]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/e1000/if_em.c
em: fix a null de-reference in em_free_pci_resources
[FreeBSD/FreeBSD.git] / sys / dev / e1000 / if_em.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33
34 #define em_mac_min e1000_82547
35 #define igb_mac_min e1000_82575
36
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54         /* Intel(R) PRO/1000 Network Connection - Legacy em*/
55         PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
56         PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
57         PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
58         PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
59         PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
60
61         PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
62         PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
63         PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
64         PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
65         PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
66         PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
67         PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
68
69         PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
70
71         PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
72         PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
73
74         PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
75         PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
76         PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
77         PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
78
79         PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80         PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81         PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
82         PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
83         PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
84
85         PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
86         PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
87         PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
88         PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
89         PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
90         PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
91         PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
92         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
93         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
94
95         PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
96         PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
97         PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
98
99         /* Intel(R) PRO/1000 Network Connection - em */
100         PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
101         PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
102         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
103         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
104         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
105         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
106         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
107         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
108         PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
109         PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
110         PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
111         PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
112         PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
113         PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
114         PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
115         PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
116         PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
117         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
118         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
119         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
120         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
121         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
122         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
123         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
124         PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
125         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
126         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
127         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
128         PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
129         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
130         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
131         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
132         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
133         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
134         PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
135         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
136         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
137         PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
138         PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
139         PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
140         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
141         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
142         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
143         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
144         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
145         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
146         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
147         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
148         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
149         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
150         PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
151         PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
152         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
153         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
154         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
155         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
156         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
157         PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
158         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
159         PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
160         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
161         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
162         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
163         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
164         PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
165         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
166         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
167         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
168         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
169         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"),
170         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"),
171         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"),
172         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"),
173         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"),
174         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"),
175         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"),
176         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"),
177         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) PRO/1000 Network Connection"),
178         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) PRO/1000 Network Connection"),
179         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) PRO/1000 Network Connection"),
180         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) PRO/1000 Network Connection"),
181         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) PRO/1000 Network Connection"),
182         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) PRO/1000 Network Connection"),
183         /* required last entry */
184         PVID_END
185 };
186
187 static pci_vendor_info_t igb_vendor_info_array[] =
188 {
189         /* Intel(R) PRO/1000 Network Connection - igb */
190         PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191         PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192         PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193         PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194         PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195         PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196         PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197         PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198         PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201         PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202         PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203         PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204         PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205         PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206         PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207         PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211         PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212         PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213         PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
214         PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
215         PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
216         PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
217         PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
218         PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
219         PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
220         PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
221         PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
222         PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
223         PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
224         PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
225         PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
226         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
227         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
228         PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
229         /* required last entry */
230         PVID_END
231 };
232
233 /*********************************************************************
234  *  Function prototypes
235  *********************************************************************/
236 static void     *em_register(device_t dev);
237 static void     *igb_register(device_t dev);
238 static int      em_if_attach_pre(if_ctx_t ctx);
239 static int      em_if_attach_post(if_ctx_t ctx);
240 static int      em_if_detach(if_ctx_t ctx);
241 static int      em_if_shutdown(if_ctx_t ctx);
242 static int      em_if_suspend(if_ctx_t ctx);
243 static int      em_if_resume(if_ctx_t ctx);
244
245 static int      em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
246 static int      em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
247 static void     em_if_queues_free(if_ctx_t ctx);
248
249 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
250 static void     em_if_init(if_ctx_t ctx);
251 static void     em_if_stop(if_ctx_t ctx);
252 static void     em_if_media_status(if_ctx_t, struct ifmediareq *);
253 static int      em_if_media_change(if_ctx_t ctx);
254 static int      em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
255 static void     em_if_timer(if_ctx_t ctx, uint16_t qid);
256 static void     em_if_vlan_register(if_ctx_t ctx, u16 vtag);
257 static void     em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
258 static void     em_if_watchdog_reset(if_ctx_t ctx);
259 static bool     em_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event);
260
261 static void     em_identify_hardware(if_ctx_t ctx);
262 static int      em_allocate_pci_resources(if_ctx_t ctx);
263 static void     em_free_pci_resources(if_ctx_t ctx);
264 static void     em_reset(if_ctx_t ctx);
265 static int      em_setup_interface(if_ctx_t ctx);
266 static int      em_setup_msix(if_ctx_t ctx);
267
268 static void     em_initialize_transmit_unit(if_ctx_t ctx);
269 static void     em_initialize_receive_unit(if_ctx_t ctx);
270
271 static void     em_if_intr_enable(if_ctx_t ctx);
272 static void     em_if_intr_disable(if_ctx_t ctx);
273 static void     igb_if_intr_enable(if_ctx_t ctx);
274 static void     igb_if_intr_disable(if_ctx_t ctx);
275 static int      em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
276 static int      em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
277 static int      igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
278 static int      igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
279 static void     em_if_multi_set(if_ctx_t ctx);
280 static void     em_if_update_admin_status(if_ctx_t ctx);
281 static void     em_if_debug(if_ctx_t ctx);
282 static void     em_update_stats_counters(struct adapter *);
283 static void     em_add_hw_stats(struct adapter *adapter);
284 static int      em_if_set_promisc(if_ctx_t ctx, int flags);
285 static void     em_setup_vlan_hw_support(struct adapter *);
286 static int      em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
287 static void     em_print_nvm_info(struct adapter *);
288 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
289 static int      em_get_rs(SYSCTL_HANDLER_ARGS);
290 static void     em_print_debug_info(struct adapter *);
291 static int      em_is_valid_ether_addr(u8 *);
292 static int      em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
293 static void     em_add_int_delay_sysctl(struct adapter *, const char *,
294                     const char *, struct em_int_delay_info *, int, int);
295 /* Management and WOL Support */
296 static void     em_init_manageability(struct adapter *);
297 static void     em_release_manageability(struct adapter *);
298 static void     em_get_hw_control(struct adapter *);
299 static void     em_release_hw_control(struct adapter *);
300 static void     em_get_wakeup(if_ctx_t ctx);
301 static void     em_enable_wakeup(if_ctx_t ctx);
302 static int      em_enable_phy_wakeup(struct adapter *);
303 static void     em_disable_aspm(struct adapter *);
304
305 int             em_intr(void *arg);
306 static void     em_disable_promisc(if_ctx_t ctx);
307
308 /* MSI-X handlers */
309 static int      em_if_msix_intr_assign(if_ctx_t, int);
310 static int      em_msix_link(void *);
311 static void     em_handle_link(void *context);
312
313 static void     em_enable_vectors_82574(if_ctx_t);
314
315 static int      em_set_flowcntl(SYSCTL_HANDLER_ARGS);
316 static int      em_sysctl_eee(SYSCTL_HANDLER_ARGS);
317 static void     em_if_led_func(if_ctx_t ctx, int onoff);
318
319 static int      em_get_regs(SYSCTL_HANDLER_ARGS);
320
321 static void     lem_smartspeed(struct adapter *adapter);
322 static void     igb_configure_queues(struct adapter *adapter);
323
324
325 /*********************************************************************
326  *  FreeBSD Device Interface Entry Points
327  *********************************************************************/
328 static device_method_t em_methods[] = {
329         /* Device interface */
330         DEVMETHOD(device_register, em_register),
331         DEVMETHOD(device_probe, iflib_device_probe),
332         DEVMETHOD(device_attach, iflib_device_attach),
333         DEVMETHOD(device_detach, iflib_device_detach),
334         DEVMETHOD(device_shutdown, iflib_device_shutdown),
335         DEVMETHOD(device_suspend, iflib_device_suspend),
336         DEVMETHOD(device_resume, iflib_device_resume),
337         DEVMETHOD_END
338 };
339
340 static device_method_t igb_methods[] = {
341         /* Device interface */
342         DEVMETHOD(device_register, igb_register),
343         DEVMETHOD(device_probe, iflib_device_probe),
344         DEVMETHOD(device_attach, iflib_device_attach),
345         DEVMETHOD(device_detach, iflib_device_detach),
346         DEVMETHOD(device_shutdown, iflib_device_shutdown),
347         DEVMETHOD(device_suspend, iflib_device_suspend),
348         DEVMETHOD(device_resume, iflib_device_resume),
349         DEVMETHOD_END
350 };
351
352
353 static driver_t em_driver = {
354         "em", em_methods, sizeof(struct adapter),
355 };
356
357 static devclass_t em_devclass;
358 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
359
360 MODULE_DEPEND(em, pci, 1, 1, 1);
361 MODULE_DEPEND(em, ether, 1, 1, 1);
362 MODULE_DEPEND(em, iflib, 1, 1, 1);
363
364 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
365
366 static driver_t igb_driver = {
367         "igb", igb_methods, sizeof(struct adapter),
368 };
369
370 static devclass_t igb_devclass;
371 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
372
373 MODULE_DEPEND(igb, pci, 1, 1, 1);
374 MODULE_DEPEND(igb, ether, 1, 1, 1);
375 MODULE_DEPEND(igb, iflib, 1, 1, 1);
376
377 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
378
379 static device_method_t em_if_methods[] = {
380         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
381         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
382         DEVMETHOD(ifdi_detach, em_if_detach),
383         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
384         DEVMETHOD(ifdi_suspend, em_if_suspend),
385         DEVMETHOD(ifdi_resume, em_if_resume),
386         DEVMETHOD(ifdi_init, em_if_init),
387         DEVMETHOD(ifdi_stop, em_if_stop),
388         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
389         DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
390         DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
391         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
392         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
393         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
394         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
395         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
396         DEVMETHOD(ifdi_media_status, em_if_media_status),
397         DEVMETHOD(ifdi_media_change, em_if_media_change),
398         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
399         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
400         DEVMETHOD(ifdi_timer, em_if_timer),
401         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
402         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
403         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
404         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
405         DEVMETHOD(ifdi_led_func, em_if_led_func),
406         DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
407         DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
408         DEVMETHOD(ifdi_debug, em_if_debug),
409         DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
410         DEVMETHOD_END
411 };
412
413 static driver_t em_if_driver = {
414         "em_if", em_if_methods, sizeof(struct adapter)
415 };
416
417 static device_method_t igb_if_methods[] = {
418         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
419         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
420         DEVMETHOD(ifdi_detach, em_if_detach),
421         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
422         DEVMETHOD(ifdi_suspend, em_if_suspend),
423         DEVMETHOD(ifdi_resume, em_if_resume),
424         DEVMETHOD(ifdi_init, em_if_init),
425         DEVMETHOD(ifdi_stop, em_if_stop),
426         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
427         DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
428         DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
429         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
430         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
431         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
432         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
433         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
434         DEVMETHOD(ifdi_media_status, em_if_media_status),
435         DEVMETHOD(ifdi_media_change, em_if_media_change),
436         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
437         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
438         DEVMETHOD(ifdi_timer, em_if_timer),
439         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
440         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
441         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
442         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
443         DEVMETHOD(ifdi_led_func, em_if_led_func),
444         DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
445         DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
446         DEVMETHOD(ifdi_debug, em_if_debug),
447         DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
448         DEVMETHOD_END
449 };
450
451 static driver_t igb_if_driver = {
452         "igb_if", igb_if_methods, sizeof(struct adapter)
453 };
454
455 /*********************************************************************
456  *  Tunable default values.
457  *********************************************************************/
458
459 #define EM_TICKS_TO_USECS(ticks)        ((1024 * (ticks) + 500) / 1000)
460 #define EM_USECS_TO_TICKS(usecs)        ((1000 * (usecs) + 512) / 1024)
461
462 #define MAX_INTS_PER_SEC        8000
463 #define DEFAULT_ITR             (1000000000/(MAX_INTS_PER_SEC * 256))
464
465 /* Allow common code without TSO */
466 #ifndef CSUM_TSO
467 #define CSUM_TSO        0
468 #endif
469
470 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
471     "EM driver parameters");
472
473 static int em_disable_crc_stripping = 0;
474 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
475     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
476
477 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
478 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
479 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
480     0, "Default transmit interrupt delay in usecs");
481 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
482     0, "Default receive interrupt delay in usecs");
483
484 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
485 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
486 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
487     &em_tx_abs_int_delay_dflt, 0,
488     "Default transmit interrupt delay limit in usecs");
489 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
490     &em_rx_abs_int_delay_dflt, 0,
491     "Default receive interrupt delay limit in usecs");
492
493 static int em_smart_pwr_down = FALSE;
494 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
495     0, "Set to true to leave smart power down enabled on newer adapters");
496
497 /* Controls whether promiscuous also shows bad packets */
498 static int em_debug_sbp = TRUE;
499 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
500     "Show bad packets in promiscuous mode");
501
502 /* How many packets rxeof tries to clean at a time */
503 static int em_rx_process_limit = 100;
504 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
505     &em_rx_process_limit, 0,
506     "Maximum number of received packets to process "
507     "at a time, -1 means unlimited");
508
509 /* Energy efficient ethernet - default to OFF */
510 static int eee_setting = 1;
511 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
512     "Enable Energy Efficient Ethernet");
513
514 /*
515 ** Tuneable Interrupt rate
516 */
517 static int em_max_interrupt_rate = 8000;
518 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
519     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
520
521
522
523 /* Global used in WOL setup with multiport cards */
524 static int global_quad_port_a = 0;
525
526 extern struct if_txrx igb_txrx;
527 extern struct if_txrx em_txrx;
528 extern struct if_txrx lem_txrx;
529
530 static struct if_shared_ctx em_sctx_init = {
531         .isc_magic = IFLIB_MAGIC,
532         .isc_q_align = PAGE_SIZE,
533         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
534         .isc_tx_maxsegsize = PAGE_SIZE,
535         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
536         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
537         .isc_rx_maxsize = MJUM9BYTES,
538         .isc_rx_nsegments = 1,
539         .isc_rx_maxsegsize = MJUM9BYTES,
540         .isc_nfl = 1,
541         .isc_nrxqs = 1,
542         .isc_ntxqs = 1,
543         .isc_admin_intrcnt = 1,
544         .isc_vendor_info = em_vendor_info_array,
545         .isc_driver_version = em_driver_version,
546         .isc_driver = &em_if_driver,
547         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
548
549         .isc_nrxd_min = {EM_MIN_RXD},
550         .isc_ntxd_min = {EM_MIN_TXD},
551         .isc_nrxd_max = {EM_MAX_RXD},
552         .isc_ntxd_max = {EM_MAX_TXD},
553         .isc_nrxd_default = {EM_DEFAULT_RXD},
554         .isc_ntxd_default = {EM_DEFAULT_TXD},
555 };
556
557 if_shared_ctx_t em_sctx = &em_sctx_init;
558
559 static struct if_shared_ctx igb_sctx_init = {
560         .isc_magic = IFLIB_MAGIC,
561         .isc_q_align = PAGE_SIZE,
562         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
563         .isc_tx_maxsegsize = PAGE_SIZE,
564         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
565         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
566         .isc_rx_maxsize = MJUM9BYTES,
567         .isc_rx_nsegments = 1,
568         .isc_rx_maxsegsize = MJUM9BYTES,
569         .isc_nfl = 1,
570         .isc_nrxqs = 1,
571         .isc_ntxqs = 1,
572         .isc_admin_intrcnt = 1,
573         .isc_vendor_info = igb_vendor_info_array,
574         .isc_driver_version = em_driver_version,
575         .isc_driver = &igb_if_driver,
576         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
577
578         .isc_nrxd_min = {EM_MIN_RXD},
579         .isc_ntxd_min = {EM_MIN_TXD},
580         .isc_nrxd_max = {IGB_MAX_RXD},
581         .isc_ntxd_max = {IGB_MAX_TXD},
582         .isc_nrxd_default = {EM_DEFAULT_RXD},
583         .isc_ntxd_default = {EM_DEFAULT_TXD},
584 };
585
586 if_shared_ctx_t igb_sctx = &igb_sctx_init;
587
588 /*****************************************************************
589  *
590  * Dump Registers
591  *
592  ****************************************************************/
593 #define IGB_REGS_LEN 739
594
595 static int em_get_regs(SYSCTL_HANDLER_ARGS)
596 {
597         struct adapter *adapter = (struct adapter *)arg1;
598         struct e1000_hw *hw = &adapter->hw;
599         struct sbuf *sb;
600         u32 *regs_buff;
601         int rc;
602
603         regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
604         memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
605
606         rc = sysctl_wire_old_buffer(req, 0);
607         MPASS(rc == 0);
608         if (rc != 0) {
609                 free(regs_buff, M_DEVBUF);
610                 return (rc);
611         }
612
613         sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
614         MPASS(sb != NULL);
615         if (sb == NULL) {
616                 free(regs_buff, M_DEVBUF);
617                 return (ENOMEM);
618         }
619
620         /* General Registers */
621         regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
622         regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
623         regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
624         regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
625         regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
626         regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
627         regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
628         regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
629         regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
630         regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
631         regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
632         regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
633         regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
634         regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
635         regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
636         regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
637         regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
638         regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
639         regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
640         regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
641         regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
642         regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
643
644         sbuf_printf(sb, "General Registers\n");
645         sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
646         sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
647         sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
648
649         sbuf_printf(sb, "Interrupt Registers\n");
650         sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
651
652         sbuf_printf(sb, "RX Registers\n");
653         sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
654         sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
655         sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
656         sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
657         sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
658         sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
659         sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
660
661         sbuf_printf(sb, "TX Registers\n");
662         sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
663         sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
664         sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
665         sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
666         sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
667         sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
668         sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
669         sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
670         sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
671         sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
672         sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
673
674         free(regs_buff, M_DEVBUF);
675
676 #ifdef DUMP_DESCS
677         {
678                 if_softc_ctx_t scctx = adapter->shared;
679                 struct rx_ring *rxr = &rx_que->rxr;
680                 struct tx_ring *txr = &tx_que->txr;
681                 int ntxd = scctx->isc_ntxd[0];
682                 int nrxd = scctx->isc_nrxd[0];
683                 int j;
684
685         for (j = 0; j < nrxd; j++) {
686                 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
687                 u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
688                 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
689         }
690
691         for (j = 0; j < min(ntxd, 256); j++) {
692                 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
693
694                 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
695                             j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
696                             buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
697
698         }
699         }
700 #endif
701
702         rc = sbuf_finish(sb);
703         sbuf_delete(sb);
704         return(rc);
705 }
706
707 static void *
708 em_register(device_t dev)
709 {
710         return (em_sctx);
711 }
712
713 static void *
714 igb_register(device_t dev)
715 {
716         return (igb_sctx);
717 }
718
719 static int
720 em_set_num_queues(if_ctx_t ctx)
721 {
722         struct adapter *adapter = iflib_get_softc(ctx);
723         int maxqueues;
724
725         /* Sanity check based on HW */
726         switch (adapter->hw.mac.type) {
727         case e1000_82576:
728         case e1000_82580:
729         case e1000_i350:
730         case e1000_i354:
731                 maxqueues = 8;
732                 break;
733         case e1000_i210:
734         case e1000_82575:
735                 maxqueues = 4;
736                 break;
737         case e1000_i211:
738         case e1000_82574:
739                 maxqueues = 2;
740                 break;
741         default:
742                 maxqueues = 1;
743                 break;
744         }
745
746         return (maxqueues);
747 }
748
749 #define LEM_CAPS                                                        \
750     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
751     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
752
753 #define EM_CAPS                                                         \
754     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
755     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
756     IFCAP_LRO | IFCAP_VLAN_HWTSO
757
758 #define IGB_CAPS                                                        \
759     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
760     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
761     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
762     IFCAP_TSO6
763
764 /*********************************************************************
765  *  Device initialization routine
766  *
767  *  The attach entry point is called when the driver is being loaded.
768  *  This routine identifies the type of hardware, allocates all resources
769  *  and initializes the hardware.
770  *
771  *  return 0 on success, positive on failure
772  *********************************************************************/
773 static int
774 em_if_attach_pre(if_ctx_t ctx)
775 {
776         struct adapter *adapter;
777         if_softc_ctx_t scctx;
778         device_t dev;
779         struct e1000_hw *hw;
780         int error = 0;
781
782         INIT_DEBUGOUT("em_if_attach_pre: begin");
783         dev = iflib_get_dev(ctx);
784         adapter = iflib_get_softc(ctx);
785
786         adapter->ctx = adapter->osdep.ctx = ctx;
787         adapter->dev = adapter->osdep.dev = dev;
788         scctx = adapter->shared = iflib_get_softc_ctx(ctx);
789         adapter->media = iflib_get_media(ctx);
790         hw = &adapter->hw;
791
792         adapter->tx_process_limit = scctx->isc_ntxd[0];
793
794         /* SYSCTL stuff */
795         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
796             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
797             OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
798             adapter, 0, em_sysctl_nvm_info, "I", "NVM Information");
799
800         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
801             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
802             OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
803             adapter, 0, em_sysctl_debug_info, "I", "Debug Information");
804
805         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
806             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
807             OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
808             adapter, 0, em_set_flowcntl, "I", "Flow Control");
809
810         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
811             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
812             OID_AUTO, "reg_dump",
813             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 0,
814             em_get_regs, "A", "Dump Registers");
815
816         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
817             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
818             OID_AUTO, "rs_dump",
819             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, adapter, 0,
820             em_get_rs, "I", "Dump RS indexes");
821
822         /* Determine hardware and mac info */
823         em_identify_hardware(ctx);
824
825         scctx->isc_tx_nsegments = EM_MAX_SCATTER;
826         scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
827         if (bootverbose)
828                 device_printf(dev, "attach_pre capping queues at %d\n",
829                     scctx->isc_ntxqsets_max);
830
831         if (adapter->hw.mac.type >= igb_mac_min) {
832                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
833                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
834                 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
835                 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
836                 scctx->isc_txrx = &igb_txrx;
837                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
838                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
839                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
840                 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
841                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
842                      CSUM_IP6_TCP | CSUM_IP6_UDP;
843                 if (adapter->hw.mac.type != e1000_82575)
844                         scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
845                 /*
846                 ** Some new devices, as with ixgbe, now may
847                 ** use a different BAR, so we need to keep
848                 ** track of which is used.
849                 */
850                 scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
851                 if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0)
852                         scctx->isc_msix_bar += 4;
853         } else if (adapter->hw.mac.type >= em_mac_min) {
854                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
855                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
856                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
857                 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
858                 scctx->isc_txrx = &em_txrx;
859                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
860                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
861                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
862                 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
863                 /*
864                  * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
865                  * by default as we don't have workarounds for all associated
866                  * silicon errata.  E. g., with several MACs such as 82573E,
867                  * TSO only works at Gigabit speed and otherwise can cause the
868                  * hardware to hang (which also would be next to impossible to
869                  * work around given that already queued TSO-using descriptors
870                  * would need to be flushed and vlan(4) reconfigured at runtime
871                  * in case of a link speed change).  Moreover, MACs like 82579
872                  * still can hang at Gigabit even with all publicly documented
873                  * TSO workarounds implemented.  Generally, the penality of
874                  * these workarounds is rather high and may involve copying
875                  * mbuf data around so advantages of TSO lapse.  Still, TSO may
876                  * work for a few MACs of this class - at least when sticking
877                  * with Gigabit - in which case users may enable TSO manually.
878                  */
879                 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
880                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
881                 /*
882                  * We support MSI-X with 82574 only, but indicate to iflib(4)
883                  * that it shall give MSI at least a try with other devices.
884                  */
885                 if (adapter->hw.mac.type == e1000_82574) {
886                         scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
887                 } else {
888                         scctx->isc_msix_bar = -1;
889                         scctx->isc_disable_msix = 1;
890                 }
891         } else {
892                 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
893                 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
894                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
895                 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
896                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
897                 scctx->isc_txrx = &lem_txrx;
898                 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
899                 if (adapter->hw.mac.type < e1000_82543)
900                         scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
901                 /* INTx only */
902                 scctx->isc_msix_bar = 0;
903         }
904
905         /* Setup PCI resources */
906         if (em_allocate_pci_resources(ctx)) {
907                 device_printf(dev, "Allocation of PCI resources failed\n");
908                 error = ENXIO;
909                 goto err_pci;
910         }
911
912         /*
913         ** For ICH8 and family we need to
914         ** map the flash memory, and this
915         ** must happen after the MAC is
916         ** identified
917         */
918         if ((hw->mac.type == e1000_ich8lan) ||
919             (hw->mac.type == e1000_ich9lan) ||
920             (hw->mac.type == e1000_ich10lan) ||
921             (hw->mac.type == e1000_pchlan) ||
922             (hw->mac.type == e1000_pch2lan) ||
923             (hw->mac.type == e1000_pch_lpt)) {
924                 int rid = EM_BAR_TYPE_FLASH;
925                 adapter->flash = bus_alloc_resource_any(dev,
926                     SYS_RES_MEMORY, &rid, RF_ACTIVE);
927                 if (adapter->flash == NULL) {
928                         device_printf(dev, "Mapping of Flash failed\n");
929                         error = ENXIO;
930                         goto err_pci;
931                 }
932                 /* This is used in the shared code */
933                 hw->flash_address = (u8 *)adapter->flash;
934                 adapter->osdep.flash_bus_space_tag =
935                     rman_get_bustag(adapter->flash);
936                 adapter->osdep.flash_bus_space_handle =
937                     rman_get_bushandle(adapter->flash);
938         }
939         /*
940         ** In the new SPT device flash is not  a
941         ** separate BAR, rather it is also in BAR0,
942         ** so use the same tag and an offset handle for the
943         ** FLASH read/write macros in the shared code.
944         */
945         else if (hw->mac.type >= e1000_pch_spt) {
946                 adapter->osdep.flash_bus_space_tag =
947                     adapter->osdep.mem_bus_space_tag;
948                 adapter->osdep.flash_bus_space_handle =
949                     adapter->osdep.mem_bus_space_handle
950                     + E1000_FLASH_BASE_ADDR;
951         }
952
953         /* Do Shared Code initialization */
954         error = e1000_setup_init_funcs(hw, TRUE);
955         if (error) {
956                 device_printf(dev, "Setup of Shared code failed, error %d\n",
957                     error);
958                 error = ENXIO;
959                 goto err_pci;
960         }
961
962         em_setup_msix(ctx);
963         e1000_get_bus_info(hw);
964
965         /* Set up some sysctls for the tunable interrupt delays */
966         em_add_int_delay_sysctl(adapter, "rx_int_delay",
967             "receive interrupt delay in usecs", &adapter->rx_int_delay,
968             E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
969         em_add_int_delay_sysctl(adapter, "tx_int_delay",
970             "transmit interrupt delay in usecs", &adapter->tx_int_delay,
971             E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
972         em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
973             "receive interrupt delay limit in usecs",
974             &adapter->rx_abs_int_delay,
975             E1000_REGISTER(hw, E1000_RADV),
976             em_rx_abs_int_delay_dflt);
977         em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
978             "transmit interrupt delay limit in usecs",
979             &adapter->tx_abs_int_delay,
980             E1000_REGISTER(hw, E1000_TADV),
981             em_tx_abs_int_delay_dflt);
982         em_add_int_delay_sysctl(adapter, "itr",
983             "interrupt delay limit in usecs/4",
984             &adapter->tx_itr,
985             E1000_REGISTER(hw, E1000_ITR),
986             DEFAULT_ITR);
987
988         hw->mac.autoneg = DO_AUTO_NEG;
989         hw->phy.autoneg_wait_to_complete = FALSE;
990         hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
991
992         if (adapter->hw.mac.type < em_mac_min) {
993                 e1000_init_script_state_82541(&adapter->hw, TRUE);
994                 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
995         }
996         /* Copper options */
997         if (hw->phy.media_type == e1000_media_type_copper) {
998                 hw->phy.mdix = AUTO_ALL_MODES;
999                 hw->phy.disable_polarity_correction = FALSE;
1000                 hw->phy.ms_type = EM_MASTER_SLAVE;
1001         }
1002
1003         /*
1004          * Set the frame limits assuming
1005          * standard ethernet sized frames.
1006          */
1007         scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1008             ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1009
1010         /*
1011          * This controls when hardware reports transmit completion
1012          * status.
1013          */
1014         hw->mac.report_tx_early = 1;
1015
1016         /* Allocate multicast array memory. */
1017         adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1018             MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1019         if (adapter->mta == NULL) {
1020                 device_printf(dev, "Can not allocate multicast setup array\n");
1021                 error = ENOMEM;
1022                 goto err_late;
1023         }
1024
1025         /* Check SOL/IDER usage */
1026         if (e1000_check_reset_block(hw))
1027                 device_printf(dev, "PHY reset is blocked"
1028                               " due to SOL/IDER session.\n");
1029
1030         /* Sysctl for setting Energy Efficient Ethernet */
1031         hw->dev_spec.ich8lan.eee_disable = eee_setting;
1032         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1033             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1034             OID_AUTO, "eee_control",
1035             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1036             adapter, 0, em_sysctl_eee, "I",
1037             "Disable Energy Efficient Ethernet");
1038
1039         /*
1040         ** Start from a known state, this is
1041         ** important in reading the nvm and
1042         ** mac from that.
1043         */
1044         e1000_reset_hw(hw);
1045
1046         /* Make sure we have a good EEPROM before we read from it */
1047         if (e1000_validate_nvm_checksum(hw) < 0) {
1048                 /*
1049                 ** Some PCI-E parts fail the first check due to
1050                 ** the link being in sleep state, call it again,
1051                 ** if it fails a second time its a real issue.
1052                 */
1053                 if (e1000_validate_nvm_checksum(hw) < 0) {
1054                         device_printf(dev,
1055                             "The EEPROM Checksum Is Not Valid\n");
1056                         error = EIO;
1057                         goto err_late;
1058                 }
1059         }
1060
1061         /* Copy the permanent MAC address out of the EEPROM */
1062         if (e1000_read_mac_addr(hw) < 0) {
1063                 device_printf(dev, "EEPROM read error while reading MAC"
1064                               " address\n");
1065                 error = EIO;
1066                 goto err_late;
1067         }
1068
1069         if (!em_is_valid_ether_addr(hw->mac.addr)) {
1070                 device_printf(dev, "Invalid MAC address\n");
1071                 error = EIO;
1072                 goto err_late;
1073         }
1074
1075         /* Disable ULP support */
1076         e1000_disable_ulp_lpt_lp(hw, TRUE);
1077
1078         /*
1079          * Get Wake-on-Lan and Management info for later use
1080          */
1081         em_get_wakeup(ctx);
1082
1083         /* Enable only WOL MAGIC by default */
1084         scctx->isc_capenable &= ~IFCAP_WOL;
1085         if (adapter->wol != 0)
1086                 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1087
1088         iflib_set_mac(ctx, hw->mac.addr);
1089
1090         return (0);
1091
1092 err_late:
1093         em_release_hw_control(adapter);
1094 err_pci:
1095         em_free_pci_resources(ctx);
1096         free(adapter->mta, M_DEVBUF);
1097
1098         return (error);
1099 }
1100
1101 static int
1102 em_if_attach_post(if_ctx_t ctx)
1103 {
1104         struct adapter *adapter = iflib_get_softc(ctx);
1105         struct e1000_hw *hw = &adapter->hw;
1106         int error = 0;
1107         
1108         /* Setup OS specific network interface */
1109         error = em_setup_interface(ctx);
1110         if (error != 0) {
1111                 goto err_late;
1112         }
1113
1114         em_reset(ctx);
1115
1116         /* Initialize statistics */
1117         em_update_stats_counters(adapter);
1118         hw->mac.get_link_status = 1;
1119         em_if_update_admin_status(ctx);
1120         em_add_hw_stats(adapter);
1121
1122         /* Non-AMT based hardware can now take control from firmware */
1123         if (adapter->has_manage && !adapter->has_amt)
1124                 em_get_hw_control(adapter);
1125
1126         INIT_DEBUGOUT("em_if_attach_post: end");
1127
1128         return (error);
1129
1130 err_late:
1131         em_release_hw_control(adapter);
1132         em_free_pci_resources(ctx);
1133         em_if_queues_free(ctx);
1134         free(adapter->mta, M_DEVBUF);
1135
1136         return (error);
1137 }
1138
1139 /*********************************************************************
1140  *  Device removal routine
1141  *
1142  *  The detach entry point is called when the driver is being removed.
1143  *  This routine stops the adapter and deallocates all the resources
1144  *  that were allocated for driver operation.
1145  *
1146  *  return 0 on success, positive on failure
1147  *********************************************************************/
1148 static int
1149 em_if_detach(if_ctx_t ctx)
1150 {
1151         struct adapter  *adapter = iflib_get_softc(ctx);
1152
1153         INIT_DEBUGOUT("em_if_detach: begin");
1154
1155         e1000_phy_hw_reset(&adapter->hw);
1156
1157         em_release_manageability(adapter);
1158         em_release_hw_control(adapter);
1159         em_free_pci_resources(ctx);
1160
1161         return (0);
1162 }
1163
1164 /*********************************************************************
1165  *
1166  *  Shutdown entry point
1167  *
1168  **********************************************************************/
1169
1170 static int
1171 em_if_shutdown(if_ctx_t ctx)
1172 {
1173         return em_if_suspend(ctx);
1174 }
1175
1176 /*
1177  * Suspend/resume device methods.
1178  */
1179 static int
1180 em_if_suspend(if_ctx_t ctx)
1181 {
1182         struct adapter *adapter = iflib_get_softc(ctx);
1183
1184         em_release_manageability(adapter);
1185         em_release_hw_control(adapter);
1186         em_enable_wakeup(ctx);
1187         return (0);
1188 }
1189
1190 static int
1191 em_if_resume(if_ctx_t ctx)
1192 {
1193         struct adapter *adapter = iflib_get_softc(ctx);
1194
1195         if (adapter->hw.mac.type == e1000_pch2lan)
1196                 e1000_resume_workarounds_pchlan(&adapter->hw);
1197         em_if_init(ctx);
1198         em_init_manageability(adapter);
1199
1200         return(0);
1201 }
1202
1203 static int
1204 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1205 {
1206         int max_frame_size;
1207         struct adapter *adapter = iflib_get_softc(ctx);
1208         if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1209
1210          IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1211
1212         switch (adapter->hw.mac.type) {
1213         case e1000_82571:
1214         case e1000_82572:
1215         case e1000_ich9lan:
1216         case e1000_ich10lan:
1217         case e1000_pch2lan:
1218         case e1000_pch_lpt:
1219         case e1000_pch_spt:
1220         case e1000_pch_cnp:
1221         case e1000_82574:
1222         case e1000_82583:
1223         case e1000_80003es2lan:
1224                 /* 9K Jumbo Frame size */
1225                 max_frame_size = 9234;
1226                 break;
1227         case e1000_pchlan:
1228                 max_frame_size = 4096;
1229                 break;
1230         case e1000_82542:
1231         case e1000_ich8lan:
1232                 /* Adapters that do not support jumbo frames */
1233                 max_frame_size = ETHER_MAX_LEN;
1234                 break;
1235         default:
1236                 if (adapter->hw.mac.type >= igb_mac_min)
1237                         max_frame_size = 9234;
1238                 else /* lem */
1239                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
1240         }
1241         if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1242                 return (EINVAL);
1243         }
1244
1245         scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1246             mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1247         return (0);
1248 }
1249
1250 /*********************************************************************
1251  *  Init entry point
1252  *
1253  *  This routine is used in two ways. It is used by the stack as
1254  *  init entry point in network interface structure. It is also used
1255  *  by the driver as a hw/sw initialization routine to get to a
1256  *  consistent state.
1257  *
1258  **********************************************************************/
1259 static void
1260 em_if_init(if_ctx_t ctx)
1261 {
1262         struct adapter *adapter = iflib_get_softc(ctx);
1263         if_softc_ctx_t scctx = adapter->shared;
1264         struct ifnet *ifp = iflib_get_ifp(ctx);
1265         struct em_tx_queue *tx_que;
1266         int i;
1267
1268         INIT_DEBUGOUT("em_if_init: begin");
1269
1270         /* Get the latest mac address, User can use a LAA */
1271         bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1272             ETHER_ADDR_LEN);
1273
1274         /* Put the address into the Receive Address Array */
1275         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1276
1277         /*
1278          * With the 82571 adapter, RAR[0] may be overwritten
1279          * when the other port is reset, we make a duplicate
1280          * in RAR[14] for that eventuality, this assures
1281          * the interface continues to function.
1282          */
1283         if (adapter->hw.mac.type == e1000_82571) {
1284                 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1285                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1286                     E1000_RAR_ENTRIES - 1);
1287         }
1288
1289
1290         /* Initialize the hardware */
1291         em_reset(ctx);
1292         em_if_update_admin_status(ctx);
1293
1294         for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1295                 struct tx_ring *txr = &tx_que->txr;
1296
1297                 txr->tx_rs_cidx = txr->tx_rs_pidx;
1298
1299                 /* Initialize the last processed descriptor to be the end of
1300                  * the ring, rather than the start, so that we avoid an
1301                  * off-by-one error when calculating how many descriptors are
1302                  * done in the credits_update function.
1303                  */
1304                 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1305         }
1306
1307         /* Setup VLAN support, basic and offload if available */
1308         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1309
1310         /* Clear bad data from Rx FIFOs */
1311         if (adapter->hw.mac.type >= igb_mac_min)
1312                 e1000_rx_fifo_flush_82575(&adapter->hw);
1313
1314         /* Configure for OS presence */
1315         em_init_manageability(adapter);
1316
1317         /* Prepare transmit descriptors and buffers */
1318         em_initialize_transmit_unit(ctx);
1319
1320         /* Setup Multicast table */
1321         em_if_multi_set(ctx);
1322
1323         adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1324         em_initialize_receive_unit(ctx);
1325
1326         /* Use real VLAN Filter support? */
1327         if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1328                 if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1329                         /* Use real VLAN Filter support */
1330                         em_setup_vlan_hw_support(adapter);
1331                 else {
1332                         u32 ctrl;
1333                         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1334                         ctrl |= E1000_CTRL_VME;
1335                         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1336                 }
1337         } else {
1338                 u32 ctrl;
1339                 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1340                 ctrl &= ~E1000_CTRL_VME;
1341                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1342         }
1343
1344         /* Don't lose promiscuous settings */
1345         em_if_set_promisc(ctx, if_getflags(ifp));
1346         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1347
1348         /* MSI-X configuration for 82574 */
1349         if (adapter->hw.mac.type == e1000_82574) {
1350                 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1351
1352                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1353                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1354                 /* Set the IVAR - interrupt vector routing. */
1355                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1356         } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1357                 igb_configure_queues(adapter);
1358
1359         /* this clears any pending interrupts */
1360         E1000_READ_REG(&adapter->hw, E1000_ICR);
1361         E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1362
1363         /* AMT based hardware can now take control from firmware */
1364         if (adapter->has_manage && adapter->has_amt)
1365                 em_get_hw_control(adapter);
1366
1367         /* Set Energy Efficient Ethernet */
1368         if (adapter->hw.mac.type >= igb_mac_min &&
1369             adapter->hw.phy.media_type == e1000_media_type_copper) {
1370                 if (adapter->hw.mac.type == e1000_i354)
1371                         e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1372                 else
1373                         e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1374         }
1375 }
1376
1377 /*********************************************************************
1378  *
1379  *  Fast Legacy/MSI Combined Interrupt Service routine
1380  *
1381  *********************************************************************/
1382 int
1383 em_intr(void *arg)
1384 {
1385         struct adapter *adapter = arg;
1386         if_ctx_t ctx = adapter->ctx;
1387         u32 reg_icr;
1388
1389         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1390
1391         /* Hot eject? */
1392         if (reg_icr == 0xffffffff)
1393                 return FILTER_STRAY;
1394
1395         /* Definitely not our interrupt. */
1396         if (reg_icr == 0x0)
1397                 return FILTER_STRAY;
1398
1399         /*
1400          * Starting with the 82571 chip, bit 31 should be used to
1401          * determine whether the interrupt belongs to us.
1402          */
1403         if (adapter->hw.mac.type >= e1000_82571 &&
1404             (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1405                 return FILTER_STRAY;
1406
1407         /*
1408          * Only MSI-X interrupts have one-shot behavior by taking advantage
1409          * of the EIAC register.  Thus, explicitly disable interrupts.  This
1410          * also works around the MSI message reordering errata on certain
1411          * systems.
1412          */
1413         IFDI_INTR_DISABLE(ctx);
1414
1415         /* Link status change */
1416         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1417                 em_handle_link(ctx);
1418
1419         if (reg_icr & E1000_ICR_RXO)
1420                 adapter->rx_overruns++;
1421
1422         return (FILTER_SCHEDULE_THREAD);
1423 }
1424
1425 static int
1426 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1427 {
1428         struct adapter *adapter = iflib_get_softc(ctx);
1429         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1430
1431         E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1432         return (0);
1433 }
1434
1435 static int
1436 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1437 {
1438         struct adapter *adapter = iflib_get_softc(ctx);
1439         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1440
1441         E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1442         return (0);
1443 }
1444
1445 static int
1446 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1447 {
1448         struct adapter *adapter = iflib_get_softc(ctx);
1449         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1450
1451         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1452         return (0);
1453 }
1454
1455 static int
1456 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1457 {
1458         struct adapter *adapter = iflib_get_softc(ctx);
1459         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1460
1461         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1462         return (0);
1463 }
1464
1465 /*********************************************************************
1466  *
1467  *  MSI-X RX Interrupt Service routine
1468  *
1469  **********************************************************************/
1470 static int
1471 em_msix_que(void *arg)
1472 {
1473         struct em_rx_queue *que = arg;
1474
1475         ++que->irqs;
1476
1477         return (FILTER_SCHEDULE_THREAD);
1478 }
1479
1480 /*********************************************************************
1481  *
1482  *  MSI-X Link Fast Interrupt Service routine
1483  *
1484  **********************************************************************/
1485 static int
1486 em_msix_link(void *arg)
1487 {
1488         struct adapter *adapter = arg;
1489         u32 reg_icr;
1490
1491         ++adapter->link_irq;
1492         MPASS(adapter->hw.back != NULL);
1493         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1494
1495         if (reg_icr & E1000_ICR_RXO)
1496                 adapter->rx_overruns++;
1497
1498         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1499                 em_handle_link(adapter->ctx);
1500         } else if (adapter->hw.mac.type == e1000_82574) {
1501                 /* Only re-arm 82574 if em_if_update_admin_status() won't. */
1502                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1503                     E1000_IMS_LSC);
1504         }
1505
1506         if (adapter->hw.mac.type == e1000_82574) {
1507                 /*
1508                  * Because we must read the ICR for this interrupt it may
1509                  * clear other causes using autoclear, for this reason we
1510                  * simply create a soft interrupt for all these vectors.
1511                  */
1512                 if (reg_icr)
1513                         E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims);
1514         } else {
1515                 /* Re-arm unconditionally */
1516                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1517                 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1518         }
1519
1520         return (FILTER_HANDLED);
1521 }
1522
1523 static void
1524 em_handle_link(void *context)
1525 {
1526         if_ctx_t ctx = context;
1527         struct adapter *adapter = iflib_get_softc(ctx);
1528
1529         adapter->hw.mac.get_link_status = 1;
1530         iflib_admin_intr_deferred(ctx);
1531 }
1532
1533 /*********************************************************************
1534  *
1535  *  Media Ioctl callback
1536  *
1537  *  This routine is called whenever the user queries the status of
1538  *  the interface using ifconfig.
1539  *
1540  **********************************************************************/
1541 static void
1542 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1543 {
1544         struct adapter *adapter = iflib_get_softc(ctx);
1545         u_char fiber_type = IFM_1000_SX;
1546
1547         INIT_DEBUGOUT("em_if_media_status: begin");
1548
1549         iflib_admin_intr_deferred(ctx);
1550
1551         ifmr->ifm_status = IFM_AVALID;
1552         ifmr->ifm_active = IFM_ETHER;
1553
1554         if (!adapter->link_active) {
1555                 return;
1556         }
1557
1558         ifmr->ifm_status |= IFM_ACTIVE;
1559
1560         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1561             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1562                 if (adapter->hw.mac.type == e1000_82545)
1563                         fiber_type = IFM_1000_LX;
1564                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1565         } else {
1566                 switch (adapter->link_speed) {
1567                 case 10:
1568                         ifmr->ifm_active |= IFM_10_T;
1569                         break;
1570                 case 100:
1571                         ifmr->ifm_active |= IFM_100_TX;
1572                         break;
1573                 case 1000:
1574                         ifmr->ifm_active |= IFM_1000_T;
1575                         break;
1576                 }
1577                 if (adapter->link_duplex == FULL_DUPLEX)
1578                         ifmr->ifm_active |= IFM_FDX;
1579                 else
1580                         ifmr->ifm_active |= IFM_HDX;
1581         }
1582 }
1583
1584 /*********************************************************************
1585  *
1586  *  Media Ioctl callback
1587  *
1588  *  This routine is called when the user changes speed/duplex using
1589  *  media/mediopt option with ifconfig.
1590  *
1591  **********************************************************************/
1592 static int
1593 em_if_media_change(if_ctx_t ctx)
1594 {
1595         struct adapter *adapter = iflib_get_softc(ctx);
1596         struct ifmedia *ifm = iflib_get_media(ctx);
1597
1598         INIT_DEBUGOUT("em_if_media_change: begin");
1599
1600         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1601                 return (EINVAL);
1602
1603         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1604         case IFM_AUTO:
1605                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1606                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1607                 break;
1608         case IFM_1000_LX:
1609         case IFM_1000_SX:
1610         case IFM_1000_T:
1611                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1612                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1613                 break;
1614         case IFM_100_TX:
1615                 adapter->hw.mac.autoneg = FALSE;
1616                 adapter->hw.phy.autoneg_advertised = 0;
1617                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1618                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1619                 else
1620                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1621                 break;
1622         case IFM_10_T:
1623                 adapter->hw.mac.autoneg = FALSE;
1624                 adapter->hw.phy.autoneg_advertised = 0;
1625                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1626                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1627                 else
1628                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1629                 break;
1630         default:
1631                 device_printf(adapter->dev, "Unsupported media type\n");
1632         }
1633
1634         em_if_init(ctx);
1635
1636         return (0);
1637 }
1638
1639 static int
1640 em_if_set_promisc(if_ctx_t ctx, int flags)
1641 {
1642         struct adapter *adapter = iflib_get_softc(ctx);
1643         u32 reg_rctl;
1644
1645         em_disable_promisc(ctx);
1646
1647         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1648
1649         if (flags & IFF_PROMISC) {
1650                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1651                 /* Turn this on if you want to see bad packets */
1652                 if (em_debug_sbp)
1653                         reg_rctl |= E1000_RCTL_SBP;
1654                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1655         } else if (flags & IFF_ALLMULTI) {
1656                 reg_rctl |= E1000_RCTL_MPE;
1657                 reg_rctl &= ~E1000_RCTL_UPE;
1658                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1659         }
1660         return (0);
1661 }
1662
1663 static void
1664 em_disable_promisc(if_ctx_t ctx)
1665 {
1666         struct adapter *adapter = iflib_get_softc(ctx);
1667         struct ifnet *ifp = iflib_get_ifp(ctx);
1668         u32 reg_rctl;
1669         int mcnt = 0;
1670
1671         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1672         reg_rctl &= (~E1000_RCTL_UPE);
1673         if (if_getflags(ifp) & IFF_ALLMULTI)
1674                 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1675         else
1676                 mcnt = if_llmaddr_count(ifp);
1677         /* Don't disable if in MAX groups */
1678         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1679                 reg_rctl &=  (~E1000_RCTL_MPE);
1680         reg_rctl &=  (~E1000_RCTL_SBP);
1681         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1682 }
1683
1684
1685 static u_int
1686 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1687 {
1688         u8 *mta = arg;
1689
1690         if (cnt == MAX_NUM_MULTICAST_ADDRESSES)
1691                 return (1);
1692
1693         bcopy(LLADDR(sdl), &mta[cnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1694
1695         return (1);
1696 }
1697
1698 /*********************************************************************
1699  *  Multicast Update
1700  *
1701  *  This routine is called whenever multicast address list is updated.
1702  *
1703  **********************************************************************/
1704
1705 static void
1706 em_if_multi_set(if_ctx_t ctx)
1707 {
1708         struct adapter *adapter = iflib_get_softc(ctx);
1709         struct ifnet *ifp = iflib_get_ifp(ctx);
1710         u32 reg_rctl = 0;
1711         u8  *mta; /* Multicast array memory */
1712         int mcnt = 0;
1713
1714         IOCTL_DEBUGOUT("em_set_multi: begin");
1715
1716         mta = adapter->mta;
1717         bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1718
1719         if (adapter->hw.mac.type == e1000_82542 &&
1720             adapter->hw.revision_id == E1000_REVISION_2) {
1721                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1722                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1723                         e1000_pci_clear_mwi(&adapter->hw);
1724                 reg_rctl |= E1000_RCTL_RST;
1725                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1726                 msec_delay(5);
1727         }
1728
1729         mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1730
1731         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1732                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1733                 reg_rctl |= E1000_RCTL_MPE;
1734                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1735         } else
1736                 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1737
1738         if (adapter->hw.mac.type == e1000_82542 &&
1739             adapter->hw.revision_id == E1000_REVISION_2) {
1740                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1741                 reg_rctl &= ~E1000_RCTL_RST;
1742                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1743                 msec_delay(5);
1744                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1745                         e1000_pci_set_mwi(&adapter->hw);
1746         }
1747 }
1748
1749 /*********************************************************************
1750  *  Timer routine
1751  *
1752  *  This routine schedules em_if_update_admin_status() to check for
1753  *  link status and to gather statistics as well as to perform some
1754  *  controller-specific hardware patting.
1755  *
1756  **********************************************************************/
1757 static void
1758 em_if_timer(if_ctx_t ctx, uint16_t qid)
1759 {
1760
1761         if (qid != 0)
1762                 return;
1763
1764         iflib_admin_intr_deferred(ctx);
1765 }
1766
1767 static void
1768 em_if_update_admin_status(if_ctx_t ctx)
1769 {
1770         struct adapter *adapter = iflib_get_softc(ctx);
1771         struct e1000_hw *hw = &adapter->hw;
1772         device_t dev = iflib_get_dev(ctx);
1773         u32 link_check, thstat, ctrl;
1774
1775         link_check = thstat = ctrl = 0;
1776         /* Get the cached link value or read phy for real */
1777         switch (hw->phy.media_type) {
1778         case e1000_media_type_copper:
1779                 if (hw->mac.get_link_status) {
1780                         if (hw->mac.type == e1000_pch_spt)
1781                                 msec_delay(50);
1782                         /* Do the work to read phy */
1783                         e1000_check_for_link(hw);
1784                         link_check = !hw->mac.get_link_status;
1785                         if (link_check) /* ESB2 fix */
1786                                 e1000_cfg_on_link_up(hw);
1787                 } else {
1788                         link_check = TRUE;
1789                 }
1790                 break;
1791         case e1000_media_type_fiber:
1792                 e1000_check_for_link(hw);
1793                 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1794                             E1000_STATUS_LU);
1795                 break;
1796         case e1000_media_type_internal_serdes:
1797                 e1000_check_for_link(hw);
1798                 link_check = adapter->hw.mac.serdes_has_link;
1799                 break;
1800         /* VF device is type_unknown */
1801         case e1000_media_type_unknown:
1802                 e1000_check_for_link(hw);
1803                 link_check = !hw->mac.get_link_status;
1804                 /* FALLTHROUGH */
1805         default:
1806                 break;
1807         }
1808
1809         /* Check for thermal downshift or shutdown */
1810         if (hw->mac.type == e1000_i350) {
1811                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1812                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1813         }
1814
1815         /* Now check for a transition */
1816         if (link_check && (adapter->link_active == 0)) {
1817                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1818                     &adapter->link_duplex);
1819                 /* Check if we must disable SPEED_MODE bit on PCI-E */
1820                 if ((adapter->link_speed != SPEED_1000) &&
1821                     ((hw->mac.type == e1000_82571) ||
1822                     (hw->mac.type == e1000_82572))) {
1823                         int tarc0;
1824                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1825                         tarc0 &= ~TARC_SPEED_MODE_BIT;
1826                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1827                 }
1828                 if (bootverbose)
1829                         device_printf(dev, "Link is up %d Mbps %s\n",
1830                             adapter->link_speed,
1831                             ((adapter->link_duplex == FULL_DUPLEX) ?
1832                             "Full Duplex" : "Half Duplex"));
1833                 adapter->link_active = 1;
1834                 adapter->smartspeed = 0;
1835                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1836                     E1000_CTRL_EXT_LINK_MODE_GMII &&
1837                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1838                         device_printf(dev, "Link: thermal downshift\n");
1839                 /* Delay Link Up for Phy update */
1840                 if (((hw->mac.type == e1000_i210) ||
1841                     (hw->mac.type == e1000_i211)) &&
1842                     (hw->phy.id == I210_I_PHY_ID))
1843                         msec_delay(I210_LINK_DELAY);
1844                 /* Reset if the media type changed. */
1845                 if ((hw->dev_spec._82575.media_changed) &&
1846                         (adapter->hw.mac.type >= igb_mac_min)) {
1847                         hw->dev_spec._82575.media_changed = false;
1848                         adapter->flags |= IGB_MEDIA_RESET;
1849                         em_reset(ctx);
1850                 }
1851                 iflib_link_state_change(ctx, LINK_STATE_UP,
1852                     IF_Mbps(adapter->link_speed));
1853         } else if (!link_check && (adapter->link_active == 1)) {
1854                 adapter->link_speed = 0;
1855                 adapter->link_duplex = 0;
1856                 adapter->link_active = 0;
1857                 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1858         }
1859         em_update_stats_counters(adapter);
1860
1861         /* Reset LAA into RAR[0] on 82571 */
1862         if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1863                 e1000_rar_set(hw, hw->mac.addr, 0);
1864
1865         if (hw->mac.type < em_mac_min)
1866                 lem_smartspeed(adapter);
1867         else if (hw->mac.type == e1000_82574 &&
1868             adapter->intr_type == IFLIB_INTR_MSIX)
1869                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1870                     E1000_IMS_LSC);
1871 }
1872
1873 static void
1874 em_if_watchdog_reset(if_ctx_t ctx)
1875 {
1876         struct adapter *adapter = iflib_get_softc(ctx);
1877
1878         /*
1879          * Just count the event; iflib(4) will already trigger a
1880          * sufficient reset of the controller.
1881          */
1882         adapter->watchdog_events++;
1883 }
1884
1885 /*********************************************************************
1886  *
1887  *  This routine disables all traffic on the adapter by issuing a
1888  *  global reset on the MAC.
1889  *
1890  **********************************************************************/
1891 static void
1892 em_if_stop(if_ctx_t ctx)
1893 {
1894         struct adapter *adapter = iflib_get_softc(ctx);
1895
1896         INIT_DEBUGOUT("em_if_stop: begin");
1897
1898         e1000_reset_hw(&adapter->hw);
1899         if (adapter->hw.mac.type >= e1000_82544)
1900                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1901
1902         e1000_led_off(&adapter->hw);
1903         e1000_cleanup_led(&adapter->hw);
1904 }
1905
1906 /*********************************************************************
1907  *
1908  *  Determine hardware revision.
1909  *
1910  **********************************************************************/
1911 static void
1912 em_identify_hardware(if_ctx_t ctx)
1913 {
1914         device_t dev = iflib_get_dev(ctx);
1915         struct adapter *adapter = iflib_get_softc(ctx);
1916
1917         /* Make sure our PCI config space has the necessary stuff set */
1918         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1919
1920         /* Save off the information about this board */
1921         adapter->hw.vendor_id = pci_get_vendor(dev);
1922         adapter->hw.device_id = pci_get_device(dev);
1923         adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1924         adapter->hw.subsystem_vendor_id =
1925             pci_read_config(dev, PCIR_SUBVEND_0, 2);
1926         adapter->hw.subsystem_device_id =
1927             pci_read_config(dev, PCIR_SUBDEV_0, 2);
1928
1929         /* Do Shared Code Init and Setup */
1930         if (e1000_set_mac_type(&adapter->hw)) {
1931                 device_printf(dev, "Setup init failure\n");
1932                 return;
1933         }
1934 }
1935
1936 static int
1937 em_allocate_pci_resources(if_ctx_t ctx)
1938 {
1939         struct adapter *adapter = iflib_get_softc(ctx);
1940         device_t dev = iflib_get_dev(ctx);
1941         int rid, val;
1942
1943         rid = PCIR_BAR(0);
1944         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1945             &rid, RF_ACTIVE);
1946         if (adapter->memory == NULL) {
1947                 device_printf(dev, "Unable to allocate bus resource: memory\n");
1948                 return (ENXIO);
1949         }
1950         adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1951         adapter->osdep.mem_bus_space_handle =
1952             rman_get_bushandle(adapter->memory);
1953         adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1954
1955         /* Only older adapters use IO mapping */
1956         if (adapter->hw.mac.type < em_mac_min &&
1957             adapter->hw.mac.type > e1000_82543) {
1958                 /* Figure our where our IO BAR is ? */
1959                 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1960                         val = pci_read_config(dev, rid, 4);
1961                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1962                                 break;
1963                         }
1964                         rid += 4;
1965                         /* check for 64bit BAR */
1966                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1967                                 rid += 4;
1968                 }
1969                 if (rid >= PCIR_CIS) {
1970                         device_printf(dev, "Unable to locate IO BAR\n");
1971                         return (ENXIO);
1972                 }
1973                 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1974                     &rid, RF_ACTIVE);
1975                 if (adapter->ioport == NULL) {
1976                         device_printf(dev, "Unable to allocate bus resource: "
1977                             "ioport\n");
1978                         return (ENXIO);
1979                 }
1980                 adapter->hw.io_base = 0;
1981                 adapter->osdep.io_bus_space_tag =
1982                     rman_get_bustag(adapter->ioport);
1983                 adapter->osdep.io_bus_space_handle =
1984                     rman_get_bushandle(adapter->ioport);
1985         }
1986
1987         adapter->hw.back = &adapter->osdep;
1988
1989         return (0);
1990 }
1991
1992 /*********************************************************************
1993  *
1994  *  Set up the MSI-X Interrupt handlers
1995  *
1996  **********************************************************************/
1997 static int
1998 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1999 {
2000         struct adapter *adapter = iflib_get_softc(ctx);
2001         struct em_rx_queue *rx_que = adapter->rx_queues;
2002         struct em_tx_queue *tx_que = adapter->tx_queues;
2003         int error, rid, i, vector = 0, rx_vectors;
2004         char buf[16];
2005
2006         /* First set up ring resources */
2007         for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
2008                 rid = vector + 1;
2009                 snprintf(buf, sizeof(buf), "rxq%d", i);
2010                 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2011                 if (error) {
2012                         device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2013                         adapter->rx_num_queues = i + 1;
2014                         goto fail;
2015                 }
2016
2017                 rx_que->msix =  vector;
2018
2019                 /*
2020                  * Set the bit to enable interrupt
2021                  * in E1000_IMS -- bits 20 and 21
2022                  * are for RX0 and RX1, note this has
2023                  * NOTHING to do with the MSI-X vector
2024                  */
2025                 if (adapter->hw.mac.type == e1000_82574) {
2026                         rx_que->eims = 1 << (20 + i);
2027                         adapter->ims |= rx_que->eims;
2028                         adapter->ivars |= (8 | rx_que->msix) << (i * 4);
2029                 } else if (adapter->hw.mac.type == e1000_82575)
2030                         rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2031                 else
2032                         rx_que->eims = 1 << vector;
2033         }
2034         rx_vectors = vector;
2035
2036         vector = 0;
2037         for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
2038                 snprintf(buf, sizeof(buf), "txq%d", i);
2039                 tx_que = &adapter->tx_queues[i];
2040                 iflib_softirq_alloc_generic(ctx,
2041                     &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
2042                     IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2043
2044                 tx_que->msix = (vector % adapter->rx_num_queues);
2045
2046                 /*
2047                  * Set the bit to enable interrupt
2048                  * in E1000_IMS -- bits 22 and 23
2049                  * are for TX0 and TX1, note this has
2050                  * NOTHING to do with the MSI-X vector
2051                  */
2052                 if (adapter->hw.mac.type == e1000_82574) {
2053                         tx_que->eims = 1 << (22 + i);
2054                         adapter->ims |= tx_que->eims;
2055                         adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2056                 } else if (adapter->hw.mac.type == e1000_82575) {
2057                         tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2058                 } else {
2059                         tx_que->eims = 1 << i;
2060                 }
2061         }
2062
2063         /* Link interrupt */
2064         rid = rx_vectors + 1;
2065         error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2066
2067         if (error) {
2068                 device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2069                 goto fail;
2070         }
2071         adapter->linkvec = rx_vectors;
2072         if (adapter->hw.mac.type < igb_mac_min) {
2073                 adapter->ivars |=  (8 | rx_vectors) << 16;
2074                 adapter->ivars |= 0x80000000;
2075         }
2076         return (0);
2077 fail:
2078         iflib_irq_free(ctx, &adapter->irq);
2079         rx_que = adapter->rx_queues;
2080         for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2081                 iflib_irq_free(ctx, &rx_que->que_irq);
2082         return (error);
2083 }
2084
2085 static void
2086 igb_configure_queues(struct adapter *adapter)
2087 {
2088         struct e1000_hw *hw = &adapter->hw;
2089         struct em_rx_queue *rx_que;
2090         struct em_tx_queue *tx_que;
2091         u32 tmp, ivar = 0, newitr = 0;
2092
2093         /* First turn on RSS capability */
2094         if (adapter->hw.mac.type != e1000_82575)
2095                 E1000_WRITE_REG(hw, E1000_GPIE,
2096                     E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2097                     E1000_GPIE_PBA | E1000_GPIE_NSICR);
2098
2099         /* Turn on MSI-X */
2100         switch (adapter->hw.mac.type) {
2101         case e1000_82580:
2102         case e1000_i350:
2103         case e1000_i354:
2104         case e1000_i210:
2105         case e1000_i211:
2106         case e1000_vfadapt:
2107         case e1000_vfadapt_i350:
2108                 /* RX entries */
2109                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2110                         u32 index = i >> 1;
2111                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2112                         rx_que = &adapter->rx_queues[i];
2113                         if (i & 1) {
2114                                 ivar &= 0xFF00FFFF;
2115                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2116                         } else {
2117                                 ivar &= 0xFFFFFF00;
2118                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2119                         }
2120                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2121                 }
2122                 /* TX entries */
2123                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2124                         u32 index = i >> 1;
2125                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2126                         tx_que = &adapter->tx_queues[i];
2127                         if (i & 1) {
2128                                 ivar &= 0x00FFFFFF;
2129                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2130                         } else {
2131                                 ivar &= 0xFFFF00FF;
2132                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2133                         }
2134                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2135                         adapter->que_mask |= tx_que->eims;
2136                 }
2137
2138                 /* And for the link interrupt */
2139                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2140                 adapter->link_mask = 1 << adapter->linkvec;
2141                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2142                 break;
2143         case e1000_82576:
2144                 /* RX entries */
2145                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2146                         u32 index = i & 0x7; /* Each IVAR has two entries */
2147                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2148                         rx_que = &adapter->rx_queues[i];
2149                         if (i < 8) {
2150                                 ivar &= 0xFFFFFF00;
2151                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2152                         } else {
2153                                 ivar &= 0xFF00FFFF;
2154                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2155                         }
2156                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2157                         adapter->que_mask |= rx_que->eims;
2158                 }
2159                 /* TX entries */
2160                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2161                         u32 index = i & 0x7; /* Each IVAR has two entries */
2162                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2163                         tx_que = &adapter->tx_queues[i];
2164                         if (i < 8) {
2165                                 ivar &= 0xFFFF00FF;
2166                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2167                         } else {
2168                                 ivar &= 0x00FFFFFF;
2169                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2170                         }
2171                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2172                         adapter->que_mask |= tx_que->eims;
2173                 }
2174
2175                 /* And for the link interrupt */
2176                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2177                 adapter->link_mask = 1 << adapter->linkvec;
2178                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2179                 break;
2180
2181         case e1000_82575:
2182                 /* enable MSI-X support*/
2183                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2184                 tmp |= E1000_CTRL_EXT_PBA_CLR;
2185                 /* Auto-Mask interrupts upon ICR read. */
2186                 tmp |= E1000_CTRL_EXT_EIAME;
2187                 tmp |= E1000_CTRL_EXT_IRCA;
2188                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2189
2190                 /* Queues */
2191                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2192                         rx_que = &adapter->rx_queues[i];
2193                         tmp = E1000_EICR_RX_QUEUE0 << i;
2194                         tmp |= E1000_EICR_TX_QUEUE0 << i;
2195                         rx_que->eims = tmp;
2196                         E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2197                             i, rx_que->eims);
2198                         adapter->que_mask |= rx_que->eims;
2199                 }
2200
2201                 /* Link */
2202                 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2203                     E1000_EIMS_OTHER);
2204                 adapter->link_mask |= E1000_EIMS_OTHER;
2205         default:
2206                 break;
2207         }
2208
2209         /* Set the starting interrupt rate */
2210         if (em_max_interrupt_rate > 0)
2211                 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2212
2213         if (hw->mac.type == e1000_82575)
2214                 newitr |= newitr << 16;
2215         else
2216                 newitr |= E1000_EITR_CNT_IGNR;
2217
2218         for (int i = 0; i < adapter->rx_num_queues; i++) {
2219                 rx_que = &adapter->rx_queues[i];
2220                 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2221         }
2222
2223         return;
2224 }
2225
2226 static void
2227 em_free_pci_resources(if_ctx_t ctx)
2228 {
2229         struct adapter *adapter = iflib_get_softc(ctx);
2230         struct em_rx_queue *que = adapter->rx_queues;
2231         device_t dev = iflib_get_dev(ctx);
2232
2233         /* Release all MSI-X queue resources */
2234         if (adapter->intr_type == IFLIB_INTR_MSIX)
2235                 iflib_irq_free(ctx, &adapter->irq);
2236
2237         if (que != NULL) {
2238                 for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2239                         iflib_irq_free(ctx, &que->que_irq);
2240                 }
2241         }
2242
2243         if (adapter->memory != NULL) {
2244                 bus_release_resource(dev, SYS_RES_MEMORY,
2245                     rman_get_rid(adapter->memory), adapter->memory);
2246                 adapter->memory = NULL;
2247         }
2248
2249         if (adapter->flash != NULL) {
2250                 bus_release_resource(dev, SYS_RES_MEMORY,
2251                     rman_get_rid(adapter->flash), adapter->flash);
2252                 adapter->flash = NULL;
2253         }
2254
2255         if (adapter->ioport != NULL) {
2256                 bus_release_resource(dev, SYS_RES_IOPORT,
2257                     rman_get_rid(adapter->ioport), adapter->ioport);
2258                 adapter->ioport = NULL;
2259         }
2260 }
2261
2262 /* Set up MSI or MSI-X */
2263 static int
2264 em_setup_msix(if_ctx_t ctx)
2265 {
2266         struct adapter *adapter = iflib_get_softc(ctx);
2267
2268         if (adapter->hw.mac.type == e1000_82574) {
2269                 em_enable_vectors_82574(ctx);
2270         }
2271         return (0);
2272 }
2273
2274 /*********************************************************************
2275  *
2276  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2277  *
2278  **********************************************************************/
2279 static void
2280 lem_smartspeed(struct adapter *adapter)
2281 {
2282         u16 phy_tmp;
2283
2284         if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2285             adapter->hw.mac.autoneg == 0 ||
2286             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2287                 return;
2288
2289         if (adapter->smartspeed == 0) {
2290                 /* If Master/Slave config fault is asserted twice,
2291                  * we assume back-to-back */
2292                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2293                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2294                         return;
2295                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2296                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2297                         e1000_read_phy_reg(&adapter->hw,
2298                             PHY_1000T_CTRL, &phy_tmp);
2299                         if(phy_tmp & CR_1000T_MS_ENABLE) {
2300                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2301                                 e1000_write_phy_reg(&adapter->hw,
2302                                     PHY_1000T_CTRL, phy_tmp);
2303                                 adapter->smartspeed++;
2304                                 if(adapter->hw.mac.autoneg &&
2305                                    !e1000_copper_link_autoneg(&adapter->hw) &&
2306                                    !e1000_read_phy_reg(&adapter->hw,
2307                                     PHY_CONTROL, &phy_tmp)) {
2308                                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2309                                                     MII_CR_RESTART_AUTO_NEG);
2310                                         e1000_write_phy_reg(&adapter->hw,
2311                                             PHY_CONTROL, phy_tmp);
2312                                 }
2313                         }
2314                 }
2315                 return;
2316         } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2317                 /* If still no link, perhaps using 2/3 pair cable */
2318                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2319                 phy_tmp |= CR_1000T_MS_ENABLE;
2320                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2321                 if(adapter->hw.mac.autoneg &&
2322                    !e1000_copper_link_autoneg(&adapter->hw) &&
2323                    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2324                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2325                                     MII_CR_RESTART_AUTO_NEG);
2326                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2327                 }
2328         }
2329         /* Restart process after EM_SMARTSPEED_MAX iterations */
2330         if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2331                 adapter->smartspeed = 0;
2332 }
2333
2334 /*********************************************************************
2335  *
2336  *  Initialize the DMA Coalescing feature
2337  *
2338  **********************************************************************/
2339 static void
2340 igb_init_dmac(struct adapter *adapter, u32 pba)
2341 {
2342         device_t        dev = adapter->dev;
2343         struct e1000_hw *hw = &adapter->hw;
2344         u32             dmac, reg = ~E1000_DMACR_DMAC_EN;
2345         u16             hwm;
2346         u16             max_frame_size;
2347
2348         if (hw->mac.type == e1000_i211)
2349                 return;
2350
2351         max_frame_size = adapter->shared->isc_max_frame_size;
2352         if (hw->mac.type > e1000_82580) {
2353
2354                 if (adapter->dmac == 0) { /* Disabling it */
2355                         E1000_WRITE_REG(hw, E1000_DMACR, reg);
2356                         return;
2357                 } else
2358                         device_printf(dev, "DMA Coalescing enabled\n");
2359
2360                 /* Set starting threshold */
2361                 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2362
2363                 hwm = 64 * pba - max_frame_size / 16;
2364                 if (hwm < 64 * (pba - 6))
2365                         hwm = 64 * (pba - 6);
2366                 reg = E1000_READ_REG(hw, E1000_FCRTC);
2367                 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2368                 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2369                     & E1000_FCRTC_RTH_COAL_MASK);
2370                 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2371
2372
2373                 dmac = pba - max_frame_size / 512;
2374                 if (dmac < pba - 10)
2375                         dmac = pba - 10;
2376                 reg = E1000_READ_REG(hw, E1000_DMACR);
2377                 reg &= ~E1000_DMACR_DMACTHR_MASK;
2378                 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2379                     & E1000_DMACR_DMACTHR_MASK);
2380
2381                 /* transition to L0x or L1 if available..*/
2382                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2383
2384                 /* Check if status is 2.5Gb backplane connection
2385                 * before configuration of watchdog timer, which is
2386                 * in msec values in 12.8usec intervals
2387                 * watchdog timer= msec values in 32usec intervals
2388                 * for non 2.5Gb connection
2389                 */
2390                 if (hw->mac.type == e1000_i354) {
2391                         int status = E1000_READ_REG(hw, E1000_STATUS);
2392                         if ((status & E1000_STATUS_2P5_SKU) &&
2393                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2394                                 reg |= ((adapter->dmac * 5) >> 6);
2395                         else
2396                                 reg |= (adapter->dmac >> 5);
2397                 } else {
2398                         reg |= (adapter->dmac >> 5);
2399                 }
2400
2401                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2402
2403                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2404
2405                 /* Set the interval before transition */
2406                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
2407                 if (hw->mac.type == e1000_i350)
2408                         reg |= IGB_DMCTLX_DCFLUSH_DIS;
2409                 /*
2410                 ** in 2.5Gb connection, TTLX unit is 0.4 usec
2411                 ** which is 0x4*2 = 0xA. But delay is still 4 usec
2412                 */
2413                 if (hw->mac.type == e1000_i354) {
2414                         int status = E1000_READ_REG(hw, E1000_STATUS);
2415                         if ((status & E1000_STATUS_2P5_SKU) &&
2416                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2417                                 reg |= 0xA;
2418                         else
2419                                 reg |= 0x4;
2420                 } else {
2421                         reg |= 0x4;
2422                 }
2423
2424                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2425
2426                 /* free space in tx packet buffer to wake from DMA coal */
2427                 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2428                     (2 * max_frame_size)) >> 6);
2429
2430                 /* make low power state decision controlled by DMA coal */
2431                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2432                 reg &= ~E1000_PCIEMISC_LX_DECISION;
2433                 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2434
2435         } else if (hw->mac.type == e1000_82580) {
2436                 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2437                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
2438                     reg & ~E1000_PCIEMISC_LX_DECISION);
2439                 E1000_WRITE_REG(hw, E1000_DMACR, 0);
2440         }
2441 }
2442
2443 /*********************************************************************
2444  *
2445  *  Initialize the hardware to a configuration as specified by the
2446  *  adapter structure.
2447  *
2448  **********************************************************************/
2449 static void
2450 em_reset(if_ctx_t ctx)
2451 {
2452         device_t dev = iflib_get_dev(ctx);
2453         struct adapter *adapter = iflib_get_softc(ctx);
2454         struct ifnet *ifp = iflib_get_ifp(ctx);
2455         struct e1000_hw *hw = &adapter->hw;
2456         u16 rx_buffer_size;
2457         u32 pba;
2458
2459         INIT_DEBUGOUT("em_reset: begin");
2460         /* Let the firmware know the OS is in control */
2461         em_get_hw_control(adapter);
2462
2463         /* Set up smart power down as default off on newer adapters. */
2464         if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2465             hw->mac.type == e1000_82572)) {
2466                 u16 phy_tmp = 0;
2467
2468                 /* Speed up time to link by disabling smart power down. */
2469                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2470                 phy_tmp &= ~IGP02E1000_PM_SPD;
2471                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2472         }
2473
2474         /*
2475          * Packet Buffer Allocation (PBA)
2476          * Writing PBA sets the receive portion of the buffer
2477          * the remainder is used for the transmit buffer.
2478          */
2479         switch (hw->mac.type) {
2480         /* Total Packet Buffer on these is 48K */
2481         case e1000_82571:
2482         case e1000_82572:
2483         case e1000_80003es2lan:
2484                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2485                 break;
2486         case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2487                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2488                 break;
2489         case e1000_82574:
2490         case e1000_82583:
2491                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2492                 break;
2493         case e1000_ich8lan:
2494                 pba = E1000_PBA_8K;
2495                 break;
2496         case e1000_ich9lan:
2497         case e1000_ich10lan:
2498                 /* Boost Receive side for jumbo frames */
2499                 if (adapter->hw.mac.max_frame_size > 4096)
2500                         pba = E1000_PBA_14K;
2501                 else
2502                         pba = E1000_PBA_10K;
2503                 break;
2504         case e1000_pchlan:
2505         case e1000_pch2lan:
2506         case e1000_pch_lpt:
2507         case e1000_pch_spt:
2508         case e1000_pch_cnp:
2509                 pba = E1000_PBA_26K;
2510                 break;
2511         case e1000_82575:
2512                 pba = E1000_PBA_32K;
2513                 break;
2514         case e1000_82576:
2515         case e1000_vfadapt:
2516                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2517                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2518                 break;
2519         case e1000_82580:
2520         case e1000_i350:
2521         case e1000_i354:
2522         case e1000_vfadapt_i350:
2523                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2524                 pba = e1000_rxpbs_adjust_82580(pba);
2525                 break;
2526         case e1000_i210:
2527         case e1000_i211:
2528                 pba = E1000_PBA_34K;
2529                 break;
2530         default:
2531                 if (adapter->hw.mac.max_frame_size > 8192)
2532                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2533                 else
2534                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2535         }
2536
2537         /* Special needs in case of Jumbo frames */
2538         if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2539                 u32 tx_space, min_tx, min_rx;
2540                 pba = E1000_READ_REG(hw, E1000_PBA);
2541                 tx_space = pba >> 16;
2542                 pba &= 0xffff;
2543                 min_tx = (adapter->hw.mac.max_frame_size +
2544                     sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2545                 min_tx = roundup2(min_tx, 1024);
2546                 min_tx >>= 10;
2547                 min_rx = adapter->hw.mac.max_frame_size;
2548                 min_rx = roundup2(min_rx, 1024);
2549                 min_rx >>= 10;
2550                 if (tx_space < min_tx &&
2551                     ((min_tx - tx_space) < pba)) {
2552                         pba = pba - (min_tx - tx_space);
2553                         /*
2554                          * if short on rx space, rx wins
2555                          * and must trump tx adjustment
2556                          */
2557                         if (pba < min_rx)
2558                                 pba = min_rx;
2559                 }
2560                 E1000_WRITE_REG(hw, E1000_PBA, pba);
2561         }
2562
2563         if (hw->mac.type < igb_mac_min)
2564                 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2565
2566         INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2567
2568         /*
2569          * These parameters control the automatic generation (Tx) and
2570          * response (Rx) to Ethernet PAUSE frames.
2571          * - High water mark should allow for at least two frames to be
2572          *   received after sending an XOFF.
2573          * - Low water mark works best when it is very near the high water mark.
2574          *   This allows the receiver to restart by sending XON when it has
2575          *   drained a bit. Here we use an arbitrary value of 1500 which will
2576          *   restart after one full frame is pulled from the buffer. There
2577          *   could be several smaller frames in the buffer and if so they will
2578          *   not trigger the XON until their total number reduces the buffer
2579          *   by 1500.
2580          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2581          */
2582         rx_buffer_size = (pba & 0xffff) << 10;
2583         hw->fc.high_water = rx_buffer_size -
2584             roundup2(adapter->hw.mac.max_frame_size, 1024);
2585         hw->fc.low_water = hw->fc.high_water - 1500;
2586
2587         if (adapter->fc) /* locally set flow control value? */
2588                 hw->fc.requested_mode = adapter->fc;
2589         else
2590                 hw->fc.requested_mode = e1000_fc_full;
2591
2592         if (hw->mac.type == e1000_80003es2lan)
2593                 hw->fc.pause_time = 0xFFFF;
2594         else
2595                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
2596
2597         hw->fc.send_xon = TRUE;
2598
2599         /* Device specific overrides/settings */
2600         switch (hw->mac.type) {
2601         case e1000_pchlan:
2602                 /* Workaround: no TX flow ctrl for PCH */
2603                 hw->fc.requested_mode = e1000_fc_rx_pause;
2604                 hw->fc.pause_time = 0xFFFF; /* override */
2605                 if (if_getmtu(ifp) > ETHERMTU) {
2606                         hw->fc.high_water = 0x3500;
2607                         hw->fc.low_water = 0x1500;
2608                 } else {
2609                         hw->fc.high_water = 0x5000;
2610                         hw->fc.low_water = 0x3000;
2611                 }
2612                 hw->fc.refresh_time = 0x1000;
2613                 break;
2614         case e1000_pch2lan:
2615         case e1000_pch_lpt:
2616         case e1000_pch_spt:
2617         case e1000_pch_cnp:
2618                 hw->fc.high_water = 0x5C20;
2619                 hw->fc.low_water = 0x5048;
2620                 hw->fc.pause_time = 0x0650;
2621                 hw->fc.refresh_time = 0x0400;
2622                 /* Jumbos need adjusted PBA */
2623                 if (if_getmtu(ifp) > ETHERMTU)
2624                         E1000_WRITE_REG(hw, E1000_PBA, 12);
2625                 else
2626                         E1000_WRITE_REG(hw, E1000_PBA, 26);
2627                 break;
2628         case e1000_82575:
2629         case e1000_82576:
2630                 /* 8-byte granularity */
2631                 hw->fc.low_water = hw->fc.high_water - 8;
2632                 break;
2633         case e1000_82580:
2634         case e1000_i350:
2635         case e1000_i354:
2636         case e1000_i210:
2637         case e1000_i211:
2638         case e1000_vfadapt:
2639         case e1000_vfadapt_i350:
2640                 /* 16-byte granularity */
2641                 hw->fc.low_water = hw->fc.high_water - 16;
2642                 break;
2643         case e1000_ich9lan:
2644         case e1000_ich10lan:
2645                 if (if_getmtu(ifp) > ETHERMTU) {
2646                         hw->fc.high_water = 0x2800;
2647                         hw->fc.low_water = hw->fc.high_water - 8;
2648                         break;
2649                 }
2650                 /* FALLTHROUGH */
2651         default:
2652                 if (hw->mac.type == e1000_80003es2lan)
2653                         hw->fc.pause_time = 0xFFFF;
2654                 break;
2655         }
2656
2657         /* Issue a global reset */
2658         e1000_reset_hw(hw);
2659         if (adapter->hw.mac.type >= igb_mac_min) {
2660                 E1000_WRITE_REG(hw, E1000_WUC, 0);
2661         } else {
2662                 E1000_WRITE_REG(hw, E1000_WUFC, 0);
2663                 em_disable_aspm(adapter);
2664         }
2665         if (adapter->flags & IGB_MEDIA_RESET) {
2666                 e1000_setup_init_funcs(hw, TRUE);
2667                 e1000_get_bus_info(hw);
2668                 adapter->flags &= ~IGB_MEDIA_RESET;
2669         }
2670         /* and a re-init */
2671         if (e1000_init_hw(hw) < 0) {
2672                 device_printf(dev, "Hardware Initialization Failed\n");
2673                 return;
2674         }
2675         if (adapter->hw.mac.type >= igb_mac_min)
2676                 igb_init_dmac(adapter, pba);
2677
2678         E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2679         e1000_get_phy_info(hw);
2680         e1000_check_for_link(hw);
2681 }
2682
2683 /*
2684  * Initialise the RSS mapping for NICs that support multiple transmit/
2685  * receive rings.
2686  */
2687
2688 #define RSSKEYLEN 10
2689 static void
2690 em_initialize_rss_mapping(struct adapter *adapter)
2691 {
2692         uint8_t  rss_key[4 * RSSKEYLEN];
2693         uint32_t reta = 0;
2694         struct e1000_hw *hw = &adapter->hw;
2695         int i;
2696
2697         /*
2698          * Configure RSS key
2699          */
2700         arc4rand(rss_key, sizeof(rss_key), 0);
2701         for (i = 0; i < RSSKEYLEN; ++i) {
2702                 uint32_t rssrk = 0;
2703
2704                 rssrk = EM_RSSRK_VAL(rss_key, i);
2705                 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2706         }
2707
2708         /*
2709          * Configure RSS redirect table in following fashion:
2710          * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2711          */
2712         for (i = 0; i < sizeof(reta); ++i) {
2713                 uint32_t q;
2714
2715                 q = (i % adapter->rx_num_queues) << 7;
2716                 reta |= q << (8 * i);
2717         }
2718
2719         for (i = 0; i < 32; ++i)
2720                 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2721
2722         E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2723                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2724                         E1000_MRQC_RSS_FIELD_IPV4 |
2725                         E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2726                         E1000_MRQC_RSS_FIELD_IPV6_EX |
2727                         E1000_MRQC_RSS_FIELD_IPV6);
2728 }
2729
2730 static void
2731 igb_initialize_rss_mapping(struct adapter *adapter)
2732 {
2733         struct e1000_hw *hw = &adapter->hw;
2734         int i;
2735         int queue_id;
2736         u32 reta;
2737         u32 rss_key[10], mrqc, shift = 0;
2738
2739         /* XXX? */
2740         if (adapter->hw.mac.type == e1000_82575)
2741                 shift = 6;
2742
2743         /*
2744          * The redirection table controls which destination
2745          * queue each bucket redirects traffic to.
2746          * Each DWORD represents four queues, with the LSB
2747          * being the first queue in the DWORD.
2748          *
2749          * This just allocates buckets to queues using round-robin
2750          * allocation.
2751          *
2752          * NOTE: It Just Happens to line up with the default
2753          * RSS allocation method.
2754          */
2755
2756         /* Warning FM follows */
2757         reta = 0;
2758         for (i = 0; i < 128; i++) {
2759 #ifdef RSS
2760                 queue_id = rss_get_indirection_to_bucket(i);
2761                 /*
2762                  * If we have more queues than buckets, we'll
2763                  * end up mapping buckets to a subset of the
2764                  * queues.
2765                  *
2766                  * If we have more buckets than queues, we'll
2767                  * end up instead assigning multiple buckets
2768                  * to queues.
2769                  *
2770                  * Both are suboptimal, but we need to handle
2771                  * the case so we don't go out of bounds
2772                  * indexing arrays and such.
2773                  */
2774                 queue_id = queue_id % adapter->rx_num_queues;
2775 #else
2776                 queue_id = (i % adapter->rx_num_queues);
2777 #endif
2778                 /* Adjust if required */
2779                 queue_id = queue_id << shift;
2780
2781                 /*
2782                  * The low 8 bits are for hash value (n+0);
2783                  * The next 8 bits are for hash value (n+1), etc.
2784                  */
2785                 reta = reta >> 8;
2786                 reta = reta | ( ((uint32_t) queue_id) << 24);
2787                 if ((i & 3) == 3) {
2788                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2789                         reta = 0;
2790                 }
2791         }
2792
2793         /* Now fill in hash table */
2794
2795         /*
2796          * MRQC: Multiple Receive Queues Command
2797          * Set queuing to RSS control, number depends on the device.
2798          */
2799         mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2800
2801 #ifdef RSS
2802         /* XXX ew typecasting */
2803         rss_getkey((uint8_t *) &rss_key);
2804 #else
2805         arc4rand(&rss_key, sizeof(rss_key), 0);
2806 #endif
2807         for (i = 0; i < 10; i++)
2808                 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2809
2810         /*
2811          * Configure the RSS fields to hash upon.
2812          */
2813         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2814             E1000_MRQC_RSS_FIELD_IPV4_TCP);
2815         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2816             E1000_MRQC_RSS_FIELD_IPV6_TCP);
2817         mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2818             E1000_MRQC_RSS_FIELD_IPV6_UDP);
2819         mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2820             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2821
2822         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2823 }
2824
2825 /*********************************************************************
2826  *
2827  *  Setup networking device structure and register interface media.
2828  *
2829  **********************************************************************/
2830 static int
2831 em_setup_interface(if_ctx_t ctx)
2832 {
2833         struct ifnet *ifp = iflib_get_ifp(ctx);
2834         struct adapter *adapter = iflib_get_softc(ctx);
2835         if_softc_ctx_t scctx = adapter->shared;
2836
2837         INIT_DEBUGOUT("em_setup_interface: begin");
2838
2839         /* Single Queue */
2840         if (adapter->tx_num_queues == 1) {
2841                 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2842                 if_setsendqready(ifp);
2843         }
2844
2845         /*
2846          * Specify the media types supported by this adapter and register
2847          * callbacks to update media and link information
2848          */
2849         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2850             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2851                 u_char fiber_type = IFM_1000_SX;        /* default type */
2852
2853                 if (adapter->hw.mac.type == e1000_82545)
2854                         fiber_type = IFM_1000_LX;
2855                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2856                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2857         } else {
2858                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2859                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2860                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2861                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2862                 if (adapter->hw.phy.type != e1000_phy_ife) {
2863                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2864                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2865                 }
2866         }
2867         ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2868         ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2869         return (0);
2870 }
2871
2872 static int
2873 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2874 {
2875         struct adapter *adapter = iflib_get_softc(ctx);
2876         if_softc_ctx_t scctx = adapter->shared;
2877         int error = E1000_SUCCESS;
2878         struct em_tx_queue *que;
2879         int i, j;
2880
2881         MPASS(adapter->tx_num_queues > 0);
2882         MPASS(adapter->tx_num_queues == ntxqsets);
2883
2884         /* First allocate the top level queue structs */
2885         if (!(adapter->tx_queues =
2886             (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2887             adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2888                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2889                 return(ENOMEM);
2890         }
2891
2892         for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2893                 /* Set up some basics */
2894
2895                 struct tx_ring *txr = &que->txr;
2896                 txr->adapter = que->adapter = adapter;
2897                 que->me = txr->me =  i;
2898
2899                 /* Allocate report status array */
2900                 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2901                         device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2902                         error = ENOMEM;
2903                         goto fail;
2904                 }
2905                 for (j = 0; j < scctx->isc_ntxd[0]; j++)
2906                         txr->tx_rsq[j] = QIDX_INVALID;
2907                 /* get the virtual and physical address of the hardware queues */
2908                 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2909                 txr->tx_paddr = paddrs[i*ntxqs];
2910         }
2911
2912         if (bootverbose)
2913                 device_printf(iflib_get_dev(ctx),
2914                     "allocated for %d tx_queues\n", adapter->tx_num_queues);
2915         return (0);
2916 fail:
2917         em_if_queues_free(ctx);
2918         return (error);
2919 }
2920
2921 static int
2922 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2923 {
2924         struct adapter *adapter = iflib_get_softc(ctx);
2925         int error = E1000_SUCCESS;
2926         struct em_rx_queue *que;
2927         int i;
2928
2929         MPASS(adapter->rx_num_queues > 0);
2930         MPASS(adapter->rx_num_queues == nrxqsets);
2931
2932         /* First allocate the top level queue structs */
2933         if (!(adapter->rx_queues =
2934             (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2935             adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2936                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2937                 error = ENOMEM;
2938                 goto fail;
2939         }
2940
2941         for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2942                 /* Set up some basics */
2943                 struct rx_ring *rxr = &que->rxr;
2944                 rxr->adapter = que->adapter = adapter;
2945                 rxr->que = que;
2946                 que->me = rxr->me =  i;
2947
2948                 /* get the virtual and physical address of the hardware queues */
2949                 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2950                 rxr->rx_paddr = paddrs[i*nrxqs];
2951         }
2952  
2953         if (bootverbose)
2954                 device_printf(iflib_get_dev(ctx),
2955                     "allocated for %d rx_queues\n", adapter->rx_num_queues);
2956
2957         return (0);
2958 fail:
2959         em_if_queues_free(ctx);
2960         return (error);
2961 }
2962
2963 static void
2964 em_if_queues_free(if_ctx_t ctx)
2965 {
2966         struct adapter *adapter = iflib_get_softc(ctx);
2967         struct em_tx_queue *tx_que = adapter->tx_queues;
2968         struct em_rx_queue *rx_que = adapter->rx_queues;
2969
2970         if (tx_que != NULL) {
2971                 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2972                         struct tx_ring *txr = &tx_que->txr;
2973                         if (txr->tx_rsq == NULL)
2974                                 break;
2975
2976                         free(txr->tx_rsq, M_DEVBUF);
2977                         txr->tx_rsq = NULL;
2978                 }
2979                 free(adapter->tx_queues, M_DEVBUF);
2980                 adapter->tx_queues = NULL;
2981         }
2982
2983         if (rx_que != NULL) {
2984                 free(adapter->rx_queues, M_DEVBUF);
2985                 adapter->rx_queues = NULL;
2986         }
2987
2988         em_release_hw_control(adapter);
2989
2990         if (adapter->mta != NULL) {
2991                 free(adapter->mta, M_DEVBUF);
2992         }
2993 }
2994
2995 /*********************************************************************
2996  *
2997  *  Enable transmit unit.
2998  *
2999  **********************************************************************/
3000 static void
3001 em_initialize_transmit_unit(if_ctx_t ctx)
3002 {
3003         struct adapter *adapter = iflib_get_softc(ctx);
3004         if_softc_ctx_t scctx = adapter->shared;
3005         struct em_tx_queue *que;
3006         struct tx_ring  *txr;
3007         struct e1000_hw *hw = &adapter->hw;
3008         u32 tctl, txdctl = 0, tarc, tipg = 0;
3009
3010         INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3011
3012         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
3013                 u64 bus_addr;
3014                 caddr_t offp, endp;
3015
3016                 que = &adapter->tx_queues[i];
3017                 txr = &que->txr;
3018                 bus_addr = txr->tx_paddr;
3019
3020                 /* Clear checksum offload context. */
3021                 offp = (caddr_t)&txr->csum_flags;
3022                 endp = (caddr_t)(txr + 1);
3023                 bzero(offp, endp - offp);
3024
3025                 /* Base and Len of TX Ring */
3026                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
3027                     scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3028                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
3029                     (u32)(bus_addr >> 32));
3030                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
3031                     (u32)bus_addr);
3032                 /* Init the HEAD/TAIL indices */
3033                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3034                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3035
3036                 HW_DEBUGOUT2("Base = %x, Length = %x\n",
3037                     E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
3038                     E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
3039
3040                 txdctl = 0; /* clear txdctl */
3041                 txdctl |= 0x1f; /* PTHRESH */
3042                 txdctl |= 1 << 8; /* HTHRESH */
3043                 txdctl |= 1 << 16;/* WTHRESH */
3044                 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3045                 txdctl |= E1000_TXDCTL_GRAN;
3046                 txdctl |= 1 << 25; /* LWTHRESH */
3047
3048                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3049         }
3050
3051         /* Set the default values for the Tx Inter Packet Gap timer */
3052         switch (adapter->hw.mac.type) {
3053         case e1000_80003es2lan:
3054                 tipg = DEFAULT_82543_TIPG_IPGR1;
3055                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3056                     E1000_TIPG_IPGR2_SHIFT;
3057                 break;
3058         case e1000_82542:
3059                 tipg = DEFAULT_82542_TIPG_IPGT;
3060                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3061                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3062                 break;
3063         default:
3064                 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
3065                     (adapter->hw.phy.media_type ==
3066                     e1000_media_type_internal_serdes))
3067                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3068                 else
3069                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3070                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3071                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3072         }
3073
3074         E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
3075         E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
3076
3077         if(adapter->hw.mac.type >= e1000_82540)
3078                 E1000_WRITE_REG(&adapter->hw, E1000_TADV,
3079                     adapter->tx_abs_int_delay.value);
3080
3081         if ((adapter->hw.mac.type == e1000_82571) ||
3082             (adapter->hw.mac.type == e1000_82572)) {
3083                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3084                 tarc |= TARC_SPEED_MODE_BIT;
3085                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3086         } else if (adapter->hw.mac.type == e1000_80003es2lan) {
3087                 /* errata: program both queues to unweighted RR */
3088                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3089                 tarc |= 1;
3090                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3091                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3092                 tarc |= 1;
3093                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3094         } else if (adapter->hw.mac.type == e1000_82574) {
3095                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3096                 tarc |= TARC_ERRATA_BIT;
3097                 if ( adapter->tx_num_queues > 1) {
3098                         tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3099                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3100                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3101                 } else
3102                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3103         }
3104
3105         if (adapter->tx_int_delay.value > 0)
3106                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3107
3108         /* Program the Transmit Control Register */
3109         tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3110         tctl &= ~E1000_TCTL_CT;
3111         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3112                    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3113
3114         if (adapter->hw.mac.type >= e1000_82571)
3115                 tctl |= E1000_TCTL_MULR;
3116
3117         /* This write will effectively turn on the transmit unit. */
3118         E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3119
3120         /* SPT and KBL errata workarounds */
3121         if (hw->mac.type == e1000_pch_spt) {
3122                 u32 reg;
3123                 reg = E1000_READ_REG(hw, E1000_IOSFPC);
3124                 reg |= E1000_RCTL_RDMTS_HEX;
3125                 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3126                 /* i218-i219 Specification Update 1.5.4.5 */
3127                 reg = E1000_READ_REG(hw, E1000_TARC(0));
3128                 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3129                 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3130                 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3131         }
3132 }
3133
3134 /*********************************************************************
3135  *
3136  *  Enable receive unit.
3137  *
3138  **********************************************************************/
3139
3140 static void
3141 em_initialize_receive_unit(if_ctx_t ctx)
3142 {
3143         struct adapter *adapter = iflib_get_softc(ctx);
3144         if_softc_ctx_t scctx = adapter->shared;
3145         struct ifnet *ifp = iflib_get_ifp(ctx);
3146         struct e1000_hw *hw = &adapter->hw;
3147         struct em_rx_queue *que;
3148         int i;
3149         u32 rctl, rxcsum, rfctl;
3150
3151         INIT_DEBUGOUT("em_initialize_receive_units: begin");
3152
3153         /*
3154          * Make sure receives are disabled while setting
3155          * up the descriptor ring
3156          */
3157         rctl = E1000_READ_REG(hw, E1000_RCTL);
3158         /* Do not disable if ever enabled on this hardware */
3159         if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3160                 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3161
3162         /* Setup the Receive Control Register */
3163         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3164         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3165             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3166             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3167
3168         /* Do not store bad packets */
3169         rctl &= ~E1000_RCTL_SBP;
3170
3171         /* Enable Long Packet receive */
3172         if (if_getmtu(ifp) > ETHERMTU)
3173                 rctl |= E1000_RCTL_LPE;
3174         else
3175                 rctl &= ~E1000_RCTL_LPE;
3176
3177         /* Strip the CRC */
3178         if (!em_disable_crc_stripping)
3179                 rctl |= E1000_RCTL_SECRC;
3180
3181         if (adapter->hw.mac.type >= e1000_82540) {
3182                 E1000_WRITE_REG(&adapter->hw, E1000_RADV,
3183                             adapter->rx_abs_int_delay.value);
3184
3185                 /*
3186                  * Set the interrupt throttling rate. Value is calculated
3187                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3188                  */
3189                 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3190         }
3191         E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
3192             adapter->rx_int_delay.value);
3193
3194         /* Use extended rx descriptor formats */
3195         rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3196         rfctl |= E1000_RFCTL_EXTEN;
3197         /*
3198          * When using MSI-X interrupts we need to throttle
3199          * using the EITR register (82574 only)
3200          */
3201         if (hw->mac.type == e1000_82574) {
3202                 for (int i = 0; i < 4; i++)
3203                         E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3204                             DEFAULT_ITR);
3205                 /* Disable accelerated acknowledge */
3206                 rfctl |= E1000_RFCTL_ACK_DIS;
3207         }
3208         E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3209
3210         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3211         if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3212             adapter->hw.mac.type >= e1000_82543) {
3213                 if (adapter->tx_num_queues > 1) {
3214                         if (adapter->hw.mac.type >= igb_mac_min) {
3215                                 rxcsum |= E1000_RXCSUM_PCSD;
3216                                 if (hw->mac.type != e1000_82575)
3217                                         rxcsum |= E1000_RXCSUM_CRCOFL;
3218                         } else
3219                                 rxcsum |= E1000_RXCSUM_TUOFL |
3220                                         E1000_RXCSUM_IPOFL |
3221                                         E1000_RXCSUM_PCSD;
3222                 } else {
3223                         if (adapter->hw.mac.type >= igb_mac_min)
3224                                 rxcsum |= E1000_RXCSUM_IPPCSE;
3225                         else
3226                                 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3227                         if (adapter->hw.mac.type > e1000_82575)
3228                                 rxcsum |= E1000_RXCSUM_CRCOFL;
3229                 }
3230         } else
3231                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3232
3233         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3234
3235         if (adapter->rx_num_queues > 1) {
3236                 if (adapter->hw.mac.type >= igb_mac_min)
3237                         igb_initialize_rss_mapping(adapter);
3238                 else
3239                         em_initialize_rss_mapping(adapter);
3240         }
3241
3242         /*
3243          * XXX TEMPORARY WORKAROUND: on some systems with 82573
3244          * long latencies are observed, like Lenovo X60. This
3245          * change eliminates the problem, but since having positive
3246          * values in RDTR is a known source of problems on other
3247          * platforms another solution is being sought.
3248          */
3249         if (hw->mac.type == e1000_82573)
3250                 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3251
3252         for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3253                 struct rx_ring *rxr = &que->rxr;
3254                 /* Setup the Base and Length of the Rx Descriptor Ring */
3255                 u64 bus_addr = rxr->rx_paddr;
3256 #if 0
3257                 u32 rdt = adapter->rx_num_queues -1;  /* default */
3258 #endif
3259
3260                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3261                     scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3262                 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3263                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3264                 /* Setup the Head and Tail Descriptor Pointers */
3265                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3266                 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3267         }
3268
3269         /*
3270          * Set PTHRESH for improved jumbo performance
3271          * According to 10.2.5.11 of Intel 82574 Datasheet,
3272          * RXDCTL(1) is written whenever RXDCTL(0) is written.
3273          * Only write to RXDCTL(1) if there is a need for different
3274          * settings.
3275          */
3276
3277         if (((adapter->hw.mac.type == e1000_ich9lan) ||
3278             (adapter->hw.mac.type == e1000_pch2lan) ||
3279             (adapter->hw.mac.type == e1000_ich10lan)) &&
3280             (if_getmtu(ifp) > ETHERMTU)) {
3281                 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3282                 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3283         } else if (adapter->hw.mac.type == e1000_82574) {
3284                 for (int i = 0; i < adapter->rx_num_queues; i++) {
3285                         u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3286                         rxdctl |= 0x20; /* PTHRESH */
3287                         rxdctl |= 4 << 8; /* HTHRESH */
3288                         rxdctl |= 4 << 16;/* WTHRESH */
3289                         rxdctl |= 1 << 24; /* Switch to granularity */
3290                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3291                 }
3292         } else if (adapter->hw.mac.type >= igb_mac_min) {
3293                 u32 psize, srrctl = 0;
3294
3295                 if (if_getmtu(ifp) > ETHERMTU) {
3296                         /* Set maximum packet len */
3297                         if (adapter->rx_mbuf_sz <= 4096) {
3298                                 srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3299                                 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3300                         } else if (adapter->rx_mbuf_sz > 4096) {
3301                                 srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3302                                 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3303                         }
3304                         psize = scctx->isc_max_frame_size;
3305                         /* are we on a vlan? */
3306                         if (ifp->if_vlantrunk != NULL)
3307                                 psize += VLAN_TAG_SIZE;
3308                         E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
3309                 } else {
3310                         srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3311                         rctl |= E1000_RCTL_SZ_2048;
3312                 }
3313
3314                 /*
3315                  * If TX flow control is disabled and there's >1 queue defined,
3316                  * enable DROP.
3317                  *
3318                  * This drops frames rather than hanging the RX MAC for all queues.
3319                  */
3320                 if ((adapter->rx_num_queues > 1) &&
3321                     (adapter->fc == e1000_fc_none ||
3322                      adapter->fc == e1000_fc_rx_pause)) {
3323                         srrctl |= E1000_SRRCTL_DROP_EN;
3324                 }
3325                         /* Setup the Base and Length of the Rx Descriptor Rings */
3326                 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3327                         struct rx_ring *rxr = &que->rxr;
3328                         u64 bus_addr = rxr->rx_paddr;
3329                         u32 rxdctl;
3330
3331 #ifdef notyet
3332                         /* Configure for header split? -- ignore for now */
3333                         rxr->hdr_split = igb_header_split;
3334 #else
3335                         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3336 #endif
3337
3338                         E1000_WRITE_REG(hw, E1000_RDLEN(i),
3339                                         scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3340                         E1000_WRITE_REG(hw, E1000_RDBAH(i),
3341                                         (uint32_t)(bus_addr >> 32));
3342                         E1000_WRITE_REG(hw, E1000_RDBAL(i),
3343                                         (uint32_t)bus_addr);
3344                         E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3345                         /* Enable this Queue */
3346                         rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3347                         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3348                         rxdctl &= 0xFFF00000;
3349                         rxdctl |= IGB_RX_PTHRESH;
3350                         rxdctl |= IGB_RX_HTHRESH << 8;
3351                         rxdctl |= IGB_RX_WTHRESH << 16;
3352                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3353                 }               
3354         } else if (adapter->hw.mac.type >= e1000_pch2lan) {
3355                 if (if_getmtu(ifp) > ETHERMTU)
3356                         e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3357                 else
3358                         e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3359         }
3360
3361         /* Make sure VLAN Filters are off */
3362         rctl &= ~E1000_RCTL_VFE;
3363
3364         if (adapter->hw.mac.type < igb_mac_min) {
3365                 if (adapter->rx_mbuf_sz == MCLBYTES)
3366                         rctl |= E1000_RCTL_SZ_2048;
3367                 else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3368                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3369                 else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3370                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3371
3372                 /* ensure we clear use DTYPE of 00 here */
3373                 rctl &= ~0x00000C00;
3374         }
3375
3376         /* Write out the settings */
3377         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3378
3379         return;
3380 }
3381
3382 static void
3383 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3384 {
3385         struct adapter *adapter = iflib_get_softc(ctx);
3386         u32 index, bit;
3387
3388         index = (vtag >> 5) & 0x7F;
3389         bit = vtag & 0x1F;
3390         adapter->shadow_vfta[index] |= (1 << bit);
3391         ++adapter->num_vlans;
3392 }
3393
3394 static void
3395 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3396 {
3397         struct adapter *adapter = iflib_get_softc(ctx);
3398         u32 index, bit;
3399
3400         index = (vtag >> 5) & 0x7F;
3401         bit = vtag & 0x1F;
3402         adapter->shadow_vfta[index] &= ~(1 << bit);
3403         --adapter->num_vlans;
3404 }
3405
3406 static void
3407 em_setup_vlan_hw_support(struct adapter *adapter)
3408 {
3409         struct e1000_hw *hw = &adapter->hw;
3410         u32 reg;
3411
3412         /*
3413          * We get here thru init_locked, meaning
3414          * a soft reset, this has already cleared
3415          * the VFTA and other state, so if there
3416          * have been no vlan's registered do nothing.
3417          */
3418         if (adapter->num_vlans == 0)
3419                 return;
3420
3421         /*
3422          * A soft reset zero's out the VFTA, so
3423          * we need to repopulate it now.
3424          */
3425         for (int i = 0; i < EM_VFTA_SIZE; i++)
3426                 if (adapter->shadow_vfta[i] != 0)
3427                         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3428                             i, adapter->shadow_vfta[i]);
3429
3430         reg = E1000_READ_REG(hw, E1000_CTRL);
3431         reg |= E1000_CTRL_VME;
3432         E1000_WRITE_REG(hw, E1000_CTRL, reg);
3433
3434         /* Enable the Filter Table */
3435         reg = E1000_READ_REG(hw, E1000_RCTL);
3436         reg &= ~E1000_RCTL_CFIEN;
3437         reg |= E1000_RCTL_VFE;
3438         E1000_WRITE_REG(hw, E1000_RCTL, reg);
3439 }
3440
3441 static void
3442 em_if_intr_enable(if_ctx_t ctx)
3443 {
3444         struct adapter *adapter = iflib_get_softc(ctx);
3445         struct e1000_hw *hw = &adapter->hw;
3446         u32 ims_mask = IMS_ENABLE_MASK;
3447
3448         if (hw->mac.type == e1000_82574) {
3449                 E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3450                 ims_mask |= adapter->ims;
3451         }
3452         E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3453 }
3454
3455 static void
3456 em_if_intr_disable(if_ctx_t ctx)
3457 {
3458         struct adapter *adapter = iflib_get_softc(ctx);
3459         struct e1000_hw *hw = &adapter->hw;
3460
3461         if (hw->mac.type == e1000_82574)
3462                 E1000_WRITE_REG(hw, EM_EIAC, 0);
3463         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3464 }
3465
3466 static void
3467 igb_if_intr_enable(if_ctx_t ctx)
3468 {
3469         struct adapter *adapter = iflib_get_softc(ctx);
3470         struct e1000_hw *hw = &adapter->hw;
3471         u32 mask;
3472
3473         if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3474                 mask = (adapter->que_mask | adapter->link_mask);
3475                 E1000_WRITE_REG(hw, E1000_EIAC, mask);
3476                 E1000_WRITE_REG(hw, E1000_EIAM, mask);
3477                 E1000_WRITE_REG(hw, E1000_EIMS, mask);
3478                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3479         } else
3480                 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3481         E1000_WRITE_FLUSH(hw);
3482 }
3483
3484 static void
3485 igb_if_intr_disable(if_ctx_t ctx)
3486 {
3487         struct adapter *adapter = iflib_get_softc(ctx);
3488         struct e1000_hw *hw = &adapter->hw;
3489
3490         if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3491                 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3492                 E1000_WRITE_REG(hw, E1000_EIAC, 0);
3493         }
3494         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3495         E1000_WRITE_FLUSH(hw);
3496 }
3497
3498 /*
3499  * Bit of a misnomer, what this really means is
3500  * to enable OS management of the system... aka
3501  * to disable special hardware management features
3502  */
3503 static void
3504 em_init_manageability(struct adapter *adapter)
3505 {
3506         /* A shared code workaround */
3507 #define E1000_82542_MANC2H E1000_MANC2H
3508         if (adapter->has_manage) {
3509                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3510                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3511
3512                 /* disable hardware interception of ARP */
3513                 manc &= ~(E1000_MANC_ARP_EN);
3514
3515                 /* enable receiving management packets to the host */
3516                 manc |= E1000_MANC_EN_MNG2HOST;
3517 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3518 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3519                 manc2h |= E1000_MNG2HOST_PORT_623;
3520                 manc2h |= E1000_MNG2HOST_PORT_664;
3521                 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3522                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3523         }
3524 }
3525
3526 /*
3527  * Give control back to hardware management
3528  * controller if there is one.
3529  */
3530 static void
3531 em_release_manageability(struct adapter *adapter)
3532 {
3533         if (adapter->has_manage) {
3534                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3535
3536                 /* re-enable hardware interception of ARP */
3537                 manc |= E1000_MANC_ARP_EN;
3538                 manc &= ~E1000_MANC_EN_MNG2HOST;
3539
3540                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3541         }
3542 }
3543
3544 /*
3545  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3546  * For ASF and Pass Through versions of f/w this means
3547  * that the driver is loaded. For AMT version type f/w
3548  * this means that the network i/f is open.
3549  */
3550 static void
3551 em_get_hw_control(struct adapter *adapter)
3552 {
3553         u32 ctrl_ext, swsm;
3554
3555         if (adapter->vf_ifp)
3556                 return;
3557
3558         if (adapter->hw.mac.type == e1000_82573) {
3559                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3560                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3561                     swsm | E1000_SWSM_DRV_LOAD);
3562                 return;
3563         }
3564         /* else */
3565         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3566         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3567             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3568 }
3569
3570 /*
3571  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3572  * For ASF and Pass Through versions of f/w this means that
3573  * the driver is no longer loaded. For AMT versions of the
3574  * f/w this means that the network i/f is closed.
3575  */
3576 static void
3577 em_release_hw_control(struct adapter *adapter)
3578 {
3579         u32 ctrl_ext, swsm;
3580
3581         if (!adapter->has_manage)
3582                 return;
3583
3584         if (adapter->hw.mac.type == e1000_82573) {
3585                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3586                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3587                     swsm & ~E1000_SWSM_DRV_LOAD);
3588                 return;
3589         }
3590         /* else */
3591         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3592         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3593             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3594         return;
3595 }
3596
3597 static int
3598 em_is_valid_ether_addr(u8 *addr)
3599 {
3600         char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3601
3602         if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3603                 return (FALSE);
3604         }
3605
3606         return (TRUE);
3607 }
3608
3609 /*
3610 ** Parse the interface capabilities with regard
3611 ** to both system management and wake-on-lan for
3612 ** later use.
3613 */
3614 static void
3615 em_get_wakeup(if_ctx_t ctx)
3616 {
3617         struct adapter *adapter = iflib_get_softc(ctx);
3618         device_t dev = iflib_get_dev(ctx);
3619         u16 eeprom_data = 0, device_id, apme_mask;
3620
3621         adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3622         apme_mask = EM_EEPROM_APME;
3623
3624         switch (adapter->hw.mac.type) {
3625         case e1000_82542:
3626         case e1000_82543:
3627                 break;
3628         case e1000_82544:
3629                 e1000_read_nvm(&adapter->hw,
3630                     NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3631                 apme_mask = EM_82544_APME;
3632                 break;
3633         case e1000_82546:
3634         case e1000_82546_rev_3:
3635                 if (adapter->hw.bus.func == 1) {
3636                         e1000_read_nvm(&adapter->hw,
3637                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3638                         break;
3639                 } else
3640                         e1000_read_nvm(&adapter->hw,
3641                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3642                 break;
3643         case e1000_82573:
3644         case e1000_82583:
3645                 adapter->has_amt = TRUE;
3646                 /* FALLTHROUGH */
3647         case e1000_82571:
3648         case e1000_82572:
3649         case e1000_80003es2lan:
3650                 if (adapter->hw.bus.func == 1) {
3651                         e1000_read_nvm(&adapter->hw,
3652                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3653                         break;
3654                 } else
3655                         e1000_read_nvm(&adapter->hw,
3656                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3657                 break;
3658         case e1000_ich8lan:
3659         case e1000_ich9lan:
3660         case e1000_ich10lan:
3661         case e1000_pchlan:
3662         case e1000_pch2lan:
3663         case e1000_pch_lpt:
3664         case e1000_pch_spt:
3665         case e1000_82575:       /* listing all igb devices */
3666         case e1000_82576:
3667         case e1000_82580:
3668         case e1000_i350:
3669         case e1000_i354:
3670         case e1000_i210:
3671         case e1000_i211:
3672         case e1000_vfadapt:
3673         case e1000_vfadapt_i350:
3674                 apme_mask = E1000_WUC_APME;
3675                 adapter->has_amt = TRUE;
3676                 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3677                 break;
3678         default:
3679                 e1000_read_nvm(&adapter->hw,
3680                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3681                 break;
3682         }
3683         if (eeprom_data & apme_mask)
3684                 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3685         /*
3686          * We have the eeprom settings, now apply the special cases
3687          * where the eeprom may be wrong or the board won't support
3688          * wake on lan on a particular port
3689          */
3690         device_id = pci_get_device(dev);
3691         switch (device_id) {
3692         case E1000_DEV_ID_82546GB_PCIE:
3693                 adapter->wol = 0;
3694                 break;
3695         case E1000_DEV_ID_82546EB_FIBER:
3696         case E1000_DEV_ID_82546GB_FIBER:
3697                 /* Wake events only supported on port A for dual fiber
3698                  * regardless of eeprom setting */
3699                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3700                     E1000_STATUS_FUNC_1)
3701                         adapter->wol = 0;
3702                 break;
3703         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3704                 /* if quad port adapter, disable WoL on all but port A */
3705                 if (global_quad_port_a != 0)
3706                         adapter->wol = 0;
3707                 /* Reset for multiple quad port adapters */
3708                 if (++global_quad_port_a == 4)
3709                         global_quad_port_a = 0;
3710                 break;
3711         case E1000_DEV_ID_82571EB_FIBER:
3712                 /* Wake events only supported on port A for dual fiber
3713                  * regardless of eeprom setting */
3714                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3715                     E1000_STATUS_FUNC_1)
3716                         adapter->wol = 0;
3717                 break;
3718         case E1000_DEV_ID_82571EB_QUAD_COPPER:
3719         case E1000_DEV_ID_82571EB_QUAD_FIBER:
3720         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3721                 /* if quad port adapter, disable WoL on all but port A */
3722                 if (global_quad_port_a != 0)
3723                         adapter->wol = 0;
3724                 /* Reset for multiple quad port adapters */
3725                 if (++global_quad_port_a == 4)
3726                         global_quad_port_a = 0;
3727                 break;
3728         }
3729         return;
3730 }
3731
3732
3733 /*
3734  * Enable PCI Wake On Lan capability
3735  */
3736 static void
3737 em_enable_wakeup(if_ctx_t ctx)
3738 {
3739         struct adapter *adapter = iflib_get_softc(ctx);
3740         device_t dev = iflib_get_dev(ctx);
3741         if_t ifp = iflib_get_ifp(ctx);
3742         int error = 0;
3743         u32 pmc, ctrl, ctrl_ext, rctl;
3744         u16 status;
3745
3746         if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3747                 return;
3748
3749         /*
3750          * Determine type of Wakeup: note that wol
3751          * is set with all bits on by default.
3752          */
3753         if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3754                 adapter->wol &= ~E1000_WUFC_MAG;
3755
3756         if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3757                 adapter->wol &= ~E1000_WUFC_EX;
3758
3759         if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3760                 adapter->wol &= ~E1000_WUFC_MC;
3761         else {
3762                 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3763                 rctl |= E1000_RCTL_MPE;
3764                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3765         }
3766
3767         if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3768                 goto pme;
3769
3770         /* Advertise the wakeup capability */
3771         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3772         ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3773         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3774
3775         /* Keep the laser running on Fiber adapters */
3776         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3777             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3778                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3779                 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3780                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3781         }
3782
3783         if ((adapter->hw.mac.type == e1000_ich8lan) ||
3784             (adapter->hw.mac.type == e1000_pchlan) ||
3785             (adapter->hw.mac.type == e1000_ich9lan) ||
3786             (adapter->hw.mac.type == e1000_ich10lan))
3787                 e1000_suspend_workarounds_ich8lan(&adapter->hw);
3788
3789         if ( adapter->hw.mac.type >= e1000_pchlan) {
3790                 error = em_enable_phy_wakeup(adapter);
3791                 if (error)
3792                         goto pme;
3793         } else {
3794                 /* Enable wakeup by the MAC */
3795                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3796                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3797         }
3798
3799         if (adapter->hw.phy.type == e1000_phy_igp_3)
3800                 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3801
3802 pme:
3803         status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3804         status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3805         if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3806                 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3807         pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3808
3809         return;
3810 }
3811
3812 /*
3813  * WOL in the newer chipset interfaces (pchlan)
3814  * require thing to be copied into the phy
3815  */
3816 static int
3817 em_enable_phy_wakeup(struct adapter *adapter)
3818 {
3819         struct e1000_hw *hw = &adapter->hw;
3820         u32 mreg, ret = 0;
3821         u16 preg;
3822
3823         /* copy MAC RARs to PHY RARs */
3824         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3825
3826         /* copy MAC MTA to PHY MTA */
3827         for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3828                 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3829                 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3830                 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3831                     (u16)((mreg >> 16) & 0xFFFF));
3832         }
3833
3834         /* configure PHY Rx Control register */
3835         e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3836         mreg = E1000_READ_REG(hw, E1000_RCTL);
3837         if (mreg & E1000_RCTL_UPE)
3838                 preg |= BM_RCTL_UPE;
3839         if (mreg & E1000_RCTL_MPE)
3840                 preg |= BM_RCTL_MPE;
3841         preg &= ~(BM_RCTL_MO_MASK);
3842         if (mreg & E1000_RCTL_MO_3)
3843                 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3844                                 << BM_RCTL_MO_SHIFT);
3845         if (mreg & E1000_RCTL_BAM)
3846                 preg |= BM_RCTL_BAM;
3847         if (mreg & E1000_RCTL_PMCF)
3848                 preg |= BM_RCTL_PMCF;
3849         mreg = E1000_READ_REG(hw, E1000_CTRL);
3850         if (mreg & E1000_CTRL_RFCE)
3851                 preg |= BM_RCTL_RFCE;
3852         e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3853
3854         /* enable PHY wakeup in MAC register */
3855         E1000_WRITE_REG(hw, E1000_WUC,
3856             E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3857         E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3858
3859         /* configure and enable PHY wakeup in PHY registers */
3860         e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3861         e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3862
3863         /* activate PHY wakeup */
3864         ret = hw->phy.ops.acquire(hw);
3865         if (ret) {
3866                 printf("Could not acquire PHY\n");
3867                 return ret;
3868         }
3869         e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3870                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3871         ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3872         if (ret) {
3873                 printf("Could not read PHY page 769\n");
3874                 goto out;
3875         }
3876         preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3877         ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3878         if (ret)
3879                 printf("Could not set PHY Host Wakeup bit\n");
3880 out:
3881         hw->phy.ops.release(hw);
3882
3883         return ret;
3884 }
3885
3886 static void
3887 em_if_led_func(if_ctx_t ctx, int onoff)
3888 {
3889         struct adapter *adapter = iflib_get_softc(ctx);
3890
3891         if (onoff) {
3892                 e1000_setup_led(&adapter->hw);
3893                 e1000_led_on(&adapter->hw);
3894         } else {
3895                 e1000_led_off(&adapter->hw);
3896                 e1000_cleanup_led(&adapter->hw);
3897         }
3898 }
3899
3900 /*
3901  * Disable the L0S and L1 LINK states
3902  */
3903 static void
3904 em_disable_aspm(struct adapter *adapter)
3905 {
3906         int base, reg;
3907         u16 link_cap,link_ctrl;
3908         device_t dev = adapter->dev;
3909
3910         switch (adapter->hw.mac.type) {
3911         case e1000_82573:
3912         case e1000_82574:
3913         case e1000_82583:
3914                 break;
3915         default:
3916                 return;
3917         }
3918         if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3919                 return;
3920         reg = base + PCIER_LINK_CAP;
3921         link_cap = pci_read_config(dev, reg, 2);
3922         if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3923                 return;
3924         reg = base + PCIER_LINK_CTL;
3925         link_ctrl = pci_read_config(dev, reg, 2);
3926         link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3927         pci_write_config(dev, reg, link_ctrl, 2);
3928         return;
3929 }
3930
3931 /**********************************************************************
3932  *
3933  *  Update the board statistics counters.
3934  *
3935  **********************************************************************/
3936 static void
3937 em_update_stats_counters(struct adapter *adapter)
3938 {
3939         u64 prev_xoffrxc = adapter->stats.xoffrxc;
3940
3941         if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3942            (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3943                 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3944                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3945         }
3946         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3947         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3948         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3949         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3950
3951         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3952         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3953         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3954         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3955         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3956         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3957         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3958         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3959         /*
3960          ** For watchdog management we need to know if we have been
3961          ** paused during the last interval, so capture that here.
3962         */
3963         if (adapter->stats.xoffrxc != prev_xoffrxc)
3964                 adapter->shared->isc_pause_frames = 1;
3965         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3966         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3967         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3968         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3969         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3970         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3971         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3972         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3973         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3974         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3975         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3976         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3977
3978         /* For the 64-bit byte counters the low dword must be read first. */
3979         /* Both registers clear on the read of the high dword */
3980
3981         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3982             ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3983         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3984             ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3985
3986         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3987         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3988         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3989         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3990         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3991
3992         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3993         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3994
3995         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3996         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3997         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3998         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3999         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
4000         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
4001         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
4002         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
4003         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
4004         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
4005
4006         /* Interrupt Counts */
4007
4008         adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
4009         adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
4010         adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
4011         adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
4012         adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
4013         adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
4014         adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
4015         adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
4016         adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
4017
4018         if (adapter->hw.mac.type >= e1000_82543) {
4019                 adapter->stats.algnerrc +=
4020                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4021                 adapter->stats.rxerrc +=
4022                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4023                 adapter->stats.tncrs +=
4024                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4025                 adapter->stats.cexterr +=
4026                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4027                 adapter->stats.tsctc +=
4028                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4029                 adapter->stats.tsctfc +=
4030                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4031         }
4032 }
4033
4034 static uint64_t
4035 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4036 {
4037         struct adapter *adapter = iflib_get_softc(ctx);
4038         struct ifnet *ifp = iflib_get_ifp(ctx);
4039
4040         switch (cnt) {
4041         case IFCOUNTER_COLLISIONS:
4042                 return (adapter->stats.colc);
4043         case IFCOUNTER_IERRORS:
4044                 return (adapter->dropped_pkts + adapter->stats.rxerrc +
4045                     adapter->stats.crcerrs + adapter->stats.algnerrc +
4046                     adapter->stats.ruc + adapter->stats.roc +
4047                     adapter->stats.mpc + adapter->stats.cexterr);
4048         case IFCOUNTER_OERRORS:
4049                 return (adapter->stats.ecol + adapter->stats.latecol +
4050                     adapter->watchdog_events);
4051         default:
4052                 return (if_get_counter_default(ifp, cnt));
4053         }
4054 }
4055
4056 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4057  * @ctx: iflib context
4058  * @event: event code to check
4059  *
4060  * Defaults to returning true for unknown events.
4061  *
4062  * @returns true if iflib needs to reinit the interface
4063  */
4064 static bool
4065 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4066 {
4067         switch (event) {
4068         case IFLIB_RESTART_VLAN_CONFIG:
4069         default:
4070                 return (true);
4071         }
4072 }
4073
4074 /* Export a single 32-bit register via a read-only sysctl. */
4075 static int
4076 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4077 {
4078         struct adapter *adapter;
4079         u_int val;
4080
4081         adapter = oidp->oid_arg1;
4082         val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
4083         return (sysctl_handle_int(oidp, &val, 0, req));
4084 }
4085
4086 /*
4087  * Add sysctl variables, one per statistic, to the system.
4088  */
4089 static void
4090 em_add_hw_stats(struct adapter *adapter)
4091 {
4092         device_t dev = iflib_get_dev(adapter->ctx);
4093         struct em_tx_queue *tx_que = adapter->tx_queues;
4094         struct em_rx_queue *rx_que = adapter->rx_queues;
4095
4096         struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4097         struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4098         struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4099         struct e1000_hw_stats *stats = &adapter->stats;
4100
4101         struct sysctl_oid *stat_node, *queue_node, *int_node;
4102         struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4103
4104 #define QUEUE_NAME_LEN 32
4105         char namebuf[QUEUE_NAME_LEN];
4106
4107         /* Driver Statistics */
4108         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4109                         CTLFLAG_RD, &adapter->dropped_pkts,
4110                         "Driver dropped packets");
4111         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4112                         CTLFLAG_RD, &adapter->link_irq,
4113                         "Link MSI-X IRQ Handled");
4114         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4115                         CTLFLAG_RD, &adapter->rx_overruns,
4116                         "RX overruns");
4117         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4118                         CTLFLAG_RD, &adapter->watchdog_events,
4119                         "Watchdog timeouts");
4120         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4121             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4122             adapter, E1000_CTRL, em_sysctl_reg_handler, "IU",
4123             "Device Control Register");
4124         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4125             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4126             adapter, E1000_RCTL, em_sysctl_reg_handler, "IU",
4127             "Receiver Control Register");
4128         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4129                         CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4130                         "Flow Control High Watermark");
4131         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4132                         CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4133                         "Flow Control Low Watermark");
4134
4135         for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4136                 struct tx_ring *txr = &tx_que->txr;
4137                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4138                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4139                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4140                 queue_list = SYSCTL_CHILDREN(queue_node);
4141
4142                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4143                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4144                     E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4145                     "Transmit Descriptor Head");
4146                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4147                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4148                     E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4149                     "Transmit Descriptor Tail");
4150                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4151                                 CTLFLAG_RD, &txr->tx_irq,
4152                                 "Queue MSI-X Transmit Interrupts");
4153         }
4154
4155         for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4156                 struct rx_ring *rxr = &rx_que->rxr;
4157                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4158                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4159                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4160                 queue_list = SYSCTL_CHILDREN(queue_node);
4161
4162                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4163                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4164                     E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4165                     "Receive Descriptor Head");
4166                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4167                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4168                     E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4169                     "Receive Descriptor Tail");
4170                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4171                                 CTLFLAG_RD, &rxr->rx_irq,
4172                                 "Queue MSI-X Receive Interrupts");
4173         }
4174
4175         /* MAC stats get their own sub node */
4176
4177         stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4178             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4179         stat_list = SYSCTL_CHILDREN(stat_node);
4180
4181         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4182                         CTLFLAG_RD, &stats->ecol,
4183                         "Excessive collisions");
4184         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4185                         CTLFLAG_RD, &stats->scc,
4186                         "Single collisions");
4187         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4188                         CTLFLAG_RD, &stats->mcc,
4189                         "Multiple collisions");
4190         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4191                         CTLFLAG_RD, &stats->latecol,
4192                         "Late collisions");
4193         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4194                         CTLFLAG_RD, &stats->colc,
4195                         "Collision Count");
4196         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4197                         CTLFLAG_RD, &adapter->stats.symerrs,
4198                         "Symbol Errors");
4199         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4200                         CTLFLAG_RD, &adapter->stats.sec,
4201                         "Sequence Errors");
4202         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4203                         CTLFLAG_RD, &adapter->stats.dc,
4204                         "Defer Count");
4205         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4206                         CTLFLAG_RD, &adapter->stats.mpc,
4207                         "Missed Packets");
4208         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4209                         CTLFLAG_RD, &adapter->stats.rnbc,
4210                         "Receive No Buffers");
4211         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4212                         CTLFLAG_RD, &adapter->stats.ruc,
4213                         "Receive Undersize");
4214         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4215                         CTLFLAG_RD, &adapter->stats.rfc,
4216                         "Fragmented Packets Received ");
4217         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4218                         CTLFLAG_RD, &adapter->stats.roc,
4219                         "Oversized Packets Received");
4220         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4221                         CTLFLAG_RD, &adapter->stats.rjc,
4222                         "Recevied Jabber");
4223         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4224                         CTLFLAG_RD, &adapter->stats.rxerrc,
4225                         "Receive Errors");
4226         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4227                         CTLFLAG_RD, &adapter->stats.crcerrs,
4228                         "CRC errors");
4229         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4230                         CTLFLAG_RD, &adapter->stats.algnerrc,
4231                         "Alignment Errors");
4232         /* On 82575 these are collision counts */
4233         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4234                         CTLFLAG_RD, &adapter->stats.cexterr,
4235                         "Collision/Carrier extension errors");
4236         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4237                         CTLFLAG_RD, &adapter->stats.xonrxc,
4238                         "XON Received");
4239         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4240                         CTLFLAG_RD, &adapter->stats.xontxc,
4241                         "XON Transmitted");
4242         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4243                         CTLFLAG_RD, &adapter->stats.xoffrxc,
4244                         "XOFF Received");
4245         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4246                         CTLFLAG_RD, &adapter->stats.xofftxc,
4247                         "XOFF Transmitted");
4248
4249         /* Packet Reception Stats */
4250         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4251                         CTLFLAG_RD, &adapter->stats.tpr,
4252                         "Total Packets Received ");
4253         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4254                         CTLFLAG_RD, &adapter->stats.gprc,
4255                         "Good Packets Received");
4256         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4257                         CTLFLAG_RD, &adapter->stats.bprc,
4258                         "Broadcast Packets Received");
4259         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4260                         CTLFLAG_RD, &adapter->stats.mprc,
4261                         "Multicast Packets Received");
4262         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4263                         CTLFLAG_RD, &adapter->stats.prc64,
4264                         "64 byte frames received ");
4265         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4266                         CTLFLAG_RD, &adapter->stats.prc127,
4267                         "65-127 byte frames received");
4268         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4269                         CTLFLAG_RD, &adapter->stats.prc255,
4270                         "128-255 byte frames received");
4271         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4272                         CTLFLAG_RD, &adapter->stats.prc511,
4273                         "256-511 byte frames received");
4274         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4275                         CTLFLAG_RD, &adapter->stats.prc1023,
4276                         "512-1023 byte frames received");
4277         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4278                         CTLFLAG_RD, &adapter->stats.prc1522,
4279                         "1023-1522 byte frames received");
4280         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4281                         CTLFLAG_RD, &adapter->stats.gorc,
4282                         "Good Octets Received");
4283
4284         /* Packet Transmission Stats */
4285         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4286                         CTLFLAG_RD, &adapter->stats.gotc,
4287                         "Good Octets Transmitted");
4288         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4289                         CTLFLAG_RD, &adapter->stats.tpt,
4290                         "Total Packets Transmitted");
4291         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4292                         CTLFLAG_RD, &adapter->stats.gptc,
4293                         "Good Packets Transmitted");
4294         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4295                         CTLFLAG_RD, &adapter->stats.bptc,
4296                         "Broadcast Packets Transmitted");
4297         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4298                         CTLFLAG_RD, &adapter->stats.mptc,
4299                         "Multicast Packets Transmitted");
4300         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4301                         CTLFLAG_RD, &adapter->stats.ptc64,
4302                         "64 byte frames transmitted ");
4303         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4304                         CTLFLAG_RD, &adapter->stats.ptc127,
4305                         "65-127 byte frames transmitted");
4306         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4307                         CTLFLAG_RD, &adapter->stats.ptc255,
4308                         "128-255 byte frames transmitted");
4309         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4310                         CTLFLAG_RD, &adapter->stats.ptc511,
4311                         "256-511 byte frames transmitted");
4312         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4313                         CTLFLAG_RD, &adapter->stats.ptc1023,
4314                         "512-1023 byte frames transmitted");
4315         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4316                         CTLFLAG_RD, &adapter->stats.ptc1522,
4317                         "1024-1522 byte frames transmitted");
4318         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4319                         CTLFLAG_RD, &adapter->stats.tsctc,
4320                         "TSO Contexts Transmitted");
4321         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4322                         CTLFLAG_RD, &adapter->stats.tsctfc,
4323                         "TSO Contexts Failed");
4324
4325
4326         /* Interrupt Stats */
4327
4328         int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4329             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4330         int_list = SYSCTL_CHILDREN(int_node);
4331
4332         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4333                         CTLFLAG_RD, &adapter->stats.iac,
4334                         "Interrupt Assertion Count");
4335
4336         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4337                         CTLFLAG_RD, &adapter->stats.icrxptc,
4338                         "Interrupt Cause Rx Pkt Timer Expire Count");
4339
4340         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4341                         CTLFLAG_RD, &adapter->stats.icrxatc,
4342                         "Interrupt Cause Rx Abs Timer Expire Count");
4343
4344         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4345                         CTLFLAG_RD, &adapter->stats.ictxptc,
4346                         "Interrupt Cause Tx Pkt Timer Expire Count");
4347
4348         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4349                         CTLFLAG_RD, &adapter->stats.ictxatc,
4350                         "Interrupt Cause Tx Abs Timer Expire Count");
4351
4352         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4353                         CTLFLAG_RD, &adapter->stats.ictxqec,
4354                         "Interrupt Cause Tx Queue Empty Count");
4355
4356         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4357                         CTLFLAG_RD, &adapter->stats.ictxqmtc,
4358                         "Interrupt Cause Tx Queue Min Thresh Count");
4359
4360         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4361                         CTLFLAG_RD, &adapter->stats.icrxdmtc,
4362                         "Interrupt Cause Rx Desc Min Thresh Count");
4363
4364         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4365                         CTLFLAG_RD, &adapter->stats.icrxoc,
4366                         "Interrupt Cause Receiver Overrun Count");
4367 }
4368
4369 /**********************************************************************
4370  *
4371  *  This routine provides a way to dump out the adapter eeprom,
4372  *  often a useful debug/service tool. This only dumps the first
4373  *  32 words, stuff that matters is in that extent.
4374  *
4375  **********************************************************************/
4376 static int
4377 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4378 {
4379         struct adapter *adapter = (struct adapter *)arg1;
4380         int error;
4381         int result;
4382
4383         result = -1;
4384         error = sysctl_handle_int(oidp, &result, 0, req);
4385
4386         if (error || !req->newptr)
4387                 return (error);
4388
4389         /*
4390          * This value will cause a hex dump of the
4391          * first 32 16-bit words of the EEPROM to
4392          * the screen.
4393          */
4394         if (result == 1)
4395                 em_print_nvm_info(adapter);
4396
4397         return (error);
4398 }
4399
4400 static void
4401 em_print_nvm_info(struct adapter *adapter)
4402 {
4403         u16 eeprom_data;
4404         int i, j, row = 0;
4405
4406         /* Its a bit crude, but it gets the job done */
4407         printf("\nInterface EEPROM Dump:\n");
4408         printf("Offset\n0x0000  ");
4409         for (i = 0, j = 0; i < 32; i++, j++) {
4410                 if (j == 8) { /* Make the offset block */
4411                         j = 0; ++row;
4412                         printf("\n0x00%x0  ",row);
4413                 }
4414                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4415                 printf("%04x ", eeprom_data);
4416         }
4417         printf("\n");
4418 }
4419
4420 static int
4421 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4422 {
4423         struct em_int_delay_info *info;
4424         struct adapter *adapter;
4425         u32 regval;
4426         int error, usecs, ticks;
4427
4428         info = (struct em_int_delay_info *) arg1;
4429         usecs = info->value;
4430         error = sysctl_handle_int(oidp, &usecs, 0, req);
4431         if (error != 0 || req->newptr == NULL)
4432                 return (error);
4433         if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4434                 return (EINVAL);
4435         info->value = usecs;
4436         ticks = EM_USECS_TO_TICKS(usecs);
4437         if (info->offset == E1000_ITR)  /* units are 256ns here */
4438                 ticks *= 4;
4439
4440         adapter = info->adapter;
4441
4442         regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4443         regval = (regval & ~0xffff) | (ticks & 0xffff);
4444         /* Handle a few special cases. */
4445         switch (info->offset) {
4446         case E1000_RDTR:
4447                 break;
4448         case E1000_TIDV:
4449                 if (ticks == 0) {
4450                         adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4451                         /* Don't write 0 into the TIDV register. */
4452                         regval++;
4453                 } else
4454                         adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4455                 break;
4456         }
4457         E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4458         return (0);
4459 }
4460
4461 static void
4462 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4463         const char *description, struct em_int_delay_info *info,
4464         int offset, int value)
4465 {
4466         info->adapter = adapter;
4467         info->offset = offset;
4468         info->value = value;
4469         SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4470             SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4471             OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4472             info, 0, em_sysctl_int_delay, "I", description);
4473 }
4474
4475 /*
4476  * Set flow control using sysctl:
4477  * Flow control values:
4478  *      0 - off
4479  *      1 - rx pause
4480  *      2 - tx pause
4481  *      3 - full
4482  */
4483 static int
4484 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4485 {
4486         int error;
4487         static int input = 3; /* default is full */
4488         struct adapter  *adapter = (struct adapter *) arg1;
4489
4490         error = sysctl_handle_int(oidp, &input, 0, req);
4491
4492         if ((error) || (req->newptr == NULL))
4493                 return (error);
4494
4495         if (input == adapter->fc) /* no change? */
4496                 return (error);
4497
4498         switch (input) {
4499         case e1000_fc_rx_pause:
4500         case e1000_fc_tx_pause:
4501         case e1000_fc_full:
4502         case e1000_fc_none:
4503                 adapter->hw.fc.requested_mode = input;
4504                 adapter->fc = input;
4505                 break;
4506         default:
4507                 /* Do nothing */
4508                 return (error);
4509         }
4510
4511         adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4512         e1000_force_mac_fc(&adapter->hw);
4513         return (error);
4514 }
4515
4516 /*
4517  * Manage Energy Efficient Ethernet:
4518  * Control values:
4519  *     0/1 - enabled/disabled
4520  */
4521 static int
4522 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4523 {
4524         struct adapter *adapter = (struct adapter *) arg1;
4525         int error, value;
4526
4527         value = adapter->hw.dev_spec.ich8lan.eee_disable;
4528         error = sysctl_handle_int(oidp, &value, 0, req);
4529         if (error || req->newptr == NULL)
4530                 return (error);
4531         adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4532         em_if_init(adapter->ctx);
4533
4534         return (0);
4535 }
4536
4537 static int
4538 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4539 {
4540         struct adapter *adapter;
4541         int error;
4542         int result;
4543
4544         result = -1;
4545         error = sysctl_handle_int(oidp, &result, 0, req);
4546
4547         if (error || !req->newptr)
4548                 return (error);
4549
4550         if (result == 1) {
4551                 adapter = (struct adapter *) arg1;
4552                 em_print_debug_info(adapter);
4553         }
4554
4555         return (error);
4556 }
4557
4558 static int
4559 em_get_rs(SYSCTL_HANDLER_ARGS)
4560 {
4561         struct adapter *adapter = (struct adapter *) arg1;
4562         int error;
4563         int result;
4564
4565         result = 0;
4566         error = sysctl_handle_int(oidp, &result, 0, req);
4567
4568         if (error || !req->newptr || result != 1)
4569                 return (error);
4570         em_dump_rs(adapter);
4571
4572         return (error);
4573 }
4574
4575 static void
4576 em_if_debug(if_ctx_t ctx)
4577 {
4578         em_dump_rs(iflib_get_softc(ctx));
4579 }
4580
4581 /*
4582  * This routine is meant to be fluid, add whatever is
4583  * needed for debugging a problem.  -jfv
4584  */
4585 static void
4586 em_print_debug_info(struct adapter *adapter)
4587 {
4588         device_t dev = iflib_get_dev(adapter->ctx);
4589         struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4590         struct tx_ring *txr = &adapter->tx_queues->txr;
4591         struct rx_ring *rxr = &adapter->rx_queues->rxr;
4592
4593         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4594                 printf("Interface is RUNNING ");
4595         else
4596                 printf("Interface is NOT RUNNING\n");
4597
4598         if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4599                 printf("and INACTIVE\n");
4600         else
4601                 printf("and ACTIVE\n");
4602
4603         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4604                 device_printf(dev, "TX Queue %d ------\n", i);
4605                 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4606                         E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4607                         E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4608
4609         }
4610         for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4611                 device_printf(dev, "RX Queue %d ------\n", j);
4612                 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4613                         E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4614                         E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4615         }
4616 }
4617
4618 /*
4619  * 82574 only:
4620  * Write a new value to the EEPROM increasing the number of MSI-X
4621  * vectors from 3 to 5, for proper multiqueue support.
4622  */
4623 static void
4624 em_enable_vectors_82574(if_ctx_t ctx)
4625 {
4626         struct adapter *adapter = iflib_get_softc(ctx);
4627         struct e1000_hw *hw = &adapter->hw;
4628         device_t dev = iflib_get_dev(ctx);
4629         u16 edata;
4630
4631         e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4632         if (bootverbose)
4633                 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4634         if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4635                 device_printf(dev, "Writing to eeprom: increasing "
4636                     "reported MSI-X vectors from 3 to 5...\n");
4637                 edata &= ~(EM_NVM_MSIX_N_MASK);
4638                 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4639                 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4640                 e1000_update_nvm_checksum(hw);
4641                 device_printf(dev, "Writing to eeprom: done\n");
4642         }
4643 }