]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/e1000/if_em.c
dma: import snapshot 2021-07-10
[FreeBSD/FreeBSD.git] / sys / dev / e1000 / if_em.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33
34 #define em_mac_min e1000_82571
35 #define igb_mac_min e1000_82575
36
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54         /* Intel(R) - lem-class legacy devices */
55         PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) Legacy PRO/1000 MT 82540EM"),
56         PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
57         PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) Legacy PRO/1000 MT 82540EP"),
58         PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
59         PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
60
61         PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
62         PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) Legacy PRO/1000 82541ER"),
63         PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) Legacy PRO/1000 MT 82541ER"),
64         PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
65         PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) Legacy PRO/1000 MT 82541GI"),
66         PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) Legacy PRO/1000 GT 82541PI"),
67         PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
68
69         PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
70
71         PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
72         PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
73
74         PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
75         PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
76         PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
77         PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
78
79         PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
80         PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
81         PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
82         PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
83         PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
84
85         PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
86         PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
87         PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
88         PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
89         PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
90         PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
91         PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
92         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
93         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
94
95         PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) Legacy PRO/1000 CT 82547EI"),
96         PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
97         PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) Legacy PRO/1000 CT 82547GI"),
98
99         /* Intel(R) - em-class devices */
100         PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
101         PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
102         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
103         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
104         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
105         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
106         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
107         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
108         PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
109         PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
110         PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
111         PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
112         PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 82572EI (SERDES)"),
113         PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 82573E (Copper)"),
114         PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 82573E AMT (Copper)"),
115         PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
116         PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
117         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) 80003ES2LAN (Copper)"),
118         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) 80003ES2LAN (SERDES)"),
119         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) 80003ES2LAN (Dual Copper)"),
120         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) 80003ES2LAN (Dual SERDES)"),
121         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) 82566MM ICH8 AMT (Mobile)"),
122         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
123         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
124         PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
125         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
126         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
127         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
128         PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
129         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) 82567LM ICH9 AMT"),
130         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) 82566DM-2 ICH9 AMT"),
131         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
132         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
133         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
134         PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
135         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
136         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
137         PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
138         PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
139         PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
140         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
141         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
142         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
143         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
144         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
145         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
146         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
147         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
148         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
149         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
150         PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
151         PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
152         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
153         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
154         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) I218-LM LPTLP"),
155         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
156         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
157         PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
158         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
159         PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
160         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
161         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
162         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) I219-LM SPT-H(2)"),
163         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) I219-V SPT-H(2)"),
164         PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) I219-LM LBG(3)"),
165         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) I219-LM SPT(4)"),
166         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
167         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) I219-LM SPT(5)"),
168         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
169         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) I219-LM CNP(6)"),
170         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
171         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) I219-LM CNP(7)"),
172         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
173         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) I219-LM ICP(8)"),
174         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
175         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) I219-LM ICP(9)"),
176         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
177         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) I219-LM CMP(10)"),
178         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) I219-V CMP(10)"),
179         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) I219-LM CMP(11)"),
180         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) I219-V CMP(11)"),
181         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) I219-LM CMP(12)"),
182         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) I219-V CMP(12)"),
183         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13, "Intel(R) I219-LM TGP(13)"),
184         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13, "Intel(R) I219-V TGP(13)"),
185         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14, "Intel(R) I219-LM TGP(14)"),
186         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14, "Intel(R) I219-V GTP(14)"),
187         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15, "Intel(R) I219-LM TGP(15)"),
188         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15, "Intel(R) I219-V TGP(15)"),
189         PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16, "Intel(R) I219-LM ADL(16)"),
190         PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16, "Intel(R) I219-V ADL(16)"),
191         PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17, "Intel(R) I219-LM ADL(17)"),
192         PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17, "Intel(R) I219-V ADL(17)"),
193         PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18, "Intel(R) I219-LM MTP(18)"),
194         PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18, "Intel(R) I219-V MTP(18)"),
195         PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM19, "Intel(R) I219-LM MTP(19)"),
196         PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V19, "Intel(R) I219-V MTP(19)"),
197         /* required last entry */
198         PVID_END
199 };
200
201 static pci_vendor_info_t igb_vendor_info_array[] =
202 {
203         /* Intel(R) - igb-class devices */
204         PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 82575EB (Copper)"),
205         PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 82575EB (SERDES)"),
206         PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
207         PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
208         PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
209         PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 82576NS (SERDES)"),
210         PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
211         PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 82576 (Dual SERDES)"),
212         PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
213         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
214         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
215         PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 82576 Virtual Function"),
216         PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) I340 82580 (Copper)"),
217         PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
218         PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) I340 82580 (SERDES)"),
219         PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
220         PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) I340-T2 82580 (Dual Copper)"),
221         PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) I340-F4 82580 (Quad Fiber)"),
222         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) DH89XXCC (SERDES)"),
223         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) I347-AT4 DH89XXCC"),
224         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
225         PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) DH89XXCC (Backplane)"),
226         PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
227         PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
228         PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
229         PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
230         PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
231         PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
232         PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) I210 IT (Copper)"),
233         PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
234         PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) I210 Flashless (Copper)"),
235         PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) I210 Flashless (SERDES)"),
236         PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS, "Intel(R) I210 Flashless (SGMII)"),
237         PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
238         PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
239         PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
240         PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
241         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) I354 (1.0 GbE Backplane)"),
242         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) I354 (2.5 GbE Backplane)"),
243         PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
244         /* required last entry */
245         PVID_END
246 };
247
248 /*********************************************************************
249  *  Function prototypes
250  *********************************************************************/
251 static void     *em_register(device_t dev);
252 static void     *igb_register(device_t dev);
253 static int      em_if_attach_pre(if_ctx_t ctx);
254 static int      em_if_attach_post(if_ctx_t ctx);
255 static int      em_if_detach(if_ctx_t ctx);
256 static int      em_if_shutdown(if_ctx_t ctx);
257 static int      em_if_suspend(if_ctx_t ctx);
258 static int      em_if_resume(if_ctx_t ctx);
259
260 static int      em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
261 static int      em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
262 static void     em_if_queues_free(if_ctx_t ctx);
263
264 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
265 static void     em_if_init(if_ctx_t ctx);
266 static void     em_if_stop(if_ctx_t ctx);
267 static void     em_if_media_status(if_ctx_t, struct ifmediareq *);
268 static int      em_if_media_change(if_ctx_t ctx);
269 static int      em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
270 static void     em_if_timer(if_ctx_t ctx, uint16_t qid);
271 static void     em_if_vlan_register(if_ctx_t ctx, u16 vtag);
272 static void     em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
273 static void     em_if_watchdog_reset(if_ctx_t ctx);
274 static bool     em_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event);
275
276 static void     em_identify_hardware(if_ctx_t ctx);
277 static int      em_allocate_pci_resources(if_ctx_t ctx);
278 static void     em_free_pci_resources(if_ctx_t ctx);
279 static void     em_reset(if_ctx_t ctx);
280 static int      em_setup_interface(if_ctx_t ctx);
281 static int      em_setup_msix(if_ctx_t ctx);
282
283 static void     em_initialize_transmit_unit(if_ctx_t ctx);
284 static void     em_initialize_receive_unit(if_ctx_t ctx);
285
286 static void     em_if_intr_enable(if_ctx_t ctx);
287 static void     em_if_intr_disable(if_ctx_t ctx);
288 static void     igb_if_intr_enable(if_ctx_t ctx);
289 static void     igb_if_intr_disable(if_ctx_t ctx);
290 static int      em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
291 static int      em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
292 static int      igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
293 static int      igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
294 static void     em_if_multi_set(if_ctx_t ctx);
295 static void     em_if_update_admin_status(if_ctx_t ctx);
296 static void     em_if_debug(if_ctx_t ctx);
297 static void     em_update_stats_counters(struct adapter *);
298 static void     em_add_hw_stats(struct adapter *adapter);
299 static int      em_if_set_promisc(if_ctx_t ctx, int flags);
300 static bool     em_if_vlan_filter_capable(struct adapter *);
301 static bool     em_if_vlan_filter_used(struct adapter *);
302 static void     em_if_vlan_filter_enable(struct adapter *);
303 static void     em_if_vlan_filter_disable(struct adapter *);
304 static void     em_if_vlan_filter_write(struct adapter *);
305 static void     em_setup_vlan_hw_support(struct adapter *);
306 static int      em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
307 static void     em_print_nvm_info(struct adapter *);
308 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
309 static int      em_get_rs(SYSCTL_HANDLER_ARGS);
310 static void     em_print_debug_info(struct adapter *);
311 static int      em_is_valid_ether_addr(u8 *);
312 static int      em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
313 static void     em_add_int_delay_sysctl(struct adapter *, const char *,
314                     const char *, struct em_int_delay_info *, int, int);
315 /* Management and WOL Support */
316 static void     em_init_manageability(struct adapter *);
317 static void     em_release_manageability(struct adapter *);
318 static void     em_get_hw_control(struct adapter *);
319 static void     em_release_hw_control(struct adapter *);
320 static void     em_get_wakeup(if_ctx_t ctx);
321 static void     em_enable_wakeup(if_ctx_t ctx);
322 static int      em_enable_phy_wakeup(struct adapter *);
323 static void     em_disable_aspm(struct adapter *);
324
325 int             em_intr(void *arg);
326
327 /* MSI-X handlers */
328 static int      em_if_msix_intr_assign(if_ctx_t, int);
329 static int      em_msix_link(void *);
330 static void     em_handle_link(void *context);
331
332 static void     em_enable_vectors_82574(if_ctx_t);
333
334 static int      em_set_flowcntl(SYSCTL_HANDLER_ARGS);
335 static int      em_sysctl_eee(SYSCTL_HANDLER_ARGS);
336 static void     em_if_led_func(if_ctx_t ctx, int onoff);
337
338 static int      em_get_regs(SYSCTL_HANDLER_ARGS);
339
340 static void     lem_smartspeed(struct adapter *adapter);
341 static void     igb_configure_queues(struct adapter *adapter);
342
343
344 /*********************************************************************
345  *  FreeBSD Device Interface Entry Points
346  *********************************************************************/
347 static device_method_t em_methods[] = {
348         /* Device interface */
349         DEVMETHOD(device_register, em_register),
350         DEVMETHOD(device_probe, iflib_device_probe),
351         DEVMETHOD(device_attach, iflib_device_attach),
352         DEVMETHOD(device_detach, iflib_device_detach),
353         DEVMETHOD(device_shutdown, iflib_device_shutdown),
354         DEVMETHOD(device_suspend, iflib_device_suspend),
355         DEVMETHOD(device_resume, iflib_device_resume),
356         DEVMETHOD_END
357 };
358
359 static device_method_t igb_methods[] = {
360         /* Device interface */
361         DEVMETHOD(device_register, igb_register),
362         DEVMETHOD(device_probe, iflib_device_probe),
363         DEVMETHOD(device_attach, iflib_device_attach),
364         DEVMETHOD(device_detach, iflib_device_detach),
365         DEVMETHOD(device_shutdown, iflib_device_shutdown),
366         DEVMETHOD(device_suspend, iflib_device_suspend),
367         DEVMETHOD(device_resume, iflib_device_resume),
368         DEVMETHOD_END
369 };
370
371
372 static driver_t em_driver = {
373         "em", em_methods, sizeof(struct adapter),
374 };
375
376 static devclass_t em_devclass;
377 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
378
379 MODULE_DEPEND(em, pci, 1, 1, 1);
380 MODULE_DEPEND(em, ether, 1, 1, 1);
381 MODULE_DEPEND(em, iflib, 1, 1, 1);
382
383 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
384
385 static driver_t igb_driver = {
386         "igb", igb_methods, sizeof(struct adapter),
387 };
388
389 static devclass_t igb_devclass;
390 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
391
392 MODULE_DEPEND(igb, pci, 1, 1, 1);
393 MODULE_DEPEND(igb, ether, 1, 1, 1);
394 MODULE_DEPEND(igb, iflib, 1, 1, 1);
395
396 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
397
398 static device_method_t em_if_methods[] = {
399         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
400         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
401         DEVMETHOD(ifdi_detach, em_if_detach),
402         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
403         DEVMETHOD(ifdi_suspend, em_if_suspend),
404         DEVMETHOD(ifdi_resume, em_if_resume),
405         DEVMETHOD(ifdi_init, em_if_init),
406         DEVMETHOD(ifdi_stop, em_if_stop),
407         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
408         DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
409         DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
410         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
411         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
412         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
413         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
414         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
415         DEVMETHOD(ifdi_media_status, em_if_media_status),
416         DEVMETHOD(ifdi_media_change, em_if_media_change),
417         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
418         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
419         DEVMETHOD(ifdi_timer, em_if_timer),
420         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
421         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
422         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
423         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
424         DEVMETHOD(ifdi_led_func, em_if_led_func),
425         DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
426         DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
427         DEVMETHOD(ifdi_debug, em_if_debug),
428         DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
429         DEVMETHOD_END
430 };
431
432 static driver_t em_if_driver = {
433         "em_if", em_if_methods, sizeof(struct adapter)
434 };
435
436 static device_method_t igb_if_methods[] = {
437         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
438         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
439         DEVMETHOD(ifdi_detach, em_if_detach),
440         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
441         DEVMETHOD(ifdi_suspend, em_if_suspend),
442         DEVMETHOD(ifdi_resume, em_if_resume),
443         DEVMETHOD(ifdi_init, em_if_init),
444         DEVMETHOD(ifdi_stop, em_if_stop),
445         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
446         DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
447         DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
448         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
449         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
450         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
451         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
452         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
453         DEVMETHOD(ifdi_media_status, em_if_media_status),
454         DEVMETHOD(ifdi_media_change, em_if_media_change),
455         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
456         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
457         DEVMETHOD(ifdi_timer, em_if_timer),
458         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
459         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
460         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
461         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
462         DEVMETHOD(ifdi_led_func, em_if_led_func),
463         DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
464         DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
465         DEVMETHOD(ifdi_debug, em_if_debug),
466         DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
467         DEVMETHOD_END
468 };
469
470 static driver_t igb_if_driver = {
471         "igb_if", igb_if_methods, sizeof(struct adapter)
472 };
473
474 /*********************************************************************
475  *  Tunable default values.
476  *********************************************************************/
477
478 #define EM_TICKS_TO_USECS(ticks)        ((1024 * (ticks) + 500) / 1000)
479 #define EM_USECS_TO_TICKS(usecs)        ((1000 * (usecs) + 512) / 1024)
480
481 #define MAX_INTS_PER_SEC        8000
482 #define DEFAULT_ITR             (1000000000/(MAX_INTS_PER_SEC * 256))
483
484 /* Allow common code without TSO */
485 #ifndef CSUM_TSO
486 #define CSUM_TSO        0
487 #endif
488
489 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
490     "EM driver parameters");
491
492 static int em_disable_crc_stripping = 0;
493 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
494     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
495
496 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
497 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
498 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
499     0, "Default transmit interrupt delay in usecs");
500 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
501     0, "Default receive interrupt delay in usecs");
502
503 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
504 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
505 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
506     &em_tx_abs_int_delay_dflt, 0,
507     "Default transmit interrupt delay limit in usecs");
508 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
509     &em_rx_abs_int_delay_dflt, 0,
510     "Default receive interrupt delay limit in usecs");
511
512 static int em_smart_pwr_down = false;
513 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
514     0, "Set to true to leave smart power down enabled on newer adapters");
515
516 /* Controls whether promiscuous also shows bad packets */
517 static int em_debug_sbp = false;
518 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
519     "Show bad packets in promiscuous mode");
520
521 /* How many packets rxeof tries to clean at a time */
522 static int em_rx_process_limit = 100;
523 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
524     &em_rx_process_limit, 0,
525     "Maximum number of received packets to process "
526     "at a time, -1 means unlimited");
527
528 /* Energy efficient ethernet - default to OFF */
529 static int eee_setting = 1;
530 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
531     "Enable Energy Efficient Ethernet");
532
533 /*
534 ** Tuneable Interrupt rate
535 */
536 static int em_max_interrupt_rate = 8000;
537 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
538     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
539
540
541
542 /* Global used in WOL setup with multiport cards */
543 static int global_quad_port_a = 0;
544
545 extern struct if_txrx igb_txrx;
546 extern struct if_txrx em_txrx;
547 extern struct if_txrx lem_txrx;
548
549 static struct if_shared_ctx em_sctx_init = {
550         .isc_magic = IFLIB_MAGIC,
551         .isc_q_align = PAGE_SIZE,
552         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
553         .isc_tx_maxsegsize = PAGE_SIZE,
554         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
555         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
556         .isc_rx_maxsize = MJUM9BYTES,
557         .isc_rx_nsegments = 1,
558         .isc_rx_maxsegsize = MJUM9BYTES,
559         .isc_nfl = 1,
560         .isc_nrxqs = 1,
561         .isc_ntxqs = 1,
562         .isc_admin_intrcnt = 1,
563         .isc_vendor_info = em_vendor_info_array,
564         .isc_driver_version = em_driver_version,
565         .isc_driver = &em_if_driver,
566         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
567
568         .isc_nrxd_min = {EM_MIN_RXD},
569         .isc_ntxd_min = {EM_MIN_TXD},
570         .isc_nrxd_max = {EM_MAX_RXD},
571         .isc_ntxd_max = {EM_MAX_TXD},
572         .isc_nrxd_default = {EM_DEFAULT_RXD},
573         .isc_ntxd_default = {EM_DEFAULT_TXD},
574 };
575
576 static struct if_shared_ctx igb_sctx_init = {
577         .isc_magic = IFLIB_MAGIC,
578         .isc_q_align = PAGE_SIZE,
579         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
580         .isc_tx_maxsegsize = PAGE_SIZE,
581         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
582         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
583         .isc_rx_maxsize = MJUM9BYTES,
584         .isc_rx_nsegments = 1,
585         .isc_rx_maxsegsize = MJUM9BYTES,
586         .isc_nfl = 1,
587         .isc_nrxqs = 1,
588         .isc_ntxqs = 1,
589         .isc_admin_intrcnt = 1,
590         .isc_vendor_info = igb_vendor_info_array,
591         .isc_driver_version = em_driver_version,
592         .isc_driver = &igb_if_driver,
593         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
594
595         .isc_nrxd_min = {EM_MIN_RXD},
596         .isc_ntxd_min = {EM_MIN_TXD},
597         .isc_nrxd_max = {IGB_MAX_RXD},
598         .isc_ntxd_max = {IGB_MAX_TXD},
599         .isc_nrxd_default = {EM_DEFAULT_RXD},
600         .isc_ntxd_default = {EM_DEFAULT_TXD},
601 };
602
603 /*****************************************************************
604  *
605  * Dump Registers
606  *
607  ****************************************************************/
608 #define IGB_REGS_LEN 739
609
610 static int em_get_regs(SYSCTL_HANDLER_ARGS)
611 {
612         struct adapter *adapter = (struct adapter *)arg1;
613         struct e1000_hw *hw = &adapter->hw;
614         struct sbuf *sb;
615         u32 *regs_buff;
616         int rc;
617
618         regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
619         memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
620
621         rc = sysctl_wire_old_buffer(req, 0);
622         MPASS(rc == 0);
623         if (rc != 0) {
624                 free(regs_buff, M_DEVBUF);
625                 return (rc);
626         }
627
628         sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
629         MPASS(sb != NULL);
630         if (sb == NULL) {
631                 free(regs_buff, M_DEVBUF);
632                 return (ENOMEM);
633         }
634
635         /* General Registers */
636         regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
637         regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
638         regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
639         regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
640         regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
641         regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
642         regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
643         regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
644         regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
645         regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
646         regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
647         regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
648         regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
649         regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
650         regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
651         regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
652         regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
653         regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
654         regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
655         regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
656         regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
657         regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
658
659         sbuf_printf(sb, "General Registers\n");
660         sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
661         sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
662         sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
663
664         sbuf_printf(sb, "Interrupt Registers\n");
665         sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
666
667         sbuf_printf(sb, "RX Registers\n");
668         sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
669         sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
670         sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
671         sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
672         sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
673         sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
674         sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
675
676         sbuf_printf(sb, "TX Registers\n");
677         sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
678         sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
679         sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
680         sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
681         sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
682         sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
683         sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
684         sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
685         sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
686         sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
687         sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
688
689         free(regs_buff, M_DEVBUF);
690
691 #ifdef DUMP_DESCS
692         {
693                 if_softc_ctx_t scctx = adapter->shared;
694                 struct rx_ring *rxr = &rx_que->rxr;
695                 struct tx_ring *txr = &tx_que->txr;
696                 int ntxd = scctx->isc_ntxd[0];
697                 int nrxd = scctx->isc_nrxd[0];
698                 int j;
699
700         for (j = 0; j < nrxd; j++) {
701                 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
702                 u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
703                 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
704         }
705
706         for (j = 0; j < min(ntxd, 256); j++) {
707                 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
708
709                 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
710                             j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
711                             buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
712
713         }
714         }
715 #endif
716
717         rc = sbuf_finish(sb);
718         sbuf_delete(sb);
719         return(rc);
720 }
721
722 static void *
723 em_register(device_t dev)
724 {
725         return (&em_sctx_init);
726 }
727
728 static void *
729 igb_register(device_t dev)
730 {
731         return (&igb_sctx_init);
732 }
733
734 static int
735 em_set_num_queues(if_ctx_t ctx)
736 {
737         struct adapter *adapter = iflib_get_softc(ctx);
738         int maxqueues;
739
740         /* Sanity check based on HW */
741         switch (adapter->hw.mac.type) {
742         case e1000_82576:
743         case e1000_82580:
744         case e1000_i350:
745         case e1000_i354:
746                 maxqueues = 8;
747                 break;
748         case e1000_i210:
749         case e1000_82575:
750                 maxqueues = 4;
751                 break;
752         case e1000_i211:
753         case e1000_82574:
754                 maxqueues = 2;
755                 break;
756         default:
757                 maxqueues = 1;
758                 break;
759         }
760
761         return (maxqueues);
762 }
763
764 #define LEM_CAPS                                                        \
765     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
766     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
767
768 #define EM_CAPS                                                         \
769     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
770     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
771     IFCAP_LRO | IFCAP_VLAN_HWTSO
772
773 #define IGB_CAPS                                                        \
774     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
775     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
776     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
777     IFCAP_TSO6
778
779 /*********************************************************************
780  *  Device initialization routine
781  *
782  *  The attach entry point is called when the driver is being loaded.
783  *  This routine identifies the type of hardware, allocates all resources
784  *  and initializes the hardware.
785  *
786  *  return 0 on success, positive on failure
787  *********************************************************************/
788 static int
789 em_if_attach_pre(if_ctx_t ctx)
790 {
791         struct adapter *adapter;
792         if_softc_ctx_t scctx;
793         device_t dev;
794         struct e1000_hw *hw;
795         int error = 0;
796
797         INIT_DEBUGOUT("em_if_attach_pre: begin");
798         dev = iflib_get_dev(ctx);
799         adapter = iflib_get_softc(ctx);
800
801         adapter->ctx = adapter->osdep.ctx = ctx;
802         adapter->dev = adapter->osdep.dev = dev;
803         scctx = adapter->shared = iflib_get_softc_ctx(ctx);
804         adapter->media = iflib_get_media(ctx);
805         hw = &adapter->hw;
806
807         adapter->tx_process_limit = scctx->isc_ntxd[0];
808
809         /* SYSCTL stuff */
810         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
811             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
812             OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
813             adapter, 0, em_sysctl_nvm_info, "I", "NVM Information");
814
815         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
816             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
817             OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
818             adapter, 0, em_sysctl_debug_info, "I", "Debug Information");
819
820         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
821             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
822             OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
823             adapter, 0, em_set_flowcntl, "I", "Flow Control");
824
825         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
826             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
827             OID_AUTO, "reg_dump",
828             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 0,
829             em_get_regs, "A", "Dump Registers");
830
831         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
832             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
833             OID_AUTO, "rs_dump",
834             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, adapter, 0,
835             em_get_rs, "I", "Dump RS indexes");
836
837         /* Determine hardware and mac info */
838         em_identify_hardware(ctx);
839
840         scctx->isc_tx_nsegments = EM_MAX_SCATTER;
841         scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
842         if (bootverbose)
843                 device_printf(dev, "attach_pre capping queues at %d\n",
844                     scctx->isc_ntxqsets_max);
845
846         if (hw->mac.type >= igb_mac_min) {
847                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
848                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
849                 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
850                 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
851                 scctx->isc_txrx = &igb_txrx;
852                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
853                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
854                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
855                 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
856                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
857                      CSUM_IP6_TCP | CSUM_IP6_UDP;
858                 if (hw->mac.type != e1000_82575)
859                         scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
860                 /*
861                 ** Some new devices, as with ixgbe, now may
862                 ** use a different BAR, so we need to keep
863                 ** track of which is used.
864                 */
865                 scctx->isc_msix_bar = pci_msix_table_bar(dev);
866         } else if (hw->mac.type >= em_mac_min) {
867                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
868                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
869                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
870                 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
871                 scctx->isc_txrx = &em_txrx;
872                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
873                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
874                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
875                 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
876                 /*
877                  * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
878                  * by default as we don't have workarounds for all associated
879                  * silicon errata.  E. g., with several MACs such as 82573E,
880                  * TSO only works at Gigabit speed and otherwise can cause the
881                  * hardware to hang (which also would be next to impossible to
882                  * work around given that already queued TSO-using descriptors
883                  * would need to be flushed and vlan(4) reconfigured at runtime
884                  * in case of a link speed change).  Moreover, MACs like 82579
885                  * still can hang at Gigabit even with all publicly documented
886                  * TSO workarounds implemented.  Generally, the penality of
887                  * these workarounds is rather high and may involve copying
888                  * mbuf data around so advantages of TSO lapse.  Still, TSO may
889                  * work for a few MACs of this class - at least when sticking
890                  * with Gigabit - in which case users may enable TSO manually.
891                  */
892                 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
893                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
894                 /*
895                  * We support MSI-X with 82574 only, but indicate to iflib(4)
896                  * that it shall give MSI at least a try with other devices.
897                  */
898                 if (hw->mac.type == e1000_82574) {
899                         scctx->isc_msix_bar = pci_msix_table_bar(dev);;
900                 } else {
901                         scctx->isc_msix_bar = -1;
902                         scctx->isc_disable_msix = 1;
903                 }
904         } else {
905                 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
906                 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
907                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
908                 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
909                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
910                 scctx->isc_txrx = &lem_txrx;
911                 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
912                 if (hw->mac.type < e1000_82543)
913                         scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
914                 /* 82541ER doesn't do HW tagging */
915                 if (hw->device_id == E1000_DEV_ID_82541ER || hw->device_id == E1000_DEV_ID_82541ER_LOM)
916                         scctx->isc_capenable &= ~IFCAP_VLAN_HWTAGGING;
917                 /* INTx only */
918                 scctx->isc_msix_bar = 0;
919         }
920
921         /* Setup PCI resources */
922         if (em_allocate_pci_resources(ctx)) {
923                 device_printf(dev, "Allocation of PCI resources failed\n");
924                 error = ENXIO;
925                 goto err_pci;
926         }
927
928         /*
929         ** For ICH8 and family we need to
930         ** map the flash memory, and this
931         ** must happen after the MAC is
932         ** identified
933         */
934         if ((hw->mac.type == e1000_ich8lan) ||
935             (hw->mac.type == e1000_ich9lan) ||
936             (hw->mac.type == e1000_ich10lan) ||
937             (hw->mac.type == e1000_pchlan) ||
938             (hw->mac.type == e1000_pch2lan) ||
939             (hw->mac.type == e1000_pch_lpt)) {
940                 int rid = EM_BAR_TYPE_FLASH;
941                 adapter->flash = bus_alloc_resource_any(dev,
942                     SYS_RES_MEMORY, &rid, RF_ACTIVE);
943                 if (adapter->flash == NULL) {
944                         device_printf(dev, "Mapping of Flash failed\n");
945                         error = ENXIO;
946                         goto err_pci;
947                 }
948                 /* This is used in the shared code */
949                 hw->flash_address = (u8 *)adapter->flash;
950                 adapter->osdep.flash_bus_space_tag =
951                     rman_get_bustag(adapter->flash);
952                 adapter->osdep.flash_bus_space_handle =
953                     rman_get_bushandle(adapter->flash);
954         }
955         /*
956         ** In the new SPT device flash is not  a
957         ** separate BAR, rather it is also in BAR0,
958         ** so use the same tag and an offset handle for the
959         ** FLASH read/write macros in the shared code.
960         */
961         else if (hw->mac.type >= e1000_pch_spt) {
962                 adapter->osdep.flash_bus_space_tag =
963                     adapter->osdep.mem_bus_space_tag;
964                 adapter->osdep.flash_bus_space_handle =
965                     adapter->osdep.mem_bus_space_handle
966                     + E1000_FLASH_BASE_ADDR;
967         }
968
969         /* Do Shared Code initialization */
970         error = e1000_setup_init_funcs(hw, true);
971         if (error) {
972                 device_printf(dev, "Setup of Shared code failed, error %d\n",
973                     error);
974                 error = ENXIO;
975                 goto err_pci;
976         }
977
978         em_setup_msix(ctx);
979         e1000_get_bus_info(hw);
980
981         /* Set up some sysctls for the tunable interrupt delays */
982         em_add_int_delay_sysctl(adapter, "rx_int_delay",
983             "receive interrupt delay in usecs", &adapter->rx_int_delay,
984             E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
985         em_add_int_delay_sysctl(adapter, "tx_int_delay",
986             "transmit interrupt delay in usecs", &adapter->tx_int_delay,
987             E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
988         em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
989             "receive interrupt delay limit in usecs",
990             &adapter->rx_abs_int_delay,
991             E1000_REGISTER(hw, E1000_RADV),
992             em_rx_abs_int_delay_dflt);
993         em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
994             "transmit interrupt delay limit in usecs",
995             &adapter->tx_abs_int_delay,
996             E1000_REGISTER(hw, E1000_TADV),
997             em_tx_abs_int_delay_dflt);
998         em_add_int_delay_sysctl(adapter, "itr",
999             "interrupt delay limit in usecs/4",
1000             &adapter->tx_itr,
1001             E1000_REGISTER(hw, E1000_ITR),
1002             DEFAULT_ITR);
1003
1004         hw->mac.autoneg = DO_AUTO_NEG;
1005         hw->phy.autoneg_wait_to_complete = false;
1006         hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1007
1008         if (hw->mac.type < em_mac_min) {
1009                 e1000_init_script_state_82541(hw, true);
1010                 e1000_set_tbi_compatibility_82543(hw, true);
1011         }
1012         /* Copper options */
1013         if (hw->phy.media_type == e1000_media_type_copper) {
1014                 hw->phy.mdix = AUTO_ALL_MODES;
1015                 hw->phy.disable_polarity_correction = false;
1016                 hw->phy.ms_type = EM_MASTER_SLAVE;
1017         }
1018
1019         /*
1020          * Set the frame limits assuming
1021          * standard ethernet sized frames.
1022          */
1023         scctx->isc_max_frame_size = hw->mac.max_frame_size =
1024             ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1025
1026         /*
1027          * This controls when hardware reports transmit completion
1028          * status.
1029          */
1030         hw->mac.report_tx_early = 1;
1031
1032         /* Allocate multicast array memory. */
1033         adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1034             MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1035         if (adapter->mta == NULL) {
1036                 device_printf(dev, "Can not allocate multicast setup array\n");
1037                 error = ENOMEM;
1038                 goto err_late;
1039         }
1040
1041         /* Check SOL/IDER usage */
1042         if (e1000_check_reset_block(hw))
1043                 device_printf(dev, "PHY reset is blocked"
1044                               " due to SOL/IDER session.\n");
1045
1046         /* Sysctl for setting Energy Efficient Ethernet */
1047         hw->dev_spec.ich8lan.eee_disable = eee_setting;
1048         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1049             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1050             OID_AUTO, "eee_control",
1051             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1052             adapter, 0, em_sysctl_eee, "I",
1053             "Disable Energy Efficient Ethernet");
1054
1055         /*
1056         ** Start from a known state, this is
1057         ** important in reading the nvm and
1058         ** mac from that.
1059         */
1060         e1000_reset_hw(hw);
1061
1062         /* Make sure we have a good EEPROM before we read from it */
1063         if (e1000_validate_nvm_checksum(hw) < 0) {
1064                 /*
1065                 ** Some PCI-E parts fail the first check due to
1066                 ** the link being in sleep state, call it again,
1067                 ** if it fails a second time its a real issue.
1068                 */
1069                 if (e1000_validate_nvm_checksum(hw) < 0) {
1070                         device_printf(dev,
1071                             "The EEPROM Checksum Is Not Valid\n");
1072                         error = EIO;
1073                         goto err_late;
1074                 }
1075         }
1076
1077         /* Copy the permanent MAC address out of the EEPROM */
1078         if (e1000_read_mac_addr(hw) < 0) {
1079                 device_printf(dev, "EEPROM read error while reading MAC"
1080                               " address\n");
1081                 error = EIO;
1082                 goto err_late;
1083         }
1084
1085         if (!em_is_valid_ether_addr(hw->mac.addr)) {
1086                 if (adapter->vf_ifp) {
1087                         ether_gen_addr(iflib_get_ifp(ctx),
1088                             (struct ether_addr *)hw->mac.addr);
1089                 } else {
1090                         device_printf(dev, "Invalid MAC address\n");
1091                         error = EIO;
1092                         goto err_late;
1093                 }
1094         }
1095
1096         /* Disable ULP support */
1097         e1000_disable_ulp_lpt_lp(hw, true);
1098
1099         /*
1100          * Get Wake-on-Lan and Management info for later use
1101          */
1102         em_get_wakeup(ctx);
1103
1104         /* Enable only WOL MAGIC by default */
1105         scctx->isc_capenable &= ~IFCAP_WOL;
1106         if (adapter->wol != 0)
1107                 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1108
1109         iflib_set_mac(ctx, hw->mac.addr);
1110
1111         return (0);
1112
1113 err_late:
1114         em_release_hw_control(adapter);
1115 err_pci:
1116         em_free_pci_resources(ctx);
1117         free(adapter->mta, M_DEVBUF);
1118
1119         return (error);
1120 }
1121
1122 static int
1123 em_if_attach_post(if_ctx_t ctx)
1124 {
1125         struct adapter *adapter = iflib_get_softc(ctx);
1126         struct e1000_hw *hw = &adapter->hw;
1127         int error = 0;
1128
1129         /* Setup OS specific network interface */
1130         error = em_setup_interface(ctx);
1131         if (error != 0) {
1132                 device_printf(adapter->dev, "Interface setup failed: %d\n", error);
1133                 goto err_late;
1134         }
1135
1136         em_reset(ctx);
1137
1138         /* Initialize statistics */
1139         em_update_stats_counters(adapter);
1140         hw->mac.get_link_status = 1;
1141         em_if_update_admin_status(ctx);
1142         em_add_hw_stats(adapter);
1143
1144         /* Non-AMT based hardware can now take control from firmware */
1145         if (adapter->has_manage && !adapter->has_amt)
1146                 em_get_hw_control(adapter);
1147
1148         INIT_DEBUGOUT("em_if_attach_post: end");
1149
1150         return (0);
1151
1152 err_late:
1153         /* upon attach_post() error, iflib calls _if_detach() to free resources. */
1154         return (error);
1155 }
1156
1157 /*********************************************************************
1158  *  Device removal routine
1159  *
1160  *  The detach entry point is called when the driver is being removed.
1161  *  This routine stops the adapter and deallocates all the resources
1162  *  that were allocated for driver operation.
1163  *
1164  *  return 0 on success, positive on failure
1165  *********************************************************************/
1166 static int
1167 em_if_detach(if_ctx_t ctx)
1168 {
1169         struct adapter  *adapter = iflib_get_softc(ctx);
1170
1171         INIT_DEBUGOUT("em_if_detach: begin");
1172
1173         e1000_phy_hw_reset(&adapter->hw);
1174
1175         em_release_manageability(adapter);
1176         em_release_hw_control(adapter);
1177         em_free_pci_resources(ctx);
1178         free(adapter->mta, M_DEVBUF);
1179         adapter->mta = NULL;
1180
1181         return (0);
1182 }
1183
1184 /*********************************************************************
1185  *
1186  *  Shutdown entry point
1187  *
1188  **********************************************************************/
1189
1190 static int
1191 em_if_shutdown(if_ctx_t ctx)
1192 {
1193         return em_if_suspend(ctx);
1194 }
1195
1196 /*
1197  * Suspend/resume device methods.
1198  */
1199 static int
1200 em_if_suspend(if_ctx_t ctx)
1201 {
1202         struct adapter *adapter = iflib_get_softc(ctx);
1203
1204         em_release_manageability(adapter);
1205         em_release_hw_control(adapter);
1206         em_enable_wakeup(ctx);
1207         return (0);
1208 }
1209
1210 static int
1211 em_if_resume(if_ctx_t ctx)
1212 {
1213         struct adapter *adapter = iflib_get_softc(ctx);
1214
1215         if (adapter->hw.mac.type == e1000_pch2lan)
1216                 e1000_resume_workarounds_pchlan(&adapter->hw);
1217         em_if_init(ctx);
1218         em_init_manageability(adapter);
1219
1220         return(0);
1221 }
1222
1223 static int
1224 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1225 {
1226         int max_frame_size;
1227         struct adapter *adapter = iflib_get_softc(ctx);
1228         if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1229
1230         IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1231
1232         switch (adapter->hw.mac.type) {
1233         case e1000_82571:
1234         case e1000_82572:
1235         case e1000_ich9lan:
1236         case e1000_ich10lan:
1237         case e1000_pch2lan:
1238         case e1000_pch_lpt:
1239         case e1000_pch_spt:
1240         case e1000_pch_cnp:
1241         case e1000_pch_tgp:
1242         case e1000_pch_adp:
1243         case e1000_pch_mtp:
1244         case e1000_82574:
1245         case e1000_82583:
1246         case e1000_80003es2lan:
1247                 /* 9K Jumbo Frame size */
1248                 max_frame_size = 9234;
1249                 break;
1250         case e1000_pchlan:
1251                 max_frame_size = 4096;
1252                 break;
1253         case e1000_82542:
1254         case e1000_ich8lan:
1255                 /* Adapters that do not support jumbo frames */
1256                 max_frame_size = ETHER_MAX_LEN;
1257                 break;
1258         default:
1259                 if (adapter->hw.mac.type >= igb_mac_min)
1260                         max_frame_size = 9234;
1261                 else /* lem */
1262                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
1263         }
1264         if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1265                 return (EINVAL);
1266         }
1267
1268         scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1269             mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1270         return (0);
1271 }
1272
1273 /*********************************************************************
1274  *  Init entry point
1275  *
1276  *  This routine is used in two ways. It is used by the stack as
1277  *  init entry point in network interface structure. It is also used
1278  *  by the driver as a hw/sw initialization routine to get to a
1279  *  consistent state.
1280  *
1281  **********************************************************************/
1282 static void
1283 em_if_init(if_ctx_t ctx)
1284 {
1285         struct adapter *adapter = iflib_get_softc(ctx);
1286         if_softc_ctx_t scctx = adapter->shared;
1287         struct ifnet *ifp = iflib_get_ifp(ctx);
1288         struct em_tx_queue *tx_que;
1289         int i;
1290
1291         INIT_DEBUGOUT("em_if_init: begin");
1292
1293         /* Get the latest mac address, User can use a LAA */
1294         bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1295             ETHER_ADDR_LEN);
1296
1297         /* Put the address into the Receive Address Array */
1298         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1299
1300         /*
1301          * With the 82571 adapter, RAR[0] may be overwritten
1302          * when the other port is reset, we make a duplicate
1303          * in RAR[14] for that eventuality, this assures
1304          * the interface continues to function.
1305          */
1306         if (adapter->hw.mac.type == e1000_82571) {
1307                 e1000_set_laa_state_82571(&adapter->hw, true);
1308                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1309                     E1000_RAR_ENTRIES - 1);
1310         }
1311
1312
1313         /* Initialize the hardware */
1314         em_reset(ctx);
1315         em_if_update_admin_status(ctx);
1316
1317         for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1318                 struct tx_ring *txr = &tx_que->txr;
1319
1320                 txr->tx_rs_cidx = txr->tx_rs_pidx;
1321
1322                 /* Initialize the last processed descriptor to be the end of
1323                  * the ring, rather than the start, so that we avoid an
1324                  * off-by-one error when calculating how many descriptors are
1325                  * done in the credits_update function.
1326                  */
1327                 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1328         }
1329
1330         /* Setup VLAN support, basic and offload if available */
1331         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1332
1333         /* Clear bad data from Rx FIFOs */
1334         if (adapter->hw.mac.type >= igb_mac_min)
1335                 e1000_rx_fifo_flush_base(&adapter->hw);
1336
1337         /* Configure for OS presence */
1338         em_init_manageability(adapter);
1339
1340         /* Prepare transmit descriptors and buffers */
1341         em_initialize_transmit_unit(ctx);
1342
1343         /* Setup Multicast table */
1344         em_if_multi_set(ctx);
1345
1346         adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1347         em_initialize_receive_unit(ctx);
1348
1349         /* Set up VLAN support and filter */
1350         em_setup_vlan_hw_support(adapter);
1351
1352         /* Don't lose promiscuous settings */
1353         em_if_set_promisc(ctx, if_getflags(ifp));
1354         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1355
1356         /* MSI-X configuration for 82574 */
1357         if (adapter->hw.mac.type == e1000_82574) {
1358                 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1359
1360                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1361                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1362                 /* Set the IVAR - interrupt vector routing. */
1363                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1364         } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1365                 igb_configure_queues(adapter);
1366
1367         /* this clears any pending interrupts */
1368         E1000_READ_REG(&adapter->hw, E1000_ICR);
1369         E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1370
1371         /* AMT based hardware can now take control from firmware */
1372         if (adapter->has_manage && adapter->has_amt)
1373                 em_get_hw_control(adapter);
1374
1375         /* Set Energy Efficient Ethernet */
1376         if (adapter->hw.mac.type >= igb_mac_min &&
1377             adapter->hw.phy.media_type == e1000_media_type_copper) {
1378                 if (adapter->hw.mac.type == e1000_i354)
1379                         e1000_set_eee_i354(&adapter->hw, true, true);
1380                 else
1381                         e1000_set_eee_i350(&adapter->hw, true, true);
1382         }
1383 }
1384
1385 /*********************************************************************
1386  *
1387  *  Fast Legacy/MSI Combined Interrupt Service routine
1388  *
1389  *********************************************************************/
1390 int
1391 em_intr(void *arg)
1392 {
1393         struct adapter *adapter = arg;
1394         if_ctx_t ctx = adapter->ctx;
1395         u32 reg_icr;
1396
1397         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1398
1399         /* Hot eject? */
1400         if (reg_icr == 0xffffffff)
1401                 return FILTER_STRAY;
1402
1403         /* Definitely not our interrupt. */
1404         if (reg_icr == 0x0)
1405                 return FILTER_STRAY;
1406
1407         /*
1408          * Starting with the 82571 chip, bit 31 should be used to
1409          * determine whether the interrupt belongs to us.
1410          */
1411         if (adapter->hw.mac.type >= e1000_82571 &&
1412             (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1413                 return FILTER_STRAY;
1414
1415         /*
1416          * Only MSI-X interrupts have one-shot behavior by taking advantage
1417          * of the EIAC register.  Thus, explicitly disable interrupts.  This
1418          * also works around the MSI message reordering errata on certain
1419          * systems.
1420          */
1421         IFDI_INTR_DISABLE(ctx);
1422
1423         /* Link status change */
1424         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1425                 em_handle_link(ctx);
1426
1427         if (reg_icr & E1000_ICR_RXO)
1428                 adapter->rx_overruns++;
1429
1430         return (FILTER_SCHEDULE_THREAD);
1431 }
1432
1433 static int
1434 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1435 {
1436         struct adapter *adapter = iflib_get_softc(ctx);
1437         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1438
1439         E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1440         return (0);
1441 }
1442
1443 static int
1444 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1445 {
1446         struct adapter *adapter = iflib_get_softc(ctx);
1447         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1448
1449         E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1450         return (0);
1451 }
1452
1453 static int
1454 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1455 {
1456         struct adapter *adapter = iflib_get_softc(ctx);
1457         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1458
1459         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1460         return (0);
1461 }
1462
1463 static int
1464 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1465 {
1466         struct adapter *adapter = iflib_get_softc(ctx);
1467         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1468
1469         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1470         return (0);
1471 }
1472
1473 /*********************************************************************
1474  *
1475  *  MSI-X RX Interrupt Service routine
1476  *
1477  **********************************************************************/
1478 static int
1479 em_msix_que(void *arg)
1480 {
1481         struct em_rx_queue *que = arg;
1482
1483         ++que->irqs;
1484
1485         return (FILTER_SCHEDULE_THREAD);
1486 }
1487
1488 /*********************************************************************
1489  *
1490  *  MSI-X Link Fast Interrupt Service routine
1491  *
1492  **********************************************************************/
1493 static int
1494 em_msix_link(void *arg)
1495 {
1496         struct adapter *adapter = arg;
1497         u32 reg_icr;
1498         bool notlink = false;
1499
1500         ++adapter->link_irq;
1501         MPASS(adapter->hw.back != NULL);
1502         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1503
1504         if (reg_icr & E1000_ICR_RXO)
1505                 adapter->rx_overruns++;
1506
1507         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1508                 em_handle_link(adapter->ctx);
1509         else
1510                 notlink = true;
1511
1512         /* Re-arm for other/spurious interrupts */
1513         if (notlink && adapter->hw.mac.type >= igb_mac_min) {
1514                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1515                 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1516         } else if (adapter->hw.mac.type == e1000_82574) {
1517                 if (notlink)
1518                         E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC |
1519                             E1000_IMS_OTHER);
1520                 /*
1521                  * Because we must read the ICR for this interrupt it may
1522                  * clear other causes using autoclear, for this reason we
1523                  * simply create a soft interrupt for all these vectors.
1524                  */
1525                 if (reg_icr)
1526                         E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims);
1527         }
1528
1529         return (FILTER_HANDLED);
1530 }
1531
1532 static void
1533 em_handle_link(void *context)
1534 {
1535         if_ctx_t ctx = context;
1536         struct adapter *adapter = iflib_get_softc(ctx);
1537
1538         adapter->hw.mac.get_link_status = 1;
1539         iflib_admin_intr_deferred(ctx);
1540 }
1541
1542 /*********************************************************************
1543  *
1544  *  Media Ioctl callback
1545  *
1546  *  This routine is called whenever the user queries the status of
1547  *  the interface using ifconfig.
1548  *
1549  **********************************************************************/
1550 static void
1551 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1552 {
1553         struct adapter *adapter = iflib_get_softc(ctx);
1554         u_char fiber_type = IFM_1000_SX;
1555
1556         INIT_DEBUGOUT("em_if_media_status: begin");
1557
1558         iflib_admin_intr_deferred(ctx);
1559
1560         ifmr->ifm_status = IFM_AVALID;
1561         ifmr->ifm_active = IFM_ETHER;
1562
1563         if (!adapter->link_active) {
1564                 return;
1565         }
1566
1567         ifmr->ifm_status |= IFM_ACTIVE;
1568
1569         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1570             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1571                 if (adapter->hw.mac.type == e1000_82545)
1572                         fiber_type = IFM_1000_LX;
1573                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1574         } else {
1575                 switch (adapter->link_speed) {
1576                 case 10:
1577                         ifmr->ifm_active |= IFM_10_T;
1578                         break;
1579                 case 100:
1580                         ifmr->ifm_active |= IFM_100_TX;
1581                         break;
1582                 case 1000:
1583                         ifmr->ifm_active |= IFM_1000_T;
1584                         break;
1585                 }
1586                 if (adapter->link_duplex == FULL_DUPLEX)
1587                         ifmr->ifm_active |= IFM_FDX;
1588                 else
1589                         ifmr->ifm_active |= IFM_HDX;
1590         }
1591 }
1592
1593 /*********************************************************************
1594  *
1595  *  Media Ioctl callback
1596  *
1597  *  This routine is called when the user changes speed/duplex using
1598  *  media/mediopt option with ifconfig.
1599  *
1600  **********************************************************************/
1601 static int
1602 em_if_media_change(if_ctx_t ctx)
1603 {
1604         struct adapter *adapter = iflib_get_softc(ctx);
1605         struct ifmedia *ifm = iflib_get_media(ctx);
1606
1607         INIT_DEBUGOUT("em_if_media_change: begin");
1608
1609         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1610                 return (EINVAL);
1611
1612         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1613         case IFM_AUTO:
1614                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1615                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1616                 break;
1617         case IFM_1000_LX:
1618         case IFM_1000_SX:
1619         case IFM_1000_T:
1620                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1621                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1622                 break;
1623         case IFM_100_TX:
1624                 adapter->hw.mac.autoneg = false;
1625                 adapter->hw.phy.autoneg_advertised = 0;
1626                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1627                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1628                 else
1629                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1630                 break;
1631         case IFM_10_T:
1632                 adapter->hw.mac.autoneg = false;
1633                 adapter->hw.phy.autoneg_advertised = 0;
1634                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1635                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1636                 else
1637                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1638                 break;
1639         default:
1640                 device_printf(adapter->dev, "Unsupported media type\n");
1641         }
1642
1643         em_if_init(ctx);
1644
1645         return (0);
1646 }
1647
1648 static int
1649 em_if_set_promisc(if_ctx_t ctx, int flags)
1650 {
1651         struct adapter *adapter = iflib_get_softc(ctx);
1652         struct ifnet *ifp = iflib_get_ifp(ctx);
1653         u32 reg_rctl;
1654         int mcnt = 0;
1655
1656         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1657         reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
1658         if (flags & IFF_ALLMULTI)
1659                 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1660         else
1661                 mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES);
1662
1663         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1664                 reg_rctl &= (~E1000_RCTL_MPE);
1665         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1666
1667         if (flags & IFF_PROMISC) {
1668                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1669                 em_if_vlan_filter_disable(adapter);
1670                 /* Turn this on if you want to see bad packets */
1671                 if (em_debug_sbp)
1672                         reg_rctl |= E1000_RCTL_SBP;
1673                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1674         } else {
1675                 if (flags & IFF_ALLMULTI) {
1676                         reg_rctl |= E1000_RCTL_MPE;
1677                         reg_rctl &= ~E1000_RCTL_UPE;
1678                         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1679                 }
1680                 if (em_if_vlan_filter_used(adapter))
1681                         em_if_vlan_filter_enable(adapter);
1682         }
1683         return (0);
1684 }
1685
1686 static u_int
1687 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
1688 {
1689         u8 *mta = arg;
1690
1691         if (idx == MAX_NUM_MULTICAST_ADDRESSES)
1692                 return (0);
1693
1694         bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1695
1696         return (1);
1697 }
1698
1699 /*********************************************************************
1700  *  Multicast Update
1701  *
1702  *  This routine is called whenever multicast address list is updated.
1703  *
1704  **********************************************************************/
1705 static void
1706 em_if_multi_set(if_ctx_t ctx)
1707 {
1708         struct adapter *adapter = iflib_get_softc(ctx);
1709         struct ifnet *ifp = iflib_get_ifp(ctx);
1710         u8  *mta; /* Multicast array memory */
1711         u32 reg_rctl = 0;
1712         int mcnt = 0;
1713
1714         IOCTL_DEBUGOUT("em_set_multi: begin");
1715
1716         mta = adapter->mta;
1717         bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1718
1719         if (adapter->hw.mac.type == e1000_82542 &&
1720             adapter->hw.revision_id == E1000_REVISION_2) {
1721                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1722                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1723                         e1000_pci_clear_mwi(&adapter->hw);
1724                 reg_rctl |= E1000_RCTL_RST;
1725                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1726                 msec_delay(5);
1727         }
1728
1729         mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1730
1731         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1732
1733         if (if_getflags(ifp) & IFF_PROMISC)
1734                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1735         else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
1736             if_getflags(ifp) & IFF_ALLMULTI) {
1737                 reg_rctl |= E1000_RCTL_MPE;
1738                 reg_rctl &= ~E1000_RCTL_UPE;
1739         } else
1740                 reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1741
1742         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1743
1744         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1745                 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1746
1747         if (adapter->hw.mac.type == e1000_82542 &&
1748             adapter->hw.revision_id == E1000_REVISION_2) {
1749                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1750                 reg_rctl &= ~E1000_RCTL_RST;
1751                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1752                 msec_delay(5);
1753                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1754                         e1000_pci_set_mwi(&adapter->hw);
1755         }
1756 }
1757
1758 /*********************************************************************
1759  *  Timer routine
1760  *
1761  *  This routine schedules em_if_update_admin_status() to check for
1762  *  link status and to gather statistics as well as to perform some
1763  *  controller-specific hardware patting.
1764  *
1765  **********************************************************************/
1766 static void
1767 em_if_timer(if_ctx_t ctx, uint16_t qid)
1768 {
1769
1770         if (qid != 0)
1771                 return;
1772
1773         iflib_admin_intr_deferred(ctx);
1774 }
1775
1776 static void
1777 em_if_update_admin_status(if_ctx_t ctx)
1778 {
1779         struct adapter *adapter = iflib_get_softc(ctx);
1780         struct e1000_hw *hw = &adapter->hw;
1781         device_t dev = iflib_get_dev(ctx);
1782         u32 link_check, thstat, ctrl;
1783
1784         link_check = thstat = ctrl = 0;
1785         /* Get the cached link value or read phy for real */
1786         switch (hw->phy.media_type) {
1787         case e1000_media_type_copper:
1788                 if (hw->mac.get_link_status) {
1789                         if (hw->mac.type == e1000_pch_spt)
1790                                 msec_delay(50);
1791                         /* Do the work to read phy */
1792                         e1000_check_for_link(hw);
1793                         link_check = !hw->mac.get_link_status;
1794                         if (link_check) /* ESB2 fix */
1795                                 e1000_cfg_on_link_up(hw);
1796                 } else {
1797                         link_check = true;
1798                 }
1799                 break;
1800         case e1000_media_type_fiber:
1801                 e1000_check_for_link(hw);
1802                 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1803                             E1000_STATUS_LU);
1804                 break;
1805         case e1000_media_type_internal_serdes:
1806                 e1000_check_for_link(hw);
1807                 link_check = hw->mac.serdes_has_link;
1808                 break;
1809         /* VF device is type_unknown */
1810         case e1000_media_type_unknown:
1811                 e1000_check_for_link(hw);
1812                 link_check = !hw->mac.get_link_status;
1813                 /* FALLTHROUGH */
1814         default:
1815                 break;
1816         }
1817
1818         /* Check for thermal downshift or shutdown */
1819         if (hw->mac.type == e1000_i350) {
1820                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1821                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1822         }
1823
1824         /* Now check for a transition */
1825         if (link_check && (adapter->link_active == 0)) {
1826                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1827                     &adapter->link_duplex);
1828                 /* Check if we must disable SPEED_MODE bit on PCI-E */
1829                 if ((adapter->link_speed != SPEED_1000) &&
1830                     ((hw->mac.type == e1000_82571) ||
1831                     (hw->mac.type == e1000_82572))) {
1832                         int tarc0;
1833                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1834                         tarc0 &= ~TARC_SPEED_MODE_BIT;
1835                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1836                 }
1837                 if (bootverbose)
1838                         device_printf(dev, "Link is up %d Mbps %s\n",
1839                             adapter->link_speed,
1840                             ((adapter->link_duplex == FULL_DUPLEX) ?
1841                             "Full Duplex" : "Half Duplex"));
1842                 adapter->link_active = 1;
1843                 adapter->smartspeed = 0;
1844                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1845                     E1000_CTRL_EXT_LINK_MODE_GMII &&
1846                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1847                         device_printf(dev, "Link: thermal downshift\n");
1848                 /* Delay Link Up for Phy update */
1849                 if (((hw->mac.type == e1000_i210) ||
1850                     (hw->mac.type == e1000_i211)) &&
1851                     (hw->phy.id == I210_I_PHY_ID))
1852                         msec_delay(I210_LINK_DELAY);
1853                 /* Reset if the media type changed. */
1854                 if (hw->dev_spec._82575.media_changed &&
1855                     hw->mac.type >= igb_mac_min) {
1856                         hw->dev_spec._82575.media_changed = false;
1857                         adapter->flags |= IGB_MEDIA_RESET;
1858                         em_reset(ctx);
1859                 }
1860                 iflib_link_state_change(ctx, LINK_STATE_UP,
1861                     IF_Mbps(adapter->link_speed));
1862         } else if (!link_check && (adapter->link_active == 1)) {
1863                 adapter->link_speed = 0;
1864                 adapter->link_duplex = 0;
1865                 adapter->link_active = 0;
1866                 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1867         }
1868         em_update_stats_counters(adapter);
1869
1870         /* Reset LAA into RAR[0] on 82571 */
1871         if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1872                 e1000_rar_set(hw, hw->mac.addr, 0);
1873
1874         if (hw->mac.type < em_mac_min)
1875                 lem_smartspeed(adapter);
1876         else if (hw->mac.type >= igb_mac_min &&
1877             adapter->intr_type == IFLIB_INTR_MSIX) {
1878                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1879                 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1880         } else if (hw->mac.type == e1000_82574 &&
1881             adapter->intr_type == IFLIB_INTR_MSIX)
1882                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1883 }
1884
1885 static void
1886 em_if_watchdog_reset(if_ctx_t ctx)
1887 {
1888         struct adapter *adapter = iflib_get_softc(ctx);
1889
1890         /*
1891          * Just count the event; iflib(4) will already trigger a
1892          * sufficient reset of the controller.
1893          */
1894         adapter->watchdog_events++;
1895 }
1896
1897 /*********************************************************************
1898  *
1899  *  This routine disables all traffic on the adapter by issuing a
1900  *  global reset on the MAC.
1901  *
1902  **********************************************************************/
1903 static void
1904 em_if_stop(if_ctx_t ctx)
1905 {
1906         struct adapter *adapter = iflib_get_softc(ctx);
1907
1908         INIT_DEBUGOUT("em_if_stop: begin");
1909
1910         e1000_reset_hw(&adapter->hw);
1911         if (adapter->hw.mac.type >= e1000_82544)
1912                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1913
1914         e1000_led_off(&adapter->hw);
1915         e1000_cleanup_led(&adapter->hw);
1916 }
1917
1918 /*********************************************************************
1919  *
1920  *  Determine hardware revision.
1921  *
1922  **********************************************************************/
1923 static void
1924 em_identify_hardware(if_ctx_t ctx)
1925 {
1926         device_t dev = iflib_get_dev(ctx);
1927         struct adapter *adapter = iflib_get_softc(ctx);
1928
1929         /* Make sure our PCI config space has the necessary stuff set */
1930         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1931
1932         /* Save off the information about this board */
1933         adapter->hw.vendor_id = pci_get_vendor(dev);
1934         adapter->hw.device_id = pci_get_device(dev);
1935         adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1936         adapter->hw.subsystem_vendor_id =
1937             pci_read_config(dev, PCIR_SUBVEND_0, 2);
1938         adapter->hw.subsystem_device_id =
1939             pci_read_config(dev, PCIR_SUBDEV_0, 2);
1940
1941         /* Do Shared Code Init and Setup */
1942         if (e1000_set_mac_type(&adapter->hw)) {
1943                 device_printf(dev, "Setup init failure\n");
1944                 return;
1945         }
1946
1947         /* Are we a VF device? */
1948         if ((adapter->hw.mac.type == e1000_vfadapt) ||
1949             (adapter->hw.mac.type == e1000_vfadapt_i350))
1950                 adapter->vf_ifp = 1;
1951         else
1952                 adapter->vf_ifp = 0;
1953 }
1954
1955 static int
1956 em_allocate_pci_resources(if_ctx_t ctx)
1957 {
1958         struct adapter *adapter = iflib_get_softc(ctx);
1959         device_t dev = iflib_get_dev(ctx);
1960         int rid, val;
1961
1962         rid = PCIR_BAR(0);
1963         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1964             &rid, RF_ACTIVE);
1965         if (adapter->memory == NULL) {
1966                 device_printf(dev, "Unable to allocate bus resource: memory\n");
1967                 return (ENXIO);
1968         }
1969         adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1970         adapter->osdep.mem_bus_space_handle =
1971             rman_get_bushandle(adapter->memory);
1972         adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1973
1974         /* Only older adapters use IO mapping */
1975         if (adapter->hw.mac.type < em_mac_min &&
1976             adapter->hw.mac.type > e1000_82543) {
1977                 /* Figure our where our IO BAR is ? */
1978                 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1979                         val = pci_read_config(dev, rid, 4);
1980                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1981                                 break;
1982                         }
1983                         rid += 4;
1984                         /* check for 64bit BAR */
1985                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1986                                 rid += 4;
1987                 }
1988                 if (rid >= PCIR_CIS) {
1989                         device_printf(dev, "Unable to locate IO BAR\n");
1990                         return (ENXIO);
1991                 }
1992                 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1993                     &rid, RF_ACTIVE);
1994                 if (adapter->ioport == NULL) {
1995                         device_printf(dev, "Unable to allocate bus resource: "
1996                             "ioport\n");
1997                         return (ENXIO);
1998                 }
1999                 adapter->hw.io_base = 0;
2000                 adapter->osdep.io_bus_space_tag =
2001                     rman_get_bustag(adapter->ioport);
2002                 adapter->osdep.io_bus_space_handle =
2003                     rman_get_bushandle(adapter->ioport);
2004         }
2005
2006         adapter->hw.back = &adapter->osdep;
2007
2008         return (0);
2009 }
2010
2011 /*********************************************************************
2012  *
2013  *  Set up the MSI-X Interrupt handlers
2014  *
2015  **********************************************************************/
2016 static int
2017 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2018 {
2019         struct adapter *adapter = iflib_get_softc(ctx);
2020         struct em_rx_queue *rx_que = adapter->rx_queues;
2021         struct em_tx_queue *tx_que = adapter->tx_queues;
2022         int error, rid, i, vector = 0, rx_vectors;
2023         char buf[16];
2024
2025         /* First set up ring resources */
2026         for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
2027                 rid = vector + 1;
2028                 snprintf(buf, sizeof(buf), "rxq%d", i);
2029                 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2030                 if (error) {
2031                         device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2032                         adapter->rx_num_queues = i + 1;
2033                         goto fail;
2034                 }
2035
2036                 rx_que->msix =  vector;
2037
2038                 /*
2039                  * Set the bit to enable interrupt
2040                  * in E1000_IMS -- bits 20 and 21
2041                  * are for RX0 and RX1, note this has
2042                  * NOTHING to do with the MSI-X vector
2043                  */
2044                 if (adapter->hw.mac.type == e1000_82574) {
2045                         rx_que->eims = 1 << (20 + i);
2046                         adapter->ims |= rx_que->eims;
2047                         adapter->ivars |= (8 | rx_que->msix) << (i * 4);
2048                 } else if (adapter->hw.mac.type == e1000_82575)
2049                         rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2050                 else
2051                         rx_que->eims = 1 << vector;
2052         }
2053         rx_vectors = vector;
2054
2055         vector = 0;
2056         for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
2057                 snprintf(buf, sizeof(buf), "txq%d", i);
2058                 tx_que = &adapter->tx_queues[i];
2059                 iflib_softirq_alloc_generic(ctx,
2060                     &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
2061                     IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2062
2063                 tx_que->msix = (vector % adapter->rx_num_queues);
2064
2065                 /*
2066                  * Set the bit to enable interrupt
2067                  * in E1000_IMS -- bits 22 and 23
2068                  * are for TX0 and TX1, note this has
2069                  * NOTHING to do with the MSI-X vector
2070                  */
2071                 if (adapter->hw.mac.type == e1000_82574) {
2072                         tx_que->eims = 1 << (22 + i);
2073                         adapter->ims |= tx_que->eims;
2074                         adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2075                 } else if (adapter->hw.mac.type == e1000_82575) {
2076                         tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2077                 } else {
2078                         tx_que->eims = 1 << i;
2079                 }
2080         }
2081
2082         /* Link interrupt */
2083         rid = rx_vectors + 1;
2084         error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2085
2086         if (error) {
2087                 device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2088                 goto fail;
2089         }
2090         adapter->linkvec = rx_vectors;
2091         if (adapter->hw.mac.type < igb_mac_min) {
2092                 adapter->ivars |=  (8 | rx_vectors) << 16;
2093                 adapter->ivars |= 0x80000000;
2094                 /* Enable the "Other" interrupt type for link status change */
2095                 adapter->ims |= E1000_IMS_OTHER;
2096         }
2097
2098         return (0);
2099 fail:
2100         iflib_irq_free(ctx, &adapter->irq);
2101         rx_que = adapter->rx_queues;
2102         for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2103                 iflib_irq_free(ctx, &rx_que->que_irq);
2104         return (error);
2105 }
2106
2107 static void
2108 igb_configure_queues(struct adapter *adapter)
2109 {
2110         struct e1000_hw *hw = &adapter->hw;
2111         struct em_rx_queue *rx_que;
2112         struct em_tx_queue *tx_que;
2113         u32 tmp, ivar = 0, newitr = 0;
2114
2115         /* First turn on RSS capability */
2116         if (hw->mac.type != e1000_82575)
2117                 E1000_WRITE_REG(hw, E1000_GPIE,
2118                     E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2119                     E1000_GPIE_PBA | E1000_GPIE_NSICR);
2120
2121         /* Turn on MSI-X */
2122         switch (hw->mac.type) {
2123         case e1000_82580:
2124         case e1000_i350:
2125         case e1000_i354:
2126         case e1000_i210:
2127         case e1000_i211:
2128         case e1000_vfadapt:
2129         case e1000_vfadapt_i350:
2130                 /* RX entries */
2131                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2132                         u32 index = i >> 1;
2133                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2134                         rx_que = &adapter->rx_queues[i];
2135                         if (i & 1) {
2136                                 ivar &= 0xFF00FFFF;
2137                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2138                         } else {
2139                                 ivar &= 0xFFFFFF00;
2140                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2141                         }
2142                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2143                 }
2144                 /* TX entries */
2145                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2146                         u32 index = i >> 1;
2147                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2148                         tx_que = &adapter->tx_queues[i];
2149                         if (i & 1) {
2150                                 ivar &= 0x00FFFFFF;
2151                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2152                         } else {
2153                                 ivar &= 0xFFFF00FF;
2154                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2155                         }
2156                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2157                         adapter->que_mask |= tx_que->eims;
2158                 }
2159
2160                 /* And for the link interrupt */
2161                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2162                 adapter->link_mask = 1 << adapter->linkvec;
2163                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2164                 break;
2165         case e1000_82576:
2166                 /* RX entries */
2167                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2168                         u32 index = i & 0x7; /* Each IVAR has two entries */
2169                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2170                         rx_que = &adapter->rx_queues[i];
2171                         if (i < 8) {
2172                                 ivar &= 0xFFFFFF00;
2173                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2174                         } else {
2175                                 ivar &= 0xFF00FFFF;
2176                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2177                         }
2178                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2179                         adapter->que_mask |= rx_que->eims;
2180                 }
2181                 /* TX entries */
2182                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2183                         u32 index = i & 0x7; /* Each IVAR has two entries */
2184                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2185                         tx_que = &adapter->tx_queues[i];
2186                         if (i < 8) {
2187                                 ivar &= 0xFFFF00FF;
2188                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2189                         } else {
2190                                 ivar &= 0x00FFFFFF;
2191                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2192                         }
2193                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2194                         adapter->que_mask |= tx_que->eims;
2195                 }
2196
2197                 /* And for the link interrupt */
2198                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2199                 adapter->link_mask = 1 << adapter->linkvec;
2200                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2201                 break;
2202
2203         case e1000_82575:
2204                 /* enable MSI-X support*/
2205                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2206                 tmp |= E1000_CTRL_EXT_PBA_CLR;
2207                 /* Auto-Mask interrupts upon ICR read. */
2208                 tmp |= E1000_CTRL_EXT_EIAME;
2209                 tmp |= E1000_CTRL_EXT_IRCA;
2210                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2211
2212                 /* Queues */
2213                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2214                         rx_que = &adapter->rx_queues[i];
2215                         tmp = E1000_EICR_RX_QUEUE0 << i;
2216                         tmp |= E1000_EICR_TX_QUEUE0 << i;
2217                         rx_que->eims = tmp;
2218                         E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2219                             i, rx_que->eims);
2220                         adapter->que_mask |= rx_que->eims;
2221                 }
2222
2223                 /* Link */
2224                 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2225                     E1000_EIMS_OTHER);
2226                 adapter->link_mask |= E1000_EIMS_OTHER;
2227         default:
2228                 break;
2229         }
2230
2231         /* Set the starting interrupt rate */
2232         if (em_max_interrupt_rate > 0)
2233                 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2234
2235         if (hw->mac.type == e1000_82575)
2236                 newitr |= newitr << 16;
2237         else
2238                 newitr |= E1000_EITR_CNT_IGNR;
2239
2240         for (int i = 0; i < adapter->rx_num_queues; i++) {
2241                 rx_que = &adapter->rx_queues[i];
2242                 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2243         }
2244
2245         return;
2246 }
2247
2248 static void
2249 em_free_pci_resources(if_ctx_t ctx)
2250 {
2251         struct adapter *adapter = iflib_get_softc(ctx);
2252         struct em_rx_queue *que = adapter->rx_queues;
2253         device_t dev = iflib_get_dev(ctx);
2254
2255         /* Release all MSI-X queue resources */
2256         if (adapter->intr_type == IFLIB_INTR_MSIX)
2257                 iflib_irq_free(ctx, &adapter->irq);
2258
2259         if (que != NULL) {
2260                 for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2261                         iflib_irq_free(ctx, &que->que_irq);
2262                 }
2263         }
2264
2265         if (adapter->memory != NULL) {
2266                 bus_release_resource(dev, SYS_RES_MEMORY,
2267                     rman_get_rid(adapter->memory), adapter->memory);
2268                 adapter->memory = NULL;
2269         }
2270
2271         if (adapter->flash != NULL) {
2272                 bus_release_resource(dev, SYS_RES_MEMORY,
2273                     rman_get_rid(adapter->flash), adapter->flash);
2274                 adapter->flash = NULL;
2275         }
2276
2277         if (adapter->ioport != NULL) {
2278                 bus_release_resource(dev, SYS_RES_IOPORT,
2279                     rman_get_rid(adapter->ioport), adapter->ioport);
2280                 adapter->ioport = NULL;
2281         }
2282 }
2283
2284 /* Set up MSI or MSI-X */
2285 static int
2286 em_setup_msix(if_ctx_t ctx)
2287 {
2288         struct adapter *adapter = iflib_get_softc(ctx);
2289
2290         if (adapter->hw.mac.type == e1000_82574) {
2291                 em_enable_vectors_82574(ctx);
2292         }
2293         return (0);
2294 }
2295
2296 /*********************************************************************
2297  *
2298  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2299  *
2300  **********************************************************************/
2301 static void
2302 lem_smartspeed(struct adapter *adapter)
2303 {
2304         u16 phy_tmp;
2305
2306         if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2307             adapter->hw.mac.autoneg == 0 ||
2308             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2309                 return;
2310
2311         if (adapter->smartspeed == 0) {
2312                 /* If Master/Slave config fault is asserted twice,
2313                  * we assume back-to-back */
2314                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2315                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2316                         return;
2317                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2318                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2319                         e1000_read_phy_reg(&adapter->hw,
2320                             PHY_1000T_CTRL, &phy_tmp);
2321                         if(phy_tmp & CR_1000T_MS_ENABLE) {
2322                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2323                                 e1000_write_phy_reg(&adapter->hw,
2324                                     PHY_1000T_CTRL, phy_tmp);
2325                                 adapter->smartspeed++;
2326                                 if(adapter->hw.mac.autoneg &&
2327                                    !e1000_copper_link_autoneg(&adapter->hw) &&
2328                                    !e1000_read_phy_reg(&adapter->hw,
2329                                     PHY_CONTROL, &phy_tmp)) {
2330                                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2331                                                     MII_CR_RESTART_AUTO_NEG);
2332                                         e1000_write_phy_reg(&adapter->hw,
2333                                             PHY_CONTROL, phy_tmp);
2334                                 }
2335                         }
2336                 }
2337                 return;
2338         } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2339                 /* If still no link, perhaps using 2/3 pair cable */
2340                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2341                 phy_tmp |= CR_1000T_MS_ENABLE;
2342                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2343                 if(adapter->hw.mac.autoneg &&
2344                    !e1000_copper_link_autoneg(&adapter->hw) &&
2345                    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2346                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2347                                     MII_CR_RESTART_AUTO_NEG);
2348                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2349                 }
2350         }
2351         /* Restart process after EM_SMARTSPEED_MAX iterations */
2352         if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2353                 adapter->smartspeed = 0;
2354 }
2355
2356 /*********************************************************************
2357  *
2358  *  Initialize the DMA Coalescing feature
2359  *
2360  **********************************************************************/
2361 static void
2362 igb_init_dmac(struct adapter *adapter, u32 pba)
2363 {
2364         device_t        dev = adapter->dev;
2365         struct e1000_hw *hw = &adapter->hw;
2366         u32             dmac, reg = ~E1000_DMACR_DMAC_EN;
2367         u16             hwm;
2368         u16             max_frame_size;
2369
2370         if (hw->mac.type == e1000_i211)
2371                 return;
2372
2373         max_frame_size = adapter->shared->isc_max_frame_size;
2374         if (hw->mac.type > e1000_82580) {
2375
2376                 if (adapter->dmac == 0) { /* Disabling it */
2377                         E1000_WRITE_REG(hw, E1000_DMACR, reg);
2378                         return;
2379                 } else
2380                         device_printf(dev, "DMA Coalescing enabled\n");
2381
2382                 /* Set starting threshold */
2383                 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2384
2385                 hwm = 64 * pba - max_frame_size / 16;
2386                 if (hwm < 64 * (pba - 6))
2387                         hwm = 64 * (pba - 6);
2388                 reg = E1000_READ_REG(hw, E1000_FCRTC);
2389                 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2390                 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2391                     & E1000_FCRTC_RTH_COAL_MASK);
2392                 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2393
2394
2395                 dmac = pba - max_frame_size / 512;
2396                 if (dmac < pba - 10)
2397                         dmac = pba - 10;
2398                 reg = E1000_READ_REG(hw, E1000_DMACR);
2399                 reg &= ~E1000_DMACR_DMACTHR_MASK;
2400                 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2401                     & E1000_DMACR_DMACTHR_MASK);
2402
2403                 /* transition to L0x or L1 if available..*/
2404                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2405
2406                 /* Check if status is 2.5Gb backplane connection
2407                 * before configuration of watchdog timer, which is
2408                 * in msec values in 12.8usec intervals
2409                 * watchdog timer= msec values in 32usec intervals
2410                 * for non 2.5Gb connection
2411                 */
2412                 if (hw->mac.type == e1000_i354) {
2413                         int status = E1000_READ_REG(hw, E1000_STATUS);
2414                         if ((status & E1000_STATUS_2P5_SKU) &&
2415                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2416                                 reg |= ((adapter->dmac * 5) >> 6);
2417                         else
2418                                 reg |= (adapter->dmac >> 5);
2419                 } else {
2420                         reg |= (adapter->dmac >> 5);
2421                 }
2422
2423                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2424
2425                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2426
2427                 /* Set the interval before transition */
2428                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
2429                 if (hw->mac.type == e1000_i350)
2430                         reg |= IGB_DMCTLX_DCFLUSH_DIS;
2431                 /*
2432                 ** in 2.5Gb connection, TTLX unit is 0.4 usec
2433                 ** which is 0x4*2 = 0xA. But delay is still 4 usec
2434                 */
2435                 if (hw->mac.type == e1000_i354) {
2436                         int status = E1000_READ_REG(hw, E1000_STATUS);
2437                         if ((status & E1000_STATUS_2P5_SKU) &&
2438                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2439                                 reg |= 0xA;
2440                         else
2441                                 reg |= 0x4;
2442                 } else {
2443                         reg |= 0x4;
2444                 }
2445
2446                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2447
2448                 /* free space in tx packet buffer to wake from DMA coal */
2449                 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2450                     (2 * max_frame_size)) >> 6);
2451
2452                 /* make low power state decision controlled by DMA coal */
2453                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2454                 reg &= ~E1000_PCIEMISC_LX_DECISION;
2455                 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2456
2457         } else if (hw->mac.type == e1000_82580) {
2458                 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2459                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
2460                     reg & ~E1000_PCIEMISC_LX_DECISION);
2461                 E1000_WRITE_REG(hw, E1000_DMACR, 0);
2462         }
2463 }
2464
2465 /*********************************************************************
2466  *
2467  *  Initialize the hardware to a configuration as specified by the
2468  *  adapter structure.
2469  *
2470  **********************************************************************/
2471 static void
2472 em_reset(if_ctx_t ctx)
2473 {
2474         device_t dev = iflib_get_dev(ctx);
2475         struct adapter *adapter = iflib_get_softc(ctx);
2476         struct ifnet *ifp = iflib_get_ifp(ctx);
2477         struct e1000_hw *hw = &adapter->hw;
2478         u16 rx_buffer_size;
2479         u32 pba;
2480
2481         INIT_DEBUGOUT("em_reset: begin");
2482         /* Let the firmware know the OS is in control */
2483         em_get_hw_control(adapter);
2484
2485         /* Set up smart power down as default off on newer adapters. */
2486         if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2487             hw->mac.type == e1000_82572)) {
2488                 u16 phy_tmp = 0;
2489
2490                 /* Speed up time to link by disabling smart power down. */
2491                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2492                 phy_tmp &= ~IGP02E1000_PM_SPD;
2493                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2494         }
2495
2496         /*
2497          * Packet Buffer Allocation (PBA)
2498          * Writing PBA sets the receive portion of the buffer
2499          * the remainder is used for the transmit buffer.
2500          */
2501         switch (hw->mac.type) {
2502         /* 82547: Total Packet Buffer is 40K */
2503         case e1000_82547:
2504         case e1000_82547_rev_2:
2505                 if (hw->mac.max_frame_size > 8192)
2506                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2507                 else
2508                         pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2509                 break;
2510         /* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
2511         case e1000_82571:
2512         case e1000_82572:
2513         case e1000_80003es2lan:
2514                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2515                 break;
2516         /* 82573: Total Packet Buffer is 32K */
2517         case e1000_82573:
2518                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2519                 break;
2520         case e1000_82574:
2521         case e1000_82583:
2522                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2523                 break;
2524         case e1000_ich8lan:
2525                 pba = E1000_PBA_8K;
2526                 break;
2527         case e1000_ich9lan:
2528         case e1000_ich10lan:
2529                 /* Boost Receive side for jumbo frames */
2530                 if (hw->mac.max_frame_size > 4096)
2531                         pba = E1000_PBA_14K;
2532                 else
2533                         pba = E1000_PBA_10K;
2534                 break;
2535         case e1000_pchlan:
2536         case e1000_pch2lan:
2537         case e1000_pch_lpt:
2538         case e1000_pch_spt:
2539         case e1000_pch_cnp:
2540         case e1000_pch_tgp:
2541         case e1000_pch_adp:
2542         case e1000_pch_mtp:
2543                 pba = E1000_PBA_26K;
2544                 break;
2545         case e1000_82575:
2546                 pba = E1000_PBA_32K;
2547                 break;
2548         case e1000_82576:
2549         case e1000_vfadapt:
2550                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2551                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2552                 break;
2553         case e1000_82580:
2554         case e1000_i350:
2555         case e1000_i354:
2556         case e1000_vfadapt_i350:
2557                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2558                 pba = e1000_rxpbs_adjust_82580(pba);
2559                 break;
2560         case e1000_i210:
2561         case e1000_i211:
2562                 pba = E1000_PBA_34K;
2563                 break;
2564         default:
2565                 /* Remaining devices assumed to have a Packet Buffer of 64K. */
2566                 if (hw->mac.max_frame_size > 8192)
2567                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2568                 else
2569                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2570         }
2571
2572         /* Special needs in case of Jumbo frames */
2573         if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2574                 u32 tx_space, min_tx, min_rx;
2575                 pba = E1000_READ_REG(hw, E1000_PBA);
2576                 tx_space = pba >> 16;
2577                 pba &= 0xffff;
2578                 min_tx = (hw->mac.max_frame_size +
2579                     sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2580                 min_tx = roundup2(min_tx, 1024);
2581                 min_tx >>= 10;
2582                 min_rx = hw->mac.max_frame_size;
2583                 min_rx = roundup2(min_rx, 1024);
2584                 min_rx >>= 10;
2585                 if (tx_space < min_tx &&
2586                     ((min_tx - tx_space) < pba)) {
2587                         pba = pba - (min_tx - tx_space);
2588                         /*
2589                          * if short on rx space, rx wins
2590                          * and must trump tx adjustment
2591                          */
2592                         if (pba < min_rx)
2593                                 pba = min_rx;
2594                 }
2595                 E1000_WRITE_REG(hw, E1000_PBA, pba);
2596         }
2597
2598         if (hw->mac.type < igb_mac_min)
2599                 E1000_WRITE_REG(hw, E1000_PBA, pba);
2600
2601         INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2602
2603         /*
2604          * These parameters control the automatic generation (Tx) and
2605          * response (Rx) to Ethernet PAUSE frames.
2606          * - High water mark should allow for at least two frames to be
2607          *   received after sending an XOFF.
2608          * - Low water mark works best when it is very near the high water mark.
2609          *   This allows the receiver to restart by sending XON when it has
2610          *   drained a bit. Here we use an arbitrary value of 1500 which will
2611          *   restart after one full frame is pulled from the buffer. There
2612          *   could be several smaller frames in the buffer and if so they will
2613          *   not trigger the XON until their total number reduces the buffer
2614          *   by 1500.
2615          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2616          */
2617         rx_buffer_size = (pba & 0xffff) << 10;
2618         hw->fc.high_water = rx_buffer_size -
2619             roundup2(hw->mac.max_frame_size, 1024);
2620         hw->fc.low_water = hw->fc.high_water - 1500;
2621
2622         if (adapter->fc) /* locally set flow control value? */
2623                 hw->fc.requested_mode = adapter->fc;
2624         else
2625                 hw->fc.requested_mode = e1000_fc_full;
2626
2627         if (hw->mac.type == e1000_80003es2lan)
2628                 hw->fc.pause_time = 0xFFFF;
2629         else
2630                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
2631
2632         hw->fc.send_xon = true;
2633
2634         /* Device specific overrides/settings */
2635         switch (hw->mac.type) {
2636         case e1000_pchlan:
2637                 /* Workaround: no TX flow ctrl for PCH */
2638                 hw->fc.requested_mode = e1000_fc_rx_pause;
2639                 hw->fc.pause_time = 0xFFFF; /* override */
2640                 if (if_getmtu(ifp) > ETHERMTU) {
2641                         hw->fc.high_water = 0x3500;
2642                         hw->fc.low_water = 0x1500;
2643                 } else {
2644                         hw->fc.high_water = 0x5000;
2645                         hw->fc.low_water = 0x3000;
2646                 }
2647                 hw->fc.refresh_time = 0x1000;
2648                 break;
2649         case e1000_pch2lan:
2650         case e1000_pch_lpt:
2651         case e1000_pch_spt:
2652         case e1000_pch_cnp:
2653         case e1000_pch_tgp:
2654         case e1000_pch_adp:
2655         case e1000_pch_mtp:
2656                 hw->fc.high_water = 0x5C20;
2657                 hw->fc.low_water = 0x5048;
2658                 hw->fc.pause_time = 0x0650;
2659                 hw->fc.refresh_time = 0x0400;
2660                 /* Jumbos need adjusted PBA */
2661                 if (if_getmtu(ifp) > ETHERMTU)
2662                         E1000_WRITE_REG(hw, E1000_PBA, 12);
2663                 else
2664                         E1000_WRITE_REG(hw, E1000_PBA, 26);
2665                 break;
2666         case e1000_82575:
2667         case e1000_82576:
2668                 /* 8-byte granularity */
2669                 hw->fc.low_water = hw->fc.high_water - 8;
2670                 break;
2671         case e1000_82580:
2672         case e1000_i350:
2673         case e1000_i354:
2674         case e1000_i210:
2675         case e1000_i211:
2676         case e1000_vfadapt:
2677         case e1000_vfadapt_i350:
2678                 /* 16-byte granularity */
2679                 hw->fc.low_water = hw->fc.high_water - 16;
2680                 break;
2681         case e1000_ich9lan:
2682         case e1000_ich10lan:
2683                 if (if_getmtu(ifp) > ETHERMTU) {
2684                         hw->fc.high_water = 0x2800;
2685                         hw->fc.low_water = hw->fc.high_water - 8;
2686                         break;
2687                 }
2688                 /* FALLTHROUGH */
2689         default:
2690                 if (hw->mac.type == e1000_80003es2lan)
2691                         hw->fc.pause_time = 0xFFFF;
2692                 break;
2693         }
2694
2695         /* Issue a global reset */
2696         e1000_reset_hw(hw);
2697         if (hw->mac.type >= igb_mac_min) {
2698                 E1000_WRITE_REG(hw, E1000_WUC, 0);
2699         } else {
2700                 E1000_WRITE_REG(hw, E1000_WUFC, 0);
2701                 em_disable_aspm(adapter);
2702         }
2703         if (adapter->flags & IGB_MEDIA_RESET) {
2704                 e1000_setup_init_funcs(hw, true);
2705                 e1000_get_bus_info(hw);
2706                 adapter->flags &= ~IGB_MEDIA_RESET;
2707         }
2708         /* and a re-init */
2709         if (e1000_init_hw(hw) < 0) {
2710                 device_printf(dev, "Hardware Initialization Failed\n");
2711                 return;
2712         }
2713         if (hw->mac.type >= igb_mac_min)
2714                 igb_init_dmac(adapter, pba);
2715
2716         E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2717         e1000_get_phy_info(hw);
2718         e1000_check_for_link(hw);
2719 }
2720
2721 /*
2722  * Initialise the RSS mapping for NICs that support multiple transmit/
2723  * receive rings.
2724  */
2725
2726 #define RSSKEYLEN 10
2727 static void
2728 em_initialize_rss_mapping(struct adapter *adapter)
2729 {
2730         uint8_t  rss_key[4 * RSSKEYLEN];
2731         uint32_t reta = 0;
2732         struct e1000_hw *hw = &adapter->hw;
2733         int i;
2734
2735         /*
2736          * Configure RSS key
2737          */
2738         arc4rand(rss_key, sizeof(rss_key), 0);
2739         for (i = 0; i < RSSKEYLEN; ++i) {
2740                 uint32_t rssrk = 0;
2741
2742                 rssrk = EM_RSSRK_VAL(rss_key, i);
2743                 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2744         }
2745
2746         /*
2747          * Configure RSS redirect table in following fashion:
2748          * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2749          */
2750         for (i = 0; i < sizeof(reta); ++i) {
2751                 uint32_t q;
2752
2753                 q = (i % adapter->rx_num_queues) << 7;
2754                 reta |= q << (8 * i);
2755         }
2756
2757         for (i = 0; i < 32; ++i)
2758                 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2759
2760         E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2761                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2762                         E1000_MRQC_RSS_FIELD_IPV4 |
2763                         E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2764                         E1000_MRQC_RSS_FIELD_IPV6_EX |
2765                         E1000_MRQC_RSS_FIELD_IPV6);
2766 }
2767
2768 static void
2769 igb_initialize_rss_mapping(struct adapter *adapter)
2770 {
2771         struct e1000_hw *hw = &adapter->hw;
2772         int i;
2773         int queue_id;
2774         u32 reta;
2775         u32 rss_key[10], mrqc, shift = 0;
2776
2777         /* XXX? */
2778         if (hw->mac.type == e1000_82575)
2779                 shift = 6;
2780
2781         /*
2782          * The redirection table controls which destination
2783          * queue each bucket redirects traffic to.
2784          * Each DWORD represents four queues, with the LSB
2785          * being the first queue in the DWORD.
2786          *
2787          * This just allocates buckets to queues using round-robin
2788          * allocation.
2789          *
2790          * NOTE: It Just Happens to line up with the default
2791          * RSS allocation method.
2792          */
2793
2794         /* Warning FM follows */
2795         reta = 0;
2796         for (i = 0; i < 128; i++) {
2797 #ifdef RSS
2798                 queue_id = rss_get_indirection_to_bucket(i);
2799                 /*
2800                  * If we have more queues than buckets, we'll
2801                  * end up mapping buckets to a subset of the
2802                  * queues.
2803                  *
2804                  * If we have more buckets than queues, we'll
2805                  * end up instead assigning multiple buckets
2806                  * to queues.
2807                  *
2808                  * Both are suboptimal, but we need to handle
2809                  * the case so we don't go out of bounds
2810                  * indexing arrays and such.
2811                  */
2812                 queue_id = queue_id % adapter->rx_num_queues;
2813 #else
2814                 queue_id = (i % adapter->rx_num_queues);
2815 #endif
2816                 /* Adjust if required */
2817                 queue_id = queue_id << shift;
2818
2819                 /*
2820                  * The low 8 bits are for hash value (n+0);
2821                  * The next 8 bits are for hash value (n+1), etc.
2822                  */
2823                 reta = reta >> 8;
2824                 reta = reta | ( ((uint32_t) queue_id) << 24);
2825                 if ((i & 3) == 3) {
2826                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2827                         reta = 0;
2828                 }
2829         }
2830
2831         /* Now fill in hash table */
2832
2833         /*
2834          * MRQC: Multiple Receive Queues Command
2835          * Set queuing to RSS control, number depends on the device.
2836          */
2837         mrqc = E1000_MRQC_ENABLE_RSS_MQ;
2838
2839 #ifdef RSS
2840         /* XXX ew typecasting */
2841         rss_getkey((uint8_t *) &rss_key);
2842 #else
2843         arc4rand(&rss_key, sizeof(rss_key), 0);
2844 #endif
2845         for (i = 0; i < 10; i++)
2846                 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2847
2848         /*
2849          * Configure the RSS fields to hash upon.
2850          */
2851         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2852             E1000_MRQC_RSS_FIELD_IPV4_TCP);
2853         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2854             E1000_MRQC_RSS_FIELD_IPV6_TCP);
2855         mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2856             E1000_MRQC_RSS_FIELD_IPV6_UDP);
2857         mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2858             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2859
2860         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2861 }
2862
2863 /*********************************************************************
2864  *
2865  *  Setup networking device structure and register interface media.
2866  *
2867  **********************************************************************/
2868 static int
2869 em_setup_interface(if_ctx_t ctx)
2870 {
2871         struct ifnet *ifp = iflib_get_ifp(ctx);
2872         struct adapter *adapter = iflib_get_softc(ctx);
2873         if_softc_ctx_t scctx = adapter->shared;
2874
2875         INIT_DEBUGOUT("em_setup_interface: begin");
2876
2877         /* Single Queue */
2878         if (adapter->tx_num_queues == 1) {
2879                 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2880                 if_setsendqready(ifp);
2881         }
2882
2883         /*
2884          * Specify the media types supported by this adapter and register
2885          * callbacks to update media and link information
2886          */
2887         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2888             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2889                 u_char fiber_type = IFM_1000_SX;        /* default type */
2890
2891                 if (adapter->hw.mac.type == e1000_82545)
2892                         fiber_type = IFM_1000_LX;
2893                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2894                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2895         } else {
2896                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2897                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2898                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2899                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2900                 if (adapter->hw.phy.type != e1000_phy_ife) {
2901                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2902                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2903                 }
2904         }
2905         ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2906         ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2907         return (0);
2908 }
2909
2910 static int
2911 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2912 {
2913         struct adapter *adapter = iflib_get_softc(ctx);
2914         if_softc_ctx_t scctx = adapter->shared;
2915         int error = E1000_SUCCESS;
2916         struct em_tx_queue *que;
2917         int i, j;
2918
2919         MPASS(adapter->tx_num_queues > 0);
2920         MPASS(adapter->tx_num_queues == ntxqsets);
2921
2922         /* First allocate the top level queue structs */
2923         if (!(adapter->tx_queues =
2924             (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2925             adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2926                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2927                 return(ENOMEM);
2928         }
2929
2930         for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2931                 /* Set up some basics */
2932
2933                 struct tx_ring *txr = &que->txr;
2934                 txr->adapter = que->adapter = adapter;
2935                 que->me = txr->me =  i;
2936
2937                 /* Allocate report status array */
2938                 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2939                         device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2940                         error = ENOMEM;
2941                         goto fail;
2942                 }
2943                 for (j = 0; j < scctx->isc_ntxd[0]; j++)
2944                         txr->tx_rsq[j] = QIDX_INVALID;
2945                 /* get the virtual and physical address of the hardware queues */
2946                 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2947                 txr->tx_paddr = paddrs[i*ntxqs];
2948         }
2949
2950         if (bootverbose)
2951                 device_printf(iflib_get_dev(ctx),
2952                     "allocated for %d tx_queues\n", adapter->tx_num_queues);
2953         return (0);
2954 fail:
2955         em_if_queues_free(ctx);
2956         return (error);
2957 }
2958
2959 static int
2960 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2961 {
2962         struct adapter *adapter = iflib_get_softc(ctx);
2963         int error = E1000_SUCCESS;
2964         struct em_rx_queue *que;
2965         int i;
2966
2967         MPASS(adapter->rx_num_queues > 0);
2968         MPASS(adapter->rx_num_queues == nrxqsets);
2969
2970         /* First allocate the top level queue structs */
2971         if (!(adapter->rx_queues =
2972             (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2973             adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2974                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2975                 error = ENOMEM;
2976                 goto fail;
2977         }
2978
2979         for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2980                 /* Set up some basics */
2981                 struct rx_ring *rxr = &que->rxr;
2982                 rxr->adapter = que->adapter = adapter;
2983                 rxr->que = que;
2984                 que->me = rxr->me =  i;
2985
2986                 /* get the virtual and physical address of the hardware queues */
2987                 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2988                 rxr->rx_paddr = paddrs[i*nrxqs];
2989         }
2990  
2991         if (bootverbose)
2992                 device_printf(iflib_get_dev(ctx),
2993                     "allocated for %d rx_queues\n", adapter->rx_num_queues);
2994
2995         return (0);
2996 fail:
2997         em_if_queues_free(ctx);
2998         return (error);
2999 }
3000
3001 static void
3002 em_if_queues_free(if_ctx_t ctx)
3003 {
3004         struct adapter *adapter = iflib_get_softc(ctx);
3005         struct em_tx_queue *tx_que = adapter->tx_queues;
3006         struct em_rx_queue *rx_que = adapter->rx_queues;
3007
3008         if (tx_que != NULL) {
3009                 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
3010                         struct tx_ring *txr = &tx_que->txr;
3011                         if (txr->tx_rsq == NULL)
3012                                 break;
3013
3014                         free(txr->tx_rsq, M_DEVBUF);
3015                         txr->tx_rsq = NULL;
3016                 }
3017                 free(adapter->tx_queues, M_DEVBUF);
3018                 adapter->tx_queues = NULL;
3019         }
3020
3021         if (rx_que != NULL) {
3022                 free(adapter->rx_queues, M_DEVBUF);
3023                 adapter->rx_queues = NULL;
3024         }
3025 }
3026
3027 /*********************************************************************
3028  *
3029  *  Enable transmit unit.
3030  *
3031  **********************************************************************/
3032 static void
3033 em_initialize_transmit_unit(if_ctx_t ctx)
3034 {
3035         struct adapter *adapter = iflib_get_softc(ctx);
3036         if_softc_ctx_t scctx = adapter->shared;
3037         struct em_tx_queue *que;
3038         struct tx_ring  *txr;
3039         struct e1000_hw *hw = &adapter->hw;
3040         u32 tctl, txdctl = 0, tarc, tipg = 0;
3041
3042         INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3043
3044         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
3045                 u64 bus_addr;
3046                 caddr_t offp, endp;
3047
3048                 que = &adapter->tx_queues[i];
3049                 txr = &que->txr;
3050                 bus_addr = txr->tx_paddr;
3051
3052                 /* Clear checksum offload context. */
3053                 offp = (caddr_t)&txr->csum_flags;
3054                 endp = (caddr_t)(txr + 1);
3055                 bzero(offp, endp - offp);
3056
3057                 /* Base and Len of TX Ring */
3058                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
3059                     scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3060                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
3061                     (u32)(bus_addr >> 32));
3062                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
3063                     (u32)bus_addr);
3064                 /* Init the HEAD/TAIL indices */
3065                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3066                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3067
3068                 HW_DEBUGOUT2("Base = %x, Length = %x\n",
3069                     E1000_READ_REG(hw, E1000_TDBAL(i)),
3070                     E1000_READ_REG(hw, E1000_TDLEN(i)));
3071
3072                 txdctl = 0; /* clear txdctl */
3073                 txdctl |= 0x1f; /* PTHRESH */
3074                 txdctl |= 1 << 8; /* HTHRESH */
3075                 txdctl |= 1 << 16;/* WTHRESH */
3076                 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3077                 txdctl |= E1000_TXDCTL_GRAN;
3078                 txdctl |= 1 << 25; /* LWTHRESH */
3079
3080                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3081         }
3082
3083         /* Set the default values for the Tx Inter Packet Gap timer */
3084         switch (hw->mac.type) {
3085         case e1000_80003es2lan:
3086                 tipg = DEFAULT_82543_TIPG_IPGR1;
3087                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3088                     E1000_TIPG_IPGR2_SHIFT;
3089                 break;
3090         case e1000_82542:
3091                 tipg = DEFAULT_82542_TIPG_IPGT;
3092                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3093                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3094                 break;
3095         default:
3096                 if (hw->phy.media_type == e1000_media_type_fiber ||
3097                     hw->phy.media_type == e1000_media_type_internal_serdes)
3098                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3099                 else
3100                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3101                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3102                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3103         }
3104
3105         E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3106         E1000_WRITE_REG(hw, E1000_TIDV, adapter->tx_int_delay.value);
3107
3108         if(hw->mac.type >= e1000_82540)
3109                 E1000_WRITE_REG(hw, E1000_TADV,
3110                     adapter->tx_abs_int_delay.value);
3111
3112         if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3113                 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3114                 tarc |= TARC_SPEED_MODE_BIT;
3115                 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3116         } else if (hw->mac.type == e1000_80003es2lan) {
3117                 /* errata: program both queues to unweighted RR */
3118                 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3119                 tarc |= 1;
3120                 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3121                 tarc = E1000_READ_REG(hw, E1000_TARC(1));
3122                 tarc |= 1;
3123                 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3124         } else if (hw->mac.type == e1000_82574) {
3125                 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3126                 tarc |= TARC_ERRATA_BIT;
3127                 if ( adapter->tx_num_queues > 1) {
3128                         tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3129                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3130                         E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3131                 } else
3132                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3133         }
3134
3135         if (adapter->tx_int_delay.value > 0)
3136                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3137
3138         /* Program the Transmit Control Register */
3139         tctl = E1000_READ_REG(hw, E1000_TCTL);
3140         tctl &= ~E1000_TCTL_CT;
3141         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3142                    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3143
3144         if (hw->mac.type >= e1000_82571)
3145                 tctl |= E1000_TCTL_MULR;
3146
3147         /* This write will effectively turn on the transmit unit. */
3148         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3149
3150         /* SPT and KBL errata workarounds */
3151         if (hw->mac.type == e1000_pch_spt) {
3152                 u32 reg;
3153                 reg = E1000_READ_REG(hw, E1000_IOSFPC);
3154                 reg |= E1000_RCTL_RDMTS_HEX;
3155                 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3156                 /* i218-i219 Specification Update 1.5.4.5 */
3157                 reg = E1000_READ_REG(hw, E1000_TARC(0));
3158                 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3159                 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3160                 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3161         }
3162 }
3163
3164 /*********************************************************************
3165  *
3166  *  Enable receive unit.
3167  *
3168  **********************************************************************/
3169 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3170
3171 static void
3172 em_initialize_receive_unit(if_ctx_t ctx)
3173 {
3174         struct adapter *adapter = iflib_get_softc(ctx);
3175         if_softc_ctx_t scctx = adapter->shared;
3176         struct ifnet *ifp = iflib_get_ifp(ctx);
3177         struct e1000_hw *hw = &adapter->hw;
3178         struct em_rx_queue *que;
3179         int i;
3180         uint32_t rctl, rxcsum;
3181
3182         INIT_DEBUGOUT("em_initialize_receive_units: begin");
3183
3184         /*
3185          * Make sure receives are disabled while setting
3186          * up the descriptor ring
3187          */
3188         rctl = E1000_READ_REG(hw, E1000_RCTL);
3189         /* Do not disable if ever enabled on this hardware */
3190         if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3191                 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3192
3193         /* Setup the Receive Control Register */
3194         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3195         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3196             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3197             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3198
3199         /* Do not store bad packets */
3200         rctl &= ~E1000_RCTL_SBP;
3201
3202         /* Enable Long Packet receive */
3203         if (if_getmtu(ifp) > ETHERMTU)
3204                 rctl |= E1000_RCTL_LPE;
3205         else
3206                 rctl &= ~E1000_RCTL_LPE;
3207
3208         /* Strip the CRC */
3209         if (!em_disable_crc_stripping)
3210                 rctl |= E1000_RCTL_SECRC;
3211
3212         if (hw->mac.type >= e1000_82540) {
3213                 E1000_WRITE_REG(hw, E1000_RADV,
3214                     adapter->rx_abs_int_delay.value);
3215
3216                 /*
3217                  * Set the interrupt throttling rate. Value is calculated
3218                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3219                  */
3220                 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3221         }
3222         E1000_WRITE_REG(hw, E1000_RDTR, adapter->rx_int_delay.value);
3223
3224         if (hw->mac.type >= em_mac_min) {
3225                 uint32_t rfctl;
3226                 /* Use extended rx descriptor formats */
3227                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3228                 rfctl |= E1000_RFCTL_EXTEN;
3229
3230                 /*
3231                  * When using MSI-X interrupts we need to throttle
3232                  * using the EITR register (82574 only)
3233                  */
3234                 if (hw->mac.type == e1000_82574) {
3235                         for (int i = 0; i < 4; i++)
3236                                 E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3237                                     DEFAULT_ITR);
3238                         /* Disable accelerated acknowledge */
3239                         rfctl |= E1000_RFCTL_ACK_DIS;
3240                 }
3241                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3242         }
3243
3244         /* Set up L3 and L4 csum Rx descriptor offloads */
3245         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3246         if (scctx->isc_capenable & IFCAP_RXCSUM) {
3247                 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3248                 if (hw->mac.type > e1000_82575)
3249                         rxcsum |= E1000_RXCSUM_CRCOFL;
3250                 else if (hw->mac.type < em_mac_min &&
3251                     scctx->isc_capenable & IFCAP_HWCSUM_IPV6)
3252                         rxcsum |= E1000_RXCSUM_IPV6OFL;
3253         } else {
3254                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3255                 if (hw->mac.type > e1000_82575)
3256                         rxcsum &= ~E1000_RXCSUM_CRCOFL;
3257                 else if (hw->mac.type < em_mac_min)
3258                         rxcsum &= ~E1000_RXCSUM_IPV6OFL;
3259         }
3260
3261         if (adapter->rx_num_queues > 1) {
3262                 /* RSS hash needed in the Rx descriptor */
3263                 rxcsum |= E1000_RXCSUM_PCSD;
3264
3265                 if (hw->mac.type >= igb_mac_min)
3266                         igb_initialize_rss_mapping(adapter);
3267                 else
3268                         em_initialize_rss_mapping(adapter);
3269         }
3270         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3271
3272         /*
3273          * XXX TEMPORARY WORKAROUND: on some systems with 82573
3274          * long latencies are observed, like Lenovo X60. This
3275          * change eliminates the problem, but since having positive
3276          * values in RDTR is a known source of problems on other
3277          * platforms another solution is being sought.
3278          */
3279         if (hw->mac.type == e1000_82573)
3280                 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3281
3282         for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3283                 struct rx_ring *rxr = &que->rxr;
3284                 /* Setup the Base and Length of the Rx Descriptor Ring */
3285                 u64 bus_addr = rxr->rx_paddr;
3286 #if 0
3287                 u32 rdt = adapter->rx_num_queues -1;  /* default */
3288 #endif
3289
3290                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3291                     scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3292                 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3293                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3294                 /* Setup the Head and Tail Descriptor Pointers */
3295                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3296                 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3297         }
3298
3299         /*
3300          * Set PTHRESH for improved jumbo performance
3301          * According to 10.2.5.11 of Intel 82574 Datasheet,
3302          * RXDCTL(1) is written whenever RXDCTL(0) is written.
3303          * Only write to RXDCTL(1) if there is a need for different
3304          * settings.
3305          */
3306         if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3307             hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3308                 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3309                 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3310         } else if (hw->mac.type == e1000_82574) {
3311                 for (int i = 0; i < adapter->rx_num_queues; i++) {
3312                         u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3313                         rxdctl |= 0x20; /* PTHRESH */
3314                         rxdctl |= 4 << 8; /* HTHRESH */
3315                         rxdctl |= 4 << 16;/* WTHRESH */
3316                         rxdctl |= 1 << 24; /* Switch to granularity */
3317                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3318                 }
3319         } else if (hw->mac.type >= igb_mac_min) {
3320                 u32 psize, srrctl = 0;
3321
3322                 if (if_getmtu(ifp) > ETHERMTU) {
3323                         psize = scctx->isc_max_frame_size;
3324                         /* are we on a vlan? */
3325                         if (ifp->if_vlantrunk != NULL)
3326                                 psize += VLAN_TAG_SIZE;
3327
3328                         if (adapter->vf_ifp)
3329                                 e1000_rlpml_set_vf(hw, psize);
3330                         else
3331                                 E1000_WRITE_REG(hw, E1000_RLPML, psize);
3332                 }
3333
3334                 /* Set maximum packet buffer len */
3335                 srrctl |= (adapter->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3336                     E1000_SRRCTL_BSIZEPKT_SHIFT;
3337
3338                 /*
3339                  * If TX flow control is disabled and there's >1 queue defined,
3340                  * enable DROP.
3341                  *
3342                  * This drops frames rather than hanging the RX MAC for all queues.
3343                  */
3344                 if ((adapter->rx_num_queues > 1) &&
3345                     (adapter->fc == e1000_fc_none ||
3346                      adapter->fc == e1000_fc_rx_pause)) {
3347                         srrctl |= E1000_SRRCTL_DROP_EN;
3348                 }
3349                         /* Setup the Base and Length of the Rx Descriptor Rings */
3350                 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3351                         struct rx_ring *rxr = &que->rxr;
3352                         u64 bus_addr = rxr->rx_paddr;
3353                         u32 rxdctl;
3354
3355 #ifdef notyet
3356                         /* Configure for header split? -- ignore for now */
3357                         rxr->hdr_split = igb_header_split;
3358 #else
3359                         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3360 #endif
3361
3362                         E1000_WRITE_REG(hw, E1000_RDLEN(i),
3363                                         scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3364                         E1000_WRITE_REG(hw, E1000_RDBAH(i),
3365                                         (uint32_t)(bus_addr >> 32));
3366                         E1000_WRITE_REG(hw, E1000_RDBAL(i),
3367                                         (uint32_t)bus_addr);
3368                         E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3369                         /* Enable this Queue */
3370                         rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3371                         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3372                         rxdctl &= 0xFFF00000;
3373                         rxdctl |= IGB_RX_PTHRESH;
3374                         rxdctl |= IGB_RX_HTHRESH << 8;
3375                         rxdctl |= IGB_RX_WTHRESH << 16;
3376                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3377                 }               
3378         } else if (hw->mac.type >= e1000_pch2lan) {
3379                 if (if_getmtu(ifp) > ETHERMTU)
3380                         e1000_lv_jumbo_workaround_ich8lan(hw, true);
3381                 else
3382                         e1000_lv_jumbo_workaround_ich8lan(hw, false);
3383         }
3384
3385         /* Make sure VLAN Filters are off */
3386         rctl &= ~E1000_RCTL_VFE;
3387
3388         /* Set up packet buffer size, overridden by per queue srrctl on igb */
3389         if (hw->mac.type < igb_mac_min) {
3390                 if (adapter->rx_mbuf_sz > 2048 && adapter->rx_mbuf_sz <= 4096)
3391                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3392                 else if (adapter->rx_mbuf_sz > 4096 && adapter->rx_mbuf_sz <= 8192)
3393                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3394                 else if (adapter->rx_mbuf_sz > 8192)
3395                         rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
3396                 else {
3397                         rctl |= E1000_RCTL_SZ_2048;
3398                         rctl &= ~E1000_RCTL_BSEX;
3399                 }
3400         } else
3401                 rctl |= E1000_RCTL_SZ_2048;
3402
3403         /*
3404          * rctl bits 11:10 are as follows
3405          * lem: reserved
3406          * em: DTYPE
3407          * igb: reserved
3408          * and should be 00 on all of the above
3409          */
3410         rctl &= ~0x00000C00;
3411
3412         /* Write out the settings */
3413         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3414
3415         return;
3416 }
3417
3418 static void
3419 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3420 {
3421         struct adapter *adapter = iflib_get_softc(ctx);
3422         u32 index, bit;
3423
3424         index = (vtag >> 5) & 0x7F;
3425         bit = vtag & 0x1F;
3426         adapter->shadow_vfta[index] |= (1 << bit);
3427         ++adapter->num_vlans;
3428         em_if_vlan_filter_write(adapter);
3429 }
3430
3431 static void
3432 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3433 {
3434         struct adapter *adapter = iflib_get_softc(ctx);
3435         u32 index, bit;
3436
3437         index = (vtag >> 5) & 0x7F;
3438         bit = vtag & 0x1F;
3439         adapter->shadow_vfta[index] &= ~(1 << bit);
3440         --adapter->num_vlans;
3441         em_if_vlan_filter_write(adapter);
3442 }
3443
3444 static bool
3445 em_if_vlan_filter_capable(struct adapter *adapter)
3446 {
3447         if_softc_ctx_t scctx = adapter->shared;
3448
3449         if ((scctx->isc_capenable & IFCAP_VLAN_HWFILTER) &&
3450             !em_disable_crc_stripping)
3451                 return (true);
3452
3453         return (false);
3454 }
3455
3456 static bool
3457 em_if_vlan_filter_used(struct adapter *adapter)
3458 {
3459         if (!em_if_vlan_filter_capable(adapter))
3460                 return (false);
3461
3462         for (int i = 0; i < EM_VFTA_SIZE; i++)
3463                 if (adapter->shadow_vfta[i] != 0)
3464                         return (true);
3465
3466         return (false);
3467 }
3468
3469 static void
3470 em_if_vlan_filter_enable(struct adapter *adapter)
3471 {
3472         struct e1000_hw *hw = &adapter->hw;
3473         u32 reg;
3474
3475         reg = E1000_READ_REG(hw, E1000_RCTL);
3476         reg &= ~E1000_RCTL_CFIEN;
3477         reg |= E1000_RCTL_VFE;
3478         E1000_WRITE_REG(hw, E1000_RCTL, reg);
3479 }
3480
3481 static void
3482 em_if_vlan_filter_disable(struct adapter *adapter)
3483 {
3484         struct e1000_hw *hw = &adapter->hw;
3485         u32 reg;
3486
3487         reg = E1000_READ_REG(hw, E1000_RCTL);
3488         reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
3489         E1000_WRITE_REG(hw, E1000_RCTL, reg);
3490 }
3491
3492 static void
3493 em_if_vlan_filter_write(struct adapter *adapter)
3494 {
3495         struct e1000_hw *hw = &adapter->hw;
3496
3497         if (adapter->vf_ifp)
3498                 return;
3499
3500         /* Disable interrupts for lem-class devices during the filter change */
3501         if (hw->mac.type < em_mac_min)
3502                 em_if_intr_disable(adapter->ctx);
3503
3504         for (int i = 0; i < EM_VFTA_SIZE; i++)
3505                 if (adapter->shadow_vfta[i] != 0) {
3506                         /* XXXKB: incomplete VF support, we return early above */
3507                         if (adapter->vf_ifp)
3508                                 e1000_vfta_set_vf(hw, adapter->shadow_vfta[i], true);
3509                         else
3510                                 e1000_write_vfta(hw, i, adapter->shadow_vfta[i]);
3511                 }
3512
3513         /* Re-enable interrupts for lem-class devices */
3514         if (hw->mac.type < em_mac_min)
3515                 em_if_intr_enable(adapter->ctx);
3516 }
3517
3518 static void
3519 em_setup_vlan_hw_support(struct adapter *adapter)
3520 {
3521         if_softc_ctx_t scctx = adapter->shared;
3522         struct e1000_hw *hw = &adapter->hw;
3523         u32 reg;
3524
3525         /* XXXKB: Return early if we are a VF until VF decap and filter management
3526          * is ready and tested.
3527          */
3528         if (adapter->vf_ifp)
3529                 return;
3530
3531         if (scctx->isc_capenable & IFCAP_VLAN_HWTAGGING &&
3532             !em_disable_crc_stripping) {
3533                 reg = E1000_READ_REG(hw, E1000_CTRL);
3534                 reg |= E1000_CTRL_VME;
3535                 E1000_WRITE_REG(hw, E1000_CTRL, reg);
3536         } else {
3537                 reg = E1000_READ_REG(hw, E1000_CTRL);
3538                 reg &= ~E1000_CTRL_VME;
3539                 E1000_WRITE_REG(hw, E1000_CTRL, reg);
3540         }
3541
3542         /* If we aren't doing HW filtering, we're done */
3543         if (!em_if_vlan_filter_capable(adapter))  {
3544                 em_if_vlan_filter_disable(adapter);
3545                 return;
3546         }
3547
3548         /*
3549          * A soft reset zero's out the VFTA, so
3550          * we need to repopulate it now.
3551          */
3552         em_if_vlan_filter_write(adapter);
3553
3554         /* Enable the Filter Table */
3555         em_if_vlan_filter_enable(adapter);
3556 }
3557
3558 static void
3559 em_if_intr_enable(if_ctx_t ctx)
3560 {
3561         struct adapter *adapter = iflib_get_softc(ctx);
3562         struct e1000_hw *hw = &adapter->hw;
3563         u32 ims_mask = IMS_ENABLE_MASK;
3564
3565         if (adapter->intr_type == IFLIB_INTR_MSIX) {
3566                 E1000_WRITE_REG(hw, EM_EIAC, adapter->ims);
3567                 ims_mask |= adapter->ims;
3568         }
3569         E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3570         E1000_WRITE_FLUSH(hw);
3571 }
3572
3573 static void
3574 em_if_intr_disable(if_ctx_t ctx)
3575 {
3576         struct adapter *adapter = iflib_get_softc(ctx);
3577         struct e1000_hw *hw = &adapter->hw;
3578
3579         if (adapter->intr_type == IFLIB_INTR_MSIX)
3580                 E1000_WRITE_REG(hw, EM_EIAC, 0);
3581         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3582         E1000_WRITE_FLUSH(hw);
3583 }
3584
3585 static void
3586 igb_if_intr_enable(if_ctx_t ctx)
3587 {
3588         struct adapter *adapter = iflib_get_softc(ctx);
3589         struct e1000_hw *hw = &adapter->hw;
3590         u32 mask;
3591
3592         if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3593                 mask = (adapter->que_mask | adapter->link_mask);
3594                 E1000_WRITE_REG(hw, E1000_EIAC, mask);
3595                 E1000_WRITE_REG(hw, E1000_EIAM, mask);
3596                 E1000_WRITE_REG(hw, E1000_EIMS, mask);
3597                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3598         } else
3599                 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3600         E1000_WRITE_FLUSH(hw);
3601 }
3602
3603 static void
3604 igb_if_intr_disable(if_ctx_t ctx)
3605 {
3606         struct adapter *adapter = iflib_get_softc(ctx);
3607         struct e1000_hw *hw = &adapter->hw;
3608
3609         if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3610                 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3611                 E1000_WRITE_REG(hw, E1000_EIAC, 0);
3612         }
3613         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3614         E1000_WRITE_FLUSH(hw);
3615 }
3616
3617 /*
3618  * Bit of a misnomer, what this really means is
3619  * to enable OS management of the system... aka
3620  * to disable special hardware management features
3621  */
3622 static void
3623 em_init_manageability(struct adapter *adapter)
3624 {
3625         /* A shared code workaround */
3626 #define E1000_82542_MANC2H E1000_MANC2H
3627         if (adapter->has_manage) {
3628                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3629                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3630
3631                 /* disable hardware interception of ARP */
3632                 manc &= ~(E1000_MANC_ARP_EN);
3633
3634                 /* enable receiving management packets to the host */
3635                 manc |= E1000_MANC_EN_MNG2HOST;
3636 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3637 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3638                 manc2h |= E1000_MNG2HOST_PORT_623;
3639                 manc2h |= E1000_MNG2HOST_PORT_664;
3640                 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3641                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3642         }
3643 }
3644
3645 /*
3646  * Give control back to hardware management
3647  * controller if there is one.
3648  */
3649 static void
3650 em_release_manageability(struct adapter *adapter)
3651 {
3652         if (adapter->has_manage) {
3653                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3654
3655                 /* re-enable hardware interception of ARP */
3656                 manc |= E1000_MANC_ARP_EN;
3657                 manc &= ~E1000_MANC_EN_MNG2HOST;
3658
3659                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3660         }
3661 }
3662
3663 /*
3664  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3665  * For ASF and Pass Through versions of f/w this means
3666  * that the driver is loaded. For AMT version type f/w
3667  * this means that the network i/f is open.
3668  */
3669 static void
3670 em_get_hw_control(struct adapter *adapter)
3671 {
3672         u32 ctrl_ext, swsm;
3673
3674         if (adapter->vf_ifp)
3675                 return;
3676
3677         if (adapter->hw.mac.type == e1000_82573) {
3678                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3679                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3680                     swsm | E1000_SWSM_DRV_LOAD);
3681                 return;
3682         }
3683         /* else */
3684         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3685         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3686             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3687 }
3688
3689 /*
3690  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3691  * For ASF and Pass Through versions of f/w this means that
3692  * the driver is no longer loaded. For AMT versions of the
3693  * f/w this means that the network i/f is closed.
3694  */
3695 static void
3696 em_release_hw_control(struct adapter *adapter)
3697 {
3698         u32 ctrl_ext, swsm;
3699
3700         if (!adapter->has_manage)
3701                 return;
3702
3703         if (adapter->hw.mac.type == e1000_82573) {
3704                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3705                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3706                     swsm & ~E1000_SWSM_DRV_LOAD);
3707                 return;
3708         }
3709         /* else */
3710         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3711         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3712             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3713         return;
3714 }
3715
3716 static int
3717 em_is_valid_ether_addr(u8 *addr)
3718 {
3719         char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3720
3721         if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3722                 return (false);
3723         }
3724
3725         return (true);
3726 }
3727
3728 /*
3729 ** Parse the interface capabilities with regard
3730 ** to both system management and wake-on-lan for
3731 ** later use.
3732 */
3733 static void
3734 em_get_wakeup(if_ctx_t ctx)
3735 {
3736         struct adapter *adapter = iflib_get_softc(ctx);
3737         device_t dev = iflib_get_dev(ctx);
3738         u16 eeprom_data = 0, device_id, apme_mask;
3739
3740         adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3741         apme_mask = EM_EEPROM_APME;
3742
3743         switch (adapter->hw.mac.type) {
3744         case e1000_82542:
3745         case e1000_82543:
3746                 break;
3747         case e1000_82544:
3748                 e1000_read_nvm(&adapter->hw,
3749                     NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3750                 apme_mask = EM_82544_APME;
3751                 break;
3752         case e1000_82546:
3753         case e1000_82546_rev_3:
3754                 if (adapter->hw.bus.func == 1) {
3755                         e1000_read_nvm(&adapter->hw,
3756                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3757                         break;
3758                 } else
3759                         e1000_read_nvm(&adapter->hw,
3760                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3761                 break;
3762         case e1000_82573:
3763         case e1000_82583:
3764                 adapter->has_amt = true;
3765                 /* FALLTHROUGH */
3766         case e1000_82571:
3767         case e1000_82572:
3768         case e1000_80003es2lan:
3769                 if (adapter->hw.bus.func == 1) {
3770                         e1000_read_nvm(&adapter->hw,
3771                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3772                         break;
3773                 } else
3774                         e1000_read_nvm(&adapter->hw,
3775                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3776                 break;
3777         case e1000_ich8lan:
3778         case e1000_ich9lan:
3779         case e1000_ich10lan:
3780         case e1000_pchlan:
3781         case e1000_pch2lan:
3782         case e1000_pch_lpt:
3783         case e1000_pch_spt:
3784         case e1000_82575:       /* listing all igb devices */
3785         case e1000_82576:
3786         case e1000_82580:
3787         case e1000_i350:
3788         case e1000_i354:
3789         case e1000_i210:
3790         case e1000_i211:
3791         case e1000_vfadapt:
3792         case e1000_vfadapt_i350:
3793                 apme_mask = E1000_WUC_APME;
3794                 adapter->has_amt = true;
3795                 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3796                 break;
3797         default:
3798                 e1000_read_nvm(&adapter->hw,
3799                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3800                 break;
3801         }
3802         if (eeprom_data & apme_mask)
3803                 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3804         /*
3805          * We have the eeprom settings, now apply the special cases
3806          * where the eeprom may be wrong or the board won't support
3807          * wake on lan on a particular port
3808          */
3809         device_id = pci_get_device(dev);
3810         switch (device_id) {
3811         case E1000_DEV_ID_82546GB_PCIE:
3812                 adapter->wol = 0;
3813                 break;
3814         case E1000_DEV_ID_82546EB_FIBER:
3815         case E1000_DEV_ID_82546GB_FIBER:
3816                 /* Wake events only supported on port A for dual fiber
3817                  * regardless of eeprom setting */
3818                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3819                     E1000_STATUS_FUNC_1)
3820                         adapter->wol = 0;
3821                 break;
3822         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3823                 /* if quad port adapter, disable WoL on all but port A */
3824                 if (global_quad_port_a != 0)
3825                         adapter->wol = 0;
3826                 /* Reset for multiple quad port adapters */
3827                 if (++global_quad_port_a == 4)
3828                         global_quad_port_a = 0;
3829                 break;
3830         case E1000_DEV_ID_82571EB_FIBER:
3831                 /* Wake events only supported on port A for dual fiber
3832                  * regardless of eeprom setting */
3833                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3834                     E1000_STATUS_FUNC_1)
3835                         adapter->wol = 0;
3836                 break;
3837         case E1000_DEV_ID_82571EB_QUAD_COPPER:
3838         case E1000_DEV_ID_82571EB_QUAD_FIBER:
3839         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3840                 /* if quad port adapter, disable WoL on all but port A */
3841                 if (global_quad_port_a != 0)
3842                         adapter->wol = 0;
3843                 /* Reset for multiple quad port adapters */
3844                 if (++global_quad_port_a == 4)
3845                         global_quad_port_a = 0;
3846                 break;
3847         }
3848         return;
3849 }
3850
3851
3852 /*
3853  * Enable PCI Wake On Lan capability
3854  */
3855 static void
3856 em_enable_wakeup(if_ctx_t ctx)
3857 {
3858         struct adapter *adapter = iflib_get_softc(ctx);
3859         device_t dev = iflib_get_dev(ctx);
3860         if_t ifp = iflib_get_ifp(ctx);
3861         int error = 0;
3862         u32 pmc, ctrl, ctrl_ext, rctl;
3863         u16 status;
3864
3865         if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3866                 return;
3867
3868         /*
3869          * Determine type of Wakeup: note that wol
3870          * is set with all bits on by default.
3871          */
3872         if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3873                 adapter->wol &= ~E1000_WUFC_MAG;
3874
3875         if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3876                 adapter->wol &= ~E1000_WUFC_EX;
3877
3878         if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3879                 adapter->wol &= ~E1000_WUFC_MC;
3880         else {
3881                 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3882                 rctl |= E1000_RCTL_MPE;
3883                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3884         }
3885
3886         if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
3887                 goto pme;
3888
3889         /* Advertise the wakeup capability */
3890         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3891         ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3892         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3893
3894         /* Keep the laser running on Fiber adapters */
3895         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3896             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3897                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3898                 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3899                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3900         }
3901
3902         if ((adapter->hw.mac.type == e1000_ich8lan) ||
3903             (adapter->hw.mac.type == e1000_pchlan) ||
3904             (adapter->hw.mac.type == e1000_ich9lan) ||
3905             (adapter->hw.mac.type == e1000_ich10lan))
3906                 e1000_suspend_workarounds_ich8lan(&adapter->hw);
3907
3908         if ( adapter->hw.mac.type >= e1000_pchlan) {
3909                 error = em_enable_phy_wakeup(adapter);
3910                 if (error)
3911                         goto pme;
3912         } else {
3913                 /* Enable wakeup by the MAC */
3914                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3915                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3916         }
3917
3918         if (adapter->hw.phy.type == e1000_phy_igp_3)
3919                 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3920
3921 pme:
3922         status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3923         status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3924         if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3925                 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3926         pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3927
3928         return;
3929 }
3930
3931 /*
3932  * WOL in the newer chipset interfaces (pchlan)
3933  * require thing to be copied into the phy
3934  */
3935 static int
3936 em_enable_phy_wakeup(struct adapter *adapter)
3937 {
3938         struct e1000_hw *hw = &adapter->hw;
3939         u32 mreg, ret = 0;
3940         u16 preg;
3941
3942         /* copy MAC RARs to PHY RARs */
3943         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3944
3945         /* copy MAC MTA to PHY MTA */
3946         for (int i = 0; i < hw->mac.mta_reg_count; i++) {
3947                 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3948                 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3949                 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3950                     (u16)((mreg >> 16) & 0xFFFF));
3951         }
3952
3953         /* configure PHY Rx Control register */
3954         e1000_read_phy_reg(hw, BM_RCTL, &preg);
3955         mreg = E1000_READ_REG(hw, E1000_RCTL);
3956         if (mreg & E1000_RCTL_UPE)
3957                 preg |= BM_RCTL_UPE;
3958         if (mreg & E1000_RCTL_MPE)
3959                 preg |= BM_RCTL_MPE;
3960         preg &= ~(BM_RCTL_MO_MASK);
3961         if (mreg & E1000_RCTL_MO_3)
3962                 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3963                                 << BM_RCTL_MO_SHIFT);
3964         if (mreg & E1000_RCTL_BAM)
3965                 preg |= BM_RCTL_BAM;
3966         if (mreg & E1000_RCTL_PMCF)
3967                 preg |= BM_RCTL_PMCF;
3968         mreg = E1000_READ_REG(hw, E1000_CTRL);
3969         if (mreg & E1000_CTRL_RFCE)
3970                 preg |= BM_RCTL_RFCE;
3971         e1000_write_phy_reg(hw, BM_RCTL, preg);
3972
3973         /* enable PHY wakeup in MAC register */
3974         E1000_WRITE_REG(hw, E1000_WUC,
3975             E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3976         E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3977
3978         /* configure and enable PHY wakeup in PHY registers */
3979         e1000_write_phy_reg(hw, BM_WUFC, adapter->wol);
3980         e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
3981
3982         /* activate PHY wakeup */
3983         ret = hw->phy.ops.acquire(hw);
3984         if (ret) {
3985                 printf("Could not acquire PHY\n");
3986                 return ret;
3987         }
3988         e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3989                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3990         ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3991         if (ret) {
3992                 printf("Could not read PHY page 769\n");
3993                 goto out;
3994         }
3995         preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3996         ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3997         if (ret)
3998                 printf("Could not set PHY Host Wakeup bit\n");
3999 out:
4000         hw->phy.ops.release(hw);
4001
4002         return ret;
4003 }
4004
4005 static void
4006 em_if_led_func(if_ctx_t ctx, int onoff)
4007 {
4008         struct adapter *adapter = iflib_get_softc(ctx);
4009
4010         if (onoff) {
4011                 e1000_setup_led(&adapter->hw);
4012                 e1000_led_on(&adapter->hw);
4013         } else {
4014                 e1000_led_off(&adapter->hw);
4015                 e1000_cleanup_led(&adapter->hw);
4016         }
4017 }
4018
4019 /*
4020  * Disable the L0S and L1 LINK states
4021  */
4022 static void
4023 em_disable_aspm(struct adapter *adapter)
4024 {
4025         int base, reg;
4026         u16 link_cap,link_ctrl;
4027         device_t dev = adapter->dev;
4028
4029         switch (adapter->hw.mac.type) {
4030         case e1000_82573:
4031         case e1000_82574:
4032         case e1000_82583:
4033                 break;
4034         default:
4035                 return;
4036         }
4037         if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
4038                 return;
4039         reg = base + PCIER_LINK_CAP;
4040         link_cap = pci_read_config(dev, reg, 2);
4041         if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
4042                 return;
4043         reg = base + PCIER_LINK_CTL;
4044         link_ctrl = pci_read_config(dev, reg, 2);
4045         link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
4046         pci_write_config(dev, reg, link_ctrl, 2);
4047         return;
4048 }
4049
4050 /**********************************************************************
4051  *
4052  *  Update the board statistics counters.
4053  *
4054  **********************************************************************/
4055 static void
4056 em_update_stats_counters(struct adapter *adapter)
4057 {
4058         u64 prev_xoffrxc = adapter->stats.xoffrxc;
4059
4060         if(adapter->hw.phy.media_type == e1000_media_type_copper ||
4061            (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4062                 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
4063                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
4064         }
4065         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
4066         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
4067         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
4068         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
4069
4070         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
4071         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
4072         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
4073         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
4074         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
4075         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
4076         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
4077         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
4078         /*
4079          ** For watchdog management we need to know if we have been
4080          ** paused during the last interval, so capture that here.
4081         */
4082         if (adapter->stats.xoffrxc != prev_xoffrxc)
4083                 adapter->shared->isc_pause_frames = 1;
4084         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
4085         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
4086         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
4087         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
4088         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
4089         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
4090         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
4091         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
4092         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
4093         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
4094         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
4095         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
4096
4097         /* For the 64-bit byte counters the low dword must be read first. */
4098         /* Both registers clear on the read of the high dword */
4099
4100         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
4101             ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
4102         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
4103             ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
4104
4105         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
4106         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
4107         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
4108         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
4109         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
4110
4111         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
4112         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
4113
4114         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
4115         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
4116         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
4117         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
4118         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
4119         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
4120         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
4121         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
4122         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
4123         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
4124
4125         /* Interrupt Counts */
4126
4127         adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
4128         adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
4129         adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
4130         adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
4131         adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
4132         adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
4133         adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
4134         adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
4135         adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
4136
4137         if (adapter->hw.mac.type >= e1000_82543) {
4138                 adapter->stats.algnerrc +=
4139                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4140                 adapter->stats.rxerrc +=
4141                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4142                 adapter->stats.tncrs +=
4143                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4144                 adapter->stats.cexterr +=
4145                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4146                 adapter->stats.tsctc +=
4147                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4148                 adapter->stats.tsctfc +=
4149                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4150         }
4151 }
4152
4153 static uint64_t
4154 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4155 {
4156         struct adapter *adapter = iflib_get_softc(ctx);
4157         struct ifnet *ifp = iflib_get_ifp(ctx);
4158
4159         switch (cnt) {
4160         case IFCOUNTER_COLLISIONS:
4161                 return (adapter->stats.colc);
4162         case IFCOUNTER_IERRORS:
4163                 return (adapter->dropped_pkts + adapter->stats.rxerrc +
4164                     adapter->stats.crcerrs + adapter->stats.algnerrc +
4165                     adapter->stats.ruc + adapter->stats.roc +
4166                     adapter->stats.mpc + adapter->stats.cexterr);
4167         case IFCOUNTER_OERRORS:
4168                 return (adapter->stats.ecol + adapter->stats.latecol +
4169                     adapter->watchdog_events);
4170         default:
4171                 return (if_get_counter_default(ifp, cnt));
4172         }
4173 }
4174
4175 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4176  * @ctx: iflib context
4177  * @event: event code to check
4178  *
4179  * Defaults to returning true for unknown events.
4180  *
4181  * @returns true if iflib needs to reinit the interface
4182  */
4183 static bool
4184 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4185 {
4186         switch (event) {
4187         case IFLIB_RESTART_VLAN_CONFIG:
4188                 return (false);
4189         default:
4190                 return (true);
4191         }
4192 }
4193
4194 /* Export a single 32-bit register via a read-only sysctl. */
4195 static int
4196 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4197 {
4198         struct adapter *adapter;
4199         u_int val;
4200
4201         adapter = oidp->oid_arg1;
4202         val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
4203         return (sysctl_handle_int(oidp, &val, 0, req));
4204 }
4205
4206 /*
4207  * Add sysctl variables, one per statistic, to the system.
4208  */
4209 static void
4210 em_add_hw_stats(struct adapter *adapter)
4211 {
4212         device_t dev = iflib_get_dev(adapter->ctx);
4213         struct em_tx_queue *tx_que = adapter->tx_queues;
4214         struct em_rx_queue *rx_que = adapter->rx_queues;
4215
4216         struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4217         struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4218         struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4219         struct e1000_hw_stats *stats = &adapter->stats;
4220
4221         struct sysctl_oid *stat_node, *queue_node, *int_node;
4222         struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4223
4224 #define QUEUE_NAME_LEN 32
4225         char namebuf[QUEUE_NAME_LEN];
4226
4227         /* Driver Statistics */
4228         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4229                         CTLFLAG_RD, &adapter->dropped_pkts,
4230                         "Driver dropped packets");
4231         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4232                         CTLFLAG_RD, &adapter->link_irq,
4233                         "Link MSI-X IRQ Handled");
4234         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4235                         CTLFLAG_RD, &adapter->rx_overruns,
4236                         "RX overruns");
4237         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4238                         CTLFLAG_RD, &adapter->watchdog_events,
4239                         "Watchdog timeouts");
4240         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4241             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4242             adapter, E1000_CTRL, em_sysctl_reg_handler, "IU",
4243             "Device Control Register");
4244         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4245             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4246             adapter, E1000_RCTL, em_sysctl_reg_handler, "IU",
4247             "Receiver Control Register");
4248         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4249                         CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4250                         "Flow Control High Watermark");
4251         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4252                         CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4253                         "Flow Control Low Watermark");
4254
4255         for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4256                 struct tx_ring *txr = &tx_que->txr;
4257                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4258                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4259                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4260                 queue_list = SYSCTL_CHILDREN(queue_node);
4261
4262                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4263                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4264                     E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4265                     "Transmit Descriptor Head");
4266                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4267                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4268                     E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4269                     "Transmit Descriptor Tail");
4270                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4271                                 CTLFLAG_RD, &txr->tx_irq,
4272                                 "Queue MSI-X Transmit Interrupts");
4273         }
4274
4275         for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4276                 struct rx_ring *rxr = &rx_que->rxr;
4277                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4278                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4279                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4280                 queue_list = SYSCTL_CHILDREN(queue_node);
4281
4282                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4283                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4284                     E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4285                     "Receive Descriptor Head");
4286                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4287                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4288                     E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4289                     "Receive Descriptor Tail");
4290                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4291                                 CTLFLAG_RD, &rxr->rx_irq,
4292                                 "Queue MSI-X Receive Interrupts");
4293         }
4294
4295         /* MAC stats get their own sub node */
4296
4297         stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4298             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4299         stat_list = SYSCTL_CHILDREN(stat_node);
4300
4301         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4302                         CTLFLAG_RD, &stats->ecol,
4303                         "Excessive collisions");
4304         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4305                         CTLFLAG_RD, &stats->scc,
4306                         "Single collisions");
4307         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4308                         CTLFLAG_RD, &stats->mcc,
4309                         "Multiple collisions");
4310         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4311                         CTLFLAG_RD, &stats->latecol,
4312                         "Late collisions");
4313         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4314                         CTLFLAG_RD, &stats->colc,
4315                         "Collision Count");
4316         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4317                         CTLFLAG_RD, &adapter->stats.symerrs,
4318                         "Symbol Errors");
4319         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4320                         CTLFLAG_RD, &adapter->stats.sec,
4321                         "Sequence Errors");
4322         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4323                         CTLFLAG_RD, &adapter->stats.dc,
4324                         "Defer Count");
4325         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4326                         CTLFLAG_RD, &adapter->stats.mpc,
4327                         "Missed Packets");
4328         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4329                         CTLFLAG_RD, &adapter->stats.rnbc,
4330                         "Receive No Buffers");
4331         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4332                         CTLFLAG_RD, &adapter->stats.ruc,
4333                         "Receive Undersize");
4334         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4335                         CTLFLAG_RD, &adapter->stats.rfc,
4336                         "Fragmented Packets Received ");
4337         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4338                         CTLFLAG_RD, &adapter->stats.roc,
4339                         "Oversized Packets Received");
4340         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4341                         CTLFLAG_RD, &adapter->stats.rjc,
4342                         "Recevied Jabber");
4343         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4344                         CTLFLAG_RD, &adapter->stats.rxerrc,
4345                         "Receive Errors");
4346         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4347                         CTLFLAG_RD, &adapter->stats.crcerrs,
4348                         "CRC errors");
4349         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4350                         CTLFLAG_RD, &adapter->stats.algnerrc,
4351                         "Alignment Errors");
4352         /* On 82575 these are collision counts */
4353         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4354                         CTLFLAG_RD, &adapter->stats.cexterr,
4355                         "Collision/Carrier extension errors");
4356         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4357                         CTLFLAG_RD, &adapter->stats.xonrxc,
4358                         "XON Received");
4359         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4360                         CTLFLAG_RD, &adapter->stats.xontxc,
4361                         "XON Transmitted");
4362         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4363                         CTLFLAG_RD, &adapter->stats.xoffrxc,
4364                         "XOFF Received");
4365         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4366                         CTLFLAG_RD, &adapter->stats.xofftxc,
4367                         "XOFF Transmitted");
4368
4369         /* Packet Reception Stats */
4370         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4371                         CTLFLAG_RD, &adapter->stats.tpr,
4372                         "Total Packets Received ");
4373         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4374                         CTLFLAG_RD, &adapter->stats.gprc,
4375                         "Good Packets Received");
4376         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4377                         CTLFLAG_RD, &adapter->stats.bprc,
4378                         "Broadcast Packets Received");
4379         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4380                         CTLFLAG_RD, &adapter->stats.mprc,
4381                         "Multicast Packets Received");
4382         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4383                         CTLFLAG_RD, &adapter->stats.prc64,
4384                         "64 byte frames received ");
4385         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4386                         CTLFLAG_RD, &adapter->stats.prc127,
4387                         "65-127 byte frames received");
4388         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4389                         CTLFLAG_RD, &adapter->stats.prc255,
4390                         "128-255 byte frames received");
4391         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4392                         CTLFLAG_RD, &adapter->stats.prc511,
4393                         "256-511 byte frames received");
4394         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4395                         CTLFLAG_RD, &adapter->stats.prc1023,
4396                         "512-1023 byte frames received");
4397         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4398                         CTLFLAG_RD, &adapter->stats.prc1522,
4399                         "1023-1522 byte frames received");
4400         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4401                         CTLFLAG_RD, &adapter->stats.gorc,
4402                         "Good Octets Received");
4403
4404         /* Packet Transmission Stats */
4405         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4406                         CTLFLAG_RD, &adapter->stats.gotc,
4407                         "Good Octets Transmitted");
4408         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4409                         CTLFLAG_RD, &adapter->stats.tpt,
4410                         "Total Packets Transmitted");
4411         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4412                         CTLFLAG_RD, &adapter->stats.gptc,
4413                         "Good Packets Transmitted");
4414         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4415                         CTLFLAG_RD, &adapter->stats.bptc,
4416                         "Broadcast Packets Transmitted");
4417         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4418                         CTLFLAG_RD, &adapter->stats.mptc,
4419                         "Multicast Packets Transmitted");
4420         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4421                         CTLFLAG_RD, &adapter->stats.ptc64,
4422                         "64 byte frames transmitted ");
4423         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4424                         CTLFLAG_RD, &adapter->stats.ptc127,
4425                         "65-127 byte frames transmitted");
4426         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4427                         CTLFLAG_RD, &adapter->stats.ptc255,
4428                         "128-255 byte frames transmitted");
4429         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4430                         CTLFLAG_RD, &adapter->stats.ptc511,
4431                         "256-511 byte frames transmitted");
4432         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4433                         CTLFLAG_RD, &adapter->stats.ptc1023,
4434                         "512-1023 byte frames transmitted");
4435         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4436                         CTLFLAG_RD, &adapter->stats.ptc1522,
4437                         "1024-1522 byte frames transmitted");
4438         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4439                         CTLFLAG_RD, &adapter->stats.tsctc,
4440                         "TSO Contexts Transmitted");
4441         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4442                         CTLFLAG_RD, &adapter->stats.tsctfc,
4443                         "TSO Contexts Failed");
4444
4445
4446         /* Interrupt Stats */
4447
4448         int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4449             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4450         int_list = SYSCTL_CHILDREN(int_node);
4451
4452         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4453                         CTLFLAG_RD, &adapter->stats.iac,
4454                         "Interrupt Assertion Count");
4455
4456         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4457                         CTLFLAG_RD, &adapter->stats.icrxptc,
4458                         "Interrupt Cause Rx Pkt Timer Expire Count");
4459
4460         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4461                         CTLFLAG_RD, &adapter->stats.icrxatc,
4462                         "Interrupt Cause Rx Abs Timer Expire Count");
4463
4464         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4465                         CTLFLAG_RD, &adapter->stats.ictxptc,
4466                         "Interrupt Cause Tx Pkt Timer Expire Count");
4467
4468         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4469                         CTLFLAG_RD, &adapter->stats.ictxatc,
4470                         "Interrupt Cause Tx Abs Timer Expire Count");
4471
4472         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4473                         CTLFLAG_RD, &adapter->stats.ictxqec,
4474                         "Interrupt Cause Tx Queue Empty Count");
4475
4476         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4477                         CTLFLAG_RD, &adapter->stats.ictxqmtc,
4478                         "Interrupt Cause Tx Queue Min Thresh Count");
4479
4480         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4481                         CTLFLAG_RD, &adapter->stats.icrxdmtc,
4482                         "Interrupt Cause Rx Desc Min Thresh Count");
4483
4484         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4485                         CTLFLAG_RD, &adapter->stats.icrxoc,
4486                         "Interrupt Cause Receiver Overrun Count");
4487 }
4488
4489 /**********************************************************************
4490  *
4491  *  This routine provides a way to dump out the adapter eeprom,
4492  *  often a useful debug/service tool. This only dumps the first
4493  *  32 words, stuff that matters is in that extent.
4494  *
4495  **********************************************************************/
4496 static int
4497 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4498 {
4499         struct adapter *adapter = (struct adapter *)arg1;
4500         int error;
4501         int result;
4502
4503         result = -1;
4504         error = sysctl_handle_int(oidp, &result, 0, req);
4505
4506         if (error || !req->newptr)
4507                 return (error);
4508
4509         /*
4510          * This value will cause a hex dump of the
4511          * first 32 16-bit words of the EEPROM to
4512          * the screen.
4513          */
4514         if (result == 1)
4515                 em_print_nvm_info(adapter);
4516
4517         return (error);
4518 }
4519
4520 static void
4521 em_print_nvm_info(struct adapter *adapter)
4522 {
4523         u16 eeprom_data;
4524         int i, j, row = 0;
4525
4526         /* Its a bit crude, but it gets the job done */
4527         printf("\nInterface EEPROM Dump:\n");
4528         printf("Offset\n0x0000  ");
4529         for (i = 0, j = 0; i < 32; i++, j++) {
4530                 if (j == 8) { /* Make the offset block */
4531                         j = 0; ++row;
4532                         printf("\n0x00%x0  ",row);
4533                 }
4534                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4535                 printf("%04x ", eeprom_data);
4536         }
4537         printf("\n");
4538 }
4539
4540 static int
4541 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4542 {
4543         struct em_int_delay_info *info;
4544         struct adapter *adapter;
4545         u32 regval;
4546         int error, usecs, ticks;
4547
4548         info = (struct em_int_delay_info *) arg1;
4549         usecs = info->value;
4550         error = sysctl_handle_int(oidp, &usecs, 0, req);
4551         if (error != 0 || req->newptr == NULL)
4552                 return (error);
4553         if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4554                 return (EINVAL);
4555         info->value = usecs;
4556         ticks = EM_USECS_TO_TICKS(usecs);
4557         if (info->offset == E1000_ITR)  /* units are 256ns here */
4558                 ticks *= 4;
4559
4560         adapter = info->adapter;
4561
4562         regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4563         regval = (regval & ~0xffff) | (ticks & 0xffff);
4564         /* Handle a few special cases. */
4565         switch (info->offset) {
4566         case E1000_RDTR:
4567                 break;
4568         case E1000_TIDV:
4569                 if (ticks == 0) {
4570                         adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4571                         /* Don't write 0 into the TIDV register. */
4572                         regval++;
4573                 } else
4574                         adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4575                 break;
4576         }
4577         E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4578         return (0);
4579 }
4580
4581 static void
4582 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4583         const char *description, struct em_int_delay_info *info,
4584         int offset, int value)
4585 {
4586         info->adapter = adapter;
4587         info->offset = offset;
4588         info->value = value;
4589         SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4590             SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4591             OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4592             info, 0, em_sysctl_int_delay, "I", description);
4593 }
4594
4595 /*
4596  * Set flow control using sysctl:
4597  * Flow control values:
4598  *      0 - off
4599  *      1 - rx pause
4600  *      2 - tx pause
4601  *      3 - full
4602  */
4603 static int
4604 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4605 {
4606         int error;
4607         static int input = 3; /* default is full */
4608         struct adapter  *adapter = (struct adapter *) arg1;
4609
4610         error = sysctl_handle_int(oidp, &input, 0, req);
4611
4612         if ((error) || (req->newptr == NULL))
4613                 return (error);
4614
4615         if (input == adapter->fc) /* no change? */
4616                 return (error);
4617
4618         switch (input) {
4619         case e1000_fc_rx_pause:
4620         case e1000_fc_tx_pause:
4621         case e1000_fc_full:
4622         case e1000_fc_none:
4623                 adapter->hw.fc.requested_mode = input;
4624                 adapter->fc = input;
4625                 break;
4626         default:
4627                 /* Do nothing */
4628                 return (error);
4629         }
4630
4631         adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4632         e1000_force_mac_fc(&adapter->hw);
4633         return (error);
4634 }
4635
4636 /*
4637  * Manage Energy Efficient Ethernet:
4638  * Control values:
4639  *     0/1 - enabled/disabled
4640  */
4641 static int
4642 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4643 {
4644         struct adapter *adapter = (struct adapter *) arg1;
4645         int error, value;
4646
4647         value = adapter->hw.dev_spec.ich8lan.eee_disable;
4648         error = sysctl_handle_int(oidp, &value, 0, req);
4649         if (error || req->newptr == NULL)
4650                 return (error);
4651         adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4652         em_if_init(adapter->ctx);
4653
4654         return (0);
4655 }
4656
4657 static int
4658 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4659 {
4660         struct adapter *adapter;
4661         int error;
4662         int result;
4663
4664         result = -1;
4665         error = sysctl_handle_int(oidp, &result, 0, req);
4666
4667         if (error || !req->newptr)
4668                 return (error);
4669
4670         if (result == 1) {
4671                 adapter = (struct adapter *) arg1;
4672                 em_print_debug_info(adapter);
4673         }
4674
4675         return (error);
4676 }
4677
4678 static int
4679 em_get_rs(SYSCTL_HANDLER_ARGS)
4680 {
4681         struct adapter *adapter = (struct adapter *) arg1;
4682         int error;
4683         int result;
4684
4685         result = 0;
4686         error = sysctl_handle_int(oidp, &result, 0, req);
4687
4688         if (error || !req->newptr || result != 1)
4689                 return (error);
4690         em_dump_rs(adapter);
4691
4692         return (error);
4693 }
4694
4695 static void
4696 em_if_debug(if_ctx_t ctx)
4697 {
4698         em_dump_rs(iflib_get_softc(ctx));
4699 }
4700
4701 /*
4702  * This routine is meant to be fluid, add whatever is
4703  * needed for debugging a problem.  -jfv
4704  */
4705 static void
4706 em_print_debug_info(struct adapter *adapter)
4707 {
4708         device_t dev = iflib_get_dev(adapter->ctx);
4709         struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4710         struct tx_ring *txr = &adapter->tx_queues->txr;
4711         struct rx_ring *rxr = &adapter->rx_queues->rxr;
4712
4713         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4714                 printf("Interface is RUNNING ");
4715         else
4716                 printf("Interface is NOT RUNNING\n");
4717
4718         if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4719                 printf("and INACTIVE\n");
4720         else
4721                 printf("and ACTIVE\n");
4722
4723         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4724                 device_printf(dev, "TX Queue %d ------\n", i);
4725                 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4726                         E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4727                         E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4728
4729         }
4730         for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4731                 device_printf(dev, "RX Queue %d ------\n", j);
4732                 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4733                         E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4734                         E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4735         }
4736 }
4737
4738 /*
4739  * 82574 only:
4740  * Write a new value to the EEPROM increasing the number of MSI-X
4741  * vectors from 3 to 5, for proper multiqueue support.
4742  */
4743 static void
4744 em_enable_vectors_82574(if_ctx_t ctx)
4745 {
4746         struct adapter *adapter = iflib_get_softc(ctx);
4747         struct e1000_hw *hw = &adapter->hw;
4748         device_t dev = iflib_get_dev(ctx);
4749         u16 edata;
4750
4751         e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4752         if (bootverbose)
4753                 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4754         if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4755                 device_printf(dev, "Writing to eeprom: increasing "
4756                     "reported MSI-X vectors from 3 to 5...\n");
4757                 edata &= ~(EM_NVM_MSIX_N_MASK);
4758                 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4759                 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4760                 e1000_update_nvm_checksum(hw);
4761                 device_printf(dev, "Writing to eeprom: done\n");
4762         }
4763 }