]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/e1000/if_em.c
Update to bmake-20200710
[FreeBSD/FreeBSD.git] / sys / dev / e1000 / if_em.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33
34 #define em_mac_min e1000_82547
35 #define igb_mac_min e1000_82575
36
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54         /* Intel(R) PRO/1000 Network Connection - Legacy em*/
55         PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
56         PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
57         PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
58         PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
59         PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
60
61         PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
62         PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
63         PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
64         PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
65         PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
66         PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
67         PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
68
69         PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
70
71         PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
72         PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
73
74         PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
75         PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
76         PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
77         PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
78
79         PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80         PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81         PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
82         PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
83         PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
84
85         PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
86         PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
87         PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
88         PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
89         PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
90         PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
91         PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
92         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
93         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
94
95         PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
96         PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
97         PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
98
99         /* Intel(R) PRO/1000 Network Connection - em */
100         PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
101         PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
102         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
103         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
104         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
105         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
106         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
107         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
108         PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
109         PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
110         PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
111         PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
112         PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
113         PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
114         PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
115         PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
116         PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
117         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
118         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
119         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
120         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
121         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
122         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
123         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
124         PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
125         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
126         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
127         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
128         PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
129         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
130         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
131         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
132         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
133         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
134         PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
135         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
136         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
137         PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
138         PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
139         PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
140         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
141         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
142         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
143         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
144         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
145         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
146         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
147         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
148         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
149         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
150         PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
151         PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
152         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
153         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
154         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
155         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
156         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
157         PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
158         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
159         PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
160         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
161         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
162         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
163         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
164         PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
165         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
166         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
167         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
168         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
169         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"),
170         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"),
171         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"),
172         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"),
173         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"),
174         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"),
175         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"),
176         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"),
177         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) PRO/1000 Network Connection"),
178         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) PRO/1000 Network Connection"),
179         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) PRO/1000 Network Connection"),
180         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) PRO/1000 Network Connection"),
181         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) PRO/1000 Network Connection"),
182         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) PRO/1000 Network Connection"),
183         /* required last entry */
184         PVID_END
185 };
186
187 static pci_vendor_info_t igb_vendor_info_array[] =
188 {
189         /* Intel(R) PRO/1000 Network Connection - igb */
190         PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191         PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192         PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193         PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194         PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195         PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196         PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197         PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198         PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201         PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202         PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203         PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204         PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205         PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206         PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207         PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211         PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212         PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213         PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
214         PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
215         PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
216         PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
217         PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
218         PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
219         PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
220         PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
221         PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
222         PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
223         PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
224         PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
225         PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
226         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
227         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
228         PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
229         /* required last entry */
230         PVID_END
231 };
232
233 /*********************************************************************
234  *  Function prototypes
235  *********************************************************************/
236 static void     *em_register(device_t dev);
237 static void     *igb_register(device_t dev);
238 static int      em_if_attach_pre(if_ctx_t ctx);
239 static int      em_if_attach_post(if_ctx_t ctx);
240 static int      em_if_detach(if_ctx_t ctx);
241 static int      em_if_shutdown(if_ctx_t ctx);
242 static int      em_if_suspend(if_ctx_t ctx);
243 static int      em_if_resume(if_ctx_t ctx);
244
245 static int      em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
246 static int      em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
247 static void     em_if_queues_free(if_ctx_t ctx);
248
249 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
250 static void     em_if_init(if_ctx_t ctx);
251 static void     em_if_stop(if_ctx_t ctx);
252 static void     em_if_media_status(if_ctx_t, struct ifmediareq *);
253 static int      em_if_media_change(if_ctx_t ctx);
254 static int      em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
255 static void     em_if_timer(if_ctx_t ctx, uint16_t qid);
256 static void     em_if_vlan_register(if_ctx_t ctx, u16 vtag);
257 static void     em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
258 static void     em_if_watchdog_reset(if_ctx_t ctx);
259 static bool     em_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event);
260
261 static void     em_identify_hardware(if_ctx_t ctx);
262 static int      em_allocate_pci_resources(if_ctx_t ctx);
263 static void     em_free_pci_resources(if_ctx_t ctx);
264 static void     em_reset(if_ctx_t ctx);
265 static int      em_setup_interface(if_ctx_t ctx);
266 static int      em_setup_msix(if_ctx_t ctx);
267
268 static void     em_initialize_transmit_unit(if_ctx_t ctx);
269 static void     em_initialize_receive_unit(if_ctx_t ctx);
270
271 static void     em_if_intr_enable(if_ctx_t ctx);
272 static void     em_if_intr_disable(if_ctx_t ctx);
273 static void     igb_if_intr_enable(if_ctx_t ctx);
274 static void     igb_if_intr_disable(if_ctx_t ctx);
275 static int      em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
276 static int      em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
277 static int      igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
278 static int      igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
279 static void     em_if_multi_set(if_ctx_t ctx);
280 static void     em_if_update_admin_status(if_ctx_t ctx);
281 static void     em_if_debug(if_ctx_t ctx);
282 static void     em_update_stats_counters(struct adapter *);
283 static void     em_add_hw_stats(struct adapter *adapter);
284 static int      em_if_set_promisc(if_ctx_t ctx, int flags);
285 static void     em_setup_vlan_hw_support(struct adapter *);
286 static int      em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
287 static void     em_print_nvm_info(struct adapter *);
288 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
289 static int      em_get_rs(SYSCTL_HANDLER_ARGS);
290 static void     em_print_debug_info(struct adapter *);
291 static int      em_is_valid_ether_addr(u8 *);
292 static int      em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
293 static void     em_add_int_delay_sysctl(struct adapter *, const char *,
294                     const char *, struct em_int_delay_info *, int, int);
295 /* Management and WOL Support */
296 static void     em_init_manageability(struct adapter *);
297 static void     em_release_manageability(struct adapter *);
298 static void     em_get_hw_control(struct adapter *);
299 static void     em_release_hw_control(struct adapter *);
300 static void     em_get_wakeup(if_ctx_t ctx);
301 static void     em_enable_wakeup(if_ctx_t ctx);
302 static int      em_enable_phy_wakeup(struct adapter *);
303 static void     em_disable_aspm(struct adapter *);
304
305 int             em_intr(void *arg);
306 static void     em_disable_promisc(if_ctx_t ctx);
307
308 /* MSI-X handlers */
309 static int      em_if_msix_intr_assign(if_ctx_t, int);
310 static int      em_msix_link(void *);
311 static void     em_handle_link(void *context);
312
313 static void     em_enable_vectors_82574(if_ctx_t);
314
315 static int      em_set_flowcntl(SYSCTL_HANDLER_ARGS);
316 static int      em_sysctl_eee(SYSCTL_HANDLER_ARGS);
317 static void     em_if_led_func(if_ctx_t ctx, int onoff);
318
319 static int      em_get_regs(SYSCTL_HANDLER_ARGS);
320
321 static void     lem_smartspeed(struct adapter *adapter);
322 static void     igb_configure_queues(struct adapter *adapter);
323
324
325 /*********************************************************************
326  *  FreeBSD Device Interface Entry Points
327  *********************************************************************/
328 static device_method_t em_methods[] = {
329         /* Device interface */
330         DEVMETHOD(device_register, em_register),
331         DEVMETHOD(device_probe, iflib_device_probe),
332         DEVMETHOD(device_attach, iflib_device_attach),
333         DEVMETHOD(device_detach, iflib_device_detach),
334         DEVMETHOD(device_shutdown, iflib_device_shutdown),
335         DEVMETHOD(device_suspend, iflib_device_suspend),
336         DEVMETHOD(device_resume, iflib_device_resume),
337         DEVMETHOD_END
338 };
339
340 static device_method_t igb_methods[] = {
341         /* Device interface */
342         DEVMETHOD(device_register, igb_register),
343         DEVMETHOD(device_probe, iflib_device_probe),
344         DEVMETHOD(device_attach, iflib_device_attach),
345         DEVMETHOD(device_detach, iflib_device_detach),
346         DEVMETHOD(device_shutdown, iflib_device_shutdown),
347         DEVMETHOD(device_suspend, iflib_device_suspend),
348         DEVMETHOD(device_resume, iflib_device_resume),
349         DEVMETHOD_END
350 };
351
352
353 static driver_t em_driver = {
354         "em", em_methods, sizeof(struct adapter),
355 };
356
357 static devclass_t em_devclass;
358 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
359
360 MODULE_DEPEND(em, pci, 1, 1, 1);
361 MODULE_DEPEND(em, ether, 1, 1, 1);
362 MODULE_DEPEND(em, iflib, 1, 1, 1);
363
364 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
365
366 static driver_t igb_driver = {
367         "igb", igb_methods, sizeof(struct adapter),
368 };
369
370 static devclass_t igb_devclass;
371 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
372
373 MODULE_DEPEND(igb, pci, 1, 1, 1);
374 MODULE_DEPEND(igb, ether, 1, 1, 1);
375 MODULE_DEPEND(igb, iflib, 1, 1, 1);
376
377 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
378
379 static device_method_t em_if_methods[] = {
380         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
381         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
382         DEVMETHOD(ifdi_detach, em_if_detach),
383         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
384         DEVMETHOD(ifdi_suspend, em_if_suspend),
385         DEVMETHOD(ifdi_resume, em_if_resume),
386         DEVMETHOD(ifdi_init, em_if_init),
387         DEVMETHOD(ifdi_stop, em_if_stop),
388         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
389         DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
390         DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
391         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
392         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
393         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
394         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
395         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
396         DEVMETHOD(ifdi_media_status, em_if_media_status),
397         DEVMETHOD(ifdi_media_change, em_if_media_change),
398         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
399         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
400         DEVMETHOD(ifdi_timer, em_if_timer),
401         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
402         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
403         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
404         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
405         DEVMETHOD(ifdi_led_func, em_if_led_func),
406         DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
407         DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
408         DEVMETHOD(ifdi_debug, em_if_debug),
409         DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
410         DEVMETHOD_END
411 };
412
413 static driver_t em_if_driver = {
414         "em_if", em_if_methods, sizeof(struct adapter)
415 };
416
417 static device_method_t igb_if_methods[] = {
418         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
419         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
420         DEVMETHOD(ifdi_detach, em_if_detach),
421         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
422         DEVMETHOD(ifdi_suspend, em_if_suspend),
423         DEVMETHOD(ifdi_resume, em_if_resume),
424         DEVMETHOD(ifdi_init, em_if_init),
425         DEVMETHOD(ifdi_stop, em_if_stop),
426         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
427         DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
428         DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
429         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
430         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
431         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
432         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
433         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
434         DEVMETHOD(ifdi_media_status, em_if_media_status),
435         DEVMETHOD(ifdi_media_change, em_if_media_change),
436         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
437         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
438         DEVMETHOD(ifdi_timer, em_if_timer),
439         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
440         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
441         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
442         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
443         DEVMETHOD(ifdi_led_func, em_if_led_func),
444         DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
445         DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
446         DEVMETHOD(ifdi_debug, em_if_debug),
447         DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
448         DEVMETHOD_END
449 };
450
451 static driver_t igb_if_driver = {
452         "igb_if", igb_if_methods, sizeof(struct adapter)
453 };
454
455 /*********************************************************************
456  *  Tunable default values.
457  *********************************************************************/
458
459 #define EM_TICKS_TO_USECS(ticks)        ((1024 * (ticks) + 500) / 1000)
460 #define EM_USECS_TO_TICKS(usecs)        ((1000 * (usecs) + 512) / 1024)
461
462 #define MAX_INTS_PER_SEC        8000
463 #define DEFAULT_ITR             (1000000000/(MAX_INTS_PER_SEC * 256))
464
465 /* Allow common code without TSO */
466 #ifndef CSUM_TSO
467 #define CSUM_TSO        0
468 #endif
469
470 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
471     "EM driver parameters");
472
473 static int em_disable_crc_stripping = 0;
474 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
475     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
476
477 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
478 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
479 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
480     0, "Default transmit interrupt delay in usecs");
481 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
482     0, "Default receive interrupt delay in usecs");
483
484 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
485 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
486 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
487     &em_tx_abs_int_delay_dflt, 0,
488     "Default transmit interrupt delay limit in usecs");
489 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
490     &em_rx_abs_int_delay_dflt, 0,
491     "Default receive interrupt delay limit in usecs");
492
493 static int em_smart_pwr_down = FALSE;
494 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
495     0, "Set to true to leave smart power down enabled on newer adapters");
496
497 /* Controls whether promiscuous also shows bad packets */
498 static int em_debug_sbp = TRUE;
499 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
500     "Show bad packets in promiscuous mode");
501
502 /* How many packets rxeof tries to clean at a time */
503 static int em_rx_process_limit = 100;
504 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
505     &em_rx_process_limit, 0,
506     "Maximum number of received packets to process "
507     "at a time, -1 means unlimited");
508
509 /* Energy efficient ethernet - default to OFF */
510 static int eee_setting = 1;
511 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
512     "Enable Energy Efficient Ethernet");
513
514 /*
515 ** Tuneable Interrupt rate
516 */
517 static int em_max_interrupt_rate = 8000;
518 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
519     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
520
521
522
523 /* Global used in WOL setup with multiport cards */
524 static int global_quad_port_a = 0;
525
526 extern struct if_txrx igb_txrx;
527 extern struct if_txrx em_txrx;
528 extern struct if_txrx lem_txrx;
529
530 static struct if_shared_ctx em_sctx_init = {
531         .isc_magic = IFLIB_MAGIC,
532         .isc_q_align = PAGE_SIZE,
533         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
534         .isc_tx_maxsegsize = PAGE_SIZE,
535         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
536         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
537         .isc_rx_maxsize = MJUM9BYTES,
538         .isc_rx_nsegments = 1,
539         .isc_rx_maxsegsize = MJUM9BYTES,
540         .isc_nfl = 1,
541         .isc_nrxqs = 1,
542         .isc_ntxqs = 1,
543         .isc_admin_intrcnt = 1,
544         .isc_vendor_info = em_vendor_info_array,
545         .isc_driver_version = em_driver_version,
546         .isc_driver = &em_if_driver,
547         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
548
549         .isc_nrxd_min = {EM_MIN_RXD},
550         .isc_ntxd_min = {EM_MIN_TXD},
551         .isc_nrxd_max = {EM_MAX_RXD},
552         .isc_ntxd_max = {EM_MAX_TXD},
553         .isc_nrxd_default = {EM_DEFAULT_RXD},
554         .isc_ntxd_default = {EM_DEFAULT_TXD},
555 };
556
557 if_shared_ctx_t em_sctx = &em_sctx_init;
558
559 static struct if_shared_ctx igb_sctx_init = {
560         .isc_magic = IFLIB_MAGIC,
561         .isc_q_align = PAGE_SIZE,
562         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
563         .isc_tx_maxsegsize = PAGE_SIZE,
564         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
565         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
566         .isc_rx_maxsize = MJUM9BYTES,
567         .isc_rx_nsegments = 1,
568         .isc_rx_maxsegsize = MJUM9BYTES,
569         .isc_nfl = 1,
570         .isc_nrxqs = 1,
571         .isc_ntxqs = 1,
572         .isc_admin_intrcnt = 1,
573         .isc_vendor_info = igb_vendor_info_array,
574         .isc_driver_version = em_driver_version,
575         .isc_driver = &igb_if_driver,
576         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
577
578         .isc_nrxd_min = {EM_MIN_RXD},
579         .isc_ntxd_min = {EM_MIN_TXD},
580         .isc_nrxd_max = {IGB_MAX_RXD},
581         .isc_ntxd_max = {IGB_MAX_TXD},
582         .isc_nrxd_default = {EM_DEFAULT_RXD},
583         .isc_ntxd_default = {EM_DEFAULT_TXD},
584 };
585
586 if_shared_ctx_t igb_sctx = &igb_sctx_init;
587
588 /*****************************************************************
589  *
590  * Dump Registers
591  *
592  ****************************************************************/
593 #define IGB_REGS_LEN 739
594
595 static int em_get_regs(SYSCTL_HANDLER_ARGS)
596 {
597         struct adapter *adapter = (struct adapter *)arg1;
598         struct e1000_hw *hw = &adapter->hw;
599         struct sbuf *sb;
600         u32 *regs_buff;
601         int rc;
602
603         regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
604         memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
605
606         rc = sysctl_wire_old_buffer(req, 0);
607         MPASS(rc == 0);
608         if (rc != 0) {
609                 free(regs_buff, M_DEVBUF);
610                 return (rc);
611         }
612
613         sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
614         MPASS(sb != NULL);
615         if (sb == NULL) {
616                 free(regs_buff, M_DEVBUF);
617                 return (ENOMEM);
618         }
619
620         /* General Registers */
621         regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
622         regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
623         regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
624         regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
625         regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
626         regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
627         regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
628         regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
629         regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
630         regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
631         regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
632         regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
633         regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
634         regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
635         regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
636         regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
637         regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
638         regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
639         regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
640         regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
641         regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
642         regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
643
644         sbuf_printf(sb, "General Registers\n");
645         sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
646         sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
647         sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
648
649         sbuf_printf(sb, "Interrupt Registers\n");
650         sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
651
652         sbuf_printf(sb, "RX Registers\n");
653         sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
654         sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
655         sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
656         sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
657         sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
658         sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
659         sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
660
661         sbuf_printf(sb, "TX Registers\n");
662         sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
663         sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
664         sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
665         sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
666         sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
667         sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
668         sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
669         sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
670         sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
671         sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
672         sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
673
674         free(regs_buff, M_DEVBUF);
675
676 #ifdef DUMP_DESCS
677         {
678                 if_softc_ctx_t scctx = adapter->shared;
679                 struct rx_ring *rxr = &rx_que->rxr;
680                 struct tx_ring *txr = &tx_que->txr;
681                 int ntxd = scctx->isc_ntxd[0];
682                 int nrxd = scctx->isc_nrxd[0];
683                 int j;
684
685         for (j = 0; j < nrxd; j++) {
686                 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
687                 u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
688                 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
689         }
690
691         for (j = 0; j < min(ntxd, 256); j++) {
692                 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
693
694                 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
695                             j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
696                             buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
697
698         }
699         }
700 #endif
701
702         rc = sbuf_finish(sb);
703         sbuf_delete(sb);
704         return(rc);
705 }
706
707 static void *
708 em_register(device_t dev)
709 {
710         return (em_sctx);
711 }
712
713 static void *
714 igb_register(device_t dev)
715 {
716         return (igb_sctx);
717 }
718
719 static int
720 em_set_num_queues(if_ctx_t ctx)
721 {
722         struct adapter *adapter = iflib_get_softc(ctx);
723         int maxqueues;
724
725         /* Sanity check based on HW */
726         switch (adapter->hw.mac.type) {
727         case e1000_82576:
728         case e1000_82580:
729         case e1000_i350:
730         case e1000_i354:
731                 maxqueues = 8;
732                 break;
733         case e1000_i210:
734         case e1000_82575:
735                 maxqueues = 4;
736                 break;
737         case e1000_i211:
738         case e1000_82574:
739                 maxqueues = 2;
740                 break;
741         default:
742                 maxqueues = 1;
743                 break;
744         }
745
746         return (maxqueues);
747 }
748
749 #define LEM_CAPS                                                        \
750     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
751     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
752
753 #define EM_CAPS                                                         \
754     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
755     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
756     IFCAP_LRO | IFCAP_VLAN_HWTSO
757
758 #define IGB_CAPS                                                        \
759     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
760     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
761     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
762     IFCAP_TSO6
763
764 /*********************************************************************
765  *  Device initialization routine
766  *
767  *  The attach entry point is called when the driver is being loaded.
768  *  This routine identifies the type of hardware, allocates all resources
769  *  and initializes the hardware.
770  *
771  *  return 0 on success, positive on failure
772  *********************************************************************/
773 static int
774 em_if_attach_pre(if_ctx_t ctx)
775 {
776         struct adapter *adapter;
777         if_softc_ctx_t scctx;
778         device_t dev;
779         struct e1000_hw *hw;
780         int error = 0;
781
782         INIT_DEBUGOUT("em_if_attach_pre: begin");
783         dev = iflib_get_dev(ctx);
784         adapter = iflib_get_softc(ctx);
785
786         adapter->ctx = adapter->osdep.ctx = ctx;
787         adapter->dev = adapter->osdep.dev = dev;
788         scctx = adapter->shared = iflib_get_softc_ctx(ctx);
789         adapter->media = iflib_get_media(ctx);
790         hw = &adapter->hw;
791
792         adapter->tx_process_limit = scctx->isc_ntxd[0];
793
794         /* SYSCTL stuff */
795         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
796             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
797             OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
798             adapter, 0, em_sysctl_nvm_info, "I", "NVM Information");
799
800         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
801             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
802             OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
803             adapter, 0, em_sysctl_debug_info, "I", "Debug Information");
804
805         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
806             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
807             OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
808             adapter, 0, em_set_flowcntl, "I", "Flow Control");
809
810         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
811             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
812             OID_AUTO, "reg_dump",
813             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 0,
814             em_get_regs, "A", "Dump Registers");
815
816         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
817             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
818             OID_AUTO, "rs_dump",
819             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, adapter, 0,
820             em_get_rs, "I", "Dump RS indexes");
821
822         /* Determine hardware and mac info */
823         em_identify_hardware(ctx);
824
825         scctx->isc_tx_nsegments = EM_MAX_SCATTER;
826         scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
827         if (bootverbose)
828                 device_printf(dev, "attach_pre capping queues at %d\n",
829                     scctx->isc_ntxqsets_max);
830
831         if (adapter->hw.mac.type >= igb_mac_min) {
832                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
833                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
834                 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
835                 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
836                 scctx->isc_txrx = &igb_txrx;
837                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
838                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
839                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
840                 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
841                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
842                      CSUM_IP6_TCP | CSUM_IP6_UDP;
843                 if (adapter->hw.mac.type != e1000_82575)
844                         scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
845                 /*
846                 ** Some new devices, as with ixgbe, now may
847                 ** use a different BAR, so we need to keep
848                 ** track of which is used.
849                 */
850                 scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
851                 if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0)
852                         scctx->isc_msix_bar += 4;
853         } else if (adapter->hw.mac.type >= em_mac_min) {
854                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
855                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
856                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
857                 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
858                 scctx->isc_txrx = &em_txrx;
859                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
860                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
861                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
862                 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
863                 /*
864                  * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
865                  * by default as we don't have workarounds for all associated
866                  * silicon errata.  E. g., with several MACs such as 82573E,
867                  * TSO only works at Gigabit speed and otherwise can cause the
868                  * hardware to hang (which also would be next to impossible to
869                  * work around given that already queued TSO-using descriptors
870                  * would need to be flushed and vlan(4) reconfigured at runtime
871                  * in case of a link speed change).  Moreover, MACs like 82579
872                  * still can hang at Gigabit even with all publicly documented
873                  * TSO workarounds implemented.  Generally, the penality of
874                  * these workarounds is rather high and may involve copying
875                  * mbuf data around so advantages of TSO lapse.  Still, TSO may
876                  * work for a few MACs of this class - at least when sticking
877                  * with Gigabit - in which case users may enable TSO manually.
878                  */
879                 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
880                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
881                 /*
882                  * We support MSI-X with 82574 only, but indicate to iflib(4)
883                  * that it shall give MSI at least a try with other devices.
884                  */
885                 if (adapter->hw.mac.type == e1000_82574) {
886                         scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
887                 } else {
888                         scctx->isc_msix_bar = -1;
889                         scctx->isc_disable_msix = 1;
890                 }
891         } else {
892                 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
893                 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
894                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
895                 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
896                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
897                 scctx->isc_txrx = &lem_txrx;
898                 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
899                 if (adapter->hw.mac.type < e1000_82543)
900                         scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
901                 /* INTx only */
902                 scctx->isc_msix_bar = 0;
903         }
904
905         /* Setup PCI resources */
906         if (em_allocate_pci_resources(ctx)) {
907                 device_printf(dev, "Allocation of PCI resources failed\n");
908                 error = ENXIO;
909                 goto err_pci;
910         }
911
912         /*
913         ** For ICH8 and family we need to
914         ** map the flash memory, and this
915         ** must happen after the MAC is
916         ** identified
917         */
918         if ((hw->mac.type == e1000_ich8lan) ||
919             (hw->mac.type == e1000_ich9lan) ||
920             (hw->mac.type == e1000_ich10lan) ||
921             (hw->mac.type == e1000_pchlan) ||
922             (hw->mac.type == e1000_pch2lan) ||
923             (hw->mac.type == e1000_pch_lpt)) {
924                 int rid = EM_BAR_TYPE_FLASH;
925                 adapter->flash = bus_alloc_resource_any(dev,
926                     SYS_RES_MEMORY, &rid, RF_ACTIVE);
927                 if (adapter->flash == NULL) {
928                         device_printf(dev, "Mapping of Flash failed\n");
929                         error = ENXIO;
930                         goto err_pci;
931                 }
932                 /* This is used in the shared code */
933                 hw->flash_address = (u8 *)adapter->flash;
934                 adapter->osdep.flash_bus_space_tag =
935                     rman_get_bustag(adapter->flash);
936                 adapter->osdep.flash_bus_space_handle =
937                     rman_get_bushandle(adapter->flash);
938         }
939         /*
940         ** In the new SPT device flash is not  a
941         ** separate BAR, rather it is also in BAR0,
942         ** so use the same tag and an offset handle for the
943         ** FLASH read/write macros in the shared code.
944         */
945         else if (hw->mac.type >= e1000_pch_spt) {
946                 adapter->osdep.flash_bus_space_tag =
947                     adapter->osdep.mem_bus_space_tag;
948                 adapter->osdep.flash_bus_space_handle =
949                     adapter->osdep.mem_bus_space_handle
950                     + E1000_FLASH_BASE_ADDR;
951         }
952
953         /* Do Shared Code initialization */
954         error = e1000_setup_init_funcs(hw, TRUE);
955         if (error) {
956                 device_printf(dev, "Setup of Shared code failed, error %d\n",
957                     error);
958                 error = ENXIO;
959                 goto err_pci;
960         }
961
962         em_setup_msix(ctx);
963         e1000_get_bus_info(hw);
964
965         /* Set up some sysctls for the tunable interrupt delays */
966         em_add_int_delay_sysctl(adapter, "rx_int_delay",
967             "receive interrupt delay in usecs", &adapter->rx_int_delay,
968             E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
969         em_add_int_delay_sysctl(adapter, "tx_int_delay",
970             "transmit interrupt delay in usecs", &adapter->tx_int_delay,
971             E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
972         em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
973             "receive interrupt delay limit in usecs",
974             &adapter->rx_abs_int_delay,
975             E1000_REGISTER(hw, E1000_RADV),
976             em_rx_abs_int_delay_dflt);
977         em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
978             "transmit interrupt delay limit in usecs",
979             &adapter->tx_abs_int_delay,
980             E1000_REGISTER(hw, E1000_TADV),
981             em_tx_abs_int_delay_dflt);
982         em_add_int_delay_sysctl(adapter, "itr",
983             "interrupt delay limit in usecs/4",
984             &adapter->tx_itr,
985             E1000_REGISTER(hw, E1000_ITR),
986             DEFAULT_ITR);
987
988         hw->mac.autoneg = DO_AUTO_NEG;
989         hw->phy.autoneg_wait_to_complete = FALSE;
990         hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
991
992         if (adapter->hw.mac.type < em_mac_min) {
993                 e1000_init_script_state_82541(&adapter->hw, TRUE);
994                 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
995         }
996         /* Copper options */
997         if (hw->phy.media_type == e1000_media_type_copper) {
998                 hw->phy.mdix = AUTO_ALL_MODES;
999                 hw->phy.disable_polarity_correction = FALSE;
1000                 hw->phy.ms_type = EM_MASTER_SLAVE;
1001         }
1002
1003         /*
1004          * Set the frame limits assuming
1005          * standard ethernet sized frames.
1006          */
1007         scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1008             ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1009
1010         /*
1011          * This controls when hardware reports transmit completion
1012          * status.
1013          */
1014         hw->mac.report_tx_early = 1;
1015
1016         /* Allocate multicast array memory. */
1017         adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1018             MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1019         if (adapter->mta == NULL) {
1020                 device_printf(dev, "Can not allocate multicast setup array\n");
1021                 error = ENOMEM;
1022                 goto err_late;
1023         }
1024
1025         /* Check SOL/IDER usage */
1026         if (e1000_check_reset_block(hw))
1027                 device_printf(dev, "PHY reset is blocked"
1028                               " due to SOL/IDER session.\n");
1029
1030         /* Sysctl for setting Energy Efficient Ethernet */
1031         hw->dev_spec.ich8lan.eee_disable = eee_setting;
1032         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1033             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1034             OID_AUTO, "eee_control",
1035             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1036             adapter, 0, em_sysctl_eee, "I",
1037             "Disable Energy Efficient Ethernet");
1038
1039         /*
1040         ** Start from a known state, this is
1041         ** important in reading the nvm and
1042         ** mac from that.
1043         */
1044         e1000_reset_hw(hw);
1045
1046         /* Make sure we have a good EEPROM before we read from it */
1047         if (e1000_validate_nvm_checksum(hw) < 0) {
1048                 /*
1049                 ** Some PCI-E parts fail the first check due to
1050                 ** the link being in sleep state, call it again,
1051                 ** if it fails a second time its a real issue.
1052                 */
1053                 if (e1000_validate_nvm_checksum(hw) < 0) {
1054                         device_printf(dev,
1055                             "The EEPROM Checksum Is Not Valid\n");
1056                         error = EIO;
1057                         goto err_late;
1058                 }
1059         }
1060
1061         /* Copy the permanent MAC address out of the EEPROM */
1062         if (e1000_read_mac_addr(hw) < 0) {
1063                 device_printf(dev, "EEPROM read error while reading MAC"
1064                               " address\n");
1065                 error = EIO;
1066                 goto err_late;
1067         }
1068
1069         if (!em_is_valid_ether_addr(hw->mac.addr)) {
1070                 device_printf(dev, "Invalid MAC address\n");
1071                 error = EIO;
1072                 goto err_late;
1073         }
1074
1075         /* Disable ULP support */
1076         e1000_disable_ulp_lpt_lp(hw, TRUE);
1077
1078         /*
1079          * Get Wake-on-Lan and Management info for later use
1080          */
1081         em_get_wakeup(ctx);
1082
1083         /* Enable only WOL MAGIC by default */
1084         scctx->isc_capenable &= ~IFCAP_WOL;
1085         if (adapter->wol != 0)
1086                 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1087
1088         iflib_set_mac(ctx, hw->mac.addr);
1089
1090         return (0);
1091
1092 err_late:
1093         em_release_hw_control(adapter);
1094 err_pci:
1095         em_free_pci_resources(ctx);
1096         free(adapter->mta, M_DEVBUF);
1097
1098         return (error);
1099 }
1100
1101 static int
1102 em_if_attach_post(if_ctx_t ctx)
1103 {
1104         struct adapter *adapter = iflib_get_softc(ctx);
1105         struct e1000_hw *hw = &adapter->hw;
1106         int error = 0;
1107         
1108         /* Setup OS specific network interface */
1109         error = em_setup_interface(ctx);
1110         if (error != 0) {
1111                 goto err_late;
1112         }
1113
1114         em_reset(ctx);
1115
1116         /* Initialize statistics */
1117         em_update_stats_counters(adapter);
1118         hw->mac.get_link_status = 1;
1119         em_if_update_admin_status(ctx);
1120         em_add_hw_stats(adapter);
1121
1122         /* Non-AMT based hardware can now take control from firmware */
1123         if (adapter->has_manage && !adapter->has_amt)
1124                 em_get_hw_control(adapter);
1125
1126         INIT_DEBUGOUT("em_if_attach_post: end");
1127
1128         return (error);
1129
1130 err_late:
1131         em_release_hw_control(adapter);
1132         em_free_pci_resources(ctx);
1133         em_if_queues_free(ctx);
1134         free(adapter->mta, M_DEVBUF);
1135
1136         return (error);
1137 }
1138
1139 /*********************************************************************
1140  *  Device removal routine
1141  *
1142  *  The detach entry point is called when the driver is being removed.
1143  *  This routine stops the adapter and deallocates all the resources
1144  *  that were allocated for driver operation.
1145  *
1146  *  return 0 on success, positive on failure
1147  *********************************************************************/
1148 static int
1149 em_if_detach(if_ctx_t ctx)
1150 {
1151         struct adapter  *adapter = iflib_get_softc(ctx);
1152
1153         INIT_DEBUGOUT("em_if_detach: begin");
1154
1155         e1000_phy_hw_reset(&adapter->hw);
1156
1157         em_release_manageability(adapter);
1158         em_release_hw_control(adapter);
1159         em_free_pci_resources(ctx);
1160
1161         return (0);
1162 }
1163
1164 /*********************************************************************
1165  *
1166  *  Shutdown entry point
1167  *
1168  **********************************************************************/
1169
1170 static int
1171 em_if_shutdown(if_ctx_t ctx)
1172 {
1173         return em_if_suspend(ctx);
1174 }
1175
1176 /*
1177  * Suspend/resume device methods.
1178  */
1179 static int
1180 em_if_suspend(if_ctx_t ctx)
1181 {
1182         struct adapter *adapter = iflib_get_softc(ctx);
1183
1184         em_release_manageability(adapter);
1185         em_release_hw_control(adapter);
1186         em_enable_wakeup(ctx);
1187         return (0);
1188 }
1189
1190 static int
1191 em_if_resume(if_ctx_t ctx)
1192 {
1193         struct adapter *adapter = iflib_get_softc(ctx);
1194
1195         if (adapter->hw.mac.type == e1000_pch2lan)
1196                 e1000_resume_workarounds_pchlan(&adapter->hw);
1197         em_if_init(ctx);
1198         em_init_manageability(adapter);
1199
1200         return(0);
1201 }
1202
1203 static int
1204 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1205 {
1206         int max_frame_size;
1207         struct adapter *adapter = iflib_get_softc(ctx);
1208         if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1209
1210          IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1211
1212         switch (adapter->hw.mac.type) {
1213         case e1000_82571:
1214         case e1000_82572:
1215         case e1000_ich9lan:
1216         case e1000_ich10lan:
1217         case e1000_pch2lan:
1218         case e1000_pch_lpt:
1219         case e1000_pch_spt:
1220         case e1000_pch_cnp:
1221         case e1000_82574:
1222         case e1000_82583:
1223         case e1000_80003es2lan:
1224                 /* 9K Jumbo Frame size */
1225                 max_frame_size = 9234;
1226                 break;
1227         case e1000_pchlan:
1228                 max_frame_size = 4096;
1229                 break;
1230         case e1000_82542:
1231         case e1000_ich8lan:
1232                 /* Adapters that do not support jumbo frames */
1233                 max_frame_size = ETHER_MAX_LEN;
1234                 break;
1235         default:
1236                 if (adapter->hw.mac.type >= igb_mac_min)
1237                         max_frame_size = 9234;
1238                 else /* lem */
1239                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
1240         }
1241         if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1242                 return (EINVAL);
1243         }
1244
1245         scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1246             mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1247         return (0);
1248 }
1249
1250 /*********************************************************************
1251  *  Init entry point
1252  *
1253  *  This routine is used in two ways. It is used by the stack as
1254  *  init entry point in network interface structure. It is also used
1255  *  by the driver as a hw/sw initialization routine to get to a
1256  *  consistent state.
1257  *
1258  **********************************************************************/
1259 static void
1260 em_if_init(if_ctx_t ctx)
1261 {
1262         struct adapter *adapter = iflib_get_softc(ctx);
1263         if_softc_ctx_t scctx = adapter->shared;
1264         struct ifnet *ifp = iflib_get_ifp(ctx);
1265         struct em_tx_queue *tx_que;
1266         int i;
1267
1268         INIT_DEBUGOUT("em_if_init: begin");
1269
1270         /* Get the latest mac address, User can use a LAA */
1271         bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1272             ETHER_ADDR_LEN);
1273
1274         /* Put the address into the Receive Address Array */
1275         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1276
1277         /*
1278          * With the 82571 adapter, RAR[0] may be overwritten
1279          * when the other port is reset, we make a duplicate
1280          * in RAR[14] for that eventuality, this assures
1281          * the interface continues to function.
1282          */
1283         if (adapter->hw.mac.type == e1000_82571) {
1284                 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1285                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1286                     E1000_RAR_ENTRIES - 1);
1287         }
1288
1289
1290         /* Initialize the hardware */
1291         em_reset(ctx);
1292         em_if_update_admin_status(ctx);
1293
1294         for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1295                 struct tx_ring *txr = &tx_que->txr;
1296
1297                 txr->tx_rs_cidx = txr->tx_rs_pidx;
1298
1299                 /* Initialize the last processed descriptor to be the end of
1300                  * the ring, rather than the start, so that we avoid an
1301                  * off-by-one error when calculating how many descriptors are
1302                  * done in the credits_update function.
1303                  */
1304                 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1305         }
1306
1307         /* Setup VLAN support, basic and offload if available */
1308         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1309
1310         /* Clear bad data from Rx FIFOs */
1311         if (adapter->hw.mac.type >= igb_mac_min)
1312                 e1000_rx_fifo_flush_82575(&adapter->hw);
1313
1314         /* Configure for OS presence */
1315         em_init_manageability(adapter);
1316
1317         /* Prepare transmit descriptors and buffers */
1318         em_initialize_transmit_unit(ctx);
1319
1320         /* Setup Multicast table */
1321         em_if_multi_set(ctx);
1322
1323         adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1324         em_initialize_receive_unit(ctx);
1325
1326         /* Use real VLAN Filter support? */
1327         if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1328                 if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1329                         /* Use real VLAN Filter support */
1330                         em_setup_vlan_hw_support(adapter);
1331                 else {
1332                         u32 ctrl;
1333                         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1334                         ctrl |= E1000_CTRL_VME;
1335                         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1336                 }
1337         }
1338
1339         /* Don't lose promiscuous settings */
1340         em_if_set_promisc(ctx, IFF_PROMISC);
1341         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1342
1343         /* MSI-X configuration for 82574 */
1344         if (adapter->hw.mac.type == e1000_82574) {
1345                 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1346
1347                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1348                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1349                 /* Set the IVAR - interrupt vector routing. */
1350                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1351         } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1352                 igb_configure_queues(adapter);
1353
1354         /* this clears any pending interrupts */
1355         E1000_READ_REG(&adapter->hw, E1000_ICR);
1356         E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1357
1358         /* AMT based hardware can now take control from firmware */
1359         if (adapter->has_manage && adapter->has_amt)
1360                 em_get_hw_control(adapter);
1361
1362         /* Set Energy Efficient Ethernet */
1363         if (adapter->hw.mac.type >= igb_mac_min &&
1364             adapter->hw.phy.media_type == e1000_media_type_copper) {
1365                 if (adapter->hw.mac.type == e1000_i354)
1366                         e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1367                 else
1368                         e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1369         }
1370 }
1371
1372 /*********************************************************************
1373  *
1374  *  Fast Legacy/MSI Combined Interrupt Service routine
1375  *
1376  *********************************************************************/
1377 int
1378 em_intr(void *arg)
1379 {
1380         struct adapter *adapter = arg;
1381         if_ctx_t ctx = adapter->ctx;
1382         u32 reg_icr;
1383
1384         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1385
1386         /* Hot eject? */
1387         if (reg_icr == 0xffffffff)
1388                 return FILTER_STRAY;
1389
1390         /* Definitely not our interrupt. */
1391         if (reg_icr == 0x0)
1392                 return FILTER_STRAY;
1393
1394         /*
1395          * Starting with the 82571 chip, bit 31 should be used to
1396          * determine whether the interrupt belongs to us.
1397          */
1398         if (adapter->hw.mac.type >= e1000_82571 &&
1399             (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1400                 return FILTER_STRAY;
1401
1402         /*
1403          * Only MSI-X interrupts have one-shot behavior by taking advantage
1404          * of the EIAC register.  Thus, explicitly disable interrupts.  This
1405          * also works around the MSI message reordering errata on certain
1406          * systems.
1407          */
1408         IFDI_INTR_DISABLE(ctx);
1409
1410         /* Link status change */
1411         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1412                 em_handle_link(ctx);
1413
1414         if (reg_icr & E1000_ICR_RXO)
1415                 adapter->rx_overruns++;
1416
1417         return (FILTER_SCHEDULE_THREAD);
1418 }
1419
1420 static int
1421 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1422 {
1423         struct adapter *adapter = iflib_get_softc(ctx);
1424         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1425
1426         E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1427         return (0);
1428 }
1429
1430 static int
1431 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1432 {
1433         struct adapter *adapter = iflib_get_softc(ctx);
1434         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1435
1436         E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1437         return (0);
1438 }
1439
1440 static int
1441 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1442 {
1443         struct adapter *adapter = iflib_get_softc(ctx);
1444         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1445
1446         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1447         return (0);
1448 }
1449
1450 static int
1451 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1452 {
1453         struct adapter *adapter = iflib_get_softc(ctx);
1454         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1455
1456         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1457         return (0);
1458 }
1459
1460 /*********************************************************************
1461  *
1462  *  MSI-X RX Interrupt Service routine
1463  *
1464  **********************************************************************/
1465 static int
1466 em_msix_que(void *arg)
1467 {
1468         struct em_rx_queue *que = arg;
1469
1470         ++que->irqs;
1471
1472         return (FILTER_SCHEDULE_THREAD);
1473 }
1474
1475 /*********************************************************************
1476  *
1477  *  MSI-X Link Fast Interrupt Service routine
1478  *
1479  **********************************************************************/
1480 static int
1481 em_msix_link(void *arg)
1482 {
1483         struct adapter *adapter = arg;
1484         u32 reg_icr;
1485
1486         ++adapter->link_irq;
1487         MPASS(adapter->hw.back != NULL);
1488         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1489
1490         if (reg_icr & E1000_ICR_RXO)
1491                 adapter->rx_overruns++;
1492
1493         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1494                 em_handle_link(adapter->ctx);
1495         } else if (adapter->hw.mac.type == e1000_82574) {
1496                 /* Only re-arm 82574 if em_if_update_admin_status() won't. */
1497                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1498                     E1000_IMS_LSC);
1499         }
1500
1501         if (adapter->hw.mac.type == e1000_82574) {
1502                 /*
1503                  * Because we must read the ICR for this interrupt it may
1504                  * clear other causes using autoclear, for this reason we
1505                  * simply create a soft interrupt for all these vectors.
1506                  */
1507                 if (reg_icr)
1508                         E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims);
1509         } else {
1510                 /* Re-arm unconditionally */
1511                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1512                 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1513         }
1514
1515         return (FILTER_HANDLED);
1516 }
1517
1518 static void
1519 em_handle_link(void *context)
1520 {
1521         if_ctx_t ctx = context;
1522         struct adapter *adapter = iflib_get_softc(ctx);
1523
1524         adapter->hw.mac.get_link_status = 1;
1525         iflib_admin_intr_deferred(ctx);
1526 }
1527
1528 /*********************************************************************
1529  *
1530  *  Media Ioctl callback
1531  *
1532  *  This routine is called whenever the user queries the status of
1533  *  the interface using ifconfig.
1534  *
1535  **********************************************************************/
1536 static void
1537 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1538 {
1539         struct adapter *adapter = iflib_get_softc(ctx);
1540         u_char fiber_type = IFM_1000_SX;
1541
1542         INIT_DEBUGOUT("em_if_media_status: begin");
1543
1544         iflib_admin_intr_deferred(ctx);
1545
1546         ifmr->ifm_status = IFM_AVALID;
1547         ifmr->ifm_active = IFM_ETHER;
1548
1549         if (!adapter->link_active) {
1550                 return;
1551         }
1552
1553         ifmr->ifm_status |= IFM_ACTIVE;
1554
1555         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1556             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1557                 if (adapter->hw.mac.type == e1000_82545)
1558                         fiber_type = IFM_1000_LX;
1559                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1560         } else {
1561                 switch (adapter->link_speed) {
1562                 case 10:
1563                         ifmr->ifm_active |= IFM_10_T;
1564                         break;
1565                 case 100:
1566                         ifmr->ifm_active |= IFM_100_TX;
1567                         break;
1568                 case 1000:
1569                         ifmr->ifm_active |= IFM_1000_T;
1570                         break;
1571                 }
1572                 if (adapter->link_duplex == FULL_DUPLEX)
1573                         ifmr->ifm_active |= IFM_FDX;
1574                 else
1575                         ifmr->ifm_active |= IFM_HDX;
1576         }
1577 }
1578
1579 /*********************************************************************
1580  *
1581  *  Media Ioctl callback
1582  *
1583  *  This routine is called when the user changes speed/duplex using
1584  *  media/mediopt option with ifconfig.
1585  *
1586  **********************************************************************/
1587 static int
1588 em_if_media_change(if_ctx_t ctx)
1589 {
1590         struct adapter *adapter = iflib_get_softc(ctx);
1591         struct ifmedia *ifm = iflib_get_media(ctx);
1592
1593         INIT_DEBUGOUT("em_if_media_change: begin");
1594
1595         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1596                 return (EINVAL);
1597
1598         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1599         case IFM_AUTO:
1600                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1601                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1602                 break;
1603         case IFM_1000_LX:
1604         case IFM_1000_SX:
1605         case IFM_1000_T:
1606                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1607                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1608                 break;
1609         case IFM_100_TX:
1610                 adapter->hw.mac.autoneg = FALSE;
1611                 adapter->hw.phy.autoneg_advertised = 0;
1612                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1613                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1614                 else
1615                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1616                 break;
1617         case IFM_10_T:
1618                 adapter->hw.mac.autoneg = FALSE;
1619                 adapter->hw.phy.autoneg_advertised = 0;
1620                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1621                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1622                 else
1623                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1624                 break;
1625         default:
1626                 device_printf(adapter->dev, "Unsupported media type\n");
1627         }
1628
1629         em_if_init(ctx);
1630
1631         return (0);
1632 }
1633
1634 static int
1635 em_if_set_promisc(if_ctx_t ctx, int flags)
1636 {
1637         struct adapter *adapter = iflib_get_softc(ctx);
1638         u32 reg_rctl;
1639
1640         em_disable_promisc(ctx);
1641
1642         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1643
1644         if (flags & IFF_PROMISC) {
1645                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1646                 /* Turn this on if you want to see bad packets */
1647                 if (em_debug_sbp)
1648                         reg_rctl |= E1000_RCTL_SBP;
1649                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1650         } else if (flags & IFF_ALLMULTI) {
1651                 reg_rctl |= E1000_RCTL_MPE;
1652                 reg_rctl &= ~E1000_RCTL_UPE;
1653                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1654         }
1655         return (0);
1656 }
1657
1658 static void
1659 em_disable_promisc(if_ctx_t ctx)
1660 {
1661         struct adapter *adapter = iflib_get_softc(ctx);
1662         struct ifnet *ifp = iflib_get_ifp(ctx);
1663         u32 reg_rctl;
1664         int mcnt = 0;
1665
1666         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1667         reg_rctl &= (~E1000_RCTL_UPE);
1668         if (if_getflags(ifp) & IFF_ALLMULTI)
1669                 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1670         else
1671                 mcnt = if_llmaddr_count(ifp);
1672         /* Don't disable if in MAX groups */
1673         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1674                 reg_rctl &=  (~E1000_RCTL_MPE);
1675         reg_rctl &=  (~E1000_RCTL_SBP);
1676         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1677 }
1678
1679
1680 static u_int
1681 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1682 {
1683         u8 *mta = arg;
1684
1685         if (cnt == MAX_NUM_MULTICAST_ADDRESSES)
1686                 return (1);
1687
1688         bcopy(LLADDR(sdl), &mta[cnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1689
1690         return (1);
1691 }
1692
1693 /*********************************************************************
1694  *  Multicast Update
1695  *
1696  *  This routine is called whenever multicast address list is updated.
1697  *
1698  **********************************************************************/
1699
1700 static void
1701 em_if_multi_set(if_ctx_t ctx)
1702 {
1703         struct adapter *adapter = iflib_get_softc(ctx);
1704         struct ifnet *ifp = iflib_get_ifp(ctx);
1705         u32 reg_rctl = 0;
1706         u8  *mta; /* Multicast array memory */
1707         int mcnt = 0;
1708
1709         IOCTL_DEBUGOUT("em_set_multi: begin");
1710
1711         mta = adapter->mta;
1712         bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1713
1714         if (adapter->hw.mac.type == e1000_82542 &&
1715             adapter->hw.revision_id == E1000_REVISION_2) {
1716                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1717                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1718                         e1000_pci_clear_mwi(&adapter->hw);
1719                 reg_rctl |= E1000_RCTL_RST;
1720                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1721                 msec_delay(5);
1722         }
1723
1724         mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1725
1726         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1727                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1728                 reg_rctl |= E1000_RCTL_MPE;
1729                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1730         } else
1731                 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1732
1733         if (adapter->hw.mac.type == e1000_82542 &&
1734             adapter->hw.revision_id == E1000_REVISION_2) {
1735                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1736                 reg_rctl &= ~E1000_RCTL_RST;
1737                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1738                 msec_delay(5);
1739                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1740                         e1000_pci_set_mwi(&adapter->hw);
1741         }
1742 }
1743
1744 /*********************************************************************
1745  *  Timer routine
1746  *
1747  *  This routine schedules em_if_update_admin_status() to check for
1748  *  link status and to gather statistics as well as to perform some
1749  *  controller-specific hardware patting.
1750  *
1751  **********************************************************************/
1752 static void
1753 em_if_timer(if_ctx_t ctx, uint16_t qid)
1754 {
1755
1756         if (qid != 0)
1757                 return;
1758
1759         iflib_admin_intr_deferred(ctx);
1760 }
1761
1762 static void
1763 em_if_update_admin_status(if_ctx_t ctx)
1764 {
1765         struct adapter *adapter = iflib_get_softc(ctx);
1766         struct e1000_hw *hw = &adapter->hw;
1767         device_t dev = iflib_get_dev(ctx);
1768         u32 link_check, thstat, ctrl;
1769
1770         link_check = thstat = ctrl = 0;
1771         /* Get the cached link value or read phy for real */
1772         switch (hw->phy.media_type) {
1773         case e1000_media_type_copper:
1774                 if (hw->mac.get_link_status) {
1775                         if (hw->mac.type == e1000_pch_spt)
1776                                 msec_delay(50);
1777                         /* Do the work to read phy */
1778                         e1000_check_for_link(hw);
1779                         link_check = !hw->mac.get_link_status;
1780                         if (link_check) /* ESB2 fix */
1781                                 e1000_cfg_on_link_up(hw);
1782                 } else {
1783                         link_check = TRUE;
1784                 }
1785                 break;
1786         case e1000_media_type_fiber:
1787                 e1000_check_for_link(hw);
1788                 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1789                             E1000_STATUS_LU);
1790                 break;
1791         case e1000_media_type_internal_serdes:
1792                 e1000_check_for_link(hw);
1793                 link_check = adapter->hw.mac.serdes_has_link;
1794                 break;
1795         /* VF device is type_unknown */
1796         case e1000_media_type_unknown:
1797                 e1000_check_for_link(hw);
1798                 link_check = !hw->mac.get_link_status;
1799                 /* FALLTHROUGH */
1800         default:
1801                 break;
1802         }
1803
1804         /* Check for thermal downshift or shutdown */
1805         if (hw->mac.type == e1000_i350) {
1806                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1807                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1808         }
1809
1810         /* Now check for a transition */
1811         if (link_check && (adapter->link_active == 0)) {
1812                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1813                     &adapter->link_duplex);
1814                 /* Check if we must disable SPEED_MODE bit on PCI-E */
1815                 if ((adapter->link_speed != SPEED_1000) &&
1816                     ((hw->mac.type == e1000_82571) ||
1817                     (hw->mac.type == e1000_82572))) {
1818                         int tarc0;
1819                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1820                         tarc0 &= ~TARC_SPEED_MODE_BIT;
1821                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1822                 }
1823                 if (bootverbose)
1824                         device_printf(dev, "Link is up %d Mbps %s\n",
1825                             adapter->link_speed,
1826                             ((adapter->link_duplex == FULL_DUPLEX) ?
1827                             "Full Duplex" : "Half Duplex"));
1828                 adapter->link_active = 1;
1829                 adapter->smartspeed = 0;
1830                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1831                     E1000_CTRL_EXT_LINK_MODE_GMII &&
1832                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1833                         device_printf(dev, "Link: thermal downshift\n");
1834                 /* Delay Link Up for Phy update */
1835                 if (((hw->mac.type == e1000_i210) ||
1836                     (hw->mac.type == e1000_i211)) &&
1837                     (hw->phy.id == I210_I_PHY_ID))
1838                         msec_delay(I210_LINK_DELAY);
1839                 /* Reset if the media type changed. */
1840                 if ((hw->dev_spec._82575.media_changed) &&
1841                         (adapter->hw.mac.type >= igb_mac_min)) {
1842                         hw->dev_spec._82575.media_changed = false;
1843                         adapter->flags |= IGB_MEDIA_RESET;
1844                         em_reset(ctx);
1845                 }
1846                 iflib_link_state_change(ctx, LINK_STATE_UP,
1847                     IF_Mbps(adapter->link_speed));
1848         } else if (!link_check && (adapter->link_active == 1)) {
1849                 adapter->link_speed = 0;
1850                 adapter->link_duplex = 0;
1851                 adapter->link_active = 0;
1852                 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1853         }
1854         em_update_stats_counters(adapter);
1855
1856         /* Reset LAA into RAR[0] on 82571 */
1857         if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1858                 e1000_rar_set(hw, hw->mac.addr, 0);
1859
1860         if (hw->mac.type < em_mac_min)
1861                 lem_smartspeed(adapter);
1862         else if (hw->mac.type == e1000_82574 &&
1863             adapter->intr_type == IFLIB_INTR_MSIX)
1864                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1865                     E1000_IMS_LSC);
1866 }
1867
1868 static void
1869 em_if_watchdog_reset(if_ctx_t ctx)
1870 {
1871         struct adapter *adapter = iflib_get_softc(ctx);
1872
1873         /*
1874          * Just count the event; iflib(4) will already trigger a
1875          * sufficient reset of the controller.
1876          */
1877         adapter->watchdog_events++;
1878 }
1879
1880 /*********************************************************************
1881  *
1882  *  This routine disables all traffic on the adapter by issuing a
1883  *  global reset on the MAC.
1884  *
1885  **********************************************************************/
1886 static void
1887 em_if_stop(if_ctx_t ctx)
1888 {
1889         struct adapter *adapter = iflib_get_softc(ctx);
1890
1891         INIT_DEBUGOUT("em_if_stop: begin");
1892
1893         e1000_reset_hw(&adapter->hw);
1894         if (adapter->hw.mac.type >= e1000_82544)
1895                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1896
1897         e1000_led_off(&adapter->hw);
1898         e1000_cleanup_led(&adapter->hw);
1899 }
1900
1901 /*********************************************************************
1902  *
1903  *  Determine hardware revision.
1904  *
1905  **********************************************************************/
1906 static void
1907 em_identify_hardware(if_ctx_t ctx)
1908 {
1909         device_t dev = iflib_get_dev(ctx);
1910         struct adapter *adapter = iflib_get_softc(ctx);
1911
1912         /* Make sure our PCI config space has the necessary stuff set */
1913         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1914
1915         /* Save off the information about this board */
1916         adapter->hw.vendor_id = pci_get_vendor(dev);
1917         adapter->hw.device_id = pci_get_device(dev);
1918         adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1919         adapter->hw.subsystem_vendor_id =
1920             pci_read_config(dev, PCIR_SUBVEND_0, 2);
1921         adapter->hw.subsystem_device_id =
1922             pci_read_config(dev, PCIR_SUBDEV_0, 2);
1923
1924         /* Do Shared Code Init and Setup */
1925         if (e1000_set_mac_type(&adapter->hw)) {
1926                 device_printf(dev, "Setup init failure\n");
1927                 return;
1928         }
1929 }
1930
1931 static int
1932 em_allocate_pci_resources(if_ctx_t ctx)
1933 {
1934         struct adapter *adapter = iflib_get_softc(ctx);
1935         device_t dev = iflib_get_dev(ctx);
1936         int rid, val;
1937
1938         rid = PCIR_BAR(0);
1939         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1940             &rid, RF_ACTIVE);
1941         if (adapter->memory == NULL) {
1942                 device_printf(dev, "Unable to allocate bus resource: memory\n");
1943                 return (ENXIO);
1944         }
1945         adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1946         adapter->osdep.mem_bus_space_handle =
1947             rman_get_bushandle(adapter->memory);
1948         adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1949
1950         /* Only older adapters use IO mapping */
1951         if (adapter->hw.mac.type < em_mac_min &&
1952             adapter->hw.mac.type > e1000_82543) {
1953                 /* Figure our where our IO BAR is ? */
1954                 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1955                         val = pci_read_config(dev, rid, 4);
1956                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1957                                 break;
1958                         }
1959                         rid += 4;
1960                         /* check for 64bit BAR */
1961                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1962                                 rid += 4;
1963                 }
1964                 if (rid >= PCIR_CIS) {
1965                         device_printf(dev, "Unable to locate IO BAR\n");
1966                         return (ENXIO);
1967                 }
1968                 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1969                     &rid, RF_ACTIVE);
1970                 if (adapter->ioport == NULL) {
1971                         device_printf(dev, "Unable to allocate bus resource: "
1972                             "ioport\n");
1973                         return (ENXIO);
1974                 }
1975                 adapter->hw.io_base = 0;
1976                 adapter->osdep.io_bus_space_tag =
1977                     rman_get_bustag(adapter->ioport);
1978                 adapter->osdep.io_bus_space_handle =
1979                     rman_get_bushandle(adapter->ioport);
1980         }
1981
1982         adapter->hw.back = &adapter->osdep;
1983
1984         return (0);
1985 }
1986
1987 /*********************************************************************
1988  *
1989  *  Set up the MSI-X Interrupt handlers
1990  *
1991  **********************************************************************/
1992 static int
1993 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1994 {
1995         struct adapter *adapter = iflib_get_softc(ctx);
1996         struct em_rx_queue *rx_que = adapter->rx_queues;
1997         struct em_tx_queue *tx_que = adapter->tx_queues;
1998         int error, rid, i, vector = 0, rx_vectors;
1999         char buf[16];
2000
2001         /* First set up ring resources */
2002         for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
2003                 rid = vector + 1;
2004                 snprintf(buf, sizeof(buf), "rxq%d", i);
2005                 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2006                 if (error) {
2007                         device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2008                         adapter->rx_num_queues = i + 1;
2009                         goto fail;
2010                 }
2011
2012                 rx_que->msix =  vector;
2013
2014                 /*
2015                  * Set the bit to enable interrupt
2016                  * in E1000_IMS -- bits 20 and 21
2017                  * are for RX0 and RX1, note this has
2018                  * NOTHING to do with the MSI-X vector
2019                  */
2020                 if (adapter->hw.mac.type == e1000_82574) {
2021                         rx_que->eims = 1 << (20 + i);
2022                         adapter->ims |= rx_que->eims;
2023                         adapter->ivars |= (8 | rx_que->msix) << (i * 4);
2024                 } else if (adapter->hw.mac.type == e1000_82575)
2025                         rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2026                 else
2027                         rx_que->eims = 1 << vector;
2028         }
2029         rx_vectors = vector;
2030
2031         vector = 0;
2032         for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
2033                 snprintf(buf, sizeof(buf), "txq%d", i);
2034                 tx_que = &adapter->tx_queues[i];
2035                 iflib_softirq_alloc_generic(ctx,
2036                     &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
2037                     IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2038
2039                 tx_que->msix = (vector % adapter->rx_num_queues);
2040
2041                 /*
2042                  * Set the bit to enable interrupt
2043                  * in E1000_IMS -- bits 22 and 23
2044                  * are for TX0 and TX1, note this has
2045                  * NOTHING to do with the MSI-X vector
2046                  */
2047                 if (adapter->hw.mac.type == e1000_82574) {
2048                         tx_que->eims = 1 << (22 + i);
2049                         adapter->ims |= tx_que->eims;
2050                         adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2051                 } else if (adapter->hw.mac.type == e1000_82575) {
2052                         tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2053                 } else {
2054                         tx_que->eims = 1 << i;
2055                 }
2056         }
2057
2058         /* Link interrupt */
2059         rid = rx_vectors + 1;
2060         error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2061
2062         if (error) {
2063                 device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2064                 goto fail;
2065         }
2066         adapter->linkvec = rx_vectors;
2067         if (adapter->hw.mac.type < igb_mac_min) {
2068                 adapter->ivars |=  (8 | rx_vectors) << 16;
2069                 adapter->ivars |= 0x80000000;
2070         }
2071         return (0);
2072 fail:
2073         iflib_irq_free(ctx, &adapter->irq);
2074         rx_que = adapter->rx_queues;
2075         for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2076                 iflib_irq_free(ctx, &rx_que->que_irq);
2077         return (error);
2078 }
2079
2080 static void
2081 igb_configure_queues(struct adapter *adapter)
2082 {
2083         struct e1000_hw *hw = &adapter->hw;
2084         struct em_rx_queue *rx_que;
2085         struct em_tx_queue *tx_que;
2086         u32 tmp, ivar = 0, newitr = 0;
2087
2088         /* First turn on RSS capability */
2089         if (adapter->hw.mac.type != e1000_82575)
2090                 E1000_WRITE_REG(hw, E1000_GPIE,
2091                     E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2092                     E1000_GPIE_PBA | E1000_GPIE_NSICR);
2093
2094         /* Turn on MSI-X */
2095         switch (adapter->hw.mac.type) {
2096         case e1000_82580:
2097         case e1000_i350:
2098         case e1000_i354:
2099         case e1000_i210:
2100         case e1000_i211:
2101         case e1000_vfadapt:
2102         case e1000_vfadapt_i350:
2103                 /* RX entries */
2104                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2105                         u32 index = i >> 1;
2106                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2107                         rx_que = &adapter->rx_queues[i];
2108                         if (i & 1) {
2109                                 ivar &= 0xFF00FFFF;
2110                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2111                         } else {
2112                                 ivar &= 0xFFFFFF00;
2113                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2114                         }
2115                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2116                 }
2117                 /* TX entries */
2118                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2119                         u32 index = i >> 1;
2120                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2121                         tx_que = &adapter->tx_queues[i];
2122                         if (i & 1) {
2123                                 ivar &= 0x00FFFFFF;
2124                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2125                         } else {
2126                                 ivar &= 0xFFFF00FF;
2127                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2128                         }
2129                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2130                         adapter->que_mask |= tx_que->eims;
2131                 }
2132
2133                 /* And for the link interrupt */
2134                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2135                 adapter->link_mask = 1 << adapter->linkvec;
2136                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2137                 break;
2138         case e1000_82576:
2139                 /* RX entries */
2140                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2141                         u32 index = i & 0x7; /* Each IVAR has two entries */
2142                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2143                         rx_que = &adapter->rx_queues[i];
2144                         if (i < 8) {
2145                                 ivar &= 0xFFFFFF00;
2146                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2147                         } else {
2148                                 ivar &= 0xFF00FFFF;
2149                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2150                         }
2151                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2152                         adapter->que_mask |= rx_que->eims;
2153                 }
2154                 /* TX entries */
2155                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2156                         u32 index = i & 0x7; /* Each IVAR has two entries */
2157                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2158                         tx_que = &adapter->tx_queues[i];
2159                         if (i < 8) {
2160                                 ivar &= 0xFFFF00FF;
2161                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2162                         } else {
2163                                 ivar &= 0x00FFFFFF;
2164                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2165                         }
2166                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2167                         adapter->que_mask |= tx_que->eims;
2168                 }
2169
2170                 /* And for the link interrupt */
2171                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2172                 adapter->link_mask = 1 << adapter->linkvec;
2173                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2174                 break;
2175
2176         case e1000_82575:
2177                 /* enable MSI-X support*/
2178                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2179                 tmp |= E1000_CTRL_EXT_PBA_CLR;
2180                 /* Auto-Mask interrupts upon ICR read. */
2181                 tmp |= E1000_CTRL_EXT_EIAME;
2182                 tmp |= E1000_CTRL_EXT_IRCA;
2183                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2184
2185                 /* Queues */
2186                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2187                         rx_que = &adapter->rx_queues[i];
2188                         tmp = E1000_EICR_RX_QUEUE0 << i;
2189                         tmp |= E1000_EICR_TX_QUEUE0 << i;
2190                         rx_que->eims = tmp;
2191                         E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2192                             i, rx_que->eims);
2193                         adapter->que_mask |= rx_que->eims;
2194                 }
2195
2196                 /* Link */
2197                 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2198                     E1000_EIMS_OTHER);
2199                 adapter->link_mask |= E1000_EIMS_OTHER;
2200         default:
2201                 break;
2202         }
2203
2204         /* Set the starting interrupt rate */
2205         if (em_max_interrupt_rate > 0)
2206                 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2207
2208         if (hw->mac.type == e1000_82575)
2209                 newitr |= newitr << 16;
2210         else
2211                 newitr |= E1000_EITR_CNT_IGNR;
2212
2213         for (int i = 0; i < adapter->rx_num_queues; i++) {
2214                 rx_que = &adapter->rx_queues[i];
2215                 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2216         }
2217
2218         return;
2219 }
2220
2221 static void
2222 em_free_pci_resources(if_ctx_t ctx)
2223 {
2224         struct adapter *adapter = iflib_get_softc(ctx);
2225         struct em_rx_queue *que = adapter->rx_queues;
2226         device_t dev = iflib_get_dev(ctx);
2227
2228         /* Release all MSI-X queue resources */
2229         if (adapter->intr_type == IFLIB_INTR_MSIX)
2230                 iflib_irq_free(ctx, &adapter->irq);
2231
2232         for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2233                 iflib_irq_free(ctx, &que->que_irq);
2234         }
2235
2236         if (adapter->memory != NULL) {
2237                 bus_release_resource(dev, SYS_RES_MEMORY,
2238                     rman_get_rid(adapter->memory), adapter->memory);
2239                 adapter->memory = NULL;
2240         }
2241
2242         if (adapter->flash != NULL) {
2243                 bus_release_resource(dev, SYS_RES_MEMORY,
2244                     rman_get_rid(adapter->flash), adapter->flash);
2245                 adapter->flash = NULL;
2246         }
2247
2248         if (adapter->ioport != NULL) {
2249                 bus_release_resource(dev, SYS_RES_IOPORT,
2250                     rman_get_rid(adapter->ioport), adapter->ioport);
2251                 adapter->ioport = NULL;
2252         }
2253 }
2254
2255 /* Set up MSI or MSI-X */
2256 static int
2257 em_setup_msix(if_ctx_t ctx)
2258 {
2259         struct adapter *adapter = iflib_get_softc(ctx);
2260
2261         if (adapter->hw.mac.type == e1000_82574) {
2262                 em_enable_vectors_82574(ctx);
2263         }
2264         return (0);
2265 }
2266
2267 /*********************************************************************
2268  *
2269  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2270  *
2271  **********************************************************************/
2272 static void
2273 lem_smartspeed(struct adapter *adapter)
2274 {
2275         u16 phy_tmp;
2276
2277         if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2278             adapter->hw.mac.autoneg == 0 ||
2279             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2280                 return;
2281
2282         if (adapter->smartspeed == 0) {
2283                 /* If Master/Slave config fault is asserted twice,
2284                  * we assume back-to-back */
2285                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2286                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2287                         return;
2288                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2289                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2290                         e1000_read_phy_reg(&adapter->hw,
2291                             PHY_1000T_CTRL, &phy_tmp);
2292                         if(phy_tmp & CR_1000T_MS_ENABLE) {
2293                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2294                                 e1000_write_phy_reg(&adapter->hw,
2295                                     PHY_1000T_CTRL, phy_tmp);
2296                                 adapter->smartspeed++;
2297                                 if(adapter->hw.mac.autoneg &&
2298                                    !e1000_copper_link_autoneg(&adapter->hw) &&
2299                                    !e1000_read_phy_reg(&adapter->hw,
2300                                     PHY_CONTROL, &phy_tmp)) {
2301                                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2302                                                     MII_CR_RESTART_AUTO_NEG);
2303                                         e1000_write_phy_reg(&adapter->hw,
2304                                             PHY_CONTROL, phy_tmp);
2305                                 }
2306                         }
2307                 }
2308                 return;
2309         } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2310                 /* If still no link, perhaps using 2/3 pair cable */
2311                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2312                 phy_tmp |= CR_1000T_MS_ENABLE;
2313                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2314                 if(adapter->hw.mac.autoneg &&
2315                    !e1000_copper_link_autoneg(&adapter->hw) &&
2316                    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2317                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2318                                     MII_CR_RESTART_AUTO_NEG);
2319                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2320                 }
2321         }
2322         /* Restart process after EM_SMARTSPEED_MAX iterations */
2323         if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2324                 adapter->smartspeed = 0;
2325 }
2326
2327 /*********************************************************************
2328  *
2329  *  Initialize the DMA Coalescing feature
2330  *
2331  **********************************************************************/
2332 static void
2333 igb_init_dmac(struct adapter *adapter, u32 pba)
2334 {
2335         device_t        dev = adapter->dev;
2336         struct e1000_hw *hw = &adapter->hw;
2337         u32             dmac, reg = ~E1000_DMACR_DMAC_EN;
2338         u16             hwm;
2339         u16             max_frame_size;
2340
2341         if (hw->mac.type == e1000_i211)
2342                 return;
2343
2344         max_frame_size = adapter->shared->isc_max_frame_size;
2345         if (hw->mac.type > e1000_82580) {
2346
2347                 if (adapter->dmac == 0) { /* Disabling it */
2348                         E1000_WRITE_REG(hw, E1000_DMACR, reg);
2349                         return;
2350                 } else
2351                         device_printf(dev, "DMA Coalescing enabled\n");
2352
2353                 /* Set starting threshold */
2354                 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2355
2356                 hwm = 64 * pba - max_frame_size / 16;
2357                 if (hwm < 64 * (pba - 6))
2358                         hwm = 64 * (pba - 6);
2359                 reg = E1000_READ_REG(hw, E1000_FCRTC);
2360                 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2361                 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2362                     & E1000_FCRTC_RTH_COAL_MASK);
2363                 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2364
2365
2366                 dmac = pba - max_frame_size / 512;
2367                 if (dmac < pba - 10)
2368                         dmac = pba - 10;
2369                 reg = E1000_READ_REG(hw, E1000_DMACR);
2370                 reg &= ~E1000_DMACR_DMACTHR_MASK;
2371                 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2372                     & E1000_DMACR_DMACTHR_MASK);
2373
2374                 /* transition to L0x or L1 if available..*/
2375                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2376
2377                 /* Check if status is 2.5Gb backplane connection
2378                 * before configuration of watchdog timer, which is
2379                 * in msec values in 12.8usec intervals
2380                 * watchdog timer= msec values in 32usec intervals
2381                 * for non 2.5Gb connection
2382                 */
2383                 if (hw->mac.type == e1000_i354) {
2384                         int status = E1000_READ_REG(hw, E1000_STATUS);
2385                         if ((status & E1000_STATUS_2P5_SKU) &&
2386                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2387                                 reg |= ((adapter->dmac * 5) >> 6);
2388                         else
2389                                 reg |= (adapter->dmac >> 5);
2390                 } else {
2391                         reg |= (adapter->dmac >> 5);
2392                 }
2393
2394                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2395
2396                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2397
2398                 /* Set the interval before transition */
2399                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
2400                 if (hw->mac.type == e1000_i350)
2401                         reg |= IGB_DMCTLX_DCFLUSH_DIS;
2402                 /*
2403                 ** in 2.5Gb connection, TTLX unit is 0.4 usec
2404                 ** which is 0x4*2 = 0xA. But delay is still 4 usec
2405                 */
2406                 if (hw->mac.type == e1000_i354) {
2407                         int status = E1000_READ_REG(hw, E1000_STATUS);
2408                         if ((status & E1000_STATUS_2P5_SKU) &&
2409                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2410                                 reg |= 0xA;
2411                         else
2412                                 reg |= 0x4;
2413                 } else {
2414                         reg |= 0x4;
2415                 }
2416
2417                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2418
2419                 /* free space in tx packet buffer to wake from DMA coal */
2420                 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2421                     (2 * max_frame_size)) >> 6);
2422
2423                 /* make low power state decision controlled by DMA coal */
2424                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2425                 reg &= ~E1000_PCIEMISC_LX_DECISION;
2426                 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2427
2428         } else if (hw->mac.type == e1000_82580) {
2429                 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2430                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
2431                     reg & ~E1000_PCIEMISC_LX_DECISION);
2432                 E1000_WRITE_REG(hw, E1000_DMACR, 0);
2433         }
2434 }
2435
2436 /*********************************************************************
2437  *
2438  *  Initialize the hardware to a configuration as specified by the
2439  *  adapter structure.
2440  *
2441  **********************************************************************/
2442 static void
2443 em_reset(if_ctx_t ctx)
2444 {
2445         device_t dev = iflib_get_dev(ctx);
2446         struct adapter *adapter = iflib_get_softc(ctx);
2447         struct ifnet *ifp = iflib_get_ifp(ctx);
2448         struct e1000_hw *hw = &adapter->hw;
2449         u16 rx_buffer_size;
2450         u32 pba;
2451
2452         INIT_DEBUGOUT("em_reset: begin");
2453         /* Let the firmware know the OS is in control */
2454         em_get_hw_control(adapter);
2455
2456         /* Set up smart power down as default off on newer adapters. */
2457         if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2458             hw->mac.type == e1000_82572)) {
2459                 u16 phy_tmp = 0;
2460
2461                 /* Speed up time to link by disabling smart power down. */
2462                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2463                 phy_tmp &= ~IGP02E1000_PM_SPD;
2464                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2465         }
2466
2467         /*
2468          * Packet Buffer Allocation (PBA)
2469          * Writing PBA sets the receive portion of the buffer
2470          * the remainder is used for the transmit buffer.
2471          */
2472         switch (hw->mac.type) {
2473         /* Total Packet Buffer on these is 48K */
2474         case e1000_82571:
2475         case e1000_82572:
2476         case e1000_80003es2lan:
2477                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2478                 break;
2479         case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2480                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2481                 break;
2482         case e1000_82574:
2483         case e1000_82583:
2484                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2485                 break;
2486         case e1000_ich8lan:
2487                 pba = E1000_PBA_8K;
2488                 break;
2489         case e1000_ich9lan:
2490         case e1000_ich10lan:
2491                 /* Boost Receive side for jumbo frames */
2492                 if (adapter->hw.mac.max_frame_size > 4096)
2493                         pba = E1000_PBA_14K;
2494                 else
2495                         pba = E1000_PBA_10K;
2496                 break;
2497         case e1000_pchlan:
2498         case e1000_pch2lan:
2499         case e1000_pch_lpt:
2500         case e1000_pch_spt:
2501         case e1000_pch_cnp:
2502                 pba = E1000_PBA_26K;
2503                 break;
2504         case e1000_82575:
2505                 pba = E1000_PBA_32K;
2506                 break;
2507         case e1000_82576:
2508         case e1000_vfadapt:
2509                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2510                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2511                 break;
2512         case e1000_82580:
2513         case e1000_i350:
2514         case e1000_i354:
2515         case e1000_vfadapt_i350:
2516                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2517                 pba = e1000_rxpbs_adjust_82580(pba);
2518                 break;
2519         case e1000_i210:
2520         case e1000_i211:
2521                 pba = E1000_PBA_34K;
2522                 break;
2523         default:
2524                 if (adapter->hw.mac.max_frame_size > 8192)
2525                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2526                 else
2527                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2528         }
2529
2530         /* Special needs in case of Jumbo frames */
2531         if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2532                 u32 tx_space, min_tx, min_rx;
2533                 pba = E1000_READ_REG(hw, E1000_PBA);
2534                 tx_space = pba >> 16;
2535                 pba &= 0xffff;
2536                 min_tx = (adapter->hw.mac.max_frame_size +
2537                     sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2538                 min_tx = roundup2(min_tx, 1024);
2539                 min_tx >>= 10;
2540                 min_rx = adapter->hw.mac.max_frame_size;
2541                 min_rx = roundup2(min_rx, 1024);
2542                 min_rx >>= 10;
2543                 if (tx_space < min_tx &&
2544                     ((min_tx - tx_space) < pba)) {
2545                         pba = pba - (min_tx - tx_space);
2546                         /*
2547                          * if short on rx space, rx wins
2548                          * and must trump tx adjustment
2549                          */
2550                         if (pba < min_rx)
2551                                 pba = min_rx;
2552                 }
2553                 E1000_WRITE_REG(hw, E1000_PBA, pba);
2554         }
2555
2556         if (hw->mac.type < igb_mac_min)
2557                 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2558
2559         INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2560
2561         /*
2562          * These parameters control the automatic generation (Tx) and
2563          * response (Rx) to Ethernet PAUSE frames.
2564          * - High water mark should allow for at least two frames to be
2565          *   received after sending an XOFF.
2566          * - Low water mark works best when it is very near the high water mark.
2567          *   This allows the receiver to restart by sending XON when it has
2568          *   drained a bit. Here we use an arbitrary value of 1500 which will
2569          *   restart after one full frame is pulled from the buffer. There
2570          *   could be several smaller frames in the buffer and if so they will
2571          *   not trigger the XON until their total number reduces the buffer
2572          *   by 1500.
2573          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2574          */
2575         rx_buffer_size = (pba & 0xffff) << 10;
2576         hw->fc.high_water = rx_buffer_size -
2577             roundup2(adapter->hw.mac.max_frame_size, 1024);
2578         hw->fc.low_water = hw->fc.high_water - 1500;
2579
2580         if (adapter->fc) /* locally set flow control value? */
2581                 hw->fc.requested_mode = adapter->fc;
2582         else
2583                 hw->fc.requested_mode = e1000_fc_full;
2584
2585         if (hw->mac.type == e1000_80003es2lan)
2586                 hw->fc.pause_time = 0xFFFF;
2587         else
2588                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
2589
2590         hw->fc.send_xon = TRUE;
2591
2592         /* Device specific overrides/settings */
2593         switch (hw->mac.type) {
2594         case e1000_pchlan:
2595                 /* Workaround: no TX flow ctrl for PCH */
2596                 hw->fc.requested_mode = e1000_fc_rx_pause;
2597                 hw->fc.pause_time = 0xFFFF; /* override */
2598                 if (if_getmtu(ifp) > ETHERMTU) {
2599                         hw->fc.high_water = 0x3500;
2600                         hw->fc.low_water = 0x1500;
2601                 } else {
2602                         hw->fc.high_water = 0x5000;
2603                         hw->fc.low_water = 0x3000;
2604                 }
2605                 hw->fc.refresh_time = 0x1000;
2606                 break;
2607         case e1000_pch2lan:
2608         case e1000_pch_lpt:
2609         case e1000_pch_spt:
2610         case e1000_pch_cnp:
2611                 hw->fc.high_water = 0x5C20;
2612                 hw->fc.low_water = 0x5048;
2613                 hw->fc.pause_time = 0x0650;
2614                 hw->fc.refresh_time = 0x0400;
2615                 /* Jumbos need adjusted PBA */
2616                 if (if_getmtu(ifp) > ETHERMTU)
2617                         E1000_WRITE_REG(hw, E1000_PBA, 12);
2618                 else
2619                         E1000_WRITE_REG(hw, E1000_PBA, 26);
2620                 break;
2621         case e1000_82575:
2622         case e1000_82576:
2623                 /* 8-byte granularity */
2624                 hw->fc.low_water = hw->fc.high_water - 8;
2625                 break;
2626         case e1000_82580:
2627         case e1000_i350:
2628         case e1000_i354:
2629         case e1000_i210:
2630         case e1000_i211:
2631         case e1000_vfadapt:
2632         case e1000_vfadapt_i350:
2633                 /* 16-byte granularity */
2634                 hw->fc.low_water = hw->fc.high_water - 16;
2635                 break;
2636         case e1000_ich9lan:
2637         case e1000_ich10lan:
2638                 if (if_getmtu(ifp) > ETHERMTU) {
2639                         hw->fc.high_water = 0x2800;
2640                         hw->fc.low_water = hw->fc.high_water - 8;
2641                         break;
2642                 }
2643                 /* FALLTHROUGH */
2644         default:
2645                 if (hw->mac.type == e1000_80003es2lan)
2646                         hw->fc.pause_time = 0xFFFF;
2647                 break;
2648         }
2649
2650         /* Issue a global reset */
2651         e1000_reset_hw(hw);
2652         if (adapter->hw.mac.type >= igb_mac_min) {
2653                 E1000_WRITE_REG(hw, E1000_WUC, 0);
2654         } else {
2655                 E1000_WRITE_REG(hw, E1000_WUFC, 0);
2656                 em_disable_aspm(adapter);
2657         }
2658         if (adapter->flags & IGB_MEDIA_RESET) {
2659                 e1000_setup_init_funcs(hw, TRUE);
2660                 e1000_get_bus_info(hw);
2661                 adapter->flags &= ~IGB_MEDIA_RESET;
2662         }
2663         /* and a re-init */
2664         if (e1000_init_hw(hw) < 0) {
2665                 device_printf(dev, "Hardware Initialization Failed\n");
2666                 return;
2667         }
2668         if (adapter->hw.mac.type >= igb_mac_min)
2669                 igb_init_dmac(adapter, pba);
2670
2671         E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2672         e1000_get_phy_info(hw);
2673         e1000_check_for_link(hw);
2674 }
2675
2676 /*
2677  * Initialise the RSS mapping for NICs that support multiple transmit/
2678  * receive rings.
2679  */
2680
2681 #define RSSKEYLEN 10
2682 static void
2683 em_initialize_rss_mapping(struct adapter *adapter)
2684 {
2685         uint8_t  rss_key[4 * RSSKEYLEN];
2686         uint32_t reta = 0;
2687         struct e1000_hw *hw = &adapter->hw;
2688         int i;
2689
2690         /*
2691          * Configure RSS key
2692          */
2693         arc4rand(rss_key, sizeof(rss_key), 0);
2694         for (i = 0; i < RSSKEYLEN; ++i) {
2695                 uint32_t rssrk = 0;
2696
2697                 rssrk = EM_RSSRK_VAL(rss_key, i);
2698                 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2699         }
2700
2701         /*
2702          * Configure RSS redirect table in following fashion:
2703          * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2704          */
2705         for (i = 0; i < sizeof(reta); ++i) {
2706                 uint32_t q;
2707
2708                 q = (i % adapter->rx_num_queues) << 7;
2709                 reta |= q << (8 * i);
2710         }
2711
2712         for (i = 0; i < 32; ++i)
2713                 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2714
2715         E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2716                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2717                         E1000_MRQC_RSS_FIELD_IPV4 |
2718                         E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2719                         E1000_MRQC_RSS_FIELD_IPV6_EX |
2720                         E1000_MRQC_RSS_FIELD_IPV6);
2721 }
2722
2723 static void
2724 igb_initialize_rss_mapping(struct adapter *adapter)
2725 {
2726         struct e1000_hw *hw = &adapter->hw;
2727         int i;
2728         int queue_id;
2729         u32 reta;
2730         u32 rss_key[10], mrqc, shift = 0;
2731
2732         /* XXX? */
2733         if (adapter->hw.mac.type == e1000_82575)
2734                 shift = 6;
2735
2736         /*
2737          * The redirection table controls which destination
2738          * queue each bucket redirects traffic to.
2739          * Each DWORD represents four queues, with the LSB
2740          * being the first queue in the DWORD.
2741          *
2742          * This just allocates buckets to queues using round-robin
2743          * allocation.
2744          *
2745          * NOTE: It Just Happens to line up with the default
2746          * RSS allocation method.
2747          */
2748
2749         /* Warning FM follows */
2750         reta = 0;
2751         for (i = 0; i < 128; i++) {
2752 #ifdef RSS
2753                 queue_id = rss_get_indirection_to_bucket(i);
2754                 /*
2755                  * If we have more queues than buckets, we'll
2756                  * end up mapping buckets to a subset of the
2757                  * queues.
2758                  *
2759                  * If we have more buckets than queues, we'll
2760                  * end up instead assigning multiple buckets
2761                  * to queues.
2762                  *
2763                  * Both are suboptimal, but we need to handle
2764                  * the case so we don't go out of bounds
2765                  * indexing arrays and such.
2766                  */
2767                 queue_id = queue_id % adapter->rx_num_queues;
2768 #else
2769                 queue_id = (i % adapter->rx_num_queues);
2770 #endif
2771                 /* Adjust if required */
2772                 queue_id = queue_id << shift;
2773
2774                 /*
2775                  * The low 8 bits are for hash value (n+0);
2776                  * The next 8 bits are for hash value (n+1), etc.
2777                  */
2778                 reta = reta >> 8;
2779                 reta = reta | ( ((uint32_t) queue_id) << 24);
2780                 if ((i & 3) == 3) {
2781                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2782                         reta = 0;
2783                 }
2784         }
2785
2786         /* Now fill in hash table */
2787
2788         /*
2789          * MRQC: Multiple Receive Queues Command
2790          * Set queuing to RSS control, number depends on the device.
2791          */
2792         mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2793
2794 #ifdef RSS
2795         /* XXX ew typecasting */
2796         rss_getkey((uint8_t *) &rss_key);
2797 #else
2798         arc4rand(&rss_key, sizeof(rss_key), 0);
2799 #endif
2800         for (i = 0; i < 10; i++)
2801                 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2802
2803         /*
2804          * Configure the RSS fields to hash upon.
2805          */
2806         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2807             E1000_MRQC_RSS_FIELD_IPV4_TCP);
2808         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2809             E1000_MRQC_RSS_FIELD_IPV6_TCP);
2810         mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2811             E1000_MRQC_RSS_FIELD_IPV6_UDP);
2812         mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2813             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2814
2815         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2816 }
2817
2818 /*********************************************************************
2819  *
2820  *  Setup networking device structure and register interface media.
2821  *
2822  **********************************************************************/
2823 static int
2824 em_setup_interface(if_ctx_t ctx)
2825 {
2826         struct ifnet *ifp = iflib_get_ifp(ctx);
2827         struct adapter *adapter = iflib_get_softc(ctx);
2828         if_softc_ctx_t scctx = adapter->shared;
2829
2830         INIT_DEBUGOUT("em_setup_interface: begin");
2831
2832         /* Single Queue */
2833         if (adapter->tx_num_queues == 1) {
2834                 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2835                 if_setsendqready(ifp);
2836         }
2837
2838         /*
2839          * Specify the media types supported by this adapter and register
2840          * callbacks to update media and link information
2841          */
2842         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2843             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2844                 u_char fiber_type = IFM_1000_SX;        /* default type */
2845
2846                 if (adapter->hw.mac.type == e1000_82545)
2847                         fiber_type = IFM_1000_LX;
2848                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2849                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2850         } else {
2851                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2852                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2853                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2854                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2855                 if (adapter->hw.phy.type != e1000_phy_ife) {
2856                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2857                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2858                 }
2859         }
2860         ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2861         ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2862         return (0);
2863 }
2864
2865 static int
2866 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2867 {
2868         struct adapter *adapter = iflib_get_softc(ctx);
2869         if_softc_ctx_t scctx = adapter->shared;
2870         int error = E1000_SUCCESS;
2871         struct em_tx_queue *que;
2872         int i, j;
2873
2874         MPASS(adapter->tx_num_queues > 0);
2875         MPASS(adapter->tx_num_queues == ntxqsets);
2876
2877         /* First allocate the top level queue structs */
2878         if (!(adapter->tx_queues =
2879             (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2880             adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2881                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2882                 return(ENOMEM);
2883         }
2884
2885         for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2886                 /* Set up some basics */
2887
2888                 struct tx_ring *txr = &que->txr;
2889                 txr->adapter = que->adapter = adapter;
2890                 que->me = txr->me =  i;
2891
2892                 /* Allocate report status array */
2893                 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2894                         device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2895                         error = ENOMEM;
2896                         goto fail;
2897                 }
2898                 for (j = 0; j < scctx->isc_ntxd[0]; j++)
2899                         txr->tx_rsq[j] = QIDX_INVALID;
2900                 /* get the virtual and physical address of the hardware queues */
2901                 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2902                 txr->tx_paddr = paddrs[i*ntxqs];
2903         }
2904
2905         if (bootverbose)
2906                 device_printf(iflib_get_dev(ctx),
2907                     "allocated for %d tx_queues\n", adapter->tx_num_queues);
2908         return (0);
2909 fail:
2910         em_if_queues_free(ctx);
2911         return (error);
2912 }
2913
2914 static int
2915 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2916 {
2917         struct adapter *adapter = iflib_get_softc(ctx);
2918         int error = E1000_SUCCESS;
2919         struct em_rx_queue *que;
2920         int i;
2921
2922         MPASS(adapter->rx_num_queues > 0);
2923         MPASS(adapter->rx_num_queues == nrxqsets);
2924
2925         /* First allocate the top level queue structs */
2926         if (!(adapter->rx_queues =
2927             (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2928             adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2929                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2930                 error = ENOMEM;
2931                 goto fail;
2932         }
2933
2934         for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2935                 /* Set up some basics */
2936                 struct rx_ring *rxr = &que->rxr;
2937                 rxr->adapter = que->adapter = adapter;
2938                 rxr->que = que;
2939                 que->me = rxr->me =  i;
2940
2941                 /* get the virtual and physical address of the hardware queues */
2942                 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2943                 rxr->rx_paddr = paddrs[i*nrxqs];
2944         }
2945  
2946         if (bootverbose)
2947                 device_printf(iflib_get_dev(ctx),
2948                     "allocated for %d rx_queues\n", adapter->rx_num_queues);
2949
2950         return (0);
2951 fail:
2952         em_if_queues_free(ctx);
2953         return (error);
2954 }
2955
2956 static void
2957 em_if_queues_free(if_ctx_t ctx)
2958 {
2959         struct adapter *adapter = iflib_get_softc(ctx);
2960         struct em_tx_queue *tx_que = adapter->tx_queues;
2961         struct em_rx_queue *rx_que = adapter->rx_queues;
2962
2963         if (tx_que != NULL) {
2964                 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2965                         struct tx_ring *txr = &tx_que->txr;
2966                         if (txr->tx_rsq == NULL)
2967                                 break;
2968
2969                         free(txr->tx_rsq, M_DEVBUF);
2970                         txr->tx_rsq = NULL;
2971                 }
2972                 free(adapter->tx_queues, M_DEVBUF);
2973                 adapter->tx_queues = NULL;
2974         }
2975
2976         if (rx_que != NULL) {
2977                 free(adapter->rx_queues, M_DEVBUF);
2978                 adapter->rx_queues = NULL;
2979         }
2980
2981         em_release_hw_control(adapter);
2982
2983         if (adapter->mta != NULL) {
2984                 free(adapter->mta, M_DEVBUF);
2985         }
2986 }
2987
2988 /*********************************************************************
2989  *
2990  *  Enable transmit unit.
2991  *
2992  **********************************************************************/
2993 static void
2994 em_initialize_transmit_unit(if_ctx_t ctx)
2995 {
2996         struct adapter *adapter = iflib_get_softc(ctx);
2997         if_softc_ctx_t scctx = adapter->shared;
2998         struct em_tx_queue *que;
2999         struct tx_ring  *txr;
3000         struct e1000_hw *hw = &adapter->hw;
3001         u32 tctl, txdctl = 0, tarc, tipg = 0;
3002
3003         INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3004
3005         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
3006                 u64 bus_addr;
3007                 caddr_t offp, endp;
3008
3009                 que = &adapter->tx_queues[i];
3010                 txr = &que->txr;
3011                 bus_addr = txr->tx_paddr;
3012
3013                 /* Clear checksum offload context. */
3014                 offp = (caddr_t)&txr->csum_flags;
3015                 endp = (caddr_t)(txr + 1);
3016                 bzero(offp, endp - offp);
3017
3018                 /* Base and Len of TX Ring */
3019                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
3020                     scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3021                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
3022                     (u32)(bus_addr >> 32));
3023                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
3024                     (u32)bus_addr);
3025                 /* Init the HEAD/TAIL indices */
3026                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3027                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3028
3029                 HW_DEBUGOUT2("Base = %x, Length = %x\n",
3030                     E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
3031                     E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
3032
3033                 txdctl = 0; /* clear txdctl */
3034                 txdctl |= 0x1f; /* PTHRESH */
3035                 txdctl |= 1 << 8; /* HTHRESH */
3036                 txdctl |= 1 << 16;/* WTHRESH */
3037                 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3038                 txdctl |= E1000_TXDCTL_GRAN;
3039                 txdctl |= 1 << 25; /* LWTHRESH */
3040
3041                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3042         }
3043
3044         /* Set the default values for the Tx Inter Packet Gap timer */
3045         switch (adapter->hw.mac.type) {
3046         case e1000_80003es2lan:
3047                 tipg = DEFAULT_82543_TIPG_IPGR1;
3048                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3049                     E1000_TIPG_IPGR2_SHIFT;
3050                 break;
3051         case e1000_82542:
3052                 tipg = DEFAULT_82542_TIPG_IPGT;
3053                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3054                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3055                 break;
3056         default:
3057                 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
3058                     (adapter->hw.phy.media_type ==
3059                     e1000_media_type_internal_serdes))
3060                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3061                 else
3062                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3063                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3064                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3065         }
3066
3067         E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
3068         E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
3069
3070         if(adapter->hw.mac.type >= e1000_82540)
3071                 E1000_WRITE_REG(&adapter->hw, E1000_TADV,
3072                     adapter->tx_abs_int_delay.value);
3073
3074         if ((adapter->hw.mac.type == e1000_82571) ||
3075             (adapter->hw.mac.type == e1000_82572)) {
3076                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3077                 tarc |= TARC_SPEED_MODE_BIT;
3078                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3079         } else if (adapter->hw.mac.type == e1000_80003es2lan) {
3080                 /* errata: program both queues to unweighted RR */
3081                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3082                 tarc |= 1;
3083                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3084                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3085                 tarc |= 1;
3086                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3087         } else if (adapter->hw.mac.type == e1000_82574) {
3088                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3089                 tarc |= TARC_ERRATA_BIT;
3090                 if ( adapter->tx_num_queues > 1) {
3091                         tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3092                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3093                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3094                 } else
3095                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3096         }
3097
3098         if (adapter->tx_int_delay.value > 0)
3099                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3100
3101         /* Program the Transmit Control Register */
3102         tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3103         tctl &= ~E1000_TCTL_CT;
3104         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3105                    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3106
3107         if (adapter->hw.mac.type >= e1000_82571)
3108                 tctl |= E1000_TCTL_MULR;
3109
3110         /* This write will effectively turn on the transmit unit. */
3111         E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3112
3113         /* SPT and KBL errata workarounds */
3114         if (hw->mac.type == e1000_pch_spt) {
3115                 u32 reg;
3116                 reg = E1000_READ_REG(hw, E1000_IOSFPC);
3117                 reg |= E1000_RCTL_RDMTS_HEX;
3118                 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3119                 /* i218-i219 Specification Update 1.5.4.5 */
3120                 reg = E1000_READ_REG(hw, E1000_TARC(0));
3121                 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3122                 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3123                 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3124         }
3125 }
3126
3127 /*********************************************************************
3128  *
3129  *  Enable receive unit.
3130  *
3131  **********************************************************************/
3132
3133 static void
3134 em_initialize_receive_unit(if_ctx_t ctx)
3135 {
3136         struct adapter *adapter = iflib_get_softc(ctx);
3137         if_softc_ctx_t scctx = adapter->shared;
3138         struct ifnet *ifp = iflib_get_ifp(ctx);
3139         struct e1000_hw *hw = &adapter->hw;
3140         struct em_rx_queue *que;
3141         int i;
3142         u32 rctl, rxcsum, rfctl;
3143
3144         INIT_DEBUGOUT("em_initialize_receive_units: begin");
3145
3146         /*
3147          * Make sure receives are disabled while setting
3148          * up the descriptor ring
3149          */
3150         rctl = E1000_READ_REG(hw, E1000_RCTL);
3151         /* Do not disable if ever enabled on this hardware */
3152         if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3153                 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3154
3155         /* Setup the Receive Control Register */
3156         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3157         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3158             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3159             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3160
3161         /* Do not store bad packets */
3162         rctl &= ~E1000_RCTL_SBP;
3163
3164         /* Enable Long Packet receive */
3165         if (if_getmtu(ifp) > ETHERMTU)
3166                 rctl |= E1000_RCTL_LPE;
3167         else
3168                 rctl &= ~E1000_RCTL_LPE;
3169
3170         /* Strip the CRC */
3171         if (!em_disable_crc_stripping)
3172                 rctl |= E1000_RCTL_SECRC;
3173
3174         if (adapter->hw.mac.type >= e1000_82540) {
3175                 E1000_WRITE_REG(&adapter->hw, E1000_RADV,
3176                             adapter->rx_abs_int_delay.value);
3177
3178                 /*
3179                  * Set the interrupt throttling rate. Value is calculated
3180                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3181                  */
3182                 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3183         }
3184         E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
3185             adapter->rx_int_delay.value);
3186
3187         /* Use extended rx descriptor formats */
3188         rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3189         rfctl |= E1000_RFCTL_EXTEN;
3190         /*
3191          * When using MSI-X interrupts we need to throttle
3192          * using the EITR register (82574 only)
3193          */
3194         if (hw->mac.type == e1000_82574) {
3195                 for (int i = 0; i < 4; i++)
3196                         E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3197                             DEFAULT_ITR);
3198                 /* Disable accelerated acknowledge */
3199                 rfctl |= E1000_RFCTL_ACK_DIS;
3200         }
3201         E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3202
3203         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3204         if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3205             adapter->hw.mac.type >= e1000_82543) {
3206                 if (adapter->tx_num_queues > 1) {
3207                         if (adapter->hw.mac.type >= igb_mac_min) {
3208                                 rxcsum |= E1000_RXCSUM_PCSD;
3209                                 if (hw->mac.type != e1000_82575)
3210                                         rxcsum |= E1000_RXCSUM_CRCOFL;
3211                         } else
3212                                 rxcsum |= E1000_RXCSUM_TUOFL |
3213                                         E1000_RXCSUM_IPOFL |
3214                                         E1000_RXCSUM_PCSD;
3215                 } else {
3216                         if (adapter->hw.mac.type >= igb_mac_min)
3217                                 rxcsum |= E1000_RXCSUM_IPPCSE;
3218                         else
3219                                 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3220                         if (adapter->hw.mac.type > e1000_82575)
3221                                 rxcsum |= E1000_RXCSUM_CRCOFL;
3222                 }
3223         } else
3224                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3225
3226         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3227
3228         if (adapter->rx_num_queues > 1) {
3229                 if (adapter->hw.mac.type >= igb_mac_min)
3230                         igb_initialize_rss_mapping(adapter);
3231                 else
3232                         em_initialize_rss_mapping(adapter);
3233         }
3234
3235         /*
3236          * XXX TEMPORARY WORKAROUND: on some systems with 82573
3237          * long latencies are observed, like Lenovo X60. This
3238          * change eliminates the problem, but since having positive
3239          * values in RDTR is a known source of problems on other
3240          * platforms another solution is being sought.
3241          */
3242         if (hw->mac.type == e1000_82573)
3243                 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3244
3245         for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3246                 struct rx_ring *rxr = &que->rxr;
3247                 /* Setup the Base and Length of the Rx Descriptor Ring */
3248                 u64 bus_addr = rxr->rx_paddr;
3249 #if 0
3250                 u32 rdt = adapter->rx_num_queues -1;  /* default */
3251 #endif
3252
3253                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3254                     scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3255                 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3256                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3257                 /* Setup the Head and Tail Descriptor Pointers */
3258                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3259                 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3260         }
3261
3262         /*
3263          * Set PTHRESH for improved jumbo performance
3264          * According to 10.2.5.11 of Intel 82574 Datasheet,
3265          * RXDCTL(1) is written whenever RXDCTL(0) is written.
3266          * Only write to RXDCTL(1) if there is a need for different
3267          * settings.
3268          */
3269
3270         if (((adapter->hw.mac.type == e1000_ich9lan) ||
3271             (adapter->hw.mac.type == e1000_pch2lan) ||
3272             (adapter->hw.mac.type == e1000_ich10lan)) &&
3273             (if_getmtu(ifp) > ETHERMTU)) {
3274                 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3275                 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3276         } else if (adapter->hw.mac.type == e1000_82574) {
3277                 for (int i = 0; i < adapter->rx_num_queues; i++) {
3278                         u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3279                         rxdctl |= 0x20; /* PTHRESH */
3280                         rxdctl |= 4 << 8; /* HTHRESH */
3281                         rxdctl |= 4 << 16;/* WTHRESH */
3282                         rxdctl |= 1 << 24; /* Switch to granularity */
3283                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3284                 }
3285         } else if (adapter->hw.mac.type >= igb_mac_min) {
3286                 u32 psize, srrctl = 0;
3287
3288                 if (if_getmtu(ifp) > ETHERMTU) {
3289                         /* Set maximum packet len */
3290                         if (adapter->rx_mbuf_sz <= 4096) {
3291                                 srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3292                                 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3293                         } else if (adapter->rx_mbuf_sz > 4096) {
3294                                 srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3295                                 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3296                         }
3297                         psize = scctx->isc_max_frame_size;
3298                         /* are we on a vlan? */
3299                         if (ifp->if_vlantrunk != NULL)
3300                                 psize += VLAN_TAG_SIZE;
3301                         E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
3302                 } else {
3303                         srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3304                         rctl |= E1000_RCTL_SZ_2048;
3305                 }
3306
3307                 /*
3308                  * If TX flow control is disabled and there's >1 queue defined,
3309                  * enable DROP.
3310                  *
3311                  * This drops frames rather than hanging the RX MAC for all queues.
3312                  */
3313                 if ((adapter->rx_num_queues > 1) &&
3314                     (adapter->fc == e1000_fc_none ||
3315                      adapter->fc == e1000_fc_rx_pause)) {
3316                         srrctl |= E1000_SRRCTL_DROP_EN;
3317                 }
3318                         /* Setup the Base and Length of the Rx Descriptor Rings */
3319                 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3320                         struct rx_ring *rxr = &que->rxr;
3321                         u64 bus_addr = rxr->rx_paddr;
3322                         u32 rxdctl;
3323
3324 #ifdef notyet
3325                         /* Configure for header split? -- ignore for now */
3326                         rxr->hdr_split = igb_header_split;
3327 #else
3328                         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3329 #endif
3330
3331                         E1000_WRITE_REG(hw, E1000_RDLEN(i),
3332                                         scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3333                         E1000_WRITE_REG(hw, E1000_RDBAH(i),
3334                                         (uint32_t)(bus_addr >> 32));
3335                         E1000_WRITE_REG(hw, E1000_RDBAL(i),
3336                                         (uint32_t)bus_addr);
3337                         E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3338                         /* Enable this Queue */
3339                         rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3340                         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3341                         rxdctl &= 0xFFF00000;
3342                         rxdctl |= IGB_RX_PTHRESH;
3343                         rxdctl |= IGB_RX_HTHRESH << 8;
3344                         rxdctl |= IGB_RX_WTHRESH << 16;
3345                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3346                 }               
3347         } else if (adapter->hw.mac.type >= e1000_pch2lan) {
3348                 if (if_getmtu(ifp) > ETHERMTU)
3349                         e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3350                 else
3351                         e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3352         }
3353
3354         /* Make sure VLAN Filters are off */
3355         rctl &= ~E1000_RCTL_VFE;
3356
3357         if (adapter->hw.mac.type < igb_mac_min) {
3358                 if (adapter->rx_mbuf_sz == MCLBYTES)
3359                         rctl |= E1000_RCTL_SZ_2048;
3360                 else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3361                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3362                 else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3363                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3364
3365                 /* ensure we clear use DTYPE of 00 here */
3366                 rctl &= ~0x00000C00;
3367         }
3368
3369         /* Write out the settings */
3370         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3371
3372         return;
3373 }
3374
3375 static void
3376 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3377 {
3378         struct adapter *adapter = iflib_get_softc(ctx);
3379         u32 index, bit;
3380
3381         index = (vtag >> 5) & 0x7F;
3382         bit = vtag & 0x1F;
3383         adapter->shadow_vfta[index] |= (1 << bit);
3384         ++adapter->num_vlans;
3385 }
3386
3387 static void
3388 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3389 {
3390         struct adapter *adapter = iflib_get_softc(ctx);
3391         u32 index, bit;
3392
3393         index = (vtag >> 5) & 0x7F;
3394         bit = vtag & 0x1F;
3395         adapter->shadow_vfta[index] &= ~(1 << bit);
3396         --adapter->num_vlans;
3397 }
3398
3399 static void
3400 em_setup_vlan_hw_support(struct adapter *adapter)
3401 {
3402         struct e1000_hw *hw = &adapter->hw;
3403         u32 reg;
3404
3405         /*
3406          * We get here thru init_locked, meaning
3407          * a soft reset, this has already cleared
3408          * the VFTA and other state, so if there
3409          * have been no vlan's registered do nothing.
3410          */
3411         if (adapter->num_vlans == 0)
3412                 return;
3413
3414         /*
3415          * A soft reset zero's out the VFTA, so
3416          * we need to repopulate it now.
3417          */
3418         for (int i = 0; i < EM_VFTA_SIZE; i++)
3419                 if (adapter->shadow_vfta[i] != 0)
3420                         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3421                             i, adapter->shadow_vfta[i]);
3422
3423         reg = E1000_READ_REG(hw, E1000_CTRL);
3424         reg |= E1000_CTRL_VME;
3425         E1000_WRITE_REG(hw, E1000_CTRL, reg);
3426
3427         /* Enable the Filter Table */
3428         reg = E1000_READ_REG(hw, E1000_RCTL);
3429         reg &= ~E1000_RCTL_CFIEN;
3430         reg |= E1000_RCTL_VFE;
3431         E1000_WRITE_REG(hw, E1000_RCTL, reg);
3432 }
3433
3434 static void
3435 em_if_intr_enable(if_ctx_t ctx)
3436 {
3437         struct adapter *adapter = iflib_get_softc(ctx);
3438         struct e1000_hw *hw = &adapter->hw;
3439         u32 ims_mask = IMS_ENABLE_MASK;
3440
3441         if (hw->mac.type == e1000_82574) {
3442                 E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3443                 ims_mask |= adapter->ims;
3444         }
3445         E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3446 }
3447
3448 static void
3449 em_if_intr_disable(if_ctx_t ctx)
3450 {
3451         struct adapter *adapter = iflib_get_softc(ctx);
3452         struct e1000_hw *hw = &adapter->hw;
3453
3454         if (hw->mac.type == e1000_82574)
3455                 E1000_WRITE_REG(hw, EM_EIAC, 0);
3456         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3457 }
3458
3459 static void
3460 igb_if_intr_enable(if_ctx_t ctx)
3461 {
3462         struct adapter *adapter = iflib_get_softc(ctx);
3463         struct e1000_hw *hw = &adapter->hw;
3464         u32 mask;
3465
3466         if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3467                 mask = (adapter->que_mask | adapter->link_mask);
3468                 E1000_WRITE_REG(hw, E1000_EIAC, mask);
3469                 E1000_WRITE_REG(hw, E1000_EIAM, mask);
3470                 E1000_WRITE_REG(hw, E1000_EIMS, mask);
3471                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3472         } else
3473                 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3474         E1000_WRITE_FLUSH(hw);
3475 }
3476
3477 static void
3478 igb_if_intr_disable(if_ctx_t ctx)
3479 {
3480         struct adapter *adapter = iflib_get_softc(ctx);
3481         struct e1000_hw *hw = &adapter->hw;
3482
3483         if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3484                 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3485                 E1000_WRITE_REG(hw, E1000_EIAC, 0);
3486         }
3487         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3488         E1000_WRITE_FLUSH(hw);
3489 }
3490
3491 /*
3492  * Bit of a misnomer, what this really means is
3493  * to enable OS management of the system... aka
3494  * to disable special hardware management features
3495  */
3496 static void
3497 em_init_manageability(struct adapter *adapter)
3498 {
3499         /* A shared code workaround */
3500 #define E1000_82542_MANC2H E1000_MANC2H
3501         if (adapter->has_manage) {
3502                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3503                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3504
3505                 /* disable hardware interception of ARP */
3506                 manc &= ~(E1000_MANC_ARP_EN);
3507
3508                 /* enable receiving management packets to the host */
3509                 manc |= E1000_MANC_EN_MNG2HOST;
3510 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3511 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3512                 manc2h |= E1000_MNG2HOST_PORT_623;
3513                 manc2h |= E1000_MNG2HOST_PORT_664;
3514                 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3515                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3516         }
3517 }
3518
3519 /*
3520  * Give control back to hardware management
3521  * controller if there is one.
3522  */
3523 static void
3524 em_release_manageability(struct adapter *adapter)
3525 {
3526         if (adapter->has_manage) {
3527                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3528
3529                 /* re-enable hardware interception of ARP */
3530                 manc |= E1000_MANC_ARP_EN;
3531                 manc &= ~E1000_MANC_EN_MNG2HOST;
3532
3533                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3534         }
3535 }
3536
3537 /*
3538  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3539  * For ASF and Pass Through versions of f/w this means
3540  * that the driver is loaded. For AMT version type f/w
3541  * this means that the network i/f is open.
3542  */
3543 static void
3544 em_get_hw_control(struct adapter *adapter)
3545 {
3546         u32 ctrl_ext, swsm;
3547
3548         if (adapter->vf_ifp)
3549                 return;
3550
3551         if (adapter->hw.mac.type == e1000_82573) {
3552                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3553                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3554                     swsm | E1000_SWSM_DRV_LOAD);
3555                 return;
3556         }
3557         /* else */
3558         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3559         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3560             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3561 }
3562
3563 /*
3564  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3565  * For ASF and Pass Through versions of f/w this means that
3566  * the driver is no longer loaded. For AMT versions of the
3567  * f/w this means that the network i/f is closed.
3568  */
3569 static void
3570 em_release_hw_control(struct adapter *adapter)
3571 {
3572         u32 ctrl_ext, swsm;
3573
3574         if (!adapter->has_manage)
3575                 return;
3576
3577         if (adapter->hw.mac.type == e1000_82573) {
3578                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3579                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3580                     swsm & ~E1000_SWSM_DRV_LOAD);
3581                 return;
3582         }
3583         /* else */
3584         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3585         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3586             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3587         return;
3588 }
3589
3590 static int
3591 em_is_valid_ether_addr(u8 *addr)
3592 {
3593         char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3594
3595         if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3596                 return (FALSE);
3597         }
3598
3599         return (TRUE);
3600 }
3601
3602 /*
3603 ** Parse the interface capabilities with regard
3604 ** to both system management and wake-on-lan for
3605 ** later use.
3606 */
3607 static void
3608 em_get_wakeup(if_ctx_t ctx)
3609 {
3610         struct adapter *adapter = iflib_get_softc(ctx);
3611         device_t dev = iflib_get_dev(ctx);
3612         u16 eeprom_data = 0, device_id, apme_mask;
3613
3614         adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3615         apme_mask = EM_EEPROM_APME;
3616
3617         switch (adapter->hw.mac.type) {
3618         case e1000_82542:
3619         case e1000_82543:
3620                 break;
3621         case e1000_82544:
3622                 e1000_read_nvm(&adapter->hw,
3623                     NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3624                 apme_mask = EM_82544_APME;
3625                 break;
3626         case e1000_82546:
3627         case e1000_82546_rev_3:
3628                 if (adapter->hw.bus.func == 1) {
3629                         e1000_read_nvm(&adapter->hw,
3630                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3631                         break;
3632                 } else
3633                         e1000_read_nvm(&adapter->hw,
3634                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3635                 break;
3636         case e1000_82573:
3637         case e1000_82583:
3638                 adapter->has_amt = TRUE;
3639                 /* FALLTHROUGH */
3640         case e1000_82571:
3641         case e1000_82572:
3642         case e1000_80003es2lan:
3643                 if (adapter->hw.bus.func == 1) {
3644                         e1000_read_nvm(&adapter->hw,
3645                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3646                         break;
3647                 } else
3648                         e1000_read_nvm(&adapter->hw,
3649                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3650                 break;
3651         case e1000_ich8lan:
3652         case e1000_ich9lan:
3653         case e1000_ich10lan:
3654         case e1000_pchlan:
3655         case e1000_pch2lan:
3656         case e1000_pch_lpt:
3657         case e1000_pch_spt:
3658         case e1000_82575:       /* listing all igb devices */
3659         case e1000_82576:
3660         case e1000_82580:
3661         case e1000_i350:
3662         case e1000_i354:
3663         case e1000_i210:
3664         case e1000_i211:
3665         case e1000_vfadapt:
3666         case e1000_vfadapt_i350:
3667                 apme_mask = E1000_WUC_APME;
3668                 adapter->has_amt = TRUE;
3669                 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3670                 break;
3671         default:
3672                 e1000_read_nvm(&adapter->hw,
3673                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3674                 break;
3675         }
3676         if (eeprom_data & apme_mask)
3677                 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3678         /*
3679          * We have the eeprom settings, now apply the special cases
3680          * where the eeprom may be wrong or the board won't support
3681          * wake on lan on a particular port
3682          */
3683         device_id = pci_get_device(dev);
3684         switch (device_id) {
3685         case E1000_DEV_ID_82546GB_PCIE:
3686                 adapter->wol = 0;
3687                 break;
3688         case E1000_DEV_ID_82546EB_FIBER:
3689         case E1000_DEV_ID_82546GB_FIBER:
3690                 /* Wake events only supported on port A for dual fiber
3691                  * regardless of eeprom setting */
3692                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3693                     E1000_STATUS_FUNC_1)
3694                         adapter->wol = 0;
3695                 break;
3696         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3697                 /* if quad port adapter, disable WoL on all but port A */
3698                 if (global_quad_port_a != 0)
3699                         adapter->wol = 0;
3700                 /* Reset for multiple quad port adapters */
3701                 if (++global_quad_port_a == 4)
3702                         global_quad_port_a = 0;
3703                 break;
3704         case E1000_DEV_ID_82571EB_FIBER:
3705                 /* Wake events only supported on port A for dual fiber
3706                  * regardless of eeprom setting */
3707                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3708                     E1000_STATUS_FUNC_1)
3709                         adapter->wol = 0;
3710                 break;
3711         case E1000_DEV_ID_82571EB_QUAD_COPPER:
3712         case E1000_DEV_ID_82571EB_QUAD_FIBER:
3713         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3714                 /* if quad port adapter, disable WoL on all but port A */
3715                 if (global_quad_port_a != 0)
3716                         adapter->wol = 0;
3717                 /* Reset for multiple quad port adapters */
3718                 if (++global_quad_port_a == 4)
3719                         global_quad_port_a = 0;
3720                 break;
3721         }
3722         return;
3723 }
3724
3725
3726 /*
3727  * Enable PCI Wake On Lan capability
3728  */
3729 static void
3730 em_enable_wakeup(if_ctx_t ctx)
3731 {
3732         struct adapter *adapter = iflib_get_softc(ctx);
3733         device_t dev = iflib_get_dev(ctx);
3734         if_t ifp = iflib_get_ifp(ctx);
3735         int error = 0;
3736         u32 pmc, ctrl, ctrl_ext, rctl;
3737         u16 status;
3738
3739         if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3740                 return;
3741
3742         /*
3743          * Determine type of Wakeup: note that wol
3744          * is set with all bits on by default.
3745          */
3746         if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3747                 adapter->wol &= ~E1000_WUFC_MAG;
3748
3749         if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3750                 adapter->wol &= ~E1000_WUFC_EX;
3751
3752         if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3753                 adapter->wol &= ~E1000_WUFC_MC;
3754         else {
3755                 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3756                 rctl |= E1000_RCTL_MPE;
3757                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3758         }
3759
3760         if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3761                 goto pme;
3762
3763         /* Advertise the wakeup capability */
3764         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3765         ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3766         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3767
3768         /* Keep the laser running on Fiber adapters */
3769         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3770             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3771                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3772                 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3773                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3774         }
3775
3776         if ((adapter->hw.mac.type == e1000_ich8lan) ||
3777             (adapter->hw.mac.type == e1000_pchlan) ||
3778             (adapter->hw.mac.type == e1000_ich9lan) ||
3779             (adapter->hw.mac.type == e1000_ich10lan))
3780                 e1000_suspend_workarounds_ich8lan(&adapter->hw);
3781
3782         if ( adapter->hw.mac.type >= e1000_pchlan) {
3783                 error = em_enable_phy_wakeup(adapter);
3784                 if (error)
3785                         goto pme;
3786         } else {
3787                 /* Enable wakeup by the MAC */
3788                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3789                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3790         }
3791
3792         if (adapter->hw.phy.type == e1000_phy_igp_3)
3793                 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3794
3795 pme:
3796         status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3797         status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3798         if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3799                 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3800         pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3801
3802         return;
3803 }
3804
3805 /*
3806  * WOL in the newer chipset interfaces (pchlan)
3807  * require thing to be copied into the phy
3808  */
3809 static int
3810 em_enable_phy_wakeup(struct adapter *adapter)
3811 {
3812         struct e1000_hw *hw = &adapter->hw;
3813         u32 mreg, ret = 0;
3814         u16 preg;
3815
3816         /* copy MAC RARs to PHY RARs */
3817         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3818
3819         /* copy MAC MTA to PHY MTA */
3820         for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3821                 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3822                 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3823                 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3824                     (u16)((mreg >> 16) & 0xFFFF));
3825         }
3826
3827         /* configure PHY Rx Control register */
3828         e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3829         mreg = E1000_READ_REG(hw, E1000_RCTL);
3830         if (mreg & E1000_RCTL_UPE)
3831                 preg |= BM_RCTL_UPE;
3832         if (mreg & E1000_RCTL_MPE)
3833                 preg |= BM_RCTL_MPE;
3834         preg &= ~(BM_RCTL_MO_MASK);
3835         if (mreg & E1000_RCTL_MO_3)
3836                 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3837                                 << BM_RCTL_MO_SHIFT);
3838         if (mreg & E1000_RCTL_BAM)
3839                 preg |= BM_RCTL_BAM;
3840         if (mreg & E1000_RCTL_PMCF)
3841                 preg |= BM_RCTL_PMCF;
3842         mreg = E1000_READ_REG(hw, E1000_CTRL);
3843         if (mreg & E1000_CTRL_RFCE)
3844                 preg |= BM_RCTL_RFCE;
3845         e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3846
3847         /* enable PHY wakeup in MAC register */
3848         E1000_WRITE_REG(hw, E1000_WUC,
3849             E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3850         E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3851
3852         /* configure and enable PHY wakeup in PHY registers */
3853         e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3854         e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3855
3856         /* activate PHY wakeup */
3857         ret = hw->phy.ops.acquire(hw);
3858         if (ret) {
3859                 printf("Could not acquire PHY\n");
3860                 return ret;
3861         }
3862         e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3863                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3864         ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3865         if (ret) {
3866                 printf("Could not read PHY page 769\n");
3867                 goto out;
3868         }
3869         preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3870         ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3871         if (ret)
3872                 printf("Could not set PHY Host Wakeup bit\n");
3873 out:
3874         hw->phy.ops.release(hw);
3875
3876         return ret;
3877 }
3878
3879 static void
3880 em_if_led_func(if_ctx_t ctx, int onoff)
3881 {
3882         struct adapter *adapter = iflib_get_softc(ctx);
3883
3884         if (onoff) {
3885                 e1000_setup_led(&adapter->hw);
3886                 e1000_led_on(&adapter->hw);
3887         } else {
3888                 e1000_led_off(&adapter->hw);
3889                 e1000_cleanup_led(&adapter->hw);
3890         }
3891 }
3892
3893 /*
3894  * Disable the L0S and L1 LINK states
3895  */
3896 static void
3897 em_disable_aspm(struct adapter *adapter)
3898 {
3899         int base, reg;
3900         u16 link_cap,link_ctrl;
3901         device_t dev = adapter->dev;
3902
3903         switch (adapter->hw.mac.type) {
3904         case e1000_82573:
3905         case e1000_82574:
3906         case e1000_82583:
3907                 break;
3908         default:
3909                 return;
3910         }
3911         if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3912                 return;
3913         reg = base + PCIER_LINK_CAP;
3914         link_cap = pci_read_config(dev, reg, 2);
3915         if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3916                 return;
3917         reg = base + PCIER_LINK_CTL;
3918         link_ctrl = pci_read_config(dev, reg, 2);
3919         link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3920         pci_write_config(dev, reg, link_ctrl, 2);
3921         return;
3922 }
3923
3924 /**********************************************************************
3925  *
3926  *  Update the board statistics counters.
3927  *
3928  **********************************************************************/
3929 static void
3930 em_update_stats_counters(struct adapter *adapter)
3931 {
3932         u64 prev_xoffrxc = adapter->stats.xoffrxc;
3933
3934         if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3935            (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3936                 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3937                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3938         }
3939         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3940         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3941         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3942         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3943
3944         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3945         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3946         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3947         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3948         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3949         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3950         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3951         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3952         /*
3953          ** For watchdog management we need to know if we have been
3954          ** paused during the last interval, so capture that here.
3955         */
3956         if (adapter->stats.xoffrxc != prev_xoffrxc)
3957                 adapter->shared->isc_pause_frames = 1;
3958         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3959         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3960         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3961         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3962         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3963         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3964         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3965         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3966         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3967         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3968         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3969         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3970
3971         /* For the 64-bit byte counters the low dword must be read first. */
3972         /* Both registers clear on the read of the high dword */
3973
3974         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3975             ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3976         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3977             ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3978
3979         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3980         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3981         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3982         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3983         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3984
3985         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3986         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3987
3988         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3989         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3990         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3991         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3992         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3993         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3994         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3995         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3996         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3997         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3998
3999         /* Interrupt Counts */
4000
4001         adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
4002         adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
4003         adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
4004         adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
4005         adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
4006         adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
4007         adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
4008         adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
4009         adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
4010
4011         if (adapter->hw.mac.type >= e1000_82543) {
4012                 adapter->stats.algnerrc +=
4013                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4014                 adapter->stats.rxerrc +=
4015                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4016                 adapter->stats.tncrs +=
4017                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4018                 adapter->stats.cexterr +=
4019                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4020                 adapter->stats.tsctc +=
4021                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4022                 adapter->stats.tsctfc +=
4023                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4024         }
4025 }
4026
4027 static uint64_t
4028 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4029 {
4030         struct adapter *adapter = iflib_get_softc(ctx);
4031         struct ifnet *ifp = iflib_get_ifp(ctx);
4032
4033         switch (cnt) {
4034         case IFCOUNTER_COLLISIONS:
4035                 return (adapter->stats.colc);
4036         case IFCOUNTER_IERRORS:
4037                 return (adapter->dropped_pkts + adapter->stats.rxerrc +
4038                     adapter->stats.crcerrs + adapter->stats.algnerrc +
4039                     adapter->stats.ruc + adapter->stats.roc +
4040                     adapter->stats.mpc + adapter->stats.cexterr);
4041         case IFCOUNTER_OERRORS:
4042                 return (adapter->stats.ecol + adapter->stats.latecol +
4043                     adapter->watchdog_events);
4044         default:
4045                 return (if_get_counter_default(ifp, cnt));
4046         }
4047 }
4048
4049 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4050  * @ctx: iflib context
4051  * @event: event code to check
4052  *
4053  * Defaults to returning true for unknown events.
4054  *
4055  * @returns true if iflib needs to reinit the interface
4056  */
4057 static bool
4058 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4059 {
4060         switch (event) {
4061         case IFLIB_RESTART_VLAN_CONFIG:
4062         default:
4063                 return (true);
4064         }
4065 }
4066
4067 /* Export a single 32-bit register via a read-only sysctl. */
4068 static int
4069 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4070 {
4071         struct adapter *adapter;
4072         u_int val;
4073
4074         adapter = oidp->oid_arg1;
4075         val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
4076         return (sysctl_handle_int(oidp, &val, 0, req));
4077 }
4078
4079 /*
4080  * Add sysctl variables, one per statistic, to the system.
4081  */
4082 static void
4083 em_add_hw_stats(struct adapter *adapter)
4084 {
4085         device_t dev = iflib_get_dev(adapter->ctx);
4086         struct em_tx_queue *tx_que = adapter->tx_queues;
4087         struct em_rx_queue *rx_que = adapter->rx_queues;
4088
4089         struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4090         struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4091         struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4092         struct e1000_hw_stats *stats = &adapter->stats;
4093
4094         struct sysctl_oid *stat_node, *queue_node, *int_node;
4095         struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4096
4097 #define QUEUE_NAME_LEN 32
4098         char namebuf[QUEUE_NAME_LEN];
4099
4100         /* Driver Statistics */
4101         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4102                         CTLFLAG_RD, &adapter->dropped_pkts,
4103                         "Driver dropped packets");
4104         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4105                         CTLFLAG_RD, &adapter->link_irq,
4106                         "Link MSI-X IRQ Handled");
4107         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4108                         CTLFLAG_RD, &adapter->rx_overruns,
4109                         "RX overruns");
4110         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4111                         CTLFLAG_RD, &adapter->watchdog_events,
4112                         "Watchdog timeouts");
4113         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4114             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4115             adapter, E1000_CTRL, em_sysctl_reg_handler, "IU",
4116             "Device Control Register");
4117         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4118             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4119             adapter, E1000_RCTL, em_sysctl_reg_handler, "IU",
4120             "Receiver Control Register");
4121         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4122                         CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4123                         "Flow Control High Watermark");
4124         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4125                         CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4126                         "Flow Control Low Watermark");
4127
4128         for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4129                 struct tx_ring *txr = &tx_que->txr;
4130                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4131                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4132                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4133                 queue_list = SYSCTL_CHILDREN(queue_node);
4134
4135                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4136                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4137                     E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4138                     "Transmit Descriptor Head");
4139                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4140                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4141                     E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4142                     "Transmit Descriptor Tail");
4143                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4144                                 CTLFLAG_RD, &txr->tx_irq,
4145                                 "Queue MSI-X Transmit Interrupts");
4146         }
4147
4148         for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4149                 struct rx_ring *rxr = &rx_que->rxr;
4150                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4151                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4152                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4153                 queue_list = SYSCTL_CHILDREN(queue_node);
4154
4155                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4156                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4157                     E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4158                     "Receive Descriptor Head");
4159                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4160                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4161                     E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4162                     "Receive Descriptor Tail");
4163                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4164                                 CTLFLAG_RD, &rxr->rx_irq,
4165                                 "Queue MSI-X Receive Interrupts");
4166         }
4167
4168         /* MAC stats get their own sub node */
4169
4170         stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4171             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4172         stat_list = SYSCTL_CHILDREN(stat_node);
4173
4174         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4175                         CTLFLAG_RD, &stats->ecol,
4176                         "Excessive collisions");
4177         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4178                         CTLFLAG_RD, &stats->scc,
4179                         "Single collisions");
4180         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4181                         CTLFLAG_RD, &stats->mcc,
4182                         "Multiple collisions");
4183         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4184                         CTLFLAG_RD, &stats->latecol,
4185                         "Late collisions");
4186         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4187                         CTLFLAG_RD, &stats->colc,
4188                         "Collision Count");
4189         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4190                         CTLFLAG_RD, &adapter->stats.symerrs,
4191                         "Symbol Errors");
4192         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4193                         CTLFLAG_RD, &adapter->stats.sec,
4194                         "Sequence Errors");
4195         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4196                         CTLFLAG_RD, &adapter->stats.dc,
4197                         "Defer Count");
4198         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4199                         CTLFLAG_RD, &adapter->stats.mpc,
4200                         "Missed Packets");
4201         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4202                         CTLFLAG_RD, &adapter->stats.rnbc,
4203                         "Receive No Buffers");
4204         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4205                         CTLFLAG_RD, &adapter->stats.ruc,
4206                         "Receive Undersize");
4207         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4208                         CTLFLAG_RD, &adapter->stats.rfc,
4209                         "Fragmented Packets Received ");
4210         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4211                         CTLFLAG_RD, &adapter->stats.roc,
4212                         "Oversized Packets Received");
4213         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4214                         CTLFLAG_RD, &adapter->stats.rjc,
4215                         "Recevied Jabber");
4216         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4217                         CTLFLAG_RD, &adapter->stats.rxerrc,
4218                         "Receive Errors");
4219         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4220                         CTLFLAG_RD, &adapter->stats.crcerrs,
4221                         "CRC errors");
4222         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4223                         CTLFLAG_RD, &adapter->stats.algnerrc,
4224                         "Alignment Errors");
4225         /* On 82575 these are collision counts */
4226         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4227                         CTLFLAG_RD, &adapter->stats.cexterr,
4228                         "Collision/Carrier extension errors");
4229         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4230                         CTLFLAG_RD, &adapter->stats.xonrxc,
4231                         "XON Received");
4232         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4233                         CTLFLAG_RD, &adapter->stats.xontxc,
4234                         "XON Transmitted");
4235         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4236                         CTLFLAG_RD, &adapter->stats.xoffrxc,
4237                         "XOFF Received");
4238         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4239                         CTLFLAG_RD, &adapter->stats.xofftxc,
4240                         "XOFF Transmitted");
4241
4242         /* Packet Reception Stats */
4243         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4244                         CTLFLAG_RD, &adapter->stats.tpr,
4245                         "Total Packets Received ");
4246         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4247                         CTLFLAG_RD, &adapter->stats.gprc,
4248                         "Good Packets Received");
4249         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4250                         CTLFLAG_RD, &adapter->stats.bprc,
4251                         "Broadcast Packets Received");
4252         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4253                         CTLFLAG_RD, &adapter->stats.mprc,
4254                         "Multicast Packets Received");
4255         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4256                         CTLFLAG_RD, &adapter->stats.prc64,
4257                         "64 byte frames received ");
4258         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4259                         CTLFLAG_RD, &adapter->stats.prc127,
4260                         "65-127 byte frames received");
4261         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4262                         CTLFLAG_RD, &adapter->stats.prc255,
4263                         "128-255 byte frames received");
4264         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4265                         CTLFLAG_RD, &adapter->stats.prc511,
4266                         "256-511 byte frames received");
4267         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4268                         CTLFLAG_RD, &adapter->stats.prc1023,
4269                         "512-1023 byte frames received");
4270         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4271                         CTLFLAG_RD, &adapter->stats.prc1522,
4272                         "1023-1522 byte frames received");
4273         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4274                         CTLFLAG_RD, &adapter->stats.gorc,
4275                         "Good Octets Received");
4276
4277         /* Packet Transmission Stats */
4278         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4279                         CTLFLAG_RD, &adapter->stats.gotc,
4280                         "Good Octets Transmitted");
4281         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4282                         CTLFLAG_RD, &adapter->stats.tpt,
4283                         "Total Packets Transmitted");
4284         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4285                         CTLFLAG_RD, &adapter->stats.gptc,
4286                         "Good Packets Transmitted");
4287         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4288                         CTLFLAG_RD, &adapter->stats.bptc,
4289                         "Broadcast Packets Transmitted");
4290         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4291                         CTLFLAG_RD, &adapter->stats.mptc,
4292                         "Multicast Packets Transmitted");
4293         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4294                         CTLFLAG_RD, &adapter->stats.ptc64,
4295                         "64 byte frames transmitted ");
4296         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4297                         CTLFLAG_RD, &adapter->stats.ptc127,
4298                         "65-127 byte frames transmitted");
4299         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4300                         CTLFLAG_RD, &adapter->stats.ptc255,
4301                         "128-255 byte frames transmitted");
4302         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4303                         CTLFLAG_RD, &adapter->stats.ptc511,
4304                         "256-511 byte frames transmitted");
4305         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4306                         CTLFLAG_RD, &adapter->stats.ptc1023,
4307                         "512-1023 byte frames transmitted");
4308         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4309                         CTLFLAG_RD, &adapter->stats.ptc1522,
4310                         "1024-1522 byte frames transmitted");
4311         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4312                         CTLFLAG_RD, &adapter->stats.tsctc,
4313                         "TSO Contexts Transmitted");
4314         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4315                         CTLFLAG_RD, &adapter->stats.tsctfc,
4316                         "TSO Contexts Failed");
4317
4318
4319         /* Interrupt Stats */
4320
4321         int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4322             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4323         int_list = SYSCTL_CHILDREN(int_node);
4324
4325         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4326                         CTLFLAG_RD, &adapter->stats.iac,
4327                         "Interrupt Assertion Count");
4328
4329         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4330                         CTLFLAG_RD, &adapter->stats.icrxptc,
4331                         "Interrupt Cause Rx Pkt Timer Expire Count");
4332
4333         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4334                         CTLFLAG_RD, &adapter->stats.icrxatc,
4335                         "Interrupt Cause Rx Abs Timer Expire Count");
4336
4337         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4338                         CTLFLAG_RD, &adapter->stats.ictxptc,
4339                         "Interrupt Cause Tx Pkt Timer Expire Count");
4340
4341         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4342                         CTLFLAG_RD, &adapter->stats.ictxatc,
4343                         "Interrupt Cause Tx Abs Timer Expire Count");
4344
4345         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4346                         CTLFLAG_RD, &adapter->stats.ictxqec,
4347                         "Interrupt Cause Tx Queue Empty Count");
4348
4349         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4350                         CTLFLAG_RD, &adapter->stats.ictxqmtc,
4351                         "Interrupt Cause Tx Queue Min Thresh Count");
4352
4353         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4354                         CTLFLAG_RD, &adapter->stats.icrxdmtc,
4355                         "Interrupt Cause Rx Desc Min Thresh Count");
4356
4357         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4358                         CTLFLAG_RD, &adapter->stats.icrxoc,
4359                         "Interrupt Cause Receiver Overrun Count");
4360 }
4361
4362 /**********************************************************************
4363  *
4364  *  This routine provides a way to dump out the adapter eeprom,
4365  *  often a useful debug/service tool. This only dumps the first
4366  *  32 words, stuff that matters is in that extent.
4367  *
4368  **********************************************************************/
4369 static int
4370 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4371 {
4372         struct adapter *adapter = (struct adapter *)arg1;
4373         int error;
4374         int result;
4375
4376         result = -1;
4377         error = sysctl_handle_int(oidp, &result, 0, req);
4378
4379         if (error || !req->newptr)
4380                 return (error);
4381
4382         /*
4383          * This value will cause a hex dump of the
4384          * first 32 16-bit words of the EEPROM to
4385          * the screen.
4386          */
4387         if (result == 1)
4388                 em_print_nvm_info(adapter);
4389
4390         return (error);
4391 }
4392
4393 static void
4394 em_print_nvm_info(struct adapter *adapter)
4395 {
4396         u16 eeprom_data;
4397         int i, j, row = 0;
4398
4399         /* Its a bit crude, but it gets the job done */
4400         printf("\nInterface EEPROM Dump:\n");
4401         printf("Offset\n0x0000  ");
4402         for (i = 0, j = 0; i < 32; i++, j++) {
4403                 if (j == 8) { /* Make the offset block */
4404                         j = 0; ++row;
4405                         printf("\n0x00%x0  ",row);
4406                 }
4407                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4408                 printf("%04x ", eeprom_data);
4409         }
4410         printf("\n");
4411 }
4412
4413 static int
4414 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4415 {
4416         struct em_int_delay_info *info;
4417         struct adapter *adapter;
4418         u32 regval;
4419         int error, usecs, ticks;
4420
4421         info = (struct em_int_delay_info *) arg1;
4422         usecs = info->value;
4423         error = sysctl_handle_int(oidp, &usecs, 0, req);
4424         if (error != 0 || req->newptr == NULL)
4425                 return (error);
4426         if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4427                 return (EINVAL);
4428         info->value = usecs;
4429         ticks = EM_USECS_TO_TICKS(usecs);
4430         if (info->offset == E1000_ITR)  /* units are 256ns here */
4431                 ticks *= 4;
4432
4433         adapter = info->adapter;
4434
4435         regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4436         regval = (regval & ~0xffff) | (ticks & 0xffff);
4437         /* Handle a few special cases. */
4438         switch (info->offset) {
4439         case E1000_RDTR:
4440                 break;
4441         case E1000_TIDV:
4442                 if (ticks == 0) {
4443                         adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4444                         /* Don't write 0 into the TIDV register. */
4445                         regval++;
4446                 } else
4447                         adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4448                 break;
4449         }
4450         E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4451         return (0);
4452 }
4453
4454 static void
4455 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4456         const char *description, struct em_int_delay_info *info,
4457         int offset, int value)
4458 {
4459         info->adapter = adapter;
4460         info->offset = offset;
4461         info->value = value;
4462         SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4463             SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4464             OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4465             info, 0, em_sysctl_int_delay, "I", description);
4466 }
4467
4468 /*
4469  * Set flow control using sysctl:
4470  * Flow control values:
4471  *      0 - off
4472  *      1 - rx pause
4473  *      2 - tx pause
4474  *      3 - full
4475  */
4476 static int
4477 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4478 {
4479         int error;
4480         static int input = 3; /* default is full */
4481         struct adapter  *adapter = (struct adapter *) arg1;
4482
4483         error = sysctl_handle_int(oidp, &input, 0, req);
4484
4485         if ((error) || (req->newptr == NULL))
4486                 return (error);
4487
4488         if (input == adapter->fc) /* no change? */
4489                 return (error);
4490
4491         switch (input) {
4492         case e1000_fc_rx_pause:
4493         case e1000_fc_tx_pause:
4494         case e1000_fc_full:
4495         case e1000_fc_none:
4496                 adapter->hw.fc.requested_mode = input;
4497                 adapter->fc = input;
4498                 break;
4499         default:
4500                 /* Do nothing */
4501                 return (error);
4502         }
4503
4504         adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4505         e1000_force_mac_fc(&adapter->hw);
4506         return (error);
4507 }
4508
4509 /*
4510  * Manage Energy Efficient Ethernet:
4511  * Control values:
4512  *     0/1 - enabled/disabled
4513  */
4514 static int
4515 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4516 {
4517         struct adapter *adapter = (struct adapter *) arg1;
4518         int error, value;
4519
4520         value = adapter->hw.dev_spec.ich8lan.eee_disable;
4521         error = sysctl_handle_int(oidp, &value, 0, req);
4522         if (error || req->newptr == NULL)
4523                 return (error);
4524         adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4525         em_if_init(adapter->ctx);
4526
4527         return (0);
4528 }
4529
4530 static int
4531 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4532 {
4533         struct adapter *adapter;
4534         int error;
4535         int result;
4536
4537         result = -1;
4538         error = sysctl_handle_int(oidp, &result, 0, req);
4539
4540         if (error || !req->newptr)
4541                 return (error);
4542
4543         if (result == 1) {
4544                 adapter = (struct adapter *) arg1;
4545                 em_print_debug_info(adapter);
4546         }
4547
4548         return (error);
4549 }
4550
4551 static int
4552 em_get_rs(SYSCTL_HANDLER_ARGS)
4553 {
4554         struct adapter *adapter = (struct adapter *) arg1;
4555         int error;
4556         int result;
4557
4558         result = 0;
4559         error = sysctl_handle_int(oidp, &result, 0, req);
4560
4561         if (error || !req->newptr || result != 1)
4562                 return (error);
4563         em_dump_rs(adapter);
4564
4565         return (error);
4566 }
4567
4568 static void
4569 em_if_debug(if_ctx_t ctx)
4570 {
4571         em_dump_rs(iflib_get_softc(ctx));
4572 }
4573
4574 /*
4575  * This routine is meant to be fluid, add whatever is
4576  * needed for debugging a problem.  -jfv
4577  */
4578 static void
4579 em_print_debug_info(struct adapter *adapter)
4580 {
4581         device_t dev = iflib_get_dev(adapter->ctx);
4582         struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4583         struct tx_ring *txr = &adapter->tx_queues->txr;
4584         struct rx_ring *rxr = &adapter->rx_queues->rxr;
4585
4586         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4587                 printf("Interface is RUNNING ");
4588         else
4589                 printf("Interface is NOT RUNNING\n");
4590
4591         if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4592                 printf("and INACTIVE\n");
4593         else
4594                 printf("and ACTIVE\n");
4595
4596         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4597                 device_printf(dev, "TX Queue %d ------\n", i);
4598                 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4599                         E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4600                         E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4601
4602         }
4603         for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4604                 device_printf(dev, "RX Queue %d ------\n", j);
4605                 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4606                         E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4607                         E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4608         }
4609 }
4610
4611 /*
4612  * 82574 only:
4613  * Write a new value to the EEPROM increasing the number of MSI-X
4614  * vectors from 3 to 5, for proper multiqueue support.
4615  */
4616 static void
4617 em_enable_vectors_82574(if_ctx_t ctx)
4618 {
4619         struct adapter *adapter = iflib_get_softc(ctx);
4620         struct e1000_hw *hw = &adapter->hw;
4621         device_t dev = iflib_get_dev(ctx);
4622         u16 edata;
4623
4624         e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4625         if (bootverbose)
4626                 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4627         if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4628                 device_printf(dev, "Writing to eeprom: increasing "
4629                     "reported MSI-X vectors from 3 to 5...\n");
4630                 edata &= ~(EM_NVM_MSIX_N_MASK);
4631                 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4632                 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4633                 e1000_update_nvm_checksum(hw);
4634                 device_printf(dev, "Writing to eeprom: done\n");
4635         }
4636 }