]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/e1000/e1000_ich8lan.c
MFV r276759: libpcap 1.6.2.
[FreeBSD/FreeBSD.git] / sys / dev / e1000 / e1000_ich8lan.c
1 /******************************************************************************
2
3   Copyright (c) 2001-2014, Intel Corporation 
4   All rights reserved.
5   
6   Redistribution and use in source and binary forms, with or without 
7   modification, are permitted provided that the following conditions are met:
8   
9    1. Redistributions of source code must retain the above copyright notice, 
10       this list of conditions and the following disclaimer.
11   
12    2. Redistributions in binary form must reproduce the above copyright 
13       notice, this list of conditions and the following disclaimer in the 
14       documentation and/or other materials provided with the distribution.
15   
16    3. Neither the name of the Intel Corporation nor the names of its 
17       contributors may be used to endorse or promote products derived from 
18       this software without specific prior written permission.
19   
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31
32 ******************************************************************************/
33 /*$FreeBSD$*/
34
35 /* 82562G 10/100 Network Connection
36  * 82562G-2 10/100 Network Connection
37  * 82562GT 10/100 Network Connection
38  * 82562GT-2 10/100 Network Connection
39  * 82562V 10/100 Network Connection
40  * 82562V-2 10/100 Network Connection
41  * 82566DC-2 Gigabit Network Connection
42  * 82566DC Gigabit Network Connection
43  * 82566DM-2 Gigabit Network Connection
44  * 82566DM Gigabit Network Connection
45  * 82566MC Gigabit Network Connection
46  * 82566MM Gigabit Network Connection
47  * 82567LM Gigabit Network Connection
48  * 82567LF Gigabit Network Connection
49  * 82567V Gigabit Network Connection
50  * 82567LM-2 Gigabit Network Connection
51  * 82567LF-2 Gigabit Network Connection
52  * 82567V-2 Gigabit Network Connection
53  * 82567LF-3 Gigabit Network Connection
54  * 82567LM-3 Gigabit Network Connection
55  * 82567LM-4 Gigabit Network Connection
56  * 82577LM Gigabit Network Connection
57  * 82577LC Gigabit Network Connection
58  * 82578DM Gigabit Network Connection
59  * 82578DC Gigabit Network Connection
60  * 82579LM Gigabit Network Connection
61  * 82579V Gigabit Network Connection
62  * Ethernet Connection I217-LM
63  * Ethernet Connection I217-V
64  * Ethernet Connection I218-V
65  * Ethernet Connection I218-LM
66  * Ethernet Connection (2) I218-LM
67  * Ethernet Connection (2) I218-V
68  * Ethernet Connection (3) I218-LM
69  * Ethernet Connection (3) I218-V
70  */
71
72 #include "e1000_api.h"
73
74 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
75 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
76 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
77 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
78 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
80 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
81 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
82 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
83 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
84                                               u8 *mc_addr_list,
85                                               u32 mc_addr_count);
86 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
87 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
89 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
90                                             bool active);
91 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
92                                             bool active);
93 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
94                                    u16 words, u16 *data);
95 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
96                                     u16 words, u16 *data);
97 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
98 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
99 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
100                                             u16 *data);
101 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
102 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
103 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
104 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
105 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
106 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
108 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
109                                            u16 *speed, u16 *duplex);
110 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
111 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
112 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
113 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
114 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
115 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
116 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
117 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
118 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
119 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
120 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
121 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
122 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
123                                           u32 offset, u8 *data);
124 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125                                           u8 size, u16 *data);
126 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
127                                           u32 offset, u16 *data);
128 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
129                                                  u32 offset, u8 byte);
130 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
131 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
132 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
133 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
134 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
135 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
136 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
137
138 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
139 /* Offset 04h HSFSTS */
140 union ich8_hws_flash_status {
141         struct ich8_hsfsts {
142                 u16 flcdone:1; /* bit 0 Flash Cycle Done */
143                 u16 flcerr:1; /* bit 1 Flash Cycle Error */
144                 u16 dael:1; /* bit 2 Direct Access error Log */
145                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
146                 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
147                 u16 reserved1:2; /* bit 13:6 Reserved */
148                 u16 reserved2:6; /* bit 13:6 Reserved */
149                 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
150                 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
151         } hsf_status;
152         u16 regval;
153 };
154
155 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
156 /* Offset 06h FLCTL */
157 union ich8_hws_flash_ctrl {
158         struct ich8_hsflctl {
159                 u16 flcgo:1;   /* 0 Flash Cycle Go */
160                 u16 flcycle:2;   /* 2:1 Flash Cycle */
161                 u16 reserved:5;   /* 7:3 Reserved  */
162                 u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
163                 u16 flockdn:6;   /* 15:10 Reserved */
164         } hsf_ctrl;
165         u16 regval;
166 };
167
168 /* ICH Flash Region Access Permissions */
169 union ich8_hws_flash_regacc {
170         struct ich8_flracc {
171                 u32 grra:8; /* 0:7 GbE region Read Access */
172                 u32 grwa:8; /* 8:15 GbE region Write Access */
173                 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
174                 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
175         } hsf_flregacc;
176         u16 regval;
177 };
178
179 /**
180  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
181  *  @hw: pointer to the HW structure
182  *
183  *  Test access to the PHY registers by reading the PHY ID registers.  If
184  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
185  *  otherwise assume the read PHY ID is correct if it is valid.
186  *
187  *  Assumes the sw/fw/hw semaphore is already acquired.
188  **/
189 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
190 {
191         u16 phy_reg = 0;
192         u32 phy_id = 0;
193         s32 ret_val = 0;
194         u16 retry_count;
195         u32 mac_reg = 0;
196
197         for (retry_count = 0; retry_count < 2; retry_count++) {
198                 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
199                 if (ret_val || (phy_reg == 0xFFFF))
200                         continue;
201                 phy_id = (u32)(phy_reg << 16);
202
203                 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
204                 if (ret_val || (phy_reg == 0xFFFF)) {
205                         phy_id = 0;
206                         continue;
207                 }
208                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
209                 break;
210         }
211
212         if (hw->phy.id) {
213                 if  (hw->phy.id == phy_id)
214                         goto out;
215         } else if (phy_id) {
216                 hw->phy.id = phy_id;
217                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
218                 goto out;
219         }
220
221         /* In case the PHY needs to be in mdio slow mode,
222          * set slow mode and try to get the PHY id again.
223          */
224         if (hw->mac.type < e1000_pch_lpt) {
225                 hw->phy.ops.release(hw);
226                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
227                 if (!ret_val)
228                         ret_val = e1000_get_phy_id(hw);
229                 hw->phy.ops.acquire(hw);
230         }
231
232         if (ret_val)
233                 return FALSE;
234 out:
235         if (hw->mac.type == e1000_pch_lpt) {
236                 /* Unforce SMBus mode in PHY */
237                 hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
238                 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
239                 hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
240
241                 /* Unforce SMBus mode in MAC */
242                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
243                 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
244                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
245         }
246
247         return TRUE;
248 }
249
250 /**
251  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
252  *  @hw: pointer to the HW structure
253  *
254  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
255  *  used to reset the PHY to a quiescent state when necessary.
256  **/
257 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
258 {
259         u32 mac_reg;
260
261         DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
262
263         /* Set Phy Config Counter to 50msec */
264         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
265         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
266         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
267         E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
268
269         /* Toggle LANPHYPC Value bit */
270         mac_reg = E1000_READ_REG(hw, E1000_CTRL);
271         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
272         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
273         E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
274         E1000_WRITE_FLUSH(hw);
275         usec_delay(10);
276         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
277         E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
278         E1000_WRITE_FLUSH(hw);
279
280         if (hw->mac.type < e1000_pch_lpt) {
281                 msec_delay(50);
282         } else {
283                 u16 count = 20;
284
285                 do {
286                         msec_delay(5);
287                 } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
288                            E1000_CTRL_EXT_LPCD) && count--);
289
290                 msec_delay(30);
291         }
292 }
293
294 /**
295  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
296  *  @hw: pointer to the HW structure
297  *
298  *  Workarounds/flow necessary for PHY initialization during driver load
299  *  and resume paths.
300  **/
301 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
302 {
303         u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
304         s32 ret_val;
305
306         DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
307
308         /* Gate automatic PHY configuration by hardware on managed and
309          * non-managed 82579 and newer adapters.
310          */
311         e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
312
313         /* It is not possible to be certain of the current state of ULP
314          * so forcibly disable it.
315          */
316         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
317         e1000_disable_ulp_lpt_lp(hw, TRUE);
318
319         ret_val = hw->phy.ops.acquire(hw);
320         if (ret_val) {
321                 DEBUGOUT("Failed to initialize PHY flow\n");
322                 goto out;
323         }
324
325         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
326          * inaccessible and resetting the PHY is not blocked, toggle the
327          * LANPHYPC Value bit to force the interconnect to PCIe mode.
328          */
329         switch (hw->mac.type) {
330         case e1000_pch_lpt:
331                 if (e1000_phy_is_accessible_pchlan(hw))
332                         break;
333
334                 /* Before toggling LANPHYPC, see if PHY is accessible by
335                  * forcing MAC to SMBus mode first.
336                  */
337                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
338                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
339                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
340
341                 /* Wait 50 milliseconds for MAC to finish any retries
342                  * that it might be trying to perform from previous
343                  * attempts to acknowledge any phy read requests.
344                  */
345                  msec_delay(50);
346
347                 /* fall-through */
348         case e1000_pch2lan:
349                 if (e1000_phy_is_accessible_pchlan(hw))
350                         break;
351
352                 /* fall-through */
353         case e1000_pchlan:
354                 if ((hw->mac.type == e1000_pchlan) &&
355                     (fwsm & E1000_ICH_FWSM_FW_VALID))
356                         break;
357
358                 if (hw->phy.ops.check_reset_block(hw)) {
359                         DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
360                         ret_val = -E1000_ERR_PHY;
361                         break;
362                 }
363
364                 /* Toggle LANPHYPC Value bit */
365                 e1000_toggle_lanphypc_pch_lpt(hw);
366                 if (hw->mac.type >= e1000_pch_lpt) {
367                         if (e1000_phy_is_accessible_pchlan(hw))
368                                 break;
369
370                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
371                          * so ensure that the MAC is also out of SMBus mode
372                          */
373                         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
374                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
375                         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
376
377                         if (e1000_phy_is_accessible_pchlan(hw))
378                                 break;
379
380                         ret_val = -E1000_ERR_PHY;
381                 }
382                 break;
383         default:
384                 break;
385         }
386
387         hw->phy.ops.release(hw);
388         if (!ret_val) {
389
390                 /* Check to see if able to reset PHY.  Print error if not */
391                 if (hw->phy.ops.check_reset_block(hw)) {
392                         ERROR_REPORT("Reset blocked by ME\n");
393                         goto out;
394                 }
395
396                 /* Reset the PHY before any access to it.  Doing so, ensures
397                  * that the PHY is in a known good state before we read/write
398                  * PHY registers.  The generic reset is sufficient here,
399                  * because we haven't determined the PHY type yet.
400                  */
401                 ret_val = e1000_phy_hw_reset_generic(hw);
402                 if (ret_val)
403                         goto out;
404
405                 /* On a successful reset, possibly need to wait for the PHY
406                  * to quiesce to an accessible state before returning control
407                  * to the calling function.  If the PHY does not quiesce, then
408                  * return E1000E_BLK_PHY_RESET, as this is the condition that
409                  *  the PHY is in.
410                  */
411                 ret_val = hw->phy.ops.check_reset_block(hw);
412                 if (ret_val)
413                         ERROR_REPORT("ME blocked access to PHY after reset\n");
414         }
415
416 out:
417         /* Ungate automatic PHY configuration on non-managed 82579 */
418         if ((hw->mac.type == e1000_pch2lan) &&
419             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
420                 msec_delay(10);
421                 e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
422         }
423
424         return ret_val;
425 }
426
427 /**
428  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
429  *  @hw: pointer to the HW structure
430  *
431  *  Initialize family-specific PHY parameters and function pointers.
432  **/
433 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
434 {
435         struct e1000_phy_info *phy = &hw->phy;
436         s32 ret_val;
437
438         DEBUGFUNC("e1000_init_phy_params_pchlan");
439
440         phy->addr               = 1;
441         phy->reset_delay_us     = 100;
442
443         phy->ops.acquire        = e1000_acquire_swflag_ich8lan;
444         phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
445         phy->ops.get_cfg_done   = e1000_get_cfg_done_ich8lan;
446         phy->ops.set_page       = e1000_set_page_igp;
447         phy->ops.read_reg       = e1000_read_phy_reg_hv;
448         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449         phy->ops.read_reg_page  = e1000_read_phy_reg_page_hv;
450         phy->ops.release        = e1000_release_swflag_ich8lan;
451         phy->ops.reset          = e1000_phy_hw_reset_ich8lan;
452         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
453         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
454         phy->ops.write_reg      = e1000_write_phy_reg_hv;
455         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
456         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
457         phy->ops.power_up       = e1000_power_up_phy_copper;
458         phy->ops.power_down     = e1000_power_down_phy_copper_ich8lan;
459         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
460
461         phy->id = e1000_phy_unknown;
462
463         ret_val = e1000_init_phy_workarounds_pchlan(hw);
464         if (ret_val)
465                 return ret_val;
466
467         if (phy->id == e1000_phy_unknown)
468                 switch (hw->mac.type) {
469                 default:
470                         ret_val = e1000_get_phy_id(hw);
471                         if (ret_val)
472                                 return ret_val;
473                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
474                                 break;
475                         /* fall-through */
476                 case e1000_pch2lan:
477                 case e1000_pch_lpt:
478                         /* In case the PHY needs to be in mdio slow mode,
479                          * set slow mode and try to get the PHY id again.
480                          */
481                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
482                         if (ret_val)
483                                 return ret_val;
484                         ret_val = e1000_get_phy_id(hw);
485                         if (ret_val)
486                                 return ret_val;
487                         break;
488                 }
489         phy->type = e1000_get_phy_type_from_id(phy->id);
490
491         switch (phy->type) {
492         case e1000_phy_82577:
493         case e1000_phy_82579:
494         case e1000_phy_i217:
495                 phy->ops.check_polarity = e1000_check_polarity_82577;
496                 phy->ops.force_speed_duplex =
497                         e1000_phy_force_speed_duplex_82577;
498                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
499                 phy->ops.get_info = e1000_get_phy_info_82577;
500                 phy->ops.commit = e1000_phy_sw_reset_generic;
501                 break;
502         case e1000_phy_82578:
503                 phy->ops.check_polarity = e1000_check_polarity_m88;
504                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
505                 phy->ops.get_cable_length = e1000_get_cable_length_m88;
506                 phy->ops.get_info = e1000_get_phy_info_m88;
507                 break;
508         default:
509                 ret_val = -E1000_ERR_PHY;
510                 break;
511         }
512
513         return ret_val;
514 }
515
516 /**
517  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
518  *  @hw: pointer to the HW structure
519  *
520  *  Initialize family-specific PHY parameters and function pointers.
521  **/
522 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
523 {
524         struct e1000_phy_info *phy = &hw->phy;
525         s32 ret_val;
526         u16 i = 0;
527
528         DEBUGFUNC("e1000_init_phy_params_ich8lan");
529
530         phy->addr               = 1;
531         phy->reset_delay_us     = 100;
532
533         phy->ops.acquire        = e1000_acquire_swflag_ich8lan;
534         phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
535         phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
536         phy->ops.get_cfg_done   = e1000_get_cfg_done_ich8lan;
537         phy->ops.read_reg       = e1000_read_phy_reg_igp;
538         phy->ops.release        = e1000_release_swflag_ich8lan;
539         phy->ops.reset          = e1000_phy_hw_reset_ich8lan;
540         phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
541         phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
542         phy->ops.write_reg      = e1000_write_phy_reg_igp;
543         phy->ops.power_up       = e1000_power_up_phy_copper;
544         phy->ops.power_down     = e1000_power_down_phy_copper_ich8lan;
545
546         /* We may need to do this twice - once for IGP and if that fails,
547          * we'll set BM func pointers and try again
548          */
549         ret_val = e1000_determine_phy_address(hw);
550         if (ret_val) {
551                 phy->ops.write_reg = e1000_write_phy_reg_bm;
552                 phy->ops.read_reg  = e1000_read_phy_reg_bm;
553                 ret_val = e1000_determine_phy_address(hw);
554                 if (ret_val) {
555                         DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
556                         return ret_val;
557                 }
558         }
559
560         phy->id = 0;
561         while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
562                (i++ < 100)) {
563                 msec_delay(1);
564                 ret_val = e1000_get_phy_id(hw);
565                 if (ret_val)
566                         return ret_val;
567         }
568
569         /* Verify phy id */
570         switch (phy->id) {
571         case IGP03E1000_E_PHY_ID:
572                 phy->type = e1000_phy_igp_3;
573                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
574                 phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
575                 phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
576                 phy->ops.get_info = e1000_get_phy_info_igp;
577                 phy->ops.check_polarity = e1000_check_polarity_igp;
578                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
579                 break;
580         case IFE_E_PHY_ID:
581         case IFE_PLUS_E_PHY_ID:
582         case IFE_C_E_PHY_ID:
583                 phy->type = e1000_phy_ife;
584                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
585                 phy->ops.get_info = e1000_get_phy_info_ife;
586                 phy->ops.check_polarity = e1000_check_polarity_ife;
587                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
588                 break;
589         case BME1000_E_PHY_ID:
590                 phy->type = e1000_phy_bm;
591                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
592                 phy->ops.read_reg = e1000_read_phy_reg_bm;
593                 phy->ops.write_reg = e1000_write_phy_reg_bm;
594                 phy->ops.commit = e1000_phy_sw_reset_generic;
595                 phy->ops.get_info = e1000_get_phy_info_m88;
596                 phy->ops.check_polarity = e1000_check_polarity_m88;
597                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
598                 break;
599         default:
600                 return -E1000_ERR_PHY;
601                 break;
602         }
603
604         return E1000_SUCCESS;
605 }
606
607 /**
608  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
609  *  @hw: pointer to the HW structure
610  *
611  *  Initialize family-specific NVM parameters and function
612  *  pointers.
613  **/
614 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
615 {
616         struct e1000_nvm_info *nvm = &hw->nvm;
617         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
618         u32 gfpreg, sector_base_addr, sector_end_addr;
619         u16 i;
620
621         DEBUGFUNC("e1000_init_nvm_params_ich8lan");
622
623         /* Can't read flash registers if the register set isn't mapped. */
624         nvm->type = e1000_nvm_flash_sw;
625         if (!hw->flash_address) {
626                 DEBUGOUT("ERROR: Flash registers not mapped\n");
627                 return -E1000_ERR_CONFIG;
628         }
629
630         gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
631
632         /* sector_X_addr is a "sector"-aligned address (4096 bytes)
633          * Add 1 to sector_end_addr since this sector is included in
634          * the overall size.
635          */
636         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638
639         /* flash_base_addr is byte-aligned */
640         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
641
642         /* find total size of the NVM, then cut in half since the total
643          * size represents two separate NVM banks.
644          */
645         nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
646                                 << FLASH_SECTOR_ADDR_SHIFT);
647         nvm->flash_bank_size /= 2;
648         /* Adjust to word count */
649         nvm->flash_bank_size /= sizeof(u16);
650
651         nvm->word_size = E1000_SHADOW_RAM_WORDS;
652
653         /* Clear shadow ram */
654         for (i = 0; i < nvm->word_size; i++) {
655                 dev_spec->shadow_ram[i].modified = FALSE;
656                 dev_spec->shadow_ram[i].value    = 0xFFFF;
657         }
658
659         E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
660         E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
661
662         /* Function Pointers */
663         nvm->ops.acquire        = e1000_acquire_nvm_ich8lan;
664         nvm->ops.release        = e1000_release_nvm_ich8lan;
665         nvm->ops.read           = e1000_read_nvm_ich8lan;
666         nvm->ops.update         = e1000_update_nvm_checksum_ich8lan;
667         nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
668         nvm->ops.validate       = e1000_validate_nvm_checksum_ich8lan;
669         nvm->ops.write          = e1000_write_nvm_ich8lan;
670
671         return E1000_SUCCESS;
672 }
673
674 /**
675  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
676  *  @hw: pointer to the HW structure
677  *
678  *  Initialize family-specific MAC parameters and function
679  *  pointers.
680  **/
681 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
682 {
683         struct e1000_mac_info *mac = &hw->mac;
684 #if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
685         u16 pci_cfg;
686 #endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
687
688         DEBUGFUNC("e1000_init_mac_params_ich8lan");
689
690         /* Set media type function pointer */
691         hw->phy.media_type = e1000_media_type_copper;
692
693         /* Set mta register count */
694         mac->mta_reg_count = 32;
695         /* Set rar entry count */
696         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
697         if (mac->type == e1000_ich8lan)
698                 mac->rar_entry_count--;
699         /* Set if part includes ASF firmware */
700         mac->asf_firmware_present = TRUE;
701         /* FWSM register */
702         mac->has_fwsm = TRUE;
703         /* ARC subsystem not supported */
704         mac->arc_subsystem_valid = FALSE;
705         /* Adaptive IFS supported */
706         mac->adaptive_ifs = TRUE;
707
708         /* Function pointers */
709
710         /* bus type/speed/width */
711         mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
712         /* function id */
713         mac->ops.set_lan_id = e1000_set_lan_id_single_port;
714         /* reset */
715         mac->ops.reset_hw = e1000_reset_hw_ich8lan;
716         /* hw initialization */
717         mac->ops.init_hw = e1000_init_hw_ich8lan;
718         /* link setup */
719         mac->ops.setup_link = e1000_setup_link_ich8lan;
720         /* physical interface setup */
721         mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
722         /* check for link */
723         mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
724         /* link info */
725         mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
726         /* multicast address update */
727         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
728         /* clear hardware counters */
729         mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
730
731         /* LED and other operations */
732         switch (mac->type) {
733         case e1000_ich8lan:
734         case e1000_ich9lan:
735         case e1000_ich10lan:
736                 /* check management mode */
737                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
738                 /* ID LED init */
739                 mac->ops.id_led_init = e1000_id_led_init_generic;
740                 /* blink LED */
741                 mac->ops.blink_led = e1000_blink_led_generic;
742                 /* setup LED */
743                 mac->ops.setup_led = e1000_setup_led_generic;
744                 /* cleanup LED */
745                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
746                 /* turn on/off LED */
747                 mac->ops.led_on = e1000_led_on_ich8lan;
748                 mac->ops.led_off = e1000_led_off_ich8lan;
749                 break;
750         case e1000_pch2lan:
751                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
752                 mac->ops.rar_set = e1000_rar_set_pch2lan;
753                 /* fall-through */
754         case e1000_pch_lpt:
755                 /* multicast address update for pch2 */
756                 mac->ops.update_mc_addr_list =
757                         e1000_update_mc_addr_list_pch2lan;
758         case e1000_pchlan:
759 #if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
760                 /* save PCH revision_id */
761                 e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg);
762                 hw->revision_id = (u8)(pci_cfg &= 0x000F);
763 #endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
764                 /* check management mode */
765                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
766                 /* ID LED init */
767                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
768                 /* setup LED */
769                 mac->ops.setup_led = e1000_setup_led_pchlan;
770                 /* cleanup LED */
771                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
772                 /* turn on/off LED */
773                 mac->ops.led_on = e1000_led_on_pchlan;
774                 mac->ops.led_off = e1000_led_off_pchlan;
775                 break;
776         default:
777                 break;
778         }
779
780         if (mac->type == e1000_pch_lpt) {
781                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
782                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
783                 mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
784                 mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
785         }
786
787         /* Enable PCS Lock-loss workaround for ICH8 */
788         if (mac->type == e1000_ich8lan)
789                 e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
790
791         return E1000_SUCCESS;
792 }
793
794 /**
795  *  __e1000_access_emi_reg_locked - Read/write EMI register
796  *  @hw: pointer to the HW structure
797  *  @addr: EMI address to program
798  *  @data: pointer to value to read/write from/to the EMI address
799  *  @read: boolean flag to indicate read or write
800  *
801  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
802  **/
803 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
804                                          u16 *data, bool read)
805 {
806         s32 ret_val;
807
808         DEBUGFUNC("__e1000_access_emi_reg_locked");
809
810         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
811         if (ret_val)
812                 return ret_val;
813
814         if (read)
815                 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
816                                                       data);
817         else
818                 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
819                                                        *data);
820
821         return ret_val;
822 }
823
824 /**
825  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
826  *  @hw: pointer to the HW structure
827  *  @addr: EMI address to program
828  *  @data: value to be read from the EMI address
829  *
830  *  Assumes the SW/FW/HW Semaphore is already acquired.
831  **/
832 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
833 {
834         DEBUGFUNC("e1000_read_emi_reg_locked");
835
836         return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
837 }
838
839 /**
840  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
841  *  @hw: pointer to the HW structure
842  *  @addr: EMI address to program
843  *  @data: value to be written to the EMI address
844  *
845  *  Assumes the SW/FW/HW Semaphore is already acquired.
846  **/
847 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
848 {
849         DEBUGFUNC("e1000_read_emi_reg_locked");
850
851         return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
852 }
853
854 /**
855  *  e1000_set_eee_pchlan - Enable/disable EEE support
856  *  @hw: pointer to the HW structure
857  *
858  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
859  *  the link and the EEE capabilities of the link partner.  The LPI Control
860  *  register bits will remain set only if/when link is up.
861  *
862  *  EEE LPI must not be asserted earlier than one second after link is up.
863  *  On 82579, EEE LPI should not be enabled until such time otherwise there
864  *  can be link issues with some switches.  Other devices can have EEE LPI
865  *  enabled immediately upon link up since they have a timer in hardware which
866  *  prevents LPI from being asserted too early.
867  **/
868 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
869 {
870         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
871         s32 ret_val;
872         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
873
874         DEBUGFUNC("e1000_set_eee_pchlan");
875
876         switch (hw->phy.type) {
877         case e1000_phy_82579:
878                 lpa = I82579_EEE_LP_ABILITY;
879                 pcs_status = I82579_EEE_PCS_STATUS;
880                 adv_addr = I82579_EEE_ADVERTISEMENT;
881                 break;
882         case e1000_phy_i217:
883                 lpa = I217_EEE_LP_ABILITY;
884                 pcs_status = I217_EEE_PCS_STATUS;
885                 adv_addr = I217_EEE_ADVERTISEMENT;
886                 break;
887         default:
888                 return E1000_SUCCESS;
889         }
890
891         ret_val = hw->phy.ops.acquire(hw);
892         if (ret_val)
893                 return ret_val;
894
895         ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
896         if (ret_val)
897                 goto release;
898
899         /* Clear bits that enable EEE in various speeds */
900         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
901
902         /* Enable EEE if not disabled by user */
903         if (!dev_spec->eee_disable) {
904                 /* Save off link partner's EEE ability */
905                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
906                                                     &dev_spec->eee_lp_ability);
907                 if (ret_val)
908                         goto release;
909
910                 /* Read EEE advertisement */
911                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
912                 if (ret_val)
913                         goto release;
914
915                 /* Enable EEE only for speeds in which the link partner is
916                  * EEE capable and for which we advertise EEE.
917                  */
918                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
919                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
920
921                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
922                         hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
923                         if (data & NWAY_LPAR_100TX_FD_CAPS)
924                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
925                         else
926                                 /* EEE is not supported in 100Half, so ignore
927                                  * partner's EEE in 100 ability if full-duplex
928                                  * is not advertised.
929                                  */
930                                 dev_spec->eee_lp_ability &=
931                                     ~I82579_EEE_100_SUPPORTED;
932                 }
933         }
934
935         if (hw->phy.type == e1000_phy_82579) {
936                 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
937                                                     &data);
938                 if (ret_val)
939                         goto release;
940
941                 data &= ~I82579_LPI_100_PLL_SHUT;
942                 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
943                                                      data);
944         }
945
946         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
947         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
948         if (ret_val)
949                 goto release;
950
951         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
952 release:
953         hw->phy.ops.release(hw);
954
955         return ret_val;
956 }
957
958 /**
959  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
960  *  @hw:   pointer to the HW structure
961  *  @link: link up bool flag
962  *
963  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
964  *  preventing further DMA write requests.  Workaround the issue by disabling
965  *  the de-assertion of the clock request when in 1Gpbs mode.
966  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
967  *  speeds in order to avoid Tx hangs.
968  **/
969 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
970 {
971         u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
972         u32 status = E1000_READ_REG(hw, E1000_STATUS);
973         s32 ret_val = E1000_SUCCESS;
974         u16 reg;
975
976         if (link && (status & E1000_STATUS_SPEED_1000)) {
977                 ret_val = hw->phy.ops.acquire(hw);
978                 if (ret_val)
979                         return ret_val;
980
981                 ret_val =
982                     e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
983                                                &reg);
984                 if (ret_val)
985                         goto release;
986
987                 ret_val =
988                     e1000_write_kmrn_reg_locked(hw,
989                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
990                                                 reg &
991                                                 ~E1000_KMRNCTRLSTA_K1_ENABLE);
992                 if (ret_val)
993                         goto release;
994
995                 usec_delay(10);
996
997                 E1000_WRITE_REG(hw, E1000_FEXTNVM6,
998                                 fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
999
1000                 ret_val =
1001                     e1000_write_kmrn_reg_locked(hw,
1002                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
1003                                                 reg);
1004 release:
1005                 hw->phy.ops.release(hw);
1006         } else {
1007                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
1008                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1009
1010                 if (!link || ((status & E1000_STATUS_SPEED_100) &&
1011                               (status & E1000_STATUS_FD)))
1012                         goto update_fextnvm6;
1013
1014                 ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1015                 if (ret_val)
1016                         return ret_val;
1017
1018                 /* Clear link status transmit timeout */
1019                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1020
1021                 if (status & E1000_STATUS_SPEED_100) {
1022                         /* Set inband Tx timeout to 5x10us for 100Half */
1023                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1024
1025                         /* Do not extend the K1 entry latency for 100Half */
1026                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1027                 } else {
1028                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
1029                         reg |= 50 <<
1030                                I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1031
1032                         /* Extend the K1 entry latency for 10 Mbps */
1033                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1034                 }
1035
1036                 ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1037                 if (ret_val)
1038                         return ret_val;
1039
1040 update_fextnvm6:
1041                 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1042         }
1043
1044         return ret_val;
1045 }
1046
1047 static u64 e1000_ltr2ns(u16 ltr)
1048 {
1049         u32 value, scale;
1050
1051         /* Determine the latency in nsec based on the LTR value & scale */
1052         value = ltr & E1000_LTRV_VALUE_MASK;
1053         scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1054
1055         return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1056 }
1057
1058 /**
1059  *  e1000_platform_pm_pch_lpt - Set platform power management values
1060  *  @hw: pointer to the HW structure
1061  *  @link: bool indicating link status
1062  *
1063  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1064  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1065  *  when link is up (which must not exceed the maximum latency supported
1066  *  by the platform), otherwise specify there is no LTR requirement.
1067  *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1068  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1069  *  Capability register set, on this device LTR is set by writing the
1070  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1071  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1072  *  message to the PMC.
1073  *
1074  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1075  *  high-water mark.
1076  **/
1077 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1078 {
1079         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1080                   link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1081         u16 lat_enc = 0;        /* latency encoded */
1082         s32 obff_hwm = 0;
1083
1084         DEBUGFUNC("e1000_platform_pm_pch_lpt");
1085
1086         if (link) {
1087                 u16 speed, duplex, scale = 0;
1088                 u16 max_snoop, max_nosnoop;
1089                 u16 max_ltr_enc;        /* max LTR latency encoded */
1090                 s64 lat_ns;             /* latency (ns) */
1091                 s64 value;
1092                 u32 rxa;
1093
1094                 if (!hw->mac.max_frame_size) {
1095                         DEBUGOUT("max_frame_size not set.\n");
1096                         return -E1000_ERR_CONFIG;
1097                 }
1098
1099                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1100                 if (!speed) {
1101                         DEBUGOUT("Speed not set.\n");
1102                         return -E1000_ERR_CONFIG;
1103                 }
1104
1105                 /* Rx Packet Buffer Allocation size (KB) */
1106                 rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1107
1108                 /* Determine the maximum latency tolerated by the device.
1109                  *
1110                  * Per the PCIe spec, the tolerated latencies are encoded as
1111                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1112                  * a 10-bit value (0-1023) to provide a range from 1 ns to
1113                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1114                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1115                  */
1116                 lat_ns = ((s64)rxa * 1024 -
1117                           (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1118                 if (lat_ns < 0)
1119                         lat_ns = 0;
1120                 else
1121                         lat_ns /= speed;
1122
1123                 value = lat_ns;
1124                 while (value > E1000_LTRV_VALUE_MASK) {
1125                         scale++;
1126                         value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1127                 }
1128                 if (scale > E1000_LTRV_SCALE_MAX) {
1129                         DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1130                         return -E1000_ERR_CONFIG;
1131                 }
1132                 lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1133
1134                 /* Determine the maximum latency tolerated by the platform */
1135                 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1136                 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1137                 max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1138
1139                 if (lat_enc > max_ltr_enc) {
1140                         lat_enc = max_ltr_enc;
1141                         lat_ns = e1000_ltr2ns(max_ltr_enc);
1142                 }
1143
1144                 if (lat_ns) {
1145                         lat_ns *= speed * 1000;
1146                         lat_ns /= 8;
1147                         lat_ns /= 1000000000;
1148                         obff_hwm = (s32)(rxa - lat_ns);
1149                 }
1150                 if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1151                         DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1152                         return -E1000_ERR_CONFIG;
1153                 }
1154         }
1155
1156         /* Set Snoop and No-Snoop latencies the same */
1157         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1158         E1000_WRITE_REG(hw, E1000_LTRV, reg);
1159
1160         /* Set OBFF high water mark */
1161         reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1162         reg |= obff_hwm;
1163         E1000_WRITE_REG(hw, E1000_SVT, reg);
1164
1165         /* Enable OBFF */
1166         reg = E1000_READ_REG(hw, E1000_SVCR);
1167         reg |= E1000_SVCR_OFF_EN;
1168         /* Always unblock interrupts to the CPU even when the system is
1169          * in OBFF mode. This ensures that small round-robin traffic
1170          * (like ping) does not get dropped or experience long latency.
1171          */
1172         reg |= E1000_SVCR_OFF_MASKINT;
1173         E1000_WRITE_REG(hw, E1000_SVCR, reg);
1174
1175         return E1000_SUCCESS;
1176 }
1177
1178 /**
1179  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1180  *  @hw: pointer to the HW structure
1181  *  @itr: interrupt throttling rate
1182  *
1183  *  Configure OBFF with the updated interrupt rate.
1184  **/
1185 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1186 {
1187         u32 svcr;
1188         s32 timer;
1189
1190         DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1191
1192         /* Convert ITR value into microseconds for OBFF timer */
1193         timer = itr & E1000_ITR_MASK;
1194         timer = (timer * E1000_ITR_MULT) / 1000;
1195
1196         if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1197                 DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1198                 return -E1000_ERR_CONFIG;
1199         }
1200
1201         svcr = E1000_READ_REG(hw, E1000_SVCR);
1202         svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1203         svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1204         E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1205
1206         return E1000_SUCCESS;
1207 }
1208
1209 /**
1210  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1211  *  @hw: pointer to the HW structure
1212  *  @to_sx: boolean indicating a system power state transition to Sx
1213  *
1214  *  When link is down, configure ULP mode to significantly reduce the power
1215  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1216  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1217  *  system, configure the ULP mode by software.
1218  */
1219 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1220 {
1221         u32 mac_reg;
1222         s32 ret_val = E1000_SUCCESS;
1223         u16 phy_reg;
1224
1225         if ((hw->mac.type < e1000_pch_lpt) ||
1226             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1227             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1228             (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1229             (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1230             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1231                 return 0;
1232
1233         if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1234                 /* Request ME configure ULP mode in the PHY */
1235                 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1236                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1237                 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1238
1239                 goto out;
1240         }
1241
1242         if (!to_sx) {
1243                 int i = 0;
1244
1245                 /* Poll up to 5 seconds for Cable Disconnected indication */
1246                 while (!(E1000_READ_REG(hw, E1000_FEXT) &
1247                          E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1248                         /* Bail if link is re-acquired */
1249                         if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1250                                 return -E1000_ERR_PHY;
1251
1252                         if (i++ == 100)
1253                                 break;
1254
1255                         msec_delay(50);
1256                 }
1257                 DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1258                          (E1000_READ_REG(hw, E1000_FEXT) &
1259                           E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1260                          i * 50);
1261         }
1262
1263         ret_val = hw->phy.ops.acquire(hw);
1264         if (ret_val)
1265                 goto out;
1266
1267         /* Force SMBus mode in PHY */
1268         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1269         if (ret_val)
1270                 goto release;
1271         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1272         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1273
1274         /* Force SMBus mode in MAC */
1275         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1276         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1277         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1278
1279         /* Set Inband ULP Exit, Reset to SMBus mode and
1280          * Disable SMBus Release on PERST# in PHY
1281          */
1282         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1283         if (ret_val)
1284                 goto release;
1285         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1286                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1287         if (to_sx) {
1288                 if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1289                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1290
1291                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1292         } else {
1293                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1294         }
1295         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1296
1297         /* Set Disable SMBus Release on PERST# in MAC */
1298         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1299         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1300         E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1301
1302         /* Commit ULP changes in PHY by starting auto ULP configuration */
1303         phy_reg |= I218_ULP_CONFIG1_START;
1304         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1305 release:
1306         hw->phy.ops.release(hw);
1307 out:
1308         if (ret_val)
1309                 DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1310         else
1311                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1312
1313         return ret_val;
1314 }
1315
1316 /**
1317  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1318  *  @hw: pointer to the HW structure
1319  *  @force: boolean indicating whether or not to force disabling ULP
1320  *
1321  *  Un-configure ULP mode when link is up, the system is transitioned from
1322  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1323  *  system, poll for an indication from ME that ULP has been un-configured.
1324  *  If not on an ME enabled system, un-configure the ULP mode by software.
1325  *
1326  *  During nominal operation, this function is called when link is acquired
1327  *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1328  *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1329  *  to forcibly disable ULP.
1330  */
1331 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1332 {
1333         s32 ret_val = E1000_SUCCESS;
1334         u32 mac_reg;
1335         u16 phy_reg;
1336         int i = 0;
1337
1338         if ((hw->mac.type < e1000_pch_lpt) ||
1339             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1340             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1341             (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1342             (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1343             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1344                 return 0;
1345
1346         if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1347                 if (force) {
1348                         /* Request ME un-configure ULP mode in the PHY */
1349                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1350                         mac_reg &= ~E1000_H2ME_ULP;
1351                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1352                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1353                 }
1354
1355                 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1356                 while (E1000_READ_REG(hw, E1000_FWSM) &
1357                        E1000_FWSM_ULP_CFG_DONE) {
1358                         if (i++ == 10) {
1359                                 ret_val = -E1000_ERR_PHY;
1360                                 goto out;
1361                         }
1362
1363                         msec_delay(10);
1364                 }
1365                 DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1366
1367                 if (force) {
1368                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1369                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1370                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1371                 } else {
1372                         /* Clear H2ME.ULP after ME ULP configuration */
1373                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1374                         mac_reg &= ~E1000_H2ME_ULP;
1375                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1376                 }
1377
1378                 goto out;
1379         }
1380
1381         ret_val = hw->phy.ops.acquire(hw);
1382         if (ret_val)
1383                 goto out;
1384
1385         if (force)
1386                 /* Toggle LANPHYPC Value bit */
1387                 e1000_toggle_lanphypc_pch_lpt(hw);
1388
1389         /* Unforce SMBus mode in PHY */
1390         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1391         if (ret_val) {
1392                 /* The MAC might be in PCIe mode, so temporarily force to
1393                  * SMBus mode in order to access the PHY.
1394                  */
1395                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1396                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1397                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1398
1399                 msec_delay(50);
1400
1401                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1402                                                        &phy_reg);
1403                 if (ret_val)
1404                         goto release;
1405         }
1406         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1407         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1408
1409         /* Unforce SMBus mode in MAC */
1410         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1411         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1412         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1413
1414         /* When ULP mode was previously entered, K1 was disabled by the
1415          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1416          */
1417         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1418         if (ret_val)
1419                 goto release;
1420         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1421         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1422
1423         /* Clear ULP enabled configuration */
1424         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1425         if (ret_val)
1426                 goto release;
1427                 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1428                              I218_ULP_CONFIG1_STICKY_ULP |
1429                              I218_ULP_CONFIG1_RESET_TO_SMBUS |
1430                              I218_ULP_CONFIG1_WOL_HOST |
1431                              I218_ULP_CONFIG1_INBAND_EXIT |
1432                              I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1433                 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1434
1435                 /* Commit ULP changes by starting auto ULP configuration */
1436                 phy_reg |= I218_ULP_CONFIG1_START;
1437                 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1438
1439                 /* Clear Disable SMBus Release on PERST# in MAC */
1440                 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1441                 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1442                 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1443
1444 release:
1445         hw->phy.ops.release(hw);
1446         if (force) {
1447                 hw->phy.ops.reset(hw);
1448                 msec_delay(50);
1449         }
1450 out:
1451         if (ret_val)
1452                 DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1453         else
1454                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1455
1456         return ret_val;
1457 }
1458
1459 /**
1460  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1461  *  @hw: pointer to the HW structure
1462  *
1463  *  Checks to see of the link status of the hardware has changed.  If a
1464  *  change in link status has been detected, then we read the PHY registers
1465  *  to get the current speed/duplex if link exists.
1466  **/
1467 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1468 {
1469         struct e1000_mac_info *mac = &hw->mac;
1470         s32 ret_val;
1471         bool link;
1472         u16 phy_reg;
1473
1474         DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1475
1476         /* We only want to go out to the PHY registers to see if Auto-Neg
1477          * has completed and/or if our link status has changed.  The
1478          * get_link_status flag is set upon receiving a Link Status
1479          * Change or Rx Sequence Error interrupt.
1480          */
1481         if (!mac->get_link_status)
1482                 return E1000_SUCCESS;
1483
1484                 /* First we want to see if the MII Status Register reports
1485                  * link.  If so, then we want to get the current speed/duplex
1486                  * of the PHY.
1487                  */
1488                 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1489                 if (ret_val)
1490                         return ret_val;
1491
1492         if (hw->mac.type == e1000_pchlan) {
1493                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1494                 if (ret_val)
1495                         return ret_val;
1496         }
1497
1498         /* When connected at 10Mbps half-duplex, some parts are excessively
1499          * aggressive resulting in many collisions. To avoid this, increase
1500          * the IPG and reduce Rx latency in the PHY.
1501          */
1502         if (((hw->mac.type == e1000_pch2lan) ||
1503              (hw->mac.type == e1000_pch_lpt)) && link) {
1504                 u32 reg;
1505                 reg = E1000_READ_REG(hw, E1000_STATUS);
1506                 if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1507                         u16 emi_addr;
1508
1509                         reg = E1000_READ_REG(hw, E1000_TIPG);
1510                         reg &= ~E1000_TIPG_IPGT_MASK;
1511                         reg |= 0xFF;
1512                         E1000_WRITE_REG(hw, E1000_TIPG, reg);
1513
1514                         /* Reduce Rx latency in analog PHY */
1515                         ret_val = hw->phy.ops.acquire(hw);
1516                         if (ret_val)
1517                                 return ret_val;
1518
1519                         if (hw->mac.type == e1000_pch2lan)
1520                                 emi_addr = I82579_RX_CONFIG;
1521                         else
1522                                 emi_addr = I217_RX_CONFIG;
1523                         ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
1524
1525                         hw->phy.ops.release(hw);
1526
1527                         if (ret_val)
1528                                 return ret_val;
1529                 }
1530         }
1531
1532         /* Work-around I218 hang issue */
1533         if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1534             (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1535             (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1536             (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1537                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1538                 if (ret_val)
1539                         return ret_val;
1540         }
1541         if (hw->mac.type == e1000_pch_lpt) {
1542                 /* Set platform power management values for
1543                  * Latency Tolerance Reporting (LTR)
1544                  * Optimized Buffer Flush/Fill (OBFF)
1545                  */
1546                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1547                 if (ret_val)
1548                         return ret_val;
1549         }
1550
1551         /* Clear link partner's EEE ability */
1552         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1553
1554         if (!link)
1555                 return E1000_SUCCESS; /* No link detected */
1556
1557         mac->get_link_status = FALSE;
1558
1559         switch (hw->mac.type) {
1560         case e1000_pch2lan:
1561                 ret_val = e1000_k1_workaround_lv(hw);
1562                 if (ret_val)
1563                         return ret_val;
1564                 /* fall-thru */
1565         case e1000_pchlan:
1566                 if (hw->phy.type == e1000_phy_82578) {
1567                         ret_val = e1000_link_stall_workaround_hv(hw);
1568                         if (ret_val)
1569                                 return ret_val;
1570                 }
1571
1572                 /* Workaround for PCHx parts in half-duplex:
1573                  * Set the number of preambles removed from the packet
1574                  * when it is passed from the PHY to the MAC to prevent
1575                  * the MAC from misinterpreting the packet type.
1576                  */
1577                 hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1578                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1579
1580                 if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1581                     E1000_STATUS_FD)
1582                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1583
1584                 hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1585                 break;
1586         default:
1587                 break;
1588         }
1589
1590         /* Check if there was DownShift, must be checked
1591          * immediately after link-up
1592          */
1593         e1000_check_downshift_generic(hw);
1594
1595         /* Enable/Disable EEE after link up */
1596         if (hw->phy.type > e1000_phy_82579) {
1597                 ret_val = e1000_set_eee_pchlan(hw);
1598                 if (ret_val)
1599                         return ret_val;
1600         }
1601
1602         /* If we are forcing speed/duplex, then we simply return since
1603          * we have already determined whether we have link or not.
1604          */
1605         if (!mac->autoneg)
1606                 return -E1000_ERR_CONFIG;
1607
1608         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1609          * of MAC speed/duplex configuration.  So we only need to
1610          * configure Collision Distance in the MAC.
1611          */
1612         mac->ops.config_collision_dist(hw);
1613
1614         /* Configure Flow Control now that Auto-Neg has completed.
1615          * First, we need to restore the desired flow control
1616          * settings because we may have had to re-autoneg with a
1617          * different link partner.
1618          */
1619         ret_val = e1000_config_fc_after_link_up_generic(hw);
1620         if (ret_val)
1621                 DEBUGOUT("Error configuring flow control\n");
1622
1623         return ret_val;
1624 }
1625
1626 /**
1627  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1628  *  @hw: pointer to the HW structure
1629  *
1630  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1631  **/
1632 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1633 {
1634         DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1635
1636         hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1637         hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1638         switch (hw->mac.type) {
1639         case e1000_ich8lan:
1640         case e1000_ich9lan:
1641         case e1000_ich10lan:
1642                 hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1643                 break;
1644         case e1000_pchlan:
1645         case e1000_pch2lan:
1646         case e1000_pch_lpt:
1647                 hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1648                 break;
1649         default:
1650                 break;
1651         }
1652 }
1653
1654 /**
1655  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1656  *  @hw: pointer to the HW structure
1657  *
1658  *  Acquires the mutex for performing NVM operations.
1659  **/
1660 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1661 {
1662         DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1663
1664         E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1665
1666         return E1000_SUCCESS;
1667 }
1668
1669 /**
1670  *  e1000_release_nvm_ich8lan - Release NVM mutex
1671  *  @hw: pointer to the HW structure
1672  *
1673  *  Releases the mutex used while performing NVM operations.
1674  **/
1675 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1676 {
1677         DEBUGFUNC("e1000_release_nvm_ich8lan");
1678
1679         E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1680
1681         return;
1682 }
1683
1684 /**
1685  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1686  *  @hw: pointer to the HW structure
1687  *
1688  *  Acquires the software control flag for performing PHY and select
1689  *  MAC CSR accesses.
1690  **/
1691 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1692 {
1693         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1694         s32 ret_val = E1000_SUCCESS;
1695
1696         DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1697
1698         E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1699
1700         while (timeout) {
1701                 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1702                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1703                         break;
1704
1705                 msec_delay_irq(1);
1706                 timeout--;
1707         }
1708
1709         if (!timeout) {
1710                 DEBUGOUT("SW has already locked the resource.\n");
1711                 ret_val = -E1000_ERR_CONFIG;
1712                 goto out;
1713         }
1714
1715         timeout = SW_FLAG_TIMEOUT;
1716
1717         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1718         E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1719
1720         while (timeout) {
1721                 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1722                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1723                         break;
1724
1725                 msec_delay_irq(1);
1726                 timeout--;
1727         }
1728
1729         if (!timeout) {
1730                 DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1731                           E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1732                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1733                 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1734                 ret_val = -E1000_ERR_CONFIG;
1735                 goto out;
1736         }
1737
1738 out:
1739         if (ret_val)
1740                 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1741
1742         return ret_val;
1743 }
1744
1745 /**
1746  *  e1000_release_swflag_ich8lan - Release software control flag
1747  *  @hw: pointer to the HW structure
1748  *
1749  *  Releases the software control flag for performing PHY and select
1750  *  MAC CSR accesses.
1751  **/
1752 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1753 {
1754         u32 extcnf_ctrl;
1755
1756         DEBUGFUNC("e1000_release_swflag_ich8lan");
1757
1758         extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1759
1760         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1761                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1762                 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1763         } else {
1764                 DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1765         }
1766
1767         E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1768
1769         return;
1770 }
1771
1772 /**
1773  *  e1000_check_mng_mode_ich8lan - Checks management mode
1774  *  @hw: pointer to the HW structure
1775  *
1776  *  This checks if the adapter has any manageability enabled.
1777  *  This is a function pointer entry point only called by read/write
1778  *  routines for the PHY and NVM parts.
1779  **/
1780 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1781 {
1782         u32 fwsm;
1783
1784         DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1785
1786         fwsm = E1000_READ_REG(hw, E1000_FWSM);
1787
1788         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1789                ((fwsm & E1000_FWSM_MODE_MASK) ==
1790                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1791 }
1792
1793 /**
1794  *  e1000_check_mng_mode_pchlan - Checks management mode
1795  *  @hw: pointer to the HW structure
1796  *
1797  *  This checks if the adapter has iAMT enabled.
1798  *  This is a function pointer entry point only called by read/write
1799  *  routines for the PHY and NVM parts.
1800  **/
1801 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1802 {
1803         u32 fwsm;
1804
1805         DEBUGFUNC("e1000_check_mng_mode_pchlan");
1806
1807         fwsm = E1000_READ_REG(hw, E1000_FWSM);
1808
1809         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1810                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1811 }
1812
1813 /**
1814  *  e1000_rar_set_pch2lan - Set receive address register
1815  *  @hw: pointer to the HW structure
1816  *  @addr: pointer to the receive address
1817  *  @index: receive address array register
1818  *
1819  *  Sets the receive address array register at index to the address passed
1820  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1821  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1822  *  Use SHRA[0-3] in place of those reserved for ME.
1823  **/
1824 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1825 {
1826         u32 rar_low, rar_high;
1827
1828         DEBUGFUNC("e1000_rar_set_pch2lan");
1829
1830         /* HW expects these in little endian so we reverse the byte order
1831          * from network order (big endian) to little endian
1832          */
1833         rar_low = ((u32) addr[0] |
1834                    ((u32) addr[1] << 8) |
1835                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1836
1837         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1838
1839         /* If MAC address zero, no need to set the AV bit */
1840         if (rar_low || rar_high)
1841                 rar_high |= E1000_RAH_AV;
1842
1843         if (index == 0) {
1844                 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1845                 E1000_WRITE_FLUSH(hw);
1846                 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1847                 E1000_WRITE_FLUSH(hw);
1848                 return E1000_SUCCESS;
1849         }
1850
1851         /* RAR[1-6] are owned by manageability.  Skip those and program the
1852          * next address into the SHRA register array.
1853          */
1854         if (index < (u32) (hw->mac.rar_entry_count)) {
1855                 s32 ret_val;
1856
1857                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1858                 if (ret_val)
1859                         goto out;
1860
1861                 E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
1862                 E1000_WRITE_FLUSH(hw);
1863                 E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
1864                 E1000_WRITE_FLUSH(hw);
1865
1866                 e1000_release_swflag_ich8lan(hw);
1867
1868                 /* verify the register updates */
1869                 if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
1870                     (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
1871                         return E1000_SUCCESS;
1872
1873                 DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1874                          (index - 1), E1000_READ_REG(hw, E1000_FWSM));
1875         }
1876
1877 out:
1878         DEBUGOUT1("Failed to write receive address at index %d\n", index);
1879         return -E1000_ERR_CONFIG;
1880 }
1881
1882 /**
1883  *  e1000_rar_set_pch_lpt - Set receive address registers
1884  *  @hw: pointer to the HW structure
1885  *  @addr: pointer to the receive address
1886  *  @index: receive address array register
1887  *
1888  *  Sets the receive address register array at index to the address passed
1889  *  in by addr. For LPT, RAR[0] is the base address register that is to
1890  *  contain the MAC address. SHRA[0-10] are the shared receive address
1891  *  registers that are shared between the Host and manageability engine (ME).
1892  **/
1893 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1894 {
1895         u32 rar_low, rar_high;
1896         u32 wlock_mac;
1897
1898         DEBUGFUNC("e1000_rar_set_pch_lpt");
1899
1900         /* HW expects these in little endian so we reverse the byte order
1901          * from network order (big endian) to little endian
1902          */
1903         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
1904                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1905
1906         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1907
1908         /* If MAC address zero, no need to set the AV bit */
1909         if (rar_low || rar_high)
1910                 rar_high |= E1000_RAH_AV;
1911
1912         if (index == 0) {
1913                 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1914                 E1000_WRITE_FLUSH(hw);
1915                 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1916                 E1000_WRITE_FLUSH(hw);
1917                 return E1000_SUCCESS;
1918         }
1919
1920         /* The manageability engine (ME) can lock certain SHRAR registers that
1921          * it is using - those registers are unavailable for use.
1922          */
1923         if (index < hw->mac.rar_entry_count) {
1924                 wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
1925                             E1000_FWSM_WLOCK_MAC_MASK;
1926                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1927
1928                 /* Check if all SHRAR registers are locked */
1929                 if (wlock_mac == 1)
1930                         goto out;
1931
1932                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1933                         s32 ret_val;
1934
1935                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1936
1937                         if (ret_val)
1938                                 goto out;
1939
1940                         E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
1941                                         rar_low);
1942                         E1000_WRITE_FLUSH(hw);
1943                         E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
1944                                         rar_high);
1945                         E1000_WRITE_FLUSH(hw);
1946
1947                         e1000_release_swflag_ich8lan(hw);
1948
1949                         /* verify the register updates */
1950                         if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1951                             (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
1952                                 return E1000_SUCCESS;
1953                 }
1954         }
1955
1956 out:
1957         DEBUGOUT1("Failed to write receive address at index %d\n", index);
1958         return -E1000_ERR_CONFIG;
1959 }
1960
1961 /**
1962  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
1963  *  @hw: pointer to the HW structure
1964  *  @mc_addr_list: array of multicast addresses to program
1965  *  @mc_addr_count: number of multicast addresses to program
1966  *
1967  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
1968  *  The caller must have a packed mc_addr_list of multicast addresses.
1969  **/
1970 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
1971                                               u8 *mc_addr_list,
1972                                               u32 mc_addr_count)
1973 {
1974         u16 phy_reg = 0;
1975         int i;
1976         s32 ret_val;
1977
1978         DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
1979
1980         e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
1981
1982         ret_val = hw->phy.ops.acquire(hw);
1983         if (ret_val)
1984                 return;
1985
1986         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1987         if (ret_val)
1988                 goto release;
1989
1990         for (i = 0; i < hw->mac.mta_reg_count; i++) {
1991                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
1992                                            (u16)(hw->mac.mta_shadow[i] &
1993                                                  0xFFFF));
1994                 hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
1995                                            (u16)((hw->mac.mta_shadow[i] >> 16) &
1996                                                  0xFFFF));
1997         }
1998
1999         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2000
2001 release:
2002         hw->phy.ops.release(hw);
2003 }
2004
2005 /**
2006  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2007  *  @hw: pointer to the HW structure
2008  *
2009  *  Checks if firmware is blocking the reset of the PHY.
2010  *  This is a function pointer entry point only called by
2011  *  reset routines.
2012  **/
2013 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2014 {
2015         u32 fwsm;
2016         bool blocked = FALSE;
2017         int i = 0;
2018
2019         DEBUGFUNC("e1000_check_reset_block_ich8lan");
2020
2021         do {
2022                 fwsm = E1000_READ_REG(hw, E1000_FWSM);
2023                 if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2024                         blocked = TRUE;
2025                         msec_delay(10);
2026                         continue;
2027                 }
2028                 blocked = FALSE;
2029         } while (blocked && (i++ < 10));
2030         return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2031 }
2032
2033 /**
2034  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2035  *  @hw: pointer to the HW structure
2036  *
2037  *  Assumes semaphore already acquired.
2038  *
2039  **/
2040 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2041 {
2042         u16 phy_data;
2043         u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2044         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2045                 E1000_STRAP_SMT_FREQ_SHIFT;
2046         s32 ret_val;
2047
2048         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2049
2050         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2051         if (ret_val)
2052                 return ret_val;
2053
2054         phy_data &= ~HV_SMB_ADDR_MASK;
2055         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2056         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2057
2058         if (hw->phy.type == e1000_phy_i217) {
2059                 /* Restore SMBus frequency */
2060                 if (freq--) {
2061                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2062                         phy_data |= (freq & (1 << 0)) <<
2063                                 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2064                         phy_data |= (freq & (1 << 1)) <<
2065                                 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2066                 } else {
2067                         DEBUGOUT("Unsupported SMB frequency in PHY\n");
2068                 }
2069         }
2070
2071         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2072 }
2073
2074 /**
2075  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2076  *  @hw:   pointer to the HW structure
2077  *
2078  *  SW should configure the LCD from the NVM extended configuration region
2079  *  as a workaround for certain parts.
2080  **/
2081 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2082 {
2083         struct e1000_phy_info *phy = &hw->phy;
2084         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2085         s32 ret_val = E1000_SUCCESS;
2086         u16 word_addr, reg_data, reg_addr, phy_page = 0;
2087
2088         DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2089
2090         /* Initialize the PHY from the NVM on ICH platforms.  This
2091          * is needed due to an issue where the NVM configuration is
2092          * not properly autoloaded after power transitions.
2093          * Therefore, after each PHY reset, we will load the
2094          * configuration data out of the NVM manually.
2095          */
2096         switch (hw->mac.type) {
2097         case e1000_ich8lan:
2098                 if (phy->type != e1000_phy_igp_3)
2099                         return ret_val;
2100
2101                 if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2102                     (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2103                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2104                         break;
2105                 }
2106                 /* Fall-thru */
2107         case e1000_pchlan:
2108         case e1000_pch2lan:
2109         case e1000_pch_lpt:
2110                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2111                 break;
2112         default:
2113                 return ret_val;
2114         }
2115
2116         ret_val = hw->phy.ops.acquire(hw);
2117         if (ret_val)
2118                 return ret_val;
2119
2120         data = E1000_READ_REG(hw, E1000_FEXTNVM);
2121         if (!(data & sw_cfg_mask))
2122                 goto release;
2123
2124         /* Make sure HW does not configure LCD from PHY
2125          * extended configuration before SW configuration
2126          */
2127         data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2128         if ((hw->mac.type < e1000_pch2lan) &&
2129             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2130                         goto release;
2131
2132         cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2133         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2134         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2135         if (!cnf_size)
2136                 goto release;
2137
2138         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2139         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2140
2141         if (((hw->mac.type == e1000_pchlan) &&
2142              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2143             (hw->mac.type > e1000_pchlan)) {
2144                 /* HW configures the SMBus address and LEDs when the
2145                  * OEM and LCD Write Enable bits are set in the NVM.
2146                  * When both NVM bits are cleared, SW will configure
2147                  * them instead.
2148                  */
2149                 ret_val = e1000_write_smbus_addr(hw);
2150                 if (ret_val)
2151                         goto release;
2152
2153                 data = E1000_READ_REG(hw, E1000_LEDCTL);
2154                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2155                                                         (u16)data);
2156                 if (ret_val)
2157                         goto release;
2158         }
2159
2160         /* Configure LCD from extended configuration region. */
2161
2162         /* cnf_base_addr is in DWORD */
2163         word_addr = (u16)(cnf_base_addr << 1);
2164
2165         for (i = 0; i < cnf_size; i++) {
2166                 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2167                                            &reg_data);
2168                 if (ret_val)
2169                         goto release;
2170
2171                 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2172                                            1, &reg_addr);
2173                 if (ret_val)
2174                         goto release;
2175
2176                 /* Save off the PHY page for future writes. */
2177                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2178                         phy_page = reg_data;
2179                         continue;
2180                 }
2181
2182                 reg_addr &= PHY_REG_MASK;
2183                 reg_addr |= phy_page;
2184
2185                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2186                                                     reg_data);
2187                 if (ret_val)
2188                         goto release;
2189         }
2190
2191 release:
2192         hw->phy.ops.release(hw);
2193         return ret_val;
2194 }
2195
2196 /**
2197  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2198  *  @hw:   pointer to the HW structure
2199  *  @link: link up bool flag
2200  *
2201  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2202  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2203  *  If link is down, the function will restore the default K1 setting located
2204  *  in the NVM.
2205  **/
2206 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2207 {
2208         s32 ret_val = E1000_SUCCESS;
2209         u16 status_reg = 0;
2210         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2211
2212         DEBUGFUNC("e1000_k1_gig_workaround_hv");
2213
2214         if (hw->mac.type != e1000_pchlan)
2215                 return E1000_SUCCESS;
2216
2217         /* Wrap the whole flow with the sw flag */
2218         ret_val = hw->phy.ops.acquire(hw);
2219         if (ret_val)
2220                 return ret_val;
2221
2222         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2223         if (link) {
2224                 if (hw->phy.type == e1000_phy_82578) {
2225                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2226                                                               &status_reg);
2227                         if (ret_val)
2228                                 goto release;
2229
2230                         status_reg &= (BM_CS_STATUS_LINK_UP |
2231                                        BM_CS_STATUS_RESOLVED |
2232                                        BM_CS_STATUS_SPEED_MASK);
2233
2234                         if (status_reg == (BM_CS_STATUS_LINK_UP |
2235                                            BM_CS_STATUS_RESOLVED |
2236                                            BM_CS_STATUS_SPEED_1000))
2237                                 k1_enable = FALSE;
2238                 }
2239
2240                 if (hw->phy.type == e1000_phy_82577) {
2241                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2242                                                               &status_reg);
2243                         if (ret_val)
2244                                 goto release;
2245
2246                         status_reg &= (HV_M_STATUS_LINK_UP |
2247                                        HV_M_STATUS_AUTONEG_COMPLETE |
2248                                        HV_M_STATUS_SPEED_MASK);
2249
2250                         if (status_reg == (HV_M_STATUS_LINK_UP |
2251                                            HV_M_STATUS_AUTONEG_COMPLETE |
2252                                            HV_M_STATUS_SPEED_1000))
2253                                 k1_enable = FALSE;
2254                 }
2255
2256                 /* Link stall fix for link up */
2257                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2258                                                        0x0100);
2259                 if (ret_val)
2260                         goto release;
2261
2262         } else {
2263                 /* Link stall fix for link down */
2264                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2265                                                        0x4100);
2266                 if (ret_val)
2267                         goto release;
2268         }
2269
2270         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2271
2272 release:
2273         hw->phy.ops.release(hw);
2274
2275         return ret_val;
2276 }
2277
2278 /**
2279  *  e1000_configure_k1_ich8lan - Configure K1 power state
2280  *  @hw: pointer to the HW structure
2281  *  @enable: K1 state to configure
2282  *
2283  *  Configure the K1 power state based on the provided parameter.
2284  *  Assumes semaphore already acquired.
2285  *
2286  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2287  **/
2288 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2289 {
2290         s32 ret_val;
2291         u32 ctrl_reg = 0;
2292         u32 ctrl_ext = 0;
2293         u32 reg = 0;
2294         u16 kmrn_reg = 0;
2295
2296         DEBUGFUNC("e1000_configure_k1_ich8lan");
2297
2298         ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2299                                              &kmrn_reg);
2300         if (ret_val)
2301                 return ret_val;
2302
2303         if (k1_enable)
2304                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2305         else
2306                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2307
2308         ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2309                                               kmrn_reg);
2310         if (ret_val)
2311                 return ret_val;
2312
2313         usec_delay(20);
2314         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2315         ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2316
2317         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2318         reg |= E1000_CTRL_FRCSPD;
2319         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2320
2321         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2322         E1000_WRITE_FLUSH(hw);
2323         usec_delay(20);
2324         E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2325         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2326         E1000_WRITE_FLUSH(hw);
2327         usec_delay(20);
2328
2329         return E1000_SUCCESS;
2330 }
2331
2332 /**
2333  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2334  *  @hw:       pointer to the HW structure
2335  *  @d0_state: boolean if entering d0 or d3 device state
2336  *
2337  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2338  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2339  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2340  **/
2341 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2342 {
2343         s32 ret_val = 0;
2344         u32 mac_reg;
2345         u16 oem_reg;
2346
2347         DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2348
2349         if (hw->mac.type < e1000_pchlan)
2350                 return ret_val;
2351
2352         ret_val = hw->phy.ops.acquire(hw);
2353         if (ret_val)
2354                 return ret_val;
2355
2356         if (hw->mac.type == e1000_pchlan) {
2357                 mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2358                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2359                         goto release;
2360         }
2361
2362         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2363         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2364                 goto release;
2365
2366         mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2367
2368         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2369         if (ret_val)
2370                 goto release;
2371
2372         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2373
2374         if (d0_state) {
2375                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2376                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2377
2378                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2379                         oem_reg |= HV_OEM_BITS_LPLU;
2380         } else {
2381                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2382                     E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2383                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2384
2385                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2386                     E1000_PHY_CTRL_NOND0A_LPLU))
2387                         oem_reg |= HV_OEM_BITS_LPLU;
2388         }
2389
2390         /* Set Restart auto-neg to activate the bits */
2391         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2392             !hw->phy.ops.check_reset_block(hw))
2393                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2394
2395         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2396
2397 release:
2398         hw->phy.ops.release(hw);
2399
2400         return ret_val;
2401 }
2402
2403
2404 /**
2405  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2406  *  @hw:   pointer to the HW structure
2407  **/
2408 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2409 {
2410         s32 ret_val;
2411         u16 data;
2412
2413         DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2414
2415         ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2416         if (ret_val)
2417                 return ret_val;
2418
2419         data |= HV_KMRN_MDIO_SLOW;
2420
2421         ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2422
2423         return ret_val;
2424 }
2425
2426 /**
2427  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2428  *  done after every PHY reset.
2429  **/
2430 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2431 {
2432         s32 ret_val = E1000_SUCCESS;
2433         u16 phy_data;
2434
2435         DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2436
2437         if (hw->mac.type != e1000_pchlan)
2438                 return E1000_SUCCESS;
2439
2440         /* Set MDIO slow mode before any other MDIO access */
2441         if (hw->phy.type == e1000_phy_82577) {
2442                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2443                 if (ret_val)
2444                         return ret_val;
2445         }
2446
2447         if (((hw->phy.type == e1000_phy_82577) &&
2448              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2449             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2450                 /* Disable generation of early preamble */
2451                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2452                 if (ret_val)
2453                         return ret_val;
2454
2455                 /* Preamble tuning for SSC */
2456                 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2457                                                 0xA204);
2458                 if (ret_val)
2459                         return ret_val;
2460         }
2461
2462         if (hw->phy.type == e1000_phy_82578) {
2463                 /* Return registers to default by doing a soft reset then
2464                  * writing 0x3140 to the control register.
2465                  */
2466                 if (hw->phy.revision < 2) {
2467                         e1000_phy_sw_reset_generic(hw);
2468                         ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2469                                                         0x3140);
2470                 }
2471         }
2472
2473         /* Select page 0 */
2474         ret_val = hw->phy.ops.acquire(hw);
2475         if (ret_val)
2476                 return ret_val;
2477
2478         hw->phy.addr = 1;
2479         ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2480         hw->phy.ops.release(hw);
2481         if (ret_val)
2482                 return ret_val;
2483
2484         /* Configure the K1 Si workaround during phy reset assuming there is
2485          * link so that it disables K1 if link is in 1Gbps.
2486          */
2487         ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2488         if (ret_val)
2489                 return ret_val;
2490
2491         /* Workaround for link disconnects on a busy hub in half duplex */
2492         ret_val = hw->phy.ops.acquire(hw);
2493         if (ret_val)
2494                 return ret_val;
2495         ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2496         if (ret_val)
2497                 goto release;
2498         ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2499                                                phy_data & 0x00FF);
2500         if (ret_val)
2501                 goto release;
2502
2503         /* set MSE higher to enable link to stay up when noise is high */
2504         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2505 release:
2506         hw->phy.ops.release(hw);
2507
2508         return ret_val;
2509 }
2510
2511 /**
2512  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2513  *  @hw:   pointer to the HW structure
2514  **/
2515 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2516 {
2517         u32 mac_reg;
2518         u16 i, phy_reg = 0;
2519         s32 ret_val;
2520
2521         DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2522
2523         ret_val = hw->phy.ops.acquire(hw);
2524         if (ret_val)
2525                 return;
2526         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2527         if (ret_val)
2528                 goto release;
2529
2530         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2531         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2532                 mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2533                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2534                                            (u16)(mac_reg & 0xFFFF));
2535                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2536                                            (u16)((mac_reg >> 16) & 0xFFFF));
2537
2538                 mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2539                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2540                                            (u16)(mac_reg & 0xFFFF));
2541                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2542                                            (u16)((mac_reg & E1000_RAH_AV)
2543                                                  >> 16));
2544         }
2545
2546         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2547
2548 release:
2549         hw->phy.ops.release(hw);
2550 }
2551
2552 static u32 e1000_calc_rx_da_crc(u8 mac[])
2553 {
2554         u32 poly = 0xEDB88320;  /* Polynomial for 802.3 CRC calculation */
2555         u32 i, j, mask, crc;
2556
2557         DEBUGFUNC("e1000_calc_rx_da_crc");
2558
2559         crc = 0xffffffff;
2560         for (i = 0; i < 6; i++) {
2561                 crc = crc ^ mac[i];
2562                 for (j = 8; j > 0; j--) {
2563                         mask = (crc & 1) * (-1);
2564                         crc = (crc >> 1) ^ (poly & mask);
2565                 }
2566         }
2567         return ~crc;
2568 }
2569
2570 /**
2571  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2572  *  with 82579 PHY
2573  *  @hw: pointer to the HW structure
2574  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2575  **/
2576 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2577 {
2578         s32 ret_val = E1000_SUCCESS;
2579         u16 phy_reg, data;
2580         u32 mac_reg;
2581         u16 i;
2582
2583         DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2584
2585         if (hw->mac.type < e1000_pch2lan)
2586                 return E1000_SUCCESS;
2587
2588         /* disable Rx path while enabling/disabling workaround */
2589         hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2590         ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2591                                         phy_reg | (1 << 14));
2592         if (ret_val)
2593                 return ret_val;
2594
2595         if (enable) {
2596                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2597                  * SHRAL/H) and initial CRC values to the MAC
2598                  */
2599                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2600                         u8 mac_addr[ETH_ADDR_LEN] = {0};
2601                         u32 addr_high, addr_low;
2602
2603                         addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2604                         if (!(addr_high & E1000_RAH_AV))
2605                                 continue;
2606                         addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2607                         mac_addr[0] = (addr_low & 0xFF);
2608                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2609                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2610                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2611                         mac_addr[4] = (addr_high & 0xFF);
2612                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2613
2614                         E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2615                                         e1000_calc_rx_da_crc(mac_addr));
2616                 }
2617
2618                 /* Write Rx addresses to the PHY */
2619                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2620
2621                 /* Enable jumbo frame workaround in the MAC */
2622                 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2623                 mac_reg &= ~(1 << 14);
2624                 mac_reg |= (7 << 15);
2625                 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2626
2627                 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2628                 mac_reg |= E1000_RCTL_SECRC;
2629                 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2630
2631                 ret_val = e1000_read_kmrn_reg_generic(hw,
2632                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2633                                                 &data);
2634                 if (ret_val)
2635                         return ret_val;
2636                 ret_val = e1000_write_kmrn_reg_generic(hw,
2637                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638                                                 data | (1 << 0));
2639                 if (ret_val)
2640                         return ret_val;
2641                 ret_val = e1000_read_kmrn_reg_generic(hw,
2642                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2643                                                 &data);
2644                 if (ret_val)
2645                         return ret_val;
2646                 data &= ~(0xF << 8);
2647                 data |= (0xB << 8);
2648                 ret_val = e1000_write_kmrn_reg_generic(hw,
2649                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2650                                                 data);
2651                 if (ret_val)
2652                         return ret_val;
2653
2654                 /* Enable jumbo frame workaround in the PHY */
2655                 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2656                 data &= ~(0x7F << 5);
2657                 data |= (0x37 << 5);
2658                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2659                 if (ret_val)
2660                         return ret_val;
2661                 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2662                 data &= ~(1 << 13);
2663                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2664                 if (ret_val)
2665                         return ret_val;
2666                 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2667                 data &= ~(0x3FF << 2);
2668                 data |= (E1000_TX_PTR_GAP << 2);
2669                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2670                 if (ret_val)
2671                         return ret_val;
2672                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2673                 if (ret_val)
2674                         return ret_val;
2675                 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2676                 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2677                                                 (1 << 10));
2678                 if (ret_val)
2679                         return ret_val;
2680         } else {
2681                 /* Write MAC register values back to h/w defaults */
2682                 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2683                 mac_reg &= ~(0xF << 14);
2684                 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2685
2686                 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2687                 mac_reg &= ~E1000_RCTL_SECRC;
2688                 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2689
2690                 ret_val = e1000_read_kmrn_reg_generic(hw,
2691                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2692                                                 &data);
2693                 if (ret_val)
2694                         return ret_val;
2695                 ret_val = e1000_write_kmrn_reg_generic(hw,
2696                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2697                                                 data & ~(1 << 0));
2698                 if (ret_val)
2699                         return ret_val;
2700                 ret_val = e1000_read_kmrn_reg_generic(hw,
2701                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2702                                                 &data);
2703                 if (ret_val)
2704                         return ret_val;
2705                 data &= ~(0xF << 8);
2706                 data |= (0xB << 8);
2707                 ret_val = e1000_write_kmrn_reg_generic(hw,
2708                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2709                                                 data);
2710                 if (ret_val)
2711                         return ret_val;
2712
2713                 /* Write PHY register values back to h/w defaults */
2714                 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2715                 data &= ~(0x7F << 5);
2716                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2717                 if (ret_val)
2718                         return ret_val;
2719                 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2720                 data |= (1 << 13);
2721                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2722                 if (ret_val)
2723                         return ret_val;
2724                 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2725                 data &= ~(0x3FF << 2);
2726                 data |= (0x8 << 2);
2727                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2728                 if (ret_val)
2729                         return ret_val;
2730                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2731                 if (ret_val)
2732                         return ret_val;
2733                 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2734                 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2735                                                 ~(1 << 10));
2736                 if (ret_val)
2737                         return ret_val;
2738         }
2739
2740         /* re-enable Rx path after enabling/disabling workaround */
2741         return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2742                                      ~(1 << 14));
2743 }
2744
2745 /**
2746  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2747  *  done after every PHY reset.
2748  **/
2749 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2750 {
2751         s32 ret_val = E1000_SUCCESS;
2752
2753         DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2754
2755         if (hw->mac.type != e1000_pch2lan)
2756                 return E1000_SUCCESS;
2757
2758         /* Set MDIO slow mode before any other MDIO access */
2759         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2760         if (ret_val)
2761                 return ret_val;
2762
2763         ret_val = hw->phy.ops.acquire(hw);
2764         if (ret_val)
2765                 return ret_val;
2766         /* set MSE higher to enable link to stay up when noise is high */
2767         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2768         if (ret_val)
2769                 goto release;
2770         /* drop link after 5 times MSE threshold was reached */
2771         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2772 release:
2773         hw->phy.ops.release(hw);
2774
2775         return ret_val;
2776 }
2777
2778 /**
2779  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2780  *  @hw:   pointer to the HW structure
2781  *
2782  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2783  *  Disable K1 for 1000 and 100 speeds
2784  **/
2785 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2786 {
2787         s32 ret_val = E1000_SUCCESS;
2788         u16 status_reg = 0;
2789
2790         DEBUGFUNC("e1000_k1_workaround_lv");
2791
2792         if (hw->mac.type != e1000_pch2lan)
2793                 return E1000_SUCCESS;
2794
2795         /* Set K1 beacon duration based on 10Mbs speed */
2796         ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2797         if (ret_val)
2798                 return ret_val;
2799
2800         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2801             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2802                 if (status_reg &
2803                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2804                         u16 pm_phy_reg;
2805
2806                         /* LV 1G/100 Packet drop issue wa  */
2807                         ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2808                                                        &pm_phy_reg);
2809                         if (ret_val)
2810                                 return ret_val;
2811                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2812                         ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
2813                                                         pm_phy_reg);
2814                         if (ret_val)
2815                                 return ret_val;
2816                 } else {
2817                         u32 mac_reg;
2818                         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
2819                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2820                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2821                         E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
2822                 }
2823         }
2824
2825         return ret_val;
2826 }
2827
2828 /**
2829  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2830  *  @hw:   pointer to the HW structure
2831  *  @gate: boolean set to TRUE to gate, FALSE to ungate
2832  *
2833  *  Gate/ungate the automatic PHY configuration via hardware; perform
2834  *  the configuration via software instead.
2835  **/
2836 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2837 {
2838         u32 extcnf_ctrl;
2839
2840         DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
2841
2842         if (hw->mac.type < e1000_pch2lan)
2843                 return;
2844
2845         extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2846
2847         if (gate)
2848                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2849         else
2850                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2851
2852         E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
2853 }
2854
2855 /**
2856  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2857  *  @hw: pointer to the HW structure
2858  *
2859  *  Check the appropriate indication the MAC has finished configuring the
2860  *  PHY after a software reset.
2861  **/
2862 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2863 {
2864         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2865
2866         DEBUGFUNC("e1000_lan_init_done_ich8lan");
2867
2868         /* Wait for basic configuration completes before proceeding */
2869         do {
2870                 data = E1000_READ_REG(hw, E1000_STATUS);
2871                 data &= E1000_STATUS_LAN_INIT_DONE;
2872                 usec_delay(100);
2873         } while ((!data) && --loop);
2874
2875         /* If basic configuration is incomplete before the above loop
2876          * count reaches 0, loading the configuration from NVM will
2877          * leave the PHY in a bad state possibly resulting in no link.
2878          */
2879         if (loop == 0)
2880                 DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
2881
2882         /* Clear the Init Done bit for the next init event */
2883         data = E1000_READ_REG(hw, E1000_STATUS);
2884         data &= ~E1000_STATUS_LAN_INIT_DONE;
2885         E1000_WRITE_REG(hw, E1000_STATUS, data);
2886 }
2887
2888 /**
2889  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2890  *  @hw: pointer to the HW structure
2891  **/
2892 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2893 {
2894         s32 ret_val = E1000_SUCCESS;
2895         u16 reg;
2896
2897         DEBUGFUNC("e1000_post_phy_reset_ich8lan");
2898
2899         if (hw->phy.ops.check_reset_block(hw))
2900                 return E1000_SUCCESS;
2901
2902         /* Allow time for h/w to get to quiescent state after reset */
2903         msec_delay(10);
2904
2905         /* Perform any necessary post-reset workarounds */
2906         switch (hw->mac.type) {
2907         case e1000_pchlan:
2908                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2909                 if (ret_val)
2910                         return ret_val;
2911                 break;
2912         case e1000_pch2lan:
2913                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2914                 if (ret_val)
2915                         return ret_val;
2916                 break;
2917         default:
2918                 break;
2919         }
2920
2921         /* Clear the host wakeup bit after lcd reset */
2922         if (hw->mac.type >= e1000_pchlan) {
2923                 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
2924                 reg &= ~BM_WUC_HOST_WU_BIT;
2925                 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
2926         }
2927
2928         /* Configure the LCD with the extended configuration region in NVM */
2929         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2930         if (ret_val)
2931                 return ret_val;
2932
2933         /* Configure the LCD with the OEM bits in NVM */
2934         ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
2935
2936         if (hw->mac.type == e1000_pch2lan) {
2937                 /* Ungate automatic PHY configuration on non-managed 82579 */
2938                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
2939                     E1000_ICH_FWSM_FW_VALID)) {
2940                         msec_delay(10);
2941                         e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
2942                 }
2943
2944                 /* Set EEE LPI Update Timer to 200usec */
2945                 ret_val = hw->phy.ops.acquire(hw);
2946                 if (ret_val)
2947                         return ret_val;
2948                 ret_val = e1000_write_emi_reg_locked(hw,
2949                                                      I82579_LPI_UPDATE_TIMER,
2950                                                      0x1387);
2951                 hw->phy.ops.release(hw);
2952         }
2953
2954         return ret_val;
2955 }
2956
2957 /**
2958  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2959  *  @hw: pointer to the HW structure
2960  *
2961  *  Resets the PHY
2962  *  This is a function pointer entry point called by drivers
2963  *  or other shared routines.
2964  **/
2965 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2966 {
2967         s32 ret_val = E1000_SUCCESS;
2968
2969         DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
2970
2971         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2972         if ((hw->mac.type == e1000_pch2lan) &&
2973             !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
2974                 e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
2975
2976         ret_val = e1000_phy_hw_reset_generic(hw);
2977         if (ret_val)
2978                 return ret_val;
2979
2980         return e1000_post_phy_reset_ich8lan(hw);
2981 }
2982
2983 /**
2984  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2985  *  @hw: pointer to the HW structure
2986  *  @active: TRUE to enable LPLU, FALSE to disable
2987  *
2988  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2989  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2990  *  the phy speed. This function will manually set the LPLU bit and restart
2991  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2992  *  since it configures the same bit.
2993  **/
2994 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2995 {
2996         s32 ret_val;
2997         u16 oem_reg;
2998
2999         DEBUGFUNC("e1000_set_lplu_state_pchlan");
3000
3001         ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3002         if (ret_val)
3003                 return ret_val;
3004
3005         if (active)
3006                 oem_reg |= HV_OEM_BITS_LPLU;
3007         else
3008                 oem_reg &= ~HV_OEM_BITS_LPLU;
3009
3010         if (!hw->phy.ops.check_reset_block(hw))
3011                 oem_reg |= HV_OEM_BITS_RESTART_AN;
3012
3013         return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3014 }
3015
3016 /**
3017  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3018  *  @hw: pointer to the HW structure
3019  *  @active: TRUE to enable LPLU, FALSE to disable
3020  *
3021  *  Sets the LPLU D0 state according to the active flag.  When
3022  *  activating LPLU this function also disables smart speed
3023  *  and vice versa.  LPLU will not be activated unless the
3024  *  device autonegotiation advertisement meets standards of
3025  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3026  *  This is a function pointer entry point only called by
3027  *  PHY setup routines.
3028  **/
3029 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3030 {
3031         struct e1000_phy_info *phy = &hw->phy;
3032         u32 phy_ctrl;
3033         s32 ret_val = E1000_SUCCESS;
3034         u16 data;
3035
3036         DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3037
3038         if (phy->type == e1000_phy_ife)
3039                 return E1000_SUCCESS;
3040
3041         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3042
3043         if (active) {
3044                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3045                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3046
3047                 if (phy->type != e1000_phy_igp_3)
3048                         return E1000_SUCCESS;
3049
3050                 /* Call gig speed drop workaround on LPLU before accessing
3051                  * any PHY registers
3052                  */
3053                 if (hw->mac.type == e1000_ich8lan)
3054                         e1000_gig_downshift_workaround_ich8lan(hw);
3055
3056                 /* When LPLU is enabled, we should disable SmartSpeed */
3057                 ret_val = phy->ops.read_reg(hw,
3058                                             IGP01E1000_PHY_PORT_CONFIG,
3059                                             &data);
3060                 if (ret_val)
3061                         return ret_val;
3062                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3063                 ret_val = phy->ops.write_reg(hw,
3064                                              IGP01E1000_PHY_PORT_CONFIG,
3065                                              data);
3066                 if (ret_val)
3067                         return ret_val;
3068         } else {
3069                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3070                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3071
3072                 if (phy->type != e1000_phy_igp_3)
3073                         return E1000_SUCCESS;
3074
3075                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3076                  * during Dx states where the power conservation is most
3077                  * important.  During driver activity we should enable
3078                  * SmartSpeed, so performance is maintained.
3079                  */
3080                 if (phy->smart_speed == e1000_smart_speed_on) {
3081                         ret_val = phy->ops.read_reg(hw,
3082                                                     IGP01E1000_PHY_PORT_CONFIG,
3083                                                     &data);
3084                         if (ret_val)
3085                                 return ret_val;
3086
3087                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3088                         ret_val = phy->ops.write_reg(hw,
3089                                                      IGP01E1000_PHY_PORT_CONFIG,
3090                                                      data);
3091                         if (ret_val)
3092                                 return ret_val;
3093                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3094                         ret_val = phy->ops.read_reg(hw,
3095                                                     IGP01E1000_PHY_PORT_CONFIG,
3096                                                     &data);
3097                         if (ret_val)
3098                                 return ret_val;
3099
3100                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3101                         ret_val = phy->ops.write_reg(hw,
3102                                                      IGP01E1000_PHY_PORT_CONFIG,
3103                                                      data);
3104                         if (ret_val)
3105                                 return ret_val;
3106                 }
3107         }
3108
3109         return E1000_SUCCESS;
3110 }
3111
3112 /**
3113  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3114  *  @hw: pointer to the HW structure
3115  *  @active: TRUE to enable LPLU, FALSE to disable
3116  *
3117  *  Sets the LPLU D3 state according to the active flag.  When
3118  *  activating LPLU this function also disables smart speed
3119  *  and vice versa.  LPLU will not be activated unless the
3120  *  device autonegotiation advertisement meets standards of
3121  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3122  *  This is a function pointer entry point only called by
3123  *  PHY setup routines.
3124  **/
3125 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3126 {
3127         struct e1000_phy_info *phy = &hw->phy;
3128         u32 phy_ctrl;
3129         s32 ret_val = E1000_SUCCESS;
3130         u16 data;
3131
3132         DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3133
3134         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3135
3136         if (!active) {
3137                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3138                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3139
3140                 if (phy->type != e1000_phy_igp_3)
3141                         return E1000_SUCCESS;
3142
3143                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3144                  * during Dx states where the power conservation is most
3145                  * important.  During driver activity we should enable
3146                  * SmartSpeed, so performance is maintained.
3147                  */
3148                 if (phy->smart_speed == e1000_smart_speed_on) {
3149                         ret_val = phy->ops.read_reg(hw,
3150                                                     IGP01E1000_PHY_PORT_CONFIG,
3151                                                     &data);
3152                         if (ret_val)
3153                                 return ret_val;
3154
3155                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3156                         ret_val = phy->ops.write_reg(hw,
3157                                                      IGP01E1000_PHY_PORT_CONFIG,
3158                                                      data);
3159                         if (ret_val)
3160                                 return ret_val;
3161                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3162                         ret_val = phy->ops.read_reg(hw,
3163                                                     IGP01E1000_PHY_PORT_CONFIG,
3164                                                     &data);
3165                         if (ret_val)
3166                                 return ret_val;
3167
3168                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3169                         ret_val = phy->ops.write_reg(hw,
3170                                                      IGP01E1000_PHY_PORT_CONFIG,
3171                                                      data);
3172                         if (ret_val)
3173                                 return ret_val;
3174                 }
3175         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3176                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3177                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3178                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3179                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3180
3181                 if (phy->type != e1000_phy_igp_3)
3182                         return E1000_SUCCESS;
3183
3184                 /* Call gig speed drop workaround on LPLU before accessing
3185                  * any PHY registers
3186                  */
3187                 if (hw->mac.type == e1000_ich8lan)
3188                         e1000_gig_downshift_workaround_ich8lan(hw);
3189
3190                 /* When LPLU is enabled, we should disable SmartSpeed */
3191                 ret_val = phy->ops.read_reg(hw,
3192                                             IGP01E1000_PHY_PORT_CONFIG,
3193                                             &data);
3194                 if (ret_val)
3195                         return ret_val;
3196
3197                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3198                 ret_val = phy->ops.write_reg(hw,
3199                                              IGP01E1000_PHY_PORT_CONFIG,
3200                                              data);
3201         }
3202
3203         return ret_val;
3204 }
3205
3206 /**
3207  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3208  *  @hw: pointer to the HW structure
3209  *  @bank:  pointer to the variable that returns the active bank
3210  *
3211  *  Reads signature byte from the NVM using the flash access registers.
3212  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3213  **/
3214 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3215 {
3216         u32 eecd;
3217         struct e1000_nvm_info *nvm = &hw->nvm;
3218         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3219         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3220         u8 sig_byte = 0;
3221         s32 ret_val;
3222
3223         DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3224
3225         switch (hw->mac.type) {
3226         case e1000_ich8lan:
3227         case e1000_ich9lan:
3228                 eecd = E1000_READ_REG(hw, E1000_EECD);
3229                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3230                     E1000_EECD_SEC1VAL_VALID_MASK) {
3231                         if (eecd & E1000_EECD_SEC1VAL)
3232                                 *bank = 1;
3233                         else
3234                                 *bank = 0;
3235
3236                         return E1000_SUCCESS;
3237                 }
3238                 DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3239                 /* fall-thru */
3240         default:
3241                 /* set bank to 0 in case flash read fails */
3242                 *bank = 0;
3243
3244                 /* Check bank 0 */
3245                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3246                                                         &sig_byte);
3247                 if (ret_val)
3248                         return ret_val;
3249                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3250                     E1000_ICH_NVM_SIG_VALUE) {
3251                         *bank = 0;
3252                         return E1000_SUCCESS;
3253                 }
3254
3255                 /* Check bank 1 */
3256                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3257                                                         bank1_offset,
3258                                                         &sig_byte);
3259                 if (ret_val)
3260                         return ret_val;
3261                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3262                     E1000_ICH_NVM_SIG_VALUE) {
3263                         *bank = 1;
3264                         return E1000_SUCCESS;
3265                 }
3266
3267                 DEBUGOUT("ERROR: No valid NVM bank present\n");
3268                 return -E1000_ERR_NVM;
3269         }
3270 }
3271
3272 /**
3273  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3274  *  @hw: pointer to the HW structure
3275  *  @offset: The offset (in bytes) of the word(s) to read.
3276  *  @words: Size of data to read in words
3277  *  @data: Pointer to the word(s) to read at offset.
3278  *
3279  *  Reads a word(s) from the NVM using the flash access registers.
3280  **/
3281 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3282                                   u16 *data)
3283 {
3284         struct e1000_nvm_info *nvm = &hw->nvm;
3285         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3286         u32 act_offset;
3287         s32 ret_val = E1000_SUCCESS;
3288         u32 bank = 0;
3289         u16 i, word;
3290
3291         DEBUGFUNC("e1000_read_nvm_ich8lan");
3292
3293         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3294             (words == 0)) {
3295                 DEBUGOUT("nvm parameter(s) out of bounds\n");
3296                 ret_val = -E1000_ERR_NVM;
3297                 goto out;
3298         }
3299
3300         nvm->ops.acquire(hw);
3301
3302         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3303         if (ret_val != E1000_SUCCESS) {
3304                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3305                 bank = 0;
3306         }
3307
3308         act_offset = (bank) ? nvm->flash_bank_size : 0;
3309         act_offset += offset;
3310
3311         ret_val = E1000_SUCCESS;
3312         for (i = 0; i < words; i++) {
3313                 if (dev_spec->shadow_ram[offset+i].modified) {
3314                         data[i] = dev_spec->shadow_ram[offset+i].value;
3315                 } else {
3316                         ret_val = e1000_read_flash_word_ich8lan(hw,
3317                                                                 act_offset + i,
3318                                                                 &word);
3319                         if (ret_val)
3320                                 break;
3321                         data[i] = word;
3322                 }
3323         }
3324
3325         nvm->ops.release(hw);
3326
3327 out:
3328         if (ret_val)
3329                 DEBUGOUT1("NVM read error: %d\n", ret_val);
3330
3331         return ret_val;
3332 }
3333
3334 /**
3335  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3336  *  @hw: pointer to the HW structure
3337  *
3338  *  This function does initial flash setup so that a new read/write/erase cycle
3339  *  can be started.
3340  **/
3341 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3342 {
3343         union ich8_hws_flash_status hsfsts;
3344         s32 ret_val = -E1000_ERR_NVM;
3345
3346         DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3347
3348         hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3349
3350         /* Check if the flash descriptor is valid */
3351         if (!hsfsts.hsf_status.fldesvalid) {
3352                 DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3353                 return -E1000_ERR_NVM;
3354         }
3355
3356         /* Clear FCERR and DAEL in hw status by writing 1 */
3357         hsfsts.hsf_status.flcerr = 1;
3358         hsfsts.hsf_status.dael = 1;
3359         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3360
3361         /* Either we should have a hardware SPI cycle in progress
3362          * bit to check against, in order to start a new cycle or
3363          * FDONE bit should be changed in the hardware so that it
3364          * is 1 after hardware reset, which can then be used as an
3365          * indication whether a cycle is in progress or has been
3366          * completed.
3367          */
3368
3369         if (!hsfsts.hsf_status.flcinprog) {
3370                 /* There is no cycle running at present,
3371                  * so we can start a cycle.
3372                  * Begin by setting Flash Cycle Done.
3373                  */
3374                 hsfsts.hsf_status.flcdone = 1;
3375                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3376                 ret_val = E1000_SUCCESS;
3377         } else {
3378                 s32 i;
3379
3380                 /* Otherwise poll for sometime so the current
3381                  * cycle has a chance to end before giving up.
3382                  */
3383                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3384                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3385                                                               ICH_FLASH_HSFSTS);
3386                         if (!hsfsts.hsf_status.flcinprog) {
3387                                 ret_val = E1000_SUCCESS;
3388                                 break;
3389                         }
3390                         usec_delay(1);
3391                 }
3392                 if (ret_val == E1000_SUCCESS) {
3393                         /* Successful in waiting for previous cycle to timeout,
3394                          * now set the Flash Cycle Done.
3395                          */
3396                         hsfsts.hsf_status.flcdone = 1;
3397                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3398                                                 hsfsts.regval);
3399                 } else {
3400                         DEBUGOUT("Flash controller busy, cannot get access\n");
3401                 }
3402         }
3403
3404         return ret_val;
3405 }
3406
3407 /**
3408  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3409  *  @hw: pointer to the HW structure
3410  *  @timeout: maximum time to wait for completion
3411  *
3412  *  This function starts a flash cycle and waits for its completion.
3413  **/
3414 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3415 {
3416         union ich8_hws_flash_ctrl hsflctl;
3417         union ich8_hws_flash_status hsfsts;
3418         u32 i = 0;
3419
3420         DEBUGFUNC("e1000_flash_cycle_ich8lan");
3421
3422         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3423         hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3424         hsflctl.hsf_ctrl.flcgo = 1;
3425
3426         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3427
3428         /* wait till FDONE bit is set to 1 */
3429         do {
3430                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3431                 if (hsfsts.hsf_status.flcdone)
3432                         break;
3433                 usec_delay(1);
3434         } while (i++ < timeout);
3435
3436         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3437                 return E1000_SUCCESS;
3438
3439         return -E1000_ERR_NVM;
3440 }
3441
3442 /**
3443  *  e1000_read_flash_word_ich8lan - Read word from flash
3444  *  @hw: pointer to the HW structure
3445  *  @offset: offset to data location
3446  *  @data: pointer to the location for storing the data
3447  *
3448  *  Reads the flash word at offset into data.  Offset is converted
3449  *  to bytes before read.
3450  **/
3451 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3452                                          u16 *data)
3453 {
3454         DEBUGFUNC("e1000_read_flash_word_ich8lan");
3455
3456         if (!data)
3457                 return -E1000_ERR_NVM;
3458
3459         /* Must convert offset into bytes. */
3460         offset <<= 1;
3461
3462         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3463 }
3464
3465 /**
3466  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3467  *  @hw: pointer to the HW structure
3468  *  @offset: The offset of the byte to read.
3469  *  @data: Pointer to a byte to store the value read.
3470  *
3471  *  Reads a single byte from the NVM using the flash access registers.
3472  **/
3473 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3474                                          u8 *data)
3475 {
3476         s32 ret_val;
3477         u16 word = 0;
3478
3479         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3480
3481         if (ret_val)
3482                 return ret_val;
3483
3484         *data = (u8)word;
3485
3486         return E1000_SUCCESS;
3487 }
3488
3489 /**
3490  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3491  *  @hw: pointer to the HW structure
3492  *  @offset: The offset (in bytes) of the byte or word to read.
3493  *  @size: Size of data to read, 1=byte 2=word
3494  *  @data: Pointer to the word to store the value read.
3495  *
3496  *  Reads a byte or word from the NVM using the flash access registers.
3497  **/
3498 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3499                                          u8 size, u16 *data)
3500 {
3501         union ich8_hws_flash_status hsfsts;
3502         union ich8_hws_flash_ctrl hsflctl;
3503         u32 flash_linear_addr;
3504         u32 flash_data = 0;
3505         s32 ret_val = -E1000_ERR_NVM;
3506         u8 count = 0;
3507
3508         DEBUGFUNC("e1000_read_flash_data_ich8lan");
3509
3510         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3511                 return -E1000_ERR_NVM;
3512         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3513                              hw->nvm.flash_base_addr);
3514
3515         do {
3516                 usec_delay(1);
3517                 /* Steps */
3518                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3519                 if (ret_val != E1000_SUCCESS)
3520                         break;
3521                 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3522
3523                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3524                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3525                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3526                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3527                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3528
3529                 ret_val = e1000_flash_cycle_ich8lan(hw,
3530                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
3531
3532                 /* Check if FCERR is set to 1, if set to 1, clear it
3533                  * and try the whole sequence a few more times, else
3534                  * read in (shift in) the Flash Data0, the order is
3535                  * least significant byte first msb to lsb
3536                  */
3537                 if (ret_val == E1000_SUCCESS) {
3538                         flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3539                         if (size == 1)
3540                                 *data = (u8)(flash_data & 0x000000FF);
3541                         else if (size == 2)
3542                                 *data = (u16)(flash_data & 0x0000FFFF);
3543                         break;
3544                 } else {
3545                         /* If we've gotten here, then things are probably
3546                          * completely hosed, but if the error condition is
3547                          * detected, it won't hurt to give it another try...
3548                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3549                          */
3550                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3551                                                               ICH_FLASH_HSFSTS);
3552                         if (hsfsts.hsf_status.flcerr) {
3553                                 /* Repeat for some time before giving up. */
3554                                 continue;
3555                         } else if (!hsfsts.hsf_status.flcdone) {
3556                                 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3557                                 break;
3558                         }
3559                 }
3560         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3561
3562         return ret_val;
3563 }
3564
3565
3566 /**
3567  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3568  *  @hw: pointer to the HW structure
3569  *  @offset: The offset (in bytes) of the word(s) to write.
3570  *  @words: Size of data to write in words
3571  *  @data: Pointer to the word(s) to write at offset.
3572  *
3573  *  Writes a byte or word to the NVM using the flash access registers.
3574  **/
3575 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3576                                    u16 *data)
3577 {
3578         struct e1000_nvm_info *nvm = &hw->nvm;
3579         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3580         u16 i;
3581
3582         DEBUGFUNC("e1000_write_nvm_ich8lan");
3583
3584         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3585             (words == 0)) {
3586                 DEBUGOUT("nvm parameter(s) out of bounds\n");
3587                 return -E1000_ERR_NVM;
3588         }
3589
3590         nvm->ops.acquire(hw);
3591
3592         for (i = 0; i < words; i++) {
3593                 dev_spec->shadow_ram[offset+i].modified = TRUE;
3594                 dev_spec->shadow_ram[offset+i].value = data[i];
3595         }
3596
3597         nvm->ops.release(hw);
3598
3599         return E1000_SUCCESS;
3600 }
3601
3602 /**
3603  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3604  *  @hw: pointer to the HW structure
3605  *
3606  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3607  *  which writes the checksum to the shadow ram.  The changes in the shadow
3608  *  ram are then committed to the EEPROM by processing each bank at a time
3609  *  checking for the modified bit and writing only the pending changes.
3610  *  After a successful commit, the shadow ram is cleared and is ready for
3611  *  future writes.
3612  **/
3613 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3614 {
3615         struct e1000_nvm_info *nvm = &hw->nvm;
3616         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3617         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3618         s32 ret_val;
3619         u16 data = 0;
3620
3621         DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
3622
3623         ret_val = e1000_update_nvm_checksum_generic(hw);
3624         if (ret_val)
3625                 goto out;
3626
3627         if (nvm->type != e1000_nvm_flash_sw)
3628                 goto out;
3629
3630         nvm->ops.acquire(hw);
3631
3632         /* We're writing to the opposite bank so if we're on bank 1,
3633          * write to bank 0 etc.  We also need to erase the segment that
3634          * is going to be written
3635          */
3636         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3637         if (ret_val != E1000_SUCCESS) {
3638                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3639                 bank = 0;
3640         }
3641
3642         if (bank == 0) {
3643                 new_bank_offset = nvm->flash_bank_size;
3644                 old_bank_offset = 0;
3645                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3646                 if (ret_val)
3647                         goto release;
3648         } else {
3649                 old_bank_offset = nvm->flash_bank_size;
3650                 new_bank_offset = 0;
3651                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3652                 if (ret_val)
3653                         goto release;
3654         }
3655         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3656                 if (dev_spec->shadow_ram[i].modified) {
3657                         data = dev_spec->shadow_ram[i].value;
3658                 } else {
3659                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
3660                                                                 old_bank_offset,
3661                                                                 &data);
3662                         if (ret_val)
3663                                 break;
3664                 }
3665                 /* If the word is 0x13, then make sure the signature bits
3666                  * (15:14) are 11b until the commit has completed.
3667                  * This will allow us to write 10b which indicates the
3668                  * signature is valid.  We want to do this after the write
3669                  * has completed so that we don't mark the segment valid
3670                  * while the write is still in progress
3671                  */
3672                 if (i == E1000_ICH_NVM_SIG_WORD)
3673                         data |= E1000_ICH_NVM_SIG_MASK;
3674
3675                 /* Convert offset to bytes. */
3676                 act_offset = (i + new_bank_offset) << 1;
3677
3678                 usec_delay(100);
3679
3680                 /* Write the bytes to the new bank. */
3681                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3682                                                                act_offset,
3683                                                                (u8)data);
3684                 if (ret_val)
3685                         break;
3686
3687                 usec_delay(100);
3688                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3689                                                           act_offset + 1,
3690                                                           (u8)(data >> 8));
3691                 if (ret_val)
3692                         break;
3693          }
3694
3695         /* Don't bother writing the segment valid bits if sector
3696          * programming failed.
3697          */
3698         if (ret_val) {
3699                 DEBUGOUT("Flash commit failed.\n");
3700                 goto release;
3701         }
3702
3703         /* Finally validate the new segment by setting bit 15:14
3704          * to 10b in word 0x13 , this can be done without an
3705          * erase as well since these bits are 11 to start with
3706          * and we need to change bit 14 to 0b
3707          */
3708         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3709         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3710         if (ret_val)
3711                 goto release;
3712
3713         data &= 0xBFFF;
3714         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
3715                                                        (u8)(data >> 8));
3716         if (ret_val)
3717                 goto release;
3718
3719         /* And invalidate the previously valid segment by setting
3720          * its signature word (0x13) high_byte to 0b. This can be
3721          * done without an erase because flash erase sets all bits
3722          * to 1's. We can write 1's to 0's without an erase
3723          */
3724         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3725
3726         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3727
3728         if (ret_val)
3729                 goto release;
3730
3731         /* Great!  Everything worked, we can now clear the cached entries. */
3732         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3733                 dev_spec->shadow_ram[i].modified = FALSE;
3734                 dev_spec->shadow_ram[i].value = 0xFFFF;
3735         }
3736
3737 release:
3738         nvm->ops.release(hw);
3739
3740         /* Reload the EEPROM, or else modifications will not appear
3741          * until after the next adapter reset.
3742          */
3743         if (!ret_val) {
3744                 nvm->ops.reload(hw);
3745                 msec_delay(10);
3746         }
3747
3748 out:
3749         if (ret_val)
3750                 DEBUGOUT1("NVM update error: %d\n", ret_val);
3751
3752         return ret_val;
3753 }
3754
3755 /**
3756  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3757  *  @hw: pointer to the HW structure
3758  *
3759  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3760  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3761  *  calculated, in which case we need to calculate the checksum and set bit 6.
3762  **/
3763 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3764 {
3765         s32 ret_val;
3766         u16 data;
3767         u16 word;
3768         u16 valid_csum_mask;
3769
3770         DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
3771
3772         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3773          * the checksum needs to be fixed.  This bit is an indication that
3774          * the NVM was prepared by OEM software and did not calculate
3775          * the checksum...a likely scenario.
3776          */
3777         switch (hw->mac.type) {
3778         case e1000_pch_lpt:
3779                 word = NVM_COMPAT;
3780                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3781                 break;
3782         default:
3783                 word = NVM_FUTURE_INIT_WORD1;
3784                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3785                 break;
3786         }
3787
3788         ret_val = hw->nvm.ops.read(hw, word, 1, &data);
3789         if (ret_val)
3790                 return ret_val;
3791
3792         if (!(data & valid_csum_mask)) {
3793                 data |= valid_csum_mask;
3794                 ret_val = hw->nvm.ops.write(hw, word, 1, &data);
3795                 if (ret_val)
3796                         return ret_val;
3797                 ret_val = hw->nvm.ops.update(hw);
3798                 if (ret_val)
3799                         return ret_val;
3800         }
3801
3802         return e1000_validate_nvm_checksum_generic(hw);
3803 }
3804
3805 /**
3806  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3807  *  @hw: pointer to the HW structure
3808  *  @offset: The offset (in bytes) of the byte/word to read.
3809  *  @size: Size of data to read, 1=byte 2=word
3810  *  @data: The byte(s) to write to the NVM.
3811  *
3812  *  Writes one/two bytes to the NVM using the flash access registers.
3813  **/
3814 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3815                                           u8 size, u16 data)
3816 {
3817         union ich8_hws_flash_status hsfsts;
3818         union ich8_hws_flash_ctrl hsflctl;
3819         u32 flash_linear_addr;
3820         u32 flash_data = 0;
3821         s32 ret_val;
3822         u8 count = 0;
3823
3824         DEBUGFUNC("e1000_write_ich8_data");
3825
3826         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3827                 return -E1000_ERR_NVM;
3828
3829         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3830                              hw->nvm.flash_base_addr);
3831
3832         do {
3833                 usec_delay(1);
3834                 /* Steps */
3835                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3836                 if (ret_val != E1000_SUCCESS)
3837                         break;
3838                 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3839
3840                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3841                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3842                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3843                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3844
3845                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3846
3847                 if (size == 1)
3848                         flash_data = (u32)data & 0x00FF;
3849                 else
3850                         flash_data = (u32)data;
3851
3852                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
3853
3854                 /* check if FCERR is set to 1 , if set to 1, clear it
3855                  * and try the whole sequence a few more times else done
3856                  */
3857                 ret_val =
3858                     e1000_flash_cycle_ich8lan(hw,
3859                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3860                 if (ret_val == E1000_SUCCESS)
3861                         break;
3862
3863                 /* If we're here, then things are most likely
3864                  * completely hosed, but if the error condition
3865                  * is detected, it won't hurt to give it another
3866                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3867                  */
3868                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3869                 if (hsfsts.hsf_status.flcerr)
3870                         /* Repeat for some time before giving up. */
3871                         continue;
3872                 if (!hsfsts.hsf_status.flcdone) {
3873                         DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3874                         break;
3875                 }
3876         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3877
3878         return ret_val;
3879 }
3880
3881
3882 /**
3883  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3884  *  @hw: pointer to the HW structure
3885  *  @offset: The index of the byte to read.
3886  *  @data: The byte to write to the NVM.
3887  *
3888  *  Writes a single byte to the NVM using the flash access registers.
3889  **/
3890 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3891                                           u8 data)
3892 {
3893         u16 word = (u16)data;
3894
3895         DEBUGFUNC("e1000_write_flash_byte_ich8lan");
3896
3897         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3898 }
3899
3900
3901
3902 /**
3903  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3904  *  @hw: pointer to the HW structure
3905  *  @offset: The offset of the byte to write.
3906  *  @byte: The byte to write to the NVM.
3907  *
3908  *  Writes a single byte to the NVM using the flash access registers.
3909  *  Goes through a retry algorithm before giving up.
3910  **/
3911 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3912                                                 u32 offset, u8 byte)
3913 {
3914         s32 ret_val;
3915         u16 program_retries;
3916
3917         DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
3918
3919         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3920         if (!ret_val)
3921                 return ret_val;
3922
3923         for (program_retries = 0; program_retries < 100; program_retries++) {
3924                 DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
3925                 usec_delay(100);
3926                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3927                 if (ret_val == E1000_SUCCESS)
3928                         break;
3929         }
3930         if (program_retries == 100)
3931                 return -E1000_ERR_NVM;
3932
3933         return E1000_SUCCESS;
3934 }
3935
3936 /**
3937  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3938  *  @hw: pointer to the HW structure
3939  *  @bank: 0 for first bank, 1 for second bank, etc.
3940  *
3941  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3942  *  bank N is 4096 * N + flash_reg_addr.
3943  **/
3944 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3945 {
3946         struct e1000_nvm_info *nvm = &hw->nvm;
3947         union ich8_hws_flash_status hsfsts;
3948         union ich8_hws_flash_ctrl hsflctl;
3949         u32 flash_linear_addr;
3950         /* bank size is in 16bit words - adjust to bytes */
3951         u32 flash_bank_size = nvm->flash_bank_size * 2;
3952         s32 ret_val;
3953         s32 count = 0;
3954         s32 j, iteration, sector_size;
3955
3956         DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
3957
3958         hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3959
3960         /* Determine HW Sector size: Read BERASE bits of hw flash status
3961          * register
3962          * 00: The Hw sector is 256 bytes, hence we need to erase 16
3963          *     consecutive sectors.  The start index for the nth Hw sector
3964          *     can be calculated as = bank * 4096 + n * 256
3965          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3966          *     The start index for the nth Hw sector can be calculated
3967          *     as = bank * 4096
3968          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3969          *     (ich9 only, otherwise error condition)
3970          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3971          */
3972         switch (hsfsts.hsf_status.berasesz) {
3973         case 0:
3974                 /* Hw sector size 256 */
3975                 sector_size = ICH_FLASH_SEG_SIZE_256;
3976                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3977                 break;
3978         case 1:
3979                 sector_size = ICH_FLASH_SEG_SIZE_4K;
3980                 iteration = 1;
3981                 break;
3982         case 2:
3983                 sector_size = ICH_FLASH_SEG_SIZE_8K;
3984                 iteration = 1;
3985                 break;
3986         case 3:
3987                 sector_size = ICH_FLASH_SEG_SIZE_64K;
3988                 iteration = 1;
3989                 break;
3990         default:
3991                 return -E1000_ERR_NVM;
3992         }
3993
3994         /* Start with the base address, then add the sector offset. */
3995         flash_linear_addr = hw->nvm.flash_base_addr;
3996         flash_linear_addr += (bank) ? flash_bank_size : 0;
3997
3998         for (j = 0; j < iteration; j++) {
3999                 do {
4000                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4001
4002                         /* Steps */
4003                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4004                         if (ret_val)
4005                                 return ret_val;
4006
4007                         /* Write a value 11 (block Erase) in Flash
4008                          * Cycle field in hw flash control
4009                          */
4010                         hsflctl.regval =
4011                             E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4012
4013                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4014                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4015                                                 hsflctl.regval);
4016
4017                         /* Write the last 24 bits of an index within the
4018                          * block into Flash Linear address field in Flash
4019                          * Address.
4020                          */
4021                         flash_linear_addr += (j * sector_size);
4022                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4023                                               flash_linear_addr);
4024
4025                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4026                         if (ret_val == E1000_SUCCESS)
4027                                 break;
4028
4029                         /* Check if FCERR is set to 1.  If 1,
4030                          * clear it and try the whole sequence
4031                          * a few more times else Done
4032                          */
4033                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4034                                                       ICH_FLASH_HSFSTS);
4035                         if (hsfsts.hsf_status.flcerr)
4036                                 /* repeat for some time before giving up */
4037                                 continue;
4038                         else if (!hsfsts.hsf_status.flcdone)
4039                                 return ret_val;
4040                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4041         }
4042
4043         return E1000_SUCCESS;
4044 }
4045
4046 /**
4047  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4048  *  @hw: pointer to the HW structure
4049  *  @data: Pointer to the LED settings
4050  *
4051  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4052  *  settings is all 0's or F's, set the LED default to a valid LED default
4053  *  setting.
4054  **/
4055 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4056 {
4057         s32 ret_val;
4058
4059         DEBUGFUNC("e1000_valid_led_default_ich8lan");
4060
4061         ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4062         if (ret_val) {
4063                 DEBUGOUT("NVM Read Error\n");
4064                 return ret_val;
4065         }
4066
4067         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4068                 *data = ID_LED_DEFAULT_ICH8LAN;
4069
4070         return E1000_SUCCESS;
4071 }
4072
4073 /**
4074  *  e1000_id_led_init_pchlan - store LED configurations
4075  *  @hw: pointer to the HW structure
4076  *
4077  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4078  *  the PHY LED configuration register.
4079  *
4080  *  PCH also does not have an "always on" or "always off" mode which
4081  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4082  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4083  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4084  *  link based on logic in e1000_led_[on|off]_pchlan().
4085  **/
4086 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4087 {
4088         struct e1000_mac_info *mac = &hw->mac;
4089         s32 ret_val;
4090         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4091         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4092         u16 data, i, temp, shift;
4093
4094         DEBUGFUNC("e1000_id_led_init_pchlan");
4095
4096         /* Get default ID LED modes */
4097         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4098         if (ret_val)
4099                 return ret_val;
4100
4101         mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4102         mac->ledctl_mode1 = mac->ledctl_default;
4103         mac->ledctl_mode2 = mac->ledctl_default;
4104
4105         for (i = 0; i < 4; i++) {
4106                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4107                 shift = (i * 5);
4108                 switch (temp) {
4109                 case ID_LED_ON1_DEF2:
4110                 case ID_LED_ON1_ON2:
4111                 case ID_LED_ON1_OFF2:
4112                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4113                         mac->ledctl_mode1 |= (ledctl_on << shift);
4114                         break;
4115                 case ID_LED_OFF1_DEF2:
4116                 case ID_LED_OFF1_ON2:
4117                 case ID_LED_OFF1_OFF2:
4118                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4119                         mac->ledctl_mode1 |= (ledctl_off << shift);
4120                         break;
4121                 default:
4122                         /* Do nothing */
4123                         break;
4124                 }
4125                 switch (temp) {
4126                 case ID_LED_DEF1_ON2:
4127                 case ID_LED_ON1_ON2:
4128                 case ID_LED_OFF1_ON2:
4129                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4130                         mac->ledctl_mode2 |= (ledctl_on << shift);
4131                         break;
4132                 case ID_LED_DEF1_OFF2:
4133                 case ID_LED_ON1_OFF2:
4134                 case ID_LED_OFF1_OFF2:
4135                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4136                         mac->ledctl_mode2 |= (ledctl_off << shift);
4137                         break;
4138                 default:
4139                         /* Do nothing */
4140                         break;
4141                 }
4142         }
4143
4144         return E1000_SUCCESS;
4145 }
4146
4147 /**
4148  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4149  *  @hw: pointer to the HW structure
4150  *
4151  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4152  *  register, so the the bus width is hard coded.
4153  **/
4154 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4155 {
4156         struct e1000_bus_info *bus = &hw->bus;
4157         s32 ret_val;
4158
4159         DEBUGFUNC("e1000_get_bus_info_ich8lan");
4160
4161         ret_val = e1000_get_bus_info_pcie_generic(hw);
4162
4163         /* ICH devices are "PCI Express"-ish.  They have
4164          * a configuration space, but do not contain
4165          * PCI Express Capability registers, so bus width
4166          * must be hardcoded.
4167          */
4168         if (bus->width == e1000_bus_width_unknown)
4169                 bus->width = e1000_bus_width_pcie_x1;
4170
4171         return ret_val;
4172 }
4173
4174 /**
4175  *  e1000_reset_hw_ich8lan - Reset the hardware
4176  *  @hw: pointer to the HW structure
4177  *
4178  *  Does a full reset of the hardware which includes a reset of the PHY and
4179  *  MAC.
4180  **/
4181 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4182 {
4183         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4184         u16 kum_cfg;
4185         u32 ctrl, reg;
4186         s32 ret_val;
4187
4188         DEBUGFUNC("e1000_reset_hw_ich8lan");
4189
4190         /* Prevent the PCI-E bus from sticking if there is no TLP connection
4191          * on the last TLP read/write transaction when MAC is reset.
4192          */
4193         ret_val = e1000_disable_pcie_master_generic(hw);
4194         if (ret_val)
4195                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
4196
4197         DEBUGOUT("Masking off all interrupts\n");
4198         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4199
4200         /* Disable the Transmit and Receive units.  Then delay to allow
4201          * any pending transactions to complete before we hit the MAC
4202          * with the global reset.
4203          */
4204         E1000_WRITE_REG(hw, E1000_RCTL, 0);
4205         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4206         E1000_WRITE_FLUSH(hw);
4207
4208         msec_delay(10);
4209
4210         /* Workaround for ICH8 bit corruption issue in FIFO memory */
4211         if (hw->mac.type == e1000_ich8lan) {
4212                 /* Set Tx and Rx buffer allocation to 8k apiece. */
4213                 E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4214                 /* Set Packet Buffer Size to 16k. */
4215                 E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4216         }
4217
4218         if (hw->mac.type == e1000_pchlan) {
4219                 /* Save the NVM K1 bit setting*/
4220                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4221                 if (ret_val)
4222                         return ret_val;
4223
4224                 if (kum_cfg & E1000_NVM_K1_ENABLE)
4225                         dev_spec->nvm_k1_enabled = TRUE;
4226                 else
4227                         dev_spec->nvm_k1_enabled = FALSE;
4228         }
4229
4230         ctrl = E1000_READ_REG(hw, E1000_CTRL);
4231
4232         if (!hw->phy.ops.check_reset_block(hw)) {
4233                 /* Full-chip reset requires MAC and PHY reset at the same
4234                  * time to make sure the interface between MAC and the
4235                  * external PHY is reset.
4236                  */
4237                 ctrl |= E1000_CTRL_PHY_RST;
4238
4239                 /* Gate automatic PHY configuration by hardware on
4240                  * non-managed 82579
4241                  */
4242                 if ((hw->mac.type == e1000_pch2lan) &&
4243                     !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
4244                         e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
4245         }
4246         ret_val = e1000_acquire_swflag_ich8lan(hw);
4247         DEBUGOUT("Issuing a global reset to ich8lan\n");
4248         E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
4249         /* cannot issue a flush here because it hangs the hardware */
4250         msec_delay(20);
4251
4252         /* Set Phy Config Counter to 50msec */
4253         if (hw->mac.type == e1000_pch2lan) {
4254                 reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
4255                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4256                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4257                 E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
4258         }
4259
4260         if (!ret_val)
4261                 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
4262
4263         if (ctrl & E1000_CTRL_PHY_RST) {
4264                 ret_val = hw->phy.ops.get_cfg_done(hw);
4265                 if (ret_val)
4266                         return ret_val;
4267
4268                 ret_val = e1000_post_phy_reset_ich8lan(hw);
4269                 if (ret_val)
4270                         return ret_val;
4271         }
4272
4273         /* For PCH, this write will make sure that any noise
4274          * will be detected as a CRC error and be dropped rather than show up
4275          * as a bad packet to the DMA engine.
4276          */
4277         if (hw->mac.type == e1000_pchlan)
4278                 E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
4279
4280         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4281         E1000_READ_REG(hw, E1000_ICR);
4282
4283         reg = E1000_READ_REG(hw, E1000_KABGTXD);
4284         reg |= E1000_KABGTXD_BGSQLBIAS;
4285         E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
4286
4287         return E1000_SUCCESS;
4288 }
4289
4290 /**
4291  *  e1000_init_hw_ich8lan - Initialize the hardware
4292  *  @hw: pointer to the HW structure
4293  *
4294  *  Prepares the hardware for transmit and receive by doing the following:
4295  *   - initialize hardware bits
4296  *   - initialize LED identification
4297  *   - setup receive address registers
4298  *   - setup flow control
4299  *   - setup transmit descriptors
4300  *   - clear statistics
4301  **/
4302 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4303 {
4304         struct e1000_mac_info *mac = &hw->mac;
4305         u32 ctrl_ext, txdctl, snoop;
4306         s32 ret_val;
4307         u16 i;
4308
4309         DEBUGFUNC("e1000_init_hw_ich8lan");
4310
4311         e1000_initialize_hw_bits_ich8lan(hw);
4312
4313         /* Initialize identification LED */
4314         ret_val = mac->ops.id_led_init(hw);
4315         /* An error is not fatal and we should not stop init due to this */
4316         if (ret_val)
4317                 DEBUGOUT("Error initializing identification LED\n");
4318
4319         /* Setup the receive address. */
4320         e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
4321
4322         /* Zero out the Multicast HASH table */
4323         DEBUGOUT("Zeroing the MTA\n");
4324         for (i = 0; i < mac->mta_reg_count; i++)
4325                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4326
4327         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4328          * the ME.  Disable wakeup by clearing the host wakeup bit.
4329          * Reset the phy after disabling host wakeup to reset the Rx buffer.
4330          */
4331         if (hw->phy.type == e1000_phy_82578) {
4332                 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
4333                 i &= ~BM_WUC_HOST_WU_BIT;
4334                 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
4335                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4336                 if (ret_val)
4337                         return ret_val;
4338         }
4339
4340         /* Setup link and flow control */
4341         ret_val = mac->ops.setup_link(hw);
4342
4343         /* Set the transmit descriptor write-back policy for both queues */
4344         txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
4345         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4346                   E1000_TXDCTL_FULL_TX_DESC_WB);
4347         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4348                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4349         E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
4350         txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
4351         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4352                   E1000_TXDCTL_FULL_TX_DESC_WB);
4353         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4354                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4355         E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
4356
4357         /* ICH8 has opposite polarity of no_snoop bits.
4358          * By default, we should use snoop behavior.
4359          */
4360         if (mac->type == e1000_ich8lan)
4361                 snoop = PCIE_ICH8_SNOOP_ALL;
4362         else
4363                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
4364         e1000_set_pcie_no_snoop_generic(hw, snoop);
4365
4366         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4367         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4368         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4369
4370         /* Clear all of the statistics registers (clear on read).  It is
4371          * important that we do this after we have tried to establish link
4372          * because the symbol error count will increment wildly if there
4373          * is no link.
4374          */
4375         e1000_clear_hw_cntrs_ich8lan(hw);
4376
4377         return ret_val;
4378 }
4379
4380 /**
4381  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4382  *  @hw: pointer to the HW structure
4383  *
4384  *  Sets/Clears required hardware bits necessary for correctly setting up the
4385  *  hardware for transmit and receive.
4386  **/
4387 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4388 {
4389         u32 reg;
4390
4391         DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
4392
4393         /* Extended Device Control */
4394         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
4395         reg |= (1 << 22);
4396         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4397         if (hw->mac.type >= e1000_pchlan)
4398                 reg |= E1000_CTRL_EXT_PHYPDEN;
4399         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
4400
4401         /* Transmit Descriptor Control 0 */
4402         reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
4403         reg |= (1 << 22);
4404         E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
4405
4406         /* Transmit Descriptor Control 1 */
4407         reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
4408         reg |= (1 << 22);
4409         E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
4410
4411         /* Transmit Arbitration Control 0 */
4412         reg = E1000_READ_REG(hw, E1000_TARC(0));
4413         if (hw->mac.type == e1000_ich8lan)
4414                 reg |= (1 << 28) | (1 << 29);
4415         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4416         E1000_WRITE_REG(hw, E1000_TARC(0), reg);
4417
4418         /* Transmit Arbitration Control 1 */
4419         reg = E1000_READ_REG(hw, E1000_TARC(1));
4420         if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
4421                 reg &= ~(1 << 28);
4422         else
4423                 reg |= (1 << 28);
4424         reg |= (1 << 24) | (1 << 26) | (1 << 30);
4425         E1000_WRITE_REG(hw, E1000_TARC(1), reg);
4426
4427         /* Device Status */
4428         if (hw->mac.type == e1000_ich8lan) {
4429                 reg = E1000_READ_REG(hw, E1000_STATUS);
4430                 reg &= ~(1 << 31);
4431                 E1000_WRITE_REG(hw, E1000_STATUS, reg);
4432         }
4433
4434         /* work-around descriptor data corruption issue during nfs v2 udp
4435          * traffic, just disable the nfs filtering capability
4436          */
4437         reg = E1000_READ_REG(hw, E1000_RFCTL);
4438         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4439
4440         /* Disable IPv6 extension header parsing because some malformed
4441          * IPv6 headers can hang the Rx.
4442          */
4443         if (hw->mac.type == e1000_ich8lan)
4444                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4445         E1000_WRITE_REG(hw, E1000_RFCTL, reg);
4446
4447         /* Enable ECC on Lynxpoint */
4448         if (hw->mac.type == e1000_pch_lpt) {
4449                 reg = E1000_READ_REG(hw, E1000_PBECCSTS);
4450                 reg |= E1000_PBECCSTS_ECC_ENABLE;
4451                 E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
4452
4453                 reg = E1000_READ_REG(hw, E1000_CTRL);
4454                 reg |= E1000_CTRL_MEHE;
4455                 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4456         }
4457
4458         return;
4459 }
4460
4461 /**
4462  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4463  *  @hw: pointer to the HW structure
4464  *
4465  *  Determines which flow control settings to use, then configures flow
4466  *  control.  Calls the appropriate media-specific link configuration
4467  *  function.  Assuming the adapter has a valid link partner, a valid link
4468  *  should be established.  Assumes the hardware has previously been reset
4469  *  and the transmitter and receiver are not enabled.
4470  **/
4471 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4472 {
4473         s32 ret_val;
4474
4475         DEBUGFUNC("e1000_setup_link_ich8lan");
4476
4477         if (hw->phy.ops.check_reset_block(hw))
4478                 return E1000_SUCCESS;
4479
4480         /* ICH parts do not have a word in the NVM to determine
4481          * the default flow control setting, so we explicitly
4482          * set it to full.
4483          */
4484         if (hw->fc.requested_mode == e1000_fc_default)
4485                 hw->fc.requested_mode = e1000_fc_full;
4486
4487         /* Save off the requested flow control mode for use later.  Depending
4488          * on the link partner's capabilities, we may or may not use this mode.
4489          */
4490         hw->fc.current_mode = hw->fc.requested_mode;
4491
4492         DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
4493                 hw->fc.current_mode);
4494
4495         /* Continue to configure the copper link. */
4496         ret_val = hw->mac.ops.setup_physical_interface(hw);
4497         if (ret_val)
4498                 return ret_val;
4499
4500         E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
4501         if ((hw->phy.type == e1000_phy_82578) ||
4502             (hw->phy.type == e1000_phy_82579) ||
4503             (hw->phy.type == e1000_phy_i217) ||
4504             (hw->phy.type == e1000_phy_82577)) {
4505                 E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
4506
4507                 ret_val = hw->phy.ops.write_reg(hw,
4508                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
4509                                              hw->fc.pause_time);
4510                 if (ret_val)
4511                         return ret_val;
4512         }
4513
4514         return e1000_set_fc_watermarks_generic(hw);
4515 }
4516
4517 /**
4518  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4519  *  @hw: pointer to the HW structure
4520  *
4521  *  Configures the kumeran interface to the PHY to wait the appropriate time
4522  *  when polling the PHY, then call the generic setup_copper_link to finish
4523  *  configuring the copper link.
4524  **/
4525 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4526 {
4527         u32 ctrl;
4528         s32 ret_val;
4529         u16 reg_data;
4530
4531         DEBUGFUNC("e1000_setup_copper_link_ich8lan");
4532
4533         ctrl = E1000_READ_REG(hw, E1000_CTRL);
4534         ctrl |= E1000_CTRL_SLU;
4535         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4536         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4537
4538         /* Set the mac to wait the maximum time between each iteration
4539          * and increase the max iterations when polling the phy;
4540          * this fixes erroneous timeouts at 10Mbps.
4541          */
4542         ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
4543                                                0xFFFF);
4544         if (ret_val)
4545                 return ret_val;
4546         ret_val = e1000_read_kmrn_reg_generic(hw,
4547                                               E1000_KMRNCTRLSTA_INBAND_PARAM,
4548                                               &reg_data);
4549         if (ret_val)
4550                 return ret_val;
4551         reg_data |= 0x3F;
4552         ret_val = e1000_write_kmrn_reg_generic(hw,
4553                                                E1000_KMRNCTRLSTA_INBAND_PARAM,
4554                                                reg_data);
4555         if (ret_val)
4556                 return ret_val;
4557
4558         switch (hw->phy.type) {
4559         case e1000_phy_igp_3:
4560                 ret_val = e1000_copper_link_setup_igp(hw);
4561                 if (ret_val)
4562                         return ret_val;
4563                 break;
4564         case e1000_phy_bm:
4565         case e1000_phy_82578:
4566                 ret_val = e1000_copper_link_setup_m88(hw);
4567                 if (ret_val)
4568                         return ret_val;
4569                 break;
4570         case e1000_phy_82577:
4571         case e1000_phy_82579:
4572                 ret_val = e1000_copper_link_setup_82577(hw);
4573                 if (ret_val)
4574                         return ret_val;
4575                 break;
4576         case e1000_phy_ife:
4577                 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
4578                                                &reg_data);
4579                 if (ret_val)
4580                         return ret_val;
4581
4582                 reg_data &= ~IFE_PMC_AUTO_MDIX;
4583
4584                 switch (hw->phy.mdix) {
4585                 case 1:
4586                         reg_data &= ~IFE_PMC_FORCE_MDIX;
4587                         break;
4588                 case 2:
4589                         reg_data |= IFE_PMC_FORCE_MDIX;
4590                         break;
4591                 case 0:
4592                 default:
4593                         reg_data |= IFE_PMC_AUTO_MDIX;
4594                         break;
4595                 }
4596                 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
4597                                                 reg_data);
4598                 if (ret_val)
4599                         return ret_val;
4600                 break;
4601         default:
4602                 break;
4603         }
4604
4605         return e1000_setup_copper_link_generic(hw);
4606 }
4607
4608 /**
4609  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4610  *  @hw: pointer to the HW structure
4611  *
4612  *  Calls the PHY specific link setup function and then calls the
4613  *  generic setup_copper_link to finish configuring the link for
4614  *  Lynxpoint PCH devices
4615  **/
4616 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4617 {
4618         u32 ctrl;
4619         s32 ret_val;
4620
4621         DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
4622
4623         ctrl = E1000_READ_REG(hw, E1000_CTRL);
4624         ctrl |= E1000_CTRL_SLU;
4625         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4626         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4627
4628         ret_val = e1000_copper_link_setup_82577(hw);
4629         if (ret_val)
4630                 return ret_val;
4631
4632         return e1000_setup_copper_link_generic(hw);
4633 }
4634
4635 /**
4636  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4637  *  @hw: pointer to the HW structure
4638  *  @speed: pointer to store current link speed
4639  *  @duplex: pointer to store the current link duplex
4640  *
4641  *  Calls the generic get_speed_and_duplex to retrieve the current link
4642  *  information and then calls the Kumeran lock loss workaround for links at
4643  *  gigabit speeds.
4644  **/
4645 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4646                                           u16 *duplex)
4647 {
4648         s32 ret_val;
4649
4650         DEBUGFUNC("e1000_get_link_up_info_ich8lan");
4651
4652         ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
4653         if (ret_val)
4654                 return ret_val;
4655
4656         if ((hw->mac.type == e1000_ich8lan) &&
4657             (hw->phy.type == e1000_phy_igp_3) &&
4658             (*speed == SPEED_1000)) {
4659                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4660         }
4661
4662         return ret_val;
4663 }
4664
4665 /**
4666  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4667  *  @hw: pointer to the HW structure
4668  *
4669  *  Work-around for 82566 Kumeran PCS lock loss:
4670  *  On link status change (i.e. PCI reset, speed change) and link is up and
4671  *  speed is gigabit-
4672  *    0) if workaround is optionally disabled do nothing
4673  *    1) wait 1ms for Kumeran link to come up
4674  *    2) check Kumeran Diagnostic register PCS lock loss bit
4675  *    3) if not set the link is locked (all is good), otherwise...
4676  *    4) reset the PHY
4677  *    5) repeat up to 10 times
4678  *  Note: this is only called for IGP3 copper when speed is 1gb.
4679  **/
4680 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4681 {
4682         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4683         u32 phy_ctrl;
4684         s32 ret_val;
4685         u16 i, data;
4686         bool link;
4687
4688         DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
4689
4690         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4691                 return E1000_SUCCESS;
4692
4693         /* Make sure link is up before proceeding.  If not just return.
4694          * Attempting this while link is negotiating fouled up link
4695          * stability
4696          */
4697         ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
4698         if (!link)
4699                 return E1000_SUCCESS;
4700
4701         for (i = 0; i < 10; i++) {
4702                 /* read once to clear */
4703                 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4704                 if (ret_val)
4705                         return ret_val;
4706                 /* and again to get new status */
4707                 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4708                 if (ret_val)
4709                         return ret_val;
4710
4711                 /* check for PCS lock */
4712                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4713                         return E1000_SUCCESS;
4714
4715                 /* Issue PHY reset */
4716                 hw->phy.ops.reset(hw);
4717                 msec_delay_irq(5);
4718         }
4719         /* Disable GigE link negotiation */
4720         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4721         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4722                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4723         E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4724
4725         /* Call gig speed drop workaround on Gig disable before accessing
4726          * any PHY registers
4727          */
4728         e1000_gig_downshift_workaround_ich8lan(hw);
4729
4730         /* unable to acquire PCS lock */
4731         return -E1000_ERR_PHY;
4732 }
4733
4734 /**
4735  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4736  *  @hw: pointer to the HW structure
4737  *  @state: boolean value used to set the current Kumeran workaround state
4738  *
4739  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
4740  *  /disabled - FALSE).
4741  **/
4742 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4743                                                  bool state)
4744 {
4745         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4746
4747         DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
4748
4749         if (hw->mac.type != e1000_ich8lan) {
4750                 DEBUGOUT("Workaround applies to ICH8 only.\n");
4751                 return;
4752         }
4753
4754         dev_spec->kmrn_lock_loss_workaround_enabled = state;
4755
4756         return;
4757 }
4758
4759 /**
4760  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4761  *  @hw: pointer to the HW structure
4762  *
4763  *  Workaround for 82566 power-down on D3 entry:
4764  *    1) disable gigabit link
4765  *    2) write VR power-down enable
4766  *    3) read it back
4767  *  Continue if successful, else issue LCD reset and repeat
4768  **/
4769 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4770 {
4771         u32 reg;
4772         u16 data;
4773         u8  retry = 0;
4774
4775         DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
4776
4777         if (hw->phy.type != e1000_phy_igp_3)
4778                 return;
4779
4780         /* Try the workaround twice (if needed) */
4781         do {
4782                 /* Disable link */
4783                 reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
4784                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4785                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4786                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
4787
4788                 /* Call gig speed drop workaround on Gig disable before
4789                  * accessing any PHY registers
4790                  */
4791                 if (hw->mac.type == e1000_ich8lan)
4792                         e1000_gig_downshift_workaround_ich8lan(hw);
4793
4794                 /* Write VR power-down enable */
4795                 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4796                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4797                 hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
4798                                       data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4799
4800                 /* Read it back and test */
4801                 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4802                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4803                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4804                         break;
4805
4806                 /* Issue PHY reset and repeat at most one more time */
4807                 reg = E1000_READ_REG(hw, E1000_CTRL);
4808                 E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
4809                 retry++;
4810         } while (retry);
4811 }
4812
4813 /**
4814  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4815  *  @hw: pointer to the HW structure
4816  *
4817  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4818  *  LPLU, Gig disable, MDIC PHY reset):
4819  *    1) Set Kumeran Near-end loopback
4820  *    2) Clear Kumeran Near-end loopback
4821  *  Should only be called for ICH8[m] devices with any 1G Phy.
4822  **/
4823 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4824 {
4825         s32 ret_val;
4826         u16 reg_data;
4827
4828         DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
4829
4830         if ((hw->mac.type != e1000_ich8lan) ||
4831             (hw->phy.type == e1000_phy_ife))
4832                 return;
4833
4834         ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4835                                               &reg_data);
4836         if (ret_val)
4837                 return;
4838         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4839         ret_val = e1000_write_kmrn_reg_generic(hw,
4840                                                E1000_KMRNCTRLSTA_DIAG_OFFSET,
4841                                                reg_data);
4842         if (ret_val)
4843                 return;
4844         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4845         e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4846                                      reg_data);
4847 }
4848
4849 /**
4850  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4851  *  @hw: pointer to the HW structure
4852  *
4853  *  During S0 to Sx transition, it is possible the link remains at gig
4854  *  instead of negotiating to a lower speed.  Before going to Sx, set
4855  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4856  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4857  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4858  *  needs to be written.
4859  *  Parts that support (and are linked to a partner which support) EEE in
4860  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4861  *  than 10Mbps w/o EEE.
4862  **/
4863 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4864 {
4865         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4866         u32 phy_ctrl;
4867         s32 ret_val;
4868
4869         DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
4870
4871         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4872         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4873
4874         if (hw->phy.type == e1000_phy_i217) {
4875                 u16 phy_reg, device_id = hw->device_id;
4876
4877                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4878                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4879                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4880                     (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4881                         u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
4882
4883                         E1000_WRITE_REG(hw, E1000_FEXTNVM6,
4884                                         fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4885                 }
4886
4887                 ret_val = hw->phy.ops.acquire(hw);
4888                 if (ret_val)
4889                         goto out;
4890
4891                 if (!dev_spec->eee_disable) {
4892                         u16 eee_advert;
4893
4894                         ret_val =
4895                             e1000_read_emi_reg_locked(hw,
4896                                                       I217_EEE_ADVERTISEMENT,
4897                                                       &eee_advert);
4898                         if (ret_val)
4899                                 goto release;
4900
4901                         /* Disable LPLU if both link partners support 100BaseT
4902                          * EEE and 100Full is advertised on both ends of the
4903                          * link, and enable Auto Enable LPI since there will
4904                          * be no driver to enable LPI while in Sx.
4905                          */
4906                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4907                             (dev_spec->eee_lp_ability &
4908                              I82579_EEE_100_SUPPORTED) &&
4909                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
4910                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4911                                               E1000_PHY_CTRL_NOND0A_LPLU);
4912
4913                                 /* Set Auto Enable LPI after link up */
4914                                 hw->phy.ops.read_reg_locked(hw,
4915                                                             I217_LPI_GPIO_CTRL,
4916                                                             &phy_reg);
4917                                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4918                                 hw->phy.ops.write_reg_locked(hw,
4919                                                              I217_LPI_GPIO_CTRL,
4920                                                              phy_reg);
4921                         }
4922                 }
4923
4924                 /* For i217 Intel Rapid Start Technology support,
4925                  * when the system is going into Sx and no manageability engine
4926                  * is present, the driver must configure proxy to reset only on
4927                  * power good.  LPI (Low Power Idle) state must also reset only
4928                  * on power good, as well as the MTA (Multicast table array).
4929                  * The SMBus release must also be disabled on LCD reset.
4930                  */
4931                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
4932                       E1000_ICH_FWSM_FW_VALID)) {
4933                         /* Enable proxy to reset only on power good. */
4934                         hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
4935                                                     &phy_reg);
4936                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4937                         hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
4938                                                      phy_reg);
4939
4940                         /* Set bit enable LPI (EEE) to reset only on
4941                          * power good.
4942                         */
4943                         hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
4944                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4945                         hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
4946
4947                         /* Disable the SMB release on LCD reset. */
4948                         hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
4949                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4950                         hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
4951                 }
4952
4953                 /* Enable MTA to reset for Intel Rapid Start Technology
4954                  * Support
4955                  */
4956                 hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
4957                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4958                 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
4959
4960 release:
4961                 hw->phy.ops.release(hw);
4962         }
4963 out:
4964         E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4965
4966         if (hw->mac.type == e1000_ich8lan)
4967                 e1000_gig_downshift_workaround_ich8lan(hw);
4968
4969         if (hw->mac.type >= e1000_pchlan) {
4970                 e1000_oem_bits_config_ich8lan(hw, FALSE);
4971
4972                 /* Reset PHY to activate OEM bits on 82577/8 */
4973                 if (hw->mac.type == e1000_pchlan)
4974                         e1000_phy_hw_reset_generic(hw);
4975
4976                 ret_val = hw->phy.ops.acquire(hw);
4977                 if (ret_val)
4978                         return;
4979                 e1000_write_smbus_addr(hw);
4980                 hw->phy.ops.release(hw);
4981         }
4982
4983         return;
4984 }
4985
4986 /**
4987  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4988  *  @hw: pointer to the HW structure
4989  *
4990  *  During Sx to S0 transitions on non-managed devices or managed devices
4991  *  on which PHY resets are not blocked, if the PHY registers cannot be
4992  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4993  *  the PHY.
4994  *  On i217, setup Intel Rapid Start Technology.
4995  **/
4996 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4997 {
4998         s32 ret_val;
4999
5000         DEBUGFUNC("e1000_resume_workarounds_pchlan");
5001
5002         if (hw->mac.type < e1000_pch2lan)
5003                 return;
5004
5005         ret_val = e1000_init_phy_workarounds_pchlan(hw);
5006         if (ret_val) {
5007                 DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5008                 return;
5009         }
5010
5011         /* For i217 Intel Rapid Start Technology support when the system
5012          * is transitioning from Sx and no manageability engine is present
5013          * configure SMBus to restore on reset, disable proxy, and enable
5014          * the reset on MTA (Multicast table array).
5015          */
5016         if (hw->phy.type == e1000_phy_i217) {
5017                 u16 phy_reg;
5018
5019                 ret_val = hw->phy.ops.acquire(hw);
5020                 if (ret_val) {
5021                         DEBUGOUT("Failed to setup iRST\n");
5022                         return;
5023                 }
5024
5025                 /* Clear Auto Enable LPI after link up */
5026                 hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5027                 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5028                 hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5029
5030                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
5031                     E1000_ICH_FWSM_FW_VALID)) {
5032                         /* Restore clear on SMB if no manageability engine
5033                          * is present
5034                          */
5035                         ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5036                                                               &phy_reg);
5037                         if (ret_val)
5038                                 goto release;
5039                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5040                         hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5041
5042                         /* Disable Proxy */
5043                         hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5044                 }
5045                 /* Enable reset on MTA */
5046                 ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5047                                                       &phy_reg);
5048                 if (ret_val)
5049                         goto release;
5050                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5051                 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5052 release:
5053                 if (ret_val)
5054                         DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5055                 hw->phy.ops.release(hw);
5056         }
5057 }
5058
5059 /**
5060  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5061  *  @hw: pointer to the HW structure
5062  *
5063  *  Return the LED back to the default configuration.
5064  **/
5065 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5066 {
5067         DEBUGFUNC("e1000_cleanup_led_ich8lan");
5068
5069         if (hw->phy.type == e1000_phy_ife)
5070                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5071                                              0);
5072
5073         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5074         return E1000_SUCCESS;
5075 }
5076
5077 /**
5078  *  e1000_led_on_ich8lan - Turn LEDs on
5079  *  @hw: pointer to the HW structure
5080  *
5081  *  Turn on the LEDs.
5082  **/
5083 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5084 {
5085         DEBUGFUNC("e1000_led_on_ich8lan");
5086
5087         if (hw->phy.type == e1000_phy_ife)
5088                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5089                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5090
5091         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5092         return E1000_SUCCESS;
5093 }
5094
5095 /**
5096  *  e1000_led_off_ich8lan - Turn LEDs off
5097  *  @hw: pointer to the HW structure
5098  *
5099  *  Turn off the LEDs.
5100  **/
5101 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5102 {
5103         DEBUGFUNC("e1000_led_off_ich8lan");
5104
5105         if (hw->phy.type == e1000_phy_ife)
5106                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5107                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5108
5109         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5110         return E1000_SUCCESS;
5111 }
5112
5113 /**
5114  *  e1000_setup_led_pchlan - Configures SW controllable LED
5115  *  @hw: pointer to the HW structure
5116  *
5117  *  This prepares the SW controllable LED for use.
5118  **/
5119 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5120 {
5121         DEBUGFUNC("e1000_setup_led_pchlan");
5122
5123         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5124                                      (u16)hw->mac.ledctl_mode1);
5125 }
5126
5127 /**
5128  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5129  *  @hw: pointer to the HW structure
5130  *
5131  *  Return the LED back to the default configuration.
5132  **/
5133 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5134 {
5135         DEBUGFUNC("e1000_cleanup_led_pchlan");
5136
5137         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5138                                      (u16)hw->mac.ledctl_default);
5139 }
5140
5141 /**
5142  *  e1000_led_on_pchlan - Turn LEDs on
5143  *  @hw: pointer to the HW structure
5144  *
5145  *  Turn on the LEDs.
5146  **/
5147 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5148 {
5149         u16 data = (u16)hw->mac.ledctl_mode2;
5150         u32 i, led;
5151
5152         DEBUGFUNC("e1000_led_on_pchlan");
5153
5154         /* If no link, then turn LED on by setting the invert bit
5155          * for each LED that's mode is "link_up" in ledctl_mode2.
5156          */
5157         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5158                 for (i = 0; i < 3; i++) {
5159                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5160                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5161                             E1000_LEDCTL_MODE_LINK_UP)
5162                                 continue;
5163                         if (led & E1000_PHY_LED0_IVRT)
5164                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5165                         else
5166                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5167                 }
5168         }
5169
5170         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5171 }
5172
5173 /**
5174  *  e1000_led_off_pchlan - Turn LEDs off
5175  *  @hw: pointer to the HW structure
5176  *
5177  *  Turn off the LEDs.
5178  **/
5179 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5180 {
5181         u16 data = (u16)hw->mac.ledctl_mode1;
5182         u32 i, led;
5183
5184         DEBUGFUNC("e1000_led_off_pchlan");
5185
5186         /* If no link, then turn LED off by clearing the invert bit
5187          * for each LED that's mode is "link_up" in ledctl_mode1.
5188          */
5189         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5190                 for (i = 0; i < 3; i++) {
5191                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5192                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5193                             E1000_LEDCTL_MODE_LINK_UP)
5194                                 continue;
5195                         if (led & E1000_PHY_LED0_IVRT)
5196                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5197                         else
5198                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5199                 }
5200         }
5201
5202         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5203 }
5204
5205 /**
5206  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5207  *  @hw: pointer to the HW structure
5208  *
5209  *  Read appropriate register for the config done bit for completion status
5210  *  and configure the PHY through s/w for EEPROM-less parts.
5211  *
5212  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5213  *  config done bit, so only an error is logged and continues.  If we were
5214  *  to return with error, EEPROM-less silicon would not be able to be reset
5215  *  or change link.
5216  **/
5217 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5218 {
5219         s32 ret_val = E1000_SUCCESS;
5220         u32 bank = 0;
5221         u32 status;
5222
5223         DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5224
5225         e1000_get_cfg_done_generic(hw);
5226
5227         /* Wait for indication from h/w that it has completed basic config */
5228         if (hw->mac.type >= e1000_ich10lan) {
5229                 e1000_lan_init_done_ich8lan(hw);
5230         } else {
5231                 ret_val = e1000_get_auto_rd_done_generic(hw);
5232                 if (ret_val) {
5233                         /* When auto config read does not complete, do not
5234                          * return with an error. This can happen in situations
5235                          * where there is no eeprom and prevents getting link.
5236                          */
5237                         DEBUGOUT("Auto Read Done did not complete\n");
5238                         ret_val = E1000_SUCCESS;
5239                 }
5240         }
5241
5242         /* Clear PHY Reset Asserted bit */
5243         status = E1000_READ_REG(hw, E1000_STATUS);
5244         if (status & E1000_STATUS_PHYRA)
5245                 E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
5246         else
5247                 DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
5248
5249         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5250         if (hw->mac.type <= e1000_ich9lan) {
5251                 if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
5252                     (hw->phy.type == e1000_phy_igp_3)) {
5253                         e1000_phy_init_script_igp3(hw);
5254                 }
5255         } else {
5256                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5257                         /* Maybe we should do a basic PHY config */
5258                         DEBUGOUT("EEPROM not present\n");
5259                         ret_val = -E1000_ERR_CONFIG;
5260                 }
5261         }
5262
5263         return ret_val;
5264 }
5265
5266 /**
5267  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5268  * @hw: pointer to the HW structure
5269  *
5270  * In the case of a PHY power down to save power, or to turn off link during a
5271  * driver unload, or wake on lan is not enabled, remove the link.
5272  **/
5273 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5274 {
5275         /* If the management interface is not enabled, then power down */
5276         if (!(hw->mac.ops.check_mng_mode(hw) ||
5277               hw->phy.ops.check_reset_block(hw)))
5278                 e1000_power_down_phy_copper(hw);
5279
5280         return;
5281 }
5282
5283 /**
5284  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5285  *  @hw: pointer to the HW structure
5286  *
5287  *  Clears hardware counters specific to the silicon family and calls
5288  *  clear_hw_cntrs_generic to clear all general purpose counters.
5289  **/
5290 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5291 {
5292         u16 phy_data;
5293         s32 ret_val;
5294
5295         DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
5296
5297         e1000_clear_hw_cntrs_base_generic(hw);
5298
5299         E1000_READ_REG(hw, E1000_ALGNERRC);
5300         E1000_READ_REG(hw, E1000_RXERRC);
5301         E1000_READ_REG(hw, E1000_TNCRS);
5302         E1000_READ_REG(hw, E1000_CEXTERR);
5303         E1000_READ_REG(hw, E1000_TSCTC);
5304         E1000_READ_REG(hw, E1000_TSCTFC);
5305
5306         E1000_READ_REG(hw, E1000_MGTPRC);
5307         E1000_READ_REG(hw, E1000_MGTPDC);
5308         E1000_READ_REG(hw, E1000_MGTPTC);
5309
5310         E1000_READ_REG(hw, E1000_IAC);
5311         E1000_READ_REG(hw, E1000_ICRXOC);
5312
5313         /* Clear PHY statistics registers */
5314         if ((hw->phy.type == e1000_phy_82578) ||
5315             (hw->phy.type == e1000_phy_82579) ||
5316             (hw->phy.type == e1000_phy_i217) ||
5317             (hw->phy.type == e1000_phy_82577)) {
5318                 ret_val = hw->phy.ops.acquire(hw);
5319                 if (ret_val)
5320                         return;
5321                 ret_val = hw->phy.ops.set_page(hw,
5322                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
5323                 if (ret_val)
5324                         goto release;
5325                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5326                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5327                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5328                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5329                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5330                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5331                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5332                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5333                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5334                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5335                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5336                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5337                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5338                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5339 release:
5340                 hw->phy.ops.release(hw);
5341         }
5342 }
5343