]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/e1000/if_em.c
igb(4) enable WOL features for this class of devices.
[FreeBSD/FreeBSD.git] / sys / dev / e1000 / if_em.c
1 /*-
2  * Copyright (c) 2016 Matt Macy <mmacy@nextbsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 /* $FreeBSD$ */
28 #include "if_em.h"
29 #include <sys/sbuf.h>
30 #include <machine/_inttypes.h>
31
32 #define em_mac_min e1000_82547
33 #define igb_mac_min e1000_82575
34
35 /*********************************************************************
36  *  Driver version:
37  *********************************************************************/
38 char em_driver_version[] = "7.6.1-k";
39
40 /*********************************************************************
41  *  PCI Device ID Table
42  *
43  *  Used by probe to select devices to load on
44  *  Last field stores an index into e1000_strings
45  *  Last entry must be all 0s
46  *
47  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
48  *********************************************************************/
49
50 static pci_vendor_info_t em_vendor_info_array[] =
51 {
52         /* Intel(R) PRO/1000 Network Connection - Legacy em*/
53         PVID(0x8086, E1000_DEV_ID_82540EM,  "Intel(R) PRO/1000 Network Connection"), 
54         PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"), 
55         PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"), 
56         PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"), 
57         PVID(0x8086, E1000_DEV_ID_82540EP_LP,  "Intel(R) PRO/1000 Network Connection"), 
58
59         PVID(0x8086, E1000_DEV_ID_82541EI,  "Intel(R) PRO/1000 Network Connection"), 
60         PVID(0x8086, E1000_DEV_ID_82541ER,  "Intel(R) PRO/1000 Network Connection"), 
61         PVID(0x8086, E1000_DEV_ID_82541ER_LOM,  "Intel(R) PRO/1000 Network Connection"), 
62         PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE,   "Intel(R) PRO/1000 Network Connection"), 
63         PVID(0x8086, E1000_DEV_ID_82541GI,   "Intel(R) PRO/1000 Network Connection"), 
64         PVID(0x8086, E1000_DEV_ID_82541GI_LF,   "Intel(R) PRO/1000 Network Connection"), 
65         PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE,  "Intel(R) PRO/1000 Network Connection"), 
66
67         PVID(0x8086, E1000_DEV_ID_82542,  "Intel(R) PRO/1000 Network Connection"), 
68
69         PVID(0x8086, E1000_DEV_ID_82543GC_FIBER,  "Intel(R) PRO/1000 Network Connection"), 
70         PVID(0x8086, E1000_DEV_ID_82543GC_COPPER,  "Intel(R) PRO/1000 Network Connection"), 
71
72         PVID(0x8086, E1000_DEV_ID_82544EI_COPPER,  "Intel(R) PRO/1000 Network Connection"), 
73         PVID(0x8086, E1000_DEV_ID_82544EI_FIBER,  "Intel(R) PRO/1000 Network Connection"), 
74         PVID(0x8086, E1000_DEV_ID_82544GC_COPPER,  "Intel(R) PRO/1000 Network Connection"), 
75         PVID(0x8086, E1000_DEV_ID_82544GC_LOM,  "Intel(R) PRO/1000 Network Connection"), 
76
77         PVID(0x8086, E1000_DEV_ID_82545EM_COPPER,  "Intel(R) PRO/1000 Network Connection"), 
78         PVID(0x8086, E1000_DEV_ID_82545EM_FIBER,  "Intel(R) PRO/1000 Network Connection"), 
79         PVID(0x8086, E1000_DEV_ID_82545GM_COPPER,  "Intel(R) PRO/1000 Network Connection"), 
80         PVID(0x8086, E1000_DEV_ID_82545GM_FIBER,  "Intel(R) PRO/1000 Network Connection"), 
81         PVID(0x8086, E1000_DEV_ID_82545GM_SERDES,  "Intel(R) PRO/1000 Network Connection"), 
82
83         PVID(0x8086, E1000_DEV_ID_82546EB_COPPER,  "Intel(R) PRO/1000 Network Connection"), 
84         PVID(0x8086, E1000_DEV_ID_82546EB_FIBER,  "Intel(R) PRO/1000 Network Connection"), 
85         PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER,  "Intel(R) PRO/1000 Network Connection"), 
86         PVID(0x8086, E1000_DEV_ID_82546GB_COPPER,  "Intel(R) PRO/1000 Network Connection"), 
87         PVID(0x8086, E1000_DEV_ID_82546GB_FIBER,  "Intel(R) PRO/1000 Network Connection"), 
88         PVID(0x8086, E1000_DEV_ID_82546GB_SERDES,  "Intel(R) PRO/1000 Network Connection"), 
89         PVID(0x8086, E1000_DEV_ID_82546GB_PCIE,  "Intel(R) PRO/1000 Network Connection"), 
90         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER,  "Intel(R) PRO/1000 Network Connection"), 
91         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,  "Intel(R) PRO/1000 Network Connection"), 
92
93         PVID(0x8086, E1000_DEV_ID_82547EI,  "Intel(R) PRO/1000 Network Connection"), 
94         PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE,  "Intel(R) PRO/1000 Network Connection"), 
95         PVID(0x8086, E1000_DEV_ID_82547GI,  "Intel(R) PRO/1000 Network Connection"), 
96
97         /* Intel(R) PRO/1000 Network Connection - em */
98         PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"), 
99         PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
100         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
101         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
102         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
103         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), 
104         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
105         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"), 
106         PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
107         PVID(0x8086, E1000_DEV_ID_82572EI_COPPER,       "Intel(R) PRO/1000 Network Connection"),
108         PVID(0x8086, E1000_DEV_ID_82572EI_FIBER,        "Intel(R) PRO/1000 Network Connection"), 
109         PVID(0x8086, E1000_DEV_ID_82572EI_SERDES,       "Intel(R) PRO/1000 Network Connection"), 
110         PVID(0x8086, E1000_DEV_ID_82573E,               "Intel(R) PRO/1000 Network Connection"), 
111         PVID(0x8086, E1000_DEV_ID_82573E_IAMT,  "Intel(R) PRO/1000 Network Connection"),
112         PVID(0x8086, E1000_DEV_ID_82573L,               "Intel(R) PRO/1000 Network Connection"),
113         PVID(0x8086, E1000_DEV_ID_82583V,               "Intel(R) PRO/1000 Network Connection"),
114         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
115         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
116         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
117         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
118         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,       "Intel(R) PRO/1000 Network Connection"),
119         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
120         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C,   "Intel(R) PRO/1000 Network Connection"),
121         PVID(0x8086, E1000_DEV_ID_ICH8_IFE,     "Intel(R) PRO/1000 Network Connection"),
122         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT,  "Intel(R) PRO/1000 Network Connection"),
123         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G,   "Intel(R) PRO/1000 Network Connection"),
124         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M,   "Intel(R) PRO/1000 Network Connection"),
125         PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3,        "Intel(R) PRO/1000 Network Connection"),
126         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT,       "Intel(R) PRO/1000 Network Connection"),
127         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
128         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C,   "Intel(R) PRO/1000 Network Connection"),
129         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M,   "Intel(R) PRO/1000 Network Connection"),
130         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
131         PVID(0x8086, E1000_DEV_ID_ICH9_IFE,     "Intel(R) PRO/1000 Network Connection"),
132         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT,  "Intel(R) PRO/1000 Network Connection"),
133         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G,   "Intel(R) PRO/1000 Network Connection"),
134         PVID(0x8086, E1000_DEV_ID_ICH9_BM,              "Intel(R) PRO/1000 Network Connection"),
135         PVID(0x8086, E1000_DEV_ID_82574L,               "Intel(R) PRO/1000 Network Connection"),
136         PVID(0x8086, E1000_DEV_ID_82574LA,              "Intel(R) PRO/1000 Network Connection"),
137         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM,        "Intel(R) PRO/1000 Network Connection"),
138         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF,        "Intel(R) PRO/1000 Network Connection"),
139         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
140         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM,        "Intel(R) PRO/1000 Network Connection"),
141         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF,        "Intel(R) PRO/1000 Network Connection"),
142         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
143         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM,  "Intel(R) PRO/1000 Network Connection"),
144         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC,  "Intel(R) PRO/1000 Network Connection"),
145         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM,  "Intel(R) PRO/1000 Network Connection"),
146         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC,  "Intel(R) PRO/1000 Network Connection"),
147         PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM,   "Intel(R) PRO/1000 Network Connection"),
148         PVID(0x8086, E1000_DEV_ID_PCH2_LV_V,    "Intel(R) PRO/1000 Network Connection"),
149         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM,      "Intel(R) PRO/1000 Network Connection"),
150         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V,       "Intel(R) PRO/1000 Network Connection"),
151         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
152         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
153         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
154         PVID(0x8086, E1000_DEV_ID_PCH_I218_V2,  "Intel(R) PRO/1000 Network Connection"),
155         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
156         PVID(0x8086, E1000_DEV_ID_PCH_I218_V3,  "Intel(R) PRO/1000 Network Connection"),
157         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
158         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V,  "Intel(R) PRO/1000 Network Connection"),
159         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
160         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
161         PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
162         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
163         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
164         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
165         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
166         /* required last entry */
167         PVID_END
168 };
169
170 static pci_vendor_info_t igb_vendor_info_array[] =
171 {
172         /* Intel(R) PRO/1000 Network Connection - em */
173         PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
174         PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
175         PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
176         PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
177         PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
178         PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
179         PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
180         PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
181         PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
182         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
183         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
184         PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
185         PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
186         PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
187         PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
188         PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
189         PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
190         PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194         PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195         PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196         PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197         PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198         PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199         PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200         PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201         PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202         PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203         PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204         PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205         PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), 
206         PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207         PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208         PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211         PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212         /* required last entry */
213         PVID_END
214 };
215
216 /*********************************************************************
217  *  Function prototypes
218  *********************************************************************/
219 static void     *em_register(device_t dev); 
220 static void     *igb_register(device_t dev); 
221 static int      em_if_attach_pre(if_ctx_t ctx);
222 static int      em_if_attach_post(if_ctx_t ctx);
223 static int      em_if_detach(if_ctx_t ctx);
224 static int      em_if_shutdown(if_ctx_t ctx);
225 static int      em_if_suspend(if_ctx_t ctx);
226 static int      em_if_resume(if_ctx_t ctx); 
227
228 static int      em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
229 static int      em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
230 static void     em_if_queues_free(if_ctx_t ctx);
231
232 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
233 static void     em_if_init(if_ctx_t ctx); 
234 static void     em_if_stop(if_ctx_t ctx); 
235 static void     em_if_media_status(if_ctx_t, struct ifmediareq *);
236 static int      em_if_media_change(if_ctx_t ctx);
237 static int      em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
238 static void     em_if_timer(if_ctx_t ctx, uint16_t qid);
239 static void     em_if_vlan_register(if_ctx_t ctx, u16 vtag);
240 static void     em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
241
242 static void     em_identify_hardware(if_ctx_t ctx);
243 static int      em_allocate_pci_resources(if_ctx_t ctx); 
244 static void     em_free_pci_resources(if_ctx_t ctx); 
245 static void     em_reset(if_ctx_t ctx);
246 static int      em_setup_interface(if_ctx_t ctx);
247 static int      em_setup_msix(if_ctx_t ctx);
248
249 static void     em_initialize_transmit_unit(if_ctx_t ctx);
250 static void     em_initialize_receive_unit(if_ctx_t ctx);
251
252 static void     em_if_enable_intr(if_ctx_t ctx); 
253 static void     em_if_disable_intr(if_ctx_t ctx);
254 static int      em_if_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
255 static void     em_if_multi_set(if_ctx_t ctx);
256 static void     em_if_update_admin_status(if_ctx_t ctx);
257 static void     em_update_stats_counters(struct adapter *);
258 static void     em_add_hw_stats(struct adapter *adapter);
259 static int      em_if_set_promisc(if_ctx_t ctx, int flags); 
260 static void     em_setup_vlan_hw_support(struct adapter *);
261 static int      em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
262 static void     em_print_nvm_info(struct adapter *);
263 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
264 static void     em_print_debug_info(struct adapter *);
265 static int      em_is_valid_ether_addr(u8 *);
266 static int      em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
267 static void     em_add_int_delay_sysctl(struct adapter *, const char *,
268                     const char *, struct em_int_delay_info *, int, int);
269 /* Management and WOL Support */
270 static void     em_init_manageability(struct adapter *);
271 static void     em_release_manageability(struct adapter *);
272 static void     em_get_hw_control(struct adapter *);
273 static void     em_release_hw_control(struct adapter *);
274 static void     em_get_wakeup(if_ctx_t ctx);
275 static void     em_enable_wakeup(if_ctx_t ctx);
276 static int      em_enable_phy_wakeup(struct adapter *);
277 static void     em_disable_aspm(struct adapter *);
278
279 int             em_intr(void *arg);
280 static void     em_disable_promisc(if_ctx_t ctx);
281
282 /* MSIX handlers */
283 static int      em_if_msix_intr_assign(if_ctx_t, int);
284 static int      em_msix_link(void *);
285 static void     em_handle_link(void *context);
286
287 static void     em_enable_vectors_82574(if_ctx_t);
288
289 static void     em_set_sysctl_value(struct adapter *, const char *,
290                     const char *, int *, int);
291 static int      em_set_flowcntl(SYSCTL_HANDLER_ARGS);
292 static int      em_sysctl_eee(SYSCTL_HANDLER_ARGS);
293 static void     em_if_led_func(if_ctx_t ctx, int onoff);
294
295 static void     em_init_tx_ring(struct em_tx_queue *que);
296 static int      em_get_regs(SYSCTL_HANDLER_ARGS); 
297
298 static void     lem_smartspeed(struct adapter *adapter);
299 static void     igb_configure_queues(struct adapter *adapter);
300
301
302 /*********************************************************************
303  *  FreeBSD Device Interface Entry Points
304  *********************************************************************/
305 static device_method_t em_methods[] = {
306         /* Device interface */
307   DEVMETHOD(device_register, em_register),
308   DEVMETHOD(device_probe, iflib_device_probe), 
309   DEVMETHOD(device_attach, iflib_device_attach),
310   DEVMETHOD(device_detach, iflib_device_detach),
311   DEVMETHOD(device_shutdown, iflib_device_shutdown),
312   DEVMETHOD(device_suspend, iflib_device_suspend),
313   DEVMETHOD(device_resume, iflib_device_resume),
314   DEVMETHOD_END
315 };
316
317 static device_method_t igb_methods[] = {
318         /* Device interface */
319   DEVMETHOD(device_register, igb_register),
320   DEVMETHOD(device_probe, iflib_device_probe), 
321   DEVMETHOD(device_attach, iflib_device_attach),
322   DEVMETHOD(device_detach, iflib_device_detach),
323   DEVMETHOD(device_shutdown, iflib_device_shutdown),
324   DEVMETHOD(device_suspend, iflib_device_suspend),
325   DEVMETHOD(device_resume, iflib_device_resume),
326   DEVMETHOD_END
327 };
328
329
330 static driver_t em_driver = {
331         "em", em_methods, sizeof(struct adapter),
332 };
333
334 static devclass_t em_devclass;
335 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
336
337 MODULE_DEPEND(em, pci, 1, 1, 1);
338 MODULE_DEPEND(em, ether, 1, 1, 1);
339 MODULE_DEPEND(em, iflib, 1, 1, 1);
340
341 static driver_t igb_driver = {
342         "igb", igb_methods, sizeof(struct adapter),
343 };
344
345 static devclass_t igb_devclass;
346 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
347
348 MODULE_DEPEND(igb, pci, 1, 1, 1);
349 MODULE_DEPEND(igb, ether, 1, 1, 1);
350 MODULE_DEPEND(igb, iflib, 1, 1, 1);
351
352
353 static device_method_t em_if_methods[] = {
354         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
355         DEVMETHOD(ifdi_attach_post, em_if_attach_post), 
356         DEVMETHOD(ifdi_detach, em_if_detach),
357         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
358         DEVMETHOD(ifdi_suspend, em_if_suspend),
359         DEVMETHOD(ifdi_resume, em_if_resume), 
360         DEVMETHOD(ifdi_init, em_if_init),
361         DEVMETHOD(ifdi_stop, em_if_stop),
362         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
363         DEVMETHOD(ifdi_intr_enable, em_if_enable_intr), 
364         DEVMETHOD(ifdi_intr_disable, em_if_disable_intr),
365         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
366         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
367         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
368         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), 
369         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
370         DEVMETHOD(ifdi_media_status, em_if_media_status),
371         DEVMETHOD(ifdi_media_change, em_if_media_change),
372         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
373         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
374         DEVMETHOD(ifdi_timer, em_if_timer),
375         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
376         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
377         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
378         DEVMETHOD(ifdi_led_func, em_if_led_func),
379         DEVMETHOD(ifdi_queue_intr_enable, em_if_queue_intr_enable),
380         DEVMETHOD_END
381 };
382
383   /*
384  * note that if (adapter->msix_mem) is replaced by:
385  * if (adapter->intr_type == IFLIB_INTR_MSIX)
386  */
387 static driver_t em_if_driver = {
388   "em_if", em_if_methods, sizeof(struct adapter)
389 };
390
391 /*********************************************************************
392  *  Tunable default values.
393  *********************************************************************/
394
395 #define EM_TICKS_TO_USECS(ticks)        ((1024 * (ticks) + 500) / 1000)
396 #define EM_USECS_TO_TICKS(usecs)        ((1000 * (usecs) + 512) / 1024)
397 #define M_TSO_LEN                       66
398
399 #define MAX_INTS_PER_SEC        8000
400 #define DEFAULT_ITR             (1000000000/(MAX_INTS_PER_SEC * 256))
401
402 /* Allow common code without TSO */
403 #ifndef CSUM_TSO
404 #define CSUM_TSO        0
405 #endif
406
407 #define TSO_WORKAROUND  4
408
409 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters");
410
411 static int em_disable_crc_stripping = 0;
412 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
413     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
414
415 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
416 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
417 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
418     0, "Default transmit interrupt delay in usecs");
419 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
420     0, "Default receive interrupt delay in usecs");
421
422 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
423 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
424 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
425     &em_tx_abs_int_delay_dflt, 0,
426     "Default transmit interrupt delay limit in usecs");
427 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
428     &em_rx_abs_int_delay_dflt, 0,
429     "Default receive interrupt delay limit in usecs");
430
431 static int em_smart_pwr_down = FALSE;
432 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
433     0, "Set to true to leave smart power down enabled on newer adapters");
434
435 /* Controls whether promiscuous also shows bad packets */
436 static int em_debug_sbp = TRUE;
437 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
438     "Show bad packets in promiscuous mode");
439
440 /* How many packets rxeof tries to clean at a time */
441 static int em_rx_process_limit = 100;
442 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
443     &em_rx_process_limit, 0,
444     "Maximum number of received packets to process "
445     "at a time, -1 means unlimited");
446
447 /* Energy efficient ethernet - default to OFF */
448 static int eee_setting = 1;
449 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
450     "Enable Energy Efficient Ethernet");
451
452 /*
453 ** Tuneable Interrupt rate
454 */
455 static int em_max_interrupt_rate = 8000;
456 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
457     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
458
459
460
461 /* Global used in WOL setup with multiport cards */
462 static int global_quad_port_a = 0;
463
464 extern struct if_txrx igb_txrx;
465 extern struct if_txrx em_txrx;
466 extern struct if_txrx lem_txrx;
467
468 static struct if_shared_ctx em_sctx_init = {
469         .isc_magic = IFLIB_MAGIC,
470         .isc_q_align = PAGE_SIZE,
471         .isc_tx_maxsize = EM_TSO_SIZE,
472         .isc_tx_maxsegsize = PAGE_SIZE,
473         .isc_rx_maxsize = MJUM9BYTES,
474         .isc_rx_nsegments = 1,
475         .isc_rx_maxsegsize = MJUM9BYTES,
476         .isc_nfl = 1,
477         .isc_nrxqs = 1,
478         .isc_ntxqs = 1,
479         .isc_admin_intrcnt = 1,
480         .isc_vendor_info = em_vendor_info_array,
481         .isc_driver_version = em_driver_version,
482         .isc_driver = &em_if_driver,
483         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP,
484
485         .isc_nrxd_min = {EM_MIN_RXD},
486         .isc_ntxd_min = {EM_MIN_TXD},
487         .isc_nrxd_max = {EM_MAX_RXD},
488         .isc_ntxd_max = {EM_MAX_TXD},
489         .isc_nrxd_default = {EM_DEFAULT_RXD},
490         .isc_ntxd_default = {EM_DEFAULT_TXD},
491 };
492   
493 if_shared_ctx_t em_sctx = &em_sctx_init;
494
495
496 static struct if_shared_ctx igb_sctx_init = {
497         .isc_magic = IFLIB_MAGIC,
498         .isc_q_align = PAGE_SIZE,
499         .isc_tx_maxsize = EM_TSO_SIZE,
500         .isc_tx_maxsegsize = PAGE_SIZE,
501         .isc_rx_maxsize = MJUM9BYTES,
502         .isc_rx_nsegments = 1,
503         .isc_rx_maxsegsize = MJUM9BYTES,
504         .isc_nfl = 1,
505         .isc_nrxqs = 1,
506         .isc_ntxqs = 1,
507         .isc_admin_intrcnt = 1,
508         .isc_vendor_info = igb_vendor_info_array,
509         .isc_driver_version = em_driver_version,
510         .isc_driver = &em_if_driver,
511         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP,
512
513         .isc_nrxd_min = {EM_MIN_RXD},
514         .isc_ntxd_min = {EM_MIN_TXD},
515         .isc_nrxd_max = {EM_MAX_RXD},
516         .isc_ntxd_max = {EM_MAX_TXD},
517         .isc_nrxd_default = {EM_DEFAULT_RXD},
518         .isc_ntxd_default = {EM_DEFAULT_TXD},
519 };
520   
521 if_shared_ctx_t igb_sctx = &igb_sctx_init;
522
523 /*****************************************************************
524  *
525  * Dump Registers
526  *
527  ****************************************************************/
528 #define IGB_REGS_LEN 739
529
530 static int em_get_regs(SYSCTL_HANDLER_ARGS)
531 {
532         struct adapter *adapter = (struct adapter *)arg1;
533         struct e1000_hw *hw = &adapter->hw;
534
535         struct sbuf *sb;
536         u32 *regs_buff = (u32 *)malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_NOWAIT);
537         int rc;
538
539         memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
540
541         rc = sysctl_wire_old_buffer(req, 0);
542         MPASS(rc == 0);
543         if (rc != 0)
544           return (rc);
545
546         sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
547         MPASS(sb != NULL);
548         if (sb == NULL)
549                 return (ENOMEM);
550
551         /* General Registers */
552         regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
553         regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
554         regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
555         regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
556         regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
557         regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
558         regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
559         regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
560         regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
561         regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
562         regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
563         regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
564         regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
565         regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
566         regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
567         regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
568         regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
569         regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
570         regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
571         regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
572         regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
573         regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
574         
575         sbuf_printf(sb, "General Registers\n");
576         sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]); 
577         sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
578         sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
579
580         sbuf_printf(sb, "Interrupt Registers\n");
581         sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]); 
582         
583         sbuf_printf(sb, "RX Registers\n");
584         sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]); 
585         sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
586         sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
587         sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]); 
588         sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
589         sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
590         sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
591
592         sbuf_printf(sb, "TX Registers\n");
593         sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]); 
594         sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
595         sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
596         sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]); 
597         sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
598         sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
599         sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
600         sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]); 
601         sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
602         sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
603         sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]); 
604
605 #ifdef DUMP_DESCS
606         {
607                 if_softc_ctx_t scctx = adapter->shared;
608                 struct rx_ring *rxr = &rx_que->rxr;
609                 struct tx_ring *txr = &tx_que->txr;
610                 int ntxd = scctx->isc_ntxd[0];
611                 int nrxd = scctx->isc_nrxd[0];
612                 int j;
613
614         for (j = 0; j < nrxd; j++) {
615                 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
616                 u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
617                 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
618         }
619
620         for (j = 0; j < min(ntxd, 256); j++) {
621                 struct em_txbuffer *buf = &txr->tx_buffers[j];
622                 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
623
624                 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
625                             j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
626                             buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
627
628         }
629         }
630 #endif  
631         
632         rc = sbuf_finish(sb);
633         sbuf_delete(sb);
634         return(rc);
635 }
636
637 static void *
638 em_register(device_t dev)
639 {
640         return (em_sctx); 
641 }
642
643 static void *
644 igb_register(device_t dev)
645 {
646         return (igb_sctx); 
647 }
648
649 static void
650 em_init_tx_ring(struct em_tx_queue *que)
651 {
652         struct adapter *sc = que->adapter;
653         if_softc_ctx_t scctx = sc->shared;
654         struct tx_ring *txr = &que->txr;
655         struct em_txbuffer *tx_buffer;
656
657         tx_buffer = txr->tx_buffers;
658         for (int i = 0; i < scctx->isc_ntxd[0]; i++, tx_buffer++) {
659                 tx_buffer->eop = -1;
660         }
661 }
662
663 static int
664 em_set_num_queues(if_ctx_t ctx)
665 {
666         struct adapter *adapter = iflib_get_softc(ctx);
667         int maxqueues;
668
669         /* Sanity check based on HW */
670         switch (adapter->hw.mac.type) {
671                 case e1000_82576:
672                 case e1000_82580:
673                 case e1000_i350:
674                 case e1000_i354:
675                         maxqueues = 8;
676                         break;
677                 case e1000_i210:
678                 case e1000_82575:
679                         maxqueues = 4;
680                         break;
681                 case e1000_i211:
682                 case e1000_82574:
683                         maxqueues = 2;
684                         break;
685                 default:
686                         maxqueues = 1;
687                         break;
688         }
689
690         return (maxqueues);
691 }
692
693
694 #define EM_CAPS                                                         \
695         IFCAP_TSO4 | IFCAP_TXCSUM | IFCAP_LRO | IFCAP_RXCSUM | IFCAP_VLAN_HWFILTER | IFCAP_WOL_MAGIC | \
696         IFCAP_WOL_MCAST | IFCAP_WOL | IFCAP_VLAN_HWTSO | IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | \
697         IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
698
699 #define IGB_CAPS                                                        \
700         IFCAP_TSO4 | IFCAP_TXCSUM | IFCAP_LRO | IFCAP_RXCSUM | IFCAP_VLAN_HWFILTER | IFCAP_WOL_MAGIC | \
701         IFCAP_WOL_MCAST | IFCAP_WOL | IFCAP_VLAN_HWTSO | IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM | \
702         IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU | IFCAP_TXCSUM_IPV6 | IFCAP_HWCSUM_IPV6 | IFCAP_JUMBO_MTU;
703
704 /*********************************************************************
705  *  Device initialization routine
706  *
707  *  The attach entry point is called when the driver is being loaded.
708  *  This routine identifies the type of hardware, allocates all resources
709  *  and initializes the hardware.
710  *
711  *  return 0 on success, positive on failure
712  *********************************************************************/
713
714 static int
715 em_if_attach_pre(if_ctx_t ctx) 
716 {
717         struct adapter  *adapter;
718         if_softc_ctx_t scctx;
719         device_t        dev;
720         struct e1000_hw *hw;
721         int             error = 0;
722
723         INIT_DEBUGOUT("em_if_attach_pre begin");
724         dev = iflib_get_dev(ctx);
725         adapter = iflib_get_softc(ctx);
726
727         if (resource_disabled("em", device_get_unit(dev))) {
728                 device_printf(dev, "Disabled by device hint\n");
729                 return (ENXIO);
730         }
731
732         adapter->ctx = ctx;
733         adapter->dev = adapter->osdep.dev = dev;
734         scctx = adapter->shared = iflib_get_softc_ctx(ctx);
735         adapter->media = iflib_get_media(ctx);
736         hw = &adapter->hw; 
737
738         adapter->tx_process_limit = scctx->isc_ntxd[0];
739
740         /* SYSCTL stuff */
741         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
742             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
743             OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
744             em_sysctl_nvm_info, "I", "NVM Information");
745
746         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
747             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
748             OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
749             em_sysctl_debug_info, "I", "Debug Information");
750
751         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
752             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
753             OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
754             em_set_flowcntl, "I", "Flow Control");
755
756         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
757             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
758             OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0,
759             em_get_regs, "A", "Dump Registers"); 
760
761         /* Determine hardware and mac info */
762         em_identify_hardware(ctx);
763
764         /* Set isc_msix_bar */
765         scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
766         scctx->isc_tx_nsegments = EM_MAX_SCATTER;
767         scctx->isc_tx_tso_segments_max = scctx->isc_tx_nsegments;
768         scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
769         scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
770         scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
771         device_printf(dev, "attach_pre capping queues at %d\n", scctx->isc_ntxqsets_max);
772
773         scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
774
775
776         if (adapter->hw.mac.type >= igb_mac_min) {
777                 int try_second_bar;
778
779                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
780                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
781                 scctx->isc_txrx = &igb_txrx;
782                 scctx->isc_capenable = IGB_CAPS;
783                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | CSUM_IP6_TCP \
784                         | CSUM_IP6_UDP | CSUM_IP6_TCP;
785                 if (adapter->hw.mac.type != e1000_82575)
786                         scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
787
788                 /*
789                 ** Some new devices, as with ixgbe, now may
790                 ** use a different BAR, so we need to keep
791                 ** track of which is used.
792                 */
793                 try_second_bar = pci_read_config(dev, scctx->isc_msix_bar, 4);
794                 if (try_second_bar == 0)
795                         scctx->isc_msix_bar += 4;
796
797         } else if (adapter->hw.mac.type >= em_mac_min) {
798                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
799                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
800                 scctx->isc_txrx = &em_txrx;
801                 scctx->isc_capenable = EM_CAPS;
802                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
803         } else {
804                 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
805                 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
806                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
807                 scctx->isc_txrx = &lem_txrx;
808                 scctx->isc_capenable = EM_CAPS;
809                 if (adapter->hw.mac.type < e1000_82543)
810                         scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
811                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
812                 scctx->isc_msix_bar = 0;
813         }
814
815         /* Setup PCI resources */
816         if (em_allocate_pci_resources(ctx)) {
817                 device_printf(dev, "Allocation of PCI resources failed\n");
818                 error = ENXIO;
819                 goto err_pci;
820         }
821
822         /*
823         ** For ICH8 and family we need to
824         ** map the flash memory, and this
825         ** must happen after the MAC is 
826         ** identified
827         */
828         if ((hw->mac.type == e1000_ich8lan) ||
829             (hw->mac.type == e1000_ich9lan) ||
830             (hw->mac.type == e1000_ich10lan) ||
831             (hw->mac.type == e1000_pchlan) ||
832             (hw->mac.type == e1000_pch2lan) ||
833             (hw->mac.type == e1000_pch_lpt)) {
834                 int rid = EM_BAR_TYPE_FLASH;
835                 adapter->flash = bus_alloc_resource_any(dev,
836                     SYS_RES_MEMORY, &rid, RF_ACTIVE);
837                 if (adapter->flash == NULL) {
838                         device_printf(dev, "Mapping of Flash failed\n");
839                         error = ENXIO;
840                         goto err_pci;
841                 }
842                 /* This is used in the shared code */
843                 hw->flash_address = (u8 *)adapter->flash;
844                 adapter->osdep.flash_bus_space_tag =
845                     rman_get_bustag(adapter->flash);
846                 adapter->osdep.flash_bus_space_handle =
847                     rman_get_bushandle(adapter->flash);
848         }
849         /*
850         ** In the new SPT device flash is not  a
851         ** separate BAR, rather it is also in BAR0,
852         ** so use the same tag and an offset handle for the
853         ** FLASH read/write macros in the shared code.
854         */
855         else if (hw->mac.type == e1000_pch_spt) {
856                 adapter->osdep.flash_bus_space_tag =
857                     adapter->osdep.mem_bus_space_tag;
858                 adapter->osdep.flash_bus_space_handle =
859                     adapter->osdep.mem_bus_space_handle
860                     + E1000_FLASH_BASE_ADDR;
861         }
862
863         /* Do Shared Code initialization */
864         error = e1000_setup_init_funcs(hw, TRUE);
865         if (error) {
866                 device_printf(dev, "Setup of Shared code failed, error %d\n",
867                     error);
868                 error = ENXIO;
869                 goto err_pci;
870         }
871
872         em_setup_msix(ctx);
873         e1000_get_bus_info(hw);
874
875         /* Set up some sysctls for the tunable interrupt delays */
876         em_add_int_delay_sysctl(adapter, "rx_int_delay",
877             "receive interrupt delay in usecs", &adapter->rx_int_delay,
878             E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
879         em_add_int_delay_sysctl(adapter, "tx_int_delay",
880             "transmit interrupt delay in usecs", &adapter->tx_int_delay,
881             E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
882         em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
883             "receive interrupt delay limit in usecs",
884             &adapter->rx_abs_int_delay,
885             E1000_REGISTER(hw, E1000_RADV),
886             em_rx_abs_int_delay_dflt);
887         em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
888             "transmit interrupt delay limit in usecs",
889             &adapter->tx_abs_int_delay,
890             E1000_REGISTER(hw, E1000_TADV),
891             em_tx_abs_int_delay_dflt);
892         em_add_int_delay_sysctl(adapter, "itr",
893             "interrupt delay limit in usecs/4",
894             &adapter->tx_itr,
895             E1000_REGISTER(hw, E1000_ITR),
896             DEFAULT_ITR);
897
898         /* Sysctl for limiting the amount of work done in the taskqueue */
899         em_set_sysctl_value(adapter, "rx_processing_limit",
900             "max number of rx packets to process", &adapter->rx_process_limit,
901             em_rx_process_limit);
902         
903         hw->mac.autoneg = DO_AUTO_NEG;
904         hw->phy.autoneg_wait_to_complete = FALSE;
905         hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
906
907         if (adapter->hw.mac.type < em_mac_min) {
908                 e1000_init_script_state_82541(&adapter->hw, TRUE);
909                 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
910         }
911         /* Copper options */
912         if (hw->phy.media_type == e1000_media_type_copper) {
913                 hw->phy.mdix = AUTO_ALL_MODES;
914                 hw->phy.disable_polarity_correction = FALSE;
915                 hw->phy.ms_type = EM_MASTER_SLAVE;
916         }
917
918         /*
919          * Set the frame limits assuming
920          * standard ethernet sized frames.
921          */
922         adapter->hw.mac.max_frame_size =
923             ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
924
925         /*
926          * This controls when hardware reports transmit completion
927          * status.
928          */
929         hw->mac.report_tx_early = 1;
930
931         /* Allocate multicast array memory. */
932         adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
933             MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
934         if (adapter->mta == NULL) {
935                 device_printf(dev, "Can not allocate multicast setup array\n");
936                 error = ENOMEM;
937                 goto err_late;
938         }
939
940         /* Check SOL/IDER usage */
941         if (e1000_check_reset_block(hw))
942                 device_printf(dev, "PHY reset is blocked"
943                     " due to SOL/IDER session.\n");
944
945         /* Sysctl for setting Energy Efficient Ethernet */
946         hw->dev_spec.ich8lan.eee_disable = eee_setting;
947         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
948             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
949             OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW,
950             adapter, 0, em_sysctl_eee, "I",
951             "Disable Energy Efficient Ethernet");
952
953         /*
954         ** Start from a known state, this is
955         ** important in reading the nvm and
956         ** mac from that.
957         */
958         e1000_reset_hw(hw);
959
960         /* Make sure we have a good EEPROM before we read from it */
961         if (e1000_validate_nvm_checksum(hw) < 0) {
962                 /*
963                 ** Some PCI-E parts fail the first check due to
964                 ** the link being in sleep state, call it again,
965                 ** if it fails a second time its a real issue.
966                 */
967                 if (e1000_validate_nvm_checksum(hw) < 0) {
968                         device_printf(dev,
969                             "The EEPROM Checksum Is Not Valid\n");
970                         error = EIO;
971                         goto err_late;
972                 }
973         }
974
975         /* Copy the permanent MAC address out of the EEPROM */
976         if (e1000_read_mac_addr(hw) < 0) {
977                 device_printf(dev, "EEPROM read error while reading MAC"
978                     " address\n");
979                 error = EIO;
980                 goto err_late;
981         }
982
983         if (!em_is_valid_ether_addr(hw->mac.addr)) {
984                 device_printf(dev, "Invalid MAC address\n");
985                 error = EIO;
986                 goto err_late;
987         }
988
989         /* Disable ULP support */
990         e1000_disable_ulp_lpt_lp(hw, TRUE);
991
992         /*
993          * Get Wake-on-Lan and Management info for later use
994          */
995         em_get_wakeup(ctx);
996
997         iflib_set_mac(ctx, hw->mac.addr);
998
999         return (0);
1000
1001 err_late:
1002         em_release_hw_control(adapter);
1003 err_pci:
1004         em_free_pci_resources(ctx);
1005         free(adapter->mta, M_DEVBUF);
1006
1007         return (error);
1008 }
1009
1010 static int
1011 em_if_attach_post(if_ctx_t ctx)
1012 {
1013         struct adapter *adapter = iflib_get_softc(ctx);
1014         struct e1000_hw *hw = &adapter->hw;
1015         int error = 0; 
1016         
1017         /* Setup OS specific network interface */
1018         error = em_setup_interface(ctx);
1019         if (error != 0) {
1020                 goto err_late;
1021         }
1022
1023         em_reset(ctx);
1024
1025         /* Initialize statistics */
1026         em_update_stats_counters(adapter);
1027         hw->mac.get_link_status = 1;
1028         em_if_update_admin_status(ctx);
1029         em_add_hw_stats(adapter);
1030
1031         /* Non-AMT based hardware can now take control from firmware */
1032         if (adapter->has_manage && !adapter->has_amt)
1033                 em_get_hw_control(adapter);
1034         
1035         INIT_DEBUGOUT("em_if_attach_post: end");
1036
1037         return (error);
1038
1039 err_late:
1040         em_release_hw_control(adapter);
1041         em_free_pci_resources(ctx);
1042         em_if_queues_free(ctx);
1043         free(adapter->mta, M_DEVBUF);
1044
1045         return (error);
1046 }
1047
1048 /*********************************************************************
1049  *  Device removal routine
1050  *
1051  *  The detach entry point is called when the driver is being removed.
1052  *  This routine stops the adapter and deallocates all the resources
1053  *  that were allocated for driver operation.
1054  *
1055  *  return 0 on success, positive on failure
1056  *********************************************************************/
1057
1058 static int
1059 em_if_detach(if_ctx_t ctx)
1060 {
1061         struct adapter  *adapter = iflib_get_softc(ctx);
1062
1063         INIT_DEBUGOUT("em_detach: begin");
1064
1065         e1000_phy_hw_reset(&adapter->hw);
1066
1067         em_release_manageability(adapter);
1068         em_release_hw_control(adapter);
1069         em_free_pci_resources(ctx);
1070
1071         return (0);
1072 }
1073
1074 /*********************************************************************
1075  *
1076  *  Shutdown entry point
1077  *
1078  **********************************************************************/
1079
1080 static int
1081 em_if_shutdown(if_ctx_t ctx)
1082 {
1083         return em_if_suspend(ctx);
1084 }
1085
1086 /*
1087  * Suspend/resume device methods.
1088  */
1089 static int
1090 em_if_suspend(if_ctx_t ctx)
1091 {
1092         struct adapter *adapter = iflib_get_softc(ctx);
1093
1094         em_release_manageability(adapter);
1095         em_release_hw_control(adapter);
1096         em_enable_wakeup(ctx);
1097         return (0);
1098 }
1099
1100 static int
1101 em_if_resume(if_ctx_t ctx)
1102 {
1103         struct adapter *adapter = iflib_get_softc(ctx);
1104
1105         if (adapter->hw.mac.type == e1000_pch2lan)
1106                 e1000_resume_workarounds_pchlan(&adapter->hw);
1107         em_if_init(ctx);
1108         em_init_manageability(adapter);
1109
1110         return(0); 
1111 }
1112
1113 static int
1114 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1115 {
1116   int max_frame_size;
1117   struct adapter *adapter = iflib_get_softc(ctx);
1118   struct ifnet *ifp = iflib_get_ifp(ctx); 
1119   
1120   IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1121   
1122   switch (adapter->hw.mac.type) {
1123   case e1000_82571:
1124   case e1000_82572:
1125   case e1000_ich9lan:
1126   case e1000_ich10lan:
1127   case e1000_pch2lan:
1128   case e1000_pch_lpt:
1129   case e1000_pch_spt:
1130   case e1000_82574:
1131   case e1000_82583:
1132   case e1000_80003es2lan:       /* 9K Jumbo Frame size */
1133           max_frame_size = 9234;
1134           break;
1135   case e1000_pchlan:
1136           max_frame_size = 4096;
1137           break;
1138           /* Adapters that do not support jumbo frames */
1139   case e1000_ich8lan:
1140           max_frame_size = ETHER_MAX_LEN;
1141           break;
1142   default:
1143           max_frame_size = MAX_JUMBO_FRAME_SIZE;
1144   }
1145   if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1146           return (EINVAL);
1147   }
1148   
1149   adapter->hw.mac.max_frame_size = if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN;
1150   return (0);
1151 }
1152
1153 /*********************************************************************
1154  *  Init entry point
1155  *
1156  *  This routine is used in two ways. It is used by the stack as
1157  *  init entry point in network interface structure. It is also used
1158  *  by the driver as a hw/sw initialization routine to get to a
1159  *  consistent state.
1160  *
1161  *  return 0 on success, positive on failure
1162  **********************************************************************/
1163
1164 static void
1165 em_if_init(if_ctx_t ctx)
1166 {
1167         struct adapter *adapter = iflib_get_softc(ctx); 
1168         struct ifnet *ifp = iflib_get_ifp(ctx); 
1169
1170         INIT_DEBUGOUT("em_if_init: begin");
1171
1172         /* Get the latest mac address, User can use a LAA */
1173         bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1174               ETHER_ADDR_LEN);
1175
1176         /* Put the address into the Receive Address Array */
1177         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1178
1179         /*
1180          * With the 82571 adapter, RAR[0] may be overwritten
1181          * when the other port is reset, we make a duplicate
1182          * in RAR[14] for that eventuality, this assures
1183          * the interface continues to function.
1184          */
1185         if (adapter->hw.mac.type == e1000_82571) {
1186                 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1187                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1188                     E1000_RAR_ENTRIES - 1);
1189         }
1190
1191         /* Initialize the hardware */
1192         em_reset(ctx);
1193         em_if_update_admin_status(ctx);
1194
1195         /* Setup VLAN support, basic and offload if available */
1196         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1197
1198         /* Clear bad data from Rx FIFOs */
1199         if (adapter->hw.mac.type >= igb_mac_min)
1200                 e1000_rx_fifo_flush_82575(&adapter->hw);
1201
1202         /* Configure for OS presence */
1203         em_init_manageability(adapter);
1204
1205         /* Prepare transmit descriptors and buffers */
1206         em_initialize_transmit_unit(ctx);
1207
1208         /* Setup Multicast table */
1209         em_if_multi_set(ctx);
1210
1211         /*
1212         ** Figure out the desired mbuf
1213         ** pool for doing jumbos
1214         */
1215         if (adapter->hw.mac.max_frame_size <= 2048)
1216                 adapter->rx_mbuf_sz = MCLBYTES;
1217         else if (adapter->hw.mac.max_frame_size <= 4096)
1218                 adapter->rx_mbuf_sz = MJUMPAGESIZE;
1219         else
1220                 adapter->rx_mbuf_sz = MJUM9BYTES;
1221
1222         em_initialize_receive_unit(ctx);
1223
1224         /* Use real VLAN Filter support? */
1225         if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1226                 if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1227                         /* Use real VLAN Filter support */
1228                         em_setup_vlan_hw_support(adapter);
1229                 else {
1230                         u32 ctrl;
1231                         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1232                         ctrl |= E1000_CTRL_VME;
1233                         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1234                 }
1235         }
1236
1237         /* Don't lose promiscuous settings */
1238         em_if_set_promisc(ctx, IFF_PROMISC);
1239         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1240
1241         /* MSI/X configuration for 82574 */
1242         if (adapter->hw.mac.type == e1000_82574) {
1243                 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1244
1245                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1246                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1247                 /* Set the IVAR - interrupt vector routing. */
1248                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1249         } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1250                 igb_configure_queues(adapter);
1251
1252         /* this clears any pending interrupts */
1253         E1000_READ_REG(&adapter->hw, E1000_ICR);
1254         E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1255
1256         /* AMT based hardware can now take control from firmware */
1257         if (adapter->has_manage && adapter->has_amt)
1258                 em_get_hw_control(adapter);
1259
1260         /* Set Energy Efficient Ethernet */
1261         if (adapter->hw.mac.type >= igb_mac_min &&
1262             adapter->hw.phy.media_type == e1000_media_type_copper) {
1263                 if (adapter->hw.mac.type == e1000_i354)
1264                         e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1265                 else
1266                         e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1267         }
1268 }
1269
1270 /*********************************************************************
1271  *
1272  *  Fast Legacy/MSI Combined Interrupt Service routine  
1273  *
1274  *********************************************************************/
1275 int
1276 em_intr(void *arg)
1277 {
1278         struct adapter  *adapter = arg;
1279         if_ctx_t ctx = adapter->ctx;
1280         u32             reg_icr;
1281
1282         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1283
1284         if (adapter->intr_type != IFLIB_INTR_LEGACY)
1285                 goto skip_stray;
1286         /* Hot eject?  */
1287         if (reg_icr == 0xffffffff)
1288                 return FILTER_STRAY;
1289
1290         /* Definitely not our interrupt.  */
1291         if (reg_icr == 0x0)
1292                 return FILTER_STRAY;
1293
1294         /*
1295          * Starting with the 82571 chip, bit 31 should be used to
1296          * determine whether the interrupt belongs to us.
1297          */
1298         if (adapter->hw.mac.type >= e1000_82571 &&
1299             (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1300                 return FILTER_STRAY;
1301
1302 skip_stray:     
1303         /* Link status change */
1304         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1305                 adapter->hw.mac.get_link_status = 1;
1306                 iflib_admin_intr_deferred(ctx);
1307         }
1308
1309         if (reg_icr & E1000_ICR_RXO)
1310                 adapter->rx_overruns++;
1311
1312         return (FILTER_SCHEDULE_THREAD); 
1313 }
1314
1315 static void
1316 igb_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq)
1317 {
1318         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1319 }
1320
1321 static void
1322 em_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq)
1323 {
1324         E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1325 }
1326
1327 static int
1328 em_if_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1329 {
1330         struct adapter  *adapter = iflib_get_softc(ctx);
1331         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1332         
1333         if (adapter->hw.mac.type >= igb_mac_min)
1334                 igb_enable_queue(adapter, rxq);
1335         else
1336                 em_enable_queue(adapter, rxq);
1337         return (0);
1338 }
1339
1340 /*********************************************************************
1341  *
1342  *  MSIX RX Interrupt Service routine
1343  *
1344  **********************************************************************/
1345 static int
1346 em_msix_que(void *arg)
1347 {
1348         struct em_rx_queue *que = arg;
1349         
1350         ++que->irqs;
1351         
1352         return (FILTER_SCHEDULE_THREAD);
1353 }
1354
1355 /*********************************************************************
1356  *
1357  *  MSIX Link Fast Interrupt Service routine
1358  *
1359  **********************************************************************/
1360 static int
1361 em_msix_link(void *arg)
1362 {
1363         struct adapter  *adapter = arg;
1364         u32             reg_icr;
1365
1366         ++adapter->link_irq;
1367         MPASS(adapter->hw.back != NULL); 
1368         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1369
1370         if (reg_icr & E1000_ICR_RXO)
1371                 adapter->rx_overruns++;
1372
1373         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1374                 em_handle_link(adapter->ctx);
1375         } else {
1376                 E1000_WRITE_REG(&adapter->hw, E1000_IMS,
1377                                 EM_MSIX_LINK | E1000_IMS_LSC);
1378                 if (adapter->hw.mac.type >= igb_mac_min)
1379                         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1380
1381         }
1382                 
1383         /*
1384         ** Because we must read the ICR for this interrupt
1385         ** it may clear other causes using autoclear, for
1386         ** this reason we simply create a soft interrupt
1387         ** for all these vectors.
1388         */
1389         if (reg_icr && adapter->hw.mac.type < igb_mac_min) {
1390                 E1000_WRITE_REG(&adapter->hw,
1391                         E1000_ICS, adapter->ims);
1392         }
1393
1394         return (FILTER_HANDLED); 
1395 }
1396
1397 static void
1398 em_handle_link(void *context)
1399 {
1400         if_ctx_t ctx = context; 
1401         struct adapter  *adapter = iflib_get_softc(ctx);
1402
1403         adapter->hw.mac.get_link_status = 1;
1404         iflib_admin_intr_deferred(ctx);
1405 }
1406
1407
1408 /*********************************************************************
1409  *
1410  *  Media Ioctl callback
1411  *
1412  *  This routine is called whenever the user queries the status of
1413  *  the interface using ifconfig.
1414  *
1415  **********************************************************************/
1416 static void
1417 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1418 {
1419   struct adapter *adapter = iflib_get_softc(ctx); 
1420   u_char fiber_type = IFM_1000_SX;
1421   
1422   INIT_DEBUGOUT("em_if_media_status: begin");
1423
1424         iflib_admin_intr_deferred(ctx); 
1425
1426         ifmr->ifm_status = IFM_AVALID;
1427         ifmr->ifm_active = IFM_ETHER;
1428
1429         if (!adapter->link_active) {
1430                 return;
1431         }
1432
1433         ifmr->ifm_status |= IFM_ACTIVE;
1434
1435         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1436             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1437                 if (adapter->hw.mac.type == e1000_82545)
1438                         fiber_type = IFM_1000_LX;
1439                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1440         } else {
1441                 switch (adapter->link_speed) {
1442                 case 10:
1443                         ifmr->ifm_active |= IFM_10_T;
1444                         break;
1445                 case 100:
1446                         ifmr->ifm_active |= IFM_100_TX;
1447                         break;
1448                 case 1000:
1449                         ifmr->ifm_active |= IFM_1000_T;
1450                         break;
1451                 }
1452                 if (adapter->link_duplex == FULL_DUPLEX)
1453                         ifmr->ifm_active |= IFM_FDX;
1454                 else
1455                         ifmr->ifm_active |= IFM_HDX;
1456         }
1457 }
1458
1459 /*********************************************************************
1460  *
1461  *  Media Ioctl callback
1462  *
1463  *  This routine is called when the user changes speed/duplex using
1464  *  media/mediopt option with ifconfig.
1465  *
1466  **********************************************************************/
1467 static int
1468 em_if_media_change(if_ctx_t ctx)
1469 {
1470         struct adapter *adapter = iflib_get_softc(ctx);
1471         struct ifmedia  *ifm = iflib_get_media(ctx); 
1472
1473         INIT_DEBUGOUT("em_if_media_change: begin");
1474
1475         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1476                 return (EINVAL);
1477
1478         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1479         case IFM_AUTO:
1480                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1481                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1482                 break;
1483         case IFM_1000_LX:
1484         case IFM_1000_SX:
1485         case IFM_1000_T:
1486                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1487                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1488                 break;
1489         case IFM_100_TX:
1490                 adapter->hw.mac.autoneg = FALSE;
1491                 adapter->hw.phy.autoneg_advertised = 0;
1492                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1493                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1494                 else
1495                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1496                 break;
1497         case IFM_10_T:
1498                 adapter->hw.mac.autoneg = FALSE;
1499                 adapter->hw.phy.autoneg_advertised = 0;
1500                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1501                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1502                 else
1503                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1504                 break;
1505         default:
1506                 device_printf(adapter->dev, "Unsupported media type\n");
1507         }
1508
1509         em_if_init(ctx);
1510
1511         return (0);
1512 }
1513
1514 static int
1515 em_if_set_promisc(if_ctx_t ctx, int flags)
1516 {
1517         struct adapter *adapter = iflib_get_softc(ctx); 
1518         u32             reg_rctl;
1519
1520         em_disable_promisc(ctx); 
1521
1522         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1523
1524         if (flags & IFF_PROMISC) {
1525                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1526                 /* Turn this on if you want to see bad packets */
1527                 if (em_debug_sbp)
1528                         reg_rctl |= E1000_RCTL_SBP;
1529                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1530         } else if (flags & IFF_ALLMULTI) {
1531                 reg_rctl |= E1000_RCTL_MPE;
1532                 reg_rctl &= ~E1000_RCTL_UPE;
1533                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1534         }
1535         return (0); 
1536 }
1537
1538 static void
1539 em_disable_promisc(if_ctx_t ctx)
1540 {
1541         struct adapter *adapter = iflib_get_softc(ctx); 
1542         struct ifnet *ifp = iflib_get_ifp(ctx); 
1543         u32             reg_rctl;
1544         int             mcnt = 0;
1545
1546         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1547         reg_rctl &=  (~E1000_RCTL_UPE);
1548         if (if_getflags(ifp) & IFF_ALLMULTI)
1549                 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1550         else
1551                 mcnt = if_multiaddr_count(ifp, MAX_NUM_MULTICAST_ADDRESSES);
1552         /* Don't disable if in MAX groups */
1553         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1554                 reg_rctl &=  (~E1000_RCTL_MPE);
1555         reg_rctl &=  (~E1000_RCTL_SBP);
1556         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1557 }
1558
1559
1560 /*********************************************************************
1561  *  Multicast Update
1562  *
1563  *  This routine is called whenever multicast address list is updated.
1564  *
1565  **********************************************************************/
1566
1567 static void
1568 em_if_multi_set(if_ctx_t ctx)
1569 {
1570         struct adapter *adapter = iflib_get_softc(ctx); 
1571         struct ifnet *ifp = iflib_get_ifp(ctx); 
1572         u32 reg_rctl = 0;
1573         u8  *mta; /* Multicast array memory */
1574         int mcnt = 0;
1575
1576         IOCTL_DEBUGOUT("em_set_multi: begin");
1577
1578         mta = adapter->mta;
1579         bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1580
1581         if (adapter->hw.mac.type == e1000_82542 && 
1582             adapter->hw.revision_id == E1000_REVISION_2) {
1583                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1584                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1585                         e1000_pci_clear_mwi(&adapter->hw);
1586                 reg_rctl |= E1000_RCTL_RST;
1587                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1588                 msec_delay(5);
1589         }
1590
1591         if_multiaddr_array(ifp, mta, &mcnt, MAX_NUM_MULTICAST_ADDRESSES);
1592
1593         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1594                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1595                 reg_rctl |= E1000_RCTL_MPE;
1596                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1597         } else
1598                 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1599
1600         if (adapter->hw.mac.type == e1000_82542 && 
1601             adapter->hw.revision_id == E1000_REVISION_2) {
1602                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1603                 reg_rctl &= ~E1000_RCTL_RST;
1604                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1605                 msec_delay(5);
1606                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1607                         e1000_pci_set_mwi(&adapter->hw);
1608         }
1609 }
1610
1611
1612 /*********************************************************************
1613  *  Timer routine
1614  *
1615  *  This routine checks for link status and updates statistics.
1616  *
1617  **********************************************************************/
1618
1619 static void
1620 em_if_timer(if_ctx_t ctx, uint16_t qid)
1621 {
1622         struct adapter  *adapter = iflib_get_softc(ctx); 
1623         struct em_rx_queue *que;
1624         int i;
1625         int trigger = 0; 
1626
1627         em_if_update_admin_status(ctx); 
1628         em_update_stats_counters(adapter);
1629
1630         /* Reset LAA into RAR[0] on 82571 */
1631         if ((adapter->hw.mac.type == e1000_82571) &&
1632             e1000_get_laa_state_82571(&adapter->hw))
1633                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1634
1635         if (adapter->hw.mac.type < em_mac_min)
1636                 lem_smartspeed(adapter);
1637
1638         /* Mask to use in the irq trigger */
1639         if (adapter->intr_type == IFLIB_INTR_MSIX) {
1640                 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++)
1641                         trigger |= que->eims;
1642         } else {
1643                 trigger = E1000_ICS_RXDMT0;
1644         }
1645 }
1646
1647
1648 static void
1649 em_if_update_admin_status(if_ctx_t ctx)
1650 {
1651         struct adapter *adapter = iflib_get_softc(ctx); 
1652         struct e1000_hw *hw = &adapter->hw;
1653         struct ifnet *ifp = iflib_get_ifp(ctx); 
1654         device_t dev = iflib_get_dev(ctx); 
1655         u32 link_check = 0;
1656
1657         /* Get the cached link value or read phy for real */
1658         switch (hw->phy.media_type) {
1659         case e1000_media_type_copper:
1660                 if (hw->mac.get_link_status) {
1661                         if (hw->mac.type == e1000_pch_spt)
1662                                 msec_delay(50);
1663                         /* Do the work to read phy */
1664                         e1000_check_for_link(hw);
1665                         link_check = !hw->mac.get_link_status;
1666                         if (link_check) /* ESB2 fix */
1667                                 e1000_cfg_on_link_up(hw);
1668                 } else {
1669                         link_check = TRUE;
1670                 }
1671                 break;
1672         case e1000_media_type_fiber:
1673                 e1000_check_for_link(hw);
1674                 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1675                                  E1000_STATUS_LU);
1676                 break;
1677         case e1000_media_type_internal_serdes:
1678                 e1000_check_for_link(hw);
1679                 link_check = adapter->hw.mac.serdes_has_link;
1680                 break;
1681         default:
1682         case e1000_media_type_unknown:
1683                 break;
1684         }
1685
1686         /* Now check for a transition */
1687         if (link_check && (adapter->link_active == 0)) {
1688                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1689                     &adapter->link_duplex);
1690                 /* Check if we must disable SPEED_MODE bit on PCI-E */
1691                 if ((adapter->link_speed != SPEED_1000) &&
1692                     ((hw->mac.type == e1000_82571) ||
1693                     (hw->mac.type == e1000_82572))) {
1694                         int tarc0;
1695                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1696                         tarc0 &= ~TARC_SPEED_MODE_BIT;
1697                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1698                 }
1699                 if (bootverbose)
1700                         device_printf(dev, "Link is up %d Mbps %s\n",
1701                             adapter->link_speed,
1702                             ((adapter->link_duplex == FULL_DUPLEX) ?
1703                             "Full Duplex" : "Half Duplex"));
1704                 adapter->link_active = 1;
1705                 adapter->smartspeed = 0;
1706                 if_setbaudrate(ifp, adapter->link_speed * 1000000);
1707                 iflib_link_state_change(ctx, LINK_STATE_UP, ifp->if_baudrate);
1708                 printf("Link state changed to up\n");
1709         } else if (!link_check && (adapter->link_active == 1)) {
1710                 if_setbaudrate(ifp, 0);
1711                 adapter->link_speed = 0;
1712                 adapter->link_duplex = 0;
1713                 if (bootverbose)
1714                         device_printf(dev, "Link is Down\n");
1715                 adapter->link_active = 0;
1716                 iflib_link_state_change(ctx, LINK_STATE_DOWN, ifp->if_baudrate);
1717                 printf("link state changed to down\n");
1718         }
1719
1720         E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC);
1721 }
1722
1723 /*********************************************************************
1724  *
1725  *  This routine disables all traffic on the adapter by issuing a
1726  *  global reset on the MAC and deallocates TX/RX buffers.
1727  *
1728  *  This routine should always be called with BOTH the CORE
1729  *  and TX locks.
1730  **********************************************************************/
1731
1732 static void
1733 em_if_stop(if_ctx_t ctx)
1734 {
1735         struct adapter *adapter = iflib_get_softc(ctx); 
1736
1737         INIT_DEBUGOUT("em_stop: begin");
1738         
1739         e1000_reset_hw(&adapter->hw);
1740         if (adapter->hw.mac.type >= e1000_82544)
1741                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1742
1743         e1000_led_off(&adapter->hw);
1744         e1000_cleanup_led(&adapter->hw);
1745 }
1746
1747
1748 /*********************************************************************
1749  *
1750  *  Determine hardware revision.
1751  *
1752  **********************************************************************/
1753 static void
1754 em_identify_hardware(if_ctx_t ctx)
1755 {
1756         device_t dev = iflib_get_dev(ctx); 
1757         struct adapter *adapter = iflib_get_softc(ctx); 
1758         
1759         /* Make sure our PCI config space has the necessary stuff set */
1760         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1761
1762         /* Save off the information about this board */
1763         adapter->hw.vendor_id = pci_get_vendor(dev);
1764         adapter->hw.device_id = pci_get_device(dev);
1765         adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1766         adapter->hw.subsystem_vendor_id =
1767             pci_read_config(dev, PCIR_SUBVEND_0, 2);
1768         adapter->hw.subsystem_device_id =
1769             pci_read_config(dev, PCIR_SUBDEV_0, 2);
1770
1771         /* Do Shared Code Init and Setup */
1772         if (e1000_set_mac_type(&adapter->hw)) {
1773                 device_printf(dev, "Setup init failure\n");
1774                 return;
1775         }
1776 }
1777
1778 static int
1779 em_allocate_pci_resources(if_ctx_t ctx)
1780 {
1781         struct adapter *adapter = iflib_get_softc(ctx); 
1782         device_t        dev = iflib_get_dev(ctx); 
1783         int             rid, val;
1784
1785         rid = PCIR_BAR(0);
1786         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1787             &rid, RF_ACTIVE);
1788         if (adapter->memory == NULL) {
1789                 device_printf(dev, "Unable to allocate bus resource: memory\n");
1790                 return (ENXIO);
1791         }
1792         adapter->osdep.mem_bus_space_tag =
1793             rman_get_bustag(adapter->memory);
1794         adapter->osdep.mem_bus_space_handle =
1795             rman_get_bushandle(adapter->memory);
1796         adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1797
1798         /* Only older adapters use IO mapping */
1799         if (adapter->hw.mac.type < em_mac_min && 
1800             adapter->hw.mac.type > e1000_82543) {
1801                 /* Figure our where our IO BAR is ? */
1802                 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1803                         val = pci_read_config(dev, rid, 4);
1804                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1805                                 adapter->io_rid = rid;
1806                                 break;
1807                         }
1808                         rid += 4;
1809                         /* check for 64bit BAR */
1810                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1811                                 rid += 4;
1812                 }
1813                 if (rid >= PCIR_CIS) {
1814                         device_printf(dev, "Unable to locate IO BAR\n");
1815                         return (ENXIO);
1816                 }
1817                 adapter->ioport = bus_alloc_resource_any(dev,
1818                     SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
1819                 if (adapter->ioport == NULL) {
1820                         device_printf(dev, "Unable to allocate bus resource: "
1821                             "ioport\n");
1822                         return (ENXIO);
1823                 }
1824                 adapter->hw.io_base = 0;
1825                 adapter->osdep.io_bus_space_tag =
1826                     rman_get_bustag(adapter->ioport);
1827                 adapter->osdep.io_bus_space_handle =
1828                     rman_get_bushandle(adapter->ioport);
1829         }
1830
1831         adapter->hw.back = &adapter->osdep;
1832
1833         return (0);
1834 }
1835
1836 /*********************************************************************
1837  *
1838  *  Setup the MSIX Interrupt handlers
1839  *
1840  **********************************************************************/
1841 static int
1842 em_if_msix_intr_assign(if_ctx_t ctx, int msix) 
1843 {
1844         struct adapter     *adapter = iflib_get_softc(ctx); 
1845         struct em_rx_queue *rx_que = adapter->rx_queues;
1846         struct em_tx_queue *tx_que = adapter->tx_queues;
1847         int                error, rid, i, vector = 0;
1848         char buf[16];
1849
1850         /* First set up ring resources */
1851         for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
1852                 rid = vector +1;
1853                 snprintf(buf, sizeof(buf), "rxq%d", i); 
1854                 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RX, em_msix_que, rx_que, rx_que->me, buf);  
1855                 if (error) {
1856                         device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
1857                         adapter->rx_num_queues = i + 1;
1858                         goto fail;
1859                 }
1860
1861                 rx_que->msix =  vector; 
1862                 
1863                 /*
1864                 ** Set the bit to enable interrupt
1865                 ** in E1000_IMS -- bits 20 and 21
1866                 ** are for RX0 and RX1, note this has
1867                 ** NOTHING to do with the MSIX vector
1868                 */
1869                 if (adapter->hw.mac.type == e1000_82574) {
1870                         rx_que->eims = 1 << (20 + i);
1871                         adapter->ims |= rx_que->eims;
1872                         adapter->ivars |= (8 | rx_que->msix) << (i * 4);
1873                 } else if (adapter->hw.mac.type == e1000_82575)
1874                         rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
1875                 else
1876                         rx_que->eims = 1 << vector;
1877         }
1878
1879         for (i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
1880                 rid = vector + 1;
1881                 snprintf(buf, sizeof(buf), "txq%d", i);
1882                 tx_que = &adapter->tx_queues[i];
1883                 iflib_softirq_alloc_generic(ctx, rid, IFLIB_INTR_TX, tx_que, tx_que->me, buf);
1884
1885                 tx_que->msix = vector;
1886
1887                   /*
1888                 ** Set the bit to enable interrupt
1889                 ** in E1000_IMS -- bits 22 and 23
1890                 ** are for TX0 and TX1, note this has
1891                 ** NOTHING to do with the MSIX vector
1892                 */
1893                 if (adapter->hw.mac.type < igb_mac_min) {
1894                         tx_que->eims = 1 << (22 + i);
1895                         adapter->ims |= tx_que->eims;
1896                         adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
1897                 } if (adapter->hw.mac.type == e1000_82575)
1898                         tx_que->eims = E1000_EICR_TX_QUEUE0 << (i %  adapter->tx_num_queues);
1899                 else
1900                         tx_que->eims = 1 << (i %  adapter->tx_num_queues);
1901         }
1902        
1903         /* Link interrupt */
1904         rid = vector + 1;
1905         error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
1906
1907         if (error) {
1908                 device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
1909                 goto fail;
1910         }
1911         adapter->linkvec = vector;
1912         if (adapter->hw.mac.type < igb_mac_min) {
1913                 adapter->ivars |=  (8 | vector) << 16;
1914                 adapter->ivars |= 0x80000000;
1915         }
1916         return (0);
1917  fail:
1918         iflib_irq_free(ctx, &adapter->irq);
1919         rx_que = adapter->rx_queues;
1920         for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
1921                 iflib_irq_free(ctx, &rx_que->que_irq);
1922         return (error);
1923 }
1924
1925 static void
1926 igb_configure_queues(struct adapter *adapter)
1927 {
1928         struct  e1000_hw        *hw = &adapter->hw;
1929         struct  em_rx_queue     *rx_que;
1930         struct  em_tx_queue    *tx_que;
1931         u32                     tmp, ivar = 0, newitr = 0;
1932
1933         /* First turn on RSS capability */
1934         if (adapter->hw.mac.type != e1000_82575)
1935                 E1000_WRITE_REG(hw, E1000_GPIE,
1936                     E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
1937                     E1000_GPIE_PBA | E1000_GPIE_NSICR);
1938
1939         /* Turn on MSIX */
1940         switch (adapter->hw.mac.type) {
1941         case e1000_82580:
1942         case e1000_i350:
1943         case e1000_i354:
1944         case e1000_i210:
1945         case e1000_i211:
1946         case e1000_vfadapt:
1947         case e1000_vfadapt_i350:
1948                 /* RX entries */
1949                 for (int i = 0; i < adapter->rx_num_queues; i++) {
1950                         u32 index = i >> 1;
1951                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
1952                         rx_que = &adapter->rx_queues[i];
1953                         if (i & 1) {
1954                                 ivar &= 0xFF00FFFF;
1955                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
1956                         } else {
1957                                 ivar &= 0xFFFFFF00;
1958                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
1959                         }
1960                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
1961                 }
1962                 /* TX entries */
1963                 for (int i = 0; i < adapter->tx_num_queues; i++) {
1964                         u32 index = i >> 1;
1965                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
1966                         tx_que = &adapter->tx_queues[i];
1967                         if (i & 1) {
1968                                 ivar &= 0x00FFFFFF;
1969                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
1970                         } else {
1971                                 ivar &= 0xFFFF00FF;
1972                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
1973                         }
1974                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
1975                         adapter->que_mask |= tx_que->eims;
1976                 }
1977
1978                 /* And for the link interrupt */
1979                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
1980                 adapter->link_mask = 1 << adapter->linkvec;
1981                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
1982                 break;
1983         case e1000_82576:
1984                 /* RX entries */
1985                 for (int i = 0; i < adapter->rx_num_queues; i++) {
1986                         u32 index = i & 0x7; /* Each IVAR has two entries */
1987                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
1988                         rx_que = &adapter->rx_queues[i];
1989                         if (i < 8) {
1990                                 ivar &= 0xFFFFFF00;
1991                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
1992                         } else {
1993                                 ivar &= 0xFF00FFFF;
1994                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
1995                         }
1996                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
1997                         adapter->que_mask |= rx_que->eims;
1998                 }
1999                 /* TX entries */
2000                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2001                         u32 index = i & 0x7; /* Each IVAR has two entries */
2002                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2003                         tx_que = &adapter->tx_queues[i];
2004                         if (i < 8) {
2005                                 ivar &= 0xFFFF00FF;
2006                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2007                         } else {
2008                                 ivar &= 0x00FFFFFF;
2009                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2010                         }
2011                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2012                         adapter->que_mask |= tx_que->eims;
2013                 }
2014
2015                 /* And for the link interrupt */
2016                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2017                 adapter->link_mask = 1 << adapter->linkvec;
2018                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2019                 break;
2020
2021         case e1000_82575:
2022                 /* enable MSI-X support*/
2023                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2024                 tmp |= E1000_CTRL_EXT_PBA_CLR;
2025                 /* Auto-Mask interrupts upon ICR read. */
2026                 tmp |= E1000_CTRL_EXT_EIAME;
2027                 tmp |= E1000_CTRL_EXT_IRCA;
2028                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2029
2030                 /* Queues */
2031                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2032                         rx_que = &adapter->rx_queues[i];
2033                         tmp = E1000_EICR_RX_QUEUE0 << i;
2034                         tmp |= E1000_EICR_TX_QUEUE0 << i;
2035                         rx_que->eims = tmp;
2036                         E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2037                             i, rx_que->eims);
2038                         adapter->que_mask |= rx_que->eims;
2039                 }
2040
2041                 /* Link */
2042                 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2043                     E1000_EIMS_OTHER);
2044                 adapter->link_mask |= E1000_EIMS_OTHER;
2045         default:
2046                 break;
2047         }
2048
2049         /* Set the starting interrupt rate */
2050         if (em_max_interrupt_rate > 0)
2051                 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2052
2053         if (hw->mac.type == e1000_82575)
2054                 newitr |= newitr << 16;
2055         else
2056                 newitr |= E1000_EITR_CNT_IGNR;
2057
2058         for (int i = 0; i < adapter->rx_num_queues; i++) {
2059                 rx_que = &adapter->rx_queues[i];
2060                 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2061         }
2062
2063         return;
2064 }
2065
2066 static void
2067 em_free_pci_resources(if_ctx_t ctx)
2068 {
2069         struct adapter *adapter = iflib_get_softc(ctx); 
2070         struct          em_rx_queue *que = adapter->rx_queues;
2071         device_t        dev = iflib_get_dev(ctx);
2072
2073         /* Release all msix queue resources */
2074         if (adapter->intr_type == IFLIB_INTR_MSIX)
2075                 iflib_irq_free(ctx, &adapter->irq);
2076
2077         for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2078                 iflib_irq_free(ctx, &que->que_irq);
2079         }
2080
2081
2082         /* First release all the interrupt resources */
2083         if (adapter->memory != NULL) {
2084                 bus_release_resource(dev, SYS_RES_MEMORY,
2085                                      PCIR_BAR(0), adapter->memory);
2086                 adapter->memory = NULL;
2087         }
2088
2089         if (adapter->flash != NULL) {
2090                 bus_release_resource(dev, SYS_RES_MEMORY,
2091                                      EM_FLASH, adapter->flash);
2092                 adapter->flash = NULL;
2093         }
2094         if (adapter->ioport != NULL)
2095                 bus_release_resource(dev, SYS_RES_IOPORT,
2096                     adapter->io_rid, adapter->ioport);
2097 }
2098
2099 /* Setup MSI or MSI/X */
2100 static int
2101 em_setup_msix(if_ctx_t ctx)
2102 {
2103         struct adapter *adapter = iflib_get_softc(ctx);
2104
2105         if (adapter->hw.mac.type == e1000_82574) {
2106                 em_enable_vectors_82574(ctx);
2107         }
2108         return (0);
2109 }
2110
2111 /*********************************************************************
2112  *
2113  *  Initialize the hardware to a configuration
2114  *  as specified by the adapter structure.
2115  *
2116  **********************************************************************/
2117
2118 static void
2119 lem_smartspeed(struct adapter *adapter)
2120 {
2121         u16 phy_tmp;
2122
2123         if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2124             adapter->hw.mac.autoneg == 0 ||
2125             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2126                 return;
2127
2128         if (adapter->smartspeed == 0) {
2129                 /* If Master/Slave config fault is asserted twice,
2130                  * we assume back-to-back */
2131                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2132                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2133                         return;
2134                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2135                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2136                         e1000_read_phy_reg(&adapter->hw,
2137                             PHY_1000T_CTRL, &phy_tmp);
2138                         if(phy_tmp & CR_1000T_MS_ENABLE) {
2139                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2140                                 e1000_write_phy_reg(&adapter->hw,
2141                                     PHY_1000T_CTRL, phy_tmp);
2142                                 adapter->smartspeed++;
2143                                 if(adapter->hw.mac.autoneg &&
2144                                    !e1000_copper_link_autoneg(&adapter->hw) &&
2145                                    !e1000_read_phy_reg(&adapter->hw,
2146                                     PHY_CONTROL, &phy_tmp)) {
2147                                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2148                                                     MII_CR_RESTART_AUTO_NEG);
2149                                         e1000_write_phy_reg(&adapter->hw,
2150                                             PHY_CONTROL, phy_tmp);
2151                                 }
2152                         }
2153                 }
2154                 return;
2155         } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2156                 /* If still no link, perhaps using 2/3 pair cable */
2157                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2158                 phy_tmp |= CR_1000T_MS_ENABLE;
2159                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2160                 if(adapter->hw.mac.autoneg &&
2161                    !e1000_copper_link_autoneg(&adapter->hw) &&
2162                    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2163                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2164                                     MII_CR_RESTART_AUTO_NEG);
2165                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2166                 }
2167         }
2168         /* Restart process after EM_SMARTSPEED_MAX iterations */
2169         if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2170                 adapter->smartspeed = 0;
2171 }
2172
2173
2174 static void
2175 em_reset(if_ctx_t ctx)
2176 {
2177         device_t        dev = iflib_get_dev(ctx);
2178         struct adapter *adapter = iflib_get_softc(ctx); 
2179         struct ifnet *ifp = iflib_get_ifp(ctx); 
2180         struct e1000_hw *hw = &adapter->hw;
2181         u16             rx_buffer_size;
2182         u32             pba;
2183
2184         INIT_DEBUGOUT("em_reset: begin");
2185
2186         /* Set up smart power down as default off on newer adapters. */
2187         if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2188             hw->mac.type == e1000_82572)) {
2189                 u16 phy_tmp = 0;
2190
2191                 /* Speed up time to link by disabling smart power down. */
2192                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2193                 phy_tmp &= ~IGP02E1000_PM_SPD;
2194                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2195         }
2196
2197         /*
2198          * Packet Buffer Allocation (PBA)
2199          * Writing PBA sets the receive portion of the buffer
2200          * the remainder is used for the transmit buffer.
2201          */
2202         switch (hw->mac.type) {
2203         /* Total Packet Buffer on these is 48K */
2204         case e1000_82571:
2205         case e1000_82572:
2206         case e1000_80003es2lan:
2207                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2208                 break;
2209         case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2210                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2211                 break;
2212         case e1000_82574:
2213         case e1000_82583:
2214                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2215                 break;
2216         case e1000_ich8lan:
2217                 pba = E1000_PBA_8K;
2218                 break;
2219         case e1000_ich9lan:
2220         case e1000_ich10lan:
2221                 /* Boost Receive side for jumbo frames */
2222                 if (adapter->hw.mac.max_frame_size > 4096)
2223                         pba = E1000_PBA_14K;
2224                 else
2225                         pba = E1000_PBA_10K;
2226                 break;
2227         case e1000_pchlan:
2228         case e1000_pch2lan:
2229         case e1000_pch_lpt:
2230         case e1000_pch_spt:
2231                 pba = E1000_PBA_26K;
2232                 break;
2233         default:
2234                 if (adapter->hw.mac.max_frame_size > 8192)
2235                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2236                 else
2237                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2238         }
2239         E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2240
2241         /*
2242          * These parameters control the automatic generation (Tx) and
2243          * response (Rx) to Ethernet PAUSE frames.
2244          * - High water mark should allow for at least two frames to be
2245          *   received after sending an XOFF.
2246          * - Low water mark works best when it is very near the high water mark.
2247          *   This allows the receiver to restart by sending XON when it has
2248          *   drained a bit. Here we use an arbitrary value of 1500 which will
2249          *   restart after one full frame is pulled from the buffer. There
2250          *   could be several smaller frames in the buffer and if so they will
2251          *   not trigger the XON until their total number reduces the buffer
2252          *   by 1500.
2253          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2254          */
2255         rx_buffer_size = ((E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10 );
2256         hw->fc.high_water = rx_buffer_size -
2257             roundup2(adapter->hw.mac.max_frame_size, 1024);
2258         hw->fc.low_water = hw->fc.high_water - 1500;
2259
2260         if (adapter->fc) /* locally set flow control value? */
2261                 hw->fc.requested_mode = adapter->fc;
2262         else
2263                 hw->fc.requested_mode = e1000_fc_full;
2264
2265         if (hw->mac.type == e1000_80003es2lan)
2266                 hw->fc.pause_time = 0xFFFF;
2267         else
2268                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
2269
2270         hw->fc.send_xon = TRUE;
2271
2272         /* Device specific overrides/settings */
2273         switch (hw->mac.type) {
2274         case e1000_pchlan:
2275                 /* Workaround: no TX flow ctrl for PCH */
2276                 hw->fc.requested_mode = e1000_fc_rx_pause;
2277                 hw->fc.pause_time = 0xFFFF; /* override */
2278                 if (if_getmtu(ifp) > ETHERMTU) {
2279                         hw->fc.high_water = 0x3500;
2280                         hw->fc.low_water = 0x1500;
2281                 } else {
2282                         hw->fc.high_water = 0x5000;
2283                         hw->fc.low_water = 0x3000;
2284                 }
2285                 hw->fc.refresh_time = 0x1000;
2286                 break;
2287         case e1000_pch2lan:
2288         case e1000_pch_lpt:
2289         case e1000_pch_spt:
2290                 hw->fc.high_water = 0x5C20;
2291                 hw->fc.low_water = 0x5048;
2292                 hw->fc.pause_time = 0x0650;
2293                 hw->fc.refresh_time = 0x0400;
2294                 /* Jumbos need adjusted PBA */
2295                 if (if_getmtu(ifp) > ETHERMTU)
2296                         E1000_WRITE_REG(hw, E1000_PBA, 12);
2297                 else
2298                         E1000_WRITE_REG(hw, E1000_PBA, 26);
2299                 break;
2300         case e1000_ich9lan:
2301         case e1000_ich10lan:
2302                 if (if_getmtu(ifp) > ETHERMTU) {
2303                         hw->fc.high_water = 0x2800;
2304                         hw->fc.low_water = hw->fc.high_water - 8;
2305                         break;
2306                 } 
2307                 /* else fall thru */
2308         default:
2309                 if (hw->mac.type == e1000_80003es2lan)
2310                         hw->fc.pause_time = 0xFFFF;
2311                 break;
2312         }
2313
2314         /* Issue a global reset */
2315         e1000_reset_hw(hw);
2316         E1000_WRITE_REG(hw, E1000_WUFC, 0);
2317         em_disable_aspm(adapter);
2318         /* and a re-init */
2319         if (e1000_init_hw(hw) < 0) {
2320                 device_printf(dev, "Hardware Initialization Failed\n");
2321                 return;
2322         }
2323
2324         E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2325         e1000_get_phy_info(hw);
2326         e1000_check_for_link(hw);
2327 }
2328
2329 #define RSSKEYLEN 10
2330 static void
2331 em_initialize_rss_mapping(struct adapter *adapter)
2332 {
2333         uint8_t  rss_key[4 * RSSKEYLEN];
2334         uint32_t reta = 0;
2335         struct e1000_hw *hw = &adapter->hw;
2336         int i;
2337
2338         /*
2339          * Configure RSS key
2340          */
2341         arc4rand(rss_key, sizeof(rss_key), 0);
2342         for (i = 0; i < RSSKEYLEN; ++i) {
2343                 uint32_t rssrk = 0;
2344
2345                 rssrk = EM_RSSRK_VAL(rss_key, i);
2346                 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2347         }
2348
2349         /*
2350          * Configure RSS redirect table in following fashion:
2351          * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2352          */
2353         for (i = 0; i < sizeof(reta); ++i) {
2354                 uint32_t q;
2355
2356                 q = (i % adapter->rx_num_queues) << 7;
2357                 reta |= q << (8 * i);
2358         }
2359
2360         for (i = 0; i < 32; ++i)
2361                 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2362
2363         E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q | 
2364                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2365                         E1000_MRQC_RSS_FIELD_IPV4 |
2366                         E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2367                         E1000_MRQC_RSS_FIELD_IPV6_EX |
2368                         E1000_MRQC_RSS_FIELD_IPV6);
2369
2370 }
2371         
2372 static void
2373 igb_initialize_rss_mapping(struct adapter *adapter)
2374 {
2375         struct e1000_hw *hw = &adapter->hw;
2376         int i;
2377         int queue_id;
2378         u32 reta;
2379         u32 rss_key[10], mrqc, shift = 0;
2380
2381         /* XXX? */
2382         if (adapter->hw.mac.type == e1000_82575)
2383                 shift = 6;
2384
2385         /*
2386          * The redirection table controls which destination
2387          * queue each bucket redirects traffic to.
2388          * Each DWORD represents four queues, with the LSB
2389          * being the first queue in the DWORD.
2390          *
2391          * This just allocates buckets to queues using round-robin
2392          * allocation.
2393          *
2394          * NOTE: It Just Happens to line up with the default
2395          * RSS allocation method.
2396          */
2397
2398         /* Warning FM follows */
2399         reta = 0;
2400         for (i = 0; i < 128; i++) {
2401 #ifdef  RSS
2402                 queue_id = rss_get_indirection_to_bucket(i);
2403                 /*
2404                  * If we have more queues than buckets, we'll
2405                  * end up mapping buckets to a subset of the
2406                  * queues.
2407                  *
2408                  * If we have more buckets than queues, we'll
2409                  * end up instead assigning multiple buckets
2410                  * to queues.
2411                  *
2412                  * Both are suboptimal, but we need to handle
2413                  * the case so we don't go out of bounds
2414                  * indexing arrays and such.
2415                  */
2416                 queue_id = queue_id % adapter->rx_num_queues;
2417 #else
2418                 queue_id = (i % adapter->rx_num_queues);
2419 #endif
2420                 /* Adjust if required */
2421                 queue_id = queue_id << shift;
2422
2423                 /*
2424                  * The low 8 bits are for hash value (n+0);
2425                  * The next 8 bits are for hash value (n+1), etc.
2426                  */
2427                 reta = reta >> 8;
2428                 reta = reta | ( ((uint32_t) queue_id) << 24);
2429                 if ((i & 3) == 3) {
2430                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2431                         reta = 0;
2432                 }
2433         }
2434
2435         /* Now fill in hash table */
2436
2437         /*
2438          * MRQC: Multiple Receive Queues Command
2439          * Set queuing to RSS control, number depends on the device.
2440          */
2441         mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2442
2443 #ifdef  RSS
2444         /* XXX ew typecasting */
2445         rss_getkey((uint8_t *) &rss_key);
2446 #else
2447         arc4rand(&rss_key, sizeof(rss_key), 0);
2448 #endif
2449         for (i = 0; i < 10; i++)
2450                 E1000_WRITE_REG_ARRAY(hw,
2451                     E1000_RSSRK(0), i, rss_key[i]);
2452
2453         /*
2454          * Configure the RSS fields to hash upon.
2455          */
2456         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2457             E1000_MRQC_RSS_FIELD_IPV4_TCP);
2458         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2459             E1000_MRQC_RSS_FIELD_IPV6_TCP);
2460         mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2461             E1000_MRQC_RSS_FIELD_IPV6_UDP);
2462         mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2463             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2464
2465         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2466 }
2467
2468 /*********************************************************************
2469  *
2470  *  Setup networking device structure and register an interface.
2471  *
2472  **********************************************************************/
2473 static int
2474 em_setup_interface(if_ctx_t ctx)
2475 {
2476         struct ifnet *ifp = iflib_get_ifp(ctx); 
2477         struct adapter *adapter = iflib_get_softc(ctx);
2478         if_softc_ctx_t scctx = adapter->shared;
2479         uint64_t cap = 0;
2480         
2481         INIT_DEBUGOUT("em_setup_interface: begin");
2482
2483         /* TSO parameters */
2484         ifp->if_hw_tsomax = IP_MAXPACKET;
2485         /* Take m_pullup(9)'s in em_xmit() w/ TSO into acount. */
2486         ifp->if_hw_tsomaxsegcount = EM_MAX_SCATTER - 5;
2487         ifp->if_hw_tsomaxsegsize = EM_TSO_SEG_SIZE;
2488
2489         /* Single Queue */
2490         if (adapter->tx_num_queues == 1) {
2491           if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2492           if_setsendqready(ifp);
2493         }
2494
2495         cap = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM | IFCAP_TSO4;
2496         cap |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
2497
2498         /*
2499          * Tell the upper layer(s) we
2500          * support full VLAN capability
2501          */
2502         if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
2503         if_setcapabilitiesbit(ifp, cap, 0);
2504
2505         /*
2506         ** Don't turn this on by default, if vlans are
2507         ** created on another pseudo device (eg. lagg)
2508         ** then vlan events are not passed thru, breaking
2509         ** operation, but with HW FILTER off it works. If
2510         ** using vlans directly on the em driver you can
2511         ** enable this and get full hardware tag filtering.
2512         */
2513         if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWFILTER,0);
2514
2515         /* Enable only WOL MAGIC by default */
2516         if (adapter->wol) {
2517                 if_setcapenablebit(ifp, IFCAP_WOL_MAGIC,
2518                              IFCAP_WOL_MCAST| IFCAP_WOL_UCAST);
2519         } else {
2520                 if_setcapenablebit(ifp, 0, IFCAP_WOL_MAGIC |
2521                              IFCAP_WOL_MCAST| IFCAP_WOL_UCAST);
2522         }         
2523                 
2524         /*
2525          * Specify the media types supported by this adapter and register
2526          * callbacks to update media and link information
2527          */
2528         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2529             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2530                 u_char fiber_type = IFM_1000_SX;        /* default type */
2531
2532                 if (adapter->hw.mac.type == e1000_82545)
2533                         fiber_type = IFM_1000_LX;
2534                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2535                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2536         } else {
2537                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2538                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2539                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2540                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2541                 if (adapter->hw.phy.type != e1000_phy_ife) {
2542                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2543                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2544                 }
2545         }
2546         ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2547         ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2548         return (0);
2549 }
2550
2551 static int
2552 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2553 {
2554         struct adapter *adapter = iflib_get_softc(ctx);
2555         if_softc_ctx_t scctx = adapter->shared;
2556         int error = E1000_SUCCESS;
2557         struct em_tx_queue *que; 
2558         int i;
2559
2560         MPASS(adapter->tx_num_queues > 0);
2561         MPASS(adapter->tx_num_queues == ntxqsets);
2562
2563         /* First allocate the top level queue structs */
2564         if (!(adapter->tx_queues =
2565             (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2566             adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2567                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2568                 return(ENOMEM);
2569         }
2570
2571         for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2572              /* Set up some basics */
2573              struct tx_ring *txr = &que->txr;
2574              txr->adapter = que->adapter = adapter;
2575              txr->que = que; 
2576              que->me = txr->me =  i;
2577
2578              /* Allocate transmit buffer memory */
2579           if (!(txr->tx_buffers = (struct em_txbuffer *) malloc(sizeof(struct em_txbuffer) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2580                device_printf(iflib_get_dev(ctx), "failed to allocate tx_buffer memory\n");
2581                error = ENOMEM;
2582                goto fail; 
2583           }
2584
2585           /* get the virtual and physical address of the hardware queues */
2586           txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2587           txr->tx_paddr = paddrs[i*ntxqs];
2588           
2589         }
2590         
2591         device_printf(iflib_get_dev(ctx), "allocated for %d tx_queues\n", adapter->tx_num_queues);
2592         return (0);
2593  fail:
2594         em_if_queues_free(ctx); 
2595         return (error);
2596 }
2597
2598 static int
2599 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2600 {
2601         struct adapter *adapter = iflib_get_softc(ctx); 
2602         int error = E1000_SUCCESS;
2603         struct em_rx_queue *que; 
2604         int i;
2605
2606         MPASS(adapter->rx_num_queues > 0);
2607         MPASS(adapter->rx_num_queues == nrxqsets);
2608
2609         /* First allocate the top level queue structs */
2610         if (!(adapter->rx_queues =
2611             (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2612             adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2613                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2614                 error = ENOMEM;
2615                 goto fail; 
2616         }
2617
2618         for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2619                 /* Set up some basics */
2620                 struct rx_ring *rxr = &que->rxr;
2621                 rxr->adapter = que->adapter = adapter;
2622                 rxr->que = que;
2623                 que->me = rxr->me =  i;
2624
2625                 /* get the virtual and physical address of the hardware queues */
2626                 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2627                 rxr->rx_paddr = paddrs[i*nrxqs];
2628         }
2629
2630         device_printf(iflib_get_dev(ctx), "allocated for %d rx_queues\n", adapter->rx_num_queues);
2631
2632         return (0);
2633 fail:
2634         em_if_queues_free(ctx); 
2635         return (error);
2636 }
2637
2638 static void
2639 em_if_queues_free(if_ctx_t ctx)
2640 {
2641         struct adapter *adapter = iflib_get_softc(ctx);
2642         struct em_tx_queue *tx_que = adapter->tx_queues; 
2643         struct em_rx_queue *rx_que = adapter->rx_queues;
2644
2645         if (tx_que != NULL) {
2646           for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2647                 struct tx_ring *txr = &tx_que->txr;             
2648                 if (txr->tx_buffers == NULL)
2649                         break; 
2650
2651                 free(txr->tx_buffers, M_DEVBUF);
2652                 txr->tx_buffers = NULL; 
2653           }
2654           free(adapter->tx_queues, M_DEVBUF);
2655           adapter->tx_queues = NULL; 
2656         }
2657
2658         if (rx_que != NULL) {
2659           free(adapter->rx_queues, M_DEVBUF);
2660           adapter->rx_queues = NULL; 
2661         }
2662
2663         em_release_hw_control(adapter);
2664
2665         if (adapter->mta != NULL) {
2666                 free(adapter->mta, M_DEVBUF);
2667         }
2668 }
2669
2670 /*********************************************************************
2671  *
2672  *  Enable transmit unit.
2673  *
2674  **********************************************************************/
2675 static void
2676 em_initialize_transmit_unit(if_ctx_t ctx)
2677 {
2678         struct adapter *adapter = iflib_get_softc(ctx);
2679         if_softc_ctx_t scctx = adapter->shared;
2680         struct em_tx_queue *que; 
2681         struct tx_ring  *txr;
2682         struct e1000_hw *hw = &adapter->hw;
2683         u32 tctl, txdctl = 0, tarc, tipg = 0;
2684
2685          INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2686
2687         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
2688                 u64 bus_addr;
2689                 caddr_t offp, endp;
2690
2691                 que = &adapter->tx_queues[i];
2692                 txr = &que->txr;
2693                 bus_addr = txr->tx_paddr;
2694
2695                 /*Enable all queues */
2696                 em_init_tx_ring(que);
2697
2698                 /* Clear checksum offload context. */
2699                 offp = (caddr_t)&txr->csum_flags;
2700                 endp = (caddr_t)(txr + 1);
2701                 bzero(offp, endp - offp);
2702
2703                 /* Base and Len of TX Ring */
2704                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2705                     scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
2706                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2707                     (u32)(bus_addr >> 32));
2708                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
2709                     (u32)bus_addr);
2710                 /* Init the HEAD/TAIL indices */
2711                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2712                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2713
2714                 HW_DEBUGOUT2("Base = %x, Length = %x\n",
2715                     E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
2716                     E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
2717
2718                 txdctl = 0; /* clear txdctl */
2719                 txdctl |= 0x1f; /* PTHRESH */
2720                 txdctl |= 1 << 8; /* HTHRESH */
2721                 txdctl |= 1 << 16;/* WTHRESH */
2722                 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
2723                 txdctl |= E1000_TXDCTL_GRAN;
2724                 txdctl |= 1 << 25; /* LWTHRESH */
2725
2726                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2727         }
2728
2729         /* Set the default values for the Tx Inter Packet Gap timer */
2730         switch (adapter->hw.mac.type) {
2731         case e1000_80003es2lan:
2732                 tipg = DEFAULT_82543_TIPG_IPGR1;
2733                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2734                     E1000_TIPG_IPGR2_SHIFT;
2735                 break;
2736         case e1000_82542:
2737                 tipg = DEFAULT_82542_TIPG_IPGT;
2738                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2739                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2740                 break;
2741         default:
2742                 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2743                     (adapter->hw.phy.media_type ==
2744                     e1000_media_type_internal_serdes))
2745                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2746                 else
2747                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2748                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2749                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2750         }
2751
2752         E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2753         E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
2754
2755         if(adapter->hw.mac.type >= e1000_82540)
2756                 E1000_WRITE_REG(&adapter->hw, E1000_TADV,
2757                     adapter->tx_abs_int_delay.value);
2758
2759         if ((adapter->hw.mac.type == e1000_82571) ||
2760             (adapter->hw.mac.type == e1000_82572)) {
2761                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2762                 tarc |= TARC_SPEED_MODE_BIT;
2763                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2764         } else if (adapter->hw.mac.type == e1000_80003es2lan) {
2765                 /* errata: program both queues to unweighted RR */
2766                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2767                 tarc |= 1;
2768                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2769                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2770                 tarc |= 1;
2771                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2772         } else if (adapter->hw.mac.type == e1000_82574) {
2773                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2774                 tarc |= TARC_ERRATA_BIT;
2775                 if ( adapter->tx_num_queues > 1) {
2776                         tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
2777                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2778                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2779                 } else
2780                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2781         }
2782
2783         if (adapter->tx_int_delay.value > 0)
2784                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2785
2786         /* Program the Transmit Control Register */
2787         tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2788         tctl &= ~E1000_TCTL_CT;
2789         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2790                    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2791
2792         if (adapter->hw.mac.type >= e1000_82571)
2793                 tctl |= E1000_TCTL_MULR;
2794
2795         /* This write will effectively turn on the transmit unit. */
2796         E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2797
2798         if (hw->mac.type == e1000_pch_spt) {
2799                 u32 reg;
2800                 reg = E1000_READ_REG(hw, E1000_IOSFPC);
2801                 reg |= E1000_RCTL_RDMTS_HEX;
2802                 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
2803                 reg = E1000_READ_REG(hw, E1000_TARC(0));
2804                 reg |= E1000_TARC0_CB_MULTIQ_3_REQ;
2805                 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
2806         }
2807 }
2808
2809 /*********************************************************************
2810  *
2811  *  Enable receive unit.
2812  *
2813  **********************************************************************/
2814
2815 static void
2816 em_initialize_receive_unit(if_ctx_t ctx)
2817 {
2818         struct adapter *adapter = iflib_get_softc(ctx);
2819         if_softc_ctx_t scctx = adapter->shared;
2820         struct ifnet *ifp = iflib_get_ifp(ctx); 
2821         struct e1000_hw *hw = &adapter->hw;
2822         struct em_rx_queue *que;
2823         int i; 
2824         u32     rctl, rxcsum, rfctl;
2825
2826         INIT_DEBUGOUT("em_initialize_receive_units: begin");
2827
2828         /*
2829          * Make sure receives are disabled while setting
2830          * up the descriptor ring
2831          */
2832         rctl = E1000_READ_REG(hw, E1000_RCTL);
2833         /* Do not disable if ever enabled on this hardware */
2834         if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
2835                 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2836
2837         /* Setup the Receive Control Register */
2838         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2839         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2840             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2841             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2842
2843         /* Do not store bad packets */
2844         rctl &= ~E1000_RCTL_SBP;
2845
2846         /* Enable Long Packet receive */
2847         if (if_getmtu(ifp) > ETHERMTU)
2848                 rctl |= E1000_RCTL_LPE;
2849         else
2850                 rctl &= ~E1000_RCTL_LPE;
2851
2852         /* Strip the CRC */
2853         if (!em_disable_crc_stripping)
2854                 rctl |= E1000_RCTL_SECRC;
2855
2856         if (adapter->hw.mac.type >= e1000_82540) {
2857                 E1000_WRITE_REG(&adapter->hw, E1000_RADV,
2858                                 adapter->rx_abs_int_delay.value);
2859
2860                 /*
2861                  * Set the interrupt throttling rate. Value is calculated
2862                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
2863                  */
2864                 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
2865         }
2866         E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
2867             adapter->rx_int_delay.value);
2868
2869         /* Use extended rx descriptor formats */
2870         rfctl = E1000_READ_REG(hw, E1000_RFCTL);
2871         rfctl |= E1000_RFCTL_EXTEN;
2872         /*
2873         ** When using MSIX interrupts we need to throttle
2874         ** using the EITR register (82574 only)
2875         */
2876         if (hw->mac.type == e1000_82574) {
2877                 for (int i = 0; i < 4; i++)
2878                         E1000_WRITE_REG(hw, E1000_EITR_82574(i),
2879                             DEFAULT_ITR);
2880                 /* Disable accelerated acknowledge */
2881                 rfctl |= E1000_RFCTL_ACK_DIS;
2882         }
2883         E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
2884
2885         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2886         if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
2887             adapter->hw.mac.type >= e1000_82543) {
2888                 if (adapter->tx_num_queues > 1) {
2889                         if (adapter->hw.mac.type >= igb_mac_min) {
2890                                 rxcsum |= E1000_RXCSUM_PCSD;            
2891                                 if (hw->mac.type != e1000_82575)
2892                                         rxcsum |= E1000_RXCSUM_CRCOFL;
2893                         } else
2894                                 rxcsum |= E1000_RXCSUM_TUOFL |
2895                                         E1000_RXCSUM_IPOFL |
2896                                         E1000_RXCSUM_PCSD;
2897                 } else {
2898                         if (adapter->hw.mac.type >= igb_mac_min) 
2899                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2900                         else
2901                                 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
2902                         if (adapter->hw.mac.type > e1000_82575)
2903                                 rxcsum |= E1000_RXCSUM_CRCOFL;
2904                 }
2905         } else
2906                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2907
2908         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2909
2910         if (adapter->rx_num_queues > 1) {
2911                 if (adapter->hw.mac.type >= igb_mac_min)
2912                         igb_initialize_rss_mapping(adapter);
2913                 else
2914                         em_initialize_rss_mapping(adapter);
2915         }
2916
2917         /*
2918         ** XXX TEMPORARY WORKAROUND: on some systems with 82573
2919         ** long latencies are observed, like Lenovo X60. This
2920         ** change eliminates the problem, but since having positive
2921         ** values in RDTR is a known source of problems on other
2922         ** platforms another solution is being sought.
2923         */
2924         if (hw->mac.type == e1000_82573)
2925                 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
2926
2927         for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
2928                 struct rx_ring *rxr = &que->rxr;
2929                 /* Setup the Base and Length of the Rx Descriptor Ring */
2930                 u64 bus_addr = rxr->rx_paddr;
2931 #if 0
2932                 u32 rdt = adapter->rx_num_queues -1;  /* default */
2933 #endif          
2934
2935                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2936                     scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
2937                 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
2938                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
2939                 /* Setup the Head and Tail Descriptor Pointers */
2940                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2941                 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
2942         }
2943
2944         /*
2945          * Set PTHRESH for improved jumbo performance
2946          * According to 10.2.5.11 of Intel 82574 Datasheet,
2947          * RXDCTL(1) is written whenever RXDCTL(0) is written.
2948          * Only write to RXDCTL(1) if there is a need for different
2949          * settings.
2950          */
2951
2952         if (((adapter->hw.mac.type == e1000_ich9lan) ||
2953             (adapter->hw.mac.type == e1000_pch2lan) ||
2954             (adapter->hw.mac.type == e1000_ich10lan)) &&
2955             (if_getmtu(ifp) > ETHERMTU)) {
2956                 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
2957                 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
2958         } else if (adapter->hw.mac.type == e1000_82574) {
2959                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2960                         u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2961                         rxdctl |= 0x20; /* PTHRESH */
2962                         rxdctl |= 4 << 8; /* HTHRESH */
2963                         rxdctl |= 4 << 16;/* WTHRESH */
2964                         rxdctl |= 1 << 24; /* Switch to granularity */
2965                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2966                 }
2967         } else if (adapter->hw.mac.type >= igb_mac_min) {
2968                 u32 psize, srrctl = 0;
2969
2970                 if (ifp->if_mtu > ETHERMTU) {
2971                         rctl |= E1000_RCTL_LPE;
2972
2973                         /* Set maximum packet len */
2974                         psize = scctx->isc_max_frame_size;
2975                         if (psize <= 4096) {
2976                                 srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2977                                 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2978                         } else if (psize > 4096) {
2979                                 srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2980                                 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2981                         }
2982         
2983                         /* are we on a vlan? */
2984                         if (ifp->if_vlantrunk != NULL)
2985                                 psize += VLAN_TAG_SIZE;
2986                         E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2987                 } else {
2988                         rctl &= ~E1000_RCTL_LPE;
2989                         srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2990                         rctl |= E1000_RCTL_SZ_2048;
2991                 }
2992         
2993                 /*
2994                  * If TX flow control is disabled and there's >1 queue defined,
2995                  * enable DROP.
2996                  *
2997                  * This drops frames rather than hanging the RX MAC for all queues.
2998                  */
2999                 if ((adapter->rx_num_queues > 1) &&
3000                     (adapter->fc == e1000_fc_none ||
3001                      adapter->fc == e1000_fc_rx_pause)) {
3002                         srrctl |= E1000_SRRCTL_DROP_EN;
3003                 }
3004                         /* Setup the Base and Length of the Rx Descriptor Rings */
3005                 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3006                         struct rx_ring *rxr = &que->rxr;
3007                         u64 bus_addr = rxr->rx_paddr;
3008                         u32 rxdctl;
3009
3010 #ifdef notyet
3011                         /* Configure for header split? -- ignore for now */
3012                         rxr->hdr_split = igb_header_split;
3013 #else
3014                         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3015 #endif
3016                         
3017
3018                         E1000_WRITE_REG(hw, E1000_RDLEN(i),
3019                                         scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3020                         E1000_WRITE_REG(hw, E1000_RDBAH(i),
3021                                         (uint32_t)(bus_addr >> 32));
3022                         E1000_WRITE_REG(hw, E1000_RDBAL(i),
3023                                         (uint32_t)bus_addr);
3024                         E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3025                         /* Enable this Queue */
3026                         rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3027                         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3028                         rxdctl &= 0xFFF00000;
3029                         rxdctl |= IGB_RX_PTHRESH;
3030                         rxdctl |= IGB_RX_HTHRESH << 8;
3031                         rxdctl |= IGB_RX_WTHRESH << 16; 
3032                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3033                 }               
3034         }
3035         if (adapter->hw.mac.type >= e1000_pch2lan) {
3036                 if (if_getmtu(ifp) > ETHERMTU)
3037                         e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3038                 else
3039                         e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3040         }
3041
3042         /* Make sure VLAN Filters are off */
3043         rctl &= ~E1000_RCTL_VFE;
3044
3045         if (adapter->rx_mbuf_sz == MCLBYTES)
3046                 rctl |= E1000_RCTL_SZ_2048;
3047         else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3048                 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3049         else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3050                 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3051
3052         /* ensure we clear use DTYPE of 00 here */
3053         rctl &= ~0x00000C00;
3054         /* Write out the settings */
3055         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3056
3057         return;
3058 }
3059
3060 static void
3061 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3062 {
3063         struct adapter  *adapter = iflib_get_softc(ctx);
3064         u32             index, bit;
3065
3066         index = (vtag >> 5) & 0x7F;
3067         bit = vtag & 0x1F;
3068         adapter->shadow_vfta[index] |= (1 << bit);
3069         ++adapter->num_vlans;
3070 }
3071
3072 static void
3073 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3074 {
3075         struct adapter  *adapter = iflib_get_softc(ctx); 
3076         u32             index, bit;
3077
3078         index = (vtag >> 5) & 0x7F;
3079         bit = vtag & 0x1F;
3080         adapter->shadow_vfta[index] &= ~(1 << bit);
3081         --adapter->num_vlans;
3082 }
3083
3084 static void
3085 em_setup_vlan_hw_support(struct adapter *adapter)
3086 {
3087         struct e1000_hw *hw = &adapter->hw;
3088         u32             reg;
3089
3090         /*
3091         ** We get here thru init_locked, meaning
3092         ** a soft reset, this has already cleared
3093         ** the VFTA and other state, so if there
3094         ** have been no vlan's registered do nothing.
3095         */
3096         if (adapter->num_vlans == 0)
3097                 return;
3098
3099         /*
3100         ** A soft reset zero's out the VFTA, so
3101         ** we need to repopulate it now.
3102         */
3103         for (int i = 0; i < EM_VFTA_SIZE; i++)
3104                 if (adapter->shadow_vfta[i] != 0)
3105                         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3106                             i, adapter->shadow_vfta[i]);
3107
3108         reg = E1000_READ_REG(hw, E1000_CTRL);
3109         reg |= E1000_CTRL_VME;
3110         E1000_WRITE_REG(hw, E1000_CTRL, reg);
3111
3112         /* Enable the Filter Table */
3113         reg = E1000_READ_REG(hw, E1000_RCTL);
3114         reg &= ~E1000_RCTL_CFIEN;
3115         reg |= E1000_RCTL_VFE;
3116         E1000_WRITE_REG(hw, E1000_RCTL, reg);
3117 }
3118
3119 static void
3120 em_if_enable_intr(if_ctx_t ctx)
3121 {
3122         struct adapter *adapter = iflib_get_softc(ctx); 
3123         struct e1000_hw *hw = &adapter->hw;
3124         u32 ims_mask = IMS_ENABLE_MASK;
3125
3126         if (hw->mac.type == e1000_82574) {
3127                 E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3128                 ims_mask |= adapter->ims;
3129         } if (adapter->intr_type == IFLIB_INTR_MSIX && hw->mac.type >= igb_mac_min)  {
3130                 u32 mask = (adapter->que_mask | adapter->link_mask);
3131
3132                 E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask);
3133                 E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask);
3134                 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask);
3135                 ims_mask = E1000_IMS_LSC;
3136         }
3137
3138         E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3139 }
3140
3141 static void
3142 em_if_disable_intr(if_ctx_t ctx)
3143 {
3144         struct adapter *adapter = iflib_get_softc(ctx); 
3145         struct e1000_hw *hw = &adapter->hw;
3146
3147         if (adapter->intr_type == IFLIB_INTR_MSIX) {
3148                 if (hw->mac.type >= igb_mac_min)
3149                         E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0);
3150                 E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0);
3151         } 
3152         E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
3153 }
3154
3155 /*
3156  * Bit of a misnomer, what this really means is
3157  * to enable OS management of the system... aka
3158  * to disable special hardware management features 
3159  */
3160 static void
3161 em_init_manageability(struct adapter *adapter)
3162 {
3163         /* A shared code workaround */
3164 #define E1000_82542_MANC2H E1000_MANC2H
3165         if (adapter->has_manage) {
3166                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3167                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3168
3169                 /* disable hardware interception of ARP */
3170                 manc &= ~(E1000_MANC_ARP_EN);
3171
3172                 /* enable receiving management packets to the host */
3173                 manc |= E1000_MANC_EN_MNG2HOST;
3174 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3175 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3176                 manc2h |= E1000_MNG2HOST_PORT_623;
3177                 manc2h |= E1000_MNG2HOST_PORT_664;
3178                 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3179                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3180         }
3181 }
3182
3183 /*
3184  * Give control back to hardware management
3185  * controller if there is one.
3186  */
3187 static void
3188 em_release_manageability(struct adapter *adapter)
3189 {
3190         if (adapter->has_manage) {
3191                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3192
3193                 /* re-enable hardware interception of ARP */
3194                 manc |= E1000_MANC_ARP_EN;
3195                 manc &= ~E1000_MANC_EN_MNG2HOST;
3196
3197                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3198         }
3199 }
3200
3201 /*
3202  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3203  * For ASF and Pass Through versions of f/w this means
3204  * that the driver is loaded. For AMT version type f/w
3205  * this means that the network i/f is open.
3206  */
3207 static void
3208 em_get_hw_control(struct adapter *adapter)
3209 {
3210         u32 ctrl_ext, swsm;
3211
3212         if (adapter->hw.mac.type == e1000_82573) {
3213                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3214                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3215                     swsm | E1000_SWSM_DRV_LOAD);
3216                 return;
3217         }
3218         /* else */
3219         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3220         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3221             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3222         return;
3223 }
3224
3225 /*
3226  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3227  * For ASF and Pass Through versions of f/w this means that
3228  * the driver is no longer loaded. For AMT versions of the
3229  * f/w this means that the network i/f is closed.
3230  */
3231 static void
3232 em_release_hw_control(struct adapter *adapter)
3233 {
3234         u32 ctrl_ext, swsm;
3235
3236         if (!adapter->has_manage)
3237                 return;
3238
3239         if (adapter->hw.mac.type == e1000_82573) {
3240                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3241                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3242                     swsm & ~E1000_SWSM_DRV_LOAD);
3243                 return;
3244         }
3245         /* else */
3246         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3247         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3248             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3249         return;
3250 }
3251
3252 static int
3253 em_is_valid_ether_addr(u8 *addr)
3254 {
3255         char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3256
3257         if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3258                 return (FALSE);
3259         }
3260
3261         return (TRUE);
3262 }
3263
3264 /*
3265 ** Parse the interface capabilities with regard
3266 ** to both system management and wake-on-lan for
3267 ** later use.
3268 */
3269 static void
3270 em_get_wakeup(if_ctx_t ctx)
3271 {
3272         struct adapter  *adapter = iflib_get_softc(ctx);
3273         device_t dev = iflib_get_dev(ctx);
3274         u16             eeprom_data = 0, device_id, apme_mask;
3275
3276         adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3277         apme_mask = EM_EEPROM_APME;
3278
3279         switch (adapter->hw.mac.type) {
3280         case e1000_82542:
3281         case e1000_82543:
3282                 break;
3283         case e1000_82544:
3284                 e1000_read_nvm(&adapter->hw,
3285                     NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3286                 apme_mask = EM_82544_APME;
3287                 break;
3288         case e1000_82546:
3289         case e1000_82546_rev_3:
3290                 if (adapter->hw.bus.func == 1) {
3291                         e1000_read_nvm(&adapter->hw,
3292                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3293                         break;
3294                 } else
3295                         e1000_read_nvm(&adapter->hw,
3296                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3297                 break;
3298         case e1000_82573:
3299         case e1000_82583:
3300                 adapter->has_amt = TRUE;
3301                 /* Falls thru */
3302         case e1000_82571:
3303         case e1000_82572:
3304         case e1000_80003es2lan:
3305                 if (adapter->hw.bus.func == 1) {
3306                         e1000_read_nvm(&adapter->hw,
3307                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3308                         break;
3309                 } else
3310                         e1000_read_nvm(&adapter->hw,
3311                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3312                 break;
3313         case e1000_ich8lan:
3314         case e1000_ich9lan:
3315         case e1000_ich10lan:
3316         case e1000_pchlan:
3317         case e1000_pch2lan:
3318         case e1000_pch_lpt:
3319         case e1000_pch_spt:
3320         case e1000_82575:       /* listing all igb devices */
3321         case e1000_82576:
3322         case e1000_82580:
3323         case e1000_i350:
3324         case e1000_i354:
3325         case e1000_i210:
3326         case e1000_i211:
3327         case e1000_vfadapt:
3328         case e1000_vfadapt_i350:
3329                 apme_mask = E1000_WUC_APME;
3330                 adapter->has_amt = TRUE;
3331                 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3332                 break;
3333         default:
3334                 e1000_read_nvm(&adapter->hw,
3335                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3336                 break;
3337         }
3338         if (eeprom_data & apme_mask)
3339                 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3340         /*
3341          * We have the eeprom settings, now apply the special cases
3342          * where the eeprom may be wrong or the board won't support
3343          * wake on lan on a particular port
3344          */
3345         device_id = pci_get_device(dev);
3346         switch (device_id) {
3347         case E1000_DEV_ID_82546GB_PCIE:
3348                 adapter->wol = 0;
3349                 break;
3350         case E1000_DEV_ID_82546EB_FIBER:
3351         case E1000_DEV_ID_82546GB_FIBER:
3352                 /* Wake events only supported on port A for dual fiber
3353                  * regardless of eeprom setting */
3354                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3355                     E1000_STATUS_FUNC_1)
3356                         adapter->wol = 0;
3357                 break;
3358         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3359                 /* if quad port adapter, disable WoL on all but port A */
3360                 if (global_quad_port_a != 0)
3361                         adapter->wol = 0;
3362                 /* Reset for multiple quad port adapters */
3363                 if (++global_quad_port_a == 4)
3364                         global_quad_port_a = 0;
3365                 break;
3366         case E1000_DEV_ID_82571EB_FIBER:
3367                 /* Wake events only supported on port A for dual fiber
3368                  * regardless of eeprom setting */
3369                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3370                     E1000_STATUS_FUNC_1)
3371                         adapter->wol = 0;
3372                 break;
3373         case E1000_DEV_ID_82571EB_QUAD_COPPER:
3374         case E1000_DEV_ID_82571EB_QUAD_FIBER:
3375         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3376                 /* if quad port adapter, disable WoL on all but port A */
3377                 if (global_quad_port_a != 0)
3378                         adapter->wol = 0;
3379                 /* Reset for multiple quad port adapters */
3380                 if (++global_quad_port_a == 4)
3381                         global_quad_port_a = 0;
3382                 break;
3383         }
3384         return;
3385 }
3386
3387
3388 /*
3389  * Enable PCI Wake On Lan capability
3390  */
3391 static void
3392 em_enable_wakeup(if_ctx_t ctx)
3393 {
3394         struct adapter  *adapter = iflib_get_softc(ctx);
3395         device_t dev = iflib_get_dev(ctx);
3396         if_t ifp = iflib_get_ifp(ctx);
3397         u32             pmc, ctrl, ctrl_ext, rctl, wuc;
3398         u16             status;
3399
3400         if ((pci_find_cap(dev, PCIY_PMG, &pmc) != 0))
3401                 return;
3402
3403         /* Advertise the wakeup capability */
3404         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3405         ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3406         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3407         wuc = E1000_READ_REG(&adapter->hw, E1000_WUC);
3408         wuc |= (E1000_WUC_PME_EN | E1000_WUC_APME);
3409         E1000_WRITE_REG(&adapter->hw, E1000_WUC, wuc);
3410
3411         if ((adapter->hw.mac.type == e1000_ich8lan) ||
3412             (adapter->hw.mac.type == e1000_pchlan) ||
3413             (adapter->hw.mac.type == e1000_ich9lan) ||
3414             (adapter->hw.mac.type == e1000_ich10lan))
3415                 e1000_suspend_workarounds_ich8lan(&adapter->hw);
3416
3417         /* Keep the laser running on Fiber adapters */
3418         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3419             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3420                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3421                 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3422                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3423         }
3424
3425         /*
3426         ** Determine type of Wakeup: note that wol
3427         ** is set with all bits on by default.
3428         */
3429         if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3430                 adapter->wol &= ~E1000_WUFC_MAG;
3431
3432         if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3433                 adapter->wol &= ~E1000_WUFC_EX;
3434
3435         if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3436                 adapter->wol &= ~E1000_WUFC_MC;
3437         else {
3438                 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3439                 rctl |= E1000_RCTL_MPE;
3440                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3441         }
3442
3443         if ( adapter->hw.mac.type >= e1000_pchlan) {
3444                 if (em_enable_phy_wakeup(adapter))
3445                         return;
3446         } else {
3447                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3448                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3449         }
3450
3451         if (adapter->hw.phy.type == e1000_phy_igp_3)
3452                 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3453
3454         /* Request PME */
3455         status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3456         status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3457         if (if_getcapenable(ifp) & IFCAP_WOL)
3458                 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3459         pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3460
3461         return;
3462 }
3463
3464 /*
3465 ** WOL in the newer chipset interfaces (pchlan)
3466 ** require thing to be copied into the phy
3467 */
3468 static int
3469 em_enable_phy_wakeup(struct adapter *adapter)
3470 {
3471         struct e1000_hw *hw = &adapter->hw;
3472         u32 mreg, ret = 0;
3473         u16 preg;
3474
3475         /* copy MAC RARs to PHY RARs */
3476         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3477
3478         /* copy MAC MTA to PHY MTA */
3479         for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3480                 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3481                 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3482                 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3483                     (u16)((mreg >> 16) & 0xFFFF));
3484         }
3485
3486         /* configure PHY Rx Control register */
3487         e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3488         mreg = E1000_READ_REG(hw, E1000_RCTL);
3489         if (mreg & E1000_RCTL_UPE)
3490                 preg |= BM_RCTL_UPE;
3491         if (mreg & E1000_RCTL_MPE)
3492                 preg |= BM_RCTL_MPE;
3493         preg &= ~(BM_RCTL_MO_MASK);
3494         if (mreg & E1000_RCTL_MO_3)
3495                 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3496                                 << BM_RCTL_MO_SHIFT);
3497         if (mreg & E1000_RCTL_BAM)
3498                 preg |= BM_RCTL_BAM;
3499         if (mreg & E1000_RCTL_PMCF)
3500                 preg |= BM_RCTL_PMCF;
3501         mreg = E1000_READ_REG(hw, E1000_CTRL);
3502         if (mreg & E1000_CTRL_RFCE)
3503                 preg |= BM_RCTL_RFCE;
3504         e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3505
3506         /* enable PHY wakeup in MAC register */
3507         E1000_WRITE_REG(hw, E1000_WUC,
3508             E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3509         E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3510
3511         /* configure and enable PHY wakeup in PHY registers */
3512         e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3513         e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3514
3515         /* activate PHY wakeup */
3516         ret = hw->phy.ops.acquire(hw);
3517         if (ret) {
3518                 printf("Could not acquire PHY\n");
3519                 return ret;
3520         }
3521         e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3522                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3523         ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3524         if (ret) {
3525                 printf("Could not read PHY page 769\n");
3526                 goto out;
3527         }
3528         preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3529         ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3530         if (ret)
3531                 printf("Could not set PHY Host Wakeup bit\n");
3532 out:
3533         hw->phy.ops.release(hw);
3534
3535         return ret;
3536 }
3537
3538 static void
3539 em_if_led_func(if_ctx_t ctx, int onoff)
3540 {
3541         struct adapter  *adapter = iflib_get_softc(ctx);
3542  
3543         if (onoff) {
3544                 e1000_setup_led(&adapter->hw);
3545                 e1000_led_on(&adapter->hw);
3546         } else {
3547                 e1000_led_off(&adapter->hw);
3548                 e1000_cleanup_led(&adapter->hw);
3549         }
3550 }
3551
3552 /*
3553 ** Disable the L0S and L1 LINK states
3554 */
3555 static void
3556 em_disable_aspm(struct adapter *adapter)
3557 {
3558         int             base, reg;
3559         u16             link_cap,link_ctrl;
3560         device_t        dev = adapter->dev;
3561
3562         switch (adapter->hw.mac.type) {
3563                 case e1000_82573:
3564                 case e1000_82574:
3565                 case e1000_82583:
3566                         break;
3567                 default:
3568                         return;
3569         }
3570         if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3571                 return;
3572         reg = base + PCIER_LINK_CAP;
3573         link_cap = pci_read_config(dev, reg, 2);
3574         if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3575                 return;
3576         reg = base + PCIER_LINK_CTL;
3577         link_ctrl = pci_read_config(dev, reg, 2);
3578         link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3579         pci_write_config(dev, reg, link_ctrl, 2);
3580         return;
3581 }
3582
3583 /**********************************************************************
3584  *
3585  *  Update the board statistics counters.
3586  *
3587  **********************************************************************/
3588 static void
3589 em_update_stats_counters(struct adapter *adapter)
3590 {
3591
3592         if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3593            (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3594                 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3595                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3596         }
3597         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3598         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3599         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3600         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3601
3602         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3603         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3604         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3605         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3606         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3607         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3608         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3609         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3610         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3611         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3612         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3613         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3614         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3615         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3616         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3617         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3618         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3619         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3620         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3621         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3622
3623         /* For the 64-bit byte counters the low dword must be read first. */
3624         /* Both registers clear on the read of the high dword */
3625
3626         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3627             ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3628         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3629             ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3630
3631         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3632         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3633         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3634         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3635         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3636
3637         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3638         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3639
3640         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3641         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3642         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3643         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3644         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3645         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3646         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3647         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3648         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3649         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3650
3651         /* Interrupt Counts */
3652
3653         adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3654         adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
3655         adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
3656         adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
3657         adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
3658         adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
3659         adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
3660         adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
3661         adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
3662
3663         if (adapter->hw.mac.type >= e1000_82543) {
3664                 adapter->stats.algnerrc += 
3665                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3666                 adapter->stats.rxerrc += 
3667                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3668                 adapter->stats.tncrs += 
3669                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3670                 adapter->stats.cexterr += 
3671                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3672                 adapter->stats.tsctc += 
3673                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3674                 adapter->stats.tsctfc += 
3675                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3676         }
3677 }
3678
3679 static uint64_t
3680 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
3681 {
3682         struct adapter *adapter = iflib_get_softc(ctx);
3683         struct ifnet *ifp = iflib_get_ifp(ctx); 
3684
3685         switch (cnt) {
3686         case IFCOUNTER_COLLISIONS:
3687                 return (adapter->stats.colc);
3688         case IFCOUNTER_IERRORS:
3689                 return (adapter->dropped_pkts + adapter->stats.rxerrc +
3690                     adapter->stats.crcerrs + adapter->stats.algnerrc +
3691                     adapter->stats.ruc + adapter->stats.roc +
3692                     adapter->stats.mpc + adapter->stats.cexterr);
3693         case IFCOUNTER_OERRORS:
3694                 return (adapter->stats.ecol + adapter->stats.latecol +
3695                     adapter->watchdog_events);
3696         default:
3697                 return (if_get_counter_default(ifp, cnt));
3698         }
3699 }
3700
3701 /* Export a single 32-bit register via a read-only sysctl. */
3702 static int
3703 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
3704 {
3705         struct adapter *adapter;
3706         u_int val;
3707
3708         adapter = oidp->oid_arg1;
3709         val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
3710         return (sysctl_handle_int(oidp, &val, 0, req));
3711 }
3712
3713 /*
3714  * Add sysctl variables, one per statistic, to the system.
3715  */
3716 static void
3717 em_add_hw_stats(struct adapter *adapter)
3718 {
3719         device_t dev = iflib_get_dev(adapter->ctx); 
3720         struct em_tx_queue *tx_que = adapter->tx_queues;
3721         struct em_rx_queue *rx_que = adapter->rx_queues; 
3722         
3723         struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
3724         struct sysctl_oid *tree = device_get_sysctl_tree(dev);
3725         struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
3726         struct e1000_hw_stats *stats = &adapter->stats;
3727
3728         struct sysctl_oid *stat_node, *queue_node, *int_node;
3729         struct sysctl_oid_list *stat_list, *queue_list, *int_list;
3730
3731 #define QUEUE_NAME_LEN 32
3732         char namebuf[QUEUE_NAME_LEN];
3733         
3734         /* Driver Statistics */
3735         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped", 
3736                         CTLFLAG_RD, &adapter->dropped_pkts,
3737                         "Driver dropped packets");
3738         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
3739                         CTLFLAG_RD, &adapter->link_irq,
3740                         "Link MSIX IRQ Handled");
3741         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_defrag_fail", 
3742                          CTLFLAG_RD, &adapter->mbuf_defrag_failed,
3743                          "Defragmenting mbuf chain failed");
3744         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail", 
3745                         CTLFLAG_RD, &adapter->no_tx_dma_setup,
3746                         "Driver tx dma failure in xmit");
3747         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
3748                         CTLFLAG_RD, &adapter->rx_overruns,
3749                         "RX overruns");
3750         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
3751                         CTLFLAG_RD, &adapter->watchdog_events,
3752                         "Watchdog timeouts");
3753         
3754         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
3755                         CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL,
3756                         em_sysctl_reg_handler, "IU",
3757                         "Device Control Register");
3758         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
3759                         CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL,
3760                         em_sysctl_reg_handler, "IU",
3761                         "Receiver Control Register");
3762         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
3763                         CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
3764                         "Flow Control High Watermark");
3765         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water", 
3766                         CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
3767                         "Flow Control Low Watermark");
3768
3769         for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
3770                 struct tx_ring *txr = &tx_que->txr;
3771                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
3772                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
3773                                             CTLFLAG_RD, NULL, "TX Queue Name");
3774                 queue_list = SYSCTL_CHILDREN(queue_node);
3775
3776                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head", 
3777                                 CTLTYPE_UINT | CTLFLAG_RD, adapter,
3778                                 E1000_TDH(txr->me),
3779                                 em_sysctl_reg_handler, "IU",
3780                                 "Transmit Descriptor Head");
3781                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail", 
3782                                 CTLTYPE_UINT | CTLFLAG_RD, adapter,
3783                                 E1000_TDT(txr->me),
3784                                 em_sysctl_reg_handler, "IU",
3785                                 "Transmit Descriptor Tail");
3786                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
3787                                 CTLFLAG_RD, &txr->tx_irq,
3788                                 "Queue MSI-X Transmit Interrupts");
3789                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "no_desc_avail", 
3790                                 CTLFLAG_RD, &txr->no_desc_avail,
3791                                 "Queue No Descriptor Available");
3792         }
3793
3794         for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
3795                 struct rx_ring *rxr = &rx_que->rxr; 
3796                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
3797                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
3798                                             CTLFLAG_RD, NULL, "RX Queue Name");
3799                 queue_list = SYSCTL_CHILDREN(queue_node);
3800
3801                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head", 
3802                                 CTLTYPE_UINT | CTLFLAG_RD, adapter,
3803                                 E1000_RDH(rxr->me),
3804                                 em_sysctl_reg_handler, "IU",
3805                                 "Receive Descriptor Head");
3806                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail", 
3807                                 CTLTYPE_UINT | CTLFLAG_RD, adapter,
3808                                 E1000_RDT(rxr->me),
3809                                 em_sysctl_reg_handler, "IU",
3810                                 "Receive Descriptor Tail");
3811                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
3812                                 CTLFLAG_RD, &rxr->rx_irq,
3813                                 "Queue MSI-X Receive Interrupts");
3814         }
3815
3816         /* MAC stats get their own sub node */
3817
3818         stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats", 
3819                                     CTLFLAG_RD, NULL, "Statistics");
3820         stat_list = SYSCTL_CHILDREN(stat_node);
3821
3822         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
3823                         CTLFLAG_RD, &stats->ecol,
3824                         "Excessive collisions");
3825         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
3826                         CTLFLAG_RD, &stats->scc,
3827                         "Single collisions");
3828         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
3829                         CTLFLAG_RD, &stats->mcc,
3830                         "Multiple collisions");
3831         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
3832                         CTLFLAG_RD, &stats->latecol,
3833                         "Late collisions");
3834         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
3835                         CTLFLAG_RD, &stats->colc,
3836                         "Collision Count");
3837         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
3838                         CTLFLAG_RD, &adapter->stats.symerrs,
3839                         "Symbol Errors");
3840         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
3841                         CTLFLAG_RD, &adapter->stats.sec,
3842                         "Sequence Errors");
3843         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
3844                         CTLFLAG_RD, &adapter->stats.dc,
3845                         "Defer Count");
3846         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
3847                         CTLFLAG_RD, &adapter->stats.mpc,
3848                         "Missed Packets");
3849         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
3850                         CTLFLAG_RD, &adapter->stats.rnbc,
3851                         "Receive No Buffers");
3852         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
3853                         CTLFLAG_RD, &adapter->stats.ruc,
3854                         "Receive Undersize");
3855         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
3856                         CTLFLAG_RD, &adapter->stats.rfc,
3857                         "Fragmented Packets Received ");
3858         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
3859                         CTLFLAG_RD, &adapter->stats.roc,
3860                         "Oversized Packets Received");
3861         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
3862                         CTLFLAG_RD, &adapter->stats.rjc,
3863                         "Recevied Jabber");
3864         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
3865                         CTLFLAG_RD, &adapter->stats.rxerrc,
3866                         "Receive Errors");
3867         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
3868                         CTLFLAG_RD, &adapter->stats.crcerrs,
3869                         "CRC errors");
3870         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
3871                         CTLFLAG_RD, &adapter->stats.algnerrc,
3872                         "Alignment Errors");
3873         /* On 82575 these are collision counts */
3874         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
3875                         CTLFLAG_RD, &adapter->stats.cexterr,
3876                         "Collision/Carrier extension errors");
3877         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
3878                         CTLFLAG_RD, &adapter->stats.xonrxc,
3879                         "XON Received");
3880         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
3881                         CTLFLAG_RD, &adapter->stats.xontxc,
3882                         "XON Transmitted");
3883         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
3884                         CTLFLAG_RD, &adapter->stats.xoffrxc,
3885                         "XOFF Received");
3886         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
3887                         CTLFLAG_RD, &adapter->stats.xofftxc,
3888                         "XOFF Transmitted");
3889
3890         /* Packet Reception Stats */
3891         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
3892                         CTLFLAG_RD, &adapter->stats.tpr,
3893                         "Total Packets Received ");
3894         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
3895                         CTLFLAG_RD, &adapter->stats.gprc,
3896                         "Good Packets Received");
3897         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
3898                         CTLFLAG_RD, &adapter->stats.bprc,
3899                         "Broadcast Packets Received");
3900         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
3901                         CTLFLAG_RD, &adapter->stats.mprc,
3902                         "Multicast Packets Received");
3903         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
3904                         CTLFLAG_RD, &adapter->stats.prc64,
3905                         "64 byte frames received ");
3906         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
3907                         CTLFLAG_RD, &adapter->stats.prc127,
3908                         "65-127 byte frames received");
3909         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
3910                         CTLFLAG_RD, &adapter->stats.prc255,
3911                         "128-255 byte frames received");
3912         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
3913                         CTLFLAG_RD, &adapter->stats.prc511,
3914                         "256-511 byte frames received");
3915         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
3916                         CTLFLAG_RD, &adapter->stats.prc1023,
3917                         "512-1023 byte frames received");
3918         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
3919                         CTLFLAG_RD, &adapter->stats.prc1522,
3920                         "1023-1522 byte frames received");
3921         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
3922                         CTLFLAG_RD, &adapter->stats.gorc, 
3923                         "Good Octets Received"); 
3924
3925         /* Packet Transmission Stats */
3926         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
3927                         CTLFLAG_RD, &adapter->stats.gotc, 
3928                         "Good Octets Transmitted"); 
3929         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
3930                         CTLFLAG_RD, &adapter->stats.tpt,
3931                         "Total Packets Transmitted");
3932         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
3933                         CTLFLAG_RD, &adapter->stats.gptc,
3934                         "Good Packets Transmitted");
3935         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
3936                         CTLFLAG_RD, &adapter->stats.bptc,
3937                         "Broadcast Packets Transmitted");
3938         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
3939                         CTLFLAG_RD, &adapter->stats.mptc,
3940                         "Multicast Packets Transmitted");
3941         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
3942                         CTLFLAG_RD, &adapter->stats.ptc64,
3943                         "64 byte frames transmitted ");
3944         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
3945                         CTLFLAG_RD, &adapter->stats.ptc127,
3946                         "65-127 byte frames transmitted");
3947         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
3948                         CTLFLAG_RD, &adapter->stats.ptc255,
3949                         "128-255 byte frames transmitted");
3950         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
3951                         CTLFLAG_RD, &adapter->stats.ptc511,
3952                         "256-511 byte frames transmitted");
3953         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
3954                         CTLFLAG_RD, &adapter->stats.ptc1023,
3955                         "512-1023 byte frames transmitted");
3956         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
3957                         CTLFLAG_RD, &adapter->stats.ptc1522,
3958                         "1024-1522 byte frames transmitted");
3959         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
3960                         CTLFLAG_RD, &adapter->stats.tsctc,
3961                         "TSO Contexts Transmitted");
3962         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
3963                         CTLFLAG_RD, &adapter->stats.tsctfc,
3964                         "TSO Contexts Failed");
3965
3966
3967         /* Interrupt Stats */
3968
3969         int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts", 
3970                                     CTLFLAG_RD, NULL, "Interrupt Statistics");
3971         int_list = SYSCTL_CHILDREN(int_node);
3972
3973         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
3974                         CTLFLAG_RD, &adapter->stats.iac,
3975                         "Interrupt Assertion Count");
3976
3977         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
3978                         CTLFLAG_RD, &adapter->stats.icrxptc,
3979                         "Interrupt Cause Rx Pkt Timer Expire Count");
3980
3981         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
3982                         CTLFLAG_RD, &adapter->stats.icrxatc,
3983                         "Interrupt Cause Rx Abs Timer Expire Count");
3984
3985         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
3986                         CTLFLAG_RD, &adapter->stats.ictxptc,
3987                         "Interrupt Cause Tx Pkt Timer Expire Count");
3988
3989         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
3990                         CTLFLAG_RD, &adapter->stats.ictxatc,
3991                         "Interrupt Cause Tx Abs Timer Expire Count");
3992
3993         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
3994                         CTLFLAG_RD, &adapter->stats.ictxqec,
3995                         "Interrupt Cause Tx Queue Empty Count");
3996
3997         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
3998                         CTLFLAG_RD, &adapter->stats.ictxqmtc,
3999                         "Interrupt Cause Tx Queue Min Thresh Count");
4000
4001         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4002                         CTLFLAG_RD, &adapter->stats.icrxdmtc,
4003                         "Interrupt Cause Rx Desc Min Thresh Count");
4004
4005         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4006                         CTLFLAG_RD, &adapter->stats.icrxoc,
4007                         "Interrupt Cause Receiver Overrun Count");
4008 }
4009
4010 /**********************************************************************
4011  *
4012  *  This routine provides a way to dump out the adapter eeprom,
4013  *  often a useful debug/service tool. This only dumps the first
4014  *  32 words, stuff that matters is in that extent.
4015  *
4016  **********************************************************************/
4017 static int
4018 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4019 {
4020         struct adapter *adapter = (struct adapter *)arg1;
4021         int error;
4022         int result;
4023
4024         result = -1;
4025         error = sysctl_handle_int(oidp, &result, 0, req);
4026
4027         if (error || !req->newptr)
4028                 return (error);
4029
4030         /*
4031          * This value will cause a hex dump of the
4032          * first 32 16-bit words of the EEPROM to
4033          * the screen.
4034          */
4035         if (result == 1)
4036                 em_print_nvm_info(adapter);
4037
4038         return (error);
4039 }
4040
4041 static void
4042 em_print_nvm_info(struct adapter *adapter)
4043 {
4044         u16     eeprom_data;
4045         int     i, j, row = 0;
4046
4047         /* Its a bit crude, but it gets the job done */
4048         printf("\nInterface EEPROM Dump:\n");
4049         printf("Offset\n0x0000  ");
4050         for (i = 0, j = 0; i < 32; i++, j++) {
4051                 if (j == 8) { /* Make the offset block */
4052                         j = 0; ++row;
4053                         printf("\n0x00%x0  ",row);
4054                 }
4055                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4056                 printf("%04x ", eeprom_data);
4057         }
4058         printf("\n");
4059 }
4060
4061 static int
4062 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4063 {
4064         struct em_int_delay_info *info;
4065         struct adapter *adapter;
4066         u32 regval;
4067         int error, usecs, ticks;
4068
4069         info = (struct em_int_delay_info *)arg1;
4070         usecs = info->value;
4071         error = sysctl_handle_int(oidp, &usecs, 0, req);
4072         if (error != 0 || req->newptr == NULL)
4073                 return (error);
4074         if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4075                 return (EINVAL);
4076         info->value = usecs;
4077         ticks = EM_USECS_TO_TICKS(usecs);
4078         if (info->offset == E1000_ITR)  /* units are 256ns here */
4079                 ticks *= 4;
4080
4081         adapter = info->adapter;
4082         
4083         regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4084         regval = (regval & ~0xffff) | (ticks & 0xffff);
4085         /* Handle a few special cases. */
4086         switch (info->offset) {
4087         case E1000_RDTR:
4088                 break;
4089         case E1000_TIDV:
4090                 if (ticks == 0) {
4091                         adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4092                         /* Don't write 0 into the TIDV register. */
4093                         regval++;
4094                 } else
4095                         adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4096                 break;
4097         }
4098         E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4099         return (0);
4100 }
4101
4102 static void
4103 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4104         const char *description, struct em_int_delay_info *info,
4105         int offset, int value)
4106 {
4107         info->adapter = adapter;
4108         info->offset = offset;
4109         info->value = value;
4110         SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4111             SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4112             OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
4113             info, 0, em_sysctl_int_delay, "I", description);
4114 }
4115
4116 static void
4117 em_set_sysctl_value(struct adapter *adapter, const char *name,
4118         const char *description, int *limit, int value)
4119 {
4120         *limit = value;
4121         SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
4122             SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4123             OID_AUTO, name, CTLFLAG_RW, limit, value, description);
4124 }
4125
4126
4127 /*
4128 ** Set flow control using sysctl:
4129 ** Flow control values:
4130 **      0 - off
4131 **      1 - rx pause
4132 **      2 - tx pause
4133 **      3 - full
4134 */
4135 static int
4136 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4137 {       
4138         int             error;
4139         static int      input = 3; /* default is full */
4140         struct adapter  *adapter = (struct adapter *) arg1;
4141                     
4142         error = sysctl_handle_int(oidp, &input, 0, req);
4143     
4144         if ((error) || (req->newptr == NULL))
4145                 return (error);
4146                 
4147         if (input == adapter->fc) /* no change? */
4148                 return (error);
4149
4150         switch (input) {
4151                 case e1000_fc_rx_pause:
4152                 case e1000_fc_tx_pause:
4153                 case e1000_fc_full:
4154                 case e1000_fc_none:
4155                         adapter->hw.fc.requested_mode = input;
4156                         adapter->fc = input;
4157                         break;
4158                 default:
4159                         /* Do nothing */
4160                         return (error);
4161         }
4162
4163         adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4164         e1000_force_mac_fc(&adapter->hw);
4165         return (error);
4166 }
4167
4168 /*
4169 ** Manage Energy Efficient Ethernet:
4170 ** Control values:
4171 **     0/1 - enabled/disabled
4172 */
4173 static int
4174 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4175 {
4176        struct adapter *adapter = (struct adapter *) arg1;
4177        int             error, value;
4178
4179        value = adapter->hw.dev_spec.ich8lan.eee_disable;
4180        error = sysctl_handle_int(oidp, &value, 0, req);
4181        if (error || req->newptr == NULL)
4182                return (error);
4183        adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4184        em_if_init(adapter->ctx);
4185
4186        return (0);
4187 }
4188
4189 static int
4190 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4191 {
4192         struct adapter *adapter;
4193         int error;
4194         int result;
4195
4196         result = -1;
4197         error = sysctl_handle_int(oidp, &result, 0, req);
4198
4199         if (error || !req->newptr)
4200                 return (error);
4201
4202         if (result == 1) {
4203                 adapter = (struct adapter *)arg1;
4204                 em_print_debug_info(adapter);
4205         }
4206
4207         return (error);
4208 }
4209
4210 /*
4211 ** This routine is meant to be fluid, add whatever is
4212 ** needed for debugging a problem.  -jfv
4213 */
4214 static void
4215 em_print_debug_info(struct adapter *adapter)
4216 {
4217         device_t dev = adapter->dev;
4218         struct tx_ring *txr = &adapter->tx_queues->txr;
4219         struct rx_ring *rxr = &adapter->rx_queues->rxr;
4220
4221         if (if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING)
4222                 printf("Interface is RUNNING ");
4223         else
4224                 printf("Interface is NOT RUNNING\n");
4225
4226         if (if_getdrvflags(adapter->ifp) & IFF_DRV_OACTIVE)
4227                 printf("and INACTIVE\n");
4228         else
4229                 printf("and ACTIVE\n");
4230
4231         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4232                 device_printf(dev, "TX Queue %d ------\n", i);
4233                 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4234                         E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4235                         E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4236
4237         }
4238         for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4239                 device_printf(dev, "RX Queue %d ------\n", j);
4240                 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4241                         E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4242                         E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4243         }
4244 }
4245
4246
4247 /*
4248  * 82574 only:
4249  * Write a new value to the EEPROM increasing the number of MSIX
4250  * vectors from 3 to 5, for proper multiqueue support.
4251  */
4252 static void
4253 em_enable_vectors_82574(if_ctx_t ctx)
4254 {
4255         struct adapter *adapter = iflib_get_softc(ctx);
4256         struct e1000_hw *hw = &adapter->hw;
4257         device_t dev = iflib_get_dev(ctx);
4258         u16 edata;
4259
4260         e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4261         printf("Current cap: %#06x\n", edata);
4262         if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4263                 device_printf(dev, "Writing to eeprom: increasing "
4264                     "reported MSIX vectors from 3 to 5...\n");
4265                 edata &= ~(EM_NVM_MSIX_N_MASK);
4266                 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4267                 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4268                 e1000_update_nvm_checksum(hw);
4269                 device_printf(dev, "Writing to eeprom: done\n");
4270         }
4271 }
4272
4273
4274 #ifdef DDB
4275 DB_COMMAND(em_reset_dev, em_ddb_reset_dev)
4276 {
4277         devclass_t      dc;
4278         int max_em;
4279
4280         dc = devclass_find("em");
4281         max_em = devclass_get_maxunit(dc);
4282
4283         for (int index = 0; index < (max_em - 1); index++) {
4284                 device_t dev;
4285                 dev = devclass_get_device(dc, index);
4286                 if (device_get_driver(dev) == &em_driver) {
4287                         struct adapter *adapter = device_get_softc(dev);
4288                         em_if_init(adapter->ctx);
4289                 }
4290         }
4291 }
4292 DB_COMMAND(em_dump_queue, em_ddb_dump_queue)
4293 {
4294         devclass_t      dc;
4295         int max_em;
4296
4297         dc = devclass_find("em");
4298         max_em = devclass_get_maxunit(dc);
4299
4300         for (int index = 0; index < (max_em - 1); index++) {
4301                 device_t dev;
4302                 dev = devclass_get_device(dc, index);
4303                 if (device_get_driver(dev) == &em_driver)
4304                         em_print_debug_info(device_get_softc(dev));
4305         }
4306
4307 }
4308 #endif