]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/e1000/e1000_ich8lan.c
Import lua 5.3.4 to contrib
[FreeBSD/FreeBSD.git] / sys / dev / e1000 / e1000_ich8lan.c
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3
4   Copyright (c) 2001-2015, Intel Corporation 
5   All rights reserved.
6   
7   Redistribution and use in source and binary forms, with or without 
8   modification, are permitted provided that the following conditions are met:
9   
10    1. Redistributions of source code must retain the above copyright notice, 
11       this list of conditions and the following disclaimer.
12   
13    2. Redistributions in binary form must reproduce the above copyright 
14       notice, this list of conditions and the following disclaimer in the 
15       documentation and/or other materials provided with the distribution.
16   
17    3. Neither the name of the Intel Corporation nor the names of its 
18       contributors may be used to endorse or promote products derived from 
19       this software without specific prior written permission.
20   
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32
33 ******************************************************************************/
34 /*$FreeBSD$*/
35
36 /* 82562G 10/100 Network Connection
37  * 82562G-2 10/100 Network Connection
38  * 82562GT 10/100 Network Connection
39  * 82562GT-2 10/100 Network Connection
40  * 82562V 10/100 Network Connection
41  * 82562V-2 10/100 Network Connection
42  * 82566DC-2 Gigabit Network Connection
43  * 82566DC Gigabit Network Connection
44  * 82566DM-2 Gigabit Network Connection
45  * 82566DM Gigabit Network Connection
46  * 82566MC Gigabit Network Connection
47  * 82566MM Gigabit Network Connection
48  * 82567LM Gigabit Network Connection
49  * 82567LF Gigabit Network Connection
50  * 82567V Gigabit Network Connection
51  * 82567LM-2 Gigabit Network Connection
52  * 82567LF-2 Gigabit Network Connection
53  * 82567V-2 Gigabit Network Connection
54  * 82567LF-3 Gigabit Network Connection
55  * 82567LM-3 Gigabit Network Connection
56  * 82567LM-4 Gigabit Network Connection
57  * 82577LM Gigabit Network Connection
58  * 82577LC Gigabit Network Connection
59  * 82578DM Gigabit Network Connection
60  * 82578DC Gigabit Network Connection
61  * 82579LM Gigabit Network Connection
62  * 82579V Gigabit Network Connection
63  * Ethernet Connection I217-LM
64  * Ethernet Connection I217-V
65  * Ethernet Connection I218-V
66  * Ethernet Connection I218-LM
67  * Ethernet Connection (2) I218-LM
68  * Ethernet Connection (2) I218-V
69  * Ethernet Connection (3) I218-LM
70  * Ethernet Connection (3) I218-V
71  */
72
73 #include "e1000_api.h"
74
75 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
76 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
77 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
78 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
80 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
81 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
82 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
83 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
84 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
85                                               u8 *mc_addr_list,
86                                               u32 mc_addr_count);
87 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
89 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
90 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
91                                             bool active);
92 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
93                                             bool active);
94 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
95                                    u16 words, u16 *data);
96 static s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
97                                u16 *data);
98 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
99                                     u16 words, u16 *data);
100 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
101 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
102 static s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
103 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
104                                             u16 *data);
105 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
106 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
108 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
109 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
110 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
111 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
112 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
113                                            u16 *speed, u16 *duplex);
114 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
115 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
116 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
117 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
118 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
119 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
120 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
121 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
122 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
123 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
124 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
125 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
127                                           u32 offset, u8 *data);
128 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
129                                           u8 size, u16 *data);
130 static s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
131                                             u32 *data);
132 static s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
133                                            u32 offset, u32 *data);
134 static s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
135                                              u32 offset, u32 data);
136 static s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
137                                                   u32 offset, u32 dword);
138 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
139                                           u32 offset, u16 *data);
140 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
141                                                  u32 offset, u8 byte);
142 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
143 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
144 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
145 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
146 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
147 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
148 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
149
150 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
151 /* Offset 04h HSFSTS */
152 union ich8_hws_flash_status {
153         struct ich8_hsfsts {
154                 u16 flcdone:1; /* bit 0 Flash Cycle Done */
155                 u16 flcerr:1; /* bit 1 Flash Cycle Error */
156                 u16 dael:1; /* bit 2 Direct Access error Log */
157                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
158                 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
159                 u16 reserved1:2; /* bit 13:6 Reserved */
160                 u16 reserved2:6; /* bit 13:6 Reserved */
161                 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
162                 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
163         } hsf_status;
164         u16 regval;
165 };
166
167 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
168 /* Offset 06h FLCTL */
169 union ich8_hws_flash_ctrl {
170         struct ich8_hsflctl {
171                 u16 flcgo:1;   /* 0 Flash Cycle Go */
172                 u16 flcycle:2;   /* 2:1 Flash Cycle */
173                 u16 reserved:5;   /* 7:3 Reserved  */
174                 u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
175                 u16 flockdn:6;   /* 15:10 Reserved */
176         } hsf_ctrl;
177         u16 regval;
178 };
179
180 /* ICH Flash Region Access Permissions */
181 union ich8_hws_flash_regacc {
182         struct ich8_flracc {
183                 u32 grra:8; /* 0:7 GbE region Read Access */
184                 u32 grwa:8; /* 8:15 GbE region Write Access */
185                 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
186                 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
187         } hsf_flregacc;
188         u16 regval;
189 };
190
191 /**
192  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
193  *  @hw: pointer to the HW structure
194  *
195  *  Test access to the PHY registers by reading the PHY ID registers.  If
196  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
197  *  otherwise assume the read PHY ID is correct if it is valid.
198  *
199  *  Assumes the sw/fw/hw semaphore is already acquired.
200  **/
201 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
202 {
203         u16 phy_reg = 0;
204         u32 phy_id = 0;
205         s32 ret_val = 0;
206         u16 retry_count;
207         u32 mac_reg = 0;
208
209         for (retry_count = 0; retry_count < 2; retry_count++) {
210                 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
211                 if (ret_val || (phy_reg == 0xFFFF))
212                         continue;
213                 phy_id = (u32)(phy_reg << 16);
214
215                 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
216                 if (ret_val || (phy_reg == 0xFFFF)) {
217                         phy_id = 0;
218                         continue;
219                 }
220                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
221                 break;
222         }
223
224         if (hw->phy.id) {
225                 if  (hw->phy.id == phy_id)
226                         goto out;
227         } else if (phy_id) {
228                 hw->phy.id = phy_id;
229                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
230                 goto out;
231         }
232
233         /* In case the PHY needs to be in mdio slow mode,
234          * set slow mode and try to get the PHY id again.
235          */
236         if (hw->mac.type < e1000_pch_lpt) {
237                 hw->phy.ops.release(hw);
238                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
239                 if (!ret_val)
240                         ret_val = e1000_get_phy_id(hw);
241                 hw->phy.ops.acquire(hw);
242         }
243
244         if (ret_val)
245                 return FALSE;
246 out:
247         if (hw->mac.type >= e1000_pch_lpt) {
248                 /* Only unforce SMBus if ME is not active */
249                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
250                     E1000_ICH_FWSM_FW_VALID)) {
251                         /* Unforce SMBus mode in PHY */
252                         hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
253                         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
254                         hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
255
256                         /* Unforce SMBus mode in MAC */
257                         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
258                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
259                         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
260                 }
261         }
262
263         return TRUE;
264 }
265
266 /**
267  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
268  *  @hw: pointer to the HW structure
269  *
270  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
271  *  used to reset the PHY to a quiescent state when necessary.
272  **/
273 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
274 {
275         u32 mac_reg;
276
277         DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
278
279         /* Set Phy Config Counter to 50msec */
280         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
281         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
282         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
283         E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
284
285         /* Toggle LANPHYPC Value bit */
286         mac_reg = E1000_READ_REG(hw, E1000_CTRL);
287         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
288         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
289         E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
290         E1000_WRITE_FLUSH(hw);
291         msec_delay(1);
292         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
293         E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
294         E1000_WRITE_FLUSH(hw);
295
296         if (hw->mac.type < e1000_pch_lpt) {
297                 msec_delay(50);
298         } else {
299                 u16 count = 20;
300
301                 do {
302                         msec_delay(5);
303                 } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
304                            E1000_CTRL_EXT_LPCD) && count--);
305
306                 msec_delay(30);
307         }
308 }
309
310 /**
311  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
312  *  @hw: pointer to the HW structure
313  *
314  *  Workarounds/flow necessary for PHY initialization during driver load
315  *  and resume paths.
316  **/
317 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
318 {
319         u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
320         s32 ret_val;
321
322         DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
323
324         /* Gate automatic PHY configuration by hardware on managed and
325          * non-managed 82579 and newer adapters.
326          */
327         e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
328
329         /* It is not possible to be certain of the current state of ULP
330          * so forcibly disable it.
331          */
332         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
333         e1000_disable_ulp_lpt_lp(hw, TRUE);
334
335         ret_val = hw->phy.ops.acquire(hw);
336         if (ret_val) {
337                 DEBUGOUT("Failed to initialize PHY flow\n");
338                 goto out;
339         }
340
341         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
342          * inaccessible and resetting the PHY is not blocked, toggle the
343          * LANPHYPC Value bit to force the interconnect to PCIe mode.
344          */
345         switch (hw->mac.type) {
346         case e1000_pch_lpt:
347         case e1000_pch_spt:
348                 if (e1000_phy_is_accessible_pchlan(hw))
349                         break;
350
351                 /* Before toggling LANPHYPC, see if PHY is accessible by
352                  * forcing MAC to SMBus mode first.
353                  */
354                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
355                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
356                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
357
358                 /* Wait 50 milliseconds for MAC to finish any retries
359                  * that it might be trying to perform from previous
360                  * attempts to acknowledge any phy read requests.
361                  */
362                  msec_delay(50);
363
364                 /* fall-through */
365         case e1000_pch2lan:
366                 if (e1000_phy_is_accessible_pchlan(hw))
367                         break;
368
369                 /* fall-through */
370         case e1000_pchlan:
371                 if ((hw->mac.type == e1000_pchlan) &&
372                     (fwsm & E1000_ICH_FWSM_FW_VALID))
373                         break;
374
375                 if (hw->phy.ops.check_reset_block(hw)) {
376                         DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
377                         ret_val = -E1000_ERR_PHY;
378                         break;
379                 }
380
381                 /* Toggle LANPHYPC Value bit */
382                 e1000_toggle_lanphypc_pch_lpt(hw);
383                 if (hw->mac.type >= e1000_pch_lpt) {
384                         if (e1000_phy_is_accessible_pchlan(hw))
385                                 break;
386
387                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
388                          * so ensure that the MAC is also out of SMBus mode
389                          */
390                         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
391                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
392                         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
393
394                         if (e1000_phy_is_accessible_pchlan(hw))
395                                 break;
396
397                         ret_val = -E1000_ERR_PHY;
398                 }
399                 break;
400         default:
401                 break;
402         }
403
404         hw->phy.ops.release(hw);
405         if (!ret_val) {
406
407                 /* Check to see if able to reset PHY.  Print error if not */
408                 if (hw->phy.ops.check_reset_block(hw)) {
409                         ERROR_REPORT("Reset blocked by ME\n");
410                         goto out;
411                 }
412
413                 /* Reset the PHY before any access to it.  Doing so, ensures
414                  * that the PHY is in a known good state before we read/write
415                  * PHY registers.  The generic reset is sufficient here,
416                  * because we haven't determined the PHY type yet.
417                  */
418                 ret_val = e1000_phy_hw_reset_generic(hw);
419                 if (ret_val)
420                         goto out;
421
422                 /* On a successful reset, possibly need to wait for the PHY
423                  * to quiesce to an accessible state before returning control
424                  * to the calling function.  If the PHY does not quiesce, then
425                  * return E1000E_BLK_PHY_RESET, as this is the condition that
426                  *  the PHY is in.
427                  */
428                 ret_val = hw->phy.ops.check_reset_block(hw);
429                 if (ret_val)
430                         ERROR_REPORT("ME blocked access to PHY after reset\n");
431         }
432
433 out:
434         /* Ungate automatic PHY configuration on non-managed 82579 */
435         if ((hw->mac.type == e1000_pch2lan) &&
436             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
437                 msec_delay(10);
438                 e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
439         }
440
441         return ret_val;
442 }
443
444 /**
445  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
446  *  @hw: pointer to the HW structure
447  *
448  *  Initialize family-specific PHY parameters and function pointers.
449  **/
450 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
451 {
452         struct e1000_phy_info *phy = &hw->phy;
453         s32 ret_val;
454
455         DEBUGFUNC("e1000_init_phy_params_pchlan");
456
457         phy->addr               = 1;
458         phy->reset_delay_us     = 100;
459
460         phy->ops.acquire        = e1000_acquire_swflag_ich8lan;
461         phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
462         phy->ops.get_cfg_done   = e1000_get_cfg_done_ich8lan;
463         phy->ops.set_page       = e1000_set_page_igp;
464         phy->ops.read_reg       = e1000_read_phy_reg_hv;
465         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
466         phy->ops.read_reg_page  = e1000_read_phy_reg_page_hv;
467         phy->ops.release        = e1000_release_swflag_ich8lan;
468         phy->ops.reset          = e1000_phy_hw_reset_ich8lan;
469         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
470         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
471         phy->ops.write_reg      = e1000_write_phy_reg_hv;
472         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
473         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
474         phy->ops.power_up       = e1000_power_up_phy_copper;
475         phy->ops.power_down     = e1000_power_down_phy_copper_ich8lan;
476         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
477
478         phy->id = e1000_phy_unknown;
479
480         ret_val = e1000_init_phy_workarounds_pchlan(hw);
481         if (ret_val)
482                 return ret_val;
483
484         if (phy->id == e1000_phy_unknown)
485                 switch (hw->mac.type) {
486                 default:
487                         ret_val = e1000_get_phy_id(hw);
488                         if (ret_val)
489                                 return ret_val;
490                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
491                                 break;
492                         /* fall-through */
493                 case e1000_pch2lan:
494                 case e1000_pch_lpt:
495                 case e1000_pch_spt:
496                         /* In case the PHY needs to be in mdio slow mode,
497                          * set slow mode and try to get the PHY id again.
498                          */
499                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
500                         if (ret_val)
501                                 return ret_val;
502                         ret_val = e1000_get_phy_id(hw);
503                         if (ret_val)
504                                 return ret_val;
505                         break;
506                 }
507         phy->type = e1000_get_phy_type_from_id(phy->id);
508
509         switch (phy->type) {
510         case e1000_phy_82577:
511         case e1000_phy_82579:
512         case e1000_phy_i217:
513                 phy->ops.check_polarity = e1000_check_polarity_82577;
514                 phy->ops.force_speed_duplex =
515                         e1000_phy_force_speed_duplex_82577;
516                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
517                 phy->ops.get_info = e1000_get_phy_info_82577;
518                 phy->ops.commit = e1000_phy_sw_reset_generic;
519                 break;
520         case e1000_phy_82578:
521                 phy->ops.check_polarity = e1000_check_polarity_m88;
522                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
523                 phy->ops.get_cable_length = e1000_get_cable_length_m88;
524                 phy->ops.get_info = e1000_get_phy_info_m88;
525                 break;
526         default:
527                 ret_val = -E1000_ERR_PHY;
528                 break;
529         }
530
531         return ret_val;
532 }
533
534 /**
535  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
536  *  @hw: pointer to the HW structure
537  *
538  *  Initialize family-specific PHY parameters and function pointers.
539  **/
540 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
541 {
542         struct e1000_phy_info *phy = &hw->phy;
543         s32 ret_val;
544         u16 i = 0;
545
546         DEBUGFUNC("e1000_init_phy_params_ich8lan");
547
548         phy->addr               = 1;
549         phy->reset_delay_us     = 100;
550
551         phy->ops.acquire        = e1000_acquire_swflag_ich8lan;
552         phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
553         phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
554         phy->ops.get_cfg_done   = e1000_get_cfg_done_ich8lan;
555         phy->ops.read_reg       = e1000_read_phy_reg_igp;
556         phy->ops.release        = e1000_release_swflag_ich8lan;
557         phy->ops.reset          = e1000_phy_hw_reset_ich8lan;
558         phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
559         phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
560         phy->ops.write_reg      = e1000_write_phy_reg_igp;
561         phy->ops.power_up       = e1000_power_up_phy_copper;
562         phy->ops.power_down     = e1000_power_down_phy_copper_ich8lan;
563
564         /* We may need to do this twice - once for IGP and if that fails,
565          * we'll set BM func pointers and try again
566          */
567         ret_val = e1000_determine_phy_address(hw);
568         if (ret_val) {
569                 phy->ops.write_reg = e1000_write_phy_reg_bm;
570                 phy->ops.read_reg  = e1000_read_phy_reg_bm;
571                 ret_val = e1000_determine_phy_address(hw);
572                 if (ret_val) {
573                         DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
574                         return ret_val;
575                 }
576         }
577
578         phy->id = 0;
579         while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
580                (i++ < 100)) {
581                 msec_delay(1);
582                 ret_val = e1000_get_phy_id(hw);
583                 if (ret_val)
584                         return ret_val;
585         }
586
587         /* Verify phy id */
588         switch (phy->id) {
589         case IGP03E1000_E_PHY_ID:
590                 phy->type = e1000_phy_igp_3;
591                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
592                 phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
593                 phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
594                 phy->ops.get_info = e1000_get_phy_info_igp;
595                 phy->ops.check_polarity = e1000_check_polarity_igp;
596                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
597                 break;
598         case IFE_E_PHY_ID:
599         case IFE_PLUS_E_PHY_ID:
600         case IFE_C_E_PHY_ID:
601                 phy->type = e1000_phy_ife;
602                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
603                 phy->ops.get_info = e1000_get_phy_info_ife;
604                 phy->ops.check_polarity = e1000_check_polarity_ife;
605                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
606                 break;
607         case BME1000_E_PHY_ID:
608                 phy->type = e1000_phy_bm;
609                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
610                 phy->ops.read_reg = e1000_read_phy_reg_bm;
611                 phy->ops.write_reg = e1000_write_phy_reg_bm;
612                 phy->ops.commit = e1000_phy_sw_reset_generic;
613                 phy->ops.get_info = e1000_get_phy_info_m88;
614                 phy->ops.check_polarity = e1000_check_polarity_m88;
615                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
616                 break;
617         default:
618                 return -E1000_ERR_PHY;
619                 break;
620         }
621
622         return E1000_SUCCESS;
623 }
624
625 /**
626  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
627  *  @hw: pointer to the HW structure
628  *
629  *  Initialize family-specific NVM parameters and function
630  *  pointers.
631  **/
632 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
633 {
634         struct e1000_nvm_info *nvm = &hw->nvm;
635         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
636         u32 gfpreg, sector_base_addr, sector_end_addr;
637         u16 i;
638         u32 nvm_size;
639
640         DEBUGFUNC("e1000_init_nvm_params_ich8lan");
641
642         nvm->type = e1000_nvm_flash_sw;
643
644         if (hw->mac.type >= e1000_pch_spt) {
645                 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
646                  * STRAP register. This is because in SPT the GbE Flash region
647                  * is no longer accessed through the flash registers. Instead,
648                  * the mechanism has changed, and the Flash region access
649                  * registers are now implemented in GbE memory space.
650                  */
651                 nvm->flash_base_addr = 0;
652                 nvm_size =
653                     (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
654                     * NVM_SIZE_MULTIPLIER;
655                 nvm->flash_bank_size = nvm_size / 2;
656                 /* Adjust to word count */
657                 nvm->flash_bank_size /= sizeof(u16);
658                 /* Set the base address for flash register access */
659                 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
660         } else {
661                 /* Can't read flash registers if register set isn't mapped. */
662                 if (!hw->flash_address) {
663                         DEBUGOUT("ERROR: Flash registers not mapped\n");
664                         return -E1000_ERR_CONFIG;
665                 }
666
667                 gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
668
669                 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
670                  * Add 1 to sector_end_addr since this sector is included in
671                  * the overall size.
672                  */
673                 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
674                 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
675
676                 /* flash_base_addr is byte-aligned */
677                 nvm->flash_base_addr = sector_base_addr
678                                        << FLASH_SECTOR_ADDR_SHIFT;
679
680                 /* find total size of the NVM, then cut in half since the total
681                  * size represents two separate NVM banks.
682                  */
683                 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
684                                         << FLASH_SECTOR_ADDR_SHIFT);
685                 nvm->flash_bank_size /= 2;
686                 /* Adjust to word count */
687                 nvm->flash_bank_size /= sizeof(u16);
688         }
689
690         nvm->word_size = E1000_SHADOW_RAM_WORDS;
691
692         /* Clear shadow ram */
693         for (i = 0; i < nvm->word_size; i++) {
694                 dev_spec->shadow_ram[i].modified = FALSE;
695                 dev_spec->shadow_ram[i].value    = 0xFFFF;
696         }
697
698         E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
699         E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
700
701         /* Function Pointers */
702         nvm->ops.acquire        = e1000_acquire_nvm_ich8lan;
703         nvm->ops.release        = e1000_release_nvm_ich8lan;
704         if (hw->mac.type >= e1000_pch_spt) {
705                 nvm->ops.read   = e1000_read_nvm_spt;
706                 nvm->ops.update = e1000_update_nvm_checksum_spt;
707         } else {
708                 nvm->ops.read   = e1000_read_nvm_ich8lan;
709                 nvm->ops.update = e1000_update_nvm_checksum_ich8lan;
710         }
711         nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
712         nvm->ops.validate       = e1000_validate_nvm_checksum_ich8lan;
713         nvm->ops.write          = e1000_write_nvm_ich8lan;
714
715         return E1000_SUCCESS;
716 }
717
718 /**
719  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
720  *  @hw: pointer to the HW structure
721  *
722  *  Initialize family-specific MAC parameters and function
723  *  pointers.
724  **/
725 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
726 {
727         struct e1000_mac_info *mac = &hw->mac;
728
729         DEBUGFUNC("e1000_init_mac_params_ich8lan");
730
731         /* Set media type function pointer */
732         hw->phy.media_type = e1000_media_type_copper;
733
734         /* Set mta register count */
735         mac->mta_reg_count = 32;
736         /* Set rar entry count */
737         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
738         if (mac->type == e1000_ich8lan)
739                 mac->rar_entry_count--;
740         /* Set if part includes ASF firmware */
741         mac->asf_firmware_present = TRUE;
742         /* FWSM register */
743         mac->has_fwsm = TRUE;
744         /* ARC subsystem not supported */
745         mac->arc_subsystem_valid = FALSE;
746         /* Adaptive IFS supported */
747         mac->adaptive_ifs = TRUE;
748
749         /* Function pointers */
750
751         /* bus type/speed/width */
752         mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
753         /* function id */
754         mac->ops.set_lan_id = e1000_set_lan_id_single_port;
755         /* reset */
756         mac->ops.reset_hw = e1000_reset_hw_ich8lan;
757         /* hw initialization */
758         mac->ops.init_hw = e1000_init_hw_ich8lan;
759         /* link setup */
760         mac->ops.setup_link = e1000_setup_link_ich8lan;
761         /* physical interface setup */
762         mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
763         /* check for link */
764         mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
765         /* link info */
766         mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
767         /* multicast address update */
768         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
769         /* clear hardware counters */
770         mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
771
772         /* LED and other operations */
773         switch (mac->type) {
774         case e1000_ich8lan:
775         case e1000_ich9lan:
776         case e1000_ich10lan:
777                 /* check management mode */
778                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
779                 /* ID LED init */
780                 mac->ops.id_led_init = e1000_id_led_init_generic;
781                 /* blink LED */
782                 mac->ops.blink_led = e1000_blink_led_generic;
783                 /* setup LED */
784                 mac->ops.setup_led = e1000_setup_led_generic;
785                 /* cleanup LED */
786                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
787                 /* turn on/off LED */
788                 mac->ops.led_on = e1000_led_on_ich8lan;
789                 mac->ops.led_off = e1000_led_off_ich8lan;
790                 break;
791         case e1000_pch2lan:
792                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
793                 mac->ops.rar_set = e1000_rar_set_pch2lan;
794                 /* fall-through */
795         case e1000_pch_lpt:
796         case e1000_pch_spt:
797                 /* multicast address update for pch2 */
798                 mac->ops.update_mc_addr_list =
799                         e1000_update_mc_addr_list_pch2lan;
800                 /* fall-through */
801         case e1000_pchlan:
802                 /* check management mode */
803                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
804                 /* ID LED init */
805                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
806                 /* setup LED */
807                 mac->ops.setup_led = e1000_setup_led_pchlan;
808                 /* cleanup LED */
809                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
810                 /* turn on/off LED */
811                 mac->ops.led_on = e1000_led_on_pchlan;
812                 mac->ops.led_off = e1000_led_off_pchlan;
813                 break;
814         default:
815                 break;
816         }
817
818         if (mac->type >= e1000_pch_lpt) {
819                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
820                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
821                 mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
822                 mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
823         }
824
825         /* Enable PCS Lock-loss workaround for ICH8 */
826         if (mac->type == e1000_ich8lan)
827                 e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
828
829         return E1000_SUCCESS;
830 }
831
832 /**
833  *  __e1000_access_emi_reg_locked - Read/write EMI register
834  *  @hw: pointer to the HW structure
835  *  @addr: EMI address to program
836  *  @data: pointer to value to read/write from/to the EMI address
837  *  @read: boolean flag to indicate read or write
838  *
839  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
840  **/
841 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
842                                          u16 *data, bool read)
843 {
844         s32 ret_val;
845
846         DEBUGFUNC("__e1000_access_emi_reg_locked");
847
848         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
849         if (ret_val)
850                 return ret_val;
851
852         if (read)
853                 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
854                                                       data);
855         else
856                 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
857                                                        *data);
858
859         return ret_val;
860 }
861
862 /**
863  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
864  *  @hw: pointer to the HW structure
865  *  @addr: EMI address to program
866  *  @data: value to be read from the EMI address
867  *
868  *  Assumes the SW/FW/HW Semaphore is already acquired.
869  **/
870 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
871 {
872         DEBUGFUNC("e1000_read_emi_reg_locked");
873
874         return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
875 }
876
877 /**
878  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
879  *  @hw: pointer to the HW structure
880  *  @addr: EMI address to program
881  *  @data: value to be written to the EMI address
882  *
883  *  Assumes the SW/FW/HW Semaphore is already acquired.
884  **/
885 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
886 {
887         DEBUGFUNC("e1000_read_emi_reg_locked");
888
889         return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
890 }
891
892 /**
893  *  e1000_set_eee_pchlan - Enable/disable EEE support
894  *  @hw: pointer to the HW structure
895  *
896  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
897  *  the link and the EEE capabilities of the link partner.  The LPI Control
898  *  register bits will remain set only if/when link is up.
899  *
900  *  EEE LPI must not be asserted earlier than one second after link is up.
901  *  On 82579, EEE LPI should not be enabled until such time otherwise there
902  *  can be link issues with some switches.  Other devices can have EEE LPI
903  *  enabled immediately upon link up since they have a timer in hardware which
904  *  prevents LPI from being asserted too early.
905  **/
906 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
907 {
908         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
909         s32 ret_val;
910         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
911
912         DEBUGFUNC("e1000_set_eee_pchlan");
913
914         switch (hw->phy.type) {
915         case e1000_phy_82579:
916                 lpa = I82579_EEE_LP_ABILITY;
917                 pcs_status = I82579_EEE_PCS_STATUS;
918                 adv_addr = I82579_EEE_ADVERTISEMENT;
919                 break;
920         case e1000_phy_i217:
921                 lpa = I217_EEE_LP_ABILITY;
922                 pcs_status = I217_EEE_PCS_STATUS;
923                 adv_addr = I217_EEE_ADVERTISEMENT;
924                 break;
925         default:
926                 return E1000_SUCCESS;
927         }
928
929         ret_val = hw->phy.ops.acquire(hw);
930         if (ret_val)
931                 return ret_val;
932
933         ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
934         if (ret_val)
935                 goto release;
936
937         /* Clear bits that enable EEE in various speeds */
938         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
939
940         /* Enable EEE if not disabled by user */
941         if (!dev_spec->eee_disable) {
942                 /* Save off link partner's EEE ability */
943                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
944                                                     &dev_spec->eee_lp_ability);
945                 if (ret_val)
946                         goto release;
947
948                 /* Read EEE advertisement */
949                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
950                 if (ret_val)
951                         goto release;
952
953                 /* Enable EEE only for speeds in which the link partner is
954                  * EEE capable and for which we advertise EEE.
955                  */
956                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
957                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
958
959                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
960                         hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
961                         if (data & NWAY_LPAR_100TX_FD_CAPS)
962                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
963                         else
964                                 /* EEE is not supported in 100Half, so ignore
965                                  * partner's EEE in 100 ability if full-duplex
966                                  * is not advertised.
967                                  */
968                                 dev_spec->eee_lp_ability &=
969                                     ~I82579_EEE_100_SUPPORTED;
970                 }
971         }
972
973         if (hw->phy.type == e1000_phy_82579) {
974                 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
975                                                     &data);
976                 if (ret_val)
977                         goto release;
978
979                 data &= ~I82579_LPI_100_PLL_SHUT;
980                 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
981                                                      data);
982         }
983
984         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
985         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
986         if (ret_val)
987                 goto release;
988
989         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
990 release:
991         hw->phy.ops.release(hw);
992
993         return ret_val;
994 }
995
996 /**
997  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
998  *  @hw:   pointer to the HW structure
999  *  @link: link up bool flag
1000  *
1001  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
1002  *  preventing further DMA write requests.  Workaround the issue by disabling
1003  *  the de-assertion of the clock request when in 1Gpbs mode.
1004  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1005  *  speeds in order to avoid Tx hangs.
1006  **/
1007 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1008 {
1009         u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1010         u32 status = E1000_READ_REG(hw, E1000_STATUS);
1011         s32 ret_val = E1000_SUCCESS;
1012         u16 reg;
1013
1014         if (link && (status & E1000_STATUS_SPEED_1000)) {
1015                 ret_val = hw->phy.ops.acquire(hw);
1016                 if (ret_val)
1017                         return ret_val;
1018
1019                 ret_val =
1020                     e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1021                                                &reg);
1022                 if (ret_val)
1023                         goto release;
1024
1025                 ret_val =
1026                     e1000_write_kmrn_reg_locked(hw,
1027                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
1028                                                 reg &
1029                                                 ~E1000_KMRNCTRLSTA_K1_ENABLE);
1030                 if (ret_val)
1031                         goto release;
1032
1033                 usec_delay(10);
1034
1035                 E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1036                                 fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1037
1038                 ret_val =
1039                     e1000_write_kmrn_reg_locked(hw,
1040                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
1041                                                 reg);
1042 release:
1043                 hw->phy.ops.release(hw);
1044         } else {
1045                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
1046                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1047
1048                 if ((hw->phy.revision > 5) || !link ||
1049                     ((status & E1000_STATUS_SPEED_100) &&
1050                      (status & E1000_STATUS_FD)))
1051                         goto update_fextnvm6;
1052
1053                 ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1054                 if (ret_val)
1055                         return ret_val;
1056
1057                 /* Clear link status transmit timeout */
1058                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1059
1060                 if (status & E1000_STATUS_SPEED_100) {
1061                         /* Set inband Tx timeout to 5x10us for 100Half */
1062                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1063
1064                         /* Do not extend the K1 entry latency for 100Half */
1065                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1066                 } else {
1067                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
1068                         reg |= 50 <<
1069                                I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1070
1071                         /* Extend the K1 entry latency for 10 Mbps */
1072                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1073                 }
1074
1075                 ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1076                 if (ret_val)
1077                         return ret_val;
1078
1079 update_fextnvm6:
1080                 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1081         }
1082
1083         return ret_val;
1084 }
1085
1086 static u64 e1000_ltr2ns(u16 ltr)
1087 {
1088         u32 value, scale;
1089
1090         /* Determine the latency in nsec based on the LTR value & scale */
1091         value = ltr & E1000_LTRV_VALUE_MASK;
1092         scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1093
1094         return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1095 }
1096
1097 /**
1098  *  e1000_platform_pm_pch_lpt - Set platform power management values
1099  *  @hw: pointer to the HW structure
1100  *  @link: bool indicating link status
1101  *
1102  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1103  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1104  *  when link is up (which must not exceed the maximum latency supported
1105  *  by the platform), otherwise specify there is no LTR requirement.
1106  *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1107  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1108  *  Capability register set, on this device LTR is set by writing the
1109  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1110  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1111  *  message to the PMC.
1112  *
1113  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1114  *  high-water mark.
1115  **/
1116 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1117 {
1118         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1119                   link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1120         u16 lat_enc = 0;        /* latency encoded */
1121         s32 obff_hwm = 0;
1122
1123         DEBUGFUNC("e1000_platform_pm_pch_lpt");
1124
1125         if (link) {
1126                 u16 speed, duplex, scale = 0;
1127                 u16 max_snoop, max_nosnoop;
1128                 u16 max_ltr_enc;        /* max LTR latency encoded */
1129                 s64 lat_ns;
1130                 s64 value;
1131                 u32 rxa;
1132
1133                 if (!hw->mac.max_frame_size) {
1134                         DEBUGOUT("max_frame_size not set.\n");
1135                         return -E1000_ERR_CONFIG;
1136                 }
1137
1138                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1139                 if (!speed) {
1140                         DEBUGOUT("Speed not set.\n");
1141                         return -E1000_ERR_CONFIG;
1142                 }
1143
1144                 /* Rx Packet Buffer Allocation size (KB) */
1145                 rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1146
1147                 /* Determine the maximum latency tolerated by the device.
1148                  *
1149                  * Per the PCIe spec, the tolerated latencies are encoded as
1150                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1151                  * a 10-bit value (0-1023) to provide a range from 1 ns to
1152                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1153                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1154                  */
1155                 lat_ns = ((s64)rxa * 1024 -
1156                           (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1157                 if (lat_ns < 0)
1158                         lat_ns = 0;
1159                 else
1160                         lat_ns /= speed;
1161                 value = lat_ns;
1162
1163                 while (value > E1000_LTRV_VALUE_MASK) {
1164                         scale++;
1165                         value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1166                 }
1167                 if (scale > E1000_LTRV_SCALE_MAX) {
1168                         DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1169                         return -E1000_ERR_CONFIG;
1170                 }
1171                 lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1172
1173                 /* Determine the maximum latency tolerated by the platform */
1174                 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1175                 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1176                 max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1177
1178                 if (lat_enc > max_ltr_enc) {
1179                         lat_enc = max_ltr_enc;
1180                         lat_ns = e1000_ltr2ns(max_ltr_enc);
1181                 }
1182
1183                 if (lat_ns) {
1184                         lat_ns *= speed * 1000;
1185                         lat_ns /= 8;
1186                         lat_ns /= 1000000000;
1187                         obff_hwm = (s32)(rxa - lat_ns);
1188                 }
1189                 if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1190                         DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1191                         return -E1000_ERR_CONFIG;
1192                 }
1193         }
1194
1195         /* Set Snoop and No-Snoop latencies the same */
1196         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1197         E1000_WRITE_REG(hw, E1000_LTRV, reg);
1198
1199         /* Set OBFF high water mark */
1200         reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1201         reg |= obff_hwm;
1202         E1000_WRITE_REG(hw, E1000_SVT, reg);
1203
1204         /* Enable OBFF */
1205         reg = E1000_READ_REG(hw, E1000_SVCR);
1206         reg |= E1000_SVCR_OFF_EN;
1207         /* Always unblock interrupts to the CPU even when the system is
1208          * in OBFF mode. This ensures that small round-robin traffic
1209          * (like ping) does not get dropped or experience long latency.
1210          */
1211         reg |= E1000_SVCR_OFF_MASKINT;
1212         E1000_WRITE_REG(hw, E1000_SVCR, reg);
1213
1214         return E1000_SUCCESS;
1215 }
1216
1217 /**
1218  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1219  *  @hw: pointer to the HW structure
1220  *  @itr: interrupt throttling rate
1221  *
1222  *  Configure OBFF with the updated interrupt rate.
1223  **/
1224 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1225 {
1226         u32 svcr;
1227         s32 timer;
1228
1229         DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1230
1231         /* Convert ITR value into microseconds for OBFF timer */
1232         timer = itr & E1000_ITR_MASK;
1233         timer = (timer * E1000_ITR_MULT) / 1000;
1234
1235         if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1236                 DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1237                 return -E1000_ERR_CONFIG;
1238         }
1239
1240         svcr = E1000_READ_REG(hw, E1000_SVCR);
1241         svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1242         svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1243         E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1244
1245         return E1000_SUCCESS;
1246 }
1247
1248 /**
1249  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1250  *  @hw: pointer to the HW structure
1251  *  @to_sx: boolean indicating a system power state transition to Sx
1252  *
1253  *  When link is down, configure ULP mode to significantly reduce the power
1254  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1255  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1256  *  system, configure the ULP mode by software.
1257  */
1258 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1259 {
1260         u32 mac_reg;
1261         s32 ret_val = E1000_SUCCESS;
1262         u16 phy_reg;
1263         u16 oem_reg = 0;
1264
1265         if ((hw->mac.type < e1000_pch_lpt) ||
1266             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1267             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1268             (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1269             (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1270             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1271                 return 0;
1272
1273         if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1274                 /* Request ME configure ULP mode in the PHY */
1275                 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1276                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1277                 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1278
1279                 goto out;
1280         }
1281
1282         if (!to_sx) {
1283                 int i = 0;
1284
1285                 /* Poll up to 5 seconds for Cable Disconnected indication */
1286                 while (!(E1000_READ_REG(hw, E1000_FEXT) &
1287                          E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1288                         /* Bail if link is re-acquired */
1289                         if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1290                                 return -E1000_ERR_PHY;
1291
1292                         if (i++ == 100)
1293                                 break;
1294
1295                         msec_delay(50);
1296                 }
1297                 DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1298                          (E1000_READ_REG(hw, E1000_FEXT) &
1299                           E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1300                          i * 50);
1301         }
1302
1303         ret_val = hw->phy.ops.acquire(hw);
1304         if (ret_val)
1305                 goto out;
1306
1307         /* Force SMBus mode in PHY */
1308         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1309         if (ret_val)
1310                 goto release;
1311         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1312         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1313
1314         /* Force SMBus mode in MAC */
1315         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1316         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1317         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1318
1319         /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1320          * LPLU and disable Gig speed when entering ULP
1321          */
1322         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1323                 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1324                                                        &oem_reg);
1325                 if (ret_val)
1326                         goto release;
1327
1328                 phy_reg = oem_reg;
1329                 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1330
1331                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1332                                                         phy_reg);
1333
1334                 if (ret_val)
1335                         goto release;
1336         }
1337
1338         /* Set Inband ULP Exit, Reset to SMBus mode and
1339          * Disable SMBus Release on PERST# in PHY
1340          */
1341         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1342         if (ret_val)
1343                 goto release;
1344         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1345                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1346         if (to_sx) {
1347                 if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1348                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1349                 else
1350                         phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1351
1352                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1353                 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1354         } else {
1355                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1356                 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1357                 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1358         }
1359         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1360
1361         /* Set Disable SMBus Release on PERST# in MAC */
1362         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1363         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1364         E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1365
1366         /* Commit ULP changes in PHY by starting auto ULP configuration */
1367         phy_reg |= I218_ULP_CONFIG1_START;
1368         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1369
1370         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1371             to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1372                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1373                                                         oem_reg);
1374                 if (ret_val)
1375                         goto release;
1376         }
1377
1378 release:
1379         hw->phy.ops.release(hw);
1380 out:
1381         if (ret_val)
1382                 DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1383         else
1384                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1385
1386         return ret_val;
1387 }
1388
1389 /**
1390  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1391  *  @hw: pointer to the HW structure
1392  *  @force: boolean indicating whether or not to force disabling ULP
1393  *
1394  *  Un-configure ULP mode when link is up, the system is transitioned from
1395  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1396  *  system, poll for an indication from ME that ULP has been un-configured.
1397  *  If not on an ME enabled system, un-configure the ULP mode by software.
1398  *
1399  *  During nominal operation, this function is called when link is acquired
1400  *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1401  *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1402  *  to forcibly disable ULP.
1403  */
1404 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1405 {
1406         s32 ret_val = E1000_SUCCESS;
1407         u32 mac_reg;
1408         u16 phy_reg;
1409         int i = 0;
1410
1411         if ((hw->mac.type < e1000_pch_lpt) ||
1412             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1413             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1414             (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1415             (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1416             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1417                 return 0;
1418
1419         if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1420                 if (force) {
1421                         /* Request ME un-configure ULP mode in the PHY */
1422                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1423                         mac_reg &= ~E1000_H2ME_ULP;
1424                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1425                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1426                 }
1427
1428                 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1429                 while (E1000_READ_REG(hw, E1000_FWSM) &
1430                        E1000_FWSM_ULP_CFG_DONE) {
1431                         if (i++ == 30) {
1432                                 ret_val = -E1000_ERR_PHY;
1433                                 goto out;
1434                         }
1435
1436                         msec_delay(10);
1437                 }
1438                 DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1439
1440                 if (force) {
1441                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1442                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1443                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1444                 } else {
1445                         /* Clear H2ME.ULP after ME ULP configuration */
1446                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1447                         mac_reg &= ~E1000_H2ME_ULP;
1448                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1449                 }
1450
1451                 goto out;
1452         }
1453
1454         ret_val = hw->phy.ops.acquire(hw);
1455         if (ret_val)
1456                 goto out;
1457
1458         if (force)
1459                 /* Toggle LANPHYPC Value bit */
1460                 e1000_toggle_lanphypc_pch_lpt(hw);
1461
1462         /* Unforce SMBus mode in PHY */
1463         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1464         if (ret_val) {
1465                 /* The MAC might be in PCIe mode, so temporarily force to
1466                  * SMBus mode in order to access the PHY.
1467                  */
1468                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1469                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1470                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1471
1472                 msec_delay(50);
1473
1474                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1475                                                        &phy_reg);
1476                 if (ret_val)
1477                         goto release;
1478         }
1479         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1480         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1481
1482         /* Unforce SMBus mode in MAC */
1483         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1484         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1485         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1486
1487         /* When ULP mode was previously entered, K1 was disabled by the
1488          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1489          */
1490         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1491         if (ret_val)
1492                 goto release;
1493         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1494         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1495
1496         /* Clear ULP enabled configuration */
1497         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1498         if (ret_val)
1499                 goto release;
1500         phy_reg &= ~(I218_ULP_CONFIG1_IND |
1501                      I218_ULP_CONFIG1_STICKY_ULP |
1502                      I218_ULP_CONFIG1_RESET_TO_SMBUS |
1503                      I218_ULP_CONFIG1_WOL_HOST |
1504                      I218_ULP_CONFIG1_INBAND_EXIT |
1505                      I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1506                      I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1507                      I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1508         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1509
1510         /* Commit ULP changes by starting auto ULP configuration */
1511         phy_reg |= I218_ULP_CONFIG1_START;
1512         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1513
1514         /* Clear Disable SMBus Release on PERST# in MAC */
1515         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1516         mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1517         E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1518
1519 release:
1520         hw->phy.ops.release(hw);
1521         if (force) {
1522                 hw->phy.ops.reset(hw);
1523                 msec_delay(50);
1524         }
1525 out:
1526         if (ret_val)
1527                 DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1528         else
1529                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1530
1531         return ret_val;
1532 }
1533
1534 /**
1535  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1536  *  @hw: pointer to the HW structure
1537  *
1538  *  Checks to see of the link status of the hardware has changed.  If a
1539  *  change in link status has been detected, then we read the PHY registers
1540  *  to get the current speed/duplex if link exists.
1541  **/
1542 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1543 {
1544         struct e1000_mac_info *mac = &hw->mac;
1545         s32 ret_val, tipg_reg = 0;
1546         u16 emi_addr, emi_val = 0;
1547         bool link;
1548         u16 phy_reg;
1549
1550         DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1551
1552         /* We only want to go out to the PHY registers to see if Auto-Neg
1553          * has completed and/or if our link status has changed.  The
1554          * get_link_status flag is set upon receiving a Link Status
1555          * Change or Rx Sequence Error interrupt.
1556          */
1557         if (!mac->get_link_status)
1558                 return E1000_SUCCESS;
1559
1560         /* First we want to see if the MII Status Register reports
1561          * link.  If so, then we want to get the current speed/duplex
1562          * of the PHY.
1563          */
1564         ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1565         if (ret_val)
1566                 return ret_val;
1567
1568         if (hw->mac.type == e1000_pchlan) {
1569                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1570                 if (ret_val)
1571                         return ret_val;
1572         }
1573
1574         /* When connected at 10Mbps half-duplex, some parts are excessively
1575          * aggressive resulting in many collisions. To avoid this, increase
1576          * the IPG and reduce Rx latency in the PHY.
1577          */
1578         if ((hw->mac.type >= e1000_pch2lan) && link) {
1579                 u16 speed, duplex;
1580
1581                 e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1582                 tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1583                 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1584
1585                 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1586                         tipg_reg |= 0xFF;
1587                         /* Reduce Rx latency in analog PHY */
1588                         emi_val = 0;
1589                 } else if (hw->mac.type >= e1000_pch_spt &&
1590                            duplex == FULL_DUPLEX && speed != SPEED_1000) {
1591                         tipg_reg |= 0xC;
1592                         emi_val = 1;
1593                 } else {
1594                         /* Roll back the default values */
1595                         tipg_reg |= 0x08;
1596                         emi_val = 1;
1597                 }
1598
1599                 E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1600
1601                 ret_val = hw->phy.ops.acquire(hw);
1602                 if (ret_val)
1603                         return ret_val;
1604
1605                 if (hw->mac.type == e1000_pch2lan)
1606                         emi_addr = I82579_RX_CONFIG;
1607                 else
1608                         emi_addr = I217_RX_CONFIG;
1609                 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1610
1611
1612                 if (hw->mac.type >= e1000_pch_lpt) {
1613                         u16 phy_reg;
1614
1615                         hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1616                                                     &phy_reg);
1617                         phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1618                         if (speed == SPEED_100 || speed == SPEED_10)
1619                                 phy_reg |= 0x3E8;
1620                         else
1621                                 phy_reg |= 0xFA;
1622                         hw->phy.ops.write_reg_locked(hw,
1623                                                      I217_PLL_CLOCK_GATE_REG,
1624                                                      phy_reg);
1625
1626                         if (speed == SPEED_1000) {
1627                                 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1628                                                             &phy_reg);
1629
1630                                 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1631
1632                                 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1633                                                              phy_reg);
1634                                 }
1635                  }
1636                 hw->phy.ops.release(hw);
1637
1638                 if (ret_val)
1639                         return ret_val;
1640
1641                 if (hw->mac.type >= e1000_pch_spt) {
1642                         u16 data;
1643                         u16 ptr_gap;
1644
1645                         if (speed == SPEED_1000) {
1646                                 ret_val = hw->phy.ops.acquire(hw);
1647                                 if (ret_val)
1648                                         return ret_val;
1649
1650                                 ret_val = hw->phy.ops.read_reg_locked(hw,
1651                                                               PHY_REG(776, 20),
1652                                                               &data);
1653                                 if (ret_val) {
1654                                         hw->phy.ops.release(hw);
1655                                         return ret_val;
1656                                 }
1657
1658                                 ptr_gap = (data & (0x3FF << 2)) >> 2;
1659                                 if (ptr_gap < 0x18) {
1660                                         data &= ~(0x3FF << 2);
1661                                         data |= (0x18 << 2);
1662                                         ret_val =
1663                                                 hw->phy.ops.write_reg_locked(hw,
1664                                                         PHY_REG(776, 20), data);
1665                                 }
1666                                 hw->phy.ops.release(hw);
1667                                 if (ret_val)
1668                                         return ret_val;
1669                         } else {
1670                                 ret_val = hw->phy.ops.acquire(hw);
1671                                 if (ret_val)
1672                                         return ret_val;
1673
1674                                 ret_val = hw->phy.ops.write_reg_locked(hw,
1675                                                              PHY_REG(776, 20),
1676                                                              0xC023);
1677                                 hw->phy.ops.release(hw);
1678                                 if (ret_val)
1679                                         return ret_val;
1680
1681                         }
1682                 }
1683         }
1684
1685         /* I217 Packet Loss issue:
1686          * ensure that FEXTNVM4 Beacon Duration is set correctly
1687          * on power up.
1688          * Set the Beacon Duration for I217 to 8 usec
1689          */
1690         if (hw->mac.type >= e1000_pch_lpt) {
1691                 u32 mac_reg;
1692
1693                 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1694                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1695                 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1696                 E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1697         }
1698
1699         /* Work-around I218 hang issue */
1700         if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1701             (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1702             (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1703             (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1704                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1705                 if (ret_val)
1706                         return ret_val;
1707         }
1708         if (hw->mac.type >= e1000_pch_lpt) {
1709                 /* Set platform power management values for
1710                  * Latency Tolerance Reporting (LTR)
1711                  * Optimized Buffer Flush/Fill (OBFF)
1712                  */
1713                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1714                 if (ret_val)
1715                         return ret_val;
1716         }
1717
1718         /* Clear link partner's EEE ability */
1719         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1720
1721         if (hw->mac.type >= e1000_pch_lpt) {
1722                 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1723
1724                 if (hw->mac.type == e1000_pch_spt) {
1725                         /* FEXTNVM6 K1-off workaround - for SPT only */
1726                         u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1727
1728                         if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1729                                 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1730                         else
1731                                 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1732                 }
1733
1734                 if (hw->dev_spec.ich8lan.disable_k1_off == TRUE)
1735                         fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1736
1737                 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1738         }
1739
1740         if (!link)
1741                 return E1000_SUCCESS; /* No link detected */
1742
1743         mac->get_link_status = FALSE;
1744
1745         switch (hw->mac.type) {
1746         case e1000_pch2lan:
1747                 ret_val = e1000_k1_workaround_lv(hw);
1748                 if (ret_val)
1749                         return ret_val;
1750                 /* fall-thru */
1751         case e1000_pchlan:
1752                 if (hw->phy.type == e1000_phy_82578) {
1753                         ret_val = e1000_link_stall_workaround_hv(hw);
1754                         if (ret_val)
1755                                 return ret_val;
1756                 }
1757
1758                 /* Workaround for PCHx parts in half-duplex:
1759                  * Set the number of preambles removed from the packet
1760                  * when it is passed from the PHY to the MAC to prevent
1761                  * the MAC from misinterpreting the packet type.
1762                  */
1763                 hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1764                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1765
1766                 if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1767                     E1000_STATUS_FD)
1768                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1769
1770                 hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1771                 break;
1772         default:
1773                 break;
1774         }
1775
1776         /* Check if there was DownShift, must be checked
1777          * immediately after link-up
1778          */
1779         e1000_check_downshift_generic(hw);
1780
1781         /* Enable/Disable EEE after link up */
1782         if (hw->phy.type > e1000_phy_82579) {
1783                 ret_val = e1000_set_eee_pchlan(hw);
1784                 if (ret_val)
1785                         return ret_val;
1786         }
1787
1788         /* If we are forcing speed/duplex, then we simply return since
1789          * we have already determined whether we have link or not.
1790          */
1791         if (!mac->autoneg)
1792                 return -E1000_ERR_CONFIG;
1793
1794         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1795          * of MAC speed/duplex configuration.  So we only need to
1796          * configure Collision Distance in the MAC.
1797          */
1798         mac->ops.config_collision_dist(hw);
1799
1800         /* Configure Flow Control now that Auto-Neg has completed.
1801          * First, we need to restore the desired flow control
1802          * settings because we may have had to re-autoneg with a
1803          * different link partner.
1804          */
1805         ret_val = e1000_config_fc_after_link_up_generic(hw);
1806         if (ret_val)
1807                 DEBUGOUT("Error configuring flow control\n");
1808
1809         return ret_val;
1810 }
1811
1812 /**
1813  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1814  *  @hw: pointer to the HW structure
1815  *
1816  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1817  **/
1818 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1819 {
1820         DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1821
1822         hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1823         hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1824         switch (hw->mac.type) {
1825         case e1000_ich8lan:
1826         case e1000_ich9lan:
1827         case e1000_ich10lan:
1828                 hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1829                 break;
1830         case e1000_pchlan:
1831         case e1000_pch2lan:
1832         case e1000_pch_lpt:
1833         case e1000_pch_spt:
1834                 hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1835                 break;
1836         default:
1837                 break;
1838         }
1839 }
1840
1841 /**
1842  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1843  *  @hw: pointer to the HW structure
1844  *
1845  *  Acquires the mutex for performing NVM operations.
1846  **/
1847 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1848 {
1849         DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1850
1851         E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1852
1853         return E1000_SUCCESS;
1854 }
1855
1856 /**
1857  *  e1000_release_nvm_ich8lan - Release NVM mutex
1858  *  @hw: pointer to the HW structure
1859  *
1860  *  Releases the mutex used while performing NVM operations.
1861  **/
1862 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1863 {
1864         DEBUGFUNC("e1000_release_nvm_ich8lan");
1865
1866         E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1867
1868         return;
1869 }
1870
1871 /**
1872  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1873  *  @hw: pointer to the HW structure
1874  *
1875  *  Acquires the software control flag for performing PHY and select
1876  *  MAC CSR accesses.
1877  **/
1878 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1879 {
1880         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1881         s32 ret_val = E1000_SUCCESS;
1882
1883         DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1884
1885         E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1886
1887         while (timeout) {
1888                 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1889                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1890                         break;
1891
1892                 msec_delay_irq(1);
1893                 timeout--;
1894         }
1895
1896         if (!timeout) {
1897                 DEBUGOUT("SW has already locked the resource.\n");
1898                 ret_val = -E1000_ERR_CONFIG;
1899                 goto out;
1900         }
1901
1902         timeout = SW_FLAG_TIMEOUT;
1903
1904         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1905         E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1906
1907         while (timeout) {
1908                 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1909                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1910                         break;
1911
1912                 msec_delay_irq(1);
1913                 timeout--;
1914         }
1915
1916         if (!timeout) {
1917                 DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1918                           E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1919                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1920                 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1921                 ret_val = -E1000_ERR_CONFIG;
1922                 goto out;
1923         }
1924
1925 out:
1926         if (ret_val)
1927                 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1928
1929         return ret_val;
1930 }
1931
1932 /**
1933  *  e1000_release_swflag_ich8lan - Release software control flag
1934  *  @hw: pointer to the HW structure
1935  *
1936  *  Releases the software control flag for performing PHY and select
1937  *  MAC CSR accesses.
1938  **/
1939 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1940 {
1941         u32 extcnf_ctrl;
1942
1943         DEBUGFUNC("e1000_release_swflag_ich8lan");
1944
1945         extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1946
1947         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1948                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1949                 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1950         } else {
1951                 DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1952         }
1953
1954         E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1955
1956         return;
1957 }
1958
1959 /**
1960  *  e1000_check_mng_mode_ich8lan - Checks management mode
1961  *  @hw: pointer to the HW structure
1962  *
1963  *  This checks if the adapter has any manageability enabled.
1964  *  This is a function pointer entry point only called by read/write
1965  *  routines for the PHY and NVM parts.
1966  **/
1967 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1968 {
1969         u32 fwsm;
1970
1971         DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1972
1973         fwsm = E1000_READ_REG(hw, E1000_FWSM);
1974
1975         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1976                ((fwsm & E1000_FWSM_MODE_MASK) ==
1977                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1978 }
1979
1980 /**
1981  *  e1000_check_mng_mode_pchlan - Checks management mode
1982  *  @hw: pointer to the HW structure
1983  *
1984  *  This checks if the adapter has iAMT enabled.
1985  *  This is a function pointer entry point only called by read/write
1986  *  routines for the PHY and NVM parts.
1987  **/
1988 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1989 {
1990         u32 fwsm;
1991
1992         DEBUGFUNC("e1000_check_mng_mode_pchlan");
1993
1994         fwsm = E1000_READ_REG(hw, E1000_FWSM);
1995
1996         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1997                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1998 }
1999
2000 /**
2001  *  e1000_rar_set_pch2lan - Set receive address register
2002  *  @hw: pointer to the HW structure
2003  *  @addr: pointer to the receive address
2004  *  @index: receive address array register
2005  *
2006  *  Sets the receive address array register at index to the address passed
2007  *  in by addr.  For 82579, RAR[0] is the base address register that is to
2008  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2009  *  Use SHRA[0-3] in place of those reserved for ME.
2010  **/
2011 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2012 {
2013         u32 rar_low, rar_high;
2014
2015         DEBUGFUNC("e1000_rar_set_pch2lan");
2016
2017         /* HW expects these in little endian so we reverse the byte order
2018          * from network order (big endian) to little endian
2019          */
2020         rar_low = ((u32) addr[0] |
2021                    ((u32) addr[1] << 8) |
2022                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2023
2024         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2025
2026         /* If MAC address zero, no need to set the AV bit */
2027         if (rar_low || rar_high)
2028                 rar_high |= E1000_RAH_AV;
2029
2030         if (index == 0) {
2031                 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2032                 E1000_WRITE_FLUSH(hw);
2033                 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2034                 E1000_WRITE_FLUSH(hw);
2035                 return E1000_SUCCESS;
2036         }
2037
2038         /* RAR[1-6] are owned by manageability.  Skip those and program the
2039          * next address into the SHRA register array.
2040          */
2041         if (index < (u32) (hw->mac.rar_entry_count)) {
2042                 s32 ret_val;
2043
2044                 ret_val = e1000_acquire_swflag_ich8lan(hw);
2045                 if (ret_val)
2046                         goto out;
2047
2048                 E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
2049                 E1000_WRITE_FLUSH(hw);
2050                 E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
2051                 E1000_WRITE_FLUSH(hw);
2052
2053                 e1000_release_swflag_ich8lan(hw);
2054
2055                 /* verify the register updates */
2056                 if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
2057                     (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
2058                         return E1000_SUCCESS;
2059
2060                 DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2061                          (index - 1), E1000_READ_REG(hw, E1000_FWSM));
2062         }
2063
2064 out:
2065         DEBUGOUT1("Failed to write receive address at index %d\n", index);
2066         return -E1000_ERR_CONFIG;
2067 }
2068
2069 /**
2070  *  e1000_rar_set_pch_lpt - Set receive address registers
2071  *  @hw: pointer to the HW structure
2072  *  @addr: pointer to the receive address
2073  *  @index: receive address array register
2074  *
2075  *  Sets the receive address register array at index to the address passed
2076  *  in by addr. For LPT, RAR[0] is the base address register that is to
2077  *  contain the MAC address. SHRA[0-10] are the shared receive address
2078  *  registers that are shared between the Host and manageability engine (ME).
2079  **/
2080 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2081 {
2082         u32 rar_low, rar_high;
2083         u32 wlock_mac;
2084
2085         DEBUGFUNC("e1000_rar_set_pch_lpt");
2086
2087         /* HW expects these in little endian so we reverse the byte order
2088          * from network order (big endian) to little endian
2089          */
2090         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2091                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2092
2093         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2094
2095         /* If MAC address zero, no need to set the AV bit */
2096         if (rar_low || rar_high)
2097                 rar_high |= E1000_RAH_AV;
2098
2099         if (index == 0) {
2100                 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2101                 E1000_WRITE_FLUSH(hw);
2102                 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2103                 E1000_WRITE_FLUSH(hw);
2104                 return E1000_SUCCESS;
2105         }
2106
2107         /* The manageability engine (ME) can lock certain SHRAR registers that
2108          * it is using - those registers are unavailable for use.
2109          */
2110         if (index < hw->mac.rar_entry_count) {
2111                 wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2112                             E1000_FWSM_WLOCK_MAC_MASK;
2113                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2114
2115                 /* Check if all SHRAR registers are locked */
2116                 if (wlock_mac == 1)
2117                         goto out;
2118
2119                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
2120                         s32 ret_val;
2121
2122                         ret_val = e1000_acquire_swflag_ich8lan(hw);
2123
2124                         if (ret_val)
2125                                 goto out;
2126
2127                         E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2128                                         rar_low);
2129                         E1000_WRITE_FLUSH(hw);
2130                         E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2131                                         rar_high);
2132                         E1000_WRITE_FLUSH(hw);
2133
2134                         e1000_release_swflag_ich8lan(hw);
2135
2136                         /* verify the register updates */
2137                         if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2138                             (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2139                                 return E1000_SUCCESS;
2140                 }
2141         }
2142
2143 out:
2144         DEBUGOUT1("Failed to write receive address at index %d\n", index);
2145         return -E1000_ERR_CONFIG;
2146 }
2147
2148 /**
2149  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2150  *  @hw: pointer to the HW structure
2151  *  @mc_addr_list: array of multicast addresses to program
2152  *  @mc_addr_count: number of multicast addresses to program
2153  *
2154  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2155  *  The caller must have a packed mc_addr_list of multicast addresses.
2156  **/
2157 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2158                                               u8 *mc_addr_list,
2159                                               u32 mc_addr_count)
2160 {
2161         u16 phy_reg = 0;
2162         int i;
2163         s32 ret_val;
2164
2165         DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2166
2167         e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2168
2169         ret_val = hw->phy.ops.acquire(hw);
2170         if (ret_val)
2171                 return;
2172
2173         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2174         if (ret_val)
2175                 goto release;
2176
2177         for (i = 0; i < hw->mac.mta_reg_count; i++) {
2178                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2179                                            (u16)(hw->mac.mta_shadow[i] &
2180                                                  0xFFFF));
2181                 hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2182                                            (u16)((hw->mac.mta_shadow[i] >> 16) &
2183                                                  0xFFFF));
2184         }
2185
2186         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2187
2188 release:
2189         hw->phy.ops.release(hw);
2190 }
2191
2192 /**
2193  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2194  *  @hw: pointer to the HW structure
2195  *
2196  *  Checks if firmware is blocking the reset of the PHY.
2197  *  This is a function pointer entry point only called by
2198  *  reset routines.
2199  **/
2200 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2201 {
2202         u32 fwsm;
2203         bool blocked = FALSE;
2204         int i = 0;
2205
2206         DEBUGFUNC("e1000_check_reset_block_ich8lan");
2207
2208         do {
2209                 fwsm = E1000_READ_REG(hw, E1000_FWSM);
2210                 if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2211                         blocked = TRUE;
2212                         msec_delay(10);
2213                         continue;
2214                 }
2215                 blocked = FALSE;
2216         } while (blocked && (i++ < 30));
2217         return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2218 }
2219
2220 /**
2221  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2222  *  @hw: pointer to the HW structure
2223  *
2224  *  Assumes semaphore already acquired.
2225  *
2226  **/
2227 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2228 {
2229         u16 phy_data;
2230         u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2231         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2232                 E1000_STRAP_SMT_FREQ_SHIFT;
2233         s32 ret_val;
2234
2235         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2236
2237         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2238         if (ret_val)
2239                 return ret_val;
2240
2241         phy_data &= ~HV_SMB_ADDR_MASK;
2242         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2243         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2244
2245         if (hw->phy.type == e1000_phy_i217) {
2246                 /* Restore SMBus frequency */
2247                 if (freq--) {
2248                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2249                         phy_data |= (freq & (1 << 0)) <<
2250                                 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2251                         phy_data |= (freq & (1 << 1)) <<
2252                                 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2253                 } else {
2254                         DEBUGOUT("Unsupported SMB frequency in PHY\n");
2255                 }
2256         }
2257
2258         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2259 }
2260
2261 /**
2262  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2263  *  @hw:   pointer to the HW structure
2264  *
2265  *  SW should configure the LCD from the NVM extended configuration region
2266  *  as a workaround for certain parts.
2267  **/
2268 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2269 {
2270         struct e1000_phy_info *phy = &hw->phy;
2271         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2272         s32 ret_val = E1000_SUCCESS;
2273         u16 word_addr, reg_data, reg_addr, phy_page = 0;
2274
2275         DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2276
2277         /* Initialize the PHY from the NVM on ICH platforms.  This
2278          * is needed due to an issue where the NVM configuration is
2279          * not properly autoloaded after power transitions.
2280          * Therefore, after each PHY reset, we will load the
2281          * configuration data out of the NVM manually.
2282          */
2283         switch (hw->mac.type) {
2284         case e1000_ich8lan:
2285                 if (phy->type != e1000_phy_igp_3)
2286                         return ret_val;
2287
2288                 if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2289                     (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2290                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2291                         break;
2292                 }
2293                 /* Fall-thru */
2294         case e1000_pchlan:
2295         case e1000_pch2lan:
2296         case e1000_pch_lpt:
2297         case e1000_pch_spt:
2298                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2299                 break;
2300         default:
2301                 return ret_val;
2302         }
2303
2304         ret_val = hw->phy.ops.acquire(hw);
2305         if (ret_val)
2306                 return ret_val;
2307
2308         data = E1000_READ_REG(hw, E1000_FEXTNVM);
2309         if (!(data & sw_cfg_mask))
2310                 goto release;
2311
2312         /* Make sure HW does not configure LCD from PHY
2313          * extended configuration before SW configuration
2314          */
2315         data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2316         if ((hw->mac.type < e1000_pch2lan) &&
2317             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2318                         goto release;
2319
2320         cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2321         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2322         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2323         if (!cnf_size)
2324                 goto release;
2325
2326         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2327         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2328
2329         if (((hw->mac.type == e1000_pchlan) &&
2330              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2331             (hw->mac.type > e1000_pchlan)) {
2332                 /* HW configures the SMBus address and LEDs when the
2333                  * OEM and LCD Write Enable bits are set in the NVM.
2334                  * When both NVM bits are cleared, SW will configure
2335                  * them instead.
2336                  */
2337                 ret_val = e1000_write_smbus_addr(hw);
2338                 if (ret_val)
2339                         goto release;
2340
2341                 data = E1000_READ_REG(hw, E1000_LEDCTL);
2342                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2343                                                         (u16)data);
2344                 if (ret_val)
2345                         goto release;
2346         }
2347
2348         /* Configure LCD from extended configuration region. */
2349
2350         /* cnf_base_addr is in DWORD */
2351         word_addr = (u16)(cnf_base_addr << 1);
2352
2353         for (i = 0; i < cnf_size; i++) {
2354                 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2355                                            &reg_data);
2356                 if (ret_val)
2357                         goto release;
2358
2359                 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2360                                            1, &reg_addr);
2361                 if (ret_val)
2362                         goto release;
2363
2364                 /* Save off the PHY page for future writes. */
2365                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2366                         phy_page = reg_data;
2367                         continue;
2368                 }
2369
2370                 reg_addr &= PHY_REG_MASK;
2371                 reg_addr |= phy_page;
2372
2373                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2374                                                     reg_data);
2375                 if (ret_val)
2376                         goto release;
2377         }
2378
2379 release:
2380         hw->phy.ops.release(hw);
2381         return ret_val;
2382 }
2383
2384 /**
2385  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2386  *  @hw:   pointer to the HW structure
2387  *  @link: link up bool flag
2388  *
2389  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2390  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2391  *  If link is down, the function will restore the default K1 setting located
2392  *  in the NVM.
2393  **/
2394 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2395 {
2396         s32 ret_val = E1000_SUCCESS;
2397         u16 status_reg = 0;
2398         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2399
2400         DEBUGFUNC("e1000_k1_gig_workaround_hv");
2401
2402         if (hw->mac.type != e1000_pchlan)
2403                 return E1000_SUCCESS;
2404
2405         /* Wrap the whole flow with the sw flag */
2406         ret_val = hw->phy.ops.acquire(hw);
2407         if (ret_val)
2408                 return ret_val;
2409
2410         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2411         if (link) {
2412                 if (hw->phy.type == e1000_phy_82578) {
2413                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2414                                                               &status_reg);
2415                         if (ret_val)
2416                                 goto release;
2417
2418                         status_reg &= (BM_CS_STATUS_LINK_UP |
2419                                        BM_CS_STATUS_RESOLVED |
2420                                        BM_CS_STATUS_SPEED_MASK);
2421
2422                         if (status_reg == (BM_CS_STATUS_LINK_UP |
2423                                            BM_CS_STATUS_RESOLVED |
2424                                            BM_CS_STATUS_SPEED_1000))
2425                                 k1_enable = FALSE;
2426                 }
2427
2428                 if (hw->phy.type == e1000_phy_82577) {
2429                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2430                                                               &status_reg);
2431                         if (ret_val)
2432                                 goto release;
2433
2434                         status_reg &= (HV_M_STATUS_LINK_UP |
2435                                        HV_M_STATUS_AUTONEG_COMPLETE |
2436                                        HV_M_STATUS_SPEED_MASK);
2437
2438                         if (status_reg == (HV_M_STATUS_LINK_UP |
2439                                            HV_M_STATUS_AUTONEG_COMPLETE |
2440                                            HV_M_STATUS_SPEED_1000))
2441                                 k1_enable = FALSE;
2442                 }
2443
2444                 /* Link stall fix for link up */
2445                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2446                                                        0x0100);
2447                 if (ret_val)
2448                         goto release;
2449
2450         } else {
2451                 /* Link stall fix for link down */
2452                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2453                                                        0x4100);
2454                 if (ret_val)
2455                         goto release;
2456         }
2457
2458         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2459
2460 release:
2461         hw->phy.ops.release(hw);
2462
2463         return ret_val;
2464 }
2465
2466 /**
2467  *  e1000_configure_k1_ich8lan - Configure K1 power state
2468  *  @hw: pointer to the HW structure
2469  *  @enable: K1 state to configure
2470  *
2471  *  Configure the K1 power state based on the provided parameter.
2472  *  Assumes semaphore already acquired.
2473  *
2474  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2475  **/
2476 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2477 {
2478         s32 ret_val;
2479         u32 ctrl_reg = 0;
2480         u32 ctrl_ext = 0;
2481         u32 reg = 0;
2482         u16 kmrn_reg = 0;
2483
2484         DEBUGFUNC("e1000_configure_k1_ich8lan");
2485
2486         ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2487                                              &kmrn_reg);
2488         if (ret_val)
2489                 return ret_val;
2490
2491         if (k1_enable)
2492                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2493         else
2494                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2495
2496         ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2497                                               kmrn_reg);
2498         if (ret_val)
2499                 return ret_val;
2500
2501         usec_delay(20);
2502         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2503         ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2504
2505         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2506         reg |= E1000_CTRL_FRCSPD;
2507         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2508
2509         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2510         E1000_WRITE_FLUSH(hw);
2511         usec_delay(20);
2512         E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2513         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2514         E1000_WRITE_FLUSH(hw);
2515         usec_delay(20);
2516
2517         return E1000_SUCCESS;
2518 }
2519
2520 /**
2521  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2522  *  @hw:       pointer to the HW structure
2523  *  @d0_state: boolean if entering d0 or d3 device state
2524  *
2525  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2526  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2527  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2528  **/
2529 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2530 {
2531         s32 ret_val = 0;
2532         u32 mac_reg;
2533         u16 oem_reg;
2534
2535         DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2536
2537         if (hw->mac.type < e1000_pchlan)
2538                 return ret_val;
2539
2540         ret_val = hw->phy.ops.acquire(hw);
2541         if (ret_val)
2542                 return ret_val;
2543
2544         if (hw->mac.type == e1000_pchlan) {
2545                 mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2546                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2547                         goto release;
2548         }
2549
2550         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2551         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2552                 goto release;
2553
2554         mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2555
2556         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2557         if (ret_val)
2558                 goto release;
2559
2560         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2561
2562         if (d0_state) {
2563                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2564                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2565
2566                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2567                         oem_reg |= HV_OEM_BITS_LPLU;
2568         } else {
2569                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2570                     E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2571                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2572
2573                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2574                     E1000_PHY_CTRL_NOND0A_LPLU))
2575                         oem_reg |= HV_OEM_BITS_LPLU;
2576         }
2577
2578         /* Set Restart auto-neg to activate the bits */
2579         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2580             !hw->phy.ops.check_reset_block(hw))
2581                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2582
2583         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2584
2585 release:
2586         hw->phy.ops.release(hw);
2587
2588         return ret_val;
2589 }
2590
2591
2592 /**
2593  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2594  *  @hw:   pointer to the HW structure
2595  **/
2596 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2597 {
2598         s32 ret_val;
2599         u16 data;
2600
2601         DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2602
2603         ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2604         if (ret_val)
2605                 return ret_val;
2606
2607         data |= HV_KMRN_MDIO_SLOW;
2608
2609         ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2610
2611         return ret_val;
2612 }
2613
2614 /**
2615  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2616  *  done after every PHY reset.
2617  **/
2618 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2619 {
2620         s32 ret_val = E1000_SUCCESS;
2621         u16 phy_data;
2622
2623         DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2624
2625         if (hw->mac.type != e1000_pchlan)
2626                 return E1000_SUCCESS;
2627
2628         /* Set MDIO slow mode before any other MDIO access */
2629         if (hw->phy.type == e1000_phy_82577) {
2630                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2631                 if (ret_val)
2632                         return ret_val;
2633         }
2634
2635         if (((hw->phy.type == e1000_phy_82577) &&
2636              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2637             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2638                 /* Disable generation of early preamble */
2639                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2640                 if (ret_val)
2641                         return ret_val;
2642
2643                 /* Preamble tuning for SSC */
2644                 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2645                                                 0xA204);
2646                 if (ret_val)
2647                         return ret_val;
2648         }
2649
2650         if (hw->phy.type == e1000_phy_82578) {
2651                 /* Return registers to default by doing a soft reset then
2652                  * writing 0x3140 to the control register.
2653                  */
2654                 if (hw->phy.revision < 2) {
2655                         e1000_phy_sw_reset_generic(hw);
2656                         ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2657                                                         0x3140);
2658                 }
2659         }
2660
2661         /* Select page 0 */
2662         ret_val = hw->phy.ops.acquire(hw);
2663         if (ret_val)
2664                 return ret_val;
2665
2666         hw->phy.addr = 1;
2667         ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2668         hw->phy.ops.release(hw);
2669         if (ret_val)
2670                 return ret_val;
2671
2672         /* Configure the K1 Si workaround during phy reset assuming there is
2673          * link so that it disables K1 if link is in 1Gbps.
2674          */
2675         ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2676         if (ret_val)
2677                 return ret_val;
2678
2679         /* Workaround for link disconnects on a busy hub in half duplex */
2680         ret_val = hw->phy.ops.acquire(hw);
2681         if (ret_val)
2682                 return ret_val;
2683         ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2684         if (ret_val)
2685                 goto release;
2686         ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2687                                                phy_data & 0x00FF);
2688         if (ret_val)
2689                 goto release;
2690
2691         /* set MSE higher to enable link to stay up when noise is high */
2692         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2693 release:
2694         hw->phy.ops.release(hw);
2695
2696         return ret_val;
2697 }
2698
2699 /**
2700  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2701  *  @hw:   pointer to the HW structure
2702  **/
2703 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2704 {
2705         u32 mac_reg;
2706         u16 i, phy_reg = 0;
2707         s32 ret_val;
2708
2709         DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2710
2711         ret_val = hw->phy.ops.acquire(hw);
2712         if (ret_val)
2713                 return;
2714         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2715         if (ret_val)
2716                 goto release;
2717
2718         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2719         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2720                 mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2721                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2722                                            (u16)(mac_reg & 0xFFFF));
2723                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2724                                            (u16)((mac_reg >> 16) & 0xFFFF));
2725
2726                 mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2727                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2728                                            (u16)(mac_reg & 0xFFFF));
2729                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2730                                            (u16)((mac_reg & E1000_RAH_AV)
2731                                                  >> 16));
2732         }
2733
2734         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2735
2736 release:
2737         hw->phy.ops.release(hw);
2738 }
2739
2740 static u32 e1000_calc_rx_da_crc(u8 mac[])
2741 {
2742         u32 poly = 0xEDB88320;  /* Polynomial for 802.3 CRC calculation */
2743         u32 i, j, mask, crc;
2744
2745         DEBUGFUNC("e1000_calc_rx_da_crc");
2746
2747         crc = 0xffffffff;
2748         for (i = 0; i < 6; i++) {
2749                 crc = crc ^ mac[i];
2750                 for (j = 8; j > 0; j--) {
2751                         mask = (crc & 1) * (-1);
2752                         crc = (crc >> 1) ^ (poly & mask);
2753                 }
2754         }
2755         return ~crc;
2756 }
2757
2758 /**
2759  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2760  *  with 82579 PHY
2761  *  @hw: pointer to the HW structure
2762  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2763  **/
2764 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2765 {
2766         s32 ret_val = E1000_SUCCESS;
2767         u16 phy_reg, data;
2768         u32 mac_reg;
2769         u16 i;
2770
2771         DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2772
2773         if (hw->mac.type < e1000_pch2lan)
2774                 return E1000_SUCCESS;
2775
2776         /* disable Rx path while enabling/disabling workaround */
2777         hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2778         ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2779                                         phy_reg | (1 << 14));
2780         if (ret_val)
2781                 return ret_val;
2782
2783         if (enable) {
2784                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2785                  * SHRAL/H) and initial CRC values to the MAC
2786                  */
2787                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2788                         u8 mac_addr[ETH_ADDR_LEN] = {0};
2789                         u32 addr_high, addr_low;
2790
2791                         addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2792                         if (!(addr_high & E1000_RAH_AV))
2793                                 continue;
2794                         addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2795                         mac_addr[0] = (addr_low & 0xFF);
2796                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2797                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2798                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2799                         mac_addr[4] = (addr_high & 0xFF);
2800                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2801
2802                         E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2803                                         e1000_calc_rx_da_crc(mac_addr));
2804                 }
2805
2806                 /* Write Rx addresses to the PHY */
2807                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2808
2809                 /* Enable jumbo frame workaround in the MAC */
2810                 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2811                 mac_reg &= ~(1 << 14);
2812                 mac_reg |= (7 << 15);
2813                 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2814
2815                 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2816                 mac_reg |= E1000_RCTL_SECRC;
2817                 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2818
2819                 ret_val = e1000_read_kmrn_reg_generic(hw,
2820                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2821                                                 &data);
2822                 if (ret_val)
2823                         return ret_val;
2824                 ret_val = e1000_write_kmrn_reg_generic(hw,
2825                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2826                                                 data | (1 << 0));
2827                 if (ret_val)
2828                         return ret_val;
2829                 ret_val = e1000_read_kmrn_reg_generic(hw,
2830                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2831                                                 &data);
2832                 if (ret_val)
2833                         return ret_val;
2834                 data &= ~(0xF << 8);
2835                 data |= (0xB << 8);
2836                 ret_val = e1000_write_kmrn_reg_generic(hw,
2837                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2838                                                 data);
2839                 if (ret_val)
2840                         return ret_val;
2841
2842                 /* Enable jumbo frame workaround in the PHY */
2843                 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2844                 data &= ~(0x7F << 5);
2845                 data |= (0x37 << 5);
2846                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2847                 if (ret_val)
2848                         return ret_val;
2849                 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2850                 data &= ~(1 << 13);
2851                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2852                 if (ret_val)
2853                         return ret_val;
2854                 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2855                 data &= ~(0x3FF << 2);
2856                 data |= (E1000_TX_PTR_GAP << 2);
2857                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2858                 if (ret_val)
2859                         return ret_val;
2860                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2861                 if (ret_val)
2862                         return ret_val;
2863                 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2864                 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2865                                                 (1 << 10));
2866                 if (ret_val)
2867                         return ret_val;
2868         } else {
2869                 /* Write MAC register values back to h/w defaults */
2870                 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2871                 mac_reg &= ~(0xF << 14);
2872                 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2873
2874                 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2875                 mac_reg &= ~E1000_RCTL_SECRC;
2876                 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2877
2878                 ret_val = e1000_read_kmrn_reg_generic(hw,
2879                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2880                                                 &data);
2881                 if (ret_val)
2882                         return ret_val;
2883                 ret_val = e1000_write_kmrn_reg_generic(hw,
2884                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2885                                                 data & ~(1 << 0));
2886                 if (ret_val)
2887                         return ret_val;
2888                 ret_val = e1000_read_kmrn_reg_generic(hw,
2889                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2890                                                 &data);
2891                 if (ret_val)
2892                         return ret_val;
2893                 data &= ~(0xF << 8);
2894                 data |= (0xB << 8);
2895                 ret_val = e1000_write_kmrn_reg_generic(hw,
2896                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2897                                                 data);
2898                 if (ret_val)
2899                         return ret_val;
2900
2901                 /* Write PHY register values back to h/w defaults */
2902                 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2903                 data &= ~(0x7F << 5);
2904                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2905                 if (ret_val)
2906                         return ret_val;
2907                 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2908                 data |= (1 << 13);
2909                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2910                 if (ret_val)
2911                         return ret_val;
2912                 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2913                 data &= ~(0x3FF << 2);
2914                 data |= (0x8 << 2);
2915                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2916                 if (ret_val)
2917                         return ret_val;
2918                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2919                 if (ret_val)
2920                         return ret_val;
2921                 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2922                 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2923                                                 ~(1 << 10));
2924                 if (ret_val)
2925                         return ret_val;
2926         }
2927
2928         /* re-enable Rx path after enabling/disabling workaround */
2929         return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2930                                      ~(1 << 14));
2931 }
2932
2933 /**
2934  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2935  *  done after every PHY reset.
2936  **/
2937 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2938 {
2939         s32 ret_val = E1000_SUCCESS;
2940
2941         DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2942
2943         if (hw->mac.type != e1000_pch2lan)
2944                 return E1000_SUCCESS;
2945
2946         /* Set MDIO slow mode before any other MDIO access */
2947         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2948         if (ret_val)
2949                 return ret_val;
2950
2951         ret_val = hw->phy.ops.acquire(hw);
2952         if (ret_val)
2953                 return ret_val;
2954         /* set MSE higher to enable link to stay up when noise is high */
2955         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2956         if (ret_val)
2957                 goto release;
2958         /* drop link after 5 times MSE threshold was reached */
2959         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2960 release:
2961         hw->phy.ops.release(hw);
2962
2963         return ret_val;
2964 }
2965
2966 /**
2967  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2968  *  @hw:   pointer to the HW structure
2969  *
2970  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2971  *  Disable K1 for 1000 and 100 speeds
2972  **/
2973 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2974 {
2975         s32 ret_val = E1000_SUCCESS;
2976         u16 status_reg = 0;
2977
2978         DEBUGFUNC("e1000_k1_workaround_lv");
2979
2980         if (hw->mac.type != e1000_pch2lan)
2981                 return E1000_SUCCESS;
2982
2983         /* Set K1 beacon duration based on 10Mbs speed */
2984         ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2985         if (ret_val)
2986                 return ret_val;
2987
2988         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2989             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2990                 if (status_reg &
2991                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2992                         u16 pm_phy_reg;
2993
2994                         /* LV 1G/100 Packet drop issue wa  */
2995                         ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2996                                                        &pm_phy_reg);
2997                         if (ret_val)
2998                                 return ret_val;
2999                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
3000                         ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
3001                                                         pm_phy_reg);
3002                         if (ret_val)
3003                                 return ret_val;
3004                 } else {
3005                         u32 mac_reg;
3006                         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
3007                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
3008                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
3009                         E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
3010                 }
3011         }
3012
3013         return ret_val;
3014 }
3015
3016 /**
3017  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
3018  *  @hw:   pointer to the HW structure
3019  *  @gate: boolean set to TRUE to gate, FALSE to ungate
3020  *
3021  *  Gate/ungate the automatic PHY configuration via hardware; perform
3022  *  the configuration via software instead.
3023  **/
3024 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
3025 {
3026         u32 extcnf_ctrl;
3027
3028         DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
3029
3030         if (hw->mac.type < e1000_pch2lan)
3031                 return;
3032
3033         extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
3034
3035         if (gate)
3036                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3037         else
3038                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3039
3040         E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
3041 }
3042
3043 /**
3044  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
3045  *  @hw: pointer to the HW structure
3046  *
3047  *  Check the appropriate indication the MAC has finished configuring the
3048  *  PHY after a software reset.
3049  **/
3050 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
3051 {
3052         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
3053
3054         DEBUGFUNC("e1000_lan_init_done_ich8lan");
3055
3056         /* Wait for basic configuration completes before proceeding */
3057         do {
3058                 data = E1000_READ_REG(hw, E1000_STATUS);
3059                 data &= E1000_STATUS_LAN_INIT_DONE;
3060                 usec_delay(100);
3061         } while ((!data) && --loop);
3062
3063         /* If basic configuration is incomplete before the above loop
3064          * count reaches 0, loading the configuration from NVM will
3065          * leave the PHY in a bad state possibly resulting in no link.
3066          */
3067         if (loop == 0)
3068                 DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
3069
3070         /* Clear the Init Done bit for the next init event */
3071         data = E1000_READ_REG(hw, E1000_STATUS);
3072         data &= ~E1000_STATUS_LAN_INIT_DONE;
3073         E1000_WRITE_REG(hw, E1000_STATUS, data);
3074 }
3075
3076 /**
3077  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3078  *  @hw: pointer to the HW structure
3079  **/
3080 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3081 {
3082         s32 ret_val = E1000_SUCCESS;
3083         u16 reg;
3084
3085         DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3086
3087         if (hw->phy.ops.check_reset_block(hw))
3088                 return E1000_SUCCESS;
3089
3090         /* Allow time for h/w to get to quiescent state after reset */
3091         msec_delay(10);
3092
3093         /* Perform any necessary post-reset workarounds */
3094         switch (hw->mac.type) {
3095         case e1000_pchlan:
3096                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3097                 if (ret_val)
3098                         return ret_val;
3099                 break;
3100         case e1000_pch2lan:
3101                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3102                 if (ret_val)
3103                         return ret_val;
3104                 break;
3105         default:
3106                 break;
3107         }
3108
3109         /* Clear the host wakeup bit after lcd reset */
3110         if (hw->mac.type >= e1000_pchlan) {
3111                 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3112                 reg &= ~BM_WUC_HOST_WU_BIT;
3113                 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3114         }
3115
3116         /* Configure the LCD with the extended configuration region in NVM */
3117         ret_val = e1000_sw_lcd_config_ich8lan(hw);
3118         if (ret_val)
3119                 return ret_val;
3120
3121         /* Configure the LCD with the OEM bits in NVM */
3122         ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
3123
3124         if (hw->mac.type == e1000_pch2lan) {
3125                 /* Ungate automatic PHY configuration on non-managed 82579 */
3126                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
3127                     E1000_ICH_FWSM_FW_VALID)) {
3128                         msec_delay(10);
3129                         e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
3130                 }
3131
3132                 /* Set EEE LPI Update Timer to 200usec */
3133                 ret_val = hw->phy.ops.acquire(hw);
3134                 if (ret_val)
3135                         return ret_val;
3136                 ret_val = e1000_write_emi_reg_locked(hw,
3137                                                      I82579_LPI_UPDATE_TIMER,
3138                                                      0x1387);
3139                 hw->phy.ops.release(hw);
3140         }
3141
3142         return ret_val;
3143 }
3144
3145 /**
3146  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3147  *  @hw: pointer to the HW structure
3148  *
3149  *  Resets the PHY
3150  *  This is a function pointer entry point called by drivers
3151  *  or other shared routines.
3152  **/
3153 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3154 {
3155         s32 ret_val = E1000_SUCCESS;
3156
3157         DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3158
3159         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
3160         if ((hw->mac.type == e1000_pch2lan) &&
3161             !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3162                 e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
3163
3164         ret_val = e1000_phy_hw_reset_generic(hw);
3165         if (ret_val)
3166                 return ret_val;
3167
3168         return e1000_post_phy_reset_ich8lan(hw);
3169 }
3170
3171 /**
3172  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3173  *  @hw: pointer to the HW structure
3174  *  @active: TRUE to enable LPLU, FALSE to disable
3175  *
3176  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3177  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3178  *  the phy speed. This function will manually set the LPLU bit and restart
3179  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3180  *  since it configures the same bit.
3181  **/
3182 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3183 {
3184         s32 ret_val;
3185         u16 oem_reg;
3186
3187         DEBUGFUNC("e1000_set_lplu_state_pchlan");
3188         ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3189         if (ret_val)
3190                 return ret_val;
3191
3192         if (active)
3193                 oem_reg |= HV_OEM_BITS_LPLU;
3194         else
3195                 oem_reg &= ~HV_OEM_BITS_LPLU;
3196
3197         if (!hw->phy.ops.check_reset_block(hw))
3198                 oem_reg |= HV_OEM_BITS_RESTART_AN;
3199
3200         return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3201 }
3202
3203 /**
3204  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3205  *  @hw: pointer to the HW structure
3206  *  @active: TRUE to enable LPLU, FALSE to disable
3207  *
3208  *  Sets the LPLU D0 state according to the active flag.  When
3209  *  activating LPLU this function also disables smart speed
3210  *  and vice versa.  LPLU will not be activated unless the
3211  *  device autonegotiation advertisement meets standards of
3212  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3213  *  This is a function pointer entry point only called by
3214  *  PHY setup routines.
3215  **/
3216 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3217 {
3218         struct e1000_phy_info *phy = &hw->phy;
3219         u32 phy_ctrl;
3220         s32 ret_val = E1000_SUCCESS;
3221         u16 data;
3222
3223         DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3224
3225         if (phy->type == e1000_phy_ife)
3226                 return E1000_SUCCESS;
3227
3228         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3229
3230         if (active) {
3231                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3232                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3233
3234                 if (phy->type != e1000_phy_igp_3)
3235                         return E1000_SUCCESS;
3236
3237                 /* Call gig speed drop workaround on LPLU before accessing
3238                  * any PHY registers
3239                  */
3240                 if (hw->mac.type == e1000_ich8lan)
3241                         e1000_gig_downshift_workaround_ich8lan(hw);
3242
3243                 /* When LPLU is enabled, we should disable SmartSpeed */
3244                 ret_val = phy->ops.read_reg(hw,
3245                                             IGP01E1000_PHY_PORT_CONFIG,
3246                                             &data);
3247                 if (ret_val)
3248                         return ret_val;
3249                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3250                 ret_val = phy->ops.write_reg(hw,
3251                                              IGP01E1000_PHY_PORT_CONFIG,
3252                                              data);
3253                 if (ret_val)
3254                         return ret_val;
3255         } else {
3256                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3257                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3258
3259                 if (phy->type != e1000_phy_igp_3)
3260                         return E1000_SUCCESS;
3261
3262                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3263                  * during Dx states where the power conservation is most
3264                  * important.  During driver activity we should enable
3265                  * SmartSpeed, so performance is maintained.
3266                  */
3267                 if (phy->smart_speed == e1000_smart_speed_on) {
3268                         ret_val = phy->ops.read_reg(hw,
3269                                                     IGP01E1000_PHY_PORT_CONFIG,
3270                                                     &data);
3271                         if (ret_val)
3272                                 return ret_val;
3273
3274                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3275                         ret_val = phy->ops.write_reg(hw,
3276                                                      IGP01E1000_PHY_PORT_CONFIG,
3277                                                      data);
3278                         if (ret_val)
3279                                 return ret_val;
3280                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3281                         ret_val = phy->ops.read_reg(hw,
3282                                                     IGP01E1000_PHY_PORT_CONFIG,
3283                                                     &data);
3284                         if (ret_val)
3285                                 return ret_val;
3286
3287                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3288                         ret_val = phy->ops.write_reg(hw,
3289                                                      IGP01E1000_PHY_PORT_CONFIG,
3290                                                      data);
3291                         if (ret_val)
3292                                 return ret_val;
3293                 }
3294         }
3295
3296         return E1000_SUCCESS;
3297 }
3298
3299 /**
3300  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3301  *  @hw: pointer to the HW structure
3302  *  @active: TRUE to enable LPLU, FALSE to disable
3303  *
3304  *  Sets the LPLU D3 state according to the active flag.  When
3305  *  activating LPLU this function also disables smart speed
3306  *  and vice versa.  LPLU will not be activated unless the
3307  *  device autonegotiation advertisement meets standards of
3308  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3309  *  This is a function pointer entry point only called by
3310  *  PHY setup routines.
3311  **/
3312 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3313 {
3314         struct e1000_phy_info *phy = &hw->phy;
3315         u32 phy_ctrl;
3316         s32 ret_val = E1000_SUCCESS;
3317         u16 data;
3318
3319         DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3320
3321         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3322
3323         if (!active) {
3324                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3325                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3326
3327                 if (phy->type != e1000_phy_igp_3)
3328                         return E1000_SUCCESS;
3329
3330                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3331                  * during Dx states where the power conservation is most
3332                  * important.  During driver activity we should enable
3333                  * SmartSpeed, so performance is maintained.
3334                  */
3335                 if (phy->smart_speed == e1000_smart_speed_on) {
3336                         ret_val = phy->ops.read_reg(hw,
3337                                                     IGP01E1000_PHY_PORT_CONFIG,
3338                                                     &data);
3339                         if (ret_val)
3340                                 return ret_val;
3341
3342                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3343                         ret_val = phy->ops.write_reg(hw,
3344                                                      IGP01E1000_PHY_PORT_CONFIG,
3345                                                      data);
3346                         if (ret_val)
3347                                 return ret_val;
3348                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3349                         ret_val = phy->ops.read_reg(hw,
3350                                                     IGP01E1000_PHY_PORT_CONFIG,
3351                                                     &data);
3352                         if (ret_val)
3353                                 return ret_val;
3354
3355                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3356                         ret_val = phy->ops.write_reg(hw,
3357                                                      IGP01E1000_PHY_PORT_CONFIG,
3358                                                      data);
3359                         if (ret_val)
3360                                 return ret_val;
3361                 }
3362         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3363                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3364                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3365                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3366                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3367
3368                 if (phy->type != e1000_phy_igp_3)
3369                         return E1000_SUCCESS;
3370
3371                 /* Call gig speed drop workaround on LPLU before accessing
3372                  * any PHY registers
3373                  */
3374                 if (hw->mac.type == e1000_ich8lan)
3375                         e1000_gig_downshift_workaround_ich8lan(hw);
3376
3377                 /* When LPLU is enabled, we should disable SmartSpeed */
3378                 ret_val = phy->ops.read_reg(hw,
3379                                             IGP01E1000_PHY_PORT_CONFIG,
3380                                             &data);
3381                 if (ret_val)
3382                         return ret_val;
3383
3384                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3385                 ret_val = phy->ops.write_reg(hw,
3386                                              IGP01E1000_PHY_PORT_CONFIG,
3387                                              data);
3388         }
3389
3390         return ret_val;
3391 }
3392
3393 /**
3394  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3395  *  @hw: pointer to the HW structure
3396  *  @bank:  pointer to the variable that returns the active bank
3397  *
3398  *  Reads signature byte from the NVM using the flash access registers.
3399  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3400  **/
3401 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3402 {
3403         u32 eecd;
3404         struct e1000_nvm_info *nvm = &hw->nvm;
3405         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3406         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3407         u32 nvm_dword = 0;
3408         u8 sig_byte = 0;
3409         s32 ret_val;
3410
3411         DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3412
3413         switch (hw->mac.type) {
3414         case e1000_pch_spt:
3415                 bank1_offset = nvm->flash_bank_size;
3416                 act_offset = E1000_ICH_NVM_SIG_WORD;
3417
3418                 /* set bank to 0 in case flash read fails */
3419                 *bank = 0;
3420
3421                 /* Check bank 0 */
3422                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3423                                                          &nvm_dword);
3424                 if (ret_val)
3425                         return ret_val;
3426                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3427                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3428                     E1000_ICH_NVM_SIG_VALUE) {
3429                         *bank = 0;
3430                         return E1000_SUCCESS;
3431                 }
3432
3433                 /* Check bank 1 */
3434                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3435                                                          bank1_offset,
3436                                                          &nvm_dword);
3437                 if (ret_val)
3438                         return ret_val;
3439                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3440                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3441                     E1000_ICH_NVM_SIG_VALUE) {
3442                         *bank = 1;
3443                         return E1000_SUCCESS;
3444                 }
3445
3446                 DEBUGOUT("ERROR: No valid NVM bank present\n");
3447                 return -E1000_ERR_NVM;
3448         case e1000_ich8lan:
3449         case e1000_ich9lan:
3450                 eecd = E1000_READ_REG(hw, E1000_EECD);
3451                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3452                     E1000_EECD_SEC1VAL_VALID_MASK) {
3453                         if (eecd & E1000_EECD_SEC1VAL)
3454                                 *bank = 1;
3455                         else
3456                                 *bank = 0;
3457
3458                         return E1000_SUCCESS;
3459                 }
3460                 DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3461                 /* fall-thru */
3462         default:
3463                 /* set bank to 0 in case flash read fails */
3464                 *bank = 0;
3465
3466                 /* Check bank 0 */
3467                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3468                                                         &sig_byte);
3469                 if (ret_val)
3470                         return ret_val;
3471                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3472                     E1000_ICH_NVM_SIG_VALUE) {
3473                         *bank = 0;
3474                         return E1000_SUCCESS;
3475                 }
3476
3477                 /* Check bank 1 */
3478                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3479                                                         bank1_offset,
3480                                                         &sig_byte);
3481                 if (ret_val)
3482                         return ret_val;
3483                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3484                     E1000_ICH_NVM_SIG_VALUE) {
3485                         *bank = 1;
3486                         return E1000_SUCCESS;
3487                 }
3488
3489                 DEBUGOUT("ERROR: No valid NVM bank present\n");
3490                 return -E1000_ERR_NVM;
3491         }
3492 }
3493
3494 /**
3495  *  e1000_read_nvm_spt - NVM access for SPT
3496  *  @hw: pointer to the HW structure
3497  *  @offset: The offset (in bytes) of the word(s) to read.
3498  *  @words: Size of data to read in words.
3499  *  @data: pointer to the word(s) to read at offset.
3500  *
3501  *  Reads a word(s) from the NVM
3502  **/
3503 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3504                               u16 *data)
3505 {
3506         struct e1000_nvm_info *nvm = &hw->nvm;
3507         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3508         u32 act_offset;
3509         s32 ret_val = E1000_SUCCESS;
3510         u32 bank = 0;
3511         u32 dword = 0;
3512         u16 offset_to_read;
3513         u16 i;
3514
3515         DEBUGFUNC("e1000_read_nvm_spt");
3516
3517         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3518             (words == 0)) {
3519                 DEBUGOUT("nvm parameter(s) out of bounds\n");
3520                 ret_val = -E1000_ERR_NVM;
3521                 goto out;
3522         }
3523
3524         nvm->ops.acquire(hw);
3525
3526         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3527         if (ret_val != E1000_SUCCESS) {
3528                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3529                 bank = 0;
3530         }
3531
3532         act_offset = (bank) ? nvm->flash_bank_size : 0;
3533         act_offset += offset;
3534
3535         ret_val = E1000_SUCCESS;
3536
3537         for (i = 0; i < words; i += 2) {
3538                 if (words - i == 1) {
3539                         if (dev_spec->shadow_ram[offset+i].modified) {
3540                                 data[i] = dev_spec->shadow_ram[offset+i].value;
3541                         } else {
3542                                 offset_to_read = act_offset + i -
3543                                                  ((act_offset + i) % 2);
3544                                 ret_val =
3545                                    e1000_read_flash_dword_ich8lan(hw,
3546                                                                  offset_to_read,
3547                                                                  &dword);
3548                                 if (ret_val)
3549                                         break;
3550                                 if ((act_offset + i) % 2 == 0)
3551                                         data[i] = (u16)(dword & 0xFFFF);
3552                                 else
3553                                         data[i] = (u16)((dword >> 16) & 0xFFFF);
3554                         }
3555                 } else {
3556                         offset_to_read = act_offset + i;
3557                         if (!(dev_spec->shadow_ram[offset+i].modified) ||
3558                             !(dev_spec->shadow_ram[offset+i+1].modified)) {
3559                                 ret_val =
3560                                    e1000_read_flash_dword_ich8lan(hw,
3561                                                                  offset_to_read,
3562                                                                  &dword);
3563                                 if (ret_val)
3564                                         break;
3565                         }
3566                         if (dev_spec->shadow_ram[offset+i].modified)
3567                                 data[i] = dev_spec->shadow_ram[offset+i].value;
3568                         else
3569                                 data[i] = (u16) (dword & 0xFFFF);
3570                         if (dev_spec->shadow_ram[offset+i].modified)
3571                                 data[i+1] =
3572                                    dev_spec->shadow_ram[offset+i+1].value;
3573                         else
3574                                 data[i+1] = (u16) (dword >> 16 & 0xFFFF);
3575                 }
3576         }
3577
3578         nvm->ops.release(hw);
3579
3580 out:
3581         if (ret_val)
3582                 DEBUGOUT1("NVM read error: %d\n", ret_val);
3583
3584         return ret_val;
3585 }
3586
3587 /**
3588  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3589  *  @hw: pointer to the HW structure
3590  *  @offset: The offset (in bytes) of the word(s) to read.
3591  *  @words: Size of data to read in words
3592  *  @data: Pointer to the word(s) to read at offset.
3593  *
3594  *  Reads a word(s) from the NVM using the flash access registers.
3595  **/
3596 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3597                                   u16 *data)
3598 {
3599         struct e1000_nvm_info *nvm = &hw->nvm;
3600         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3601         u32 act_offset;
3602         s32 ret_val = E1000_SUCCESS;
3603         u32 bank = 0;
3604         u16 i, word;
3605
3606         DEBUGFUNC("e1000_read_nvm_ich8lan");
3607
3608         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3609             (words == 0)) {
3610                 DEBUGOUT("nvm parameter(s) out of bounds\n");
3611                 ret_val = -E1000_ERR_NVM;
3612                 goto out;
3613         }
3614
3615         nvm->ops.acquire(hw);
3616
3617         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3618         if (ret_val != E1000_SUCCESS) {
3619                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3620                 bank = 0;
3621         }
3622
3623         act_offset = (bank) ? nvm->flash_bank_size : 0;
3624         act_offset += offset;
3625
3626         ret_val = E1000_SUCCESS;
3627         for (i = 0; i < words; i++) {
3628                 if (dev_spec->shadow_ram[offset+i].modified) {
3629                         data[i] = dev_spec->shadow_ram[offset+i].value;
3630                 } else {
3631                         ret_val = e1000_read_flash_word_ich8lan(hw,
3632                                                                 act_offset + i,
3633                                                                 &word);
3634                         if (ret_val)
3635                                 break;
3636                         data[i] = word;
3637                 }
3638         }
3639
3640         nvm->ops.release(hw);
3641
3642 out:
3643         if (ret_val)
3644                 DEBUGOUT1("NVM read error: %d\n", ret_val);
3645
3646         return ret_val;
3647 }
3648
3649 /**
3650  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3651  *  @hw: pointer to the HW structure
3652  *
3653  *  This function does initial flash setup so that a new read/write/erase cycle
3654  *  can be started.
3655  **/
3656 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3657 {
3658         union ich8_hws_flash_status hsfsts;
3659         s32 ret_val = -E1000_ERR_NVM;
3660
3661         DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3662
3663         hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3664
3665         /* Check if the flash descriptor is valid */
3666         if (!hsfsts.hsf_status.fldesvalid) {
3667                 DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3668                 return -E1000_ERR_NVM;
3669         }
3670
3671         /* Clear FCERR and DAEL in hw status by writing 1 */
3672         hsfsts.hsf_status.flcerr = 1;
3673         hsfsts.hsf_status.dael = 1;
3674         if (hw->mac.type >= e1000_pch_spt)
3675                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3676                                       hsfsts.regval & 0xFFFF);
3677         else
3678                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3679
3680         /* Either we should have a hardware SPI cycle in progress
3681          * bit to check against, in order to start a new cycle or
3682          * FDONE bit should be changed in the hardware so that it
3683          * is 1 after hardware reset, which can then be used as an
3684          * indication whether a cycle is in progress or has been
3685          * completed.
3686          */
3687
3688         if (!hsfsts.hsf_status.flcinprog) {
3689                 /* There is no cycle running at present,
3690                  * so we can start a cycle.
3691                  * Begin by setting Flash Cycle Done.
3692                  */
3693                 hsfsts.hsf_status.flcdone = 1;
3694                 if (hw->mac.type >= e1000_pch_spt)
3695                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3696                                               hsfsts.regval & 0xFFFF);
3697                 else
3698                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3699                                                 hsfsts.regval);
3700                 ret_val = E1000_SUCCESS;
3701         } else {
3702                 s32 i;
3703
3704                 /* Otherwise poll for sometime so the current
3705                  * cycle has a chance to end before giving up.
3706                  */
3707                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3708                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3709                                                               ICH_FLASH_HSFSTS);
3710                         if (!hsfsts.hsf_status.flcinprog) {
3711                                 ret_val = E1000_SUCCESS;
3712                                 break;
3713                         }
3714                         usec_delay(1);
3715                 }
3716                 if (ret_val == E1000_SUCCESS) {
3717                         /* Successful in waiting for previous cycle to timeout,
3718                          * now set the Flash Cycle Done.
3719                          */
3720                         hsfsts.hsf_status.flcdone = 1;
3721                         if (hw->mac.type >= e1000_pch_spt)
3722                                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3723                                                       hsfsts.regval & 0xFFFF);
3724                         else
3725                                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3726                                                         hsfsts.regval);
3727                 } else {
3728                         DEBUGOUT("Flash controller busy, cannot get access\n");
3729                 }
3730         }
3731
3732         return ret_val;
3733 }
3734
3735 /**
3736  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3737  *  @hw: pointer to the HW structure
3738  *  @timeout: maximum time to wait for completion
3739  *
3740  *  This function starts a flash cycle and waits for its completion.
3741  **/
3742 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3743 {
3744         union ich8_hws_flash_ctrl hsflctl;
3745         union ich8_hws_flash_status hsfsts;
3746         u32 i = 0;
3747
3748         DEBUGFUNC("e1000_flash_cycle_ich8lan");
3749
3750         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3751         if (hw->mac.type >= e1000_pch_spt)
3752                 hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3753         else
3754                 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3755         hsflctl.hsf_ctrl.flcgo = 1;
3756
3757         if (hw->mac.type >= e1000_pch_spt)
3758                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3759                                       hsflctl.regval << 16);
3760         else
3761                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3762
3763         /* wait till FDONE bit is set to 1 */
3764         do {
3765                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3766                 if (hsfsts.hsf_status.flcdone)
3767                         break;
3768                 usec_delay(1);
3769         } while (i++ < timeout);
3770
3771         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3772                 return E1000_SUCCESS;
3773
3774         return -E1000_ERR_NVM;
3775 }
3776
3777 /**
3778  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3779  *  @hw: pointer to the HW structure
3780  *  @offset: offset to data location
3781  *  @data: pointer to the location for storing the data
3782  *
3783  *  Reads the flash dword at offset into data.  Offset is converted
3784  *  to bytes before read.
3785  **/
3786 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3787                                           u32 *data)
3788 {
3789         DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3790
3791         if (!data)
3792                 return -E1000_ERR_NVM;
3793
3794         /* Must convert word offset into bytes. */
3795         offset <<= 1;
3796
3797         return e1000_read_flash_data32_ich8lan(hw, offset, data);
3798 }
3799
3800 /**
3801  *  e1000_read_flash_word_ich8lan - Read word from flash
3802  *  @hw: pointer to the HW structure
3803  *  @offset: offset to data location
3804  *  @data: pointer to the location for storing the data
3805  *
3806  *  Reads the flash word at offset into data.  Offset is converted
3807  *  to bytes before read.
3808  **/
3809 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3810                                          u16 *data)
3811 {
3812         DEBUGFUNC("e1000_read_flash_word_ich8lan");
3813
3814         if (!data)
3815                 return -E1000_ERR_NVM;
3816
3817         /* Must convert offset into bytes. */
3818         offset <<= 1;
3819
3820         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3821 }
3822
3823 /**
3824  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3825  *  @hw: pointer to the HW structure
3826  *  @offset: The offset of the byte to read.
3827  *  @data: Pointer to a byte to store the value read.
3828  *
3829  *  Reads a single byte from the NVM using the flash access registers.
3830  **/
3831 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3832                                          u8 *data)
3833 {
3834         s32 ret_val;
3835         u16 word = 0;
3836
3837         /* In SPT, only 32 bits access is supported,
3838          * so this function should not be called.
3839          */
3840         if (hw->mac.type >= e1000_pch_spt)
3841                 return -E1000_ERR_NVM;
3842         else
3843                 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3844
3845         if (ret_val)
3846                 return ret_val;
3847
3848         *data = (u8)word;
3849
3850         return E1000_SUCCESS;
3851 }
3852
3853 /**
3854  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3855  *  @hw: pointer to the HW structure
3856  *  @offset: The offset (in bytes) of the byte or word to read.
3857  *  @size: Size of data to read, 1=byte 2=word
3858  *  @data: Pointer to the word to store the value read.
3859  *
3860  *  Reads a byte or word from the NVM using the flash access registers.
3861  **/
3862 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3863                                          u8 size, u16 *data)
3864 {
3865         union ich8_hws_flash_status hsfsts;
3866         union ich8_hws_flash_ctrl hsflctl;
3867         u32 flash_linear_addr;
3868         u32 flash_data = 0;
3869         s32 ret_val = -E1000_ERR_NVM;
3870         u8 count = 0;
3871
3872         DEBUGFUNC("e1000_read_flash_data_ich8lan");
3873
3874         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3875                 return -E1000_ERR_NVM;
3876         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3877                              hw->nvm.flash_base_addr);
3878
3879         do {
3880                 usec_delay(1);
3881                 /* Steps */
3882                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3883                 if (ret_val != E1000_SUCCESS)
3884                         break;
3885                 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3886
3887                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3888                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3889                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3890                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3891                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3892
3893                 ret_val = e1000_flash_cycle_ich8lan(hw,
3894                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
3895
3896                 /* Check if FCERR is set to 1, if set to 1, clear it
3897                  * and try the whole sequence a few more times, else
3898                  * read in (shift in) the Flash Data0, the order is
3899                  * least significant byte first msb to lsb
3900                  */
3901                 if (ret_val == E1000_SUCCESS) {
3902                         flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3903                         if (size == 1)
3904                                 *data = (u8)(flash_data & 0x000000FF);
3905                         else if (size == 2)
3906                                 *data = (u16)(flash_data & 0x0000FFFF);
3907                         break;
3908                 } else {
3909                         /* If we've gotten here, then things are probably
3910                          * completely hosed, but if the error condition is
3911                          * detected, it won't hurt to give it another try...
3912                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3913                          */
3914                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3915                                                               ICH_FLASH_HSFSTS);
3916                         if (hsfsts.hsf_status.flcerr) {
3917                                 /* Repeat for some time before giving up. */
3918                                 continue;
3919                         } else if (!hsfsts.hsf_status.flcdone) {
3920                                 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3921                                 break;
3922                         }
3923                 }
3924         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3925
3926         return ret_val;
3927 }
3928
3929 /**
3930  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3931  *  @hw: pointer to the HW structure
3932  *  @offset: The offset (in bytes) of the dword to read.
3933  *  @data: Pointer to the dword to store the value read.
3934  *
3935  *  Reads a byte or word from the NVM using the flash access registers.
3936  **/
3937 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3938                                            u32 *data)
3939 {
3940         union ich8_hws_flash_status hsfsts;
3941         union ich8_hws_flash_ctrl hsflctl;
3942         u32 flash_linear_addr;
3943         s32 ret_val = -E1000_ERR_NVM;
3944         u8 count = 0;
3945
3946         DEBUGFUNC("e1000_read_flash_data_ich8lan");
3947
3948                 if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3949                     hw->mac.type < e1000_pch_spt)
3950                         return -E1000_ERR_NVM;
3951         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3952                              hw->nvm.flash_base_addr);
3953
3954         do {
3955                 usec_delay(1);
3956                 /* Steps */
3957                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3958                 if (ret_val != E1000_SUCCESS)
3959                         break;
3960                 /* In SPT, This register is in Lan memory space, not flash.
3961                  * Therefore, only 32 bit access is supported
3962                  */
3963                 hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3964
3965                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3966                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3967                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3968                 /* In SPT, This register is in Lan memory space, not flash.
3969                  * Therefore, only 32 bit access is supported
3970                  */
3971                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3972                                       (u32)hsflctl.regval << 16);
3973                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3974
3975                 ret_val = e1000_flash_cycle_ich8lan(hw,
3976                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
3977
3978                 /* Check if FCERR is set to 1, if set to 1, clear it
3979                  * and try the whole sequence a few more times, else
3980                  * read in (shift in) the Flash Data0, the order is
3981                  * least significant byte first msb to lsb
3982                  */
3983                 if (ret_val == E1000_SUCCESS) {
3984                         *data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3985                         break;
3986                 } else {
3987                         /* If we've gotten here, then things are probably
3988                          * completely hosed, but if the error condition is
3989                          * detected, it won't hurt to give it another try...
3990                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3991                          */
3992                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3993                                                               ICH_FLASH_HSFSTS);
3994                         if (hsfsts.hsf_status.flcerr) {
3995                                 /* Repeat for some time before giving up. */
3996                                 continue;
3997                         } else if (!hsfsts.hsf_status.flcdone) {
3998                                 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3999                                 break;
4000                         }
4001                 }
4002         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4003
4004         return ret_val;
4005 }
4006
4007 /**
4008  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
4009  *  @hw: pointer to the HW structure
4010  *  @offset: The offset (in bytes) of the word(s) to write.
4011  *  @words: Size of data to write in words
4012  *  @data: Pointer to the word(s) to write at offset.
4013  *
4014  *  Writes a byte or word to the NVM using the flash access registers.
4015  **/
4016 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
4017                                    u16 *data)
4018 {
4019         struct e1000_nvm_info *nvm = &hw->nvm;
4020         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4021         u16 i;
4022
4023         DEBUGFUNC("e1000_write_nvm_ich8lan");
4024
4025         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
4026             (words == 0)) {
4027                 DEBUGOUT("nvm parameter(s) out of bounds\n");
4028                 return -E1000_ERR_NVM;
4029         }
4030
4031         nvm->ops.acquire(hw);
4032
4033         for (i = 0; i < words; i++) {
4034                 dev_spec->shadow_ram[offset+i].modified = TRUE;
4035                 dev_spec->shadow_ram[offset+i].value = data[i];
4036         }
4037
4038         nvm->ops.release(hw);
4039
4040         return E1000_SUCCESS;
4041 }
4042
4043 /**
4044  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
4045  *  @hw: pointer to the HW structure
4046  *
4047  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4048  *  which writes the checksum to the shadow ram.  The changes in the shadow
4049  *  ram are then committed to the EEPROM by processing each bank at a time
4050  *  checking for the modified bit and writing only the pending changes.
4051  *  After a successful commit, the shadow ram is cleared and is ready for
4052  *  future writes.
4053  **/
4054 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
4055 {
4056         struct e1000_nvm_info *nvm = &hw->nvm;
4057         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4058         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4059         s32 ret_val;
4060         u32 dword = 0;
4061
4062         DEBUGFUNC("e1000_update_nvm_checksum_spt");
4063
4064         ret_val = e1000_update_nvm_checksum_generic(hw);
4065         if (ret_val)
4066                 goto out;
4067
4068         if (nvm->type != e1000_nvm_flash_sw)
4069                 goto out;
4070
4071         nvm->ops.acquire(hw);
4072
4073         /* We're writing to the opposite bank so if we're on bank 1,
4074          * write to bank 0 etc.  We also need to erase the segment that
4075          * is going to be written
4076          */
4077         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4078         if (ret_val != E1000_SUCCESS) {
4079                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4080                 bank = 0;
4081         }
4082
4083         if (bank == 0) {
4084                 new_bank_offset = nvm->flash_bank_size;
4085                 old_bank_offset = 0;
4086                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4087                 if (ret_val)
4088                         goto release;
4089         } else {
4090                 old_bank_offset = nvm->flash_bank_size;
4091                 new_bank_offset = 0;
4092                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4093                 if (ret_val)
4094                         goto release;
4095         }
4096         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4097                 /* Determine whether to write the value stored
4098                  * in the other NVM bank or a modified value stored
4099                  * in the shadow RAM
4100                  */
4101                 ret_val = e1000_read_flash_dword_ich8lan(hw,
4102                                                          i + old_bank_offset,
4103                                                          &dword);
4104
4105                 if (dev_spec->shadow_ram[i].modified) {
4106                         dword &= 0xffff0000;
4107                         dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4108                 }
4109                 if (dev_spec->shadow_ram[i + 1].modified) {
4110                         dword &= 0x0000ffff;
4111                         dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4112                                   << 16);
4113                 }
4114                 if (ret_val)
4115                         break;
4116
4117                 /* If the word is 0x13, then make sure the signature bits
4118                  * (15:14) are 11b until the commit has completed.
4119                  * This will allow us to write 10b which indicates the
4120                  * signature is valid.  We want to do this after the write
4121                  * has completed so that we don't mark the segment valid
4122                  * while the write is still in progress
4123                  */
4124                 if (i == E1000_ICH_NVM_SIG_WORD - 1)
4125                         dword |= E1000_ICH_NVM_SIG_MASK << 16;
4126
4127                 /* Convert offset to bytes. */
4128                 act_offset = (i + new_bank_offset) << 1;
4129
4130                 usec_delay(100);
4131
4132                 /* Write the data to the new bank. Offset in words*/
4133                 act_offset = i + new_bank_offset;
4134                 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4135                                                                 dword);
4136                 if (ret_val)
4137                         break;
4138          }
4139
4140         /* Don't bother writing the segment valid bits if sector
4141          * programming failed.
4142          */
4143         if (ret_val) {
4144                 DEBUGOUT("Flash commit failed.\n");
4145                 goto release;
4146         }
4147
4148         /* Finally validate the new segment by setting bit 15:14
4149          * to 10b in word 0x13 , this can be done without an
4150          * erase as well since these bits are 11 to start with
4151          * and we need to change bit 14 to 0b
4152          */
4153         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4154
4155         /*offset in words but we read dword*/
4156         --act_offset;
4157         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4158
4159         if (ret_val)
4160                 goto release;
4161
4162         dword &= 0xBFFFFFFF;
4163         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4164
4165         if (ret_val)
4166                 goto release;
4167
4168         /* And invalidate the previously valid segment by setting
4169          * its signature word (0x13) high_byte to 0b. This can be
4170          * done without an erase because flash erase sets all bits
4171          * to 1's. We can write 1's to 0's without an erase
4172          */
4173         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4174
4175         /* offset in words but we read dword*/
4176         act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4177         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4178
4179         if (ret_val)
4180                 goto release;
4181
4182         dword &= 0x00FFFFFF;
4183         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4184
4185         if (ret_val)
4186                 goto release;
4187
4188         /* Great!  Everything worked, we can now clear the cached entries. */
4189         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4190                 dev_spec->shadow_ram[i].modified = FALSE;
4191                 dev_spec->shadow_ram[i].value = 0xFFFF;
4192         }
4193
4194 release:
4195         nvm->ops.release(hw);
4196
4197         /* Reload the EEPROM, or else modifications will not appear
4198          * until after the next adapter reset.
4199          */
4200         if (!ret_val) {
4201                 nvm->ops.reload(hw);
4202                 msec_delay(10);
4203         }
4204
4205 out:
4206         if (ret_val)
4207                 DEBUGOUT1("NVM update error: %d\n", ret_val);
4208
4209         return ret_val;
4210 }
4211
4212 /**
4213  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4214  *  @hw: pointer to the HW structure
4215  *
4216  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4217  *  which writes the checksum to the shadow ram.  The changes in the shadow
4218  *  ram are then committed to the EEPROM by processing each bank at a time
4219  *  checking for the modified bit and writing only the pending changes.
4220  *  After a successful commit, the shadow ram is cleared and is ready for
4221  *  future writes.
4222  **/
4223 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4224 {
4225         struct e1000_nvm_info *nvm = &hw->nvm;
4226         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4227         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4228         s32 ret_val;
4229         u16 data = 0;
4230
4231         DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4232
4233         ret_val = e1000_update_nvm_checksum_generic(hw);
4234         if (ret_val)
4235                 goto out;
4236
4237         if (nvm->type != e1000_nvm_flash_sw)
4238                 goto out;
4239
4240         nvm->ops.acquire(hw);
4241
4242         /* We're writing to the opposite bank so if we're on bank 1,
4243          * write to bank 0 etc.  We also need to erase the segment that
4244          * is going to be written
4245          */
4246         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4247         if (ret_val != E1000_SUCCESS) {
4248                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4249                 bank = 0;
4250         }
4251
4252         if (bank == 0) {
4253                 new_bank_offset = nvm->flash_bank_size;
4254                 old_bank_offset = 0;
4255                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4256                 if (ret_val)
4257                         goto release;
4258         } else {
4259                 old_bank_offset = nvm->flash_bank_size;
4260                 new_bank_offset = 0;
4261                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4262                 if (ret_val)
4263                         goto release;
4264         }
4265         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4266                 if (dev_spec->shadow_ram[i].modified) {
4267                         data = dev_spec->shadow_ram[i].value;
4268                 } else {
4269                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
4270                                                                 old_bank_offset,
4271                                                                 &data);
4272                         if (ret_val)
4273                                 break;
4274                 }
4275                 /* If the word is 0x13, then make sure the signature bits
4276                  * (15:14) are 11b until the commit has completed.
4277                  * This will allow us to write 10b which indicates the
4278                  * signature is valid.  We want to do this after the write
4279                  * has completed so that we don't mark the segment valid
4280                  * while the write is still in progress
4281                  */
4282                 if (i == E1000_ICH_NVM_SIG_WORD)
4283                         data |= E1000_ICH_NVM_SIG_MASK;
4284
4285                 /* Convert offset to bytes. */
4286                 act_offset = (i + new_bank_offset) << 1;
4287
4288                 usec_delay(100);
4289
4290                 /* Write the bytes to the new bank. */
4291                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4292                                                                act_offset,
4293                                                                (u8)data);
4294                 if (ret_val)
4295                         break;
4296
4297                 usec_delay(100);
4298                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4299                                                           act_offset + 1,
4300                                                           (u8)(data >> 8));
4301                 if (ret_val)
4302                         break;
4303          }
4304
4305         /* Don't bother writing the segment valid bits if sector
4306          * programming failed.
4307          */
4308         if (ret_val) {
4309                 DEBUGOUT("Flash commit failed.\n");
4310                 goto release;
4311         }
4312
4313         /* Finally validate the new segment by setting bit 15:14
4314          * to 10b in word 0x13 , this can be done without an
4315          * erase as well since these bits are 11 to start with
4316          * and we need to change bit 14 to 0b
4317          */
4318         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4319         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4320         if (ret_val)
4321                 goto release;
4322
4323         data &= 0xBFFF;
4324         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4325                                                        (u8)(data >> 8));
4326         if (ret_val)
4327                 goto release;
4328
4329         /* And invalidate the previously valid segment by setting
4330          * its signature word (0x13) high_byte to 0b. This can be
4331          * done without an erase because flash erase sets all bits
4332          * to 1's. We can write 1's to 0's without an erase
4333          */
4334         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4335
4336         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4337
4338         if (ret_val)
4339                 goto release;
4340
4341         /* Great!  Everything worked, we can now clear the cached entries. */
4342         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4343                 dev_spec->shadow_ram[i].modified = FALSE;
4344                 dev_spec->shadow_ram[i].value = 0xFFFF;
4345         }
4346
4347 release:
4348         nvm->ops.release(hw);
4349
4350         /* Reload the EEPROM, or else modifications will not appear
4351          * until after the next adapter reset.
4352          */
4353         if (!ret_val) {
4354                 nvm->ops.reload(hw);
4355                 msec_delay(10);
4356         }
4357
4358 out:
4359         if (ret_val)
4360                 DEBUGOUT1("NVM update error: %d\n", ret_val);
4361
4362         return ret_val;
4363 }
4364
4365 /**
4366  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4367  *  @hw: pointer to the HW structure
4368  *
4369  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4370  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4371  *  calculated, in which case we need to calculate the checksum and set bit 6.
4372  **/
4373 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4374 {
4375         s32 ret_val;
4376         u16 data;
4377         u16 word;
4378         u16 valid_csum_mask;
4379
4380         DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4381
4382         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4383          * the checksum needs to be fixed.  This bit is an indication that
4384          * the NVM was prepared by OEM software and did not calculate
4385          * the checksum...a likely scenario.
4386          */
4387         switch (hw->mac.type) {
4388         case e1000_pch_lpt:
4389         case e1000_pch_spt:
4390                 word = NVM_COMPAT;
4391                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4392                 break;
4393         default:
4394                 word = NVM_FUTURE_INIT_WORD1;
4395                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4396                 break;
4397         }
4398
4399         ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4400         if (ret_val)
4401                 return ret_val;
4402
4403         if (!(data & valid_csum_mask)) {
4404                 data |= valid_csum_mask;
4405                 ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4406                 if (ret_val)
4407                         return ret_val;
4408                 ret_val = hw->nvm.ops.update(hw);
4409                 if (ret_val)
4410                         return ret_val;
4411         }
4412
4413         return e1000_validate_nvm_checksum_generic(hw);
4414 }
4415
4416 /**
4417  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4418  *  @hw: pointer to the HW structure
4419  *  @offset: The offset (in bytes) of the byte/word to read.
4420  *  @size: Size of data to read, 1=byte 2=word
4421  *  @data: The byte(s) to write to the NVM.
4422  *
4423  *  Writes one/two bytes to the NVM using the flash access registers.
4424  **/
4425 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4426                                           u8 size, u16 data)
4427 {
4428         union ich8_hws_flash_status hsfsts;
4429         union ich8_hws_flash_ctrl hsflctl;
4430         u32 flash_linear_addr;
4431         u32 flash_data = 0;
4432         s32 ret_val;
4433         u8 count = 0;
4434
4435         DEBUGFUNC("e1000_write_ich8_data");
4436
4437         if (hw->mac.type >= e1000_pch_spt) {
4438                 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4439                         return -E1000_ERR_NVM;
4440         } else {
4441                 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4442                         return -E1000_ERR_NVM;
4443         }
4444
4445         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4446                              hw->nvm.flash_base_addr);
4447
4448         do {
4449                 usec_delay(1);
4450                 /* Steps */
4451                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4452                 if (ret_val != E1000_SUCCESS)
4453                         break;
4454                 /* In SPT, This register is in Lan memory space, not
4455                  * flash.  Therefore, only 32 bit access is supported
4456                  */
4457                 if (hw->mac.type >= e1000_pch_spt)
4458                         hsflctl.regval =
4459                             E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
4460                 else
4461                         hsflctl.regval =
4462                             E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4463
4464                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4465                 hsflctl.hsf_ctrl.fldbcount = size - 1;
4466                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4467                 /* In SPT, This register is in Lan memory space,
4468                  * not flash.  Therefore, only 32 bit access is
4469                  * supported
4470                  */
4471                 if (hw->mac.type >= e1000_pch_spt)
4472                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4473                                               hsflctl.regval << 16);
4474                 else
4475                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4476                                                 hsflctl.regval);
4477
4478                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4479
4480                 if (size == 1)
4481                         flash_data = (u32)data & 0x00FF;
4482                 else
4483                         flash_data = (u32)data;
4484
4485                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4486
4487                 /* check if FCERR is set to 1 , if set to 1, clear it
4488                  * and try the whole sequence a few more times else done
4489                  */
4490                 ret_val =
4491                     e1000_flash_cycle_ich8lan(hw,
4492                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4493                 if (ret_val == E1000_SUCCESS)
4494                         break;
4495
4496                 /* If we're here, then things are most likely
4497                  * completely hosed, but if the error condition
4498                  * is detected, it won't hurt to give it another
4499                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4500                  */
4501                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4502                 if (hsfsts.hsf_status.flcerr)
4503                         /* Repeat for some time before giving up. */
4504                         continue;
4505                 if (!hsfsts.hsf_status.flcdone) {
4506                         DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4507                         break;
4508                 }
4509         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4510
4511         return ret_val;
4512 }
4513
4514 /**
4515 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4516 *  @hw: pointer to the HW structure
4517 *  @offset: The offset (in bytes) of the dwords to read.
4518 *  @data: The 4 bytes to write to the NVM.
4519 *
4520 *  Writes one/two/four bytes to the NVM using the flash access registers.
4521 **/
4522 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4523                                             u32 data)
4524 {
4525         union ich8_hws_flash_status hsfsts;
4526         union ich8_hws_flash_ctrl hsflctl;
4527         u32 flash_linear_addr;
4528         s32 ret_val;
4529         u8 count = 0;
4530
4531         DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4532
4533         if (hw->mac.type >= e1000_pch_spt) {
4534                 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4535                         return -E1000_ERR_NVM;
4536         }
4537         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4538                              hw->nvm.flash_base_addr);
4539         do {
4540                 usec_delay(1);
4541                 /* Steps */
4542                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4543                 if (ret_val != E1000_SUCCESS)
4544                         break;
4545
4546                 /* In SPT, This register is in Lan memory space, not
4547                  * flash.  Therefore, only 32 bit access is supported
4548                  */
4549                 if (hw->mac.type >= e1000_pch_spt)
4550                         hsflctl.regval = E1000_READ_FLASH_REG(hw,
4551                                                               ICH_FLASH_HSFSTS)
4552                                          >> 16;
4553                 else
4554                         hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4555                                                               ICH_FLASH_HSFCTL);
4556
4557                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4558                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4559
4560                 /* In SPT, This register is in Lan memory space,
4561                  * not flash.  Therefore, only 32 bit access is
4562                  * supported
4563                  */
4564                 if (hw->mac.type >= e1000_pch_spt)
4565                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4566                                               hsflctl.regval << 16);
4567                 else
4568                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4569                                                 hsflctl.regval);
4570
4571                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4572
4573                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4574
4575                 /* check if FCERR is set to 1 , if set to 1, clear it
4576                  * and try the whole sequence a few more times else done
4577                  */
4578                 ret_val = e1000_flash_cycle_ich8lan(hw,
4579                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4580
4581                 if (ret_val == E1000_SUCCESS)
4582                         break;
4583
4584                 /* If we're here, then things are most likely
4585                  * completely hosed, but if the error condition
4586                  * is detected, it won't hurt to give it another
4587                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4588                  */
4589                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4590
4591                 if (hsfsts.hsf_status.flcerr)
4592                         /* Repeat for some time before giving up. */
4593                         continue;
4594                 if (!hsfsts.hsf_status.flcdone) {
4595                         DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4596                         break;
4597                 }
4598         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4599
4600         return ret_val;
4601 }
4602
4603 /**
4604  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4605  *  @hw: pointer to the HW structure
4606  *  @offset: The index of the byte to read.
4607  *  @data: The byte to write to the NVM.
4608  *
4609  *  Writes a single byte to the NVM using the flash access registers.
4610  **/
4611 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4612                                           u8 data)
4613 {
4614         u16 word = (u16)data;
4615
4616         DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4617
4618         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4619 }
4620
4621 /**
4622 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4623 *  @hw: pointer to the HW structure
4624 *  @offset: The offset of the word to write.
4625 *  @dword: The dword to write to the NVM.
4626 *
4627 *  Writes a single dword to the NVM using the flash access registers.
4628 *  Goes through a retry algorithm before giving up.
4629 **/
4630 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4631                                                  u32 offset, u32 dword)
4632 {
4633         s32 ret_val;
4634         u16 program_retries;
4635
4636         DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4637
4638         /* Must convert word offset into bytes. */
4639         offset <<= 1;
4640
4641         ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4642
4643         if (!ret_val)
4644                 return ret_val;
4645         for (program_retries = 0; program_retries < 100; program_retries++) {
4646                 DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4647                 usec_delay(100);
4648                 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4649                 if (ret_val == E1000_SUCCESS)
4650                         break;
4651         }
4652         if (program_retries == 100)
4653                 return -E1000_ERR_NVM;
4654
4655         return E1000_SUCCESS;
4656 }
4657
4658 /**
4659  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4660  *  @hw: pointer to the HW structure
4661  *  @offset: The offset of the byte to write.
4662  *  @byte: The byte to write to the NVM.
4663  *
4664  *  Writes a single byte to the NVM using the flash access registers.
4665  *  Goes through a retry algorithm before giving up.
4666  **/
4667 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4668                                                 u32 offset, u8 byte)
4669 {
4670         s32 ret_val;
4671         u16 program_retries;
4672
4673         DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4674
4675         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4676         if (!ret_val)
4677                 return ret_val;
4678
4679         for (program_retries = 0; program_retries < 100; program_retries++) {
4680                 DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4681                 usec_delay(100);
4682                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4683                 if (ret_val == E1000_SUCCESS)
4684                         break;
4685         }
4686         if (program_retries == 100)
4687                 return -E1000_ERR_NVM;
4688
4689         return E1000_SUCCESS;
4690 }
4691
4692 /**
4693  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4694  *  @hw: pointer to the HW structure
4695  *  @bank: 0 for first bank, 1 for second bank, etc.
4696  *
4697  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4698  *  bank N is 4096 * N + flash_reg_addr.
4699  **/
4700 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4701 {
4702         struct e1000_nvm_info *nvm = &hw->nvm;
4703         union ich8_hws_flash_status hsfsts;
4704         union ich8_hws_flash_ctrl hsflctl;
4705         u32 flash_linear_addr;
4706         /* bank size is in 16bit words - adjust to bytes */
4707         u32 flash_bank_size = nvm->flash_bank_size * 2;
4708         s32 ret_val;
4709         s32 count = 0;
4710         s32 j, iteration, sector_size;
4711
4712         DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4713
4714         hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4715
4716         /* Determine HW Sector size: Read BERASE bits of hw flash status
4717          * register
4718          * 00: The Hw sector is 256 bytes, hence we need to erase 16
4719          *     consecutive sectors.  The start index for the nth Hw sector
4720          *     can be calculated as = bank * 4096 + n * 256
4721          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4722          *     The start index for the nth Hw sector can be calculated
4723          *     as = bank * 4096
4724          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4725          *     (ich9 only, otherwise error condition)
4726          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4727          */
4728         switch (hsfsts.hsf_status.berasesz) {
4729         case 0:
4730                 /* Hw sector size 256 */
4731                 sector_size = ICH_FLASH_SEG_SIZE_256;
4732                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4733                 break;
4734         case 1:
4735                 sector_size = ICH_FLASH_SEG_SIZE_4K;
4736                 iteration = 1;
4737                 break;
4738         case 2:
4739                 sector_size = ICH_FLASH_SEG_SIZE_8K;
4740                 iteration = 1;
4741                 break;
4742         case 3:
4743                 sector_size = ICH_FLASH_SEG_SIZE_64K;
4744                 iteration = 1;
4745                 break;
4746         default:
4747                 return -E1000_ERR_NVM;
4748         }
4749
4750         /* Start with the base address, then add the sector offset. */
4751         flash_linear_addr = hw->nvm.flash_base_addr;
4752         flash_linear_addr += (bank) ? flash_bank_size : 0;
4753
4754         for (j = 0; j < iteration; j++) {
4755                 do {
4756                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4757
4758                         /* Steps */
4759                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4760                         if (ret_val)
4761                                 return ret_val;
4762
4763                         /* Write a value 11 (block Erase) in Flash
4764                          * Cycle field in hw flash control
4765                          */
4766                         if (hw->mac.type >= e1000_pch_spt)
4767                                 hsflctl.regval =
4768                                     E1000_READ_FLASH_REG(hw,
4769                                                          ICH_FLASH_HSFSTS)>>16;
4770                         else
4771                                 hsflctl.regval =
4772                                     E1000_READ_FLASH_REG16(hw,
4773                                                            ICH_FLASH_HSFCTL);
4774
4775                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4776                         if (hw->mac.type >= e1000_pch_spt)
4777                                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4778                                                       hsflctl.regval << 16);
4779                         else
4780                                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4781                                                         hsflctl.regval);
4782
4783                         /* Write the last 24 bits of an index within the
4784                          * block into Flash Linear address field in Flash
4785                          * Address.
4786                          */
4787                         flash_linear_addr += (j * sector_size);
4788                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4789                                               flash_linear_addr);
4790
4791                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4792                         if (ret_val == E1000_SUCCESS)
4793                                 break;
4794
4795                         /* Check if FCERR is set to 1.  If 1,
4796                          * clear it and try the whole sequence
4797                          * a few more times else Done
4798                          */
4799                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4800                                                       ICH_FLASH_HSFSTS);
4801                         if (hsfsts.hsf_status.flcerr)
4802                                 /* repeat for some time before giving up */
4803                                 continue;
4804                         else if (!hsfsts.hsf_status.flcdone)
4805                                 return ret_val;
4806                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4807         }
4808
4809         return E1000_SUCCESS;
4810 }
4811
4812 /**
4813  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4814  *  @hw: pointer to the HW structure
4815  *  @data: Pointer to the LED settings
4816  *
4817  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4818  *  settings is all 0's or F's, set the LED default to a valid LED default
4819  *  setting.
4820  **/
4821 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4822 {
4823         s32 ret_val;
4824
4825         DEBUGFUNC("e1000_valid_led_default_ich8lan");
4826
4827         ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4828         if (ret_val) {
4829                 DEBUGOUT("NVM Read Error\n");
4830                 return ret_val;
4831         }
4832
4833         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4834                 *data = ID_LED_DEFAULT_ICH8LAN;
4835
4836         return E1000_SUCCESS;
4837 }
4838
4839 /**
4840  *  e1000_id_led_init_pchlan - store LED configurations
4841  *  @hw: pointer to the HW structure
4842  *
4843  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4844  *  the PHY LED configuration register.
4845  *
4846  *  PCH also does not have an "always on" or "always off" mode which
4847  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4848  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4849  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4850  *  link based on logic in e1000_led_[on|off]_pchlan().
4851  **/
4852 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4853 {
4854         struct e1000_mac_info *mac = &hw->mac;
4855         s32 ret_val;
4856         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4857         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4858         u16 data, i, temp, shift;
4859
4860         DEBUGFUNC("e1000_id_led_init_pchlan");
4861
4862         /* Get default ID LED modes */
4863         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4864         if (ret_val)
4865                 return ret_val;
4866
4867         mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4868         mac->ledctl_mode1 = mac->ledctl_default;
4869         mac->ledctl_mode2 = mac->ledctl_default;
4870
4871         for (i = 0; i < 4; i++) {
4872                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4873                 shift = (i * 5);
4874                 switch (temp) {
4875                 case ID_LED_ON1_DEF2:
4876                 case ID_LED_ON1_ON2:
4877                 case ID_LED_ON1_OFF2:
4878                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4879                         mac->ledctl_mode1 |= (ledctl_on << shift);
4880                         break;
4881                 case ID_LED_OFF1_DEF2:
4882                 case ID_LED_OFF1_ON2:
4883                 case ID_LED_OFF1_OFF2:
4884                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4885                         mac->ledctl_mode1 |= (ledctl_off << shift);
4886                         break;
4887                 default:
4888                         /* Do nothing */
4889                         break;
4890                 }
4891                 switch (temp) {
4892                 case ID_LED_DEF1_ON2:
4893                 case ID_LED_ON1_ON2:
4894                 case ID_LED_OFF1_ON2:
4895                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4896                         mac->ledctl_mode2 |= (ledctl_on << shift);
4897                         break;
4898                 case ID_LED_DEF1_OFF2:
4899                 case ID_LED_ON1_OFF2:
4900                 case ID_LED_OFF1_OFF2:
4901                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4902                         mac->ledctl_mode2 |= (ledctl_off << shift);
4903                         break;
4904                 default:
4905                         /* Do nothing */
4906                         break;
4907                 }
4908         }
4909
4910         return E1000_SUCCESS;
4911 }
4912
4913 /**
4914  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4915  *  @hw: pointer to the HW structure
4916  *
4917  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4918  *  register, so the bus width is hard coded.
4919  **/
4920 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4921 {
4922         struct e1000_bus_info *bus = &hw->bus;
4923         s32 ret_val;
4924
4925         DEBUGFUNC("e1000_get_bus_info_ich8lan");
4926
4927         ret_val = e1000_get_bus_info_pcie_generic(hw);
4928
4929         /* ICH devices are "PCI Express"-ish.  They have
4930          * a configuration space, but do not contain
4931          * PCI Express Capability registers, so bus width
4932          * must be hardcoded.
4933          */
4934         if (bus->width == e1000_bus_width_unknown)
4935                 bus->width = e1000_bus_width_pcie_x1;
4936
4937         return ret_val;
4938 }
4939
4940 /**
4941  *  e1000_reset_hw_ich8lan - Reset the hardware
4942  *  @hw: pointer to the HW structure
4943  *
4944  *  Does a full reset of the hardware which includes a reset of the PHY and
4945  *  MAC.
4946  **/
4947 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4948 {
4949         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4950         u16 kum_cfg;
4951         u32 ctrl, reg;
4952         s32 ret_val;
4953
4954         DEBUGFUNC("e1000_reset_hw_ich8lan");
4955
4956         /* Prevent the PCI-E bus from sticking if there is no TLP connection
4957          * on the last TLP read/write transaction when MAC is reset.
4958          */
4959         ret_val = e1000_disable_pcie_master_generic(hw);
4960         if (ret_val)
4961                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
4962
4963         DEBUGOUT("Masking off all interrupts\n");
4964         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4965
4966         /* Disable the Transmit and Receive units.  Then delay to allow
4967          * any pending transactions to complete before we hit the MAC
4968          * with the global reset.
4969          */
4970         E1000_WRITE_REG(hw, E1000_RCTL, 0);
4971         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4972         E1000_WRITE_FLUSH(hw);
4973
4974         msec_delay(10);
4975
4976         /* Workaround for ICH8 bit corruption issue in FIFO memory */
4977         if (hw->mac.type == e1000_ich8lan) {
4978                 /* Set Tx and Rx buffer allocation to 8k apiece. */
4979                 E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4980                 /* Set Packet Buffer Size to 16k. */
4981                 E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4982         }
4983
4984         if (hw->mac.type == e1000_pchlan) {
4985                 /* Save the NVM K1 bit setting*/
4986                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4987                 if (ret_val)
4988                         return ret_val;
4989
4990                 if (kum_cfg & E1000_NVM_K1_ENABLE)
4991                         dev_spec->nvm_k1_enabled = TRUE;
4992                 else
4993                         dev_spec->nvm_k1_enabled = FALSE;
4994         }
4995
4996         ctrl = E1000_READ_REG(hw, E1000_CTRL);
4997
4998         if (!hw->phy.ops.check_reset_block(hw)) {
4999                 /* Full-chip reset requires MAC and PHY reset at the same
5000                  * time to make sure the interface between MAC and the
5001                  * external PHY is reset.
5002                  */
5003                 ctrl |= E1000_CTRL_PHY_RST;
5004
5005                 /* Gate automatic PHY configuration by hardware on
5006                  * non-managed 82579
5007                  */
5008                 if ((hw->mac.type == e1000_pch2lan) &&
5009                     !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
5010                         e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
5011         }
5012         ret_val = e1000_acquire_swflag_ich8lan(hw);
5013         DEBUGOUT("Issuing a global reset to ich8lan\n");
5014         E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
5015         /* cannot issue a flush here because it hangs the hardware */
5016         msec_delay(20);
5017
5018         /* Set Phy Config Counter to 50msec */
5019         if (hw->mac.type == e1000_pch2lan) {
5020                 reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
5021                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
5022                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
5023                 E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
5024         }
5025
5026         if (!ret_val)
5027                 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
5028
5029         if (ctrl & E1000_CTRL_PHY_RST) {
5030                 ret_val = hw->phy.ops.get_cfg_done(hw);
5031                 if (ret_val)
5032                         return ret_val;
5033
5034                 ret_val = e1000_post_phy_reset_ich8lan(hw);
5035                 if (ret_val)
5036                         return ret_val;
5037         }
5038
5039         /* For PCH, this write will make sure that any noise
5040          * will be detected as a CRC error and be dropped rather than show up
5041          * as a bad packet to the DMA engine.
5042          */
5043         if (hw->mac.type == e1000_pchlan)
5044                 E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
5045
5046         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
5047         E1000_READ_REG(hw, E1000_ICR);
5048
5049         reg = E1000_READ_REG(hw, E1000_KABGTXD);
5050         reg |= E1000_KABGTXD_BGSQLBIAS;
5051         E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
5052
5053         return E1000_SUCCESS;
5054 }
5055
5056 /**
5057  *  e1000_init_hw_ich8lan - Initialize the hardware
5058  *  @hw: pointer to the HW structure
5059  *
5060  *  Prepares the hardware for transmit and receive by doing the following:
5061  *   - initialize hardware bits
5062  *   - initialize LED identification
5063  *   - setup receive address registers
5064  *   - setup flow control
5065  *   - setup transmit descriptors
5066  *   - clear statistics
5067  **/
5068 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5069 {
5070         struct e1000_mac_info *mac = &hw->mac;
5071         u32 ctrl_ext, txdctl, snoop;
5072         s32 ret_val;
5073         u16 i;
5074
5075         DEBUGFUNC("e1000_init_hw_ich8lan");
5076
5077         e1000_initialize_hw_bits_ich8lan(hw);
5078
5079         /* Initialize identification LED */
5080         ret_val = mac->ops.id_led_init(hw);
5081         /* An error is not fatal and we should not stop init due to this */
5082         if (ret_val)
5083                 DEBUGOUT("Error initializing identification LED\n");
5084
5085         /* Setup the receive address. */
5086         e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5087
5088         /* Zero out the Multicast HASH table */
5089         DEBUGOUT("Zeroing the MTA\n");
5090         for (i = 0; i < mac->mta_reg_count; i++)
5091                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5092
5093         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
5094          * the ME.  Disable wakeup by clearing the host wakeup bit.
5095          * Reset the phy after disabling host wakeup to reset the Rx buffer.
5096          */
5097         if (hw->phy.type == e1000_phy_82578) {
5098                 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5099                 i &= ~BM_WUC_HOST_WU_BIT;
5100                 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5101                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
5102                 if (ret_val)
5103                         return ret_val;
5104         }
5105
5106         /* Setup link and flow control */
5107         ret_val = mac->ops.setup_link(hw);
5108
5109         /* Set the transmit descriptor write-back policy for both queues */
5110         txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5111         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5112                   E1000_TXDCTL_FULL_TX_DESC_WB);
5113         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5114                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5115         E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5116         txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5117         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5118                   E1000_TXDCTL_FULL_TX_DESC_WB);
5119         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5120                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5121         E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5122
5123         /* ICH8 has opposite polarity of no_snoop bits.
5124          * By default, we should use snoop behavior.
5125          */
5126         if (mac->type == e1000_ich8lan)
5127                 snoop = PCIE_ICH8_SNOOP_ALL;
5128         else
5129                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5130         e1000_set_pcie_no_snoop_generic(hw, snoop);
5131
5132         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5133         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5134         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5135
5136         /* Clear all of the statistics registers (clear on read).  It is
5137          * important that we do this after we have tried to establish link
5138          * because the symbol error count will increment wildly if there
5139          * is no link.
5140          */
5141         e1000_clear_hw_cntrs_ich8lan(hw);
5142
5143         return ret_val;
5144 }
5145
5146 /**
5147  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5148  *  @hw: pointer to the HW structure
5149  *
5150  *  Sets/Clears required hardware bits necessary for correctly setting up the
5151  *  hardware for transmit and receive.
5152  **/
5153 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5154 {
5155         u32 reg;
5156
5157         DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5158
5159         /* Extended Device Control */
5160         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5161         reg |= (1 << 22);
5162         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
5163         if (hw->mac.type >= e1000_pchlan)
5164                 reg |= E1000_CTRL_EXT_PHYPDEN;
5165         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5166
5167         /* Transmit Descriptor Control 0 */
5168         reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5169         reg |= (1 << 22);
5170         E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5171
5172         /* Transmit Descriptor Control 1 */
5173         reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5174         reg |= (1 << 22);
5175         E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5176
5177         /* Transmit Arbitration Control 0 */
5178         reg = E1000_READ_REG(hw, E1000_TARC(0));
5179         if (hw->mac.type == e1000_ich8lan)
5180                 reg |= (1 << 28) | (1 << 29);
5181         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5182         E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5183
5184         /* Transmit Arbitration Control 1 */
5185         reg = E1000_READ_REG(hw, E1000_TARC(1));
5186         if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5187                 reg &= ~(1 << 28);
5188         else
5189                 reg |= (1 << 28);
5190         reg |= (1 << 24) | (1 << 26) | (1 << 30);
5191         E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5192
5193         /* Device Status */
5194         if (hw->mac.type == e1000_ich8lan) {
5195                 reg = E1000_READ_REG(hw, E1000_STATUS);
5196                 reg &= ~(1 << 31);
5197                 E1000_WRITE_REG(hw, E1000_STATUS, reg);
5198         }
5199
5200         /* work-around descriptor data corruption issue during nfs v2 udp
5201          * traffic, just disable the nfs filtering capability
5202          */
5203         reg = E1000_READ_REG(hw, E1000_RFCTL);
5204         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5205
5206         /* Disable IPv6 extension header parsing because some malformed
5207          * IPv6 headers can hang the Rx.
5208          */
5209         if (hw->mac.type == e1000_ich8lan)
5210                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5211         E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5212
5213         /* Enable ECC on Lynxpoint */
5214         if (hw->mac.type >= e1000_pch_lpt) {
5215                 reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5216                 reg |= E1000_PBECCSTS_ECC_ENABLE;
5217                 E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5218
5219                 reg = E1000_READ_REG(hw, E1000_CTRL);
5220                 reg |= E1000_CTRL_MEHE;
5221                 E1000_WRITE_REG(hw, E1000_CTRL, reg);
5222         }
5223
5224         return;
5225 }
5226
5227 /**
5228  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5229  *  @hw: pointer to the HW structure
5230  *
5231  *  Determines which flow control settings to use, then configures flow
5232  *  control.  Calls the appropriate media-specific link configuration
5233  *  function.  Assuming the adapter has a valid link partner, a valid link
5234  *  should be established.  Assumes the hardware has previously been reset
5235  *  and the transmitter and receiver are not enabled.
5236  **/
5237 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5238 {
5239         s32 ret_val;
5240
5241         DEBUGFUNC("e1000_setup_link_ich8lan");
5242
5243         if (hw->phy.ops.check_reset_block(hw))
5244                 return E1000_SUCCESS;
5245
5246         /* ICH parts do not have a word in the NVM to determine
5247          * the default flow control setting, so we explicitly
5248          * set it to full.
5249          */
5250         if (hw->fc.requested_mode == e1000_fc_default)
5251                 hw->fc.requested_mode = e1000_fc_full;
5252
5253         /* Save off the requested flow control mode for use later.  Depending
5254          * on the link partner's capabilities, we may or may not use this mode.
5255          */
5256         hw->fc.current_mode = hw->fc.requested_mode;
5257
5258         DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5259                 hw->fc.current_mode);
5260
5261         /* Continue to configure the copper link. */
5262         ret_val = hw->mac.ops.setup_physical_interface(hw);
5263         if (ret_val)
5264                 return ret_val;
5265
5266         E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5267         if ((hw->phy.type == e1000_phy_82578) ||
5268             (hw->phy.type == e1000_phy_82579) ||
5269             (hw->phy.type == e1000_phy_i217) ||
5270             (hw->phy.type == e1000_phy_82577)) {
5271                 E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5272
5273                 ret_val = hw->phy.ops.write_reg(hw,
5274                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
5275                                              hw->fc.pause_time);
5276                 if (ret_val)
5277                         return ret_val;
5278         }
5279
5280         return e1000_set_fc_watermarks_generic(hw);
5281 }
5282
5283 /**
5284  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5285  *  @hw: pointer to the HW structure
5286  *
5287  *  Configures the kumeran interface to the PHY to wait the appropriate time
5288  *  when polling the PHY, then call the generic setup_copper_link to finish
5289  *  configuring the copper link.
5290  **/
5291 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5292 {
5293         u32 ctrl;
5294         s32 ret_val;
5295         u16 reg_data;
5296
5297         DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5298
5299         ctrl = E1000_READ_REG(hw, E1000_CTRL);
5300         ctrl |= E1000_CTRL_SLU;
5301         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5302         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5303
5304         /* Set the mac to wait the maximum time between each iteration
5305          * and increase the max iterations when polling the phy;
5306          * this fixes erroneous timeouts at 10Mbps.
5307          */
5308         ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5309                                                0xFFFF);
5310         if (ret_val)
5311                 return ret_val;
5312         ret_val = e1000_read_kmrn_reg_generic(hw,
5313                                               E1000_KMRNCTRLSTA_INBAND_PARAM,
5314                                               &reg_data);
5315         if (ret_val)
5316                 return ret_val;
5317         reg_data |= 0x3F;
5318         ret_val = e1000_write_kmrn_reg_generic(hw,
5319                                                E1000_KMRNCTRLSTA_INBAND_PARAM,
5320                                                reg_data);
5321         if (ret_val)
5322                 return ret_val;
5323
5324         switch (hw->phy.type) {
5325         case e1000_phy_igp_3:
5326                 ret_val = e1000_copper_link_setup_igp(hw);
5327                 if (ret_val)
5328                         return ret_val;
5329                 break;
5330         case e1000_phy_bm:
5331         case e1000_phy_82578:
5332                 ret_val = e1000_copper_link_setup_m88(hw);
5333                 if (ret_val)
5334                         return ret_val;
5335                 break;
5336         case e1000_phy_82577:
5337         case e1000_phy_82579:
5338                 ret_val = e1000_copper_link_setup_82577(hw);
5339                 if (ret_val)
5340                         return ret_val;
5341                 break;
5342         case e1000_phy_ife:
5343                 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5344                                                &reg_data);
5345                 if (ret_val)
5346                         return ret_val;
5347
5348                 reg_data &= ~IFE_PMC_AUTO_MDIX;
5349
5350                 switch (hw->phy.mdix) {
5351                 case 1:
5352                         reg_data &= ~IFE_PMC_FORCE_MDIX;
5353                         break;
5354                 case 2:
5355                         reg_data |= IFE_PMC_FORCE_MDIX;
5356                         break;
5357                 case 0:
5358                 default:
5359                         reg_data |= IFE_PMC_AUTO_MDIX;
5360                         break;
5361                 }
5362                 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5363                                                 reg_data);
5364                 if (ret_val)
5365                         return ret_val;
5366                 break;
5367         default:
5368                 break;
5369         }
5370
5371         return e1000_setup_copper_link_generic(hw);
5372 }
5373
5374 /**
5375  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5376  *  @hw: pointer to the HW structure
5377  *
5378  *  Calls the PHY specific link setup function and then calls the
5379  *  generic setup_copper_link to finish configuring the link for
5380  *  Lynxpoint PCH devices
5381  **/
5382 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5383 {
5384         u32 ctrl;
5385         s32 ret_val;
5386
5387         DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5388
5389         ctrl = E1000_READ_REG(hw, E1000_CTRL);
5390         ctrl |= E1000_CTRL_SLU;
5391         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5392         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5393
5394         ret_val = e1000_copper_link_setup_82577(hw);
5395         if (ret_val)
5396                 return ret_val;
5397
5398         return e1000_setup_copper_link_generic(hw);
5399 }
5400
5401 /**
5402  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5403  *  @hw: pointer to the HW structure
5404  *  @speed: pointer to store current link speed
5405  *  @duplex: pointer to store the current link duplex
5406  *
5407  *  Calls the generic get_speed_and_duplex to retrieve the current link
5408  *  information and then calls the Kumeran lock loss workaround for links at
5409  *  gigabit speeds.
5410  **/
5411 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5412                                           u16 *duplex)
5413 {
5414         s32 ret_val;
5415
5416         DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5417
5418         ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5419         if (ret_val)
5420                 return ret_val;
5421
5422         if ((hw->mac.type == e1000_ich8lan) &&
5423             (hw->phy.type == e1000_phy_igp_3) &&
5424             (*speed == SPEED_1000)) {
5425                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5426         }
5427
5428         return ret_val;
5429 }
5430
5431 /**
5432  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5433  *  @hw: pointer to the HW structure
5434  *
5435  *  Work-around for 82566 Kumeran PCS lock loss:
5436  *  On link status change (i.e. PCI reset, speed change) and link is up and
5437  *  speed is gigabit-
5438  *    0) if workaround is optionally disabled do nothing
5439  *    1) wait 1ms for Kumeran link to come up
5440  *    2) check Kumeran Diagnostic register PCS lock loss bit
5441  *    3) if not set the link is locked (all is good), otherwise...
5442  *    4) reset the PHY
5443  *    5) repeat up to 10 times
5444  *  Note: this is only called for IGP3 copper when speed is 1gb.
5445  **/
5446 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5447 {
5448         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5449         u32 phy_ctrl;
5450         s32 ret_val;
5451         u16 i, data;
5452         bool link;
5453
5454         DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5455
5456         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5457                 return E1000_SUCCESS;
5458
5459         /* Make sure link is up before proceeding.  If not just return.
5460          * Attempting this while link is negotiating fouled up link
5461          * stability
5462          */
5463         ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5464         if (!link)
5465                 return E1000_SUCCESS;
5466
5467         for (i = 0; i < 10; i++) {
5468                 /* read once to clear */
5469                 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5470                 if (ret_val)
5471                         return ret_val;
5472                 /* and again to get new status */
5473                 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5474                 if (ret_val)
5475                         return ret_val;
5476
5477                 /* check for PCS lock */
5478                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5479                         return E1000_SUCCESS;
5480
5481                 /* Issue PHY reset */
5482                 hw->phy.ops.reset(hw);
5483                 msec_delay_irq(5);
5484         }
5485         /* Disable GigE link negotiation */
5486         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5487         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5488                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5489         E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5490
5491         /* Call gig speed drop workaround on Gig disable before accessing
5492          * any PHY registers
5493          */
5494         e1000_gig_downshift_workaround_ich8lan(hw);
5495
5496         /* unable to acquire PCS lock */
5497         return -E1000_ERR_PHY;
5498 }
5499
5500 /**
5501  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5502  *  @hw: pointer to the HW structure
5503  *  @state: boolean value used to set the current Kumeran workaround state
5504  *
5505  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
5506  *  /disabled - FALSE).
5507  **/
5508 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5509                                                  bool state)
5510 {
5511         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5512
5513         DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5514
5515         if (hw->mac.type != e1000_ich8lan) {
5516                 DEBUGOUT("Workaround applies to ICH8 only.\n");
5517                 return;
5518         }
5519
5520         dev_spec->kmrn_lock_loss_workaround_enabled = state;
5521
5522         return;
5523 }
5524
5525 /**
5526  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5527  *  @hw: pointer to the HW structure
5528  *
5529  *  Workaround for 82566 power-down on D3 entry:
5530  *    1) disable gigabit link
5531  *    2) write VR power-down enable
5532  *    3) read it back
5533  *  Continue if successful, else issue LCD reset and repeat
5534  **/
5535 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5536 {
5537         u32 reg;
5538         u16 data;
5539         u8  retry = 0;
5540
5541         DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5542
5543         if (hw->phy.type != e1000_phy_igp_3)
5544                 return;
5545
5546         /* Try the workaround twice (if needed) */
5547         do {
5548                 /* Disable link */
5549                 reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5550                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5551                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5552                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5553
5554                 /* Call gig speed drop workaround on Gig disable before
5555                  * accessing any PHY registers
5556                  */
5557                 if (hw->mac.type == e1000_ich8lan)
5558                         e1000_gig_downshift_workaround_ich8lan(hw);
5559
5560                 /* Write VR power-down enable */
5561                 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5562                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5563                 hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5564                                       data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5565
5566                 /* Read it back and test */
5567                 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5568                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5569                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5570                         break;
5571
5572                 /* Issue PHY reset and repeat at most one more time */
5573                 reg = E1000_READ_REG(hw, E1000_CTRL);
5574                 E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5575                 retry++;
5576         } while (retry);
5577 }
5578
5579 /**
5580  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5581  *  @hw: pointer to the HW structure
5582  *
5583  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5584  *  LPLU, Gig disable, MDIC PHY reset):
5585  *    1) Set Kumeran Near-end loopback
5586  *    2) Clear Kumeran Near-end loopback
5587  *  Should only be called for ICH8[m] devices with any 1G Phy.
5588  **/
5589 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5590 {
5591         s32 ret_val;
5592         u16 reg_data;
5593
5594         DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5595
5596         if ((hw->mac.type != e1000_ich8lan) ||
5597             (hw->phy.type == e1000_phy_ife))
5598                 return;
5599
5600         ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5601                                               &reg_data);
5602         if (ret_val)
5603                 return;
5604         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5605         ret_val = e1000_write_kmrn_reg_generic(hw,
5606                                                E1000_KMRNCTRLSTA_DIAG_OFFSET,
5607                                                reg_data);
5608         if (ret_val)
5609                 return;
5610         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5611         e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5612                                      reg_data);
5613 }
5614
5615 /**
5616  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5617  *  @hw: pointer to the HW structure
5618  *
5619  *  During S0 to Sx transition, it is possible the link remains at gig
5620  *  instead of negotiating to a lower speed.  Before going to Sx, set
5621  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5622  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5623  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5624  *  needs to be written.
5625  *  Parts that support (and are linked to a partner which support) EEE in
5626  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5627  *  than 10Mbps w/o EEE.
5628  **/
5629 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5630 {
5631         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5632         u32 phy_ctrl;
5633         s32 ret_val;
5634
5635         DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5636
5637         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5638         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5639
5640         if (hw->phy.type == e1000_phy_i217) {
5641                 u16 phy_reg, device_id = hw->device_id;
5642
5643                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5644                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5645                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5646                     (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5647                     (hw->mac.type >= e1000_pch_spt)) {
5648                         u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5649
5650                         E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5651                                         fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5652                 }
5653
5654                 ret_val = hw->phy.ops.acquire(hw);
5655                 if (ret_val)
5656                         goto out;
5657
5658                 if (!dev_spec->eee_disable) {
5659                         u16 eee_advert;
5660
5661                         ret_val =
5662                             e1000_read_emi_reg_locked(hw,
5663                                                       I217_EEE_ADVERTISEMENT,
5664                                                       &eee_advert);
5665                         if (ret_val)
5666                                 goto release;
5667
5668                         /* Disable LPLU if both link partners support 100BaseT
5669                          * EEE and 100Full is advertised on both ends of the
5670                          * link, and enable Auto Enable LPI since there will
5671                          * be no driver to enable LPI while in Sx.
5672                          */
5673                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5674                             (dev_spec->eee_lp_ability &
5675                              I82579_EEE_100_SUPPORTED) &&
5676                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5677                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5678                                               E1000_PHY_CTRL_NOND0A_LPLU);
5679
5680                                 /* Set Auto Enable LPI after link up */
5681                                 hw->phy.ops.read_reg_locked(hw,
5682                                                             I217_LPI_GPIO_CTRL,
5683                                                             &phy_reg);
5684                                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5685                                 hw->phy.ops.write_reg_locked(hw,
5686                                                              I217_LPI_GPIO_CTRL,
5687                                                              phy_reg);
5688                         }
5689                 }
5690
5691                 /* For i217 Intel Rapid Start Technology support,
5692                  * when the system is going into Sx and no manageability engine
5693                  * is present, the driver must configure proxy to reset only on
5694                  * power good.  LPI (Low Power Idle) state must also reset only
5695                  * on power good, as well as the MTA (Multicast table array).
5696                  * The SMBus release must also be disabled on LCD reset.
5697                  */
5698                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
5699                       E1000_ICH_FWSM_FW_VALID)) {
5700                         /* Enable proxy to reset only on power good. */
5701                         hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5702                                                     &phy_reg);
5703                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5704                         hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5705                                                      phy_reg);
5706
5707                         /* Set bit enable LPI (EEE) to reset only on
5708                          * power good.
5709                         */
5710                         hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5711                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5712                         hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5713
5714                         /* Disable the SMB release on LCD reset. */
5715                         hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5716                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5717                         hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5718                 }
5719
5720                 /* Enable MTA to reset for Intel Rapid Start Technology
5721                  * Support
5722                  */
5723                 hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5724                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5725                 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5726
5727 release:
5728                 hw->phy.ops.release(hw);
5729         }
5730 out:
5731         E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5732
5733         if (hw->mac.type == e1000_ich8lan)
5734                 e1000_gig_downshift_workaround_ich8lan(hw);
5735
5736         if (hw->mac.type >= e1000_pchlan) {
5737                 e1000_oem_bits_config_ich8lan(hw, FALSE);
5738
5739                 /* Reset PHY to activate OEM bits on 82577/8 */
5740                 if (hw->mac.type == e1000_pchlan)
5741                         e1000_phy_hw_reset_generic(hw);
5742
5743                 ret_val = hw->phy.ops.acquire(hw);
5744                 if (ret_val)
5745                         return;
5746                 e1000_write_smbus_addr(hw);
5747                 hw->phy.ops.release(hw);
5748         }
5749
5750         return;
5751 }
5752
5753 /**
5754  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5755  *  @hw: pointer to the HW structure
5756  *
5757  *  During Sx to S0 transitions on non-managed devices or managed devices
5758  *  on which PHY resets are not blocked, if the PHY registers cannot be
5759  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5760  *  the PHY.
5761  *  On i217, setup Intel Rapid Start Technology.
5762  **/
5763 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5764 {
5765         s32 ret_val;
5766
5767         DEBUGFUNC("e1000_resume_workarounds_pchlan");
5768         if (hw->mac.type < e1000_pch2lan)
5769                 return E1000_SUCCESS;
5770
5771         ret_val = e1000_init_phy_workarounds_pchlan(hw);
5772         if (ret_val) {
5773                 DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5774                 return ret_val;
5775         }
5776
5777         /* For i217 Intel Rapid Start Technology support when the system
5778          * is transitioning from Sx and no manageability engine is present
5779          * configure SMBus to restore on reset, disable proxy, and enable
5780          * the reset on MTA (Multicast table array).
5781          */
5782         if (hw->phy.type == e1000_phy_i217) {
5783                 u16 phy_reg;
5784
5785                 ret_val = hw->phy.ops.acquire(hw);
5786                 if (ret_val) {
5787                         DEBUGOUT("Failed to setup iRST\n");
5788                         return ret_val;
5789                 }
5790
5791                 /* Clear Auto Enable LPI after link up */
5792                 hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5793                 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5794                 hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5795
5796                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
5797                     E1000_ICH_FWSM_FW_VALID)) {
5798                         /* Restore clear on SMB if no manageability engine
5799                          * is present
5800                          */
5801                         ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5802                                                               &phy_reg);
5803                         if (ret_val)
5804                                 goto release;
5805                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5806                         hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5807
5808                         /* Disable Proxy */
5809                         hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5810                 }
5811                 /* Enable reset on MTA */
5812                 ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5813                                                       &phy_reg);
5814                 if (ret_val)
5815                         goto release;
5816                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5817                 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5818 release:
5819                 if (ret_val)
5820                         DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5821                 hw->phy.ops.release(hw);
5822                 return ret_val;
5823         }
5824         return E1000_SUCCESS;
5825 }
5826
5827 /**
5828  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5829  *  @hw: pointer to the HW structure
5830  *
5831  *  Return the LED back to the default configuration.
5832  **/
5833 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5834 {
5835         DEBUGFUNC("e1000_cleanup_led_ich8lan");
5836
5837         if (hw->phy.type == e1000_phy_ife)
5838                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5839                                              0);
5840
5841         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5842         return E1000_SUCCESS;
5843 }
5844
5845 /**
5846  *  e1000_led_on_ich8lan - Turn LEDs on
5847  *  @hw: pointer to the HW structure
5848  *
5849  *  Turn on the LEDs.
5850  **/
5851 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5852 {
5853         DEBUGFUNC("e1000_led_on_ich8lan");
5854
5855         if (hw->phy.type == e1000_phy_ife)
5856                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5857                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5858
5859         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5860         return E1000_SUCCESS;
5861 }
5862
5863 /**
5864  *  e1000_led_off_ich8lan - Turn LEDs off
5865  *  @hw: pointer to the HW structure
5866  *
5867  *  Turn off the LEDs.
5868  **/
5869 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5870 {
5871         DEBUGFUNC("e1000_led_off_ich8lan");
5872
5873         if (hw->phy.type == e1000_phy_ife)
5874                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5875                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5876
5877         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5878         return E1000_SUCCESS;
5879 }
5880
5881 /**
5882  *  e1000_setup_led_pchlan - Configures SW controllable LED
5883  *  @hw: pointer to the HW structure
5884  *
5885  *  This prepares the SW controllable LED for use.
5886  **/
5887 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5888 {
5889         DEBUGFUNC("e1000_setup_led_pchlan");
5890
5891         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5892                                      (u16)hw->mac.ledctl_mode1);
5893 }
5894
5895 /**
5896  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5897  *  @hw: pointer to the HW structure
5898  *
5899  *  Return the LED back to the default configuration.
5900  **/
5901 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5902 {
5903         DEBUGFUNC("e1000_cleanup_led_pchlan");
5904
5905         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5906                                      (u16)hw->mac.ledctl_default);
5907 }
5908
5909 /**
5910  *  e1000_led_on_pchlan - Turn LEDs on
5911  *  @hw: pointer to the HW structure
5912  *
5913  *  Turn on the LEDs.
5914  **/
5915 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5916 {
5917         u16 data = (u16)hw->mac.ledctl_mode2;
5918         u32 i, led;
5919
5920         DEBUGFUNC("e1000_led_on_pchlan");
5921
5922         /* If no link, then turn LED on by setting the invert bit
5923          * for each LED that's mode is "link_up" in ledctl_mode2.
5924          */
5925         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5926                 for (i = 0; i < 3; i++) {
5927                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5928                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5929                             E1000_LEDCTL_MODE_LINK_UP)
5930                                 continue;
5931                         if (led & E1000_PHY_LED0_IVRT)
5932                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5933                         else
5934                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5935                 }
5936         }
5937
5938         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5939 }
5940
5941 /**
5942  *  e1000_led_off_pchlan - Turn LEDs off
5943  *  @hw: pointer to the HW structure
5944  *
5945  *  Turn off the LEDs.
5946  **/
5947 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5948 {
5949         u16 data = (u16)hw->mac.ledctl_mode1;
5950         u32 i, led;
5951
5952         DEBUGFUNC("e1000_led_off_pchlan");
5953
5954         /* If no link, then turn LED off by clearing the invert bit
5955          * for each LED that's mode is "link_up" in ledctl_mode1.
5956          */
5957         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5958                 for (i = 0; i < 3; i++) {
5959                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5960                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5961                             E1000_LEDCTL_MODE_LINK_UP)
5962                                 continue;
5963                         if (led & E1000_PHY_LED0_IVRT)
5964                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5965                         else
5966                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5967                 }
5968         }
5969
5970         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5971 }
5972
5973 /**
5974  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5975  *  @hw: pointer to the HW structure
5976  *
5977  *  Read appropriate register for the config done bit for completion status
5978  *  and configure the PHY through s/w for EEPROM-less parts.
5979  *
5980  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5981  *  config done bit, so only an error is logged and continues.  If we were
5982  *  to return with error, EEPROM-less silicon would not be able to be reset
5983  *  or change link.
5984  **/
5985 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5986 {
5987         s32 ret_val = E1000_SUCCESS;
5988         u32 bank = 0;
5989         u32 status;
5990
5991         DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5992
5993         e1000_get_cfg_done_generic(hw);
5994
5995         /* Wait for indication from h/w that it has completed basic config */
5996         if (hw->mac.type >= e1000_ich10lan) {
5997                 e1000_lan_init_done_ich8lan(hw);
5998         } else {
5999                 ret_val = e1000_get_auto_rd_done_generic(hw);
6000                 if (ret_val) {
6001                         /* When auto config read does not complete, do not
6002                          * return with an error. This can happen in situations
6003                          * where there is no eeprom and prevents getting link.
6004                          */
6005                         DEBUGOUT("Auto Read Done did not complete\n");
6006                         ret_val = E1000_SUCCESS;
6007                 }
6008         }
6009
6010         /* Clear PHY Reset Asserted bit */
6011         status = E1000_READ_REG(hw, E1000_STATUS);
6012         if (status & E1000_STATUS_PHYRA)
6013                 E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
6014         else
6015                 DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
6016
6017         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
6018         if (hw->mac.type <= e1000_ich9lan) {
6019                 if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
6020                     (hw->phy.type == e1000_phy_igp_3)) {
6021                         e1000_phy_init_script_igp3(hw);
6022                 }
6023         } else {
6024                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
6025                         /* Maybe we should do a basic PHY config */
6026                         DEBUGOUT("EEPROM not present\n");
6027                         ret_val = -E1000_ERR_CONFIG;
6028                 }
6029         }
6030
6031         return ret_val;
6032 }
6033
6034 /**
6035  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
6036  * @hw: pointer to the HW structure
6037  *
6038  * In the case of a PHY power down to save power, or to turn off link during a
6039  * driver unload, or wake on lan is not enabled, remove the link.
6040  **/
6041 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
6042 {
6043         /* If the management interface is not enabled, then power down */
6044         if (!(hw->mac.ops.check_mng_mode(hw) ||
6045               hw->phy.ops.check_reset_block(hw)))
6046                 e1000_power_down_phy_copper(hw);
6047
6048         return;
6049 }
6050
6051 /**
6052  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
6053  *  @hw: pointer to the HW structure
6054  *
6055  *  Clears hardware counters specific to the silicon family and calls
6056  *  clear_hw_cntrs_generic to clear all general purpose counters.
6057  **/
6058 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6059 {
6060         u16 phy_data;
6061         s32 ret_val;
6062
6063         DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6064
6065         e1000_clear_hw_cntrs_base_generic(hw);
6066
6067         E1000_READ_REG(hw, E1000_ALGNERRC);
6068         E1000_READ_REG(hw, E1000_RXERRC);
6069         E1000_READ_REG(hw, E1000_TNCRS);
6070         E1000_READ_REG(hw, E1000_CEXTERR);
6071         E1000_READ_REG(hw, E1000_TSCTC);
6072         E1000_READ_REG(hw, E1000_TSCTFC);
6073
6074         E1000_READ_REG(hw, E1000_MGTPRC);
6075         E1000_READ_REG(hw, E1000_MGTPDC);
6076         E1000_READ_REG(hw, E1000_MGTPTC);
6077
6078         E1000_READ_REG(hw, E1000_IAC);
6079         E1000_READ_REG(hw, E1000_ICRXOC);
6080
6081         /* Clear PHY statistics registers */
6082         if ((hw->phy.type == e1000_phy_82578) ||
6083             (hw->phy.type == e1000_phy_82579) ||
6084             (hw->phy.type == e1000_phy_i217) ||
6085             (hw->phy.type == e1000_phy_82577)) {
6086                 ret_val = hw->phy.ops.acquire(hw);
6087                 if (ret_val)
6088                         return;
6089                 ret_val = hw->phy.ops.set_page(hw,
6090                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
6091                 if (ret_val)
6092                         goto release;
6093                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6094                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6095                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6096                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6097                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6098                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6099                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6100                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6101                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6102                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6103                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6104                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6105                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6106                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6107 release:
6108                 hw->phy.ops.release(hw);
6109         }
6110 }
6111