]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/e1000/if_em.c
e1000: fix em_mac_min and 82547 packet buffer
[FreeBSD/FreeBSD.git] / sys / dev / e1000 / if_em.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33
34 #define em_mac_min e1000_82571
35 #define igb_mac_min e1000_82575
36
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54         /* Intel(R) PRO/1000 Network Connection - Legacy em*/
55         PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"),
56         PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"),
57         PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"),
58         PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"),
59         PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"),
60
61         PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"),
62         PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"),
63         PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"),
64         PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
65         PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"),
66         PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"),
67         PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
68
69         PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"),
70
71         PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"),
72         PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
73
74         PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
75         PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
76         PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"),
77         PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"),
78
79         PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"),
80         PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"),
81         PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"),
82         PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"),
83         PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"),
84
85         PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
86         PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
87         PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
88         PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"),
89         PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"),
90         PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"),
91         PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"),
92         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
93         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"),
94
95         PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"),
96         PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"),
97         PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"),
98
99         /* Intel(R) PRO/1000 Network Connection - em */
100         PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"),
101         PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"),
102         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"),
103         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"),
104         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"),
105         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
106         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"),
107         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"),
108         PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"),
109         PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"),
110         PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"),
111         PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"),
112         PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"),
113         PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"),
114         PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"),
115         PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"),
116         PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"),
117         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"),
118         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"),
119         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"),
120         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"),
121         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
122         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
123         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"),
124         PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"),
125         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
126         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"),
127         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"),
128         PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"),
129         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"),
130         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"),
131         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"),
132         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"),
133         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"),
134         PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"),
135         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"),
136         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"),
137         PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"),
138         PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"),
139         PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"),
140         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"),
141         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"),
142         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"),
143         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"),
144         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"),
145         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"),
146         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"),
147         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"),
148         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"),
149         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"),
150         PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"),
151         PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"),
152         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"),
153         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"),
154         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"),
155         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"),
156         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"),
157         PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"),
158         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"),
159         PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"),
160         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"),
161         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"),
162         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"),
163         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"),
164         PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"),
165         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"),
166         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"),
167         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"),
168         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"),
169         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"),
170         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"),
171         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"),
172         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"),
173         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"),
174         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"),
175         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"),
176         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"),
177         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) PRO/1000 Network Connection"),
178         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) PRO/1000 Network Connection"),
179         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) PRO/1000 Network Connection"),
180         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) PRO/1000 Network Connection"),
181         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) PRO/1000 Network Connection"),
182         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) PRO/1000 Network Connection"),
183         /* required last entry */
184         PVID_END
185 };
186
187 static pci_vendor_info_t igb_vendor_info_array[] =
188 {
189         /* Intel(R) PRO/1000 Network Connection - igb */
190         PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
191         PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
192         PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
193         PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"),
194         PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
195         PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
196         PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
197         PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
198         PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"),
199         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
200         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"),
201         PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
202         PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
203         PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
204         PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
205         PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
206         PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"),
207         PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
208         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
209         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
210         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"),
211         PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"),
212         PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
213         PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
214         PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
215         PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
216         PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"),
217         PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
218         PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"),
219         PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"),
220         PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
221         PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
222         PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
223         PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"),
224         PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
225         PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"),
226         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
227         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"),
228         PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"),
229         /* required last entry */
230         PVID_END
231 };
232
233 /*********************************************************************
234  *  Function prototypes
235  *********************************************************************/
236 static void     *em_register(device_t dev);
237 static void     *igb_register(device_t dev);
238 static int      em_if_attach_pre(if_ctx_t ctx);
239 static int      em_if_attach_post(if_ctx_t ctx);
240 static int      em_if_detach(if_ctx_t ctx);
241 static int      em_if_shutdown(if_ctx_t ctx);
242 static int      em_if_suspend(if_ctx_t ctx);
243 static int      em_if_resume(if_ctx_t ctx);
244
245 static int      em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
246 static int      em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
247 static void     em_if_queues_free(if_ctx_t ctx);
248
249 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
250 static void     em_if_init(if_ctx_t ctx);
251 static void     em_if_stop(if_ctx_t ctx);
252 static void     em_if_media_status(if_ctx_t, struct ifmediareq *);
253 static int      em_if_media_change(if_ctx_t ctx);
254 static int      em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
255 static void     em_if_timer(if_ctx_t ctx, uint16_t qid);
256 static void     em_if_vlan_register(if_ctx_t ctx, u16 vtag);
257 static void     em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
258 static void     em_if_watchdog_reset(if_ctx_t ctx);
259 static bool     em_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event);
260
261 static void     em_identify_hardware(if_ctx_t ctx);
262 static int      em_allocate_pci_resources(if_ctx_t ctx);
263 static void     em_free_pci_resources(if_ctx_t ctx);
264 static void     em_reset(if_ctx_t ctx);
265 static int      em_setup_interface(if_ctx_t ctx);
266 static int      em_setup_msix(if_ctx_t ctx);
267
268 static void     em_initialize_transmit_unit(if_ctx_t ctx);
269 static void     em_initialize_receive_unit(if_ctx_t ctx);
270
271 static void     em_if_intr_enable(if_ctx_t ctx);
272 static void     em_if_intr_disable(if_ctx_t ctx);
273 static void     igb_if_intr_enable(if_ctx_t ctx);
274 static void     igb_if_intr_disable(if_ctx_t ctx);
275 static int      em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
276 static int      em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
277 static int      igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
278 static int      igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
279 static void     em_if_multi_set(if_ctx_t ctx);
280 static void     em_if_update_admin_status(if_ctx_t ctx);
281 static void     em_if_debug(if_ctx_t ctx);
282 static void     em_update_stats_counters(struct adapter *);
283 static void     em_add_hw_stats(struct adapter *adapter);
284 static int      em_if_set_promisc(if_ctx_t ctx, int flags);
285 static void     em_setup_vlan_hw_support(struct adapter *);
286 static int      em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
287 static void     em_print_nvm_info(struct adapter *);
288 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
289 static int      em_get_rs(SYSCTL_HANDLER_ARGS);
290 static void     em_print_debug_info(struct adapter *);
291 static int      em_is_valid_ether_addr(u8 *);
292 static int      em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
293 static void     em_add_int_delay_sysctl(struct adapter *, const char *,
294                     const char *, struct em_int_delay_info *, int, int);
295 /* Management and WOL Support */
296 static void     em_init_manageability(struct adapter *);
297 static void     em_release_manageability(struct adapter *);
298 static void     em_get_hw_control(struct adapter *);
299 static void     em_release_hw_control(struct adapter *);
300 static void     em_get_wakeup(if_ctx_t ctx);
301 static void     em_enable_wakeup(if_ctx_t ctx);
302 static int      em_enable_phy_wakeup(struct adapter *);
303 static void     em_disable_aspm(struct adapter *);
304
305 int             em_intr(void *arg);
306 static void     em_disable_promisc(if_ctx_t ctx);
307
308 /* MSI-X handlers */
309 static int      em_if_msix_intr_assign(if_ctx_t, int);
310 static int      em_msix_link(void *);
311 static void     em_handle_link(void *context);
312
313 static void     em_enable_vectors_82574(if_ctx_t);
314
315 static int      em_set_flowcntl(SYSCTL_HANDLER_ARGS);
316 static int      em_sysctl_eee(SYSCTL_HANDLER_ARGS);
317 static void     em_if_led_func(if_ctx_t ctx, int onoff);
318
319 static int      em_get_regs(SYSCTL_HANDLER_ARGS);
320
321 static void     lem_smartspeed(struct adapter *adapter);
322 static void     igb_configure_queues(struct adapter *adapter);
323
324
325 /*********************************************************************
326  *  FreeBSD Device Interface Entry Points
327  *********************************************************************/
328 static device_method_t em_methods[] = {
329         /* Device interface */
330         DEVMETHOD(device_register, em_register),
331         DEVMETHOD(device_probe, iflib_device_probe),
332         DEVMETHOD(device_attach, iflib_device_attach),
333         DEVMETHOD(device_detach, iflib_device_detach),
334         DEVMETHOD(device_shutdown, iflib_device_shutdown),
335         DEVMETHOD(device_suspend, iflib_device_suspend),
336         DEVMETHOD(device_resume, iflib_device_resume),
337         DEVMETHOD_END
338 };
339
340 static device_method_t igb_methods[] = {
341         /* Device interface */
342         DEVMETHOD(device_register, igb_register),
343         DEVMETHOD(device_probe, iflib_device_probe),
344         DEVMETHOD(device_attach, iflib_device_attach),
345         DEVMETHOD(device_detach, iflib_device_detach),
346         DEVMETHOD(device_shutdown, iflib_device_shutdown),
347         DEVMETHOD(device_suspend, iflib_device_suspend),
348         DEVMETHOD(device_resume, iflib_device_resume),
349         DEVMETHOD_END
350 };
351
352
353 static driver_t em_driver = {
354         "em", em_methods, sizeof(struct adapter),
355 };
356
357 static devclass_t em_devclass;
358 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
359
360 MODULE_DEPEND(em, pci, 1, 1, 1);
361 MODULE_DEPEND(em, ether, 1, 1, 1);
362 MODULE_DEPEND(em, iflib, 1, 1, 1);
363
364 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
365
366 static driver_t igb_driver = {
367         "igb", igb_methods, sizeof(struct adapter),
368 };
369
370 static devclass_t igb_devclass;
371 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
372
373 MODULE_DEPEND(igb, pci, 1, 1, 1);
374 MODULE_DEPEND(igb, ether, 1, 1, 1);
375 MODULE_DEPEND(igb, iflib, 1, 1, 1);
376
377 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
378
379 static device_method_t em_if_methods[] = {
380         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
381         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
382         DEVMETHOD(ifdi_detach, em_if_detach),
383         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
384         DEVMETHOD(ifdi_suspend, em_if_suspend),
385         DEVMETHOD(ifdi_resume, em_if_resume),
386         DEVMETHOD(ifdi_init, em_if_init),
387         DEVMETHOD(ifdi_stop, em_if_stop),
388         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
389         DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
390         DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
391         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
392         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
393         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
394         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
395         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
396         DEVMETHOD(ifdi_media_status, em_if_media_status),
397         DEVMETHOD(ifdi_media_change, em_if_media_change),
398         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
399         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
400         DEVMETHOD(ifdi_timer, em_if_timer),
401         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
402         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
403         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
404         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
405         DEVMETHOD(ifdi_led_func, em_if_led_func),
406         DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
407         DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
408         DEVMETHOD(ifdi_debug, em_if_debug),
409         DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
410         DEVMETHOD_END
411 };
412
413 static driver_t em_if_driver = {
414         "em_if", em_if_methods, sizeof(struct adapter)
415 };
416
417 static device_method_t igb_if_methods[] = {
418         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
419         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
420         DEVMETHOD(ifdi_detach, em_if_detach),
421         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
422         DEVMETHOD(ifdi_suspend, em_if_suspend),
423         DEVMETHOD(ifdi_resume, em_if_resume),
424         DEVMETHOD(ifdi_init, em_if_init),
425         DEVMETHOD(ifdi_stop, em_if_stop),
426         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
427         DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
428         DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
429         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
430         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
431         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
432         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
433         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
434         DEVMETHOD(ifdi_media_status, em_if_media_status),
435         DEVMETHOD(ifdi_media_change, em_if_media_change),
436         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
437         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
438         DEVMETHOD(ifdi_timer, em_if_timer),
439         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
440         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
441         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
442         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
443         DEVMETHOD(ifdi_led_func, em_if_led_func),
444         DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
445         DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
446         DEVMETHOD(ifdi_debug, em_if_debug),
447         DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
448         DEVMETHOD_END
449 };
450
451 static driver_t igb_if_driver = {
452         "igb_if", igb_if_methods, sizeof(struct adapter)
453 };
454
455 /*********************************************************************
456  *  Tunable default values.
457  *********************************************************************/
458
459 #define EM_TICKS_TO_USECS(ticks)        ((1024 * (ticks) + 500) / 1000)
460 #define EM_USECS_TO_TICKS(usecs)        ((1000 * (usecs) + 512) / 1024)
461
462 #define MAX_INTS_PER_SEC        8000
463 #define DEFAULT_ITR             (1000000000/(MAX_INTS_PER_SEC * 256))
464
465 /* Allow common code without TSO */
466 #ifndef CSUM_TSO
467 #define CSUM_TSO        0
468 #endif
469
470 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
471     "EM driver parameters");
472
473 static int em_disable_crc_stripping = 0;
474 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
475     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
476
477 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
478 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
479 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
480     0, "Default transmit interrupt delay in usecs");
481 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
482     0, "Default receive interrupt delay in usecs");
483
484 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
485 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
486 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
487     &em_tx_abs_int_delay_dflt, 0,
488     "Default transmit interrupt delay limit in usecs");
489 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
490     &em_rx_abs_int_delay_dflt, 0,
491     "Default receive interrupt delay limit in usecs");
492
493 static int em_smart_pwr_down = FALSE;
494 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
495     0, "Set to true to leave smart power down enabled on newer adapters");
496
497 /* Controls whether promiscuous also shows bad packets */
498 static int em_debug_sbp = FALSE;
499 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
500     "Show bad packets in promiscuous mode");
501
502 /* How many packets rxeof tries to clean at a time */
503 static int em_rx_process_limit = 100;
504 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
505     &em_rx_process_limit, 0,
506     "Maximum number of received packets to process "
507     "at a time, -1 means unlimited");
508
509 /* Energy efficient ethernet - default to OFF */
510 static int eee_setting = 1;
511 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
512     "Enable Energy Efficient Ethernet");
513
514 /*
515 ** Tuneable Interrupt rate
516 */
517 static int em_max_interrupt_rate = 8000;
518 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
519     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
520
521
522
523 /* Global used in WOL setup with multiport cards */
524 static int global_quad_port_a = 0;
525
526 extern struct if_txrx igb_txrx;
527 extern struct if_txrx em_txrx;
528 extern struct if_txrx lem_txrx;
529
530 static struct if_shared_ctx em_sctx_init = {
531         .isc_magic = IFLIB_MAGIC,
532         .isc_q_align = PAGE_SIZE,
533         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
534         .isc_tx_maxsegsize = PAGE_SIZE,
535         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
536         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
537         .isc_rx_maxsize = MJUM9BYTES,
538         .isc_rx_nsegments = 1,
539         .isc_rx_maxsegsize = MJUM9BYTES,
540         .isc_nfl = 1,
541         .isc_nrxqs = 1,
542         .isc_ntxqs = 1,
543         .isc_admin_intrcnt = 1,
544         .isc_vendor_info = em_vendor_info_array,
545         .isc_driver_version = em_driver_version,
546         .isc_driver = &em_if_driver,
547         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
548
549         .isc_nrxd_min = {EM_MIN_RXD},
550         .isc_ntxd_min = {EM_MIN_TXD},
551         .isc_nrxd_max = {EM_MAX_RXD},
552         .isc_ntxd_max = {EM_MAX_TXD},
553         .isc_nrxd_default = {EM_DEFAULT_RXD},
554         .isc_ntxd_default = {EM_DEFAULT_TXD},
555 };
556
557 static struct if_shared_ctx igb_sctx_init = {
558         .isc_magic = IFLIB_MAGIC,
559         .isc_q_align = PAGE_SIZE,
560         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
561         .isc_tx_maxsegsize = PAGE_SIZE,
562         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
563         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
564         .isc_rx_maxsize = MJUM9BYTES,
565         .isc_rx_nsegments = 1,
566         .isc_rx_maxsegsize = MJUM9BYTES,
567         .isc_nfl = 1,
568         .isc_nrxqs = 1,
569         .isc_ntxqs = 1,
570         .isc_admin_intrcnt = 1,
571         .isc_vendor_info = igb_vendor_info_array,
572         .isc_driver_version = em_driver_version,
573         .isc_driver = &igb_if_driver,
574         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
575
576         .isc_nrxd_min = {EM_MIN_RXD},
577         .isc_ntxd_min = {EM_MIN_TXD},
578         .isc_nrxd_max = {IGB_MAX_RXD},
579         .isc_ntxd_max = {IGB_MAX_TXD},
580         .isc_nrxd_default = {EM_DEFAULT_RXD},
581         .isc_ntxd_default = {EM_DEFAULT_TXD},
582 };
583
584 /*****************************************************************
585  *
586  * Dump Registers
587  *
588  ****************************************************************/
589 #define IGB_REGS_LEN 739
590
591 static int em_get_regs(SYSCTL_HANDLER_ARGS)
592 {
593         struct adapter *adapter = (struct adapter *)arg1;
594         struct e1000_hw *hw = &adapter->hw;
595         struct sbuf *sb;
596         u32 *regs_buff;
597         int rc;
598
599         regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
600         memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
601
602         rc = sysctl_wire_old_buffer(req, 0);
603         MPASS(rc == 0);
604         if (rc != 0) {
605                 free(regs_buff, M_DEVBUF);
606                 return (rc);
607         }
608
609         sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
610         MPASS(sb != NULL);
611         if (sb == NULL) {
612                 free(regs_buff, M_DEVBUF);
613                 return (ENOMEM);
614         }
615
616         /* General Registers */
617         regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
618         regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
619         regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
620         regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
621         regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
622         regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
623         regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
624         regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
625         regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
626         regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
627         regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
628         regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
629         regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
630         regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
631         regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
632         regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
633         regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
634         regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
635         regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
636         regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
637         regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
638         regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
639
640         sbuf_printf(sb, "General Registers\n");
641         sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
642         sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
643         sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]);
644
645         sbuf_printf(sb, "Interrupt Registers\n");
646         sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
647
648         sbuf_printf(sb, "RX Registers\n");
649         sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
650         sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
651         sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
652         sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
653         sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
654         sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
655         sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
656
657         sbuf_printf(sb, "TX Registers\n");
658         sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
659         sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
660         sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
661         sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
662         sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
663         sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
664         sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
665         sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
666         sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
667         sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
668         sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
669
670         free(regs_buff, M_DEVBUF);
671
672 #ifdef DUMP_DESCS
673         {
674                 if_softc_ctx_t scctx = adapter->shared;
675                 struct rx_ring *rxr = &rx_que->rxr;
676                 struct tx_ring *txr = &tx_que->txr;
677                 int ntxd = scctx->isc_ntxd[0];
678                 int nrxd = scctx->isc_nrxd[0];
679                 int j;
680
681         for (j = 0; j < nrxd; j++) {
682                 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
683                 u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
684                 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
685         }
686
687         for (j = 0; j < min(ntxd, 256); j++) {
688                 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
689
690                 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
691                             j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
692                             buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
693
694         }
695         }
696 #endif
697
698         rc = sbuf_finish(sb);
699         sbuf_delete(sb);
700         return(rc);
701 }
702
703 static void *
704 em_register(device_t dev)
705 {
706         return (&em_sctx_init);
707 }
708
709 static void *
710 igb_register(device_t dev)
711 {
712         return (&igb_sctx_init);
713 }
714
715 static int
716 em_set_num_queues(if_ctx_t ctx)
717 {
718         struct adapter *adapter = iflib_get_softc(ctx);
719         int maxqueues;
720
721         /* Sanity check based on HW */
722         switch (adapter->hw.mac.type) {
723         case e1000_82576:
724         case e1000_82580:
725         case e1000_i350:
726         case e1000_i354:
727                 maxqueues = 8;
728                 break;
729         case e1000_i210:
730         case e1000_82575:
731                 maxqueues = 4;
732                 break;
733         case e1000_i211:
734         case e1000_82574:
735                 maxqueues = 2;
736                 break;
737         default:
738                 maxqueues = 1;
739                 break;
740         }
741
742         return (maxqueues);
743 }
744
745 #define LEM_CAPS                                                        \
746     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
747     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
748
749 #define EM_CAPS                                                         \
750     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
751     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
752     IFCAP_LRO | IFCAP_VLAN_HWTSO
753
754 #define IGB_CAPS                                                        \
755     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
756     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
757     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
758     IFCAP_TSO6
759
760 /*********************************************************************
761  *  Device initialization routine
762  *
763  *  The attach entry point is called when the driver is being loaded.
764  *  This routine identifies the type of hardware, allocates all resources
765  *  and initializes the hardware.
766  *
767  *  return 0 on success, positive on failure
768  *********************************************************************/
769 static int
770 em_if_attach_pre(if_ctx_t ctx)
771 {
772         struct adapter *adapter;
773         if_softc_ctx_t scctx;
774         device_t dev;
775         struct e1000_hw *hw;
776         int error = 0;
777
778         INIT_DEBUGOUT("em_if_attach_pre: begin");
779         dev = iflib_get_dev(ctx);
780         adapter = iflib_get_softc(ctx);
781
782         adapter->ctx = adapter->osdep.ctx = ctx;
783         adapter->dev = adapter->osdep.dev = dev;
784         scctx = adapter->shared = iflib_get_softc_ctx(ctx);
785         adapter->media = iflib_get_media(ctx);
786         hw = &adapter->hw;
787
788         adapter->tx_process_limit = scctx->isc_ntxd[0];
789
790         /* SYSCTL stuff */
791         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
792             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
793             OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
794             adapter, 0, em_sysctl_nvm_info, "I", "NVM Information");
795
796         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
797             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
798             OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
799             adapter, 0, em_sysctl_debug_info, "I", "Debug Information");
800
801         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
802             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
803             OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
804             adapter, 0, em_set_flowcntl, "I", "Flow Control");
805
806         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
807             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
808             OID_AUTO, "reg_dump",
809             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 0,
810             em_get_regs, "A", "Dump Registers");
811
812         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
813             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
814             OID_AUTO, "rs_dump",
815             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, adapter, 0,
816             em_get_rs, "I", "Dump RS indexes");
817
818         /* Determine hardware and mac info */
819         em_identify_hardware(ctx);
820
821         scctx->isc_tx_nsegments = EM_MAX_SCATTER;
822         scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
823         if (bootverbose)
824                 device_printf(dev, "attach_pre capping queues at %d\n",
825                     scctx->isc_ntxqsets_max);
826
827         if (hw->mac.type >= igb_mac_min) {
828                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
829                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
830                 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
831                 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
832                 scctx->isc_txrx = &igb_txrx;
833                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
834                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
835                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
836                 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
837                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
838                      CSUM_IP6_TCP | CSUM_IP6_UDP;
839                 if (hw->mac.type != e1000_82575)
840                         scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
841                 /*
842                 ** Some new devices, as with ixgbe, now may
843                 ** use a different BAR, so we need to keep
844                 ** track of which is used.
845                 */
846                 scctx->isc_msix_bar = pci_msix_table_bar(dev);
847         } else if (hw->mac.type >= em_mac_min) {
848                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
849                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
850                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
851                 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
852                 scctx->isc_txrx = &em_txrx;
853                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
854                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
855                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
856                 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
857                 /*
858                  * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
859                  * by default as we don't have workarounds for all associated
860                  * silicon errata.  E. g., with several MACs such as 82573E,
861                  * TSO only works at Gigabit speed and otherwise can cause the
862                  * hardware to hang (which also would be next to impossible to
863                  * work around given that already queued TSO-using descriptors
864                  * would need to be flushed and vlan(4) reconfigured at runtime
865                  * in case of a link speed change).  Moreover, MACs like 82579
866                  * still can hang at Gigabit even with all publicly documented
867                  * TSO workarounds implemented.  Generally, the penality of
868                  * these workarounds is rather high and may involve copying
869                  * mbuf data around so advantages of TSO lapse.  Still, TSO may
870                  * work for a few MACs of this class - at least when sticking
871                  * with Gigabit - in which case users may enable TSO manually.
872                  */
873                 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
874                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
875                 /*
876                  * We support MSI-X with 82574 only, but indicate to iflib(4)
877                  * that it shall give MSI at least a try with other devices.
878                  */
879                 if (hw->mac.type == e1000_82574) {
880                         scctx->isc_msix_bar = pci_msix_table_bar(dev);;
881                 } else {
882                         scctx->isc_msix_bar = -1;
883                         scctx->isc_disable_msix = 1;
884                 }
885         } else {
886                 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
887                 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
888                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
889                 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
890                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
891                 scctx->isc_txrx = &lem_txrx;
892                 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
893                 if (hw->mac.type < e1000_82543)
894                         scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
895                 /* INTx only */
896                 scctx->isc_msix_bar = 0;
897         }
898
899         /* Setup PCI resources */
900         if (em_allocate_pci_resources(ctx)) {
901                 device_printf(dev, "Allocation of PCI resources failed\n");
902                 error = ENXIO;
903                 goto err_pci;
904         }
905
906         /*
907         ** For ICH8 and family we need to
908         ** map the flash memory, and this
909         ** must happen after the MAC is
910         ** identified
911         */
912         if ((hw->mac.type == e1000_ich8lan) ||
913             (hw->mac.type == e1000_ich9lan) ||
914             (hw->mac.type == e1000_ich10lan) ||
915             (hw->mac.type == e1000_pchlan) ||
916             (hw->mac.type == e1000_pch2lan) ||
917             (hw->mac.type == e1000_pch_lpt)) {
918                 int rid = EM_BAR_TYPE_FLASH;
919                 adapter->flash = bus_alloc_resource_any(dev,
920                     SYS_RES_MEMORY, &rid, RF_ACTIVE);
921                 if (adapter->flash == NULL) {
922                         device_printf(dev, "Mapping of Flash failed\n");
923                         error = ENXIO;
924                         goto err_pci;
925                 }
926                 /* This is used in the shared code */
927                 hw->flash_address = (u8 *)adapter->flash;
928                 adapter->osdep.flash_bus_space_tag =
929                     rman_get_bustag(adapter->flash);
930                 adapter->osdep.flash_bus_space_handle =
931                     rman_get_bushandle(adapter->flash);
932         }
933         /*
934         ** In the new SPT device flash is not  a
935         ** separate BAR, rather it is also in BAR0,
936         ** so use the same tag and an offset handle for the
937         ** FLASH read/write macros in the shared code.
938         */
939         else if (hw->mac.type >= e1000_pch_spt) {
940                 adapter->osdep.flash_bus_space_tag =
941                     adapter->osdep.mem_bus_space_tag;
942                 adapter->osdep.flash_bus_space_handle =
943                     adapter->osdep.mem_bus_space_handle
944                     + E1000_FLASH_BASE_ADDR;
945         }
946
947         /* Do Shared Code initialization */
948         error = e1000_setup_init_funcs(hw, TRUE);
949         if (error) {
950                 device_printf(dev, "Setup of Shared code failed, error %d\n",
951                     error);
952                 error = ENXIO;
953                 goto err_pci;
954         }
955
956         em_setup_msix(ctx);
957         e1000_get_bus_info(hw);
958
959         /* Set up some sysctls for the tunable interrupt delays */
960         em_add_int_delay_sysctl(adapter, "rx_int_delay",
961             "receive interrupt delay in usecs", &adapter->rx_int_delay,
962             E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
963         em_add_int_delay_sysctl(adapter, "tx_int_delay",
964             "transmit interrupt delay in usecs", &adapter->tx_int_delay,
965             E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
966         em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
967             "receive interrupt delay limit in usecs",
968             &adapter->rx_abs_int_delay,
969             E1000_REGISTER(hw, E1000_RADV),
970             em_rx_abs_int_delay_dflt);
971         em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
972             "transmit interrupt delay limit in usecs",
973             &adapter->tx_abs_int_delay,
974             E1000_REGISTER(hw, E1000_TADV),
975             em_tx_abs_int_delay_dflt);
976         em_add_int_delay_sysctl(adapter, "itr",
977             "interrupt delay limit in usecs/4",
978             &adapter->tx_itr,
979             E1000_REGISTER(hw, E1000_ITR),
980             DEFAULT_ITR);
981
982         hw->mac.autoneg = DO_AUTO_NEG;
983         hw->phy.autoneg_wait_to_complete = FALSE;
984         hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
985
986         if (hw->mac.type < em_mac_min) {
987                 e1000_init_script_state_82541(hw, TRUE);
988                 e1000_set_tbi_compatibility_82543(hw, TRUE);
989         }
990         /* Copper options */
991         if (hw->phy.media_type == e1000_media_type_copper) {
992                 hw->phy.mdix = AUTO_ALL_MODES;
993                 hw->phy.disable_polarity_correction = FALSE;
994                 hw->phy.ms_type = EM_MASTER_SLAVE;
995         }
996
997         /*
998          * Set the frame limits assuming
999          * standard ethernet sized frames.
1000          */
1001         scctx->isc_max_frame_size = hw->mac.max_frame_size =
1002             ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1003
1004         /*
1005          * This controls when hardware reports transmit completion
1006          * status.
1007          */
1008         hw->mac.report_tx_early = 1;
1009
1010         /* Allocate multicast array memory. */
1011         adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1012             MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1013         if (adapter->mta == NULL) {
1014                 device_printf(dev, "Can not allocate multicast setup array\n");
1015                 error = ENOMEM;
1016                 goto err_late;
1017         }
1018
1019         /* Check SOL/IDER usage */
1020         if (e1000_check_reset_block(hw))
1021                 device_printf(dev, "PHY reset is blocked"
1022                               " due to SOL/IDER session.\n");
1023
1024         /* Sysctl for setting Energy Efficient Ethernet */
1025         hw->dev_spec.ich8lan.eee_disable = eee_setting;
1026         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1027             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1028             OID_AUTO, "eee_control",
1029             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1030             adapter, 0, em_sysctl_eee, "I",
1031             "Disable Energy Efficient Ethernet");
1032
1033         /*
1034         ** Start from a known state, this is
1035         ** important in reading the nvm and
1036         ** mac from that.
1037         */
1038         e1000_reset_hw(hw);
1039
1040         /* Make sure we have a good EEPROM before we read from it */
1041         if (e1000_validate_nvm_checksum(hw) < 0) {
1042                 /*
1043                 ** Some PCI-E parts fail the first check due to
1044                 ** the link being in sleep state, call it again,
1045                 ** if it fails a second time its a real issue.
1046                 */
1047                 if (e1000_validate_nvm_checksum(hw) < 0) {
1048                         device_printf(dev,
1049                             "The EEPROM Checksum Is Not Valid\n");
1050                         error = EIO;
1051                         goto err_late;
1052                 }
1053         }
1054
1055         /* Copy the permanent MAC address out of the EEPROM */
1056         if (e1000_read_mac_addr(hw) < 0) {
1057                 device_printf(dev, "EEPROM read error while reading MAC"
1058                               " address\n");
1059                 error = EIO;
1060                 goto err_late;
1061         }
1062
1063         if (!em_is_valid_ether_addr(hw->mac.addr)) {
1064                 device_printf(dev, "Invalid MAC address\n");
1065                 error = EIO;
1066                 goto err_late;
1067         }
1068
1069         /* Disable ULP support */
1070         e1000_disable_ulp_lpt_lp(hw, TRUE);
1071
1072         /*
1073          * Get Wake-on-Lan and Management info for later use
1074          */
1075         em_get_wakeup(ctx);
1076
1077         /* Enable only WOL MAGIC by default */
1078         scctx->isc_capenable &= ~IFCAP_WOL;
1079         if (adapter->wol != 0)
1080                 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1081
1082         iflib_set_mac(ctx, hw->mac.addr);
1083
1084         return (0);
1085
1086 err_late:
1087         em_release_hw_control(adapter);
1088 err_pci:
1089         em_free_pci_resources(ctx);
1090         free(adapter->mta, M_DEVBUF);
1091
1092         return (error);
1093 }
1094
1095 static int
1096 em_if_attach_post(if_ctx_t ctx)
1097 {
1098         struct adapter *adapter = iflib_get_softc(ctx);
1099         struct e1000_hw *hw = &adapter->hw;
1100         int error = 0;
1101
1102         /* Setup OS specific network interface */
1103         error = em_setup_interface(ctx);
1104         if (error != 0) {
1105                 device_printf(adapter->dev, "Interface setup failed: %d\n", error);
1106                 goto err_late;
1107         }
1108
1109         em_reset(ctx);
1110
1111         /* Initialize statistics */
1112         em_update_stats_counters(adapter);
1113         hw->mac.get_link_status = 1;
1114         em_if_update_admin_status(ctx);
1115         em_add_hw_stats(adapter);
1116
1117         /* Non-AMT based hardware can now take control from firmware */
1118         if (adapter->has_manage && !adapter->has_amt)
1119                 em_get_hw_control(adapter);
1120
1121         INIT_DEBUGOUT("em_if_attach_post: end");
1122
1123         return (0);
1124
1125 err_late:
1126         /* upon attach_post() error, iflib calls _if_detach() to free resources. */
1127         return (error);
1128 }
1129
1130 /*********************************************************************
1131  *  Device removal routine
1132  *
1133  *  The detach entry point is called when the driver is being removed.
1134  *  This routine stops the adapter and deallocates all the resources
1135  *  that were allocated for driver operation.
1136  *
1137  *  return 0 on success, positive on failure
1138  *********************************************************************/
1139 static int
1140 em_if_detach(if_ctx_t ctx)
1141 {
1142         struct adapter  *adapter = iflib_get_softc(ctx);
1143
1144         INIT_DEBUGOUT("em_if_detach: begin");
1145
1146         e1000_phy_hw_reset(&adapter->hw);
1147
1148         em_release_manageability(adapter);
1149         em_release_hw_control(adapter);
1150         em_free_pci_resources(ctx);
1151         free(adapter->mta, M_DEVBUF);
1152         adapter->mta = NULL;
1153
1154         return (0);
1155 }
1156
1157 /*********************************************************************
1158  *
1159  *  Shutdown entry point
1160  *
1161  **********************************************************************/
1162
1163 static int
1164 em_if_shutdown(if_ctx_t ctx)
1165 {
1166         return em_if_suspend(ctx);
1167 }
1168
1169 /*
1170  * Suspend/resume device methods.
1171  */
1172 static int
1173 em_if_suspend(if_ctx_t ctx)
1174 {
1175         struct adapter *adapter = iflib_get_softc(ctx);
1176
1177         em_release_manageability(adapter);
1178         em_release_hw_control(adapter);
1179         em_enable_wakeup(ctx);
1180         return (0);
1181 }
1182
1183 static int
1184 em_if_resume(if_ctx_t ctx)
1185 {
1186         struct adapter *adapter = iflib_get_softc(ctx);
1187
1188         if (adapter->hw.mac.type == e1000_pch2lan)
1189                 e1000_resume_workarounds_pchlan(&adapter->hw);
1190         em_if_init(ctx);
1191         em_init_manageability(adapter);
1192
1193         return(0);
1194 }
1195
1196 static int
1197 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1198 {
1199         int max_frame_size;
1200         struct adapter *adapter = iflib_get_softc(ctx);
1201         if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1202
1203         IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1204
1205         switch (adapter->hw.mac.type) {
1206         case e1000_82571:
1207         case e1000_82572:
1208         case e1000_ich9lan:
1209         case e1000_ich10lan:
1210         case e1000_pch2lan:
1211         case e1000_pch_lpt:
1212         case e1000_pch_spt:
1213         case e1000_pch_cnp:
1214         case e1000_82574:
1215         case e1000_82583:
1216         case e1000_80003es2lan:
1217                 /* 9K Jumbo Frame size */
1218                 max_frame_size = 9234;
1219                 break;
1220         case e1000_pchlan:
1221                 max_frame_size = 4096;
1222                 break;
1223         case e1000_82542:
1224         case e1000_ich8lan:
1225                 /* Adapters that do not support jumbo frames */
1226                 max_frame_size = ETHER_MAX_LEN;
1227                 break;
1228         default:
1229                 if (adapter->hw.mac.type >= igb_mac_min)
1230                         max_frame_size = 9234;
1231                 else /* lem */
1232                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
1233         }
1234         if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1235                 return (EINVAL);
1236         }
1237
1238         scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1239             mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1240         return (0);
1241 }
1242
1243 /*********************************************************************
1244  *  Init entry point
1245  *
1246  *  This routine is used in two ways. It is used by the stack as
1247  *  init entry point in network interface structure. It is also used
1248  *  by the driver as a hw/sw initialization routine to get to a
1249  *  consistent state.
1250  *
1251  **********************************************************************/
1252 static void
1253 em_if_init(if_ctx_t ctx)
1254 {
1255         struct adapter *adapter = iflib_get_softc(ctx);
1256         if_softc_ctx_t scctx = adapter->shared;
1257         struct ifnet *ifp = iflib_get_ifp(ctx);
1258         struct em_tx_queue *tx_que;
1259         int i;
1260
1261         INIT_DEBUGOUT("em_if_init: begin");
1262
1263         /* Get the latest mac address, User can use a LAA */
1264         bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1265             ETHER_ADDR_LEN);
1266
1267         /* Put the address into the Receive Address Array */
1268         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1269
1270         /*
1271          * With the 82571 adapter, RAR[0] may be overwritten
1272          * when the other port is reset, we make a duplicate
1273          * in RAR[14] for that eventuality, this assures
1274          * the interface continues to function.
1275          */
1276         if (adapter->hw.mac.type == e1000_82571) {
1277                 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1278                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1279                     E1000_RAR_ENTRIES - 1);
1280         }
1281
1282
1283         /* Initialize the hardware */
1284         em_reset(ctx);
1285         em_if_update_admin_status(ctx);
1286
1287         for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1288                 struct tx_ring *txr = &tx_que->txr;
1289
1290                 txr->tx_rs_cidx = txr->tx_rs_pidx;
1291
1292                 /* Initialize the last processed descriptor to be the end of
1293                  * the ring, rather than the start, so that we avoid an
1294                  * off-by-one error when calculating how many descriptors are
1295                  * done in the credits_update function.
1296                  */
1297                 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1298         }
1299
1300         /* Setup VLAN support, basic and offload if available */
1301         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1302
1303         /* Clear bad data from Rx FIFOs */
1304         if (adapter->hw.mac.type >= igb_mac_min)
1305                 e1000_rx_fifo_flush_82575(&adapter->hw);
1306
1307         /* Configure for OS presence */
1308         em_init_manageability(adapter);
1309
1310         /* Prepare transmit descriptors and buffers */
1311         em_initialize_transmit_unit(ctx);
1312
1313         /* Setup Multicast table */
1314         em_if_multi_set(ctx);
1315
1316         adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1317         em_initialize_receive_unit(ctx);
1318
1319         /* Use real VLAN Filter support? */
1320         if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1321                 if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1322                         /* Use real VLAN Filter support */
1323                         em_setup_vlan_hw_support(adapter);
1324                 else {
1325                         u32 ctrl;
1326                         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1327                         ctrl |= E1000_CTRL_VME;
1328                         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1329                 }
1330         } else {
1331                 u32 ctrl;
1332                 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1333                 ctrl &= ~E1000_CTRL_VME;
1334                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1335         }
1336
1337         /* Don't lose promiscuous settings */
1338         em_if_set_promisc(ctx, if_getflags(ifp));
1339         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1340
1341         /* MSI-X configuration for 82574 */
1342         if (adapter->hw.mac.type == e1000_82574) {
1343                 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1344
1345                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1346                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1347                 /* Set the IVAR - interrupt vector routing. */
1348                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1349         } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1350                 igb_configure_queues(adapter);
1351
1352         /* this clears any pending interrupts */
1353         E1000_READ_REG(&adapter->hw, E1000_ICR);
1354         E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1355
1356         /* AMT based hardware can now take control from firmware */
1357         if (adapter->has_manage && adapter->has_amt)
1358                 em_get_hw_control(adapter);
1359
1360         /* Set Energy Efficient Ethernet */
1361         if (adapter->hw.mac.type >= igb_mac_min &&
1362             adapter->hw.phy.media_type == e1000_media_type_copper) {
1363                 if (adapter->hw.mac.type == e1000_i354)
1364                         e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1365                 else
1366                         e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1367         }
1368 }
1369
1370 /*********************************************************************
1371  *
1372  *  Fast Legacy/MSI Combined Interrupt Service routine
1373  *
1374  *********************************************************************/
1375 int
1376 em_intr(void *arg)
1377 {
1378         struct adapter *adapter = arg;
1379         if_ctx_t ctx = adapter->ctx;
1380         u32 reg_icr;
1381
1382         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1383
1384         /* Hot eject? */
1385         if (reg_icr == 0xffffffff)
1386                 return FILTER_STRAY;
1387
1388         /* Definitely not our interrupt. */
1389         if (reg_icr == 0x0)
1390                 return FILTER_STRAY;
1391
1392         /*
1393          * Starting with the 82571 chip, bit 31 should be used to
1394          * determine whether the interrupt belongs to us.
1395          */
1396         if (adapter->hw.mac.type >= e1000_82571 &&
1397             (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1398                 return FILTER_STRAY;
1399
1400         /*
1401          * Only MSI-X interrupts have one-shot behavior by taking advantage
1402          * of the EIAC register.  Thus, explicitly disable interrupts.  This
1403          * also works around the MSI message reordering errata on certain
1404          * systems.
1405          */
1406         IFDI_INTR_DISABLE(ctx);
1407
1408         /* Link status change */
1409         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1410                 em_handle_link(ctx);
1411
1412         if (reg_icr & E1000_ICR_RXO)
1413                 adapter->rx_overruns++;
1414
1415         return (FILTER_SCHEDULE_THREAD);
1416 }
1417
1418 static int
1419 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1420 {
1421         struct adapter *adapter = iflib_get_softc(ctx);
1422         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1423
1424         E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1425         return (0);
1426 }
1427
1428 static int
1429 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1430 {
1431         struct adapter *adapter = iflib_get_softc(ctx);
1432         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1433
1434         E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1435         return (0);
1436 }
1437
1438 static int
1439 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1440 {
1441         struct adapter *adapter = iflib_get_softc(ctx);
1442         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1443
1444         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1445         return (0);
1446 }
1447
1448 static int
1449 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1450 {
1451         struct adapter *adapter = iflib_get_softc(ctx);
1452         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1453
1454         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1455         return (0);
1456 }
1457
1458 /*********************************************************************
1459  *
1460  *  MSI-X RX Interrupt Service routine
1461  *
1462  **********************************************************************/
1463 static int
1464 em_msix_que(void *arg)
1465 {
1466         struct em_rx_queue *que = arg;
1467
1468         ++que->irqs;
1469
1470         return (FILTER_SCHEDULE_THREAD);
1471 }
1472
1473 /*********************************************************************
1474  *
1475  *  MSI-X Link Fast Interrupt Service routine
1476  *
1477  **********************************************************************/
1478 static int
1479 em_msix_link(void *arg)
1480 {
1481         struct adapter *adapter = arg;
1482         u32 reg_icr;
1483
1484         ++adapter->link_irq;
1485         MPASS(adapter->hw.back != NULL);
1486         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1487
1488         if (reg_icr & E1000_ICR_RXO)
1489                 adapter->rx_overruns++;
1490
1491         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1492                 em_handle_link(adapter->ctx);
1493         } else if (adapter->hw.mac.type == e1000_82574) {
1494                 /* Only re-arm 82574 if em_if_update_admin_status() won't. */
1495                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK |
1496                     E1000_IMS_LSC);
1497         }
1498
1499         if (adapter->hw.mac.type == e1000_82574) {
1500                 /*
1501                  * Because we must read the ICR for this interrupt it may
1502                  * clear other causes using autoclear, for this reason we
1503                  * simply create a soft interrupt for all these vectors.
1504                  */
1505                 if (reg_icr)
1506                         E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims);
1507         } else {
1508                 /* Re-arm unconditionally */
1509                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1510                 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1511         }
1512
1513         return (FILTER_HANDLED);
1514 }
1515
1516 static void
1517 em_handle_link(void *context)
1518 {
1519         if_ctx_t ctx = context;
1520         struct adapter *adapter = iflib_get_softc(ctx);
1521
1522         adapter->hw.mac.get_link_status = 1;
1523         iflib_admin_intr_deferred(ctx);
1524 }
1525
1526 /*********************************************************************
1527  *
1528  *  Media Ioctl callback
1529  *
1530  *  This routine is called whenever the user queries the status of
1531  *  the interface using ifconfig.
1532  *
1533  **********************************************************************/
1534 static void
1535 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1536 {
1537         struct adapter *adapter = iflib_get_softc(ctx);
1538         u_char fiber_type = IFM_1000_SX;
1539
1540         INIT_DEBUGOUT("em_if_media_status: begin");
1541
1542         iflib_admin_intr_deferred(ctx);
1543
1544         ifmr->ifm_status = IFM_AVALID;
1545         ifmr->ifm_active = IFM_ETHER;
1546
1547         if (!adapter->link_active) {
1548                 return;
1549         }
1550
1551         ifmr->ifm_status |= IFM_ACTIVE;
1552
1553         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1554             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1555                 if (adapter->hw.mac.type == e1000_82545)
1556                         fiber_type = IFM_1000_LX;
1557                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1558         } else {
1559                 switch (adapter->link_speed) {
1560                 case 10:
1561                         ifmr->ifm_active |= IFM_10_T;
1562                         break;
1563                 case 100:
1564                         ifmr->ifm_active |= IFM_100_TX;
1565                         break;
1566                 case 1000:
1567                         ifmr->ifm_active |= IFM_1000_T;
1568                         break;
1569                 }
1570                 if (adapter->link_duplex == FULL_DUPLEX)
1571                         ifmr->ifm_active |= IFM_FDX;
1572                 else
1573                         ifmr->ifm_active |= IFM_HDX;
1574         }
1575 }
1576
1577 /*********************************************************************
1578  *
1579  *  Media Ioctl callback
1580  *
1581  *  This routine is called when the user changes speed/duplex using
1582  *  media/mediopt option with ifconfig.
1583  *
1584  **********************************************************************/
1585 static int
1586 em_if_media_change(if_ctx_t ctx)
1587 {
1588         struct adapter *adapter = iflib_get_softc(ctx);
1589         struct ifmedia *ifm = iflib_get_media(ctx);
1590
1591         INIT_DEBUGOUT("em_if_media_change: begin");
1592
1593         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1594                 return (EINVAL);
1595
1596         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1597         case IFM_AUTO:
1598                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1599                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1600                 break;
1601         case IFM_1000_LX:
1602         case IFM_1000_SX:
1603         case IFM_1000_T:
1604                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1605                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1606                 break;
1607         case IFM_100_TX:
1608                 adapter->hw.mac.autoneg = FALSE;
1609                 adapter->hw.phy.autoneg_advertised = 0;
1610                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1611                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1612                 else
1613                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1614                 break;
1615         case IFM_10_T:
1616                 adapter->hw.mac.autoneg = FALSE;
1617                 adapter->hw.phy.autoneg_advertised = 0;
1618                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1619                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1620                 else
1621                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1622                 break;
1623         default:
1624                 device_printf(adapter->dev, "Unsupported media type\n");
1625         }
1626
1627         em_if_init(ctx);
1628
1629         return (0);
1630 }
1631
1632 static int
1633 em_if_set_promisc(if_ctx_t ctx, int flags)
1634 {
1635         struct adapter *adapter = iflib_get_softc(ctx);
1636         u32 reg_rctl;
1637
1638         em_disable_promisc(ctx);
1639
1640         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1641
1642         if (flags & IFF_PROMISC) {
1643                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1644                 /* Turn this on if you want to see bad packets */
1645                 if (em_debug_sbp)
1646                         reg_rctl |= E1000_RCTL_SBP;
1647                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1648         } else if (flags & IFF_ALLMULTI) {
1649                 reg_rctl |= E1000_RCTL_MPE;
1650                 reg_rctl &= ~E1000_RCTL_UPE;
1651                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1652         }
1653         return (0);
1654 }
1655
1656 static void
1657 em_disable_promisc(if_ctx_t ctx)
1658 {
1659         struct adapter *adapter = iflib_get_softc(ctx);
1660         struct ifnet *ifp = iflib_get_ifp(ctx);
1661         u32 reg_rctl;
1662         int mcnt = 0;
1663
1664         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1665         reg_rctl &= (~E1000_RCTL_UPE);
1666         if (if_getflags(ifp) & IFF_ALLMULTI)
1667                 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1668         else
1669                 mcnt = if_llmaddr_count(ifp);
1670         /* Don't disable if in MAX groups */
1671         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1672                 reg_rctl &=  (~E1000_RCTL_MPE);
1673         reg_rctl &=  (~E1000_RCTL_SBP);
1674         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1675 }
1676
1677
1678 static u_int
1679 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1680 {
1681         u8 *mta = arg;
1682
1683         if (cnt == MAX_NUM_MULTICAST_ADDRESSES)
1684                 return (1);
1685
1686         bcopy(LLADDR(sdl), &mta[cnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1687
1688         return (1);
1689 }
1690
1691 /*********************************************************************
1692  *  Multicast Update
1693  *
1694  *  This routine is called whenever multicast address list is updated.
1695  *
1696  **********************************************************************/
1697
1698 static void
1699 em_if_multi_set(if_ctx_t ctx)
1700 {
1701         struct adapter *adapter = iflib_get_softc(ctx);
1702         struct ifnet *ifp = iflib_get_ifp(ctx);
1703         u32 reg_rctl = 0;
1704         u8  *mta; /* Multicast array memory */
1705         int mcnt = 0;
1706
1707         IOCTL_DEBUGOUT("em_set_multi: begin");
1708
1709         mta = adapter->mta;
1710         bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1711
1712         if (adapter->hw.mac.type == e1000_82542 &&
1713             adapter->hw.revision_id == E1000_REVISION_2) {
1714                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1715                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1716                         e1000_pci_clear_mwi(&adapter->hw);
1717                 reg_rctl |= E1000_RCTL_RST;
1718                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1719                 msec_delay(5);
1720         }
1721
1722         mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1723
1724         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1725                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1726                 reg_rctl |= E1000_RCTL_MPE;
1727                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1728         } else
1729                 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1730
1731         if (adapter->hw.mac.type == e1000_82542 &&
1732             adapter->hw.revision_id == E1000_REVISION_2) {
1733                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1734                 reg_rctl &= ~E1000_RCTL_RST;
1735                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1736                 msec_delay(5);
1737                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1738                         e1000_pci_set_mwi(&adapter->hw);
1739         }
1740 }
1741
1742 /*********************************************************************
1743  *  Timer routine
1744  *
1745  *  This routine schedules em_if_update_admin_status() to check for
1746  *  link status and to gather statistics as well as to perform some
1747  *  controller-specific hardware patting.
1748  *
1749  **********************************************************************/
1750 static void
1751 em_if_timer(if_ctx_t ctx, uint16_t qid)
1752 {
1753
1754         if (qid != 0)
1755                 return;
1756
1757         iflib_admin_intr_deferred(ctx);
1758 }
1759
1760 static void
1761 em_if_update_admin_status(if_ctx_t ctx)
1762 {
1763         struct adapter *adapter = iflib_get_softc(ctx);
1764         struct e1000_hw *hw = &adapter->hw;
1765         device_t dev = iflib_get_dev(ctx);
1766         u32 link_check, thstat, ctrl;
1767
1768         link_check = thstat = ctrl = 0;
1769         /* Get the cached link value or read phy for real */
1770         switch (hw->phy.media_type) {
1771         case e1000_media_type_copper:
1772                 if (hw->mac.get_link_status) {
1773                         if (hw->mac.type == e1000_pch_spt)
1774                                 msec_delay(50);
1775                         /* Do the work to read phy */
1776                         e1000_check_for_link(hw);
1777                         link_check = !hw->mac.get_link_status;
1778                         if (link_check) /* ESB2 fix */
1779                                 e1000_cfg_on_link_up(hw);
1780                 } else {
1781                         link_check = TRUE;
1782                 }
1783                 break;
1784         case e1000_media_type_fiber:
1785                 e1000_check_for_link(hw);
1786                 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1787                             E1000_STATUS_LU);
1788                 break;
1789         case e1000_media_type_internal_serdes:
1790                 e1000_check_for_link(hw);
1791                 link_check = hw->mac.serdes_has_link;
1792                 break;
1793         /* VF device is type_unknown */
1794         case e1000_media_type_unknown:
1795                 e1000_check_for_link(hw);
1796                 link_check = !hw->mac.get_link_status;
1797                 /* FALLTHROUGH */
1798         default:
1799                 break;
1800         }
1801
1802         /* Check for thermal downshift or shutdown */
1803         if (hw->mac.type == e1000_i350) {
1804                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1805                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1806         }
1807
1808         /* Now check for a transition */
1809         if (link_check && (adapter->link_active == 0)) {
1810                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1811                     &adapter->link_duplex);
1812                 /* Check if we must disable SPEED_MODE bit on PCI-E */
1813                 if ((adapter->link_speed != SPEED_1000) &&
1814                     ((hw->mac.type == e1000_82571) ||
1815                     (hw->mac.type == e1000_82572))) {
1816                         int tarc0;
1817                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1818                         tarc0 &= ~TARC_SPEED_MODE_BIT;
1819                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1820                 }
1821                 if (bootverbose)
1822                         device_printf(dev, "Link is up %d Mbps %s\n",
1823                             adapter->link_speed,
1824                             ((adapter->link_duplex == FULL_DUPLEX) ?
1825                             "Full Duplex" : "Half Duplex"));
1826                 adapter->link_active = 1;
1827                 adapter->smartspeed = 0;
1828                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1829                     E1000_CTRL_EXT_LINK_MODE_GMII &&
1830                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1831                         device_printf(dev, "Link: thermal downshift\n");
1832                 /* Delay Link Up for Phy update */
1833                 if (((hw->mac.type == e1000_i210) ||
1834                     (hw->mac.type == e1000_i211)) &&
1835                     (hw->phy.id == I210_I_PHY_ID))
1836                         msec_delay(I210_LINK_DELAY);
1837                 /* Reset if the media type changed. */
1838                 if (hw->dev_spec._82575.media_changed &&
1839                     hw->mac.type >= igb_mac_min) {
1840                         hw->dev_spec._82575.media_changed = false;
1841                         adapter->flags |= IGB_MEDIA_RESET;
1842                         em_reset(ctx);
1843                 }
1844                 iflib_link_state_change(ctx, LINK_STATE_UP,
1845                     IF_Mbps(adapter->link_speed));
1846         } else if (!link_check && (adapter->link_active == 1)) {
1847                 adapter->link_speed = 0;
1848                 adapter->link_duplex = 0;
1849                 adapter->link_active = 0;
1850                 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1851         }
1852         em_update_stats_counters(adapter);
1853
1854         /* Reset LAA into RAR[0] on 82571 */
1855         if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1856                 e1000_rar_set(hw, hw->mac.addr, 0);
1857
1858         if (hw->mac.type < em_mac_min)
1859                 lem_smartspeed(adapter);
1860         else if (hw->mac.type == e1000_82574 &&
1861             adapter->intr_type == IFLIB_INTR_MSIX)
1862                 E1000_WRITE_REG(hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC);
1863 }
1864
1865 static void
1866 em_if_watchdog_reset(if_ctx_t ctx)
1867 {
1868         struct adapter *adapter = iflib_get_softc(ctx);
1869
1870         /*
1871          * Just count the event; iflib(4) will already trigger a
1872          * sufficient reset of the controller.
1873          */
1874         adapter->watchdog_events++;
1875 }
1876
1877 /*********************************************************************
1878  *
1879  *  This routine disables all traffic on the adapter by issuing a
1880  *  global reset on the MAC.
1881  *
1882  **********************************************************************/
1883 static void
1884 em_if_stop(if_ctx_t ctx)
1885 {
1886         struct adapter *adapter = iflib_get_softc(ctx);
1887
1888         INIT_DEBUGOUT("em_if_stop: begin");
1889
1890         e1000_reset_hw(&adapter->hw);
1891         if (adapter->hw.mac.type >= e1000_82544)
1892                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1893
1894         e1000_led_off(&adapter->hw);
1895         e1000_cleanup_led(&adapter->hw);
1896 }
1897
1898 /*********************************************************************
1899  *
1900  *  Determine hardware revision.
1901  *
1902  **********************************************************************/
1903 static void
1904 em_identify_hardware(if_ctx_t ctx)
1905 {
1906         device_t dev = iflib_get_dev(ctx);
1907         struct adapter *adapter = iflib_get_softc(ctx);
1908
1909         /* Make sure our PCI config space has the necessary stuff set */
1910         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1911
1912         /* Save off the information about this board */
1913         adapter->hw.vendor_id = pci_get_vendor(dev);
1914         adapter->hw.device_id = pci_get_device(dev);
1915         adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1916         adapter->hw.subsystem_vendor_id =
1917             pci_read_config(dev, PCIR_SUBVEND_0, 2);
1918         adapter->hw.subsystem_device_id =
1919             pci_read_config(dev, PCIR_SUBDEV_0, 2);
1920
1921         /* Do Shared Code Init and Setup */
1922         if (e1000_set_mac_type(&adapter->hw)) {
1923                 device_printf(dev, "Setup init failure\n");
1924                 return;
1925         }
1926 }
1927
1928 static int
1929 em_allocate_pci_resources(if_ctx_t ctx)
1930 {
1931         struct adapter *adapter = iflib_get_softc(ctx);
1932         device_t dev = iflib_get_dev(ctx);
1933         int rid, val;
1934
1935         rid = PCIR_BAR(0);
1936         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1937             &rid, RF_ACTIVE);
1938         if (adapter->memory == NULL) {
1939                 device_printf(dev, "Unable to allocate bus resource: memory\n");
1940                 return (ENXIO);
1941         }
1942         adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1943         adapter->osdep.mem_bus_space_handle =
1944             rman_get_bushandle(adapter->memory);
1945         adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1946
1947         /* Only older adapters use IO mapping */
1948         if (adapter->hw.mac.type < em_mac_min &&
1949             adapter->hw.mac.type > e1000_82543) {
1950                 /* Figure our where our IO BAR is ? */
1951                 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1952                         val = pci_read_config(dev, rid, 4);
1953                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1954                                 break;
1955                         }
1956                         rid += 4;
1957                         /* check for 64bit BAR */
1958                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1959                                 rid += 4;
1960                 }
1961                 if (rid >= PCIR_CIS) {
1962                         device_printf(dev, "Unable to locate IO BAR\n");
1963                         return (ENXIO);
1964                 }
1965                 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1966                     &rid, RF_ACTIVE);
1967                 if (adapter->ioport == NULL) {
1968                         device_printf(dev, "Unable to allocate bus resource: "
1969                             "ioport\n");
1970                         return (ENXIO);
1971                 }
1972                 adapter->hw.io_base = 0;
1973                 adapter->osdep.io_bus_space_tag =
1974                     rman_get_bustag(adapter->ioport);
1975                 adapter->osdep.io_bus_space_handle =
1976                     rman_get_bushandle(adapter->ioport);
1977         }
1978
1979         adapter->hw.back = &adapter->osdep;
1980
1981         return (0);
1982 }
1983
1984 /*********************************************************************
1985  *
1986  *  Set up the MSI-X Interrupt handlers
1987  *
1988  **********************************************************************/
1989 static int
1990 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
1991 {
1992         struct adapter *adapter = iflib_get_softc(ctx);
1993         struct em_rx_queue *rx_que = adapter->rx_queues;
1994         struct em_tx_queue *tx_que = adapter->tx_queues;
1995         int error, rid, i, vector = 0, rx_vectors;
1996         char buf[16];
1997
1998         /* First set up ring resources */
1999         for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
2000                 rid = vector + 1;
2001                 snprintf(buf, sizeof(buf), "rxq%d", i);
2002                 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2003                 if (error) {
2004                         device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2005                         adapter->rx_num_queues = i + 1;
2006                         goto fail;
2007                 }
2008
2009                 rx_que->msix =  vector;
2010
2011                 /*
2012                  * Set the bit to enable interrupt
2013                  * in E1000_IMS -- bits 20 and 21
2014                  * are for RX0 and RX1, note this has
2015                  * NOTHING to do with the MSI-X vector
2016                  */
2017                 if (adapter->hw.mac.type == e1000_82574) {
2018                         rx_que->eims = 1 << (20 + i);
2019                         adapter->ims |= rx_que->eims;
2020                         adapter->ivars |= (8 | rx_que->msix) << (i * 4);
2021                 } else if (adapter->hw.mac.type == e1000_82575)
2022                         rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2023                 else
2024                         rx_que->eims = 1 << vector;
2025         }
2026         rx_vectors = vector;
2027
2028         vector = 0;
2029         for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
2030                 snprintf(buf, sizeof(buf), "txq%d", i);
2031                 tx_que = &adapter->tx_queues[i];
2032                 iflib_softirq_alloc_generic(ctx,
2033                     &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
2034                     IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2035
2036                 tx_que->msix = (vector % adapter->rx_num_queues);
2037
2038                 /*
2039                  * Set the bit to enable interrupt
2040                  * in E1000_IMS -- bits 22 and 23
2041                  * are for TX0 and TX1, note this has
2042                  * NOTHING to do with the MSI-X vector
2043                  */
2044                 if (adapter->hw.mac.type == e1000_82574) {
2045                         tx_que->eims = 1 << (22 + i);
2046                         adapter->ims |= tx_que->eims;
2047                         adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2048                 } else if (adapter->hw.mac.type == e1000_82575) {
2049                         tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2050                 } else {
2051                         tx_que->eims = 1 << i;
2052                 }
2053         }
2054
2055         /* Link interrupt */
2056         rid = rx_vectors + 1;
2057         error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2058
2059         if (error) {
2060                 device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2061                 goto fail;
2062         }
2063         adapter->linkvec = rx_vectors;
2064         if (adapter->hw.mac.type < igb_mac_min) {
2065                 adapter->ivars |=  (8 | rx_vectors) << 16;
2066                 adapter->ivars |= 0x80000000;
2067         }
2068         return (0);
2069 fail:
2070         iflib_irq_free(ctx, &adapter->irq);
2071         rx_que = adapter->rx_queues;
2072         for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2073                 iflib_irq_free(ctx, &rx_que->que_irq);
2074         return (error);
2075 }
2076
2077 static void
2078 igb_configure_queues(struct adapter *adapter)
2079 {
2080         struct e1000_hw *hw = &adapter->hw;
2081         struct em_rx_queue *rx_que;
2082         struct em_tx_queue *tx_que;
2083         u32 tmp, ivar = 0, newitr = 0;
2084
2085         /* First turn on RSS capability */
2086         if (hw->mac.type != e1000_82575)
2087                 E1000_WRITE_REG(hw, E1000_GPIE,
2088                     E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2089                     E1000_GPIE_PBA | E1000_GPIE_NSICR);
2090
2091         /* Turn on MSI-X */
2092         switch (hw->mac.type) {
2093         case e1000_82580:
2094         case e1000_i350:
2095         case e1000_i354:
2096         case e1000_i210:
2097         case e1000_i211:
2098         case e1000_vfadapt:
2099         case e1000_vfadapt_i350:
2100                 /* RX entries */
2101                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2102                         u32 index = i >> 1;
2103                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2104                         rx_que = &adapter->rx_queues[i];
2105                         if (i & 1) {
2106                                 ivar &= 0xFF00FFFF;
2107                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2108                         } else {
2109                                 ivar &= 0xFFFFFF00;
2110                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2111                         }
2112                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2113                 }
2114                 /* TX entries */
2115                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2116                         u32 index = i >> 1;
2117                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2118                         tx_que = &adapter->tx_queues[i];
2119                         if (i & 1) {
2120                                 ivar &= 0x00FFFFFF;
2121                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2122                         } else {
2123                                 ivar &= 0xFFFF00FF;
2124                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2125                         }
2126                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2127                         adapter->que_mask |= tx_que->eims;
2128                 }
2129
2130                 /* And for the link interrupt */
2131                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2132                 adapter->link_mask = 1 << adapter->linkvec;
2133                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2134                 break;
2135         case e1000_82576:
2136                 /* RX entries */
2137                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2138                         u32 index = i & 0x7; /* Each IVAR has two entries */
2139                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2140                         rx_que = &adapter->rx_queues[i];
2141                         if (i < 8) {
2142                                 ivar &= 0xFFFFFF00;
2143                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2144                         } else {
2145                                 ivar &= 0xFF00FFFF;
2146                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2147                         }
2148                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2149                         adapter->que_mask |= rx_que->eims;
2150                 }
2151                 /* TX entries */
2152                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2153                         u32 index = i & 0x7; /* Each IVAR has two entries */
2154                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2155                         tx_que = &adapter->tx_queues[i];
2156                         if (i < 8) {
2157                                 ivar &= 0xFFFF00FF;
2158                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2159                         } else {
2160                                 ivar &= 0x00FFFFFF;
2161                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2162                         }
2163                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2164                         adapter->que_mask |= tx_que->eims;
2165                 }
2166
2167                 /* And for the link interrupt */
2168                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2169                 adapter->link_mask = 1 << adapter->linkvec;
2170                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2171                 break;
2172
2173         case e1000_82575:
2174                 /* enable MSI-X support*/
2175                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2176                 tmp |= E1000_CTRL_EXT_PBA_CLR;
2177                 /* Auto-Mask interrupts upon ICR read. */
2178                 tmp |= E1000_CTRL_EXT_EIAME;
2179                 tmp |= E1000_CTRL_EXT_IRCA;
2180                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2181
2182                 /* Queues */
2183                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2184                         rx_que = &adapter->rx_queues[i];
2185                         tmp = E1000_EICR_RX_QUEUE0 << i;
2186                         tmp |= E1000_EICR_TX_QUEUE0 << i;
2187                         rx_que->eims = tmp;
2188                         E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2189                             i, rx_que->eims);
2190                         adapter->que_mask |= rx_que->eims;
2191                 }
2192
2193                 /* Link */
2194                 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2195                     E1000_EIMS_OTHER);
2196                 adapter->link_mask |= E1000_EIMS_OTHER;
2197         default:
2198                 break;
2199         }
2200
2201         /* Set the starting interrupt rate */
2202         if (em_max_interrupt_rate > 0)
2203                 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2204
2205         if (hw->mac.type == e1000_82575)
2206                 newitr |= newitr << 16;
2207         else
2208                 newitr |= E1000_EITR_CNT_IGNR;
2209
2210         for (int i = 0; i < adapter->rx_num_queues; i++) {
2211                 rx_que = &adapter->rx_queues[i];
2212                 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2213         }
2214
2215         return;
2216 }
2217
2218 static void
2219 em_free_pci_resources(if_ctx_t ctx)
2220 {
2221         struct adapter *adapter = iflib_get_softc(ctx);
2222         struct em_rx_queue *que = adapter->rx_queues;
2223         device_t dev = iflib_get_dev(ctx);
2224
2225         /* Release all MSI-X queue resources */
2226         if (adapter->intr_type == IFLIB_INTR_MSIX)
2227                 iflib_irq_free(ctx, &adapter->irq);
2228
2229         if (que != NULL) {
2230                 for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2231                         iflib_irq_free(ctx, &que->que_irq);
2232                 }
2233         }
2234
2235         if (adapter->memory != NULL) {
2236                 bus_release_resource(dev, SYS_RES_MEMORY,
2237                     rman_get_rid(adapter->memory), adapter->memory);
2238                 adapter->memory = NULL;
2239         }
2240
2241         if (adapter->flash != NULL) {
2242                 bus_release_resource(dev, SYS_RES_MEMORY,
2243                     rman_get_rid(adapter->flash), adapter->flash);
2244                 adapter->flash = NULL;
2245         }
2246
2247         if (adapter->ioport != NULL) {
2248                 bus_release_resource(dev, SYS_RES_IOPORT,
2249                     rman_get_rid(adapter->ioport), adapter->ioport);
2250                 adapter->ioport = NULL;
2251         }
2252 }
2253
2254 /* Set up MSI or MSI-X */
2255 static int
2256 em_setup_msix(if_ctx_t ctx)
2257 {
2258         struct adapter *adapter = iflib_get_softc(ctx);
2259
2260         if (adapter->hw.mac.type == e1000_82574) {
2261                 em_enable_vectors_82574(ctx);
2262         }
2263         return (0);
2264 }
2265
2266 /*********************************************************************
2267  *
2268  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2269  *
2270  **********************************************************************/
2271 static void
2272 lem_smartspeed(struct adapter *adapter)
2273 {
2274         u16 phy_tmp;
2275
2276         if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2277             adapter->hw.mac.autoneg == 0 ||
2278             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2279                 return;
2280
2281         if (adapter->smartspeed == 0) {
2282                 /* If Master/Slave config fault is asserted twice,
2283                  * we assume back-to-back */
2284                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2285                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2286                         return;
2287                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2288                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2289                         e1000_read_phy_reg(&adapter->hw,
2290                             PHY_1000T_CTRL, &phy_tmp);
2291                         if(phy_tmp & CR_1000T_MS_ENABLE) {
2292                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2293                                 e1000_write_phy_reg(&adapter->hw,
2294                                     PHY_1000T_CTRL, phy_tmp);
2295                                 adapter->smartspeed++;
2296                                 if(adapter->hw.mac.autoneg &&
2297                                    !e1000_copper_link_autoneg(&adapter->hw) &&
2298                                    !e1000_read_phy_reg(&adapter->hw,
2299                                     PHY_CONTROL, &phy_tmp)) {
2300                                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2301                                                     MII_CR_RESTART_AUTO_NEG);
2302                                         e1000_write_phy_reg(&adapter->hw,
2303                                             PHY_CONTROL, phy_tmp);
2304                                 }
2305                         }
2306                 }
2307                 return;
2308         } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2309                 /* If still no link, perhaps using 2/3 pair cable */
2310                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2311                 phy_tmp |= CR_1000T_MS_ENABLE;
2312                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2313                 if(adapter->hw.mac.autoneg &&
2314                    !e1000_copper_link_autoneg(&adapter->hw) &&
2315                    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2316                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2317                                     MII_CR_RESTART_AUTO_NEG);
2318                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2319                 }
2320         }
2321         /* Restart process after EM_SMARTSPEED_MAX iterations */
2322         if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2323                 adapter->smartspeed = 0;
2324 }
2325
2326 /*********************************************************************
2327  *
2328  *  Initialize the DMA Coalescing feature
2329  *
2330  **********************************************************************/
2331 static void
2332 igb_init_dmac(struct adapter *adapter, u32 pba)
2333 {
2334         device_t        dev = adapter->dev;
2335         struct e1000_hw *hw = &adapter->hw;
2336         u32             dmac, reg = ~E1000_DMACR_DMAC_EN;
2337         u16             hwm;
2338         u16             max_frame_size;
2339
2340         if (hw->mac.type == e1000_i211)
2341                 return;
2342
2343         max_frame_size = adapter->shared->isc_max_frame_size;
2344         if (hw->mac.type > e1000_82580) {
2345
2346                 if (adapter->dmac == 0) { /* Disabling it */
2347                         E1000_WRITE_REG(hw, E1000_DMACR, reg);
2348                         return;
2349                 } else
2350                         device_printf(dev, "DMA Coalescing enabled\n");
2351
2352                 /* Set starting threshold */
2353                 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2354
2355                 hwm = 64 * pba - max_frame_size / 16;
2356                 if (hwm < 64 * (pba - 6))
2357                         hwm = 64 * (pba - 6);
2358                 reg = E1000_READ_REG(hw, E1000_FCRTC);
2359                 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2360                 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2361                     & E1000_FCRTC_RTH_COAL_MASK);
2362                 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2363
2364
2365                 dmac = pba - max_frame_size / 512;
2366                 if (dmac < pba - 10)
2367                         dmac = pba - 10;
2368                 reg = E1000_READ_REG(hw, E1000_DMACR);
2369                 reg &= ~E1000_DMACR_DMACTHR_MASK;
2370                 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2371                     & E1000_DMACR_DMACTHR_MASK);
2372
2373                 /* transition to L0x or L1 if available..*/
2374                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2375
2376                 /* Check if status is 2.5Gb backplane connection
2377                 * before configuration of watchdog timer, which is
2378                 * in msec values in 12.8usec intervals
2379                 * watchdog timer= msec values in 32usec intervals
2380                 * for non 2.5Gb connection
2381                 */
2382                 if (hw->mac.type == e1000_i354) {
2383                         int status = E1000_READ_REG(hw, E1000_STATUS);
2384                         if ((status & E1000_STATUS_2P5_SKU) &&
2385                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2386                                 reg |= ((adapter->dmac * 5) >> 6);
2387                         else
2388                                 reg |= (adapter->dmac >> 5);
2389                 } else {
2390                         reg |= (adapter->dmac >> 5);
2391                 }
2392
2393                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2394
2395                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2396
2397                 /* Set the interval before transition */
2398                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
2399                 if (hw->mac.type == e1000_i350)
2400                         reg |= IGB_DMCTLX_DCFLUSH_DIS;
2401                 /*
2402                 ** in 2.5Gb connection, TTLX unit is 0.4 usec
2403                 ** which is 0x4*2 = 0xA. But delay is still 4 usec
2404                 */
2405                 if (hw->mac.type == e1000_i354) {
2406                         int status = E1000_READ_REG(hw, E1000_STATUS);
2407                         if ((status & E1000_STATUS_2P5_SKU) &&
2408                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2409                                 reg |= 0xA;
2410                         else
2411                                 reg |= 0x4;
2412                 } else {
2413                         reg |= 0x4;
2414                 }
2415
2416                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2417
2418                 /* free space in tx packet buffer to wake from DMA coal */
2419                 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2420                     (2 * max_frame_size)) >> 6);
2421
2422                 /* make low power state decision controlled by DMA coal */
2423                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2424                 reg &= ~E1000_PCIEMISC_LX_DECISION;
2425                 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2426
2427         } else if (hw->mac.type == e1000_82580) {
2428                 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2429                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
2430                     reg & ~E1000_PCIEMISC_LX_DECISION);
2431                 E1000_WRITE_REG(hw, E1000_DMACR, 0);
2432         }
2433 }
2434
2435 /*********************************************************************
2436  *
2437  *  Initialize the hardware to a configuration as specified by the
2438  *  adapter structure.
2439  *
2440  **********************************************************************/
2441 static void
2442 em_reset(if_ctx_t ctx)
2443 {
2444         device_t dev = iflib_get_dev(ctx);
2445         struct adapter *adapter = iflib_get_softc(ctx);
2446         struct ifnet *ifp = iflib_get_ifp(ctx);
2447         struct e1000_hw *hw = &adapter->hw;
2448         u16 rx_buffer_size;
2449         u32 pba;
2450
2451         INIT_DEBUGOUT("em_reset: begin");
2452         /* Let the firmware know the OS is in control */
2453         em_get_hw_control(adapter);
2454
2455         /* Set up smart power down as default off on newer adapters. */
2456         if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2457             hw->mac.type == e1000_82572)) {
2458                 u16 phy_tmp = 0;
2459
2460                 /* Speed up time to link by disabling smart power down. */
2461                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2462                 phy_tmp &= ~IGP02E1000_PM_SPD;
2463                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2464         }
2465
2466         /*
2467          * Packet Buffer Allocation (PBA)
2468          * Writing PBA sets the receive portion of the buffer
2469          * the remainder is used for the transmit buffer.
2470          */
2471         switch (hw->mac.type) {
2472         /* 82547: Total Packet Buffer is 40K */
2473         case e1000_82547:
2474         case e1000_82547_rev_2:
2475                 if (hw->mac.max_frame_size > 8192)
2476                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2477                 else
2478                         pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2479                 break;
2480         /* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
2481         case e1000_82571:
2482         case e1000_82572:
2483         case e1000_80003es2lan:
2484                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2485                 break;
2486         /* 82573: Total Packet Buffer is 32K */
2487         case e1000_82573:
2488                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2489                 break;
2490         case e1000_82574:
2491         case e1000_82583:
2492                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2493                 break;
2494         case e1000_ich8lan:
2495                 pba = E1000_PBA_8K;
2496                 break;
2497         case e1000_ich9lan:
2498         case e1000_ich10lan:
2499                 /* Boost Receive side for jumbo frames */
2500                 if (hw->mac.max_frame_size > 4096)
2501                         pba = E1000_PBA_14K;
2502                 else
2503                         pba = E1000_PBA_10K;
2504                 break;
2505         case e1000_pchlan:
2506         case e1000_pch2lan:
2507         case e1000_pch_lpt:
2508         case e1000_pch_spt:
2509         case e1000_pch_cnp:
2510                 pba = E1000_PBA_26K;
2511                 break;
2512         case e1000_82575:
2513                 pba = E1000_PBA_32K;
2514                 break;
2515         case e1000_82576:
2516         case e1000_vfadapt:
2517                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2518                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2519                 break;
2520         case e1000_82580:
2521         case e1000_i350:
2522         case e1000_i354:
2523         case e1000_vfadapt_i350:
2524                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2525                 pba = e1000_rxpbs_adjust_82580(pba);
2526                 break;
2527         case e1000_i210:
2528         case e1000_i211:
2529                 pba = E1000_PBA_34K;
2530                 break;
2531         default:
2532                 /* Remaining devices assumed to have a Packet Buffer of 64K. */
2533                 if (hw->mac.max_frame_size > 8192)
2534                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2535                 else
2536                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2537         }
2538
2539         /* Special needs in case of Jumbo frames */
2540         if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2541                 u32 tx_space, min_tx, min_rx;
2542                 pba = E1000_READ_REG(hw, E1000_PBA);
2543                 tx_space = pba >> 16;
2544                 pba &= 0xffff;
2545                 min_tx = (hw->mac.max_frame_size +
2546                     sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2547                 min_tx = roundup2(min_tx, 1024);
2548                 min_tx >>= 10;
2549                 min_rx = hw->mac.max_frame_size;
2550                 min_rx = roundup2(min_rx, 1024);
2551                 min_rx >>= 10;
2552                 if (tx_space < min_tx &&
2553                     ((min_tx - tx_space) < pba)) {
2554                         pba = pba - (min_tx - tx_space);
2555                         /*
2556                          * if short on rx space, rx wins
2557                          * and must trump tx adjustment
2558                          */
2559                         if (pba < min_rx)
2560                                 pba = min_rx;
2561                 }
2562                 E1000_WRITE_REG(hw, E1000_PBA, pba);
2563         }
2564
2565         if (hw->mac.type < igb_mac_min)
2566                 E1000_WRITE_REG(hw, E1000_PBA, pba);
2567
2568         INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2569
2570         /*
2571          * These parameters control the automatic generation (Tx) and
2572          * response (Rx) to Ethernet PAUSE frames.
2573          * - High water mark should allow for at least two frames to be
2574          *   received after sending an XOFF.
2575          * - Low water mark works best when it is very near the high water mark.
2576          *   This allows the receiver to restart by sending XON when it has
2577          *   drained a bit. Here we use an arbitrary value of 1500 which will
2578          *   restart after one full frame is pulled from the buffer. There
2579          *   could be several smaller frames in the buffer and if so they will
2580          *   not trigger the XON until their total number reduces the buffer
2581          *   by 1500.
2582          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2583          */
2584         rx_buffer_size = (pba & 0xffff) << 10;
2585         hw->fc.high_water = rx_buffer_size -
2586             roundup2(hw->mac.max_frame_size, 1024);
2587         hw->fc.low_water = hw->fc.high_water - 1500;
2588
2589         if (adapter->fc) /* locally set flow control value? */
2590                 hw->fc.requested_mode = adapter->fc;
2591         else
2592                 hw->fc.requested_mode = e1000_fc_full;
2593
2594         if (hw->mac.type == e1000_80003es2lan)
2595                 hw->fc.pause_time = 0xFFFF;
2596         else
2597                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
2598
2599         hw->fc.send_xon = TRUE;
2600
2601         /* Device specific overrides/settings */
2602         switch (hw->mac.type) {
2603         case e1000_pchlan:
2604                 /* Workaround: no TX flow ctrl for PCH */
2605                 hw->fc.requested_mode = e1000_fc_rx_pause;
2606                 hw->fc.pause_time = 0xFFFF; /* override */
2607                 if (if_getmtu(ifp) > ETHERMTU) {
2608                         hw->fc.high_water = 0x3500;
2609                         hw->fc.low_water = 0x1500;
2610                 } else {
2611                         hw->fc.high_water = 0x5000;
2612                         hw->fc.low_water = 0x3000;
2613                 }
2614                 hw->fc.refresh_time = 0x1000;
2615                 break;
2616         case e1000_pch2lan:
2617         case e1000_pch_lpt:
2618         case e1000_pch_spt:
2619         case e1000_pch_cnp:
2620                 hw->fc.high_water = 0x5C20;
2621                 hw->fc.low_water = 0x5048;
2622                 hw->fc.pause_time = 0x0650;
2623                 hw->fc.refresh_time = 0x0400;
2624                 /* Jumbos need adjusted PBA */
2625                 if (if_getmtu(ifp) > ETHERMTU)
2626                         E1000_WRITE_REG(hw, E1000_PBA, 12);
2627                 else
2628                         E1000_WRITE_REG(hw, E1000_PBA, 26);
2629                 break;
2630         case e1000_82575:
2631         case e1000_82576:
2632                 /* 8-byte granularity */
2633                 hw->fc.low_water = hw->fc.high_water - 8;
2634                 break;
2635         case e1000_82580:
2636         case e1000_i350:
2637         case e1000_i354:
2638         case e1000_i210:
2639         case e1000_i211:
2640         case e1000_vfadapt:
2641         case e1000_vfadapt_i350:
2642                 /* 16-byte granularity */
2643                 hw->fc.low_water = hw->fc.high_water - 16;
2644                 break;
2645         case e1000_ich9lan:
2646         case e1000_ich10lan:
2647                 if (if_getmtu(ifp) > ETHERMTU) {
2648                         hw->fc.high_water = 0x2800;
2649                         hw->fc.low_water = hw->fc.high_water - 8;
2650                         break;
2651                 }
2652                 /* FALLTHROUGH */
2653         default:
2654                 if (hw->mac.type == e1000_80003es2lan)
2655                         hw->fc.pause_time = 0xFFFF;
2656                 break;
2657         }
2658
2659         /* Issue a global reset */
2660         e1000_reset_hw(hw);
2661         if (hw->mac.type >= igb_mac_min) {
2662                 E1000_WRITE_REG(hw, E1000_WUC, 0);
2663         } else {
2664                 E1000_WRITE_REG(hw, E1000_WUFC, 0);
2665                 em_disable_aspm(adapter);
2666         }
2667         if (adapter->flags & IGB_MEDIA_RESET) {
2668                 e1000_setup_init_funcs(hw, TRUE);
2669                 e1000_get_bus_info(hw);
2670                 adapter->flags &= ~IGB_MEDIA_RESET;
2671         }
2672         /* and a re-init */
2673         if (e1000_init_hw(hw) < 0) {
2674                 device_printf(dev, "Hardware Initialization Failed\n");
2675                 return;
2676         }
2677         if (hw->mac.type >= igb_mac_min)
2678                 igb_init_dmac(adapter, pba);
2679
2680         E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2681         e1000_get_phy_info(hw);
2682         e1000_check_for_link(hw);
2683 }
2684
2685 /*
2686  * Initialise the RSS mapping for NICs that support multiple transmit/
2687  * receive rings.
2688  */
2689
2690 #define RSSKEYLEN 10
2691 static void
2692 em_initialize_rss_mapping(struct adapter *adapter)
2693 {
2694         uint8_t  rss_key[4 * RSSKEYLEN];
2695         uint32_t reta = 0;
2696         struct e1000_hw *hw = &adapter->hw;
2697         int i;
2698
2699         /*
2700          * Configure RSS key
2701          */
2702         arc4rand(rss_key, sizeof(rss_key), 0);
2703         for (i = 0; i < RSSKEYLEN; ++i) {
2704                 uint32_t rssrk = 0;
2705
2706                 rssrk = EM_RSSRK_VAL(rss_key, i);
2707                 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2708         }
2709
2710         /*
2711          * Configure RSS redirect table in following fashion:
2712          * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2713          */
2714         for (i = 0; i < sizeof(reta); ++i) {
2715                 uint32_t q;
2716
2717                 q = (i % adapter->rx_num_queues) << 7;
2718                 reta |= q << (8 * i);
2719         }
2720
2721         for (i = 0; i < 32; ++i)
2722                 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2723
2724         E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2725                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2726                         E1000_MRQC_RSS_FIELD_IPV4 |
2727                         E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2728                         E1000_MRQC_RSS_FIELD_IPV6_EX |
2729                         E1000_MRQC_RSS_FIELD_IPV6);
2730 }
2731
2732 static void
2733 igb_initialize_rss_mapping(struct adapter *adapter)
2734 {
2735         struct e1000_hw *hw = &adapter->hw;
2736         int i;
2737         int queue_id;
2738         u32 reta;
2739         u32 rss_key[10], mrqc, shift = 0;
2740
2741         /* XXX? */
2742         if (hw->mac.type == e1000_82575)
2743                 shift = 6;
2744
2745         /*
2746          * The redirection table controls which destination
2747          * queue each bucket redirects traffic to.
2748          * Each DWORD represents four queues, with the LSB
2749          * being the first queue in the DWORD.
2750          *
2751          * This just allocates buckets to queues using round-robin
2752          * allocation.
2753          *
2754          * NOTE: It Just Happens to line up with the default
2755          * RSS allocation method.
2756          */
2757
2758         /* Warning FM follows */
2759         reta = 0;
2760         for (i = 0; i < 128; i++) {
2761 #ifdef RSS
2762                 queue_id = rss_get_indirection_to_bucket(i);
2763                 /*
2764                  * If we have more queues than buckets, we'll
2765                  * end up mapping buckets to a subset of the
2766                  * queues.
2767                  *
2768                  * If we have more buckets than queues, we'll
2769                  * end up instead assigning multiple buckets
2770                  * to queues.
2771                  *
2772                  * Both are suboptimal, but we need to handle
2773                  * the case so we don't go out of bounds
2774                  * indexing arrays and such.
2775                  */
2776                 queue_id = queue_id % adapter->rx_num_queues;
2777 #else
2778                 queue_id = (i % adapter->rx_num_queues);
2779 #endif
2780                 /* Adjust if required */
2781                 queue_id = queue_id << shift;
2782
2783                 /*
2784                  * The low 8 bits are for hash value (n+0);
2785                  * The next 8 bits are for hash value (n+1), etc.
2786                  */
2787                 reta = reta >> 8;
2788                 reta = reta | ( ((uint32_t) queue_id) << 24);
2789                 if ((i & 3) == 3) {
2790                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2791                         reta = 0;
2792                 }
2793         }
2794
2795         /* Now fill in hash table */
2796
2797         /*
2798          * MRQC: Multiple Receive Queues Command
2799          * Set queuing to RSS control, number depends on the device.
2800          */
2801         mrqc = E1000_MRQC_ENABLE_RSS_8Q;
2802
2803 #ifdef RSS
2804         /* XXX ew typecasting */
2805         rss_getkey((uint8_t *) &rss_key);
2806 #else
2807         arc4rand(&rss_key, sizeof(rss_key), 0);
2808 #endif
2809         for (i = 0; i < 10; i++)
2810                 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2811
2812         /*
2813          * Configure the RSS fields to hash upon.
2814          */
2815         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2816             E1000_MRQC_RSS_FIELD_IPV4_TCP);
2817         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2818             E1000_MRQC_RSS_FIELD_IPV6_TCP);
2819         mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2820             E1000_MRQC_RSS_FIELD_IPV6_UDP);
2821         mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2822             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2823
2824         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2825 }
2826
2827 /*********************************************************************
2828  *
2829  *  Setup networking device structure and register interface media.
2830  *
2831  **********************************************************************/
2832 static int
2833 em_setup_interface(if_ctx_t ctx)
2834 {
2835         struct ifnet *ifp = iflib_get_ifp(ctx);
2836         struct adapter *adapter = iflib_get_softc(ctx);
2837         if_softc_ctx_t scctx = adapter->shared;
2838
2839         INIT_DEBUGOUT("em_setup_interface: begin");
2840
2841         /* Single Queue */
2842         if (adapter->tx_num_queues == 1) {
2843                 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2844                 if_setsendqready(ifp);
2845         }
2846
2847         /*
2848          * Specify the media types supported by this adapter and register
2849          * callbacks to update media and link information
2850          */
2851         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2852             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2853                 u_char fiber_type = IFM_1000_SX;        /* default type */
2854
2855                 if (adapter->hw.mac.type == e1000_82545)
2856                         fiber_type = IFM_1000_LX;
2857                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2858                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2859         } else {
2860                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2861                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2862                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2863                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2864                 if (adapter->hw.phy.type != e1000_phy_ife) {
2865                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2866                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2867                 }
2868         }
2869         ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2870         ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2871         return (0);
2872 }
2873
2874 static int
2875 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2876 {
2877         struct adapter *adapter = iflib_get_softc(ctx);
2878         if_softc_ctx_t scctx = adapter->shared;
2879         int error = E1000_SUCCESS;
2880         struct em_tx_queue *que;
2881         int i, j;
2882
2883         MPASS(adapter->tx_num_queues > 0);
2884         MPASS(adapter->tx_num_queues == ntxqsets);
2885
2886         /* First allocate the top level queue structs */
2887         if (!(adapter->tx_queues =
2888             (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2889             adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2890                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2891                 return(ENOMEM);
2892         }
2893
2894         for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2895                 /* Set up some basics */
2896
2897                 struct tx_ring *txr = &que->txr;
2898                 txr->adapter = que->adapter = adapter;
2899                 que->me = txr->me =  i;
2900
2901                 /* Allocate report status array */
2902                 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2903                         device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2904                         error = ENOMEM;
2905                         goto fail;
2906                 }
2907                 for (j = 0; j < scctx->isc_ntxd[0]; j++)
2908                         txr->tx_rsq[j] = QIDX_INVALID;
2909                 /* get the virtual and physical address of the hardware queues */
2910                 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2911                 txr->tx_paddr = paddrs[i*ntxqs];
2912         }
2913
2914         if (bootverbose)
2915                 device_printf(iflib_get_dev(ctx),
2916                     "allocated for %d tx_queues\n", adapter->tx_num_queues);
2917         return (0);
2918 fail:
2919         em_if_queues_free(ctx);
2920         return (error);
2921 }
2922
2923 static int
2924 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2925 {
2926         struct adapter *adapter = iflib_get_softc(ctx);
2927         int error = E1000_SUCCESS;
2928         struct em_rx_queue *que;
2929         int i;
2930
2931         MPASS(adapter->rx_num_queues > 0);
2932         MPASS(adapter->rx_num_queues == nrxqsets);
2933
2934         /* First allocate the top level queue structs */
2935         if (!(adapter->rx_queues =
2936             (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2937             adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2938                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2939                 error = ENOMEM;
2940                 goto fail;
2941         }
2942
2943         for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2944                 /* Set up some basics */
2945                 struct rx_ring *rxr = &que->rxr;
2946                 rxr->adapter = que->adapter = adapter;
2947                 rxr->que = que;
2948                 que->me = rxr->me =  i;
2949
2950                 /* get the virtual and physical address of the hardware queues */
2951                 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2952                 rxr->rx_paddr = paddrs[i*nrxqs];
2953         }
2954  
2955         if (bootverbose)
2956                 device_printf(iflib_get_dev(ctx),
2957                     "allocated for %d rx_queues\n", adapter->rx_num_queues);
2958
2959         return (0);
2960 fail:
2961         em_if_queues_free(ctx);
2962         return (error);
2963 }
2964
2965 static void
2966 em_if_queues_free(if_ctx_t ctx)
2967 {
2968         struct adapter *adapter = iflib_get_softc(ctx);
2969         struct em_tx_queue *tx_que = adapter->tx_queues;
2970         struct em_rx_queue *rx_que = adapter->rx_queues;
2971
2972         if (tx_que != NULL) {
2973                 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
2974                         struct tx_ring *txr = &tx_que->txr;
2975                         if (txr->tx_rsq == NULL)
2976                                 break;
2977
2978                         free(txr->tx_rsq, M_DEVBUF);
2979                         txr->tx_rsq = NULL;
2980                 }
2981                 free(adapter->tx_queues, M_DEVBUF);
2982                 adapter->tx_queues = NULL;
2983         }
2984
2985         if (rx_que != NULL) {
2986                 free(adapter->rx_queues, M_DEVBUF);
2987                 adapter->rx_queues = NULL;
2988         }
2989 }
2990
2991 /*********************************************************************
2992  *
2993  *  Enable transmit unit.
2994  *
2995  **********************************************************************/
2996 static void
2997 em_initialize_transmit_unit(if_ctx_t ctx)
2998 {
2999         struct adapter *adapter = iflib_get_softc(ctx);
3000         if_softc_ctx_t scctx = adapter->shared;
3001         struct em_tx_queue *que;
3002         struct tx_ring  *txr;
3003         struct e1000_hw *hw = &adapter->hw;
3004         u32 tctl, txdctl = 0, tarc, tipg = 0;
3005
3006         INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3007
3008         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
3009                 u64 bus_addr;
3010                 caddr_t offp, endp;
3011
3012                 que = &adapter->tx_queues[i];
3013                 txr = &que->txr;
3014                 bus_addr = txr->tx_paddr;
3015
3016                 /* Clear checksum offload context. */
3017                 offp = (caddr_t)&txr->csum_flags;
3018                 endp = (caddr_t)(txr + 1);
3019                 bzero(offp, endp - offp);
3020
3021                 /* Base and Len of TX Ring */
3022                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
3023                     scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3024                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
3025                     (u32)(bus_addr >> 32));
3026                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
3027                     (u32)bus_addr);
3028                 /* Init the HEAD/TAIL indices */
3029                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3030                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3031
3032                 HW_DEBUGOUT2("Base = %x, Length = %x\n",
3033                     E1000_READ_REG(hw, E1000_TDBAL(i)),
3034                     E1000_READ_REG(hw, E1000_TDLEN(i)));
3035
3036                 txdctl = 0; /* clear txdctl */
3037                 txdctl |= 0x1f; /* PTHRESH */
3038                 txdctl |= 1 << 8; /* HTHRESH */
3039                 txdctl |= 1 << 16;/* WTHRESH */
3040                 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3041                 txdctl |= E1000_TXDCTL_GRAN;
3042                 txdctl |= 1 << 25; /* LWTHRESH */
3043
3044                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3045         }
3046
3047         /* Set the default values for the Tx Inter Packet Gap timer */
3048         switch (hw->mac.type) {
3049         case e1000_80003es2lan:
3050                 tipg = DEFAULT_82543_TIPG_IPGR1;
3051                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3052                     E1000_TIPG_IPGR2_SHIFT;
3053                 break;
3054         case e1000_82542:
3055                 tipg = DEFAULT_82542_TIPG_IPGT;
3056                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3057                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3058                 break;
3059         default:
3060                 if (hw->phy.media_type == e1000_media_type_fiber ||
3061                     hw->phy.media_type == e1000_media_type_internal_serdes)
3062                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3063                 else
3064                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3065                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3066                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3067         }
3068
3069         E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3070         E1000_WRITE_REG(hw, E1000_TIDV, adapter->tx_int_delay.value);
3071
3072         if(hw->mac.type >= e1000_82540)
3073                 E1000_WRITE_REG(hw, E1000_TADV,
3074                     adapter->tx_abs_int_delay.value);
3075
3076         if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3077                 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3078                 tarc |= TARC_SPEED_MODE_BIT;
3079                 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3080         } else if (hw->mac.type == e1000_80003es2lan) {
3081                 /* errata: program both queues to unweighted RR */
3082                 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3083                 tarc |= 1;
3084                 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3085                 tarc = E1000_READ_REG(hw, E1000_TARC(1));
3086                 tarc |= 1;
3087                 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3088         } else if (hw->mac.type == e1000_82574) {
3089                 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3090                 tarc |= TARC_ERRATA_BIT;
3091                 if ( adapter->tx_num_queues > 1) {
3092                         tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3093                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3094                         E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3095                 } else
3096                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3097         }
3098
3099         if (adapter->tx_int_delay.value > 0)
3100                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3101
3102         /* Program the Transmit Control Register */
3103         tctl = E1000_READ_REG(hw, E1000_TCTL);
3104         tctl &= ~E1000_TCTL_CT;
3105         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3106                    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3107
3108         if (hw->mac.type >= e1000_82571)
3109                 tctl |= E1000_TCTL_MULR;
3110
3111         /* This write will effectively turn on the transmit unit. */
3112         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3113
3114         /* SPT and KBL errata workarounds */
3115         if (hw->mac.type == e1000_pch_spt) {
3116                 u32 reg;
3117                 reg = E1000_READ_REG(hw, E1000_IOSFPC);
3118                 reg |= E1000_RCTL_RDMTS_HEX;
3119                 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3120                 /* i218-i219 Specification Update 1.5.4.5 */
3121                 reg = E1000_READ_REG(hw, E1000_TARC(0));
3122                 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3123                 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3124                 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3125         }
3126 }
3127
3128 /*********************************************************************
3129  *
3130  *  Enable receive unit.
3131  *
3132  **********************************************************************/
3133
3134 static void
3135 em_initialize_receive_unit(if_ctx_t ctx)
3136 {
3137         struct adapter *adapter = iflib_get_softc(ctx);
3138         if_softc_ctx_t scctx = adapter->shared;
3139         struct ifnet *ifp = iflib_get_ifp(ctx);
3140         struct e1000_hw *hw = &adapter->hw;
3141         struct em_rx_queue *que;
3142         int i;
3143         u32 rctl, rxcsum, rfctl;
3144
3145         INIT_DEBUGOUT("em_initialize_receive_units: begin");
3146
3147         /*
3148          * Make sure receives are disabled while setting
3149          * up the descriptor ring
3150          */
3151         rctl = E1000_READ_REG(hw, E1000_RCTL);
3152         /* Do not disable if ever enabled on this hardware */
3153         if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3154                 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3155
3156         /* Setup the Receive Control Register */
3157         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3158         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3159             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3160             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3161
3162         /* Do not store bad packets */
3163         rctl &= ~E1000_RCTL_SBP;
3164
3165         /* Enable Long Packet receive */
3166         if (if_getmtu(ifp) > ETHERMTU)
3167                 rctl |= E1000_RCTL_LPE;
3168         else
3169                 rctl &= ~E1000_RCTL_LPE;
3170
3171         /* Strip the CRC */
3172         if (!em_disable_crc_stripping)
3173                 rctl |= E1000_RCTL_SECRC;
3174
3175         if (hw->mac.type >= e1000_82540) {
3176                 E1000_WRITE_REG(hw, E1000_RADV,
3177                     adapter->rx_abs_int_delay.value);
3178
3179                 /*
3180                  * Set the interrupt throttling rate. Value is calculated
3181                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3182                  */
3183                 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3184         }
3185         E1000_WRITE_REG(hw, E1000_RDTR, adapter->rx_int_delay.value);
3186
3187         /* Use extended rx descriptor formats */
3188         rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3189         rfctl |= E1000_RFCTL_EXTEN;
3190         /*
3191          * When using MSI-X interrupts we need to throttle
3192          * using the EITR register (82574 only)
3193          */
3194         if (hw->mac.type == e1000_82574) {
3195                 for (int i = 0; i < 4; i++)
3196                         E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3197                             DEFAULT_ITR);
3198                 /* Disable accelerated acknowledge */
3199                 rfctl |= E1000_RFCTL_ACK_DIS;
3200         }
3201         E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3202
3203         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3204         if (if_getcapenable(ifp) & IFCAP_RXCSUM &&
3205             hw->mac.type >= e1000_82543) {
3206                 if (adapter->tx_num_queues > 1) {
3207                         if (hw->mac.type >= igb_mac_min) {
3208                                 rxcsum |= E1000_RXCSUM_PCSD;
3209                                 if (hw->mac.type != e1000_82575)
3210                                         rxcsum |= E1000_RXCSUM_CRCOFL;
3211                         } else
3212                                 rxcsum |= E1000_RXCSUM_TUOFL |
3213                                         E1000_RXCSUM_IPOFL |
3214                                         E1000_RXCSUM_PCSD;
3215                 } else {
3216                         if (hw->mac.type >= igb_mac_min)
3217                                 rxcsum |= E1000_RXCSUM_IPPCSE;
3218                         else
3219                                 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3220                         if (hw->mac.type > e1000_82575)
3221                                 rxcsum |= E1000_RXCSUM_CRCOFL;
3222                 }
3223         } else
3224                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3225
3226         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3227
3228         if (adapter->rx_num_queues > 1) {
3229                 if (hw->mac.type >= igb_mac_min)
3230                         igb_initialize_rss_mapping(adapter);
3231                 else
3232                         em_initialize_rss_mapping(adapter);
3233         }
3234
3235         /*
3236          * XXX TEMPORARY WORKAROUND: on some systems with 82573
3237          * long latencies are observed, like Lenovo X60. This
3238          * change eliminates the problem, but since having positive
3239          * values in RDTR is a known source of problems on other
3240          * platforms another solution is being sought.
3241          */
3242         if (hw->mac.type == e1000_82573)
3243                 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3244
3245         for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3246                 struct rx_ring *rxr = &que->rxr;
3247                 /* Setup the Base and Length of the Rx Descriptor Ring */
3248                 u64 bus_addr = rxr->rx_paddr;
3249 #if 0
3250                 u32 rdt = adapter->rx_num_queues -1;  /* default */
3251 #endif
3252
3253                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3254                     scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3255                 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3256                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3257                 /* Setup the Head and Tail Descriptor Pointers */
3258                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3259                 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3260         }
3261
3262         /*
3263          * Set PTHRESH for improved jumbo performance
3264          * According to 10.2.5.11 of Intel 82574 Datasheet,
3265          * RXDCTL(1) is written whenever RXDCTL(0) is written.
3266          * Only write to RXDCTL(1) if there is a need for different
3267          * settings.
3268          */
3269         if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3270             hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3271                 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3272                 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3273         } else if (hw->mac.type == e1000_82574) {
3274                 for (int i = 0; i < adapter->rx_num_queues; i++) {
3275                         u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3276                         rxdctl |= 0x20; /* PTHRESH */
3277                         rxdctl |= 4 << 8; /* HTHRESH */
3278                         rxdctl |= 4 << 16;/* WTHRESH */
3279                         rxdctl |= 1 << 24; /* Switch to granularity */
3280                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3281                 }
3282         } else if (hw->mac.type >= igb_mac_min) {
3283                 u32 psize, srrctl = 0;
3284
3285                 if (if_getmtu(ifp) > ETHERMTU) {
3286                         /* Set maximum packet len */
3287                         if (adapter->rx_mbuf_sz <= 4096) {
3288                                 srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3289                                 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3290                         } else if (adapter->rx_mbuf_sz > 4096) {
3291                                 srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3292                                 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3293                         }
3294                         psize = scctx->isc_max_frame_size;
3295                         /* are we on a vlan? */
3296                         if (ifp->if_vlantrunk != NULL)
3297                                 psize += VLAN_TAG_SIZE;
3298                         E1000_WRITE_REG(hw, E1000_RLPML, psize);
3299                 } else {
3300                         srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3301                         rctl |= E1000_RCTL_SZ_2048;
3302                 }
3303
3304                 /*
3305                  * If TX flow control is disabled and there's >1 queue defined,
3306                  * enable DROP.
3307                  *
3308                  * This drops frames rather than hanging the RX MAC for all queues.
3309                  */
3310                 if ((adapter->rx_num_queues > 1) &&
3311                     (adapter->fc == e1000_fc_none ||
3312                      adapter->fc == e1000_fc_rx_pause)) {
3313                         srrctl |= E1000_SRRCTL_DROP_EN;
3314                 }
3315                         /* Setup the Base and Length of the Rx Descriptor Rings */
3316                 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3317                         struct rx_ring *rxr = &que->rxr;
3318                         u64 bus_addr = rxr->rx_paddr;
3319                         u32 rxdctl;
3320
3321 #ifdef notyet
3322                         /* Configure for header split? -- ignore for now */
3323                         rxr->hdr_split = igb_header_split;
3324 #else
3325                         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3326 #endif
3327
3328                         E1000_WRITE_REG(hw, E1000_RDLEN(i),
3329                                         scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3330                         E1000_WRITE_REG(hw, E1000_RDBAH(i),
3331                                         (uint32_t)(bus_addr >> 32));
3332                         E1000_WRITE_REG(hw, E1000_RDBAL(i),
3333                                         (uint32_t)bus_addr);
3334                         E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3335                         /* Enable this Queue */
3336                         rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3337                         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3338                         rxdctl &= 0xFFF00000;
3339                         rxdctl |= IGB_RX_PTHRESH;
3340                         rxdctl |= IGB_RX_HTHRESH << 8;
3341                         rxdctl |= IGB_RX_WTHRESH << 16;
3342                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3343                 }               
3344         } else if (hw->mac.type >= e1000_pch2lan) {
3345                 if (if_getmtu(ifp) > ETHERMTU)
3346                         e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3347                 else
3348                         e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3349         }
3350
3351         /* Make sure VLAN Filters are off */
3352         rctl &= ~E1000_RCTL_VFE;
3353
3354         if (hw->mac.type < igb_mac_min) {
3355                 if (adapter->rx_mbuf_sz == MCLBYTES)
3356                         rctl |= E1000_RCTL_SZ_2048;
3357                 else if (adapter->rx_mbuf_sz == MJUMPAGESIZE)
3358                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3359                 else if (adapter->rx_mbuf_sz > MJUMPAGESIZE)
3360                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3361
3362                 /* ensure we clear use DTYPE of 00 here */
3363                 rctl &= ~0x00000C00;
3364         }
3365
3366         /* Write out the settings */
3367         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3368
3369         return;
3370 }
3371
3372 static void
3373 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3374 {
3375         struct adapter *adapter = iflib_get_softc(ctx);
3376         u32 index, bit;
3377
3378         index = (vtag >> 5) & 0x7F;
3379         bit = vtag & 0x1F;
3380         adapter->shadow_vfta[index] |= (1 << bit);
3381         ++adapter->num_vlans;
3382 }
3383
3384 static void
3385 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3386 {
3387         struct adapter *adapter = iflib_get_softc(ctx);
3388         u32 index, bit;
3389
3390         index = (vtag >> 5) & 0x7F;
3391         bit = vtag & 0x1F;
3392         adapter->shadow_vfta[index] &= ~(1 << bit);
3393         --adapter->num_vlans;
3394 }
3395
3396 static void
3397 em_setup_vlan_hw_support(struct adapter *adapter)
3398 {
3399         struct e1000_hw *hw = &adapter->hw;
3400         u32 reg;
3401
3402         /*
3403          * We get here thru init_locked, meaning
3404          * a soft reset, this has already cleared
3405          * the VFTA and other state, so if there
3406          * have been no vlan's registered do nothing.
3407          */
3408         if (adapter->num_vlans == 0)
3409                 return;
3410
3411         /*
3412          * A soft reset zero's out the VFTA, so
3413          * we need to repopulate it now.
3414          */
3415         for (int i = 0; i < EM_VFTA_SIZE; i++)
3416                 if (adapter->shadow_vfta[i] != 0)
3417                         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3418                             i, adapter->shadow_vfta[i]);
3419
3420         reg = E1000_READ_REG(hw, E1000_CTRL);
3421         reg |= E1000_CTRL_VME;
3422         E1000_WRITE_REG(hw, E1000_CTRL, reg);
3423
3424         /* Enable the Filter Table */
3425         reg = E1000_READ_REG(hw, E1000_RCTL);
3426         reg &= ~E1000_RCTL_CFIEN;
3427         reg |= E1000_RCTL_VFE;
3428         E1000_WRITE_REG(hw, E1000_RCTL, reg);
3429 }
3430
3431 static void
3432 em_if_intr_enable(if_ctx_t ctx)
3433 {
3434         struct adapter *adapter = iflib_get_softc(ctx);
3435         struct e1000_hw *hw = &adapter->hw;
3436         u32 ims_mask = IMS_ENABLE_MASK;
3437
3438         if (hw->mac.type == e1000_82574) {
3439                 E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK);
3440                 ims_mask |= adapter->ims;
3441         }
3442         E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3443 }
3444
3445 static void
3446 em_if_intr_disable(if_ctx_t ctx)
3447 {
3448         struct adapter *adapter = iflib_get_softc(ctx);
3449         struct e1000_hw *hw = &adapter->hw;
3450
3451         if (hw->mac.type == e1000_82574)
3452                 E1000_WRITE_REG(hw, EM_EIAC, 0);
3453         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3454 }
3455
3456 static void
3457 igb_if_intr_enable(if_ctx_t ctx)
3458 {
3459         struct adapter *adapter = iflib_get_softc(ctx);
3460         struct e1000_hw *hw = &adapter->hw;
3461         u32 mask;
3462
3463         if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3464                 mask = (adapter->que_mask | adapter->link_mask);
3465                 E1000_WRITE_REG(hw, E1000_EIAC, mask);
3466                 E1000_WRITE_REG(hw, E1000_EIAM, mask);
3467                 E1000_WRITE_REG(hw, E1000_EIMS, mask);
3468                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3469         } else
3470                 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3471         E1000_WRITE_FLUSH(hw);
3472 }
3473
3474 static void
3475 igb_if_intr_disable(if_ctx_t ctx)
3476 {
3477         struct adapter *adapter = iflib_get_softc(ctx);
3478         struct e1000_hw *hw = &adapter->hw;
3479
3480         if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3481                 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3482                 E1000_WRITE_REG(hw, E1000_EIAC, 0);
3483         }
3484         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3485         E1000_WRITE_FLUSH(hw);
3486 }
3487
3488 /*
3489  * Bit of a misnomer, what this really means is
3490  * to enable OS management of the system... aka
3491  * to disable special hardware management features
3492  */
3493 static void
3494 em_init_manageability(struct adapter *adapter)
3495 {
3496         /* A shared code workaround */
3497 #define E1000_82542_MANC2H E1000_MANC2H
3498         if (adapter->has_manage) {
3499                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3500                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3501
3502                 /* disable hardware interception of ARP */
3503                 manc &= ~(E1000_MANC_ARP_EN);
3504
3505                 /* enable receiving management packets to the host */
3506                 manc |= E1000_MANC_EN_MNG2HOST;
3507 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3508 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3509                 manc2h |= E1000_MNG2HOST_PORT_623;
3510                 manc2h |= E1000_MNG2HOST_PORT_664;
3511                 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3512                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3513         }
3514 }
3515
3516 /*
3517  * Give control back to hardware management
3518  * controller if there is one.
3519  */
3520 static void
3521 em_release_manageability(struct adapter *adapter)
3522 {
3523         if (adapter->has_manage) {
3524                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3525
3526                 /* re-enable hardware interception of ARP */
3527                 manc |= E1000_MANC_ARP_EN;
3528                 manc &= ~E1000_MANC_EN_MNG2HOST;
3529
3530                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3531         }
3532 }
3533
3534 /*
3535  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3536  * For ASF and Pass Through versions of f/w this means
3537  * that the driver is loaded. For AMT version type f/w
3538  * this means that the network i/f is open.
3539  */
3540 static void
3541 em_get_hw_control(struct adapter *adapter)
3542 {
3543         u32 ctrl_ext, swsm;
3544
3545         if (adapter->vf_ifp)
3546                 return;
3547
3548         if (adapter->hw.mac.type == e1000_82573) {
3549                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3550                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3551                     swsm | E1000_SWSM_DRV_LOAD);
3552                 return;
3553         }
3554         /* else */
3555         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3556         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3557             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3558 }
3559
3560 /*
3561  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3562  * For ASF and Pass Through versions of f/w this means that
3563  * the driver is no longer loaded. For AMT versions of the
3564  * f/w this means that the network i/f is closed.
3565  */
3566 static void
3567 em_release_hw_control(struct adapter *adapter)
3568 {
3569         u32 ctrl_ext, swsm;
3570
3571         if (!adapter->has_manage)
3572                 return;
3573
3574         if (adapter->hw.mac.type == e1000_82573) {
3575                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3576                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3577                     swsm & ~E1000_SWSM_DRV_LOAD);
3578                 return;
3579         }
3580         /* else */
3581         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3582         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3583             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3584         return;
3585 }
3586
3587 static int
3588 em_is_valid_ether_addr(u8 *addr)
3589 {
3590         char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3591
3592         if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3593                 return (FALSE);
3594         }
3595
3596         return (TRUE);
3597 }
3598
3599 /*
3600 ** Parse the interface capabilities with regard
3601 ** to both system management and wake-on-lan for
3602 ** later use.
3603 */
3604 static void
3605 em_get_wakeup(if_ctx_t ctx)
3606 {
3607         struct adapter *adapter = iflib_get_softc(ctx);
3608         device_t dev = iflib_get_dev(ctx);
3609         u16 eeprom_data = 0, device_id, apme_mask;
3610
3611         adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3612         apme_mask = EM_EEPROM_APME;
3613
3614         switch (adapter->hw.mac.type) {
3615         case e1000_82542:
3616         case e1000_82543:
3617                 break;
3618         case e1000_82544:
3619                 e1000_read_nvm(&adapter->hw,
3620                     NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3621                 apme_mask = EM_82544_APME;
3622                 break;
3623         case e1000_82546:
3624         case e1000_82546_rev_3:
3625                 if (adapter->hw.bus.func == 1) {
3626                         e1000_read_nvm(&adapter->hw,
3627                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3628                         break;
3629                 } else
3630                         e1000_read_nvm(&adapter->hw,
3631                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3632                 break;
3633         case e1000_82573:
3634         case e1000_82583:
3635                 adapter->has_amt = TRUE;
3636                 /* FALLTHROUGH */
3637         case e1000_82571:
3638         case e1000_82572:
3639         case e1000_80003es2lan:
3640                 if (adapter->hw.bus.func == 1) {
3641                         e1000_read_nvm(&adapter->hw,
3642                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3643                         break;
3644                 } else
3645                         e1000_read_nvm(&adapter->hw,
3646                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3647                 break;
3648         case e1000_ich8lan:
3649         case e1000_ich9lan:
3650         case e1000_ich10lan:
3651         case e1000_pchlan:
3652         case e1000_pch2lan:
3653         case e1000_pch_lpt:
3654         case e1000_pch_spt:
3655         case e1000_82575:       /* listing all igb devices */
3656         case e1000_82576:
3657         case e1000_82580:
3658         case e1000_i350:
3659         case e1000_i354:
3660         case e1000_i210:
3661         case e1000_i211:
3662         case e1000_vfadapt:
3663         case e1000_vfadapt_i350:
3664                 apme_mask = E1000_WUC_APME;
3665                 adapter->has_amt = TRUE;
3666                 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3667                 break;
3668         default:
3669                 e1000_read_nvm(&adapter->hw,
3670                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3671                 break;
3672         }
3673         if (eeprom_data & apme_mask)
3674                 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3675         /*
3676          * We have the eeprom settings, now apply the special cases
3677          * where the eeprom may be wrong or the board won't support
3678          * wake on lan on a particular port
3679          */
3680         device_id = pci_get_device(dev);
3681         switch (device_id) {
3682         case E1000_DEV_ID_82546GB_PCIE:
3683                 adapter->wol = 0;
3684                 break;
3685         case E1000_DEV_ID_82546EB_FIBER:
3686         case E1000_DEV_ID_82546GB_FIBER:
3687                 /* Wake events only supported on port A for dual fiber
3688                  * regardless of eeprom setting */
3689                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3690                     E1000_STATUS_FUNC_1)
3691                         adapter->wol = 0;
3692                 break;
3693         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3694                 /* if quad port adapter, disable WoL on all but port A */
3695                 if (global_quad_port_a != 0)
3696                         adapter->wol = 0;
3697                 /* Reset for multiple quad port adapters */
3698                 if (++global_quad_port_a == 4)
3699                         global_quad_port_a = 0;
3700                 break;
3701         case E1000_DEV_ID_82571EB_FIBER:
3702                 /* Wake events only supported on port A for dual fiber
3703                  * regardless of eeprom setting */
3704                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3705                     E1000_STATUS_FUNC_1)
3706                         adapter->wol = 0;
3707                 break;
3708         case E1000_DEV_ID_82571EB_QUAD_COPPER:
3709         case E1000_DEV_ID_82571EB_QUAD_FIBER:
3710         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3711                 /* if quad port adapter, disable WoL on all but port A */
3712                 if (global_quad_port_a != 0)
3713                         adapter->wol = 0;
3714                 /* Reset for multiple quad port adapters */
3715                 if (++global_quad_port_a == 4)
3716                         global_quad_port_a = 0;
3717                 break;
3718         }
3719         return;
3720 }
3721
3722
3723 /*
3724  * Enable PCI Wake On Lan capability
3725  */
3726 static void
3727 em_enable_wakeup(if_ctx_t ctx)
3728 {
3729         struct adapter *adapter = iflib_get_softc(ctx);
3730         device_t dev = iflib_get_dev(ctx);
3731         if_t ifp = iflib_get_ifp(ctx);
3732         int error = 0;
3733         u32 pmc, ctrl, ctrl_ext, rctl;
3734         u16 status;
3735
3736         if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3737                 return;
3738
3739         /*
3740          * Determine type of Wakeup: note that wol
3741          * is set with all bits on by default.
3742          */
3743         if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3744                 adapter->wol &= ~E1000_WUFC_MAG;
3745
3746         if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3747                 adapter->wol &= ~E1000_WUFC_EX;
3748
3749         if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3750                 adapter->wol &= ~E1000_WUFC_MC;
3751         else {
3752                 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3753                 rctl |= E1000_RCTL_MPE;
3754                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3755         }
3756
3757         if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3758                 goto pme;
3759
3760         /* Advertise the wakeup capability */
3761         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3762         ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3763         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3764
3765         /* Keep the laser running on Fiber adapters */
3766         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3767             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3768                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3769                 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3770                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3771         }
3772
3773         if ((adapter->hw.mac.type == e1000_ich8lan) ||
3774             (adapter->hw.mac.type == e1000_pchlan) ||
3775             (adapter->hw.mac.type == e1000_ich9lan) ||
3776             (adapter->hw.mac.type == e1000_ich10lan))
3777                 e1000_suspend_workarounds_ich8lan(&adapter->hw);
3778
3779         if ( adapter->hw.mac.type >= e1000_pchlan) {
3780                 error = em_enable_phy_wakeup(adapter);
3781                 if (error)
3782                         goto pme;
3783         } else {
3784                 /* Enable wakeup by the MAC */
3785                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3786                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3787         }
3788
3789         if (adapter->hw.phy.type == e1000_phy_igp_3)
3790                 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3791
3792 pme:
3793         status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3794         status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3795         if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3796                 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3797         pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3798
3799         return;
3800 }
3801
3802 /*
3803  * WOL in the newer chipset interfaces (pchlan)
3804  * require thing to be copied into the phy
3805  */
3806 static int
3807 em_enable_phy_wakeup(struct adapter *adapter)
3808 {
3809         struct e1000_hw *hw = &adapter->hw;
3810         u32 mreg, ret = 0;
3811         u16 preg;
3812
3813         /* copy MAC RARs to PHY RARs */
3814         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3815
3816         /* copy MAC MTA to PHY MTA */
3817         for (int i = 0; i < hw->mac.mta_reg_count; i++) {
3818                 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3819                 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3820                 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3821                     (u16)((mreg >> 16) & 0xFFFF));
3822         }
3823
3824         /* configure PHY Rx Control register */
3825         e1000_read_phy_reg(hw, BM_RCTL, &preg);
3826         mreg = E1000_READ_REG(hw, E1000_RCTL);
3827         if (mreg & E1000_RCTL_UPE)
3828                 preg |= BM_RCTL_UPE;
3829         if (mreg & E1000_RCTL_MPE)
3830                 preg |= BM_RCTL_MPE;
3831         preg &= ~(BM_RCTL_MO_MASK);
3832         if (mreg & E1000_RCTL_MO_3)
3833                 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3834                                 << BM_RCTL_MO_SHIFT);
3835         if (mreg & E1000_RCTL_BAM)
3836                 preg |= BM_RCTL_BAM;
3837         if (mreg & E1000_RCTL_PMCF)
3838                 preg |= BM_RCTL_PMCF;
3839         mreg = E1000_READ_REG(hw, E1000_CTRL);
3840         if (mreg & E1000_CTRL_RFCE)
3841                 preg |= BM_RCTL_RFCE;
3842         e1000_write_phy_reg(hw, BM_RCTL, preg);
3843
3844         /* enable PHY wakeup in MAC register */
3845         E1000_WRITE_REG(hw, E1000_WUC,
3846             E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3847         E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3848
3849         /* configure and enable PHY wakeup in PHY registers */
3850         e1000_write_phy_reg(hw, BM_WUFC, adapter->wol);
3851         e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
3852
3853         /* activate PHY wakeup */
3854         ret = hw->phy.ops.acquire(hw);
3855         if (ret) {
3856                 printf("Could not acquire PHY\n");
3857                 return ret;
3858         }
3859         e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3860                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3861         ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3862         if (ret) {
3863                 printf("Could not read PHY page 769\n");
3864                 goto out;
3865         }
3866         preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3867         ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3868         if (ret)
3869                 printf("Could not set PHY Host Wakeup bit\n");
3870 out:
3871         hw->phy.ops.release(hw);
3872
3873         return ret;
3874 }
3875
3876 static void
3877 em_if_led_func(if_ctx_t ctx, int onoff)
3878 {
3879         struct adapter *adapter = iflib_get_softc(ctx);
3880
3881         if (onoff) {
3882                 e1000_setup_led(&adapter->hw);
3883                 e1000_led_on(&adapter->hw);
3884         } else {
3885                 e1000_led_off(&adapter->hw);
3886                 e1000_cleanup_led(&adapter->hw);
3887         }
3888 }
3889
3890 /*
3891  * Disable the L0S and L1 LINK states
3892  */
3893 static void
3894 em_disable_aspm(struct adapter *adapter)
3895 {
3896         int base, reg;
3897         u16 link_cap,link_ctrl;
3898         device_t dev = adapter->dev;
3899
3900         switch (adapter->hw.mac.type) {
3901         case e1000_82573:
3902         case e1000_82574:
3903         case e1000_82583:
3904                 break;
3905         default:
3906                 return;
3907         }
3908         if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3909                 return;
3910         reg = base + PCIER_LINK_CAP;
3911         link_cap = pci_read_config(dev, reg, 2);
3912         if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3913                 return;
3914         reg = base + PCIER_LINK_CTL;
3915         link_ctrl = pci_read_config(dev, reg, 2);
3916         link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3917         pci_write_config(dev, reg, link_ctrl, 2);
3918         return;
3919 }
3920
3921 /**********************************************************************
3922  *
3923  *  Update the board statistics counters.
3924  *
3925  **********************************************************************/
3926 static void
3927 em_update_stats_counters(struct adapter *adapter)
3928 {
3929         u64 prev_xoffrxc = adapter->stats.xoffrxc;
3930
3931         if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3932            (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3933                 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3934                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3935         }
3936         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3937         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3938         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3939         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3940
3941         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3942         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3943         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3944         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3945         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3946         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3947         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3948         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3949         /*
3950          ** For watchdog management we need to know if we have been
3951          ** paused during the last interval, so capture that here.
3952         */
3953         if (adapter->stats.xoffrxc != prev_xoffrxc)
3954                 adapter->shared->isc_pause_frames = 1;
3955         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3956         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3957         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3958         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3959         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3960         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3961         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3962         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3963         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3964         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3965         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3966         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3967
3968         /* For the 64-bit byte counters the low dword must be read first. */
3969         /* Both registers clear on the read of the high dword */
3970
3971         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
3972             ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
3973         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
3974             ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
3975
3976         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3977         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3978         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3979         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3980         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3981
3982         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3983         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3984
3985         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3986         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3987         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3988         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3989         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3990         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3991         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3992         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3993         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3994         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3995
3996         /* Interrupt Counts */
3997
3998         adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
3999         adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
4000         adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
4001         adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
4002         adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
4003         adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
4004         adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
4005         adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
4006         adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
4007
4008         if (adapter->hw.mac.type >= e1000_82543) {
4009                 adapter->stats.algnerrc +=
4010                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4011                 adapter->stats.rxerrc +=
4012                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4013                 adapter->stats.tncrs +=
4014                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4015                 adapter->stats.cexterr +=
4016                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4017                 adapter->stats.tsctc +=
4018                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4019                 adapter->stats.tsctfc +=
4020                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4021         }
4022 }
4023
4024 static uint64_t
4025 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4026 {
4027         struct adapter *adapter = iflib_get_softc(ctx);
4028         struct ifnet *ifp = iflib_get_ifp(ctx);
4029
4030         switch (cnt) {
4031         case IFCOUNTER_COLLISIONS:
4032                 return (adapter->stats.colc);
4033         case IFCOUNTER_IERRORS:
4034                 return (adapter->dropped_pkts + adapter->stats.rxerrc +
4035                     adapter->stats.crcerrs + adapter->stats.algnerrc +
4036                     adapter->stats.ruc + adapter->stats.roc +
4037                     adapter->stats.mpc + adapter->stats.cexterr);
4038         case IFCOUNTER_OERRORS:
4039                 return (adapter->stats.ecol + adapter->stats.latecol +
4040                     adapter->watchdog_events);
4041         default:
4042                 return (if_get_counter_default(ifp, cnt));
4043         }
4044 }
4045
4046 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4047  * @ctx: iflib context
4048  * @event: event code to check
4049  *
4050  * Defaults to returning true for unknown events.
4051  *
4052  * @returns true if iflib needs to reinit the interface
4053  */
4054 static bool
4055 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4056 {
4057         switch (event) {
4058         case IFLIB_RESTART_VLAN_CONFIG:
4059         default:
4060                 return (true);
4061         }
4062 }
4063
4064 /* Export a single 32-bit register via a read-only sysctl. */
4065 static int
4066 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4067 {
4068         struct adapter *adapter;
4069         u_int val;
4070
4071         adapter = oidp->oid_arg1;
4072         val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
4073         return (sysctl_handle_int(oidp, &val, 0, req));
4074 }
4075
4076 /*
4077  * Add sysctl variables, one per statistic, to the system.
4078  */
4079 static void
4080 em_add_hw_stats(struct adapter *adapter)
4081 {
4082         device_t dev = iflib_get_dev(adapter->ctx);
4083         struct em_tx_queue *tx_que = adapter->tx_queues;
4084         struct em_rx_queue *rx_que = adapter->rx_queues;
4085
4086         struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4087         struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4088         struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4089         struct e1000_hw_stats *stats = &adapter->stats;
4090
4091         struct sysctl_oid *stat_node, *queue_node, *int_node;
4092         struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4093
4094 #define QUEUE_NAME_LEN 32
4095         char namebuf[QUEUE_NAME_LEN];
4096
4097         /* Driver Statistics */
4098         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4099                         CTLFLAG_RD, &adapter->dropped_pkts,
4100                         "Driver dropped packets");
4101         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4102                         CTLFLAG_RD, &adapter->link_irq,
4103                         "Link MSI-X IRQ Handled");
4104         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4105                         CTLFLAG_RD, &adapter->rx_overruns,
4106                         "RX overruns");
4107         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4108                         CTLFLAG_RD, &adapter->watchdog_events,
4109                         "Watchdog timeouts");
4110         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4111             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4112             adapter, E1000_CTRL, em_sysctl_reg_handler, "IU",
4113             "Device Control Register");
4114         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4115             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4116             adapter, E1000_RCTL, em_sysctl_reg_handler, "IU",
4117             "Receiver Control Register");
4118         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4119                         CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4120                         "Flow Control High Watermark");
4121         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4122                         CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4123                         "Flow Control Low Watermark");
4124
4125         for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4126                 struct tx_ring *txr = &tx_que->txr;
4127                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4128                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4129                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4130                 queue_list = SYSCTL_CHILDREN(queue_node);
4131
4132                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4133                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4134                     E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4135                     "Transmit Descriptor Head");
4136                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4137                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4138                     E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4139                     "Transmit Descriptor Tail");
4140                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4141                                 CTLFLAG_RD, &txr->tx_irq,
4142                                 "Queue MSI-X Transmit Interrupts");
4143         }
4144
4145         for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4146                 struct rx_ring *rxr = &rx_que->rxr;
4147                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4148                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4149                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4150                 queue_list = SYSCTL_CHILDREN(queue_node);
4151
4152                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4153                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4154                     E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4155                     "Receive Descriptor Head");
4156                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4157                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4158                     E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4159                     "Receive Descriptor Tail");
4160                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4161                                 CTLFLAG_RD, &rxr->rx_irq,
4162                                 "Queue MSI-X Receive Interrupts");
4163         }
4164
4165         /* MAC stats get their own sub node */
4166
4167         stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4168             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4169         stat_list = SYSCTL_CHILDREN(stat_node);
4170
4171         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4172                         CTLFLAG_RD, &stats->ecol,
4173                         "Excessive collisions");
4174         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4175                         CTLFLAG_RD, &stats->scc,
4176                         "Single collisions");
4177         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4178                         CTLFLAG_RD, &stats->mcc,
4179                         "Multiple collisions");
4180         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4181                         CTLFLAG_RD, &stats->latecol,
4182                         "Late collisions");
4183         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4184                         CTLFLAG_RD, &stats->colc,
4185                         "Collision Count");
4186         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4187                         CTLFLAG_RD, &adapter->stats.symerrs,
4188                         "Symbol Errors");
4189         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4190                         CTLFLAG_RD, &adapter->stats.sec,
4191                         "Sequence Errors");
4192         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4193                         CTLFLAG_RD, &adapter->stats.dc,
4194                         "Defer Count");
4195         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4196                         CTLFLAG_RD, &adapter->stats.mpc,
4197                         "Missed Packets");
4198         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4199                         CTLFLAG_RD, &adapter->stats.rnbc,
4200                         "Receive No Buffers");
4201         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4202                         CTLFLAG_RD, &adapter->stats.ruc,
4203                         "Receive Undersize");
4204         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4205                         CTLFLAG_RD, &adapter->stats.rfc,
4206                         "Fragmented Packets Received ");
4207         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4208                         CTLFLAG_RD, &adapter->stats.roc,
4209                         "Oversized Packets Received");
4210         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4211                         CTLFLAG_RD, &adapter->stats.rjc,
4212                         "Recevied Jabber");
4213         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4214                         CTLFLAG_RD, &adapter->stats.rxerrc,
4215                         "Receive Errors");
4216         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4217                         CTLFLAG_RD, &adapter->stats.crcerrs,
4218                         "CRC errors");
4219         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4220                         CTLFLAG_RD, &adapter->stats.algnerrc,
4221                         "Alignment Errors");
4222         /* On 82575 these are collision counts */
4223         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4224                         CTLFLAG_RD, &adapter->stats.cexterr,
4225                         "Collision/Carrier extension errors");
4226         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4227                         CTLFLAG_RD, &adapter->stats.xonrxc,
4228                         "XON Received");
4229         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4230                         CTLFLAG_RD, &adapter->stats.xontxc,
4231                         "XON Transmitted");
4232         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4233                         CTLFLAG_RD, &adapter->stats.xoffrxc,
4234                         "XOFF Received");
4235         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4236                         CTLFLAG_RD, &adapter->stats.xofftxc,
4237                         "XOFF Transmitted");
4238
4239         /* Packet Reception Stats */
4240         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4241                         CTLFLAG_RD, &adapter->stats.tpr,
4242                         "Total Packets Received ");
4243         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4244                         CTLFLAG_RD, &adapter->stats.gprc,
4245                         "Good Packets Received");
4246         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4247                         CTLFLAG_RD, &adapter->stats.bprc,
4248                         "Broadcast Packets Received");
4249         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4250                         CTLFLAG_RD, &adapter->stats.mprc,
4251                         "Multicast Packets Received");
4252         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4253                         CTLFLAG_RD, &adapter->stats.prc64,
4254                         "64 byte frames received ");
4255         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4256                         CTLFLAG_RD, &adapter->stats.prc127,
4257                         "65-127 byte frames received");
4258         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4259                         CTLFLAG_RD, &adapter->stats.prc255,
4260                         "128-255 byte frames received");
4261         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4262                         CTLFLAG_RD, &adapter->stats.prc511,
4263                         "256-511 byte frames received");
4264         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4265                         CTLFLAG_RD, &adapter->stats.prc1023,
4266                         "512-1023 byte frames received");
4267         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4268                         CTLFLAG_RD, &adapter->stats.prc1522,
4269                         "1023-1522 byte frames received");
4270         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4271                         CTLFLAG_RD, &adapter->stats.gorc,
4272                         "Good Octets Received");
4273
4274         /* Packet Transmission Stats */
4275         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4276                         CTLFLAG_RD, &adapter->stats.gotc,
4277                         "Good Octets Transmitted");
4278         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4279                         CTLFLAG_RD, &adapter->stats.tpt,
4280                         "Total Packets Transmitted");
4281         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4282                         CTLFLAG_RD, &adapter->stats.gptc,
4283                         "Good Packets Transmitted");
4284         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4285                         CTLFLAG_RD, &adapter->stats.bptc,
4286                         "Broadcast Packets Transmitted");
4287         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4288                         CTLFLAG_RD, &adapter->stats.mptc,
4289                         "Multicast Packets Transmitted");
4290         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4291                         CTLFLAG_RD, &adapter->stats.ptc64,
4292                         "64 byte frames transmitted ");
4293         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4294                         CTLFLAG_RD, &adapter->stats.ptc127,
4295                         "65-127 byte frames transmitted");
4296         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4297                         CTLFLAG_RD, &adapter->stats.ptc255,
4298                         "128-255 byte frames transmitted");
4299         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4300                         CTLFLAG_RD, &adapter->stats.ptc511,
4301                         "256-511 byte frames transmitted");
4302         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4303                         CTLFLAG_RD, &adapter->stats.ptc1023,
4304                         "512-1023 byte frames transmitted");
4305         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4306                         CTLFLAG_RD, &adapter->stats.ptc1522,
4307                         "1024-1522 byte frames transmitted");
4308         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4309                         CTLFLAG_RD, &adapter->stats.tsctc,
4310                         "TSO Contexts Transmitted");
4311         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4312                         CTLFLAG_RD, &adapter->stats.tsctfc,
4313                         "TSO Contexts Failed");
4314
4315
4316         /* Interrupt Stats */
4317
4318         int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4319             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4320         int_list = SYSCTL_CHILDREN(int_node);
4321
4322         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4323                         CTLFLAG_RD, &adapter->stats.iac,
4324                         "Interrupt Assertion Count");
4325
4326         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4327                         CTLFLAG_RD, &adapter->stats.icrxptc,
4328                         "Interrupt Cause Rx Pkt Timer Expire Count");
4329
4330         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4331                         CTLFLAG_RD, &adapter->stats.icrxatc,
4332                         "Interrupt Cause Rx Abs Timer Expire Count");
4333
4334         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4335                         CTLFLAG_RD, &adapter->stats.ictxptc,
4336                         "Interrupt Cause Tx Pkt Timer Expire Count");
4337
4338         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4339                         CTLFLAG_RD, &adapter->stats.ictxatc,
4340                         "Interrupt Cause Tx Abs Timer Expire Count");
4341
4342         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4343                         CTLFLAG_RD, &adapter->stats.ictxqec,
4344                         "Interrupt Cause Tx Queue Empty Count");
4345
4346         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4347                         CTLFLAG_RD, &adapter->stats.ictxqmtc,
4348                         "Interrupt Cause Tx Queue Min Thresh Count");
4349
4350         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4351                         CTLFLAG_RD, &adapter->stats.icrxdmtc,
4352                         "Interrupt Cause Rx Desc Min Thresh Count");
4353
4354         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4355                         CTLFLAG_RD, &adapter->stats.icrxoc,
4356                         "Interrupt Cause Receiver Overrun Count");
4357 }
4358
4359 /**********************************************************************
4360  *
4361  *  This routine provides a way to dump out the adapter eeprom,
4362  *  often a useful debug/service tool. This only dumps the first
4363  *  32 words, stuff that matters is in that extent.
4364  *
4365  **********************************************************************/
4366 static int
4367 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4368 {
4369         struct adapter *adapter = (struct adapter *)arg1;
4370         int error;
4371         int result;
4372
4373         result = -1;
4374         error = sysctl_handle_int(oidp, &result, 0, req);
4375
4376         if (error || !req->newptr)
4377                 return (error);
4378
4379         /*
4380          * This value will cause a hex dump of the
4381          * first 32 16-bit words of the EEPROM to
4382          * the screen.
4383          */
4384         if (result == 1)
4385                 em_print_nvm_info(adapter);
4386
4387         return (error);
4388 }
4389
4390 static void
4391 em_print_nvm_info(struct adapter *adapter)
4392 {
4393         u16 eeprom_data;
4394         int i, j, row = 0;
4395
4396         /* Its a bit crude, but it gets the job done */
4397         printf("\nInterface EEPROM Dump:\n");
4398         printf("Offset\n0x0000  ");
4399         for (i = 0, j = 0; i < 32; i++, j++) {
4400                 if (j == 8) { /* Make the offset block */
4401                         j = 0; ++row;
4402                         printf("\n0x00%x0  ",row);
4403                 }
4404                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4405                 printf("%04x ", eeprom_data);
4406         }
4407         printf("\n");
4408 }
4409
4410 static int
4411 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4412 {
4413         struct em_int_delay_info *info;
4414         struct adapter *adapter;
4415         u32 regval;
4416         int error, usecs, ticks;
4417
4418         info = (struct em_int_delay_info *) arg1;
4419         usecs = info->value;
4420         error = sysctl_handle_int(oidp, &usecs, 0, req);
4421         if (error != 0 || req->newptr == NULL)
4422                 return (error);
4423         if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4424                 return (EINVAL);
4425         info->value = usecs;
4426         ticks = EM_USECS_TO_TICKS(usecs);
4427         if (info->offset == E1000_ITR)  /* units are 256ns here */
4428                 ticks *= 4;
4429
4430         adapter = info->adapter;
4431
4432         regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4433         regval = (regval & ~0xffff) | (ticks & 0xffff);
4434         /* Handle a few special cases. */
4435         switch (info->offset) {
4436         case E1000_RDTR:
4437                 break;
4438         case E1000_TIDV:
4439                 if (ticks == 0) {
4440                         adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4441                         /* Don't write 0 into the TIDV register. */
4442                         regval++;
4443                 } else
4444                         adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4445                 break;
4446         }
4447         E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4448         return (0);
4449 }
4450
4451 static void
4452 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4453         const char *description, struct em_int_delay_info *info,
4454         int offset, int value)
4455 {
4456         info->adapter = adapter;
4457         info->offset = offset;
4458         info->value = value;
4459         SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4460             SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4461             OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4462             info, 0, em_sysctl_int_delay, "I", description);
4463 }
4464
4465 /*
4466  * Set flow control using sysctl:
4467  * Flow control values:
4468  *      0 - off
4469  *      1 - rx pause
4470  *      2 - tx pause
4471  *      3 - full
4472  */
4473 static int
4474 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4475 {
4476         int error;
4477         static int input = 3; /* default is full */
4478         struct adapter  *adapter = (struct adapter *) arg1;
4479
4480         error = sysctl_handle_int(oidp, &input, 0, req);
4481
4482         if ((error) || (req->newptr == NULL))
4483                 return (error);
4484
4485         if (input == adapter->fc) /* no change? */
4486                 return (error);
4487
4488         switch (input) {
4489         case e1000_fc_rx_pause:
4490         case e1000_fc_tx_pause:
4491         case e1000_fc_full:
4492         case e1000_fc_none:
4493                 adapter->hw.fc.requested_mode = input;
4494                 adapter->fc = input;
4495                 break;
4496         default:
4497                 /* Do nothing */
4498                 return (error);
4499         }
4500
4501         adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4502         e1000_force_mac_fc(&adapter->hw);
4503         return (error);
4504 }
4505
4506 /*
4507  * Manage Energy Efficient Ethernet:
4508  * Control values:
4509  *     0/1 - enabled/disabled
4510  */
4511 static int
4512 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4513 {
4514         struct adapter *adapter = (struct adapter *) arg1;
4515         int error, value;
4516
4517         value = adapter->hw.dev_spec.ich8lan.eee_disable;
4518         error = sysctl_handle_int(oidp, &value, 0, req);
4519         if (error || req->newptr == NULL)
4520                 return (error);
4521         adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4522         em_if_init(adapter->ctx);
4523
4524         return (0);
4525 }
4526
4527 static int
4528 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4529 {
4530         struct adapter *adapter;
4531         int error;
4532         int result;
4533
4534         result = -1;
4535         error = sysctl_handle_int(oidp, &result, 0, req);
4536
4537         if (error || !req->newptr)
4538                 return (error);
4539
4540         if (result == 1) {
4541                 adapter = (struct adapter *) arg1;
4542                 em_print_debug_info(adapter);
4543         }
4544
4545         return (error);
4546 }
4547
4548 static int
4549 em_get_rs(SYSCTL_HANDLER_ARGS)
4550 {
4551         struct adapter *adapter = (struct adapter *) arg1;
4552         int error;
4553         int result;
4554
4555         result = 0;
4556         error = sysctl_handle_int(oidp, &result, 0, req);
4557
4558         if (error || !req->newptr || result != 1)
4559                 return (error);
4560         em_dump_rs(adapter);
4561
4562         return (error);
4563 }
4564
4565 static void
4566 em_if_debug(if_ctx_t ctx)
4567 {
4568         em_dump_rs(iflib_get_softc(ctx));
4569 }
4570
4571 /*
4572  * This routine is meant to be fluid, add whatever is
4573  * needed for debugging a problem.  -jfv
4574  */
4575 static void
4576 em_print_debug_info(struct adapter *adapter)
4577 {
4578         device_t dev = iflib_get_dev(adapter->ctx);
4579         struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4580         struct tx_ring *txr = &adapter->tx_queues->txr;
4581         struct rx_ring *rxr = &adapter->rx_queues->rxr;
4582
4583         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4584                 printf("Interface is RUNNING ");
4585         else
4586                 printf("Interface is NOT RUNNING\n");
4587
4588         if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4589                 printf("and INACTIVE\n");
4590         else
4591                 printf("and ACTIVE\n");
4592
4593         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4594                 device_printf(dev, "TX Queue %d ------\n", i);
4595                 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4596                         E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4597                         E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4598
4599         }
4600         for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4601                 device_printf(dev, "RX Queue %d ------\n", j);
4602                 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4603                         E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4604                         E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4605         }
4606 }
4607
4608 /*
4609  * 82574 only:
4610  * Write a new value to the EEPROM increasing the number of MSI-X
4611  * vectors from 3 to 5, for proper multiqueue support.
4612  */
4613 static void
4614 em_enable_vectors_82574(if_ctx_t ctx)
4615 {
4616         struct adapter *adapter = iflib_get_softc(ctx);
4617         struct e1000_hw *hw = &adapter->hw;
4618         device_t dev = iflib_get_dev(ctx);
4619         u16 edata;
4620
4621         e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4622         if (bootverbose)
4623                 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4624         if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4625                 device_printf(dev, "Writing to eeprom: increasing "
4626                     "reported MSI-X vectors from 3 to 5...\n");
4627                 edata &= ~(EM_NVM_MSIX_N_MASK);
4628                 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4629                 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4630                 e1000_update_nvm_checksum(hw);
4631                 device_printf(dev, "Writing to eeprom: done\n");
4632         }
4633 }