]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/e1000/if_em.c
MFV r337744:
[FreeBSD/FreeBSD.git] / sys / dev / e1000 / if_em.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33
34 #define em_mac_min e1000_82547
35 #define igb_mac_min e1000_82575
36
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54         /* Intel(R) PRO/1000 Network Connection - Legacy em*/
55         PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
56         PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
57         PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
58         PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
59         PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
60
61         PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
62         PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
63         PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
64         PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
65         PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
66         PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
67         PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
68
69         PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
70
71         PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
72         PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
73
74         PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
75         PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
76         PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
77         PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
78
79         PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80         PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81         PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
82         PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
83         PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
84
85         PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
86         PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
87         PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
88         PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
89         PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
90         PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
91         PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
92         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
93         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
94
95         PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
96         PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
97         PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
98
99         /* Intel(R) PRO/1000 Network Connection - em */
100         PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
101         PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
102         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
103         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
104         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
105         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
106         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
107         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
108         PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
109         PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
110         PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
111         PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
112         PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
113         PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
114         PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
115         PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
116         PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
117         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
118         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
119         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
120         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
121         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
122         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
123         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
124         PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
125         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
126         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
127         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
128         PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
129         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
130         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
131         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
132         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
133         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
134         PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
135         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
136         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
137         PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
138         PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
139         PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
140         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
141         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
142         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
143         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
144         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
145         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
146         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
147         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
148         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
149         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
150         PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
151         PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
152         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
153         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
154         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
155         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
156         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
157         PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
158         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
159         PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
160         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
161         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
162         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
163         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
164         PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
165         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
166         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
167         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
168         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
169         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"),
170         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"),
171         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"),
172         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"),
173         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"),
174         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"),
175         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"),
176         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"),
177         /* required last entry */
178         PVID_END
179 };
180
181 static pci_vendor_info_t igb_vendor_info_array[] =
182 {
183         /* Intel(R) PRO/1000 Network Connection - igb */
184         PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
185         PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
186         PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
187         PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
188         PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
189         PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
190         PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191         PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192         PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195         PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196         PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197         PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198         PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199         PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200         PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201         PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205         PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206         PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207         PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208         PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209         PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210         PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211         PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212         PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213         PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
214         PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
215         PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
216         PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
217         PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
218         PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
219         PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
220         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
221         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
222         PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
223         /* required last entry */
224         PVID_END
225 };
226
227 /*********************************************************************
228  *  Function prototypes
229  *********************************************************************/
230 static void     *em_register(device_t dev);
231 static void     *igb_register(device_t dev);
232 static int      em_if_attach_pre(if_ctx_t ctx);
233 static int      em_if_attach_post(if_ctx_t ctx);
234 static int      em_if_detach(if_ctx_t ctx);
235 static int      em_if_shutdown(if_ctx_t ctx);
236 static int      em_if_suspend(if_ctx_t ctx);
237 static int      em_if_resume(if_ctx_t ctx);
238
239 static int      em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
240 static int      em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
241 static void     em_if_queues_free(if_ctx_t ctx);
242
243 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
244 static void     em_if_init(if_ctx_t ctx);
245 static void     em_if_stop(if_ctx_t ctx);
246 static void     em_if_media_status(if_ctx_t, struct ifmediareq *);
247 static int      em_if_media_change(if_ctx_t ctx);
248 static int      em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
249 static void     em_if_timer(if_ctx_t ctx, uint16_t qid);
250 static void     em_if_vlan_register(if_ctx_t ctx, u16 vtag);
251 static void     em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
252
253 static void     em_identify_hardware(if_ctx_t ctx);
254 static int      em_allocate_pci_resources(if_ctx_t ctx);
255 static void     em_free_pci_resources(if_ctx_t ctx);
256 static void     em_reset(if_ctx_t ctx);
257 static int      em_setup_interface(if_ctx_t ctx);
258 static int      em_setup_msix(if_ctx_t ctx);
259
260 static void     em_initialize_transmit_unit(if_ctx_t ctx);
261 static void     em_initialize_receive_unit(if_ctx_t ctx);
262
263 static void     em_if_enable_intr(if_ctx_t ctx);
264 static void     em_if_disable_intr(if_ctx_t ctx);
265 static int      em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
266 static int      em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
267 static void     em_if_multi_set(if_ctx_t ctx);
268 static void     em_if_update_admin_status(if_ctx_t ctx);
269 static void     em_if_debug(if_ctx_t ctx);
270 static void     em_update_stats_counters(struct adapter *);
271 static void     em_add_hw_stats(struct adapter *adapter);
272 static int      em_if_set_promisc(if_ctx_t ctx, int flags);
273 static void     em_setup_vlan_hw_support(struct adapter *);
274 static int      em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
275 static void     em_print_nvm_info(struct adapter *);
276 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
277 static int      em_get_rs(SYSCTL_HANDLER_ARGS);
278 static void     em_print_debug_info(struct adapter *);
279 static int      em_is_valid_ether_addr(u8 *);
280 static int      em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
281 static void     em_add_int_delay_sysctl(struct adapter *, const char *,
282                     const char *, struct em_int_delay_info *, int, int);
283 /* Management and WOL Support */
284 static void     em_init_manageability(struct adapter *);
285 static void     em_release_manageability(struct adapter *);
286 static void     em_get_hw_control(struct adapter *);
287 static void     em_release_hw_control(struct adapter *);
288 static void     em_get_wakeup(if_ctx_t ctx);
289 static void     em_enable_wakeup(if_ctx_t ctx);
290 static int      em_enable_phy_wakeup(struct adapter *);
291 static void     em_disable_aspm(struct adapter *);
292
293 int             em_intr(void *arg);
294 static void     em_disable_promisc(if_ctx_t ctx);
295
296 /* MSIX handlers */
297 static int      em_if_msix_intr_assign(if_ctx_t, int);
298 static int      em_msix_link(void *);
299 static void     em_handle_link(void *context);
300
301 static void     em_enable_vectors_82574(if_ctx_t);
302
303 static int      em_set_flowcntl(SYSCTL_HANDLER_ARGS);
304 static int      em_sysctl_eee(SYSCTL_HANDLER_ARGS);
305 static void     em_if_led_func(if_ctx_t ctx, int onoff);
306
307 static int      em_get_regs(SYSCTL_HANDLER_ARGS);
308
309 static void     lem_smartspeed(struct adapter *adapter);
310 static void     igb_configure_queues(struct adapter *adapter);
311
312
313 /*********************************************************************
314  *  FreeBSD Device Interface Entry Points
315  *********************************************************************/
316 static device_method_t em_methods[] = {
317         /* Device interface */
318         DEVMETHOD(device_register, em_register),
319         DEVMETHOD(device_probe, iflib_device_probe),
320         DEVMETHOD(device_attach, iflib_device_attach),
321         DEVMETHOD(device_detach, iflib_device_detach),
322         DEVMETHOD(device_shutdown, iflib_device_shutdown),
323         DEVMETHOD(device_suspend, iflib_device_suspend),
324         DEVMETHOD(device_resume, iflib_device_resume),
325         DEVMETHOD_END
326 };
327
328 static device_method_t igb_methods[] = {
329         /* Device interface */
330         DEVMETHOD(device_register, igb_register),
331         DEVMETHOD(device_probe, iflib_device_probe),
332         DEVMETHOD(device_attach, iflib_device_attach),
333         DEVMETHOD(device_detach, iflib_device_detach),
334         DEVMETHOD(device_shutdown, iflib_device_shutdown),
335         DEVMETHOD(device_suspend, iflib_device_suspend),
336         DEVMETHOD(device_resume, iflib_device_resume),
337         DEVMETHOD_END
338 };
339
340
341 static driver_t em_driver = {
342         "em", em_methods, sizeof(struct adapter),
343 };
344
345 static devclass_t em_devclass;
346 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
347
348 MODULE_DEPEND(em, pci, 1, 1, 1);
349 MODULE_DEPEND(em, ether, 1, 1, 1);
350 MODULE_DEPEND(em, iflib, 1, 1, 1);
351
352 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
353
354 static driver_t igb_driver = {
355         "igb", igb_methods, sizeof(struct adapter),
356 };
357
358 static devclass_t igb_devclass;
359 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
360
361 MODULE_DEPEND(igb, pci, 1, 1, 1);
362 MODULE_DEPEND(igb, ether, 1, 1, 1);
363 MODULE_DEPEND(igb, iflib, 1, 1, 1);
364
365 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
366
367 static device_method_t em_if_methods[] = {
368         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
369         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
370         DEVMETHOD(ifdi_detach, em_if_detach),
371         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
372         DEVMETHOD(ifdi_suspend, em_if_suspend),
373         DEVMETHOD(ifdi_resume, em_if_resume),
374         DEVMETHOD(ifdi_init, em_if_init),
375         DEVMETHOD(ifdi_stop, em_if_stop),
376         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
377         DEVMETHOD(ifdi_intr_enable, em_if_enable_intr),
378         DEVMETHOD(ifdi_intr_disable, em_if_disable_intr),
379         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
380         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
381         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
382         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
383         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
384         DEVMETHOD(ifdi_media_status, em_if_media_status),
385         DEVMETHOD(ifdi_media_change, em_if_media_change),
386         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
387         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
388         DEVMETHOD(ifdi_timer, em_if_timer),
389         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
390         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
391         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
392         DEVMETHOD(ifdi_led_func, em_if_led_func),
393         DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
394         DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
395         DEVMETHOD(ifdi_debug, em_if_debug),
396         DEVMETHOD_END
397 };
398
399 /*
400  * note that if (adapter->msix_mem) is replaced by:
401  * if (adapter->intr_type == IFLIB_INTR_MSIX)
402  */
403 static driver_t em_if_driver = {
404         "em_if", em_if_methods, sizeof(struct adapter)
405 };
406
407 /*********************************************************************
408  *  Tunable default values.
409  *********************************************************************/
410
411 #define EM_TICKS_TO_USECS(ticks)        ((1024 * (ticks) + 500) / 1000)
412 #define EM_USECS_TO_TICKS(usecs)        ((1000 * (usecs) + 512) / 1024)
413
414 #define MAX_INTS_PER_SEC        8000
415 #define DEFAULT_ITR             (1000000000/(MAX_INTS_PER_SEC * 256))
416
417 /* Allow common code without TSO */
418 #ifndef CSUM_TSO
419 #define CSUM_TSO        0
420 #endif
421
422 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters");
423
424 static int em_disable_crc_stripping = 0;
425 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
426     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
427
428 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
429 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
430 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
431     0, "Default transmit interrupt delay in usecs");
432 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
433     0, "Default receive interrupt delay in usecs");
434
435 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
436 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
437 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
438     &em_tx_abs_int_delay_dflt, 0,
439     "Default transmit interrupt delay limit in usecs");
440 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
441     &em_rx_abs_int_delay_dflt, 0,
442     "Default receive interrupt delay limit in usecs");
443
444 static int em_smart_pwr_down = FALSE;
445 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
446     0, "Set to true to leave smart power down enabled on newer adapters");
447
448 /* Controls whether promiscuous also shows bad packets */
449 static int em_debug_sbp = TRUE;
450 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
451     "Show bad packets in promiscuous mode");
452
453 /* How many packets rxeof tries to clean at a time */
454 static int em_rx_process_limit = 100;
455 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
456     &em_rx_process_limit, 0,
457     "Maximum number of received packets to process "
458     "at a time, -1 means unlimited");
459
460 /* Energy efficient ethernet - default to OFF */
461 static int eee_setting = 1;
462 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
463     "Enable Energy Efficient Ethernet");
464
465 /*
466 ** Tuneable Interrupt rate
467 */
468 static int em_max_interrupt_rate = 8000;
469 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
470     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
471
472
473
474 /* Global used in WOL setup with multiport cards */
475 static int global_quad_port_a = 0;
476
477 extern struct if_txrx igb_txrx;
478 extern struct if_txrx em_txrx;
479 extern struct if_txrx lem_txrx;
480
481 static struct if_shared_ctx em_sctx_init = {
482         .isc_magic = IFLIB_MAGIC,
483         .isc_q_align = PAGE_SIZE,
484         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
485         .isc_tx_maxsegsize = PAGE_SIZE,
486         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
487         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
488         .isc_rx_maxsize = MJUM9BYTES,
489         .isc_rx_nsegments = 1,
490         .isc_rx_maxsegsize = MJUM9BYTES,
491         .isc_nfl = 1,
492         .isc_nrxqs = 1,
493         .isc_ntxqs = 1,
494         .isc_admin_intrcnt = 1,
495         .isc_vendor_info = em_vendor_info_array,
496         .isc_driver_version = em_driver_version,
497         .isc_driver = &em_if_driver,
498         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
499
500         .isc_nrxd_min = {EM_MIN_RXD},
501         .isc_ntxd_min = {EM_MIN_TXD},
502         .isc_nrxd_max = {EM_MAX_RXD},
503         .isc_ntxd_max = {EM_MAX_TXD},
504         .isc_nrxd_default = {EM_DEFAULT_RXD},
505         .isc_ntxd_default = {EM_DEFAULT_TXD},
506 };
507
508 if_shared_ctx_t em_sctx = &em_sctx_init;
509
510 static struct if_shared_ctx igb_sctx_init = {
511         .isc_magic = IFLIB_MAGIC,
512         .isc_q_align = PAGE_SIZE,
513         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
514         .isc_tx_maxsegsize = PAGE_SIZE,
515         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
516         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
517         .isc_rx_maxsize = MJUM9BYTES,
518         .isc_rx_nsegments = 1,
519         .isc_rx_maxsegsize = MJUM9BYTES,
520         .isc_nfl = 1,
521         .isc_nrxqs = 1,
522         .isc_ntxqs = 1,
523         .isc_admin_intrcnt = 1,
524         .isc_vendor_info = igb_vendor_info_array,
525         .isc_driver_version = em_driver_version,
526         .isc_driver = &em_if_driver,
527         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
528
529         .isc_nrxd_min = {EM_MIN_RXD},
530         .isc_ntxd_min = {EM_MIN_TXD},
531         .isc_nrxd_max = {IGB_MAX_RXD},
532         .isc_ntxd_max = {IGB_MAX_TXD},
533         .isc_nrxd_default = {EM_DEFAULT_RXD},
534         .isc_ntxd_default = {EM_DEFAULT_TXD},
535 };
536
537 if_shared_ctx_t igb_sctx = &igb_sctx_init;
538
539 /*****************************************************************
540  *
541  * Dump Registers
542  *
543  ****************************************************************/
544 #define IGB_REGS_LEN 739
545
546 static int em_get_regs(SYSCTL_HANDLER_ARGS)
547 {
548         struct adapter *adapter = (struct adapter *)arg1;
549         struct e1000_hw *hw = &adapter->hw;
550         struct sbuf *sb;
551         u32 *regs_buff;
552         int rc;
553
554         regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
555         memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
556
557         rc = sysctl_wire_old_buffer(req, 0);
558         MPASS(rc == 0);
559         if (rc != 0) {
560                 free(regs_buff, M_DEVBUF);
561                 return (rc);
562         }
563
564         sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
565         MPASS(sb != NULL);
566         if (sb == NULL) {
567                 free(regs_buff, M_DEVBUF);
568                 return (ENOMEM);
569         }
570
571         /* General Registers */
572         regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
573         regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
574         regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
575         regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
576         regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
577         regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
578         regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
579         regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
580         regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
581         regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
582         regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
583         regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
584         regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
585         regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
586         regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
587         regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
588         regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
589         regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
590         regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
591         regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
592         regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
593         regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
594
595         sbuf_printf(sb, "General Registers\n");
596         sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
597         sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
598         sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
599
600         sbuf_printf(sb, "Interrupt Registers\n");
601         sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
602
603         sbuf_printf(sb, "RX Registers\n");
604         sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
605         sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
606         sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
607         sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
608         sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
609         sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
610         sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
611
612         sbuf_printf(sb, "TX Registers\n");
613         sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
614         sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
615         sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
616         sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
617         sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
618         sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
619         sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
620         sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
621         sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
622         sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
623         sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
624
625         free(regs_buff, M_DEVBUF);
626
627 #ifdef DUMP_DESCS
628         {
629                 if_softc_ctx_t scctx = adapter->shared;
630                 struct rx_ring *rxr = &rx_que->rxr;
631                 struct tx_ring *txr = &tx_que->txr;
632                 int ntxd = scctx->isc_ntxd[0];
633                 int nrxd = scctx->isc_nrxd[0];
634                 int j;
635
636         for (j = 0; j < nrxd; j++) {
637                 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
638                 u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
639                 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
640         }
641
642         for (j = 0; j < min(ntxd, 256); j++) {
643                 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
644
645                 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
646                             j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
647                             buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
648
649         }
650         }
651 #endif
652
653         rc = sbuf_finish(sb);
654         sbuf_delete(sb);
655         return(rc);
656 }
657
658 static void *
659 em_register(device_t dev)
660 {
661         return (em_sctx);
662 }
663
664 static void *
665 igb_register(device_t dev)
666 {
667         return (igb_sctx);
668 }
669
670 static int
671 em_set_num_queues(if_ctx_t ctx)
672 {
673         struct adapter *adapter = iflib_get_softc(ctx);
674         int maxqueues;
675
676         /* Sanity check based on HW */
677         switch (adapter->hw.mac.type) {
678         case e1000_82576:
679         case e1000_82580:
680         case e1000_i350:
681         case e1000_i354:
682                 maxqueues = 8;
683                 break;
684         case e1000_i210:
685         case e1000_82575:
686                 maxqueues = 4;
687                 break;
688         case e1000_i211:
689         case e1000_82574:
690                 maxqueues = 2;
691                 break;
692         default:
693                 maxqueues = 1;
694                 break;
695         }
696
697         return (maxqueues);
698 }
699
700 #define LEM_CAPS                                                        \
701     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
702     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
703
704 #define EM_CAPS                                                         \
705     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
706     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
707     IFCAP_LRO | IFCAP_VLAN_HWTSO
708
709 #define IGB_CAPS                                                        \
710     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
711     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
712     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6;
713
714 /*********************************************************************
715  *  Device initialization routine
716  *
717  *  The attach entry point is called when the driver is being loaded.
718  *  This routine identifies the type of hardware, allocates all resources
719  *  and initializes the hardware.
720  *
721  *  return 0 on success, positive on failure
722  *********************************************************************/
723
724 static int
725 em_if_attach_pre(if_ctx_t ctx)
726 {
727         struct adapter *adapter;
728         if_softc_ctx_t scctx;
729         device_t dev;
730         struct e1000_hw *hw;
731         int error = 0;
732
733         INIT_DEBUGOUT("em_if_attach_pre begin");
734         dev = iflib_get_dev(ctx);
735         adapter = iflib_get_softc(ctx);
736
737         if (resource_disabled("em", device_get_unit(dev))) {
738                 device_printf(dev, "Disabled by device hint\n");
739                 return (ENXIO);
740         }
741
742         adapter->ctx = adapter->osdep.ctx = ctx;
743         adapter->dev = adapter->osdep.dev = dev;
744         scctx = adapter->shared = iflib_get_softc_ctx(ctx);
745         adapter->media = iflib_get_media(ctx);
746         hw = &adapter->hw;
747
748         adapter->tx_process_limit = scctx->isc_ntxd[0];
749
750         /* SYSCTL stuff */
751         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
752             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
753             OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
754             em_sysctl_nvm_info, "I", "NVM Information");
755
756         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
757             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
758             OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
759             em_sysctl_debug_info, "I", "Debug Information");
760
761         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
762             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
763             OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
764             em_set_flowcntl, "I", "Flow Control");
765
766         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
767             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
768             OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0,
769             em_get_regs, "A", "Dump Registers");
770
771         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
772             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
773             OID_AUTO, "rs_dump", CTLTYPE_INT | CTLFLAG_RW, adapter, 0,
774             em_get_rs, "I", "Dump RS indexes");
775
776         /* Determine hardware and mac info */
777         em_identify_hardware(ctx);
778
779         scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR);
780         scctx->isc_tx_nsegments = EM_MAX_SCATTER;
781         scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
782         device_printf(dev, "attach_pre capping queues at %d\n", scctx->isc_ntxqsets_max);
783
784         if (adapter->hw.mac.type >= igb_mac_min) {
785                 int try_second_bar;
786
787                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
788                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
789                 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
790                 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
791                 scctx->isc_txrx = &igb_txrx;
792                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
793                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
794                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
795                 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
796                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
797                      CSUM_IP6_TCP | CSUM_IP6_UDP;
798                 if (adapter->hw.mac.type != e1000_82575)
799                         scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
800
801                 /*
802                 ** Some new devices, as with ixgbe, now may
803                 ** use a different BAR, so we need to keep
804                 ** track of which is used.
805                 */
806                 try_second_bar = pci_read_config(dev, scctx->isc_msix_bar, 4);
807                 if (try_second_bar == 0)
808                         scctx->isc_msix_bar += 4;
809         } else if (adapter->hw.mac.type >= em_mac_min) {
810                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
811                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
812                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
813                 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
814                 scctx->isc_txrx = &em_txrx;
815                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
816                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
817                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
818                 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
819                 /*
820                  * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
821                  * by default as we don't have workarounds for all associated
822                  * silicon errata.  E. g., with several MACs such as 82573E,
823                  * TSO only works at Gigabit speed and otherwise can cause the
824                  * hardware to hang (which also would be next to impossible to
825                  * work around given that already queued TSO-using descriptors
826                  * would need to be flushed and vlan(4) reconfigured at runtime
827                  * in case of a link speed change).  Moreover, MACs like 82579
828                  * still can hang at Gigabit even with all publicly documented
829                  * TSO workarounds implemented.  Generally, the penality of
830                  * these workarounds is rather high and may involve copying
831                  * mbuf data around so advantages of TSO lapse.  Still, TSO may
832                  * work for a few MACs of this class - at least when sticking
833                  * with Gigabit - in which case users may enable TSO manually.
834                  */
835                 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
836                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
837         } else {
838                 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
839                 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
840                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
841                 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
842                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
843                 scctx->isc_txrx = &lem_txrx;
844                 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
845                 if (adapter->hw.mac.type < e1000_82543)
846                         scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
847                 scctx->isc_msix_bar = 0;
848         }
849
850         /* Setup PCI resources */
851         if (em_allocate_pci_resources(ctx)) {
852                 device_printf(dev, "Allocation of PCI resources failed\n");
853                 error = ENXIO;
854                 goto err_pci;
855         }
856
857         /*
858         ** For ICH8 and family we need to
859         ** map the flash memory, and this
860         ** must happen after the MAC is
861         ** identified
862         */
863         if ((hw->mac.type == e1000_ich8lan) ||
864             (hw->mac.type == e1000_ich9lan) ||
865             (hw->mac.type == e1000_ich10lan) ||
866             (hw->mac.type == e1000_pchlan) ||
867             (hw->mac.type == e1000_pch2lan) ||
868             (hw->mac.type == e1000_pch_lpt)) {
869                 int rid = EM_BAR_TYPE_FLASH;
870                 adapter->flash = bus_alloc_resource_any(dev,
871                     SYS_RES_MEMORY, &rid, RF_ACTIVE);
872                 if (adapter->flash == NULL) {
873                         device_printf(dev, "Mapping of Flash failed\n");
874                         error = ENXIO;
875                         goto err_pci;
876                 }
877                 /* This is used in the shared code */
878                 hw->flash_address = (u8 *)adapter->flash;
879                 adapter->osdep.flash_bus_space_tag =
880                     rman_get_bustag(adapter->flash);
881                 adapter->osdep.flash_bus_space_handle =
882                     rman_get_bushandle(adapter->flash);
883         }
884         /*
885         ** In the new SPT device flash is not  a
886         ** separate BAR, rather it is also in BAR0,
887         ** so use the same tag and an offset handle for the
888         ** FLASH read/write macros in the shared code.
889         */
890         else if (hw->mac.type >= e1000_pch_spt) {
891                 adapter->osdep.flash_bus_space_tag =
892                     adapter->osdep.mem_bus_space_tag;
893                 adapter->osdep.flash_bus_space_handle =
894                     adapter->osdep.mem_bus_space_handle
895                     + E1000_FLASH_BASE_ADDR;
896         }
897
898         /* Do Shared Code initialization */
899         error = e1000_setup_init_funcs(hw, TRUE);
900         if (error) {
901                 device_printf(dev, "Setup of Shared code failed, error %d\n",
902                     error);
903                 error = ENXIO;
904                 goto err_pci;
905         }
906
907         em_setup_msix(ctx);
908         e1000_get_bus_info(hw);
909
910         /* Set up some sysctls for the tunable interrupt delays */
911         em_add_int_delay_sysctl(adapter, "rx_int_delay",
912             "receive interrupt delay in usecs", &adapter->rx_int_delay,
913             E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
914         em_add_int_delay_sysctl(adapter, "tx_int_delay",
915             "transmit interrupt delay in usecs", &adapter->tx_int_delay,
916             E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
917         em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
918             "receive interrupt delay limit in usecs",
919             &adapter->rx_abs_int_delay,
920             E1000_REGISTER(hw, E1000_RADV),
921             em_rx_abs_int_delay_dflt);
922         em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
923             "transmit interrupt delay limit in usecs",
924             &adapter->tx_abs_int_delay,
925             E1000_REGISTER(hw, E1000_TADV),
926             em_tx_abs_int_delay_dflt);
927         em_add_int_delay_sysctl(adapter, "itr",
928             "interrupt delay limit in usecs/4",
929             &adapter->tx_itr,
930             E1000_REGISTER(hw, E1000_ITR),
931             DEFAULT_ITR);
932
933         hw->mac.autoneg = DO_AUTO_NEG;
934         hw->phy.autoneg_wait_to_complete = FALSE;
935         hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
936
937         if (adapter->hw.mac.type < em_mac_min) {
938                 e1000_init_script_state_82541(&adapter->hw, TRUE);
939                 e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
940         }
941         /* Copper options */
942         if (hw->phy.media_type == e1000_media_type_copper) {
943                 hw->phy.mdix = AUTO_ALL_MODES;
944                 hw->phy.disable_polarity_correction = FALSE;
945                 hw->phy.ms_type = EM_MASTER_SLAVE;
946         }
947
948         /*
949          * Set the frame limits assuming
950          * standard ethernet sized frames.
951          */
952         scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
953             ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
954
955         /*
956          * This controls when hardware reports transmit completion
957          * status.
958          */
959         hw->mac.report_tx_early = 1;
960
961         /* Allocate multicast array memory. */
962         adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
963             MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
964         if (adapter->mta == NULL) {
965                 device_printf(dev, "Can not allocate multicast setup array\n");
966                 error = ENOMEM;
967                 goto err_late;
968         }
969
970         /* Check SOL/IDER usage */
971         if (e1000_check_reset_block(hw))
972                 device_printf(dev, "PHY reset is blocked"
973                               " due to SOL/IDER session.\n");
974
975         /* Sysctl for setting Energy Efficient Ethernet */
976         hw->dev_spec.ich8lan.eee_disable = eee_setting;
977         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
978             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
979             OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW,
980             adapter, 0, em_sysctl_eee, "I",
981             "Disable Energy Efficient Ethernet");
982
983         /*
984         ** Start from a known state, this is
985         ** important in reading the nvm and
986         ** mac from that.
987         */
988         e1000_reset_hw(hw);
989
990         /* Make sure we have a good EEPROM before we read from it */
991         if (e1000_validate_nvm_checksum(hw) < 0) {
992                 /*
993                 ** Some PCI-E parts fail the first check due to
994                 ** the link being in sleep state, call it again,
995                 ** if it fails a second time its a real issue.
996                 */
997                 if (e1000_validate_nvm_checksum(hw) < 0) {
998                         device_printf(dev,
999                             "The EEPROM Checksum Is Not Valid\n");
1000                         error = EIO;
1001                         goto err_late;
1002                 }
1003         }
1004
1005         /* Copy the permanent MAC address out of the EEPROM */
1006         if (e1000_read_mac_addr(hw) < 0) {
1007                 device_printf(dev, "EEPROM read error while reading MAC"
1008                               " address\n");
1009                 error = EIO;
1010                 goto err_late;
1011         }
1012
1013         if (!em_is_valid_ether_addr(hw->mac.addr)) {
1014                 device_printf(dev, "Invalid MAC address\n");
1015                 error = EIO;
1016                 goto err_late;
1017         }
1018
1019         /* Disable ULP support */
1020         e1000_disable_ulp_lpt_lp(hw, TRUE);
1021
1022         /*
1023          * Get Wake-on-Lan and Management info for later use
1024          */
1025         em_get_wakeup(ctx);
1026
1027         /* Enable only WOL MAGIC by default */
1028         scctx->isc_capenable &= ~IFCAP_WOL;
1029         if (adapter->wol != 0)
1030                 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1031
1032         iflib_set_mac(ctx, hw->mac.addr);
1033
1034         return (0);
1035
1036 err_late:
1037         em_release_hw_control(adapter);
1038 err_pci:
1039         em_free_pci_resources(ctx);
1040         free(adapter->mta, M_DEVBUF);
1041
1042         return (error);
1043 }
1044
1045 static int
1046 em_if_attach_post(if_ctx_t ctx)
1047 {
1048         struct adapter *adapter = iflib_get_softc(ctx);
1049         struct e1000_hw *hw = &adapter->hw;
1050         int error = 0;
1051         
1052         /* Setup OS specific network interface */
1053         error = em_setup_interface(ctx);
1054         if (error != 0) {
1055                 goto err_late;
1056         }
1057
1058         em_reset(ctx);
1059
1060         /* Initialize statistics */
1061         em_update_stats_counters(adapter);
1062         hw->mac.get_link_status = 1;
1063         em_if_update_admin_status(ctx);
1064         em_add_hw_stats(adapter);
1065
1066         /* Non-AMT based hardware can now take control from firmware */
1067         if (adapter->has_manage && !adapter->has_amt)
1068                 em_get_hw_control(adapter);
1069
1070         INIT_DEBUGOUT("em_if_attach_post: end");
1071
1072         return (error);
1073
1074 err_late:
1075         em_release_hw_control(adapter);
1076         em_free_pci_resources(ctx);
1077         em_if_queues_free(ctx);
1078         free(adapter->mta, M_DEVBUF);
1079
1080         return (error);
1081 }
1082
1083 /*********************************************************************
1084  *  Device removal routine
1085  *
1086  *  The detach entry point is called when the driver is being removed.
1087  *  This routine stops the adapter and deallocates all the resources
1088  *  that were allocated for driver operation.
1089  *
1090  *  return 0 on success, positive on failure
1091  *********************************************************************/
1092
1093 static int
1094 em_if_detach(if_ctx_t ctx)
1095 {
1096         struct adapter  *adapter = iflib_get_softc(ctx);
1097
1098         INIT_DEBUGOUT("em_detach: begin");
1099
1100         e1000_phy_hw_reset(&adapter->hw);
1101
1102         em_release_manageability(adapter);
1103         em_release_hw_control(adapter);
1104         em_free_pci_resources(ctx);
1105
1106         return (0);
1107 }
1108
1109 /*********************************************************************
1110  *
1111  *  Shutdown entry point
1112  *
1113  **********************************************************************/
1114
1115 static int
1116 em_if_shutdown(if_ctx_t ctx)
1117 {
1118         return em_if_suspend(ctx);
1119 }
1120
1121 /*
1122  * Suspend/resume device methods.
1123  */
1124 static int
1125 em_if_suspend(if_ctx_t ctx)
1126 {
1127         struct adapter *adapter = iflib_get_softc(ctx);
1128
1129         em_release_manageability(adapter);
1130         em_release_hw_control(adapter);
1131         em_enable_wakeup(ctx);
1132         return (0);
1133 }
1134
1135 static int
1136 em_if_resume(if_ctx_t ctx)
1137 {
1138         struct adapter *adapter = iflib_get_softc(ctx);
1139
1140         if (adapter->hw.mac.type == e1000_pch2lan)
1141                 e1000_resume_workarounds_pchlan(&adapter->hw);
1142         em_if_init(ctx);
1143         em_init_manageability(adapter);
1144
1145         return(0);
1146 }
1147
1148 static int
1149 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1150 {
1151         int max_frame_size;
1152         struct adapter *adapter = iflib_get_softc(ctx);
1153         if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1154
1155          IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1156
1157         switch (adapter->hw.mac.type) {
1158         case e1000_82571:
1159         case e1000_82572:
1160         case e1000_ich9lan:
1161         case e1000_ich10lan:
1162         case e1000_pch2lan:
1163         case e1000_pch_lpt:
1164         case e1000_pch_spt:
1165         case e1000_pch_cnp:
1166         case e1000_82574:
1167         case e1000_82583:
1168         case e1000_80003es2lan:
1169                 /* 9K Jumbo Frame size */
1170                 max_frame_size = 9234;
1171                 break;
1172         case e1000_pchlan:
1173                 max_frame_size = 4096;
1174                 break;
1175         case e1000_82542:
1176         case e1000_ich8lan:
1177                 /* Adapters that do not support jumbo frames */
1178                 max_frame_size = ETHER_MAX_LEN;
1179                 break;
1180         default:
1181                 if (adapter->hw.mac.type >= igb_mac_min)
1182                         max_frame_size = 9234;
1183                 else /* lem */
1184                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
1185         }
1186         if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1187                 return (EINVAL);
1188         }
1189
1190         scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1191             mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1192         return (0);
1193 }
1194
1195 /*********************************************************************
1196  *  Init entry point
1197  *
1198  *  This routine is used in two ways. It is used by the stack as
1199  *  init entry point in network interface structure. It is also used
1200  *  by the driver as a hw/sw initialization routine to get to a
1201  *  consistent state.
1202  *
1203  *  return 0 on success, positive on failure
1204  **********************************************************************/
1205
1206 static void
1207 em_if_init(if_ctx_t ctx)
1208 {
1209         struct adapter *adapter = iflib_get_softc(ctx);
1210         struct ifnet *ifp = iflib_get_ifp(ctx);
1211         struct em_tx_queue *tx_que;
1212         int i;
1213         INIT_DEBUGOUT("em_if_init: begin");
1214
1215         /* Get the latest mac address, User can use a LAA */
1216         bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1217             ETHER_ADDR_LEN);
1218
1219         /* Put the address into the Receive Address Array */
1220         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1221
1222         /*
1223          * With the 82571 adapter, RAR[0] may be overwritten
1224          * when the other port is reset, we make a duplicate
1225          * in RAR[14] for that eventuality, this assures
1226          * the interface continues to function.
1227          */
1228         if (adapter->hw.mac.type == e1000_82571) {
1229                 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1230                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1231                     E1000_RAR_ENTRIES - 1);
1232         }
1233
1234
1235         /* Initialize the hardware */
1236         em_reset(ctx);
1237         em_if_update_admin_status(ctx);
1238
1239         for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1240                 struct tx_ring *txr = &tx_que->txr;
1241
1242                 txr->tx_rs_cidx = txr->tx_rs_pidx = txr->tx_cidx_processed = 0;
1243         }
1244
1245         /* Setup VLAN support, basic and offload if available */
1246         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1247
1248         /* Clear bad data from Rx FIFOs */
1249         if (adapter->hw.mac.type >= igb_mac_min)
1250                 e1000_rx_fifo_flush_82575(&adapter->hw);
1251
1252         /* Configure for OS presence */
1253         em_init_manageability(adapter);
1254
1255         /* Prepare transmit descriptors and buffers */
1256         em_initialize_transmit_unit(ctx);
1257
1258         /* Setup Multicast table */
1259         em_if_multi_set(ctx);
1260
1261         /*
1262          * Figure out the desired mbuf
1263          * pool for doing jumbos
1264          */
1265         if (adapter->hw.mac.max_frame_size <= 2048)
1266                 adapter->rx_mbuf_sz = MCLBYTES;
1267 #ifndef CONTIGMALLOC_WORKS
1268         else
1269                 adapter->rx_mbuf_sz = MJUMPAGESIZE;
1270 #else
1271         else if (adapter->hw.mac.max_frame_size <= 4096)
1272                 adapter->rx_mbuf_sz = MJUMPAGESIZE;
1273         else
1274                 adapter->rx_mbuf_sz = MJUM9BYTES;
1275 #endif
1276         em_initialize_receive_unit(ctx);
1277
1278         /* Use real VLAN Filter support? */
1279         if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1280                 if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1281                         /* Use real VLAN Filter support */
1282                         em_setup_vlan_hw_support(adapter);
1283                 else {
1284                         u32 ctrl;
1285                         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1286                         ctrl |= E1000_CTRL_VME;
1287                         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1288                 }
1289         }
1290
1291         /* Don't lose promiscuous settings */
1292         em_if_set_promisc(ctx, IFF_PROMISC);
1293         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1294
1295         /* MSI/X configuration for 82574 */
1296         if (adapter->hw.mac.type == e1000_82574) {
1297                 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1298
1299                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1300                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1301                 /* Set the IVAR - interrupt vector routing. */
1302                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1303         } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1304                 igb_configure_queues(adapter);
1305
1306         /* this clears any pending interrupts */
1307         E1000_READ_REG(&adapter->hw, E1000_ICR);
1308         E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1309
1310         /* AMT based hardware can now take control from firmware */
1311         if (adapter->has_manage && adapter->has_amt)
1312                 em_get_hw_control(adapter);
1313
1314         /* Set Energy Efficient Ethernet */
1315         if (adapter->hw.mac.type >= igb_mac_min &&
1316             adapter->hw.phy.media_type == e1000_media_type_copper) {
1317                 if (adapter->hw.mac.type == e1000_i354)
1318                         e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1319                 else
1320                         e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1321         }
1322 }
1323
1324 /*********************************************************************
1325  *
1326  *  Fast Legacy/MSI Combined Interrupt Service routine
1327  *
1328  *********************************************************************/
1329 int
1330 em_intr(void *arg)
1331 {
1332         struct adapter *adapter = arg;
1333         if_ctx_t ctx = adapter->ctx;
1334         u32 reg_icr;
1335
1336         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1337
1338         if (adapter->intr_type != IFLIB_INTR_LEGACY)
1339                 goto skip_stray;
1340         /* Hot eject? */
1341         if (reg_icr == 0xffffffff)
1342                 return FILTER_STRAY;
1343
1344         /* Definitely not our interrupt. */
1345         if (reg_icr == 0x0)
1346                 return FILTER_STRAY;
1347
1348         /*
1349          * Starting with the 82571 chip, bit 31 should be used to
1350          * determine whether the interrupt belongs to us.
1351          */
1352         if (adapter->hw.mac.type >= e1000_82571 &&
1353             (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1354                 return FILTER_STRAY;
1355
1356 skip_stray:
1357         /* Link status change */
1358         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1359                 adapter->hw.mac.get_link_status = 1;
1360                 iflib_admin_intr_deferred(ctx);
1361         }
1362
1363         if (reg_icr & E1000_ICR_RXO)
1364                 adapter->rx_overruns++;
1365
1366         return (FILTER_SCHEDULE_THREAD);
1367 }
1368
1369 static void
1370 igb_rx_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq)
1371 {
1372         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1373 }
1374
1375 static void
1376 em_rx_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq)
1377 {
1378         E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1379 }
1380
1381 static void
1382 igb_tx_enable_queue(struct adapter *adapter, struct em_tx_queue *txq)
1383 {
1384         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1385 }
1386
1387 static void
1388 em_tx_enable_queue(struct adapter *adapter, struct em_tx_queue *txq)
1389 {
1390         E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1391 }
1392
1393 static int
1394 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1395 {
1396         struct adapter *adapter = iflib_get_softc(ctx);
1397         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1398
1399         if (adapter->hw.mac.type >= igb_mac_min)
1400                 igb_rx_enable_queue(adapter, rxq);
1401         else
1402                 em_rx_enable_queue(adapter, rxq);
1403         return (0);
1404 }
1405
1406 static int
1407 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1408 {
1409         struct adapter *adapter = iflib_get_softc(ctx);
1410         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1411
1412         if (adapter->hw.mac.type >= igb_mac_min)
1413                 igb_tx_enable_queue(adapter, txq);
1414         else
1415                 em_tx_enable_queue(adapter, txq);
1416         return (0);
1417 }
1418
1419 /*********************************************************************
1420  *
1421  *  MSIX RX Interrupt Service routine
1422  *
1423  **********************************************************************/
1424 static int
1425 em_msix_que(void *arg)
1426 {
1427         struct em_rx_queue *que = arg;
1428
1429         ++que->irqs;
1430
1431         return (FILTER_SCHEDULE_THREAD);
1432 }
1433
1434 /*********************************************************************
1435  *
1436  *  MSIX Link Fast Interrupt Service routine
1437  *
1438  **********************************************************************/
1439 static int
1440 em_msix_link(void *arg)
1441 {
1442         struct adapter *adapter = arg;
1443         u32 reg_icr;
1444
1445         ++adapter->link_irq;
1446         MPASS(adapter->hw.back != NULL);
1447         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1448
1449         if (reg_icr & E1000_ICR_RXO)
1450                 adapter->rx_overruns++;
1451
1452         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1453                 em_handle_link(adapter->ctx);
1454         } else {
1455                 E1000_WRITE_REG(&adapter->hw, E1000_IMS,
1456                                 EM_MSIX_LINK | E1000_IMS_LSC);
1457                 if (adapter->hw.mac.type >= igb_mac_min)
1458                         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1459         }
1460
1461         /*
1462          * Because we must read the ICR for this interrupt
1463          * it may clear other causes using autoclear, for
1464          * this reason we simply create a soft interrupt
1465          * for all these vectors.
1466          */
1467         if (reg_icr && adapter->hw.mac.type < igb_mac_min) {
1468                 E1000_WRITE_REG(&adapter->hw,
1469                         E1000_ICS, adapter->ims);
1470         }
1471
1472         return (FILTER_HANDLED);
1473 }
1474
1475 static void
1476 em_handle_link(void *context)
1477 {
1478         if_ctx_t ctx = context;
1479         struct adapter *adapter = iflib_get_softc(ctx);
1480
1481         adapter->hw.mac.get_link_status = 1;
1482         iflib_admin_intr_deferred(ctx);
1483 }
1484
1485
1486 /*********************************************************************
1487  *
1488  *  Media Ioctl callback
1489  *
1490  *  This routine is called whenever the user queries the status of
1491  *  the interface using ifconfig.
1492  *
1493  **********************************************************************/
1494 static void
1495 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1496 {
1497         struct adapter *adapter = iflib_get_softc(ctx);
1498         u_char fiber_type = IFM_1000_SX;
1499
1500         INIT_DEBUGOUT("em_if_media_status: begin");
1501
1502         iflib_admin_intr_deferred(ctx);
1503
1504         ifmr->ifm_status = IFM_AVALID;
1505         ifmr->ifm_active = IFM_ETHER;
1506
1507         if (!adapter->link_active) {
1508                 return;
1509         }
1510
1511         ifmr->ifm_status |= IFM_ACTIVE;
1512
1513         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1514             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1515                 if (adapter->hw.mac.type == e1000_82545)
1516                         fiber_type = IFM_1000_LX;
1517                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1518         } else {
1519                 switch (adapter->link_speed) {
1520                 case 10:
1521                         ifmr->ifm_active |= IFM_10_T;
1522                         break;
1523                 case 100:
1524                         ifmr->ifm_active |= IFM_100_TX;
1525                         break;
1526                 case 1000:
1527                         ifmr->ifm_active |= IFM_1000_T;
1528                         break;
1529                 }
1530                 if (adapter->link_duplex == FULL_DUPLEX)
1531                         ifmr->ifm_active |= IFM_FDX;
1532                 else
1533                         ifmr->ifm_active |= IFM_HDX;
1534         }
1535 }
1536
1537 /*********************************************************************
1538  *
1539  *  Media Ioctl callback
1540  *
1541  *  This routine is called when the user changes speed/duplex using
1542  *  media/mediopt option with ifconfig.
1543  *
1544  **********************************************************************/
1545 static int
1546 em_if_media_change(if_ctx_t ctx)
1547 {
1548         struct adapter *adapter = iflib_get_softc(ctx);
1549         struct ifmedia *ifm = iflib_get_media(ctx);
1550
1551         INIT_DEBUGOUT("em_if_media_change: begin");
1552
1553         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1554                 return (EINVAL);
1555
1556         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1557         case IFM_AUTO:
1558                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1559                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1560                 break;
1561         case IFM_1000_LX:
1562         case IFM_1000_SX:
1563         case IFM_1000_T:
1564                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1565                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1566                 break;
1567         case IFM_100_TX:
1568                 adapter->hw.mac.autoneg = FALSE;
1569                 adapter->hw.phy.autoneg_advertised = 0;
1570                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1571                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1572                 else
1573                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1574                 break;
1575         case IFM_10_T:
1576                 adapter->hw.mac.autoneg = FALSE;
1577                 adapter->hw.phy.autoneg_advertised = 0;
1578                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1579                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1580                 else
1581                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1582                 break;
1583         default:
1584                 device_printf(adapter->dev, "Unsupported media type\n");
1585         }
1586
1587         em_if_init(ctx);
1588
1589         return (0);
1590 }
1591
1592 static int
1593 em_if_set_promisc(if_ctx_t ctx, int flags)
1594 {
1595         struct adapter *adapter = iflib_get_softc(ctx);
1596         u32 reg_rctl;
1597
1598         em_disable_promisc(ctx);
1599
1600         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1601
1602         if (flags & IFF_PROMISC) {
1603                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1604                 /* Turn this on if you want to see bad packets */
1605                 if (em_debug_sbp)
1606                         reg_rctl |= E1000_RCTL_SBP;
1607                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1608         } else if (flags & IFF_ALLMULTI) {
1609                 reg_rctl |= E1000_RCTL_MPE;
1610                 reg_rctl &= ~E1000_RCTL_UPE;
1611                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1612         }
1613         return (0);
1614 }
1615
1616 static void
1617 em_disable_promisc(if_ctx_t ctx)
1618 {
1619         struct adapter *adapter = iflib_get_softc(ctx);
1620         struct ifnet *ifp = iflib_get_ifp(ctx);
1621         u32 reg_rctl;
1622         int mcnt = 0;
1623
1624         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1625         reg_rctl &= (~E1000_RCTL_UPE);
1626         if (if_getflags(ifp) & IFF_ALLMULTI)
1627                 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1628         else
1629                 mcnt = if_multiaddr_count(ifp, MAX_NUM_MULTICAST_ADDRESSES);
1630         /* Don't disable if in MAX groups */
1631         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1632                 reg_rctl &=  (~E1000_RCTL_MPE);
1633         reg_rctl &=  (~E1000_RCTL_SBP);
1634         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1635 }
1636
1637
1638 /*********************************************************************
1639  *  Multicast Update
1640  *
1641  *  This routine is called whenever multicast address list is updated.
1642  *
1643  **********************************************************************/
1644
1645 static void
1646 em_if_multi_set(if_ctx_t ctx)
1647 {
1648         struct adapter *adapter = iflib_get_softc(ctx);
1649         struct ifnet *ifp = iflib_get_ifp(ctx);
1650         u32 reg_rctl = 0;
1651         u8  *mta; /* Multicast array memory */
1652         int mcnt = 0;
1653
1654         IOCTL_DEBUGOUT("em_set_multi: begin");
1655
1656         mta = adapter->mta;
1657         bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1658
1659         if (adapter->hw.mac.type == e1000_82542 &&
1660             adapter->hw.revision_id == E1000_REVISION_2) {
1661                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1662                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1663                         e1000_pci_clear_mwi(&adapter->hw);
1664                 reg_rctl |= E1000_RCTL_RST;
1665                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1666                 msec_delay(5);
1667         }
1668
1669         if_multiaddr_array(ifp, mta, &mcnt, MAX_NUM_MULTICAST_ADDRESSES);
1670
1671         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1672                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1673                 reg_rctl |= E1000_RCTL_MPE;
1674                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1675         } else
1676                 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1677
1678         if (adapter->hw.mac.type == e1000_82542 &&
1679             adapter->hw.revision_id == E1000_REVISION_2) {
1680                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1681                 reg_rctl &= ~E1000_RCTL_RST;
1682                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1683                 msec_delay(5);
1684                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1685                         e1000_pci_set_mwi(&adapter->hw);
1686         }
1687 }
1688
1689
1690 /*********************************************************************
1691  *  Timer routine
1692  *
1693  *  This routine checks for link status and updates statistics.
1694  *
1695  **********************************************************************/
1696
1697 static void
1698 em_if_timer(if_ctx_t ctx, uint16_t qid)
1699 {
1700         struct adapter *adapter = iflib_get_softc(ctx);
1701         struct em_rx_queue *que;
1702         int i;
1703         int trigger = 0;
1704
1705         if (qid != 0)
1706                 return;
1707
1708         iflib_admin_intr_deferred(ctx);
1709
1710         /* Mask to use in the irq trigger */
1711         if (adapter->intr_type == IFLIB_INTR_MSIX) {
1712                 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++)
1713                         trigger |= que->eims;
1714         } else {
1715                 trigger = E1000_ICS_RXDMT0;
1716         }
1717 }
1718
1719
1720 static void
1721 em_if_update_admin_status(if_ctx_t ctx)
1722 {
1723         struct adapter *adapter = iflib_get_softc(ctx);
1724         struct e1000_hw *hw = &adapter->hw;
1725         device_t dev = iflib_get_dev(ctx);
1726         u32 link_check, thstat, ctrl;
1727
1728         link_check = thstat = ctrl = 0;
1729         /* Get the cached link value or read phy for real */
1730         switch (hw->phy.media_type) {
1731         case e1000_media_type_copper:
1732                 if (hw->mac.get_link_status) {
1733                         if (hw->mac.type == e1000_pch_spt)
1734                                 msec_delay(50);
1735                         /* Do the work to read phy */
1736                         e1000_check_for_link(hw);
1737                         link_check = !hw->mac.get_link_status;
1738                         if (link_check) /* ESB2 fix */
1739                                 e1000_cfg_on_link_up(hw);
1740                 } else {
1741                         link_check = TRUE;
1742                 }
1743                 break;
1744         case e1000_media_type_fiber:
1745                 e1000_check_for_link(hw);
1746                 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1747                             E1000_STATUS_LU);
1748                 break;
1749         case e1000_media_type_internal_serdes:
1750                 e1000_check_for_link(hw);
1751                 link_check = adapter->hw.mac.serdes_has_link;
1752                 break;
1753         /* VF device is type_unknown */
1754         case e1000_media_type_unknown:
1755                 e1000_check_for_link(hw);
1756                 link_check = !hw->mac.get_link_status;
1757                 /* FALLTHROUGH */
1758         default:
1759                 break;
1760         }
1761
1762         /* Check for thermal downshift or shutdown */
1763         if (hw->mac.type == e1000_i350) {
1764                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1765                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1766         }
1767
1768         /* Now check for a transition */
1769         if (link_check && (adapter->link_active == 0)) {
1770                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1771                     &adapter->link_duplex);
1772                 /* Check if we must disable SPEED_MODE bit on PCI-E */
1773                 if ((adapter->link_speed != SPEED_1000) &&
1774                     ((hw->mac.type == e1000_82571) ||
1775                     (hw->mac.type == e1000_82572))) {
1776                         int tarc0;
1777                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1778                         tarc0 &= ~TARC_SPEED_MODE_BIT;
1779                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1780                 }
1781                 if (bootverbose)
1782                         device_printf(dev, "Link is up %d Mbps %s\n",
1783                             adapter->link_speed,
1784                             ((adapter->link_duplex == FULL_DUPLEX) ?
1785                             "Full Duplex" : "Half Duplex"));
1786                 adapter->link_active = 1;
1787                 adapter->smartspeed = 0;
1788                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1789                     E1000_CTRL_EXT_LINK_MODE_GMII &&
1790                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1791                         device_printf(dev, "Link: thermal downshift\n");
1792                 /* Delay Link Up for Phy update */
1793                 if (((hw->mac.type == e1000_i210) ||
1794                     (hw->mac.type == e1000_i211)) &&
1795                     (hw->phy.id == I210_I_PHY_ID))
1796                         msec_delay(I210_LINK_DELAY);
1797                 /* Reset if the media type changed. */
1798                 if ((hw->dev_spec._82575.media_changed) &&
1799                         (adapter->hw.mac.type >= igb_mac_min)) {
1800                         hw->dev_spec._82575.media_changed = false;
1801                         adapter->flags |= IGB_MEDIA_RESET;
1802                         em_reset(ctx);
1803                 }
1804                 iflib_link_state_change(ctx, LINK_STATE_UP,
1805                     IF_Mbps(adapter->link_speed));
1806                 printf("Link state changed to up\n");
1807         } else if (!link_check && (adapter->link_active == 1)) {
1808                 adapter->link_speed = 0;
1809                 adapter->link_duplex = 0;
1810                 adapter->link_active = 0;
1811                 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1812                 printf("Link state changed to down\n");
1813         }
1814         em_update_stats_counters(adapter);
1815
1816         /* Reset LAA into RAR[0] on 82571 */
1817         if ((adapter->hw.mac.type == e1000_82571) &&
1818             e1000_get_laa_state_82571(&adapter->hw))
1819                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1820
1821         if (adapter->hw.mac.type < em_mac_min)
1822                 lem_smartspeed(adapter);
1823
1824         E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC);
1825 }
1826
1827 /*********************************************************************
1828  *
1829  *  This routine disables all traffic on the adapter by issuing a
1830  *  global reset on the MAC and deallocates TX/RX buffers.
1831  *
1832  *  This routine should always be called with BOTH the CORE
1833  *  and TX locks.
1834  **********************************************************************/
1835
1836 static void
1837 em_if_stop(if_ctx_t ctx)
1838 {
1839         struct adapter *adapter = iflib_get_softc(ctx);
1840
1841         INIT_DEBUGOUT("em_stop: begin");
1842
1843         e1000_reset_hw(&adapter->hw);
1844         if (adapter->hw.mac.type >= e1000_82544)
1845                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1846
1847         e1000_led_off(&adapter->hw);
1848         e1000_cleanup_led(&adapter->hw);
1849 }
1850
1851
1852 /*********************************************************************
1853  *
1854  *  Determine hardware revision.
1855  *
1856  **********************************************************************/
1857 static void
1858 em_identify_hardware(if_ctx_t ctx)
1859 {
1860         device_t dev = iflib_get_dev(ctx);
1861         struct adapter *adapter = iflib_get_softc(ctx);
1862
1863         /* Make sure our PCI config space has the necessary stuff set */
1864         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1865
1866         /* Save off the information about this board */
1867         adapter->hw.vendor_id = pci_get_vendor(dev);
1868         adapter->hw.device_id = pci_get_device(dev);
1869         adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1870         adapter->hw.subsystem_vendor_id =
1871             pci_read_config(dev, PCIR_SUBVEND_0, 2);
1872         adapter->hw.subsystem_device_id =
1873             pci_read_config(dev, PCIR_SUBDEV_0, 2);
1874
1875         /* Do Shared Code Init and Setup */
1876         if (e1000_set_mac_type(&adapter->hw)) {
1877                 device_printf(dev, "Setup init failure\n");
1878                 return;
1879         }
1880 }
1881
1882 static int
1883 em_allocate_pci_resources(if_ctx_t ctx)
1884 {
1885         struct adapter *adapter = iflib_get_softc(ctx);
1886         device_t dev = iflib_get_dev(ctx);
1887         int rid, val;
1888
1889         rid = PCIR_BAR(0);
1890         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1891             &rid, RF_ACTIVE);
1892         if (adapter->memory == NULL) {
1893                 device_printf(dev, "Unable to allocate bus resource: memory\n");
1894                 return (ENXIO);
1895         }
1896         adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1897         adapter->osdep.mem_bus_space_handle =
1898             rman_get_bushandle(adapter->memory);
1899         adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1900
1901         /* Only older adapters use IO mapping */
1902         if (adapter->hw.mac.type < em_mac_min &&
1903             adapter->hw.mac.type > e1000_82543) {
1904                 /* Figure our where our IO BAR is ? */
1905                 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1906                         val = pci_read_config(dev, rid, 4);
1907                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1908                                 adapter->io_rid = rid;
1909                                 break;
1910                         }
1911                         rid += 4;
1912                         /* check for 64bit BAR */
1913                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1914                                 rid += 4;
1915                 }
1916                 if (rid >= PCIR_CIS) {
1917                         device_printf(dev, "Unable to locate IO BAR\n");
1918                         return (ENXIO);
1919                 }
1920                 adapter->ioport = bus_alloc_resource_any(dev,
1921                     SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
1922                 if (adapter->ioport == NULL) {
1923                         device_printf(dev, "Unable to allocate bus resource: "
1924                             "ioport\n");
1925                         return (ENXIO);
1926                 }
1927                 adapter->hw.io_base = 0;
1928                 adapter->osdep.io_bus_space_tag =
1929                     rman_get_bustag(adapter->ioport);
1930                 adapter->osdep.io_bus_space_handle =
1931                     rman_get_bushandle(adapter->ioport);
1932         }
1933
1934         adapter->hw.back = &adapter->osdep;
1935
1936         return (0);
1937 }
1938
1939 /*********************************************************************
1940  *
1941  *  Setup the MSIX Interrupt handlers
1942  *
1943  **********************************************************************/
1944 static int
1945 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1946 {
1947         struct adapter *adapter = iflib_get_softc(ctx);
1948         struct em_rx_queue *rx_que = adapter->rx_queues;
1949         struct em_tx_queue *tx_que = adapter->tx_queues;
1950         int error, rid, i, vector = 0, rx_vectors;
1951         char buf[16];
1952
1953         /* First set up ring resources */
1954         for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
1955                 rid = vector + 1;
1956                 snprintf(buf, sizeof(buf), "rxq%d", i);
1957                 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
1958                 if (error) {
1959                         device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
1960                         adapter->rx_num_queues = i + 1;
1961                         goto fail;
1962                 }
1963
1964                 rx_que->msix =  vector;
1965
1966                 /*
1967                  * Set the bit to enable interrupt
1968                  * in E1000_IMS -- bits 20 and 21
1969                  * are for RX0 and RX1, note this has
1970                  * NOTHING to do with the MSIX vector
1971                  */
1972                 if (adapter->hw.mac.type == e1000_82574) {
1973                         rx_que->eims = 1 << (20 + i);
1974                         adapter->ims |= rx_que->eims;
1975                         adapter->ivars |= (8 | rx_que->msix) << (i * 4);
1976                 } else if (adapter->hw.mac.type == e1000_82575)
1977                         rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
1978                 else
1979                         rx_que->eims = 1 << vector;
1980         }
1981         rx_vectors = vector;
1982
1983         vector = 0;
1984         for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
1985                 snprintf(buf, sizeof(buf), "txq%d", i);
1986                 tx_que = &adapter->tx_queues[i];
1987                 iflib_softirq_alloc_generic(ctx,
1988                     &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
1989                     IFLIB_INTR_TX, tx_que, tx_que->me, buf);
1990
1991                 tx_que->msix = (vector % adapter->tx_num_queues);
1992
1993                 /*
1994                  * Set the bit to enable interrupt
1995                  * in E1000_IMS -- bits 22 and 23
1996                  * are for TX0 and TX1, note this has
1997                  * NOTHING to do with the MSIX vector
1998                  */
1999                 if (adapter->hw.mac.type == e1000_82574) {
2000                         tx_que->eims = 1 << (22 + i);
2001                         adapter->ims |= tx_que->eims;
2002                         adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2003                 } else if (adapter->hw.mac.type == e1000_82575) {
2004                         tx_que->eims = E1000_EICR_TX_QUEUE0 << (i %  adapter->tx_num_queues);
2005                 } else {
2006                         tx_que->eims = 1 << (i %  adapter->tx_num_queues);
2007                 }
2008         }
2009
2010         /* Link interrupt */
2011         rid = rx_vectors + 1;
2012         error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2013
2014         if (error) {
2015                 device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2016                 goto fail;
2017         }
2018         adapter->linkvec = rx_vectors;
2019         if (adapter->hw.mac.type < igb_mac_min) {
2020                 adapter->ivars |=  (8 | rx_vectors) << 16;
2021                 adapter->ivars |= 0x80000000;
2022         }
2023         return (0);
2024 fail:
2025         iflib_irq_free(ctx, &adapter->irq);
2026         rx_que = adapter->rx_queues;
2027         for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2028                 iflib_irq_free(ctx, &rx_que->que_irq);
2029         return (error);
2030 }
2031
2032 static void
2033 igb_configure_queues(struct adapter *adapter)
2034 {
2035         struct e1000_hw *hw = &adapter->hw;
2036         struct em_rx_queue *rx_que;
2037         struct em_tx_queue *tx_que;
2038         u32 tmp, ivar = 0, newitr = 0;
2039
2040         /* First turn on RSS capability */
2041         if (adapter->hw.mac.type != e1000_82575)
2042                 E1000_WRITE_REG(hw, E1000_GPIE,
2043                     E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2044                     E1000_GPIE_PBA | E1000_GPIE_NSICR);
2045
2046         /* Turn on MSIX */
2047         switch (adapter->hw.mac.type) {
2048         case e1000_82580:
2049         case e1000_i350:
2050         case e1000_i354:
2051         case e1000_i210:
2052         case e1000_i211:
2053         case e1000_vfadapt:
2054         case e1000_vfadapt_i350:
2055                 /* RX entries */
2056                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2057                         u32 index = i >> 1;
2058                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2059                         rx_que = &adapter->rx_queues[i];
2060                         if (i & 1) {
2061                                 ivar &= 0xFF00FFFF;
2062                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2063                         } else {
2064                                 ivar &= 0xFFFFFF00;
2065                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2066                         }
2067                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2068                 }
2069                 /* TX entries */
2070                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2071                         u32 index = i >> 1;
2072                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2073                         tx_que = &adapter->tx_queues[i];
2074                         if (i & 1) {
2075                                 ivar &= 0x00FFFFFF;
2076                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2077                         } else {
2078                                 ivar &= 0xFFFF00FF;
2079                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2080                         }
2081                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2082                         adapter->que_mask |= tx_que->eims;
2083                 }
2084
2085                 /* And for the link interrupt */
2086                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2087                 adapter->link_mask = 1 << adapter->linkvec;
2088                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2089                 break;
2090         case e1000_82576:
2091                 /* RX entries */
2092                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2093                         u32 index = i & 0x7; /* Each IVAR has two entries */
2094                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2095                         rx_que = &adapter->rx_queues[i];
2096                         if (i < 8) {
2097                                 ivar &= 0xFFFFFF00;
2098                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2099                         } else {
2100                                 ivar &= 0xFF00FFFF;
2101                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2102                         }
2103                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2104                         adapter->que_mask |= rx_que->eims;
2105                 }
2106                 /* TX entries */
2107                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2108                         u32 index = i & 0x7; /* Each IVAR has two entries */
2109                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2110                         tx_que = &adapter->tx_queues[i];
2111                         if (i < 8) {
2112                                 ivar &= 0xFFFF00FF;
2113                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2114                         } else {
2115                                 ivar &= 0x00FFFFFF;
2116                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2117                         }
2118                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2119                         adapter->que_mask |= tx_que->eims;
2120                 }
2121
2122                 /* And for the link interrupt */
2123                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2124                 adapter->link_mask = 1 << adapter->linkvec;
2125                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2126                 break;
2127
2128         case e1000_82575:
2129                 /* enable MSI-X support*/
2130                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2131                 tmp |= E1000_CTRL_EXT_PBA_CLR;
2132                 /* Auto-Mask interrupts upon ICR read. */
2133                 tmp |= E1000_CTRL_EXT_EIAME;
2134                 tmp |= E1000_CTRL_EXT_IRCA;
2135                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2136
2137                 /* Queues */
2138                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2139                         rx_que = &adapter->rx_queues[i];
2140                         tmp = E1000_EICR_RX_QUEUE0 << i;
2141                         tmp |= E1000_EICR_TX_QUEUE0 << i;
2142                         rx_que->eims = tmp;
2143                         E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2144                             i, rx_que->eims);
2145                         adapter->que_mask |= rx_que->eims;
2146                 }
2147
2148                 /* Link */
2149                 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2150                     E1000_EIMS_OTHER);
2151                 adapter->link_mask |= E1000_EIMS_OTHER;
2152         default:
2153                 break;
2154         }
2155
2156         /* Set the starting interrupt rate */
2157         if (em_max_interrupt_rate > 0)
2158                 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2159
2160         if (hw->mac.type == e1000_82575)
2161                 newitr |= newitr << 16;
2162         else
2163                 newitr |= E1000_EITR_CNT_IGNR;
2164
2165         for (int i = 0; i < adapter->rx_num_queues; i++) {
2166                 rx_que = &adapter->rx_queues[i];
2167                 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2168         }
2169
2170         return;
2171 }
2172
2173 static void
2174 em_free_pci_resources(if_ctx_t ctx)
2175 {
2176         struct adapter *adapter = iflib_get_softc(ctx);
2177         struct em_rx_queue *que = adapter->rx_queues;
2178         device_t dev = iflib_get_dev(ctx);
2179
2180         /* Release all msix queue resources */
2181         if (adapter->intr_type == IFLIB_INTR_MSIX)
2182                 iflib_irq_free(ctx, &adapter->irq);
2183
2184         for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2185                 iflib_irq_free(ctx, &que->que_irq);
2186         }
2187
2188         /* First release all the interrupt resources */
2189         if (adapter->memory != NULL) {
2190                 bus_release_resource(dev, SYS_RES_MEMORY,
2191                                      PCIR_BAR(0), adapter->memory);
2192                 adapter->memory = NULL;
2193         }
2194
2195         if (adapter->flash != NULL) {
2196                 bus_release_resource(dev, SYS_RES_MEMORY,
2197                                      EM_FLASH, adapter->flash);
2198                 adapter->flash = NULL;
2199         }
2200         if (adapter->ioport != NULL)
2201                 bus_release_resource(dev, SYS_RES_IOPORT,
2202                     adapter->io_rid, adapter->ioport);
2203 }
2204
2205 /* Setup MSI or MSI/X */
2206 static int
2207 em_setup_msix(if_ctx_t ctx)
2208 {
2209         struct adapter *adapter = iflib_get_softc(ctx);
2210
2211         if (adapter->hw.mac.type == e1000_82574) {
2212                 em_enable_vectors_82574(ctx);
2213         }
2214         return (0);
2215 }
2216
2217 /*********************************************************************
2218  *
2219  *  Initialize the hardware to a configuration
2220  *  as specified by the adapter structure.
2221  *
2222  **********************************************************************/
2223
2224 static void
2225 lem_smartspeed(struct adapter *adapter)
2226 {
2227         u16 phy_tmp;
2228
2229         if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2230             adapter->hw.mac.autoneg == 0 ||
2231             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2232                 return;
2233
2234         if (adapter->smartspeed == 0) {
2235                 /* If Master/Slave config fault is asserted twice,
2236                  * we assume back-to-back */
2237                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2238                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2239                         return;
2240                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2241                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2242                         e1000_read_phy_reg(&adapter->hw,
2243                             PHY_1000T_CTRL, &phy_tmp);
2244                         if(phy_tmp & CR_1000T_MS_ENABLE) {
2245                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2246                                 e1000_write_phy_reg(&adapter->hw,
2247                                     PHY_1000T_CTRL, phy_tmp);
2248                                 adapter->smartspeed++;
2249                                 if(adapter->hw.mac.autoneg &&
2250                                    !e1000_copper_link_autoneg(&adapter->hw) &&
2251                                    !e1000_read_phy_reg(&adapter->hw,
2252                                     PHY_CONTROL, &phy_tmp)) {
2253                                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2254                                                     MII_CR_RESTART_AUTO_NEG);
2255                                         e1000_write_phy_reg(&adapter->hw,
2256                                             PHY_CONTROL, phy_tmp);
2257                                 }
2258                         }
2259                 }
2260                 return;
2261         } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2262                 /* If still no link, perhaps using 2/3 pair cable */
2263                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2264                 phy_tmp |= CR_1000T_MS_ENABLE;
2265                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2266                 if(adapter->hw.mac.autoneg &&
2267                    !e1000_copper_link_autoneg(&adapter->hw) &&
2268                    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2269                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2270                                     MII_CR_RESTART_AUTO_NEG);
2271                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2272                 }
2273         }
2274         /* Restart process after EM_SMARTSPEED_MAX iterations */
2275         if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2276                 adapter->smartspeed = 0;
2277 }
2278
2279 /*********************************************************************
2280  *
2281  *  Initialize the DMA Coalescing feature
2282  *
2283  **********************************************************************/
2284 static void
2285 igb_init_dmac(struct adapter *adapter, u32 pba)
2286 {
2287         device_t        dev = adapter->dev;
2288         struct e1000_hw *hw = &adapter->hw;
2289         u32             dmac, reg = ~E1000_DMACR_DMAC_EN;
2290         u16             hwm;
2291         u16             max_frame_size;
2292
2293         if (hw->mac.type == e1000_i211)
2294                 return;
2295
2296         max_frame_size = adapter->shared->isc_max_frame_size;
2297         if (hw->mac.type > e1000_82580) {
2298
2299                 if (adapter->dmac == 0) { /* Disabling it */
2300                         E1000_WRITE_REG(hw, E1000_DMACR, reg);
2301                         return;
2302                 } else
2303                         device_printf(dev, "DMA Coalescing enabled\n");
2304
2305                 /* Set starting threshold */
2306                 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2307
2308                 hwm = 64 * pba - max_frame_size / 16;
2309                 if (hwm < 64 * (pba - 6))
2310                         hwm = 64 * (pba - 6);
2311                 reg = E1000_READ_REG(hw, E1000_FCRTC);
2312                 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2313                 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2314                     & E1000_FCRTC_RTH_COAL_MASK);
2315                 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2316
2317
2318                 dmac = pba - max_frame_size / 512;
2319                 if (dmac < pba - 10)
2320                         dmac = pba - 10;
2321                 reg = E1000_READ_REG(hw, E1000_DMACR);
2322                 reg &= ~E1000_DMACR_DMACTHR_MASK;
2323                 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2324                     & E1000_DMACR_DMACTHR_MASK);
2325
2326                 /* transition to L0x or L1 if available..*/
2327                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2328
2329                 /* Check if status is 2.5Gb backplane connection
2330                 * before configuration of watchdog timer, which is
2331                 * in msec values in 12.8usec intervals
2332                 * watchdog timer= msec values in 32usec intervals
2333                 * for non 2.5Gb connection
2334                 */
2335                 if (hw->mac.type == e1000_i354) {
2336                         int status = E1000_READ_REG(hw, E1000_STATUS);
2337                         if ((status & E1000_STATUS_2P5_SKU) &&
2338                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2339                                 reg |= ((adapter->dmac * 5) >> 6);
2340                         else
2341                                 reg |= (adapter->dmac >> 5);
2342                 } else {
2343                         reg |= (adapter->dmac >> 5);
2344                 }
2345
2346                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2347
2348                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2349
2350                 /* Set the interval before transition */
2351                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
2352                 if (hw->mac.type == e1000_i350)
2353                         reg |= IGB_DMCTLX_DCFLUSH_DIS;
2354                 /*
2355                 ** in 2.5Gb connection, TTLX unit is 0.4 usec
2356                 ** which is 0x4*2 = 0xA. But delay is still 4 usec
2357                 */
2358                 if (hw->mac.type == e1000_i354) {
2359                         int status = E1000_READ_REG(hw, E1000_STATUS);
2360                         if ((status & E1000_STATUS_2P5_SKU) &&
2361                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2362                                 reg |= 0xA;
2363                         else
2364                                 reg |= 0x4;
2365                 } else {
2366                         reg |= 0x4;
2367                 }
2368
2369                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2370
2371                 /* free space in tx packet buffer to wake from DMA coal */
2372                 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2373                     (2 * max_frame_size)) >> 6);
2374
2375                 /* make low power state decision controlled by DMA coal */
2376                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2377                 reg &= ~E1000_PCIEMISC_LX_DECISION;
2378                 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2379
2380         } else if (hw->mac.type == e1000_82580) {
2381                 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2382                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
2383                     reg & ~E1000_PCIEMISC_LX_DECISION);
2384                 E1000_WRITE_REG(hw, E1000_DMACR, 0);
2385         }
2386 }
2387
2388 static void
2389 em_reset(if_ctx_t ctx)
2390 {
2391         device_t dev = iflib_get_dev(ctx);
2392         struct adapter *adapter = iflib_get_softc(ctx);
2393         struct ifnet *ifp = iflib_get_ifp(ctx);
2394         struct e1000_hw *hw = &adapter->hw;
2395         u16 rx_buffer_size;
2396         u32 pba;
2397
2398         INIT_DEBUGOUT("em_reset: begin");
2399         /* Let the firmware know the OS is in control */
2400         em_get_hw_control(adapter);
2401
2402         /* Set up smart power down as default off on newer adapters. */
2403         if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2404             hw->mac.type == e1000_82572)) {
2405                 u16 phy_tmp = 0;
2406
2407                 /* Speed up time to link by disabling smart power down. */
2408                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2409                 phy_tmp &= ~IGP02E1000_PM_SPD;
2410                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2411         }
2412
2413         /*
2414          * Packet Buffer Allocation (PBA)
2415          * Writing PBA sets the receive portion of the buffer
2416          * the remainder is used for the transmit buffer.
2417          */
2418         switch (hw->mac.type) {
2419         /* Total Packet Buffer on these is 48K */
2420         case e1000_82571:
2421         case e1000_82572:
2422         case e1000_80003es2lan:
2423                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2424                 break;
2425         case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2426                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2427                 break;
2428         case e1000_82574:
2429         case e1000_82583:
2430                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2431                 break;
2432         case e1000_ich8lan:
2433                 pba = E1000_PBA_8K;
2434                 break;
2435         case e1000_ich9lan:
2436         case e1000_ich10lan:
2437                 /* Boost Receive side for jumbo frames */
2438                 if (adapter->hw.mac.max_frame_size > 4096)
2439                         pba = E1000_PBA_14K;
2440                 else
2441                         pba = E1000_PBA_10K;
2442                 break;
2443         case e1000_pchlan:
2444         case e1000_pch2lan:
2445         case e1000_pch_lpt:
2446         case e1000_pch_spt:
2447         case e1000_pch_cnp:
2448                 pba = E1000_PBA_26K;
2449                 break;
2450         case e1000_82575:
2451                 pba = E1000_PBA_32K;
2452                 break;
2453         case e1000_82576:
2454         case e1000_vfadapt:
2455                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2456                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2457                 break;
2458         case e1000_82580:
2459         case e1000_i350:
2460         case e1000_i354:
2461         case e1000_vfadapt_i350:
2462                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2463                 pba = e1000_rxpbs_adjust_82580(pba);
2464                 break;
2465         case e1000_i210:
2466         case e1000_i211:
2467                 pba = E1000_PBA_34K;
2468                 break;
2469         default:
2470                 if (adapter->hw.mac.max_frame_size > 8192)
2471                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2472                 else
2473                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2474         }
2475
2476         /* Special needs in case of Jumbo frames */
2477         if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2478                 u32 tx_space, min_tx, min_rx;
2479                 pba = E1000_READ_REG(hw, E1000_PBA);
2480                 tx_space = pba >> 16;
2481                 pba &= 0xffff;
2482                 min_tx = (adapter->hw.mac.max_frame_size +
2483                     sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2484                 min_tx = roundup2(min_tx, 1024);
2485                 min_tx >>= 10;
2486                 min_rx = adapter->hw.mac.max_frame_size;
2487                 min_rx = roundup2(min_rx, 1024);
2488                 min_rx >>= 10;
2489                 if (tx_space < min_tx &&
2490                     ((min_tx - tx_space) < pba)) {
2491                         pba = pba - (min_tx - tx_space);
2492                         /*
2493                          * if short on rx space, rx wins
2494                          * and must trump tx adjustment
2495                          */
2496                         if (pba < min_rx)
2497                                 pba = min_rx;
2498                 }
2499                 E1000_WRITE_REG(hw, E1000_PBA, pba);
2500         }
2501
2502         if (hw->mac.type < igb_mac_min)
2503                 E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2504
2505         INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2506
2507         /*
2508          * These parameters control the automatic generation (Tx) and
2509          * response (Rx) to Ethernet PAUSE frames.
2510          * - High water mark should allow for at least two frames to be
2511          *   received after sending an XOFF.
2512          * - Low water mark works best when it is very near the high water mark.
2513          *   This allows the receiver to restart by sending XON when it has
2514          *   drained a bit. Here we use an arbitrary value of 1500 which will
2515          *   restart after one full frame is pulled from the buffer. There
2516          *   could be several smaller frames in the buffer and if so they will
2517          *   not trigger the XON until their total number reduces the buffer
2518          *   by 1500.
2519          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2520          */
2521         rx_buffer_size = (pba & 0xffff) << 10;
2522         hw->fc.high_water = rx_buffer_size -
2523             roundup2(adapter->hw.mac.max_frame_size, 1024);
2524         hw->fc.low_water = hw->fc.high_water - 1500;
2525
2526         if (adapter->fc) /* locally set flow control value? */
2527                 hw->fc.requested_mode = adapter->fc;
2528         else
2529                 hw->fc.requested_mode = e1000_fc_full;
2530
2531         if (hw->mac.type == e1000_80003es2lan)
2532                 hw->fc.pause_time = 0xFFFF;
2533         else
2534                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
2535
2536         hw->fc.send_xon = TRUE;
2537
2538         /* Device specific overrides/settings */
2539         switch (hw->mac.type) {
2540         case e1000_pchlan:
2541                 /* Workaround: no TX flow ctrl for PCH */
2542                 hw->fc.requested_mode = e1000_fc_rx_pause;
2543                 hw->fc.pause_time = 0xFFFF; /* override */
2544                 if (if_getmtu(ifp) > ETHERMTU) {
2545                         hw->fc.high_water = 0x3500;
2546                         hw->fc.low_water = 0x1500;
2547                 } else {
2548                         hw->fc.high_water = 0x5000;
2549                         hw->fc.low_water = 0x3000;
2550                 }
2551                 hw->fc.refresh_time = 0x1000;
2552                 break;
2553         case e1000_pch2lan:
2554         case e1000_pch_lpt:
2555         case e1000_pch_spt:
2556         case e1000_pch_cnp:
2557                 hw->fc.high_water = 0x5C20;
2558                 hw->fc.low_water = 0x5048;
2559                 hw->fc.pause_time = 0x0650;
2560                 hw->fc.refresh_time = 0x0400;
2561                 /* Jumbos need adjusted PBA */
2562                 if (if_getmtu(ifp) > ETHERMTU)
2563                         E1000_WRITE_REG(hw, E1000_PBA, 12);
2564                 else
2565                         E1000_WRITE_REG(hw, E1000_PBA, 26);
2566                 break;
2567         case e1000_82575:
2568         case e1000_82576:
2569                 /* 8-byte granularity */
2570                 hw->fc.low_water = hw->fc.high_water - 8;
2571                 break;
2572         case e1000_82580:
2573         case e1000_i350:
2574         case e1000_i354:
2575         case e1000_i210:
2576         case e1000_i211:
2577         case e1000_vfadapt:
2578         case e1000_vfadapt_i350:
2579                 /* 16-byte granularity */
2580                 hw->fc.low_water = hw->fc.high_water - 16;
2581                 break;
2582         case e1000_ich9lan:
2583         case e1000_ich10lan:
2584                 if (if_getmtu(ifp) > ETHERMTU) {
2585                         hw->fc.high_water = 0x2800;
2586                         hw->fc.low_water = hw->fc.high_water - 8;
2587                         break;
2588                 }
2589                 /* FALLTHROUGH */
2590         default:
2591                 if (hw->mac.type == e1000_80003es2lan)
2592                         hw->fc.pause_time = 0xFFFF;
2593                 break;
2594         }
2595
2596         /* Issue a global reset */
2597         e1000_reset_hw(hw);
2598         if (adapter->hw.mac.type >= igb_mac_min) {
2599                 E1000_WRITE_REG(hw, E1000_WUC, 0);
2600         } else {
2601                 E1000_WRITE_REG(hw, E1000_WUFC, 0);
2602                 em_disable_aspm(adapter);
2603         }
2604         if (adapter->flags & IGB_MEDIA_RESET) {
2605                 e1000_setup_init_funcs(hw, TRUE);
2606                 e1000_get_bus_info(hw);
2607                 adapter->flags &= ~IGB_MEDIA_RESET;
2608         }
2609         /* and a re-init */
2610         if (e1000_init_hw(hw) < 0) {
2611                 device_printf(dev, "Hardware Initialization Failed\n");
2612                 return;
2613         }
2614         if (adapter->hw.mac.type >= igb_mac_min)
2615                 igb_init_dmac(adapter, pba);
2616
2617         E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2618         e1000_get_phy_info(hw);
2619         e1000_check_for_link(hw);
2620 }
2621
2622 #define RSSKEYLEN 10
2623 static void
2624 em_initialize_rss_mapping(struct adapter *adapter)
2625 {
2626         uint8_t  rss_key[4 * RSSKEYLEN];
2627         uint32_t reta = 0;
2628         struct e1000_hw *hw = &adapter->hw;
2629         int i;
2630
2631         /*
2632          * Configure RSS key
2633          */
2634         arc4rand(rss_key, sizeof(rss_key), 0);
2635         for (i = 0; i < RSSKEYLEN; ++i) {
2636                 uint32_t rssrk = 0;
2637
2638                 rssrk = EM_RSSRK_VAL(rss_key, i);
2639                 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2640         }
2641
2642         /*
2643          * Configure RSS redirect table in following fashion:
2644          * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2645          */
2646         for (i = 0; i < sizeof(reta); ++i) {
2647                 uint32_t q;
2648
2649                 q = (i % adapter->rx_num_queues) << 7;
2650                 reta |= q << (8 * i);
2651         }
2652
2653         for (i = 0; i < 32; ++i)
2654                 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2655
2656         E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2657                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2658                         E1000_MRQC_RSS_FIELD_IPV4 |
2659                         E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2660                         E1000_MRQC_RSS_FIELD_IPV6_EX |
2661                         E1000_MRQC_RSS_FIELD_IPV6);
2662
2663 }
2664
2665 static void
2666 igb_initialize_rss_mapping(struct adapter *adapter)
2667 {
2668         struct e1000_hw *hw = &adapter->hw;
2669         int i;
2670         int queue_id;
2671         u32 reta;
2672         u32 rss_key[10], mrqc, shift = 0;
2673
2674         /* XXX? */
2675         if (adapter->hw.mac.type == e1000_82575)
2676                 shift = 6;
2677
2678         /*
2679          * The redirection table controls which destination
2680          * queue each bucket redirects traffic to.
2681          * Each DWORD represents four queues, with the LSB
2682          * being the first queue in the DWORD.
2683          *
2684          * This just allocates buckets to queues using round-robin
2685          * allocation.
2686          *
2687          * NOTE: It Just Happens to line up with the default
2688          * RSS allocation method.
2689          */
2690
2691         /* Warning FM follows */
2692         reta = 0;
2693         for (i = 0; i < 128; i++) {
2694 #ifdef RSS
2695                 queue_id = rss_get_indirection_to_bucket(i);
2696                 /*
2697                  * If we have more queues than buckets, we'll
2698                  * end up mapping buckets to a subset of the
2699                  * queues.
2700                  *
2701                  * If we have more buckets than queues, we'll
2702                  * end up instead assigning multiple buckets
2703                  * to queues.
2704                  *
2705                  * Both are suboptimal, but we need to handle
2706                  * the case so we don't go out of bounds
2707                  * indexing arrays and such.
2708                  */
2709                 queue_id = queue_id % adapter->rx_num_queues;
2710 #else
2711                 queue_id = (i % adapter->rx_num_queues);
2712 #endif
2713                 /* Adjust if required */
2714                 queue_id = queue_id << shift;
2715
2716                 /*
2717                  * The low 8 bits are for hash value (n+0);
2718                  * The next 8 bits are for hash value (n+1), etc.
2719                  */
2720                 reta = reta >> 8;
2721                 reta = reta | ( ((uint32_t) queue_id) << 24);
2722                 if ((i & 3) == 3) {
2723                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2724                         reta = 0;
2725                 }
2726         }
2727
2728         /* Now fill in hash table */
2729
2730         /*
2731          * MRQC: Multiple Receive Queues Command
2732          * Set queuing to RSS control, number depends on the device.
2733          */
2734         mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2735
2736 #ifdef RSS
2737         /* XXX ew typecasting */
2738         rss_getkey((uint8_t *) &rss_key);
2739 #else
2740         arc4rand(&rss_key, sizeof(rss_key), 0);
2741 #endif
2742         for (i = 0; i < 10; i++)
2743                 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2744
2745         /*
2746          * Configure the RSS fields to hash upon.
2747          */
2748         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2749             E1000_MRQC_RSS_FIELD_IPV4_TCP);
2750         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2751             E1000_MRQC_RSS_FIELD_IPV6_TCP);
2752         mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2753             E1000_MRQC_RSS_FIELD_IPV6_UDP);
2754         mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2755             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2756
2757         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2758 }
2759
2760 /*********************************************************************
2761  *
2762  *  Setup networking device structure and register an interface.
2763  *
2764  **********************************************************************/
2765 static int
2766 em_setup_interface(if_ctx_t ctx)
2767 {
2768         struct ifnet *ifp = iflib_get_ifp(ctx);
2769         struct adapter *adapter = iflib_get_softc(ctx);
2770         if_softc_ctx_t scctx = adapter->shared;
2771
2772         INIT_DEBUGOUT("em_setup_interface: begin");
2773
2774         /* Single Queue */
2775         if (adapter->tx_num_queues == 1) {
2776                 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2777                 if_setsendqready(ifp);
2778         }
2779
2780         /*
2781          * Specify the media types supported by this adapter and register
2782          * callbacks to update media and link information
2783          */
2784         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2785             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2786                 u_char fiber_type = IFM_1000_SX;        /* default type */
2787
2788                 if (adapter->hw.mac.type == e1000_82545)
2789                         fiber_type = IFM_1000_LX;
2790                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2791                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2792         } else {
2793                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2794                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2795                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2796                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2797                 if (adapter->hw.phy.type != e1000_phy_ife) {
2798                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2799                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2800                 }
2801         }
2802         ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2803         ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2804         return (0);
2805 }
2806
2807 static int
2808 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2809 {
2810         struct adapter *adapter = iflib_get_softc(ctx);
2811         if_softc_ctx_t scctx = adapter->shared;
2812         int error = E1000_SUCCESS;
2813         struct em_tx_queue *que;
2814         int i, j;
2815
2816         MPASS(adapter->tx_num_queues > 0);
2817         MPASS(adapter->tx_num_queues == ntxqsets);
2818
2819         /* First allocate the top level queue structs */
2820         if (!(adapter->tx_queues =
2821             (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2822             adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2823                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2824                 return(ENOMEM);
2825         }
2826
2827         for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2828                 /* Set up some basics */
2829
2830                 struct tx_ring *txr = &que->txr;
2831                 txr->adapter = que->adapter = adapter;
2832                 que->me = txr->me =  i;
2833
2834                 /* Allocate report status array */
2835                 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2836                         device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2837                         error = ENOMEM;
2838                         goto fail;
2839                 }
2840                 for (j = 0; j < scctx->isc_ntxd[0]; j++)
2841                         txr->tx_rsq[j] = QIDX_INVALID;
2842                 /* get the virtual and physical address of the hardware queues */
2843                 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2844                 txr->tx_paddr = paddrs[i*ntxqs];
2845         }
2846
2847         device_printf(iflib_get_dev(ctx), "allocated for %d tx_queues\n", adapter->tx_num_queues);
2848         return (0);
2849 fail:
2850         em_if_queues_free(ctx);
2851         return (error);
2852 }
2853
2854 static int
2855 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2856 {
2857         struct adapter *adapter = iflib_get_softc(ctx);
2858         int error = E1000_SUCCESS;
2859         struct em_rx_queue *que;
2860         int i;
2861
2862         MPASS(adapter->rx_num_queues > 0);
2863         MPASS(adapter->rx_num_queues == nrxqsets);
2864
2865         /* First allocate the top level queue structs */
2866         if (!(adapter->rx_queues =
2867             (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2868             adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2869                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2870                 error = ENOMEM;
2871                 goto fail;
2872         }
2873
2874         for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2875                 /* Set up some basics */
2876                 struct rx_ring *rxr = &que->rxr;
2877                 rxr->adapter = que->adapter = adapter;
2878                 rxr->que = que;
2879                 que->me = rxr->me =  i;
2880
2881                 /* get the virtual and physical address of the hardware queues */
2882                 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2883                 rxr->rx_paddr = paddrs[i*nrxqs];
2884         }
2885
2886         device_printf(iflib_get_dev(ctx), "allocated for %d rx_queues\n", adapter->rx_num_queues);
2887
2888         return (0);
2889 fail:
2890         em_if_queues_free(ctx);
2891         return (error);
2892 }
2893
2894 static void
2895 em_if_queues_free(if_ctx_t ctx)
2896 {
2897         struct adapter *adapter = iflib_get_softc(ctx);
2898         struct em_tx_queue *tx_que = adapter->tx_queues;
2899         struct em_rx_queue *rx_que = adapter->rx_queues;
2900
2901         if (tx_que != NULL) {
2902                 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2903                         struct tx_ring *txr = &tx_que->txr;
2904                         if (txr->tx_rsq == NULL)
2905                                 break;
2906
2907                         free(txr->tx_rsq, M_DEVBUF);
2908                         txr->tx_rsq = NULL;
2909                 }
2910                 free(adapter->tx_queues, M_DEVBUF);
2911                 adapter->tx_queues = NULL;
2912         }
2913
2914         if (rx_que != NULL) {
2915                 free(adapter->rx_queues, M_DEVBUF);
2916                 adapter->rx_queues = NULL;
2917         }
2918
2919         em_release_hw_control(adapter);
2920
2921         if (adapter->mta != NULL) {
2922                 free(adapter->mta, M_DEVBUF);
2923         }
2924 }
2925
2926 /*********************************************************************
2927  *
2928  *  Enable transmit unit.
2929  *
2930  **********************************************************************/
2931 static void
2932 em_initialize_transmit_unit(if_ctx_t ctx)
2933 {
2934         struct adapter *adapter = iflib_get_softc(ctx);
2935         if_softc_ctx_t scctx = adapter->shared;
2936         struct em_tx_queue *que;
2937         struct tx_ring  *txr;
2938         struct e1000_hw *hw = &adapter->hw;
2939         u32 tctl, txdctl = 0, tarc, tipg = 0;
2940
2941         INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2942
2943         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
2944                 u64 bus_addr;
2945                 caddr_t offp, endp;
2946
2947                 que = &adapter->tx_queues[i];
2948                 txr = &que->txr;
2949                 bus_addr = txr->tx_paddr;
2950
2951                 /* Clear checksum offload context. */
2952                 offp = (caddr_t)&txr->csum_flags;
2953                 endp = (caddr_t)(txr + 1);
2954                 bzero(offp, endp - offp);
2955
2956                 /* Base and Len of TX Ring */
2957                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2958                     scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
2959                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2960                     (u32)(bus_addr >> 32));
2961                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
2962                     (u32)bus_addr);
2963                 /* Init the HEAD/TAIL indices */
2964                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2965                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2966
2967                 HW_DEBUGOUT2("Base = %x, Length = %x\n",
2968                     E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)),
2969                     E1000_READ_REG(&adapter->hw, E1000_TDLEN(i)));
2970
2971                 txdctl = 0; /* clear txdctl */
2972                 txdctl |= 0x1f; /* PTHRESH */
2973                 txdctl |= 1 << 8; /* HTHRESH */
2974                 txdctl |= 1 << 16;/* WTHRESH */
2975                 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
2976                 txdctl |= E1000_TXDCTL_GRAN;
2977                 txdctl |= 1 << 25; /* LWTHRESH */
2978
2979                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2980         }
2981
2982         /* Set the default values for the Tx Inter Packet Gap timer */
2983         switch (adapter->hw.mac.type) {
2984         case e1000_80003es2lan:
2985                 tipg = DEFAULT_82543_TIPG_IPGR1;
2986                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2987                     E1000_TIPG_IPGR2_SHIFT;
2988                 break;
2989         case e1000_82542:
2990                 tipg = DEFAULT_82542_TIPG_IPGT;
2991                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2992                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2993                 break;
2994         default:
2995                 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
2996                     (adapter->hw.phy.media_type ==
2997                     e1000_media_type_internal_serdes))
2998                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2999                 else
3000                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3001                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3002                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3003         }
3004
3005         E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
3006         E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value);
3007
3008         if(adapter->hw.mac.type >= e1000_82540)
3009                 E1000_WRITE_REG(&adapter->hw, E1000_TADV,
3010                     adapter->tx_abs_int_delay.value);
3011
3012         if ((adapter->hw.mac.type == e1000_82571) ||
3013             (adapter->hw.mac.type == e1000_82572)) {
3014                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3015                 tarc |= TARC_SPEED_MODE_BIT;
3016                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3017         } else if (adapter->hw.mac.type == e1000_80003es2lan) {
3018                 /* errata: program both queues to unweighted RR */
3019                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3020                 tarc |= 1;
3021                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3022                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3023                 tarc |= 1;
3024                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3025         } else if (adapter->hw.mac.type == e1000_82574) {
3026                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3027                 tarc |= TARC_ERRATA_BIT;
3028                 if ( adapter->tx_num_queues > 1) {
3029                         tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3030                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3031                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3032                 } else
3033                         E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3034         }
3035
3036         if (adapter->tx_int_delay.value > 0)
3037                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3038
3039         /* Program the Transmit Control Register */
3040         tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3041         tctl &= ~E1000_TCTL_CT;
3042         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3043                    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3044
3045         if (adapter->hw.mac.type >= e1000_82571)
3046                 tctl |= E1000_TCTL_MULR;
3047
3048         /* This write will effectively turn on the transmit unit. */
3049         E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3050
3051         /* SPT and KBL errata workarounds */
3052         if (hw->mac.type == e1000_pch_spt) {
3053                 u32 reg;
3054                 reg = E1000_READ_REG(hw, E1000_IOSFPC);
3055                 reg |= E1000_RCTL_RDMTS_HEX;
3056                 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3057                 /* i218-i219 Specification Update 1.5.4.5 */
3058                 reg = E1000_READ_REG(hw, E1000_TARC(0));
3059                 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3060                 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3061                 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3062         }
3063 }
3064
3065 /*********************************************************************
3066  *
3067  *  Enable receive unit.
3068  *
3069  **********************************************************************/
3070
3071 static void
3072 em_initialize_receive_unit(if_ctx_t ctx)
3073 {
3074         struct adapter *adapter = iflib_get_softc(ctx);
3075         if_softc_ctx_t scctx = adapter->shared;
3076         struct ifnet *ifp = iflib_get_ifp(ctx);
3077         struct e1000_hw *hw = &adapter->hw;
3078         struct em_rx_queue *que;
3079         int i;
3080         u32 rctl, rxcsum, rfctl;
3081
3082         INIT_DEBUGOUT("em_initialize_receive_units: begin");
3083
3084         /*
3085          * Make sure receives are disabled while setting
3086          * up the descriptor ring
3087          */
3088         rctl = E1000_READ_REG(hw, E1000_RCTL);
3089         /* Do not disable if ever enabled on this hardware */
3090         if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3091                 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3092
3093         /* Setup the Receive Control Register */
3094         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3095         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3096             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3097             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3098
3099         /* Do not store bad packets */
3100         rctl &= ~E1000_RCTL_SBP;
3101
3102         /* Enable Long Packet receive */
3103         if (if_getmtu(ifp) > ETHERMTU)
3104                 rctl |= E1000_RCTL_LPE;
3105         else
3106                 rctl &= ~E1000_RCTL_LPE;
3107
3108         /* Strip the CRC */
3109         if (!em_disable_crc_stripping)
3110                 rctl |= E1000_RCTL_SECRC;
3111
3112         if (adapter->hw.mac.type >= e1000_82540) {
3113                 E1000_WRITE_REG(&adapter->hw, E1000_RADV,
3114                             adapter->rx_abs_int_delay.value);
3115
3116                 /*
3117                  * Set the interrupt throttling rate. Value is calculated
3118                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3119                  */
3120                 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3121         }
3122         E1000_WRITE_REG(&adapter->hw, E1000_RDTR,
3123             adapter->rx_int_delay.value);
3124
3125         /* Use extended rx descriptor formats */
3126         rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3127         rfctl |= E1000_RFCTL_EXTEN;
3128         /*
3129          * When using MSIX interrupts we need to throttle
3130          * using the EITR register (82574 only)
3131          */
3132         if (hw->mac.type == e1000_82574) {
3133                 for (int i = 0; i < 4; i++)
3134                         E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3135                             DEFAULT_ITR);
3136                 /* Disable accelerated acknowledge */
3137                 rfctl |= E1000_RFCTL_ACK_DIS;
3138         }
3139         E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3140
3141         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3142         if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3143             adapter->hw.mac.type >= e1000_82543) {
3144                 if (adapter->tx_num_queues > 1) {
3145                         if (adapter->hw.mac.type >= igb_mac_min) {
3146                                 rxcsum |= E1000_RXCSUM_PCSD;
3147                                 if (hw->mac.type != e1000_82575)
3148                                         rxcsum |= E1000_RXCSUM_CRCOFL;
3149                         } else
3150                                 rxcsum |= E1000_RXCSUM_TUOFL |
3151                                         E1000_RXCSUM_IPOFL |
3152                                         E1000_RXCSUM_PCSD;
3153                 } else {
3154                         if (adapter->hw.mac.type >= igb_mac_min)
3155                                 rxcsum |= E1000_RXCSUM_IPPCSE;
3156                         else
3157                                 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3158                         if (adapter->hw.mac.type > e1000_82575)
3159                                 rxcsum |= E1000_RXCSUM_CRCOFL;
3160                 }
3161         } else
3162                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3163
3164         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3165
3166         if (adapter->rx_num_queues > 1) {
3167                 if (adapter->hw.mac.type >= igb_mac_min)
3168                         igb_initialize_rss_mapping(adapter);
3169                 else
3170                         em_initialize_rss_mapping(adapter);
3171         }
3172
3173         /*
3174          * XXX TEMPORARY WORKAROUND: on some systems with 82573
3175          * long latencies are observed, like Lenovo X60. This
3176          * change eliminates the problem, but since having positive
3177          * values in RDTR is a known source of problems on other
3178          * platforms another solution is being sought.
3179          */
3180         if (hw->mac.type == e1000_82573)
3181                 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3182
3183         for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3184                 struct rx_ring *rxr = &que->rxr;
3185                 /* Setup the Base and Length of the Rx Descriptor Ring */
3186                 u64 bus_addr = rxr->rx_paddr;
3187 #if 0
3188                 u32 rdt = adapter->rx_num_queues -1;  /* default */
3189 #endif
3190
3191                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3192                     scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3193                 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3194                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3195                 /* Setup the Head and Tail Descriptor Pointers */
3196                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3197                 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3198         }
3199
3200         /*
3201          * Set PTHRESH for improved jumbo performance
3202          * According to 10.2.5.11 of Intel 82574 Datasheet,
3203          * RXDCTL(1) is written whenever RXDCTL(0) is written.
3204          * Only write to RXDCTL(1) if there is a need for different
3205          * settings.
3206          */
3207
3208         if (((adapter->hw.mac.type == e1000_ich9lan) ||
3209             (adapter->hw.mac.type == e1000_pch2lan) ||
3210             (adapter->hw.mac.type == e1000_ich10lan)) &&
3211             (if_getmtu(ifp) > ETHERMTU)) {
3212                 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3213                 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3214         } else if (adapter->hw.mac.type == e1000_82574) {
3215                 for (int i = 0; i < adapter->rx_num_queues; i++) {
3216                         u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3217                         rxdctl |= 0x20; /* PTHRESH */
3218                         rxdctl |= 4 << 8; /* HTHRESH */
3219                         rxdctl |= 4 << 16;/* WTHRESH */
3220                         rxdctl |= 1 << 24; /* Switch to granularity */
3221                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3222                 }
3223         } else if (adapter->hw.mac.type >= igb_mac_min) {
3224                 u32 psize, srrctl = 0;
3225
3226                 if (if_getmtu(ifp) > ETHERMTU) {
3227                         /* Set maximum packet len */
3228                         if (adapter->rx_mbuf_sz <= 4096) {
3229                                 srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3230                                 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3231                         } else if (adapter->rx_mbuf_sz > 4096) {
3232                                 srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3233                                 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3234                         }
3235                         psize = scctx->isc_max_frame_size;
3236                         /* are we on a vlan? */
3237                         if (ifp->if_vlantrunk != NULL)
3238                                 psize += VLAN_TAG_SIZE;
3239                         E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
3240                 } else {
3241                         srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3242                         rctl |= E1000_RCTL_SZ_2048;
3243                 }
3244
3245                 /*
3246                  * If TX flow control is disabled and there's >1 queue defined,
3247                  * enable DROP.
3248                  *
3249                  * This drops frames rather than hanging the RX MAC for all queues.
3250                  */
3251                 if ((adapter->rx_num_queues > 1) &&
3252                     (adapter->fc == e1000_fc_none ||
3253                      adapter->fc == e1000_fc_rx_pause)) {
3254                         srrctl |= E1000_SRRCTL_DROP_EN;
3255                 }
3256                         /* Setup the Base and Length of the Rx Descriptor Rings */
3257                 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3258                         struct rx_ring *rxr = &que->rxr;
3259                         u64 bus_addr = rxr->rx_paddr;
3260                         u32 rxdctl;
3261
3262 #ifdef notyet
3263                         /* Configure for header split? -- ignore for now */
3264                         rxr->hdr_split = igb_header_split;
3265 #else
3266                         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3267 #endif
3268
3269                         E1000_WRITE_REG(hw, E1000_RDLEN(i),
3270                                         scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3271                         E1000_WRITE_REG(hw, E1000_RDBAH(i),
3272                                         (uint32_t)(bus_addr >> 32));
3273                         E1000_WRITE_REG(hw, E1000_RDBAL(i),
3274                                         (uint32_t)bus_addr);
3275                         E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3276                         /* Enable this Queue */
3277                         rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3278                         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3279                         rxdctl &= 0xFFF00000;
3280                         rxdctl |= IGB_RX_PTHRESH;
3281                         rxdctl |= IGB_RX_HTHRESH << 8;
3282                         rxdctl |= IGB_RX_WTHRESH << 16;
3283                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3284                 }               
3285         } else if (adapter->hw.mac.type >= e1000_pch2lan) {
3286                 if (if_getmtu(ifp) > ETHERMTU)
3287                         e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3288                 else
3289                         e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3290         }
3291
3292         /* Make sure VLAN Filters are off */
3293         rctl &= ~E1000_RCTL_VFE;
3294
3295         if (adapter->hw.mac.type < igb_mac_min) {
3296                 if (adapter->rx_mbuf_sz == MCLBYTES)
3297                         rctl |= E1000_RCTL_SZ_2048;
3298                 else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3299                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3300                 else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3301                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3302
3303                 /* ensure we clear use DTYPE of 00 here */
3304                 rctl &= ~0x00000C00;
3305         }
3306
3307         /* Write out the settings */
3308         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3309
3310         return;
3311 }
3312
3313 static void
3314 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3315 {
3316         struct adapter *adapter = iflib_get_softc(ctx);
3317         u32 index, bit;
3318
3319         index = (vtag >> 5) & 0x7F;
3320         bit = vtag & 0x1F;
3321         adapter->shadow_vfta[index] |= (1 << bit);
3322         ++adapter->num_vlans;
3323 }
3324
3325 static void
3326 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3327 {
3328         struct adapter *adapter = iflib_get_softc(ctx);
3329         u32 index, bit;
3330
3331         index = (vtag >> 5) & 0x7F;
3332         bit = vtag & 0x1F;
3333         adapter->shadow_vfta[index] &= ~(1 << bit);
3334         --adapter->num_vlans;
3335 }
3336
3337 static void
3338 em_setup_vlan_hw_support(struct adapter *adapter)
3339 {
3340         struct e1000_hw *hw = &adapter->hw;
3341         u32 reg;
3342
3343         /*
3344          * We get here thru init_locked, meaning
3345          * a soft reset, this has already cleared
3346          * the VFTA and other state, so if there
3347          * have been no vlan's registered do nothing.
3348          */
3349         if (adapter->num_vlans == 0)
3350                 return;
3351
3352         /*
3353          * A soft reset zero's out the VFTA, so
3354          * we need to repopulate it now.
3355          */
3356         for (int i = 0; i < EM_VFTA_SIZE; i++)
3357                 if (adapter->shadow_vfta[i] != 0)
3358                         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3359                             i, adapter->shadow_vfta[i]);
3360
3361         reg = E1000_READ_REG(hw, E1000_CTRL);
3362         reg |= E1000_CTRL_VME;
3363         E1000_WRITE_REG(hw, E1000_CTRL, reg);
3364
3365         /* Enable the Filter Table */
3366         reg = E1000_READ_REG(hw, E1000_RCTL);
3367         reg &= ~E1000_RCTL_CFIEN;
3368         reg |= E1000_RCTL_VFE;
3369         E1000_WRITE_REG(hw, E1000_RCTL, reg);
3370 }
3371
3372 static void
3373 em_if_enable_intr(if_ctx_t ctx)
3374 {
3375         struct adapter *adapter = iflib_get_softc(ctx);
3376         struct e1000_hw *hw = &adapter->hw;
3377         u32 ims_mask = IMS_ENABLE_MASK;
3378
3379         if (hw->mac.type == e1000_82574) {
3380                 E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3381                 ims_mask |= adapter->ims;
3382         } else if (adapter->intr_type == IFLIB_INTR_MSIX && hw->mac.type >= igb_mac_min)  {
3383                 u32 mask = (adapter->que_mask | adapter->link_mask);
3384
3385                 E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask);
3386                 E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask);
3387                 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask);
3388                 ims_mask = E1000_IMS_LSC;
3389         }
3390
3391         E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3392 }
3393
3394 static void
3395 em_if_disable_intr(if_ctx_t ctx)
3396 {
3397         struct adapter *adapter = iflib_get_softc(ctx);
3398         struct e1000_hw *hw = &adapter->hw;
3399
3400         if (adapter->intr_type == IFLIB_INTR_MSIX) {
3401                 if (hw->mac.type >= igb_mac_min)
3402                         E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0);
3403                 E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0);
3404         }
3405         E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
3406 }
3407
3408 /*
3409  * Bit of a misnomer, what this really means is
3410  * to enable OS management of the system... aka
3411  * to disable special hardware management features
3412  */
3413 static void
3414 em_init_manageability(struct adapter *adapter)
3415 {
3416         /* A shared code workaround */
3417 #define E1000_82542_MANC2H E1000_MANC2H
3418         if (adapter->has_manage) {
3419                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3420                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3421
3422                 /* disable hardware interception of ARP */
3423                 manc &= ~(E1000_MANC_ARP_EN);
3424
3425                 /* enable receiving management packets to the host */
3426                 manc |= E1000_MANC_EN_MNG2HOST;
3427 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3428 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3429                 manc2h |= E1000_MNG2HOST_PORT_623;
3430                 manc2h |= E1000_MNG2HOST_PORT_664;
3431                 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3432                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3433         }
3434 }
3435
3436 /*
3437  * Give control back to hardware management
3438  * controller if there is one.
3439  */
3440 static void
3441 em_release_manageability(struct adapter *adapter)
3442 {
3443         if (adapter->has_manage) {
3444                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3445
3446                 /* re-enable hardware interception of ARP */
3447                 manc |= E1000_MANC_ARP_EN;
3448                 manc &= ~E1000_MANC_EN_MNG2HOST;
3449
3450                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3451         }
3452 }
3453
3454 /*
3455  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3456  * For ASF and Pass Through versions of f/w this means
3457  * that the driver is loaded. For AMT version type f/w
3458  * this means that the network i/f is open.
3459  */
3460 static void
3461 em_get_hw_control(struct adapter *adapter)
3462 {
3463         u32 ctrl_ext, swsm;
3464
3465         if (adapter->vf_ifp)
3466                 return;
3467
3468         if (adapter->hw.mac.type == e1000_82573) {
3469                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3470                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3471                     swsm | E1000_SWSM_DRV_LOAD);
3472                 return;
3473         }
3474         /* else */
3475         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3476         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3477             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3478 }
3479
3480 /*
3481  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3482  * For ASF and Pass Through versions of f/w this means that
3483  * the driver is no longer loaded. For AMT versions of the
3484  * f/w this means that the network i/f is closed.
3485  */
3486 static void
3487 em_release_hw_control(struct adapter *adapter)
3488 {
3489         u32 ctrl_ext, swsm;
3490
3491         if (!adapter->has_manage)
3492                 return;
3493
3494         if (adapter->hw.mac.type == e1000_82573) {
3495                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3496                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3497                     swsm & ~E1000_SWSM_DRV_LOAD);
3498                 return;
3499         }
3500         /* else */
3501         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3502         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3503             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3504         return;
3505 }
3506
3507 static int
3508 em_is_valid_ether_addr(u8 *addr)
3509 {
3510         char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3511
3512         if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3513                 return (FALSE);
3514         }
3515
3516         return (TRUE);
3517 }
3518
3519 /*
3520 ** Parse the interface capabilities with regard
3521 ** to both system management and wake-on-lan for
3522 ** later use.
3523 */
3524 static void
3525 em_get_wakeup(if_ctx_t ctx)
3526 {
3527         struct adapter *adapter = iflib_get_softc(ctx);
3528         device_t dev = iflib_get_dev(ctx);
3529         u16 eeprom_data = 0, device_id, apme_mask;
3530
3531         adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3532         apme_mask = EM_EEPROM_APME;
3533
3534         switch (adapter->hw.mac.type) {
3535         case e1000_82542:
3536         case e1000_82543:
3537                 break;
3538         case e1000_82544:
3539                 e1000_read_nvm(&adapter->hw,
3540                     NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3541                 apme_mask = EM_82544_APME;
3542                 break;
3543         case e1000_82546:
3544         case e1000_82546_rev_3:
3545                 if (adapter->hw.bus.func == 1) {
3546                         e1000_read_nvm(&adapter->hw,
3547                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3548                         break;
3549                 } else
3550                         e1000_read_nvm(&adapter->hw,
3551                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3552                 break;
3553         case e1000_82573:
3554         case e1000_82583:
3555                 adapter->has_amt = TRUE;
3556                 /* FALLTHROUGH */
3557         case e1000_82571:
3558         case e1000_82572:
3559         case e1000_80003es2lan:
3560                 if (adapter->hw.bus.func == 1) {
3561                         e1000_read_nvm(&adapter->hw,
3562                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3563                         break;
3564                 } else
3565                         e1000_read_nvm(&adapter->hw,
3566                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3567                 break;
3568         case e1000_ich8lan:
3569         case e1000_ich9lan:
3570         case e1000_ich10lan:
3571         case e1000_pchlan:
3572         case e1000_pch2lan:
3573         case e1000_pch_lpt:
3574         case e1000_pch_spt:
3575         case e1000_82575:       /* listing all igb devices */
3576         case e1000_82576:
3577         case e1000_82580:
3578         case e1000_i350:
3579         case e1000_i354:
3580         case e1000_i210:
3581         case e1000_i211:
3582         case e1000_vfadapt:
3583         case e1000_vfadapt_i350:
3584                 apme_mask = E1000_WUC_APME;
3585                 adapter->has_amt = TRUE;
3586                 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3587                 break;
3588         default:
3589                 e1000_read_nvm(&adapter->hw,
3590                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3591                 break;
3592         }
3593         if (eeprom_data & apme_mask)
3594                 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3595         /*
3596          * We have the eeprom settings, now apply the special cases
3597          * where the eeprom may be wrong or the board won't support
3598          * wake on lan on a particular port
3599          */
3600         device_id = pci_get_device(dev);
3601         switch (device_id) {
3602         case E1000_DEV_ID_82546GB_PCIE:
3603                 adapter->wol = 0;
3604                 break;
3605         case E1000_DEV_ID_82546EB_FIBER:
3606         case E1000_DEV_ID_82546GB_FIBER:
3607                 /* Wake events only supported on port A for dual fiber
3608                  * regardless of eeprom setting */
3609                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3610                     E1000_STATUS_FUNC_1)
3611                         adapter->wol = 0;
3612                 break;
3613         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3614                 /* if quad port adapter, disable WoL on all but port A */
3615                 if (global_quad_port_a != 0)
3616                         adapter->wol = 0;
3617                 /* Reset for multiple quad port adapters */
3618                 if (++global_quad_port_a == 4)
3619                         global_quad_port_a = 0;
3620                 break;
3621         case E1000_DEV_ID_82571EB_FIBER:
3622                 /* Wake events only supported on port A for dual fiber
3623                  * regardless of eeprom setting */
3624                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3625                     E1000_STATUS_FUNC_1)
3626                         adapter->wol = 0;
3627                 break;
3628         case E1000_DEV_ID_82571EB_QUAD_COPPER:
3629         case E1000_DEV_ID_82571EB_QUAD_FIBER:
3630         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3631                 /* if quad port adapter, disable WoL on all but port A */
3632                 if (global_quad_port_a != 0)
3633                         adapter->wol = 0;
3634                 /* Reset for multiple quad port adapters */
3635                 if (++global_quad_port_a == 4)
3636                         global_quad_port_a = 0;
3637                 break;
3638         }
3639         return;
3640 }
3641
3642
3643 /*
3644  * Enable PCI Wake On Lan capability
3645  */
3646 static void
3647 em_enable_wakeup(if_ctx_t ctx)
3648 {
3649         struct adapter *adapter = iflib_get_softc(ctx);
3650         device_t dev = iflib_get_dev(ctx);
3651         if_t ifp = iflib_get_ifp(ctx);
3652         int error = 0;
3653         u32 pmc, ctrl, ctrl_ext, rctl;
3654         u16 status;
3655
3656         if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3657                 return;
3658
3659         /*
3660          * Determine type of Wakeup: note that wol
3661          * is set with all bits on by default.
3662          */
3663         if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3664                 adapter->wol &= ~E1000_WUFC_MAG;
3665
3666         if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3667                 adapter->wol &= ~E1000_WUFC_EX;
3668
3669         if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3670                 adapter->wol &= ~E1000_WUFC_MC;
3671         else {
3672                 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3673                 rctl |= E1000_RCTL_MPE;
3674                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3675         }
3676
3677         if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3678                 goto pme;
3679
3680         /* Advertise the wakeup capability */
3681         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3682         ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3683         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3684
3685         /* Keep the laser running on Fiber adapters */
3686         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3687             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3688                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3689                 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3690                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3691         }
3692
3693         if ((adapter->hw.mac.type == e1000_ich8lan) ||
3694             (adapter->hw.mac.type == e1000_pchlan) ||
3695             (adapter->hw.mac.type == e1000_ich9lan) ||
3696             (adapter->hw.mac.type == e1000_ich10lan))
3697                 e1000_suspend_workarounds_ich8lan(&adapter->hw);
3698
3699         if ( adapter->hw.mac.type >= e1000_pchlan) {
3700                 error = em_enable_phy_wakeup(adapter);
3701                 if (error)
3702                         goto pme;
3703         } else {
3704                 /* Enable wakeup by the MAC */
3705                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3706                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3707         }
3708
3709         if (adapter->hw.phy.type == e1000_phy_igp_3)
3710                 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3711
3712 pme:
3713         status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3714         status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3715         if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3716                 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3717         pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3718
3719         return;
3720 }
3721
3722 /*
3723  * WOL in the newer chipset interfaces (pchlan)
3724  * require thing to be copied into the phy
3725  */
3726 static int
3727 em_enable_phy_wakeup(struct adapter *adapter)
3728 {
3729         struct e1000_hw *hw = &adapter->hw;
3730         u32 mreg, ret = 0;
3731         u16 preg;
3732
3733         /* copy MAC RARs to PHY RARs */
3734         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3735
3736         /* copy MAC MTA to PHY MTA */
3737         for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
3738                 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3739                 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3740                 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3741                     (u16)((mreg >> 16) & 0xFFFF));
3742         }
3743
3744         /* configure PHY Rx Control register */
3745         e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg);
3746         mreg = E1000_READ_REG(hw, E1000_RCTL);
3747         if (mreg & E1000_RCTL_UPE)
3748                 preg |= BM_RCTL_UPE;
3749         if (mreg & E1000_RCTL_MPE)
3750                 preg |= BM_RCTL_MPE;
3751         preg &= ~(BM_RCTL_MO_MASK);
3752         if (mreg & E1000_RCTL_MO_3)
3753                 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3754                                 << BM_RCTL_MO_SHIFT);
3755         if (mreg & E1000_RCTL_BAM)
3756                 preg |= BM_RCTL_BAM;
3757         if (mreg & E1000_RCTL_PMCF)
3758                 preg |= BM_RCTL_PMCF;
3759         mreg = E1000_READ_REG(hw, E1000_CTRL);
3760         if (mreg & E1000_CTRL_RFCE)
3761                 preg |= BM_RCTL_RFCE;
3762         e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg);
3763
3764         /* enable PHY wakeup in MAC register */
3765         E1000_WRITE_REG(hw, E1000_WUC,
3766             E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3767         E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3768
3769         /* configure and enable PHY wakeup in PHY registers */
3770         e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol);
3771         e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
3772
3773         /* activate PHY wakeup */
3774         ret = hw->phy.ops.acquire(hw);
3775         if (ret) {
3776                 printf("Could not acquire PHY\n");
3777                 return ret;
3778         }
3779         e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3780                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3781         ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3782         if (ret) {
3783                 printf("Could not read PHY page 769\n");
3784                 goto out;
3785         }
3786         preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3787         ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3788         if (ret)
3789                 printf("Could not set PHY Host Wakeup bit\n");
3790 out:
3791         hw->phy.ops.release(hw);
3792
3793         return ret;
3794 }
3795
3796 static void
3797 em_if_led_func(if_ctx_t ctx, int onoff)
3798 {
3799         struct adapter *adapter = iflib_get_softc(ctx);
3800
3801         if (onoff) {
3802                 e1000_setup_led(&adapter->hw);
3803                 e1000_led_on(&adapter->hw);
3804         } else {
3805                 e1000_led_off(&adapter->hw);
3806                 e1000_cleanup_led(&adapter->hw);
3807         }
3808 }
3809
3810 /*
3811  * Disable the L0S and L1 LINK states
3812  */
3813 static void
3814 em_disable_aspm(struct adapter *adapter)
3815 {
3816         int base, reg;
3817         u16 link_cap,link_ctrl;
3818         device_t dev = adapter->dev;
3819
3820         switch (adapter->hw.mac.type) {
3821         case e1000_82573:
3822         case e1000_82574:
3823         case e1000_82583:
3824                 break;
3825         default:
3826                 return;
3827         }
3828         if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3829                 return;
3830         reg = base + PCIER_LINK_CAP;
3831         link_cap = pci_read_config(dev, reg, 2);
3832         if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3833                 return;
3834         reg = base + PCIER_LINK_CTL;
3835         link_ctrl = pci_read_config(dev, reg, 2);
3836         link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3837         pci_write_config(dev, reg, link_ctrl, 2);
3838         return;
3839 }
3840
3841 /**********************************************************************
3842  *
3843  *  Update the board statistics counters.
3844  *
3845  **********************************************************************/
3846 static void
3847 em_update_stats_counters(struct adapter *adapter)
3848 {
3849
3850         if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3851            (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3852                 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3853                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3854         }
3855         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3856         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3857         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3858         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3859
3860         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3861         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3862         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3863         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3864         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3865         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3866         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3867         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3868         /*
3869          ** For watchdog management we need to know if we have been
3870          ** paused during the last interval, so capture that here.
3871         */
3872         adapter->shared->isc_pause_frames = adapter->stats.xoffrxc;
3873         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3874         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3875         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3876         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3877         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3878         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3879         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3880         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3881         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3882         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3883         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3884         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3885
3886         /* For the 64-bit byte counters the low dword must be read first. */
3887         /* Both registers clear on the read of the high dword */
3888
3889         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3890             ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3891         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3892             ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3893
3894         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3895         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3896         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3897         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3898         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3899
3900         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3901         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3902
3903         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3904         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3905         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3906         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3907         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3908         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3909         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3910         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3911         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3912         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3913
3914         /* Interrupt Counts */
3915
3916         adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3917         adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
3918         adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
3919         adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
3920         adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
3921         adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
3922         adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
3923         adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
3924         adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
3925
3926         if (adapter->hw.mac.type >= e1000_82543) {
3927                 adapter->stats.algnerrc +=
3928                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3929                 adapter->stats.rxerrc +=
3930                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3931                 adapter->stats.tncrs +=
3932                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3933                 adapter->stats.cexterr +=
3934                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3935                 adapter->stats.tsctc +=
3936                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3937                 adapter->stats.tsctfc +=
3938                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3939         }
3940 }
3941
3942 static uint64_t
3943 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
3944 {
3945         struct adapter *adapter = iflib_get_softc(ctx);
3946         struct ifnet *ifp = iflib_get_ifp(ctx);
3947
3948         switch (cnt) {
3949         case IFCOUNTER_COLLISIONS:
3950                 return (adapter->stats.colc);
3951         case IFCOUNTER_IERRORS:
3952                 return (adapter->dropped_pkts + adapter->stats.rxerrc +
3953                     adapter->stats.crcerrs + adapter->stats.algnerrc +
3954                     adapter->stats.ruc + adapter->stats.roc +
3955                     adapter->stats.mpc + adapter->stats.cexterr);
3956         case IFCOUNTER_OERRORS:
3957                 return (adapter->stats.ecol + adapter->stats.latecol +
3958                     adapter->watchdog_events);
3959         default:
3960                 return (if_get_counter_default(ifp, cnt));
3961         }
3962 }
3963
3964 /* Export a single 32-bit register via a read-only sysctl. */
3965 static int
3966 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
3967 {
3968         struct adapter *adapter;
3969         u_int val;
3970
3971         adapter = oidp->oid_arg1;
3972         val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
3973         return (sysctl_handle_int(oidp, &val, 0, req));
3974 }
3975
3976 /*
3977  * Add sysctl variables, one per statistic, to the system.
3978  */
3979 static void
3980 em_add_hw_stats(struct adapter *adapter)
3981 {
3982         device_t dev = iflib_get_dev(adapter->ctx);
3983         struct em_tx_queue *tx_que = adapter->tx_queues;
3984         struct em_rx_queue *rx_que = adapter->rx_queues;
3985
3986         struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
3987         struct sysctl_oid *tree = device_get_sysctl_tree(dev);
3988         struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
3989         struct e1000_hw_stats *stats = &adapter->stats;
3990
3991         struct sysctl_oid *stat_node, *queue_node, *int_node;
3992         struct sysctl_oid_list *stat_list, *queue_list, *int_list;
3993
3994 #define QUEUE_NAME_LEN 32
3995         char namebuf[QUEUE_NAME_LEN];
3996
3997         /* Driver Statistics */
3998         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
3999                         CTLFLAG_RD, &adapter->dropped_pkts,
4000                         "Driver dropped packets");
4001         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4002                         CTLFLAG_RD, &adapter->link_irq,
4003                         "Link MSIX IRQ Handled");
4004         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "mbuf_defrag_fail",
4005                          CTLFLAG_RD, &adapter->mbuf_defrag_failed,
4006                          "Defragmenting mbuf chain failed");
4007         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail",
4008                         CTLFLAG_RD, &adapter->no_tx_dma_setup,
4009                         "Driver tx dma failure in xmit");
4010         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4011                         CTLFLAG_RD, &adapter->rx_overruns,
4012                         "RX overruns");
4013         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4014                         CTLFLAG_RD, &adapter->watchdog_events,
4015                         "Watchdog timeouts");
4016         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4017                         CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL,
4018                         em_sysctl_reg_handler, "IU",
4019                         "Device Control Register");
4020         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4021                         CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL,
4022                         em_sysctl_reg_handler, "IU",
4023                         "Receiver Control Register");
4024         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4025                         CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4026                         "Flow Control High Watermark");
4027         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4028                         CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4029                         "Flow Control Low Watermark");
4030
4031         for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4032                 struct tx_ring *txr = &tx_que->txr;
4033                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4034                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4035                                             CTLFLAG_RD, NULL, "TX Queue Name");
4036                 queue_list = SYSCTL_CHILDREN(queue_node);
4037
4038                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4039                                 CTLTYPE_UINT | CTLFLAG_RD, adapter,
4040                                 E1000_TDH(txr->me),
4041                                 em_sysctl_reg_handler, "IU",
4042                                 "Transmit Descriptor Head");
4043                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4044                                 CTLTYPE_UINT | CTLFLAG_RD, adapter,
4045                                 E1000_TDT(txr->me),
4046                                 em_sysctl_reg_handler, "IU",
4047                                 "Transmit Descriptor Tail");
4048                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4049                                 CTLFLAG_RD, &txr->tx_irq,
4050                                 "Queue MSI-X Transmit Interrupts");
4051         }
4052
4053         for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4054                 struct rx_ring *rxr = &rx_que->rxr;
4055                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4056                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4057                                             CTLFLAG_RD, NULL, "RX Queue Name");
4058                 queue_list = SYSCTL_CHILDREN(queue_node);
4059
4060                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4061                                 CTLTYPE_UINT | CTLFLAG_RD, adapter,
4062                                 E1000_RDH(rxr->me),
4063                                 em_sysctl_reg_handler, "IU",
4064                                 "Receive Descriptor Head");
4065                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4066                                 CTLTYPE_UINT | CTLFLAG_RD, adapter,
4067                                 E1000_RDT(rxr->me),
4068                                 em_sysctl_reg_handler, "IU",
4069                                 "Receive Descriptor Tail");
4070                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4071                                 CTLFLAG_RD, &rxr->rx_irq,
4072                                 "Queue MSI-X Receive Interrupts");
4073         }
4074
4075         /* MAC stats get their own sub node */
4076
4077         stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4078                                     CTLFLAG_RD, NULL, "Statistics");
4079         stat_list = SYSCTL_CHILDREN(stat_node);
4080
4081         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4082                         CTLFLAG_RD, &stats->ecol,
4083                         "Excessive collisions");
4084         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4085                         CTLFLAG_RD, &stats->scc,
4086                         "Single collisions");
4087         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4088                         CTLFLAG_RD, &stats->mcc,
4089                         "Multiple collisions");
4090         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4091                         CTLFLAG_RD, &stats->latecol,
4092                         "Late collisions");
4093         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4094                         CTLFLAG_RD, &stats->colc,
4095                         "Collision Count");
4096         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4097                         CTLFLAG_RD, &adapter->stats.symerrs,
4098                         "Symbol Errors");
4099         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4100                         CTLFLAG_RD, &adapter->stats.sec,
4101                         "Sequence Errors");
4102         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4103                         CTLFLAG_RD, &adapter->stats.dc,
4104                         "Defer Count");
4105         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4106                         CTLFLAG_RD, &adapter->stats.mpc,
4107                         "Missed Packets");
4108         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4109                         CTLFLAG_RD, &adapter->stats.rnbc,
4110                         "Receive No Buffers");
4111         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4112                         CTLFLAG_RD, &adapter->stats.ruc,
4113                         "Receive Undersize");
4114         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4115                         CTLFLAG_RD, &adapter->stats.rfc,
4116                         "Fragmented Packets Received ");
4117         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4118                         CTLFLAG_RD, &adapter->stats.roc,
4119                         "Oversized Packets Received");
4120         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4121                         CTLFLAG_RD, &adapter->stats.rjc,
4122                         "Recevied Jabber");
4123         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4124                         CTLFLAG_RD, &adapter->stats.rxerrc,
4125                         "Receive Errors");
4126         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4127                         CTLFLAG_RD, &adapter->stats.crcerrs,
4128                         "CRC errors");
4129         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4130                         CTLFLAG_RD, &adapter->stats.algnerrc,
4131                         "Alignment Errors");
4132         /* On 82575 these are collision counts */
4133         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4134                         CTLFLAG_RD, &adapter->stats.cexterr,
4135                         "Collision/Carrier extension errors");
4136         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4137                         CTLFLAG_RD, &adapter->stats.xonrxc,
4138                         "XON Received");
4139         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4140                         CTLFLAG_RD, &adapter->stats.xontxc,
4141                         "XON Transmitted");
4142         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4143                         CTLFLAG_RD, &adapter->stats.xoffrxc,
4144                         "XOFF Received");
4145         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4146                         CTLFLAG_RD, &adapter->stats.xofftxc,
4147                         "XOFF Transmitted");
4148
4149         /* Packet Reception Stats */
4150         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4151                         CTLFLAG_RD, &adapter->stats.tpr,
4152                         "Total Packets Received ");
4153         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4154                         CTLFLAG_RD, &adapter->stats.gprc,
4155                         "Good Packets Received");
4156         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4157                         CTLFLAG_RD, &adapter->stats.bprc,
4158                         "Broadcast Packets Received");
4159         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4160                         CTLFLAG_RD, &adapter->stats.mprc,
4161                         "Multicast Packets Received");
4162         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4163                         CTLFLAG_RD, &adapter->stats.prc64,
4164                         "64 byte frames received ");
4165         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4166                         CTLFLAG_RD, &adapter->stats.prc127,
4167                         "65-127 byte frames received");
4168         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4169                         CTLFLAG_RD, &adapter->stats.prc255,
4170                         "128-255 byte frames received");
4171         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4172                         CTLFLAG_RD, &adapter->stats.prc511,
4173                         "256-511 byte frames received");
4174         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4175                         CTLFLAG_RD, &adapter->stats.prc1023,
4176                         "512-1023 byte frames received");
4177         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4178                         CTLFLAG_RD, &adapter->stats.prc1522,
4179                         "1023-1522 byte frames received");
4180         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4181                         CTLFLAG_RD, &adapter->stats.gorc,
4182                         "Good Octets Received");
4183
4184         /* Packet Transmission Stats */
4185         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4186                         CTLFLAG_RD, &adapter->stats.gotc,
4187                         "Good Octets Transmitted");
4188         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4189                         CTLFLAG_RD, &adapter->stats.tpt,
4190                         "Total Packets Transmitted");
4191         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4192                         CTLFLAG_RD, &adapter->stats.gptc,
4193                         "Good Packets Transmitted");
4194         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4195                         CTLFLAG_RD, &adapter->stats.bptc,
4196                         "Broadcast Packets Transmitted");
4197         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4198                         CTLFLAG_RD, &adapter->stats.mptc,
4199                         "Multicast Packets Transmitted");
4200         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4201                         CTLFLAG_RD, &adapter->stats.ptc64,
4202                         "64 byte frames transmitted ");
4203         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4204                         CTLFLAG_RD, &adapter->stats.ptc127,
4205                         "65-127 byte frames transmitted");
4206         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4207                         CTLFLAG_RD, &adapter->stats.ptc255,
4208                         "128-255 byte frames transmitted");
4209         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4210                         CTLFLAG_RD, &adapter->stats.ptc511,
4211                         "256-511 byte frames transmitted");
4212         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4213                         CTLFLAG_RD, &adapter->stats.ptc1023,
4214                         "512-1023 byte frames transmitted");
4215         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4216                         CTLFLAG_RD, &adapter->stats.ptc1522,
4217                         "1024-1522 byte frames transmitted");
4218         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4219                         CTLFLAG_RD, &adapter->stats.tsctc,
4220                         "TSO Contexts Transmitted");
4221         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4222                         CTLFLAG_RD, &adapter->stats.tsctfc,
4223                         "TSO Contexts Failed");
4224
4225
4226         /* Interrupt Stats */
4227
4228         int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4229                                     CTLFLAG_RD, NULL, "Interrupt Statistics");
4230         int_list = SYSCTL_CHILDREN(int_node);
4231
4232         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4233                         CTLFLAG_RD, &adapter->stats.iac,
4234                         "Interrupt Assertion Count");
4235
4236         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4237                         CTLFLAG_RD, &adapter->stats.icrxptc,
4238                         "Interrupt Cause Rx Pkt Timer Expire Count");
4239
4240         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4241                         CTLFLAG_RD, &adapter->stats.icrxatc,
4242                         "Interrupt Cause Rx Abs Timer Expire Count");
4243
4244         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4245                         CTLFLAG_RD, &adapter->stats.ictxptc,
4246                         "Interrupt Cause Tx Pkt Timer Expire Count");
4247
4248         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4249                         CTLFLAG_RD, &adapter->stats.ictxatc,
4250                         "Interrupt Cause Tx Abs Timer Expire Count");
4251
4252         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4253                         CTLFLAG_RD, &adapter->stats.ictxqec,
4254                         "Interrupt Cause Tx Queue Empty Count");
4255
4256         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4257                         CTLFLAG_RD, &adapter->stats.ictxqmtc,
4258                         "Interrupt Cause Tx Queue Min Thresh Count");
4259
4260         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4261                         CTLFLAG_RD, &adapter->stats.icrxdmtc,
4262                         "Interrupt Cause Rx Desc Min Thresh Count");
4263
4264         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4265                         CTLFLAG_RD, &adapter->stats.icrxoc,
4266                         "Interrupt Cause Receiver Overrun Count");
4267 }
4268
4269 /**********************************************************************
4270  *
4271  *  This routine provides a way to dump out the adapter eeprom,
4272  *  often a useful debug/service tool. This only dumps the first
4273  *  32 words, stuff that matters is in that extent.
4274  *
4275  **********************************************************************/
4276 static int
4277 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4278 {
4279         struct adapter *adapter = (struct adapter *)arg1;
4280         int error;
4281         int result;
4282
4283         result = -1;
4284         error = sysctl_handle_int(oidp, &result, 0, req);
4285
4286         if (error || !req->newptr)
4287                 return (error);
4288
4289         /*
4290          * This value will cause a hex dump of the
4291          * first 32 16-bit words of the EEPROM to
4292          * the screen.
4293          */
4294         if (result == 1)
4295                 em_print_nvm_info(adapter);
4296
4297         return (error);
4298 }
4299
4300 static void
4301 em_print_nvm_info(struct adapter *adapter)
4302 {
4303         u16 eeprom_data;
4304         int i, j, row = 0;
4305
4306         /* Its a bit crude, but it gets the job done */
4307         printf("\nInterface EEPROM Dump:\n");
4308         printf("Offset\n0x0000  ");
4309         for (i = 0, j = 0; i < 32; i++, j++) {
4310                 if (j == 8) { /* Make the offset block */
4311                         j = 0; ++row;
4312                         printf("\n0x00%x0  ",row);
4313                 }
4314                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4315                 printf("%04x ", eeprom_data);
4316         }
4317         printf("\n");
4318 }
4319
4320 static int
4321 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4322 {
4323         struct em_int_delay_info *info;
4324         struct adapter *adapter;
4325         u32 regval;
4326         int error, usecs, ticks;
4327
4328         info = (struct em_int_delay_info *) arg1;
4329         usecs = info->value;
4330         error = sysctl_handle_int(oidp, &usecs, 0, req);
4331         if (error != 0 || req->newptr == NULL)
4332                 return (error);
4333         if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4334                 return (EINVAL);
4335         info->value = usecs;
4336         ticks = EM_USECS_TO_TICKS(usecs);
4337         if (info->offset == E1000_ITR)  /* units are 256ns here */
4338                 ticks *= 4;
4339
4340         adapter = info->adapter;
4341
4342         regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4343         regval = (regval & ~0xffff) | (ticks & 0xffff);
4344         /* Handle a few special cases. */
4345         switch (info->offset) {
4346         case E1000_RDTR:
4347                 break;
4348         case E1000_TIDV:
4349                 if (ticks == 0) {
4350                         adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4351                         /* Don't write 0 into the TIDV register. */
4352                         regval++;
4353                 } else
4354                         adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4355                 break;
4356         }
4357         E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4358         return (0);
4359 }
4360
4361 static void
4362 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4363         const char *description, struct em_int_delay_info *info,
4364         int offset, int value)
4365 {
4366         info->adapter = adapter;
4367         info->offset = offset;
4368         info->value = value;
4369         SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4370             SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4371             OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
4372             info, 0, em_sysctl_int_delay, "I", description);
4373 }
4374
4375 /*
4376  * Set flow control using sysctl:
4377  * Flow control values:
4378  *      0 - off
4379  *      1 - rx pause
4380  *      2 - tx pause
4381  *      3 - full
4382  */
4383 static int
4384 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4385 {
4386         int error;
4387         static int input = 3; /* default is full */
4388         struct adapter  *adapter = (struct adapter *) arg1;
4389
4390         error = sysctl_handle_int(oidp, &input, 0, req);
4391
4392         if ((error) || (req->newptr == NULL))
4393                 return (error);
4394
4395         if (input == adapter->fc) /* no change? */
4396                 return (error);
4397
4398         switch (input) {
4399         case e1000_fc_rx_pause:
4400         case e1000_fc_tx_pause:
4401         case e1000_fc_full:
4402         case e1000_fc_none:
4403                 adapter->hw.fc.requested_mode = input;
4404                 adapter->fc = input;
4405                 break;
4406         default:
4407                 /* Do nothing */
4408                 return (error);
4409         }
4410
4411         adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4412         e1000_force_mac_fc(&adapter->hw);
4413         return (error);
4414 }
4415
4416 /*
4417  * Manage Energy Efficient Ethernet:
4418  * Control values:
4419  *     0/1 - enabled/disabled
4420  */
4421 static int
4422 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4423 {
4424         struct adapter *adapter = (struct adapter *) arg1;
4425         int error, value;
4426
4427         value = adapter->hw.dev_spec.ich8lan.eee_disable;
4428         error = sysctl_handle_int(oidp, &value, 0, req);
4429         if (error || req->newptr == NULL)
4430                 return (error);
4431         adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4432         em_if_init(adapter->ctx);
4433
4434         return (0);
4435 }
4436
4437 static int
4438 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4439 {
4440         struct adapter *adapter;
4441         int error;
4442         int result;
4443
4444         result = -1;
4445         error = sysctl_handle_int(oidp, &result, 0, req);
4446
4447         if (error || !req->newptr)
4448                 return (error);
4449
4450         if (result == 1) {
4451                 adapter = (struct adapter *) arg1;
4452                 em_print_debug_info(adapter);
4453         }
4454
4455         return (error);
4456 }
4457
4458 static int
4459 em_get_rs(SYSCTL_HANDLER_ARGS)
4460 {
4461         struct adapter *adapter = (struct adapter *) arg1;
4462         int error;
4463         int result;
4464
4465         result = 0;
4466         error = sysctl_handle_int(oidp, &result, 0, req);
4467
4468         if (error || !req->newptr || result != 1)
4469                 return (error);
4470         em_dump_rs(adapter);
4471
4472         return (error);
4473 }
4474
4475 static void
4476 em_if_debug(if_ctx_t ctx)
4477 {
4478         em_dump_rs(iflib_get_softc(ctx));
4479 }
4480
4481 /*
4482  * This routine is meant to be fluid, add whatever is
4483  * needed for debugging a problem.  -jfv
4484  */
4485 static void
4486 em_print_debug_info(struct adapter *adapter)
4487 {
4488         device_t dev = iflib_get_dev(adapter->ctx);
4489         struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4490         struct tx_ring *txr = &adapter->tx_queues->txr;
4491         struct rx_ring *rxr = &adapter->rx_queues->rxr;
4492
4493         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4494                 printf("Interface is RUNNING ");
4495         else
4496                 printf("Interface is NOT RUNNING\n");
4497
4498         if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4499                 printf("and INACTIVE\n");
4500         else
4501                 printf("and ACTIVE\n");
4502
4503         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4504                 device_printf(dev, "TX Queue %d ------\n", i);
4505                 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4506                         E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4507                         E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4508
4509         }
4510         for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4511                 device_printf(dev, "RX Queue %d ------\n", j);
4512                 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4513                         E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4514                         E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4515         }
4516 }
4517
4518 /*
4519  * 82574 only:
4520  * Write a new value to the EEPROM increasing the number of MSIX
4521  * vectors from 3 to 5, for proper multiqueue support.
4522  */
4523 static void
4524 em_enable_vectors_82574(if_ctx_t ctx)
4525 {
4526         struct adapter *adapter = iflib_get_softc(ctx);
4527         struct e1000_hw *hw = &adapter->hw;
4528         device_t dev = iflib_get_dev(ctx);
4529         u16 edata;
4530
4531         e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4532         printf("Current cap: %#06x\n", edata);
4533         if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4534                 device_printf(dev, "Writing to eeprom: increasing "
4535                     "reported MSIX vectors from 3 to 5...\n");
4536                 edata &= ~(EM_NVM_MSIX_N_MASK);
4537                 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4538                 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4539                 e1000_update_nvm_checksum(hw);
4540                 device_printf(dev, "Writing to eeprom: done\n");
4541         }
4542 }