 phy_ctrl;
4866         s32 ret_val;
4867
4868         DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
4869
4870         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4871         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4872
4873         if (hw->phy.type == e1000_phy_i217) {
4874                 u16 phy_reg, device_id = hw->device_id;
4875
4876                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4877                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4878                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4879                     (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4880                         u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
4881
4882                         E1000_WRITE_REG(hw, E1000_FEXTNVM6,
4883                                         fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4884                 }
4885
4886                 ret_val = hw->phy.ops.acquire(hw);
4887                 if (ret_val)
4888                         goto out;
4889
4890                 if (!dev_spec->eee_disable) {
4891                         u16 eee_advert;
4892
4893                         ret_val =
4894                             e1000_read_emi_reg_locked(hw,
4895                                                       I217_EEE_ADVERTISEMENT,
4896                                                       &eee_advert);
4897                         if (ret_val)
4898                                 goto release;
4899
4900                         /* Disable LPLU if both link partners support 100BaseT
4901                          * EEE and 100Full is advertised on both ends of the
4902                          * link, and enable Auto Enable LPI since there will
4903                          * be no driver to enable LPI while in Sx.
4904                          */
4905                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4906                             (dev_spec->eee_lp_ability &
4907                              I82579_EEE_100_SUPPORTED) &&
4908                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
4909                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4910                                               E1000_PHY_CTRL_NOND0A_LPLU);
4911
4912                                 /* Set Auto Enable LPI after link up */
4913                                 hw->phy.ops.read_reg_locked(hw,
4914                                                             I217_LPI_GPIO_CTRL,
4915                                                             &phy_reg);
4916                                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4917                                 hw->phy.ops.write_reg_locked(hw,
4918                                                              I217_LPI_GPIO_CTRL,
4919                                                              phy_reg);
4920                         }
4921                 }
4922
4923                 /* For i217 Intel Rapid Start Technology support,
4924                  * when the system is going into Sx and no manageability engine
4925                  * is present, the driver must configure proxy to reset only on
4926                  * power good.  LPI (Low Power Idle) state must also reset only
4927                  * on power good, as well as the MTA (Multicast table array).
4928                  * The SMBus release must also be disabled on LCD reset.
4929                  */
4930                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
4931                       E1000_ICH_FWSM_FW_VALID)) {
4932                         /* Enable proxy to reset only on power good. */
4933                         hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
4934                                                     &phy_reg);
4935                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4936                         hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
4937                                                      phy_reg);
4938
4939                         /* Set bit enable LPI (EEE) to reset only on
4940                          * power good.
4941                         */
4942                         hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
4943                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4944                         hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
4945
4946                         /* Disable the SMB release on LCD reset. */
4947                         hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
4948                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4949                         hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
4950                 }
4951
4952                 /* Enable MTA to reset for Intel Rapid Start Technology
4953                  * Support
4954                  */
4955                 hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
4956                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4957                 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
4958
4959 release:
4960                 hw->phy.ops.release(hw);
4961         }
4962 out:
4963         E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4964
4965         if (hw->mac.type == e1000_ich8lan)
4966                 e1000_gig_downshift_workaround_ich8lan(hw);
4967
4968         if (hw->mac.type >= e1000_pchlan) {
4969                 e1000_oem_bits_config_ich8lan(hw, FALSE);
4970
4971                 /* Reset PHY to activate OEM bits on 82577/8 */
4972                 if (hw->mac.type == e1000_pchlan)
4973                         e1000_phy_hw_reset_generic(hw);
4974
4975                 ret_val = hw->phy.ops.acquire(hw);
4976                 if (ret_val)
4977                         return;
4978                 e1000_write_smbus_addr(hw);
4979                 hw->phy.ops.release(hw);
4980         }
4981
4982         return;
4983 }
4984
4985 /**
4986  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4987  *  @hw: pointer to the HW structure
4988  *
4989  *  During Sx to S0 transitions on non-managed devices or managed devices
4990  *  on which PHY resets are not blocked, if the PHY registers cannot be
4991  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4992  *  the PHY.
4993  *  On i217, setup Intel Rapid Start Technology.
4994  **/
4995 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4996 {
4997         s32 ret_val;
4998
4999         DEBUGFUNC("e1000_resume_workarounds_pchlan");
5000         if (hw->mac.type < e1000_pch2lan)
5001                 return;
5002
5003         ret_val = e1000_init_phy_workarounds_pchlan(hw);
5004         if (ret_val) {
5005                 DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5006                 return;
5007         }
5008
5009         /* For i217 Intel Rapid Start Technology support when the system
5010          * is transitioning from Sx and no manageability engine is present
5011          * configure SMBus to restore on reset, disable proxy, and enable
5012          * the reset on MTA (Multicast table array).
5013          */
5014         if (hw->phy.type == e1000_phy_i217) {
5015                 u16 phy_reg;
5016
5017                 ret_val = hw->phy.ops.acquire(hw);
5018                 if (ret_val) {
5019                         DEBUGOUT("Failed to setup iRST\n");
5020                         return;
5021                 }
5022
5023                 /* Clear Auto Enable LPI after link up */
5024                 hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5025                 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5026                 hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5027
5028                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
5029                     E1000_ICH_FWSM_FW_VALID)) {
5030                         /* Restore clear on SMB if no manageability engine
5031                          * is present
5032                          */
5033                         ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5034                                                               &phy_reg);
5035                         if (ret_val)
5036                                 goto release;
5037                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5038                         hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5039
5040                         /* Disable Proxy */
5041                         hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5042                 }
5043                 /* Enable reset on MTA */
5044                 ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5045                                                       &phy_reg);
5046                 if (ret_val)
5047                         goto release;
5048                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5049                 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5050 release:
5051                 if (ret_val)
5052                         DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5053                 hw->phy.ops.release(hw);
5054         }
5055 }
5056
5057 /**
5058  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5059  *  @hw: pointer to the HW structure
5060  *
5061  *  Return the LED back to the default configuration.
5062  **/
5063 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5064 {
5065         DEBUGFUNC("e1000_cleanup_led_ich8lan");
5066
5067         if (hw->phy.type == e1000_phy_ife)
5068                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5069                                              0);
5070
5071         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5072         return E1000_SUCCESS;
5073 }
5074
5075 /**
5076  *  e1000_led_on_ich8lan - Turn LEDs on
5077  *  @hw: pointer to the HW structure
5078  *
5079  *  Turn on the LEDs.
5080  **/
5081 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5082 {
5083         DEBUGFUNC("e1000_led_on_ich8lan");
5084
5085         if (hw->phy.type == e1000_phy_ife)
5086                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5087                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5088
5089         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5090         return E1000_SUCCESS;
5091 }
5092
5093 /**
5094  *  e1000_led_off_ich8lan - Turn LEDs off
5095  *  @hw: pointer to the HW structure
5096  *
5097  *  Turn off the LEDs.
5098  **/
5099 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5100 {
5101         DEBUGFUNC("e1000_led_off_ich8lan");
5102
5103         if (hw->phy.type == e1000_phy_ife)
5104                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5105                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5106
5107         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5108         return E1000_SUCCESS;
5109 }
5110
5111 /**
5112  *  e1000_setup_led_pchlan - Configures SW controllable LED
5113  *  @hw: pointer to the HW structure
5114  *
5115  *  This prepares the SW controllable LED for use.
5116  **/
5117 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5118 {
5119         DEBUGFUNC("e1000_setup_led_pchlan");
5120
5121         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5122                                      (u16)hw->mac.ledctl_mode1);
5123 }
5124
5125 /**
5126  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5127  *  @hw: pointer to the HW structure
5128  *
5129  *  Return the LED back to the default configuration.
5130  **/
5131 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5132 {
5133         DEBUGFUNC("e1000_cleanup_led_pchlan");
5134
5135         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5136                                      (u16)hw->mac.ledctl_default);
5137 }
5138
5139 /**
5140  *  e1000_led_on_pchlan - Turn LEDs on
5141  *  @hw: pointer to the HW structure
5142  *
5143  *  Turn on the LEDs.
5144  **/
5145 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5146 {
5147         u16 data = (u16)hw->mac.ledctl_mode2;
5148         u32 i, led;
5149
5150         DEBUGFUNC("e1000_led_on_pchlan");
5151
5152         /* If no link, then turn LED on by setting the invert bit
5153          * for each LED that's mode is "link_up" in ledctl_mode2.
5154          */
5155         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5156                 for (i = 0; i < 3; i++) {
5157                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5158                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5159                             E1000_LEDCTL_MODE_LINK_UP)
5160                                 continue;
5161                         if (led & E1000_PHY_LED0_IVRT)
5162                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5163                         else
5164                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5165                 }
5166         }
5167
5168         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5169 }
5170
5171 /**
5172  *  e1000_led_off_pchlan - Turn LEDs off
5173  *  @hw: pointer to the HW structure
5174  *
5175  *  Turn off the LEDs.
5176  **/
5177 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5178 {
5179         u16 data = (u16)hw->mac.ledctl_mode1;
5180         u32 i, led;
5181
5182         DEBUGFUNC("e1000_led_off_pchlan");
5183
5184         /* If no link, then turn LED off by clearing the invert bit
5185          * for each LED that's mode is "link_up" in ledctl_mode1.
5186          */
5187         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5188                 for (i = 0; i < 3; i++) {
5189                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5190                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5191                             E1000_LEDCTL_MODE_LINK_UP)
5192                                 continue;
5193                         if (led & E1000_PHY_LED0_IVRT)
5194                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5195                         else
5196                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5197                 }
5198         }
5199
5200         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5201 }
5202
5203 /**
5204  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5205  *  @hw: pointer to the HW structure
5206  *
5207  *  Read appropriate register for the config done bit for completion status
5208  *  and configure the PHY through s/w for EEPROM-less parts.
5209  *
5210  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5211  *  config done bit, so only an error is logged and continues.  If we were
5212  *  to return with error, EEPROM-less silicon would not be able to be reset
5213  *  or change link.
5214  **/
5215 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5216 {
5217         s32 ret_val = E1000_SUCCESS;
5218         u32 bank = 0;
5219         u32 status;
5220
5221         DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5222
5223         e1000_get_cfg_done_generic(hw);
5224
5225         /* Wait for indication from h/w that it has completed basic config */
5226         if (hw->mac.type >= e1000_ich10lan) {
5227                 e1000_lan_init_done_ich8lan(hw);
5228         } else {
5229                 ret_val = e1000_get_auto_rd_done_generic(hw);
5230                 if (ret_val) {
5231                         /* When auto config read does not complete, do not
5232                          * return with an error. This can happen in situations
5233                          * where there is no eeprom and prevents getting link.
5234                          */
5235                         DEBUGOUT("Auto Read Done did not complete\n");
5236                         ret_val = E1000_SUCCESS;
5237                 }
5238         }
5239
5240         /* Clear PHY Reset Asserted bit */
5241         status = E1000_READ_REG(hw, E1000_STATUS);
5242         if (status & E1000_STATUS_PHYRA)
5243                 E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
5244         else
5245                 DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
5246
5247         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5248         if (hw->mac.type <= e1000_ich9lan) {
5249                 if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
5250                     (hw->phy.type == e1000_phy_igp_3)) {
5251                         e1000_phy_init_script_igp3(hw);
5252                 }
5253         } else {
5254                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5255                         /* Maybe we should do a basic PHY config */
5256                         DEBUGOUT("EEPROM not present\n");
5257                         ret_val = -E1000_ERR_CONFIG;
5258                 }
5259         }
5260
5261         return ret_val;
5262 }
5263
5264 /**
5265  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5266  * @hw: pointer to the HW structure
5267  *
5268  * In the case of a PHY power down to save power, or to turn off link during a
5269  * driver unload, or wake on lan is not enabled, remove the link.
5270  **/
5271 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5272 {
5273         /* If the management interface is not enabled, then power down */
5274         if (!(hw->mac.ops.check_mng_mode(hw) ||
5275               hw->phy.ops.check_reset_block(hw)))
5276                 e1000_power_down_phy_copper(hw);
5277
5278         return;
5279 }
5280
5281 /**
5282  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5283  *  @hw: pointer to the HW structure
5284  *
5285  *  Clears hardware counters specific to the silicon family and calls
5286  *  clear_hw_cntrs_generic to clear all general purpose counters.
5287  **/
5288 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5289 {
5290         u16 phy_data;
5291         s32 ret_val;
5292
5293         DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
5294
5295         e1000_clear_hw_cntrs_base_generic(hw);
5296
5297         E1000_READ_REG(hw, E1000_ALGNERRC);
5298         E1000_READ_REG(hw, E1000_RXERRC);
5299         E1000_READ_REG(hw, E1000_TNCRS);
5300         E1000_READ_REG(hw, E1000_CEXTERR);
5301         E1000_READ_REG(hw, E1000_TSCTC);
5302         E1000_READ_REG(hw, E1000_TSCTFC);
5303
5304         E1000_READ_REG(hw, E1000_MGTPRC);
5305         E1000_READ_REG(hw, E1000_MGTPDC);
5306         E1000_READ_REG(hw, E1000_MGTPTC);
5307
5308         E1000_READ_REG(hw, E1000_IAC);
5309         E1000_READ_REG(hw, E1000_ICRXOC);
5310
5311         /* Clear PHY statistics registers */
5312         if ((hw->phy.type == e1000_phy_82578) ||
5313             (hw->phy.type == e1000_phy_82579) ||
5314             (hw->phy.type == e1000_phy_i217) ||
5315             (hw->phy.type == e1000_phy_82577)) {
5316                 ret_val = hw->phy.ops.acquire(hw);
5317                 if (ret_val)
5318                         return;
5319                 ret_val = hw->phy.ops.set_page(hw,
5320                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
5321                 if (ret_val)
5322                         goto release;
5323                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5324                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5325                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5326                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5327                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5328                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5329                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5330                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5331                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5332                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5333                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5334                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5335                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5336                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5337 release:
5338                 hw->phy.ops.release(hw);
5339         }
5340 }
5341