]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/e1000/if_em.c
e1000: Update intel shared code
[FreeBSD/FreeBSD.git] / sys / dev / e1000 / if_em.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 /* $FreeBSD$ */
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33
34 #define em_mac_min e1000_82571
35 #define igb_mac_min e1000_82575
36
37 /*********************************************************************
38  *  Driver version:
39  *********************************************************************/
40 char em_driver_version[] = "7.6.1-k";
41
42 /*********************************************************************
43  *  PCI Device ID Table
44  *
45  *  Used by probe to select devices to load on
46  *  Last field stores an index into e1000_strings
47  *  Last entry must be all 0s
48  *
49  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
50  *********************************************************************/
51
52 static pci_vendor_info_t em_vendor_info_array[] =
53 {
54         /* Intel(R) - lem-class legacy devices */
55         PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) Legacy PRO/1000 MT 82540EM"),
56         PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
57         PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) Legacy PRO/1000 MT 82540EP"),
58         PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
59         PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
60
61         PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
62         PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) Legacy PRO/1000 82541ER"),
63         PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) Legacy PRO/1000 MT 82541ER"),
64         PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
65         PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) Legacy PRO/1000 MT 82541GI"),
66         PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) Legacy PRO/1000 GT 82541PI"),
67         PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
68
69         PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
70
71         PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
72         PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
73
74         PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
75         PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
76         PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
77         PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
78
79         PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
80         PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
81         PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
82         PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
83         PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
84
85         PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
86         PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
87         PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
88         PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
89         PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
90         PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
91         PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
92         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
93         PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
94
95         PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) Legacy PRO/1000 CT 82547EI"),
96         PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
97         PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) Legacy PRO/1000 CT 82547GI"),
98
99         /* Intel(R) - em-class devices */
100         PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
101         PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
102         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
103         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
104         PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
105         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
106         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
107         PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
108         PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
109         PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
110         PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 PT 82572EI (Copper)"),
111         PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
112         PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 82572EI (SERDES)"),
113         PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 82573E (Copper)"),
114         PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 82573E AMT (Copper)"),
115         PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
116         PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
117         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) 80003ES2LAN (Copper)"),
118         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) 80003ES2LAN (SERDES)"),
119         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) 80003ES2LAN (Dual Copper)"),
120         PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) 80003ES2LAN (Dual SERDES)"),
121         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) 82566MM ICH8 AMT (Mobile)"),
122         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
123         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
124         PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
125         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
126         PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
127         PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
128         PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
129         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) 82567LM ICH9 AMT"),
130         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) 82566DM-2 ICH9 AMT"),
131         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
132         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
133         PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
134         PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
135         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
136         PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
137         PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
138         PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
139         PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
140         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
141         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
142         PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
143         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
144         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
145         PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
146         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
147         PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
148         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
149         PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
150         PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
151         PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
152         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
153         PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
154         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) I218-LM LPTLP"),
155         PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
156         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
157         PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
158         PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
159         PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
160         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
161         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
162         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) I219-LM SPT-H(2)"),
163         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) I219-V SPT-H(2)"),
164         PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) I219-LM LBG(3)"),
165         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) I219-LM SPT(4)"),
166         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
167         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) I219-LM SPT(5)"),
168         PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
169         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) I219-LM CNP(6)"),
170         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
171         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) I219-LM CNP(7)"),
172         PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
173         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) I219-LM ICP(8)"),
174         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
175         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) I219-LM ICP(9)"),
176         PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
177         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) I219-LM CMP(10)"),
178         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) I219-V CMP(10)"),
179         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) I219-LM CMP(11)"),
180         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) I219-V CMP(11)"),
181         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) I219-LM CMP(12)"),
182         PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) I219-V CMP(12)"),
183         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13, "Intel(R) I219-LM TGP(13)"),
184         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13, "Intel(R) I219-V TGP(13)"),
185         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14, "Intel(R) I219-LM TGP(14)"),
186         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14, "Intel(R) I219-V GTP(14)"),
187         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15, "Intel(R) I219-LM TGP(15)"),
188         PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15, "Intel(R) I219-V TGP(15)"),
189         PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16, "Intel(R) I219-LM ADL(16)"),
190         PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16, "Intel(R) I219-V ADL(16)"),
191         PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17, "Intel(R) I219-LM ADL(17)"),
192         PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17, "Intel(R) I219-V ADL(17)"),
193         PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18, "Intel(R) I219-LM MTP(18)"),
194         PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18, "Intel(R) I219-V MTP(18)"),
195         PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM19, "Intel(R) I219-LM MTP(19)"),
196         PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V19, "Intel(R) I219-V MTP(19)"),
197         /* required last entry */
198         PVID_END
199 };
200
201 static pci_vendor_info_t igb_vendor_info_array[] =
202 {
203         /* Intel(R) - igb-class devices */
204         PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 82575EB (Copper)"),
205         PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 82575EB (SERDES)"),
206         PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
207         PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
208         PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
209         PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 82576NS (SERDES)"),
210         PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
211         PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 82576 (Dual SERDES)"),
212         PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
213         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
214         PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
215         PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 82576 Virtual Function"),
216         PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) I340 82580 (Copper)"),
217         PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
218         PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) I340 82580 (SERDES)"),
219         PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
220         PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) I340-T2 82580 (Dual Copper)"),
221         PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) I340-F4 82580 (Quad Fiber)"),
222         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) DH89XXCC (SERDES)"),
223         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) I347-AT4 DH89XXCC"),
224         PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
225         PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) DH89XXCC (Backplane)"),
226         PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
227         PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
228         PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
229         PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
230         PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
231         PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
232         PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) I210 IT (Copper)"),
233         PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
234         PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) I210 Flashless (Copper)"),
235         PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) I210 Flashless (SERDES)"),
236         PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS, "Intel(R) I210 Flashless (SGMII)"),
237         PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
238         PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
239         PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
240         PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
241         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) I354 (1.0 GbE Backplane)"),
242         PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) I354 (2.5 GbE Backplane)"),
243         PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
244         /* required last entry */
245         PVID_END
246 };
247
248 /*********************************************************************
249  *  Function prototypes
250  *********************************************************************/
251 static void     *em_register(device_t dev);
252 static void     *igb_register(device_t dev);
253 static int      em_if_attach_pre(if_ctx_t ctx);
254 static int      em_if_attach_post(if_ctx_t ctx);
255 static int      em_if_detach(if_ctx_t ctx);
256 static int      em_if_shutdown(if_ctx_t ctx);
257 static int      em_if_suspend(if_ctx_t ctx);
258 static int      em_if_resume(if_ctx_t ctx);
259
260 static int      em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets);
261 static int      em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets);
262 static void     em_if_queues_free(if_ctx_t ctx);
263
264 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
265 static void     em_if_init(if_ctx_t ctx);
266 static void     em_if_stop(if_ctx_t ctx);
267 static void     em_if_media_status(if_ctx_t, struct ifmediareq *);
268 static int      em_if_media_change(if_ctx_t ctx);
269 static int      em_if_mtu_set(if_ctx_t ctx, uint32_t mtu);
270 static void     em_if_timer(if_ctx_t ctx, uint16_t qid);
271 static void     em_if_vlan_register(if_ctx_t ctx, u16 vtag);
272 static void     em_if_vlan_unregister(if_ctx_t ctx, u16 vtag);
273 static void     em_if_watchdog_reset(if_ctx_t ctx);
274 static bool     em_if_needs_restart(if_ctx_t ctx, enum iflib_restart_event event);
275
276 static void     em_identify_hardware(if_ctx_t ctx);
277 static int      em_allocate_pci_resources(if_ctx_t ctx);
278 static void     em_free_pci_resources(if_ctx_t ctx);
279 static void     em_reset(if_ctx_t ctx);
280 static int      em_setup_interface(if_ctx_t ctx);
281 static int      em_setup_msix(if_ctx_t ctx);
282
283 static void     em_initialize_transmit_unit(if_ctx_t ctx);
284 static void     em_initialize_receive_unit(if_ctx_t ctx);
285
286 static void     em_if_intr_enable(if_ctx_t ctx);
287 static void     em_if_intr_disable(if_ctx_t ctx);
288 static void     igb_if_intr_enable(if_ctx_t ctx);
289 static void     igb_if_intr_disable(if_ctx_t ctx);
290 static int      em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
291 static int      em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
292 static int      igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid);
293 static int      igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid);
294 static void     em_if_multi_set(if_ctx_t ctx);
295 static void     em_if_update_admin_status(if_ctx_t ctx);
296 static void     em_if_debug(if_ctx_t ctx);
297 static void     em_update_stats_counters(struct adapter *);
298 static void     em_add_hw_stats(struct adapter *adapter);
299 static int      em_if_set_promisc(if_ctx_t ctx, int flags);
300 static void     em_setup_vlan_hw_support(struct adapter *);
301 static int      em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
302 static void     em_print_nvm_info(struct adapter *);
303 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
304 static int      em_get_rs(SYSCTL_HANDLER_ARGS);
305 static void     em_print_debug_info(struct adapter *);
306 static int      em_is_valid_ether_addr(u8 *);
307 static int      em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
308 static void     em_add_int_delay_sysctl(struct adapter *, const char *,
309                     const char *, struct em_int_delay_info *, int, int);
310 /* Management and WOL Support */
311 static void     em_init_manageability(struct adapter *);
312 static void     em_release_manageability(struct adapter *);
313 static void     em_get_hw_control(struct adapter *);
314 static void     em_release_hw_control(struct adapter *);
315 static void     em_get_wakeup(if_ctx_t ctx);
316 static void     em_enable_wakeup(if_ctx_t ctx);
317 static int      em_enable_phy_wakeup(struct adapter *);
318 static void     em_disable_aspm(struct adapter *);
319
320 int             em_intr(void *arg);
321
322 /* MSI-X handlers */
323 static int      em_if_msix_intr_assign(if_ctx_t, int);
324 static int      em_msix_link(void *);
325 static void     em_handle_link(void *context);
326
327 static void     em_enable_vectors_82574(if_ctx_t);
328
329 static int      em_set_flowcntl(SYSCTL_HANDLER_ARGS);
330 static int      em_sysctl_eee(SYSCTL_HANDLER_ARGS);
331 static void     em_if_led_func(if_ctx_t ctx, int onoff);
332
333 static int      em_get_regs(SYSCTL_HANDLER_ARGS);
334
335 static void     lem_smartspeed(struct adapter *adapter);
336 static void     igb_configure_queues(struct adapter *adapter);
337
338
339 /*********************************************************************
340  *  FreeBSD Device Interface Entry Points
341  *********************************************************************/
342 static device_method_t em_methods[] = {
343         /* Device interface */
344         DEVMETHOD(device_register, em_register),
345         DEVMETHOD(device_probe, iflib_device_probe),
346         DEVMETHOD(device_attach, iflib_device_attach),
347         DEVMETHOD(device_detach, iflib_device_detach),
348         DEVMETHOD(device_shutdown, iflib_device_shutdown),
349         DEVMETHOD(device_suspend, iflib_device_suspend),
350         DEVMETHOD(device_resume, iflib_device_resume),
351         DEVMETHOD_END
352 };
353
354 static device_method_t igb_methods[] = {
355         /* Device interface */
356         DEVMETHOD(device_register, igb_register),
357         DEVMETHOD(device_probe, iflib_device_probe),
358         DEVMETHOD(device_attach, iflib_device_attach),
359         DEVMETHOD(device_detach, iflib_device_detach),
360         DEVMETHOD(device_shutdown, iflib_device_shutdown),
361         DEVMETHOD(device_suspend, iflib_device_suspend),
362         DEVMETHOD(device_resume, iflib_device_resume),
363         DEVMETHOD_END
364 };
365
366
367 static driver_t em_driver = {
368         "em", em_methods, sizeof(struct adapter),
369 };
370
371 static devclass_t em_devclass;
372 DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0);
373
374 MODULE_DEPEND(em, pci, 1, 1, 1);
375 MODULE_DEPEND(em, ether, 1, 1, 1);
376 MODULE_DEPEND(em, iflib, 1, 1, 1);
377
378 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
379
380 static driver_t igb_driver = {
381         "igb", igb_methods, sizeof(struct adapter),
382 };
383
384 static devclass_t igb_devclass;
385 DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
386
387 MODULE_DEPEND(igb, pci, 1, 1, 1);
388 MODULE_DEPEND(igb, ether, 1, 1, 1);
389 MODULE_DEPEND(igb, iflib, 1, 1, 1);
390
391 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
392
393 static device_method_t em_if_methods[] = {
394         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
395         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
396         DEVMETHOD(ifdi_detach, em_if_detach),
397         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
398         DEVMETHOD(ifdi_suspend, em_if_suspend),
399         DEVMETHOD(ifdi_resume, em_if_resume),
400         DEVMETHOD(ifdi_init, em_if_init),
401         DEVMETHOD(ifdi_stop, em_if_stop),
402         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
403         DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
404         DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
405         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
406         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
407         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
408         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
409         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
410         DEVMETHOD(ifdi_media_status, em_if_media_status),
411         DEVMETHOD(ifdi_media_change, em_if_media_change),
412         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
413         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
414         DEVMETHOD(ifdi_timer, em_if_timer),
415         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
416         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
417         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
418         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
419         DEVMETHOD(ifdi_led_func, em_if_led_func),
420         DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
421         DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
422         DEVMETHOD(ifdi_debug, em_if_debug),
423         DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
424         DEVMETHOD_END
425 };
426
427 static driver_t em_if_driver = {
428         "em_if", em_if_methods, sizeof(struct adapter)
429 };
430
431 static device_method_t igb_if_methods[] = {
432         DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
433         DEVMETHOD(ifdi_attach_post, em_if_attach_post),
434         DEVMETHOD(ifdi_detach, em_if_detach),
435         DEVMETHOD(ifdi_shutdown, em_if_shutdown),
436         DEVMETHOD(ifdi_suspend, em_if_suspend),
437         DEVMETHOD(ifdi_resume, em_if_resume),
438         DEVMETHOD(ifdi_init, em_if_init),
439         DEVMETHOD(ifdi_stop, em_if_stop),
440         DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
441         DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
442         DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
443         DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
444         DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
445         DEVMETHOD(ifdi_queues_free, em_if_queues_free),
446         DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
447         DEVMETHOD(ifdi_multi_set, em_if_multi_set),
448         DEVMETHOD(ifdi_media_status, em_if_media_status),
449         DEVMETHOD(ifdi_media_change, em_if_media_change),
450         DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
451         DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
452         DEVMETHOD(ifdi_timer, em_if_timer),
453         DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
454         DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
455         DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
456         DEVMETHOD(ifdi_get_counter, em_if_get_counter),
457         DEVMETHOD(ifdi_led_func, em_if_led_func),
458         DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
459         DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
460         DEVMETHOD(ifdi_debug, em_if_debug),
461         DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
462         DEVMETHOD_END
463 };
464
465 static driver_t igb_if_driver = {
466         "igb_if", igb_if_methods, sizeof(struct adapter)
467 };
468
469 /*********************************************************************
470  *  Tunable default values.
471  *********************************************************************/
472
473 #define EM_TICKS_TO_USECS(ticks)        ((1024 * (ticks) + 500) / 1000)
474 #define EM_USECS_TO_TICKS(usecs)        ((1000 * (usecs) + 512) / 1024)
475
476 #define MAX_INTS_PER_SEC        8000
477 #define DEFAULT_ITR             (1000000000/(MAX_INTS_PER_SEC * 256))
478
479 /* Allow common code without TSO */
480 #ifndef CSUM_TSO
481 #define CSUM_TSO        0
482 #endif
483
484 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
485     "EM driver parameters");
486
487 static int em_disable_crc_stripping = 0;
488 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
489     &em_disable_crc_stripping, 0, "Disable CRC Stripping");
490
491 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
492 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
493 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt,
494     0, "Default transmit interrupt delay in usecs");
495 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt,
496     0, "Default receive interrupt delay in usecs");
497
498 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
499 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
500 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
501     &em_tx_abs_int_delay_dflt, 0,
502     "Default transmit interrupt delay limit in usecs");
503 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
504     &em_rx_abs_int_delay_dflt, 0,
505     "Default receive interrupt delay limit in usecs");
506
507 static int em_smart_pwr_down = FALSE;
508 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down,
509     0, "Set to true to leave smart power down enabled on newer adapters");
510
511 /* Controls whether promiscuous also shows bad packets */
512 static int em_debug_sbp = FALSE;
513 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
514     "Show bad packets in promiscuous mode");
515
516 /* How many packets rxeof tries to clean at a time */
517 static int em_rx_process_limit = 100;
518 SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
519     &em_rx_process_limit, 0,
520     "Maximum number of received packets to process "
521     "at a time, -1 means unlimited");
522
523 /* Energy efficient ethernet - default to OFF */
524 static int eee_setting = 1;
525 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
526     "Enable Energy Efficient Ethernet");
527
528 /*
529 ** Tuneable Interrupt rate
530 */
531 static int em_max_interrupt_rate = 8000;
532 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
533     &em_max_interrupt_rate, 0, "Maximum interrupts per second");
534
535
536
537 /* Global used in WOL setup with multiport cards */
538 static int global_quad_port_a = 0;
539
540 extern struct if_txrx igb_txrx;
541 extern struct if_txrx em_txrx;
542 extern struct if_txrx lem_txrx;
543
544 static struct if_shared_ctx em_sctx_init = {
545         .isc_magic = IFLIB_MAGIC,
546         .isc_q_align = PAGE_SIZE,
547         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
548         .isc_tx_maxsegsize = PAGE_SIZE,
549         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
550         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
551         .isc_rx_maxsize = MJUM9BYTES,
552         .isc_rx_nsegments = 1,
553         .isc_rx_maxsegsize = MJUM9BYTES,
554         .isc_nfl = 1,
555         .isc_nrxqs = 1,
556         .isc_ntxqs = 1,
557         .isc_admin_intrcnt = 1,
558         .isc_vendor_info = em_vendor_info_array,
559         .isc_driver_version = em_driver_version,
560         .isc_driver = &em_if_driver,
561         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
562
563         .isc_nrxd_min = {EM_MIN_RXD},
564         .isc_ntxd_min = {EM_MIN_TXD},
565         .isc_nrxd_max = {EM_MAX_RXD},
566         .isc_ntxd_max = {EM_MAX_TXD},
567         .isc_nrxd_default = {EM_DEFAULT_RXD},
568         .isc_ntxd_default = {EM_DEFAULT_TXD},
569 };
570
571 static struct if_shared_ctx igb_sctx_init = {
572         .isc_magic = IFLIB_MAGIC,
573         .isc_q_align = PAGE_SIZE,
574         .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
575         .isc_tx_maxsegsize = PAGE_SIZE,
576         .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
577         .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
578         .isc_rx_maxsize = MJUM9BYTES,
579         .isc_rx_nsegments = 1,
580         .isc_rx_maxsegsize = MJUM9BYTES,
581         .isc_nfl = 1,
582         .isc_nrxqs = 1,
583         .isc_ntxqs = 1,
584         .isc_admin_intrcnt = 1,
585         .isc_vendor_info = igb_vendor_info_array,
586         .isc_driver_version = em_driver_version,
587         .isc_driver = &igb_if_driver,
588         .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
589
590         .isc_nrxd_min = {EM_MIN_RXD},
591         .isc_ntxd_min = {EM_MIN_TXD},
592         .isc_nrxd_max = {IGB_MAX_RXD},
593         .isc_ntxd_max = {IGB_MAX_TXD},
594         .isc_nrxd_default = {EM_DEFAULT_RXD},
595         .isc_ntxd_default = {EM_DEFAULT_TXD},
596 };
597
598 /*****************************************************************
599  *
600  * Dump Registers
601  *
602  ****************************************************************/
603 #define IGB_REGS_LEN 739
604
605 static int em_get_regs(SYSCTL_HANDLER_ARGS)
606 {
607         struct adapter *adapter = (struct adapter *)arg1;
608         struct e1000_hw *hw = &adapter->hw;
609         struct sbuf *sb;
610         u32 *regs_buff;
611         int rc;
612
613         regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
614         memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
615
616         rc = sysctl_wire_old_buffer(req, 0);
617         MPASS(rc == 0);
618         if (rc != 0) {
619                 free(regs_buff, M_DEVBUF);
620                 return (rc);
621         }
622
623         sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
624         MPASS(sb != NULL);
625         if (sb == NULL) {
626                 free(regs_buff, M_DEVBUF);
627                 return (ENOMEM);
628         }
629
630         /* General Registers */
631         regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
632         regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
633         regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
634         regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
635         regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
636         regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
637         regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
638         regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
639         regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
640         regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
641         regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
642         regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
643         regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
644         regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
645         regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
646         regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
647         regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
648         regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
649         regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
650         regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
651         regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
652         regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
653
654         sbuf_printf(sb, "General Registers\n");
655         sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
656         sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
657         sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
658
659         sbuf_printf(sb, "Interrupt Registers\n");
660         sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
661
662         sbuf_printf(sb, "RX Registers\n");
663         sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
664         sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
665         sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
666         sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
667         sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
668         sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
669         sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
670
671         sbuf_printf(sb, "TX Registers\n");
672         sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
673         sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
674         sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
675         sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
676         sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
677         sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
678         sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
679         sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
680         sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
681         sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
682         sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
683
684         free(regs_buff, M_DEVBUF);
685
686 #ifdef DUMP_DESCS
687         {
688                 if_softc_ctx_t scctx = adapter->shared;
689                 struct rx_ring *rxr = &rx_que->rxr;
690                 struct tx_ring *txr = &tx_que->txr;
691                 int ntxd = scctx->isc_ntxd[0];
692                 int nrxd = scctx->isc_nrxd[0];
693                 int j;
694
695         for (j = 0; j < nrxd; j++) {
696                 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
697                 u32 length =  le32toh(rxr->rx_base[j].wb.upper.length);
698                 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 "  Error:%d  Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length);
699         }
700
701         for (j = 0; j < min(ntxd, 256); j++) {
702                 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
703
704                 sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x  eop: %d DD=%d\n",
705                             j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
706                             buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0);
707
708         }
709         }
710 #endif
711
712         rc = sbuf_finish(sb);
713         sbuf_delete(sb);
714         return(rc);
715 }
716
717 static void *
718 em_register(device_t dev)
719 {
720         return (&em_sctx_init);
721 }
722
723 static void *
724 igb_register(device_t dev)
725 {
726         return (&igb_sctx_init);
727 }
728
729 static int
730 em_set_num_queues(if_ctx_t ctx)
731 {
732         struct adapter *adapter = iflib_get_softc(ctx);
733         int maxqueues;
734
735         /* Sanity check based on HW */
736         switch (adapter->hw.mac.type) {
737         case e1000_82576:
738         case e1000_82580:
739         case e1000_i350:
740         case e1000_i354:
741                 maxqueues = 8;
742                 break;
743         case e1000_i210:
744         case e1000_82575:
745                 maxqueues = 4;
746                 break;
747         case e1000_i211:
748         case e1000_82574:
749                 maxqueues = 2;
750                 break;
751         default:
752                 maxqueues = 1;
753                 break;
754         }
755
756         return (maxqueues);
757 }
758
759 #define LEM_CAPS                                                        \
760     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
761     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER
762
763 #define EM_CAPS                                                         \
764     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
765     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
766     IFCAP_LRO | IFCAP_VLAN_HWTSO
767
768 #define IGB_CAPS                                                        \
769     IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |              \
770     IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 |  \
771     IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\
772     IFCAP_TSO6
773
774 /*********************************************************************
775  *  Device initialization routine
776  *
777  *  The attach entry point is called when the driver is being loaded.
778  *  This routine identifies the type of hardware, allocates all resources
779  *  and initializes the hardware.
780  *
781  *  return 0 on success, positive on failure
782  *********************************************************************/
783 static int
784 em_if_attach_pre(if_ctx_t ctx)
785 {
786         struct adapter *adapter;
787         if_softc_ctx_t scctx;
788         device_t dev;
789         struct e1000_hw *hw;
790         int error = 0;
791
792         INIT_DEBUGOUT("em_if_attach_pre: begin");
793         dev = iflib_get_dev(ctx);
794         adapter = iflib_get_softc(ctx);
795
796         adapter->ctx = adapter->osdep.ctx = ctx;
797         adapter->dev = adapter->osdep.dev = dev;
798         scctx = adapter->shared = iflib_get_softc_ctx(ctx);
799         adapter->media = iflib_get_media(ctx);
800         hw = &adapter->hw;
801
802         adapter->tx_process_limit = scctx->isc_ntxd[0];
803
804         /* SYSCTL stuff */
805         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
806             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
807             OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
808             adapter, 0, em_sysctl_nvm_info, "I", "NVM Information");
809
810         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
811             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
812             OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
813             adapter, 0, em_sysctl_debug_info, "I", "Debug Information");
814
815         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
816             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
817             OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
818             adapter, 0, em_set_flowcntl, "I", "Flow Control");
819
820         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
821             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
822             OID_AUTO, "reg_dump",
823             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter, 0,
824             em_get_regs, "A", "Dump Registers");
825
826         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
827             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
828             OID_AUTO, "rs_dump",
829             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, adapter, 0,
830             em_get_rs, "I", "Dump RS indexes");
831
832         /* Determine hardware and mac info */
833         em_identify_hardware(ctx);
834
835         scctx->isc_tx_nsegments = EM_MAX_SCATTER;
836         scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
837         if (bootverbose)
838                 device_printf(dev, "attach_pre capping queues at %d\n",
839                     scctx->isc_ntxqsets_max);
840
841         if (hw->mac.type >= igb_mac_min) {
842                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
843                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
844                 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
845                 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
846                 scctx->isc_txrx = &igb_txrx;
847                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
848                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
849                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
850                 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
851                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
852                      CSUM_IP6_TCP | CSUM_IP6_UDP;
853                 if (hw->mac.type != e1000_82575)
854                         scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
855                 /*
856                 ** Some new devices, as with ixgbe, now may
857                 ** use a different BAR, so we need to keep
858                 ** track of which is used.
859                 */
860                 scctx->isc_msix_bar = pci_msix_table_bar(dev);
861         } else if (hw->mac.type >= em_mac_min) {
862                 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
863                 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
864                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
865                 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
866                 scctx->isc_txrx = &em_txrx;
867                 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
868                 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
869                 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
870                 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
871                 /*
872                  * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO}
873                  * by default as we don't have workarounds for all associated
874                  * silicon errata.  E. g., with several MACs such as 82573E,
875                  * TSO only works at Gigabit speed and otherwise can cause the
876                  * hardware to hang (which also would be next to impossible to
877                  * work around given that already queued TSO-using descriptors
878                  * would need to be flushed and vlan(4) reconfigured at runtime
879                  * in case of a link speed change).  Moreover, MACs like 82579
880                  * still can hang at Gigabit even with all publicly documented
881                  * TSO workarounds implemented.  Generally, the penality of
882                  * these workarounds is rather high and may involve copying
883                  * mbuf data around so advantages of TSO lapse.  Still, TSO may
884                  * work for a few MACs of this class - at least when sticking
885                  * with Gigabit - in which case users may enable TSO manually.
886                  */
887                 scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
888                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO;
889                 /*
890                  * We support MSI-X with 82574 only, but indicate to iflib(4)
891                  * that it shall give MSI at least a try with other devices.
892                  */
893                 if (hw->mac.type == e1000_82574) {
894                         scctx->isc_msix_bar = pci_msix_table_bar(dev);;
895                 } else {
896                         scctx->isc_msix_bar = -1;
897                         scctx->isc_disable_msix = 1;
898                 }
899         } else {
900                 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
901                 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
902                 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
903                 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
904                 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP;
905                 scctx->isc_txrx = &lem_txrx;
906                 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
907                 if (hw->mac.type < e1000_82543)
908                         scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM);
909                 /* INTx only */
910                 scctx->isc_msix_bar = 0;
911         }
912
913         /* Setup PCI resources */
914         if (em_allocate_pci_resources(ctx)) {
915                 device_printf(dev, "Allocation of PCI resources failed\n");
916                 error = ENXIO;
917                 goto err_pci;
918         }
919
920         /*
921         ** For ICH8 and family we need to
922         ** map the flash memory, and this
923         ** must happen after the MAC is
924         ** identified
925         */
926         if ((hw->mac.type == e1000_ich8lan) ||
927             (hw->mac.type == e1000_ich9lan) ||
928             (hw->mac.type == e1000_ich10lan) ||
929             (hw->mac.type == e1000_pchlan) ||
930             (hw->mac.type == e1000_pch2lan) ||
931             (hw->mac.type == e1000_pch_lpt)) {
932                 int rid = EM_BAR_TYPE_FLASH;
933                 adapter->flash = bus_alloc_resource_any(dev,
934                     SYS_RES_MEMORY, &rid, RF_ACTIVE);
935                 if (adapter->flash == NULL) {
936                         device_printf(dev, "Mapping of Flash failed\n");
937                         error = ENXIO;
938                         goto err_pci;
939                 }
940                 /* This is used in the shared code */
941                 hw->flash_address = (u8 *)adapter->flash;
942                 adapter->osdep.flash_bus_space_tag =
943                     rman_get_bustag(adapter->flash);
944                 adapter->osdep.flash_bus_space_handle =
945                     rman_get_bushandle(adapter->flash);
946         }
947         /*
948         ** In the new SPT device flash is not  a
949         ** separate BAR, rather it is also in BAR0,
950         ** so use the same tag and an offset handle for the
951         ** FLASH read/write macros in the shared code.
952         */
953         else if (hw->mac.type >= e1000_pch_spt) {
954                 adapter->osdep.flash_bus_space_tag =
955                     adapter->osdep.mem_bus_space_tag;
956                 adapter->osdep.flash_bus_space_handle =
957                     adapter->osdep.mem_bus_space_handle
958                     + E1000_FLASH_BASE_ADDR;
959         }
960
961         /* Do Shared Code initialization */
962         error = e1000_setup_init_funcs(hw, TRUE);
963         if (error) {
964                 device_printf(dev, "Setup of Shared code failed, error %d\n",
965                     error);
966                 error = ENXIO;
967                 goto err_pci;
968         }
969
970         em_setup_msix(ctx);
971         e1000_get_bus_info(hw);
972
973         /* Set up some sysctls for the tunable interrupt delays */
974         em_add_int_delay_sysctl(adapter, "rx_int_delay",
975             "receive interrupt delay in usecs", &adapter->rx_int_delay,
976             E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
977         em_add_int_delay_sysctl(adapter, "tx_int_delay",
978             "transmit interrupt delay in usecs", &adapter->tx_int_delay,
979             E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
980         em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
981             "receive interrupt delay limit in usecs",
982             &adapter->rx_abs_int_delay,
983             E1000_REGISTER(hw, E1000_RADV),
984             em_rx_abs_int_delay_dflt);
985         em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
986             "transmit interrupt delay limit in usecs",
987             &adapter->tx_abs_int_delay,
988             E1000_REGISTER(hw, E1000_TADV),
989             em_tx_abs_int_delay_dflt);
990         em_add_int_delay_sysctl(adapter, "itr",
991             "interrupt delay limit in usecs/4",
992             &adapter->tx_itr,
993             E1000_REGISTER(hw, E1000_ITR),
994             DEFAULT_ITR);
995
996         hw->mac.autoneg = DO_AUTO_NEG;
997         hw->phy.autoneg_wait_to_complete = FALSE;
998         hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
999
1000         if (hw->mac.type < em_mac_min) {
1001                 e1000_init_script_state_82541(hw, TRUE);
1002                 e1000_set_tbi_compatibility_82543(hw, TRUE);
1003         }
1004         /* Copper options */
1005         if (hw->phy.media_type == e1000_media_type_copper) {
1006                 hw->phy.mdix = AUTO_ALL_MODES;
1007                 hw->phy.disable_polarity_correction = FALSE;
1008                 hw->phy.ms_type = EM_MASTER_SLAVE;
1009         }
1010
1011         /*
1012          * Set the frame limits assuming
1013          * standard ethernet sized frames.
1014          */
1015         scctx->isc_max_frame_size = hw->mac.max_frame_size =
1016             ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1017
1018         /*
1019          * This controls when hardware reports transmit completion
1020          * status.
1021          */
1022         hw->mac.report_tx_early = 1;
1023
1024         /* Allocate multicast array memory. */
1025         adapter->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1026             MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1027         if (adapter->mta == NULL) {
1028                 device_printf(dev, "Can not allocate multicast setup array\n");
1029                 error = ENOMEM;
1030                 goto err_late;
1031         }
1032
1033         /* Check SOL/IDER usage */
1034         if (e1000_check_reset_block(hw))
1035                 device_printf(dev, "PHY reset is blocked"
1036                               " due to SOL/IDER session.\n");
1037
1038         /* Sysctl for setting Energy Efficient Ethernet */
1039         hw->dev_spec.ich8lan.eee_disable = eee_setting;
1040         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1041             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1042             OID_AUTO, "eee_control",
1043             CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1044             adapter, 0, em_sysctl_eee, "I",
1045             "Disable Energy Efficient Ethernet");
1046
1047         /*
1048         ** Start from a known state, this is
1049         ** important in reading the nvm and
1050         ** mac from that.
1051         */
1052         e1000_reset_hw(hw);
1053
1054         /* Make sure we have a good EEPROM before we read from it */
1055         if (e1000_validate_nvm_checksum(hw) < 0) {
1056                 /*
1057                 ** Some PCI-E parts fail the first check due to
1058                 ** the link being in sleep state, call it again,
1059                 ** if it fails a second time its a real issue.
1060                 */
1061                 if (e1000_validate_nvm_checksum(hw) < 0) {
1062                         device_printf(dev,
1063                             "The EEPROM Checksum Is Not Valid\n");
1064                         error = EIO;
1065                         goto err_late;
1066                 }
1067         }
1068
1069         /* Copy the permanent MAC address out of the EEPROM */
1070         if (e1000_read_mac_addr(hw) < 0) {
1071                 device_printf(dev, "EEPROM read error while reading MAC"
1072                               " address\n");
1073                 error = EIO;
1074                 goto err_late;
1075         }
1076
1077         if (!em_is_valid_ether_addr(hw->mac.addr)) {
1078                 if (adapter->vf_ifp) {
1079                         u8 addr[ETHER_ADDR_LEN];
1080                         arc4rand(&addr, sizeof(addr), 0);
1081                         addr[0] &= 0xFE;
1082                         addr[0] |= 0x02;
1083                         bcopy(addr, hw->mac.addr, sizeof(addr));
1084                 } else {
1085                         device_printf(dev, "Invalid MAC address\n");
1086                         error = EIO;
1087                         goto err_late;
1088                 }
1089         }
1090
1091         /*
1092          * Get Wake-on-Lan and Management info for later use
1093          */
1094         em_get_wakeup(ctx);
1095
1096         /* Enable only WOL MAGIC by default */
1097         scctx->isc_capenable &= ~IFCAP_WOL;
1098         if (adapter->wol != 0)
1099                 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1100
1101         iflib_set_mac(ctx, hw->mac.addr);
1102
1103         return (0);
1104
1105 err_late:
1106         em_release_hw_control(adapter);
1107 err_pci:
1108         em_free_pci_resources(ctx);
1109         free(adapter->mta, M_DEVBUF);
1110
1111         return (error);
1112 }
1113
1114 static int
1115 em_if_attach_post(if_ctx_t ctx)
1116 {
1117         struct adapter *adapter = iflib_get_softc(ctx);
1118         struct e1000_hw *hw = &adapter->hw;
1119         int error = 0;
1120
1121         /* Setup OS specific network interface */
1122         error = em_setup_interface(ctx);
1123         if (error != 0) {
1124                 device_printf(adapter->dev, "Interface setup failed: %d\n", error);
1125                 goto err_late;
1126         }
1127
1128         em_reset(ctx);
1129
1130         /* Initialize statistics */
1131         em_update_stats_counters(adapter);
1132         hw->mac.get_link_status = 1;
1133         em_if_update_admin_status(ctx);
1134         em_add_hw_stats(adapter);
1135
1136         /* Non-AMT based hardware can now take control from firmware */
1137         if (adapter->has_manage && !adapter->has_amt)
1138                 em_get_hw_control(adapter);
1139
1140         INIT_DEBUGOUT("em_if_attach_post: end");
1141
1142         return (0);
1143
1144 err_late:
1145         /* upon attach_post() error, iflib calls _if_detach() to free resources. */
1146         return (error);
1147 }
1148
1149 /*********************************************************************
1150  *  Device removal routine
1151  *
1152  *  The detach entry point is called when the driver is being removed.
1153  *  This routine stops the adapter and deallocates all the resources
1154  *  that were allocated for driver operation.
1155  *
1156  *  return 0 on success, positive on failure
1157  *********************************************************************/
1158 static int
1159 em_if_detach(if_ctx_t ctx)
1160 {
1161         struct adapter  *adapter = iflib_get_softc(ctx);
1162
1163         INIT_DEBUGOUT("em_if_detach: begin");
1164
1165         e1000_phy_hw_reset(&adapter->hw);
1166
1167         em_release_manageability(adapter);
1168         em_release_hw_control(adapter);
1169         em_free_pci_resources(ctx);
1170         free(adapter->mta, M_DEVBUF);
1171         adapter->mta = NULL;
1172
1173         return (0);
1174 }
1175
1176 /*********************************************************************
1177  *
1178  *  Shutdown entry point
1179  *
1180  **********************************************************************/
1181
1182 static int
1183 em_if_shutdown(if_ctx_t ctx)
1184 {
1185         return em_if_suspend(ctx);
1186 }
1187
1188 /*
1189  * Suspend/resume device methods.
1190  */
1191 static int
1192 em_if_suspend(if_ctx_t ctx)
1193 {
1194         struct adapter *adapter = iflib_get_softc(ctx);
1195
1196         em_release_manageability(adapter);
1197         em_release_hw_control(adapter);
1198         em_enable_wakeup(ctx);
1199         return (0);
1200 }
1201
1202 static int
1203 em_if_resume(if_ctx_t ctx)
1204 {
1205         struct adapter *adapter = iflib_get_softc(ctx);
1206
1207         if (adapter->hw.mac.type == e1000_pch2lan)
1208                 e1000_resume_workarounds_pchlan(&adapter->hw);
1209         em_if_init(ctx);
1210         em_init_manageability(adapter);
1211
1212         return(0);
1213 }
1214
1215 static int
1216 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1217 {
1218         int max_frame_size;
1219         struct adapter *adapter = iflib_get_softc(ctx);
1220         if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1221
1222         IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1223
1224         switch (adapter->hw.mac.type) {
1225         case e1000_82571:
1226         case e1000_82572:
1227         case e1000_ich9lan:
1228         case e1000_ich10lan:
1229         case e1000_pch2lan:
1230         case e1000_pch_lpt:
1231         case e1000_pch_spt:
1232         case e1000_pch_cnp:
1233         case e1000_pch_tgp:
1234         case e1000_pch_adp:
1235         case e1000_pch_mtp:
1236         case e1000_82574:
1237         case e1000_82583:
1238         case e1000_80003es2lan:
1239                 /* 9K Jumbo Frame size */
1240                 max_frame_size = 9234;
1241                 break;
1242         case e1000_pchlan:
1243                 max_frame_size = 4096;
1244                 break;
1245         case e1000_82542:
1246         case e1000_ich8lan:
1247                 /* Adapters that do not support jumbo frames */
1248                 max_frame_size = ETHER_MAX_LEN;
1249                 break;
1250         default:
1251                 if (adapter->hw.mac.type >= igb_mac_min)
1252                         max_frame_size = 9234;
1253                 else /* lem */
1254                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
1255         }
1256         if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1257                 return (EINVAL);
1258         }
1259
1260         scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size =
1261             mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1262         return (0);
1263 }
1264
1265 /*********************************************************************
1266  *  Init entry point
1267  *
1268  *  This routine is used in two ways. It is used by the stack as
1269  *  init entry point in network interface structure. It is also used
1270  *  by the driver as a hw/sw initialization routine to get to a
1271  *  consistent state.
1272  *
1273  **********************************************************************/
1274 static void
1275 em_if_init(if_ctx_t ctx)
1276 {
1277         struct adapter *adapter = iflib_get_softc(ctx);
1278         if_softc_ctx_t scctx = adapter->shared;
1279         struct ifnet *ifp = iflib_get_ifp(ctx);
1280         struct em_tx_queue *tx_que;
1281         int i;
1282
1283         INIT_DEBUGOUT("em_if_init: begin");
1284
1285         /* Get the latest mac address, User can use a LAA */
1286         bcopy(if_getlladdr(ifp), adapter->hw.mac.addr,
1287             ETHER_ADDR_LEN);
1288
1289         /* Put the address into the Receive Address Array */
1290         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1291
1292         /*
1293          * With the 82571 adapter, RAR[0] may be overwritten
1294          * when the other port is reset, we make a duplicate
1295          * in RAR[14] for that eventuality, this assures
1296          * the interface continues to function.
1297          */
1298         if (adapter->hw.mac.type == e1000_82571) {
1299                 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1300                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1301                     E1000_RAR_ENTRIES - 1);
1302         }
1303
1304
1305         /* Initialize the hardware */
1306         em_reset(ctx);
1307         em_if_update_admin_status(ctx);
1308
1309         for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) {
1310                 struct tx_ring *txr = &tx_que->txr;
1311
1312                 txr->tx_rs_cidx = txr->tx_rs_pidx;
1313
1314                 /* Initialize the last processed descriptor to be the end of
1315                  * the ring, rather than the start, so that we avoid an
1316                  * off-by-one error when calculating how many descriptors are
1317                  * done in the credits_update function.
1318                  */
1319                 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1320         }
1321
1322         /* Setup VLAN support, basic and offload if available */
1323         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1324
1325         /* Clear bad data from Rx FIFOs */
1326         if (adapter->hw.mac.type >= igb_mac_min)
1327                 e1000_rx_fifo_flush_82575(&adapter->hw);
1328
1329         /* Configure for OS presence */
1330         em_init_manageability(adapter);
1331
1332         /* Prepare transmit descriptors and buffers */
1333         em_initialize_transmit_unit(ctx);
1334
1335         /* Setup Multicast table */
1336         em_if_multi_set(ctx);
1337
1338         adapter->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1339         em_initialize_receive_unit(ctx);
1340
1341         /* Use real VLAN Filter support? */
1342         if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
1343                 if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER)
1344                         /* Use real VLAN Filter support */
1345                         em_setup_vlan_hw_support(adapter);
1346                 else {
1347                         u32 ctrl;
1348                         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1349                         ctrl |= E1000_CTRL_VME;
1350                         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1351                 }
1352         } else {
1353                 u32 ctrl;
1354                 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1355                 ctrl &= ~E1000_CTRL_VME;
1356                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1357         }
1358
1359         /* Don't lose promiscuous settings */
1360         em_if_set_promisc(ctx, if_getflags(ifp));
1361         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1362
1363         /* MSI-X configuration for 82574 */
1364         if (adapter->hw.mac.type == e1000_82574) {
1365                 int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1366
1367                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1368                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1369                 /* Set the IVAR - interrupt vector routing. */
1370                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars);
1371         } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */
1372                 igb_configure_queues(adapter);
1373
1374         /* this clears any pending interrupts */
1375         E1000_READ_REG(&adapter->hw, E1000_ICR);
1376         E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
1377
1378         /* AMT based hardware can now take control from firmware */
1379         if (adapter->has_manage && adapter->has_amt)
1380                 em_get_hw_control(adapter);
1381
1382         /* Set Energy Efficient Ethernet */
1383         if (adapter->hw.mac.type >= igb_mac_min &&
1384             adapter->hw.phy.media_type == e1000_media_type_copper) {
1385                 if (adapter->hw.mac.type == e1000_i354)
1386                         e1000_set_eee_i354(&adapter->hw, TRUE, TRUE);
1387                 else
1388                         e1000_set_eee_i350(&adapter->hw, TRUE, TRUE);
1389         }
1390 }
1391
1392 /*********************************************************************
1393  *
1394  *  Fast Legacy/MSI Combined Interrupt Service routine
1395  *
1396  *********************************************************************/
1397 int
1398 em_intr(void *arg)
1399 {
1400         struct adapter *adapter = arg;
1401         if_ctx_t ctx = adapter->ctx;
1402         u32 reg_icr;
1403
1404         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1405
1406         /* Hot eject? */
1407         if (reg_icr == 0xffffffff)
1408                 return FILTER_STRAY;
1409
1410         /* Definitely not our interrupt. */
1411         if (reg_icr == 0x0)
1412                 return FILTER_STRAY;
1413
1414         /*
1415          * Starting with the 82571 chip, bit 31 should be used to
1416          * determine whether the interrupt belongs to us.
1417          */
1418         if (adapter->hw.mac.type >= e1000_82571 &&
1419             (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1420                 return FILTER_STRAY;
1421
1422         /*
1423          * Only MSI-X interrupts have one-shot behavior by taking advantage
1424          * of the EIAC register.  Thus, explicitly disable interrupts.  This
1425          * also works around the MSI message reordering errata on certain
1426          * systems.
1427          */
1428         IFDI_INTR_DISABLE(ctx);
1429
1430         /* Link status change */
1431         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1432                 em_handle_link(ctx);
1433
1434         if (reg_icr & E1000_ICR_RXO)
1435                 adapter->rx_overruns++;
1436
1437         return (FILTER_SCHEDULE_THREAD);
1438 }
1439
1440 static int
1441 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1442 {
1443         struct adapter *adapter = iflib_get_softc(ctx);
1444         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1445
1446         E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims);
1447         return (0);
1448 }
1449
1450 static int
1451 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1452 {
1453         struct adapter *adapter = iflib_get_softc(ctx);
1454         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1455
1456         E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims);
1457         return (0);
1458 }
1459
1460 static int
1461 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1462 {
1463         struct adapter *adapter = iflib_get_softc(ctx);
1464         struct em_rx_queue *rxq = &adapter->rx_queues[rxqid];
1465
1466         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims);
1467         return (0);
1468 }
1469
1470 static int
1471 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1472 {
1473         struct adapter *adapter = iflib_get_softc(ctx);
1474         struct em_tx_queue *txq = &adapter->tx_queues[txqid];
1475
1476         E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims);
1477         return (0);
1478 }
1479
1480 /*********************************************************************
1481  *
1482  *  MSI-X RX Interrupt Service routine
1483  *
1484  **********************************************************************/
1485 static int
1486 em_msix_que(void *arg)
1487 {
1488         struct em_rx_queue *que = arg;
1489
1490         ++que->irqs;
1491
1492         return (FILTER_SCHEDULE_THREAD);
1493 }
1494
1495 /*********************************************************************
1496  *
1497  *  MSI-X Link Fast Interrupt Service routine
1498  *
1499  **********************************************************************/
1500 static int
1501 em_msix_link(void *arg)
1502 {
1503         struct adapter *adapter = arg;
1504         u32 reg_icr;
1505         bool notlink = false;
1506
1507         ++adapter->link_irq;
1508         MPASS(adapter->hw.back != NULL);
1509         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1510
1511         if (reg_icr & E1000_ICR_RXO)
1512                 adapter->rx_overruns++;
1513
1514         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1515                 em_handle_link(adapter->ctx);
1516         else
1517                 notlink = true;
1518
1519         /* Re-arm for other/spurious interrupts */
1520         if (notlink && adapter->hw.mac.type >= igb_mac_min) {
1521                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1522                 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1523         } else if (adapter->hw.mac.type == e1000_82574) {
1524                 if (notlink)
1525                         E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC |
1526                             E1000_IMS_OTHER);
1527                 /*
1528                  * Because we must read the ICR for this interrupt it may
1529                  * clear other causes using autoclear, for this reason we
1530                  * simply create a soft interrupt for all these vectors.
1531                  */
1532                 if (reg_icr)
1533                         E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims);
1534         }
1535
1536         return (FILTER_HANDLED);
1537 }
1538
1539 static void
1540 em_handle_link(void *context)
1541 {
1542         if_ctx_t ctx = context;
1543         struct adapter *adapter = iflib_get_softc(ctx);
1544
1545         adapter->hw.mac.get_link_status = 1;
1546         iflib_admin_intr_deferred(ctx);
1547 }
1548
1549 /*********************************************************************
1550  *
1551  *  Media Ioctl callback
1552  *
1553  *  This routine is called whenever the user queries the status of
1554  *  the interface using ifconfig.
1555  *
1556  **********************************************************************/
1557 static void
1558 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1559 {
1560         struct adapter *adapter = iflib_get_softc(ctx);
1561         u_char fiber_type = IFM_1000_SX;
1562
1563         INIT_DEBUGOUT("em_if_media_status: begin");
1564
1565         iflib_admin_intr_deferred(ctx);
1566
1567         ifmr->ifm_status = IFM_AVALID;
1568         ifmr->ifm_active = IFM_ETHER;
1569
1570         if (!adapter->link_active) {
1571                 return;
1572         }
1573
1574         ifmr->ifm_status |= IFM_ACTIVE;
1575
1576         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
1577             (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1578                 if (adapter->hw.mac.type == e1000_82545)
1579                         fiber_type = IFM_1000_LX;
1580                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1581         } else {
1582                 switch (adapter->link_speed) {
1583                 case 10:
1584                         ifmr->ifm_active |= IFM_10_T;
1585                         break;
1586                 case 100:
1587                         ifmr->ifm_active |= IFM_100_TX;
1588                         break;
1589                 case 1000:
1590                         ifmr->ifm_active |= IFM_1000_T;
1591                         break;
1592                 }
1593                 if (adapter->link_duplex == FULL_DUPLEX)
1594                         ifmr->ifm_active |= IFM_FDX;
1595                 else
1596                         ifmr->ifm_active |= IFM_HDX;
1597         }
1598 }
1599
1600 /*********************************************************************
1601  *
1602  *  Media Ioctl callback
1603  *
1604  *  This routine is called when the user changes speed/duplex using
1605  *  media/mediopt option with ifconfig.
1606  *
1607  **********************************************************************/
1608 static int
1609 em_if_media_change(if_ctx_t ctx)
1610 {
1611         struct adapter *adapter = iflib_get_softc(ctx);
1612         struct ifmedia *ifm = iflib_get_media(ctx);
1613
1614         INIT_DEBUGOUT("em_if_media_change: begin");
1615
1616         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1617                 return (EINVAL);
1618
1619         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1620         case IFM_AUTO:
1621                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1622                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1623                 break;
1624         case IFM_1000_LX:
1625         case IFM_1000_SX:
1626         case IFM_1000_T:
1627                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1628                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1629                 break;
1630         case IFM_100_TX:
1631                 adapter->hw.mac.autoneg = FALSE;
1632                 adapter->hw.phy.autoneg_advertised = 0;
1633                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1634                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1635                 else
1636                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1637                 break;
1638         case IFM_10_T:
1639                 adapter->hw.mac.autoneg = FALSE;
1640                 adapter->hw.phy.autoneg_advertised = 0;
1641                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1642                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1643                 else
1644                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1645                 break;
1646         default:
1647                 device_printf(adapter->dev, "Unsupported media type\n");
1648         }
1649
1650         em_if_init(ctx);
1651
1652         return (0);
1653 }
1654
1655 static int
1656 em_if_set_promisc(if_ctx_t ctx, int flags)
1657 {
1658         struct adapter *adapter = iflib_get_softc(ctx);
1659         struct ifnet *ifp = iflib_get_ifp(ctx);
1660         u32 reg_rctl;
1661         int mcnt = 0;
1662
1663         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1664         reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
1665         if (flags & IFF_ALLMULTI)
1666                 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1667         else
1668                 mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES);
1669
1670         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1671                 reg_rctl &= (~E1000_RCTL_MPE);
1672         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1673
1674         if (flags & IFF_PROMISC) {
1675                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1676                 /* Turn this on if you want to see bad packets */
1677                 if (em_debug_sbp)
1678                         reg_rctl |= E1000_RCTL_SBP;
1679                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1680         } else if (flags & IFF_ALLMULTI) {
1681                 reg_rctl |= E1000_RCTL_MPE;
1682                 reg_rctl &= ~E1000_RCTL_UPE;
1683                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1684         }
1685         return (0);
1686 }
1687
1688 static u_int
1689 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
1690 {
1691         u8 *mta = arg;
1692
1693         if (idx == MAX_NUM_MULTICAST_ADDRESSES)
1694                 return (0);
1695
1696         bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1697
1698         return (1);
1699 }
1700
1701 /*********************************************************************
1702  *  Multicast Update
1703  *
1704  *  This routine is called whenever multicast address list is updated.
1705  *
1706  **********************************************************************/
1707 static void
1708 em_if_multi_set(if_ctx_t ctx)
1709 {
1710         struct adapter *adapter = iflib_get_softc(ctx);
1711         struct ifnet *ifp = iflib_get_ifp(ctx);
1712         u8  *mta; /* Multicast array memory */
1713         u32 reg_rctl = 0;
1714         int mcnt = 0;
1715
1716         IOCTL_DEBUGOUT("em_set_multi: begin");
1717
1718         mta = adapter->mta;
1719         bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1720
1721         if (adapter->hw.mac.type == e1000_82542 &&
1722             adapter->hw.revision_id == E1000_REVISION_2) {
1723                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1724                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1725                         e1000_pci_clear_mwi(&adapter->hw);
1726                 reg_rctl |= E1000_RCTL_RST;
1727                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1728                 msec_delay(5);
1729         }
1730
1731         mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
1732
1733         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1734
1735         if (if_getflags(ifp) & IFF_PROMISC)
1736                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1737         else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
1738             if_getflags(ifp) & IFF_ALLMULTI) {
1739                 reg_rctl |= E1000_RCTL_MPE;
1740                 reg_rctl &= ~E1000_RCTL_UPE;
1741         } else
1742                 reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1743
1744         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1745
1746         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1747                 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1748
1749         if (adapter->hw.mac.type == e1000_82542 &&
1750             adapter->hw.revision_id == E1000_REVISION_2) {
1751                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1752                 reg_rctl &= ~E1000_RCTL_RST;
1753                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1754                 msec_delay(5);
1755                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1756                         e1000_pci_set_mwi(&adapter->hw);
1757         }
1758 }
1759
1760 /*********************************************************************
1761  *  Timer routine
1762  *
1763  *  This routine schedules em_if_update_admin_status() to check for
1764  *  link status and to gather statistics as well as to perform some
1765  *  controller-specific hardware patting.
1766  *
1767  **********************************************************************/
1768 static void
1769 em_if_timer(if_ctx_t ctx, uint16_t qid)
1770 {
1771
1772         if (qid != 0)
1773                 return;
1774
1775         iflib_admin_intr_deferred(ctx);
1776 }
1777
1778 static void
1779 em_if_update_admin_status(if_ctx_t ctx)
1780 {
1781         struct adapter *adapter = iflib_get_softc(ctx);
1782         struct e1000_hw *hw = &adapter->hw;
1783         device_t dev = iflib_get_dev(ctx);
1784         u32 link_check, thstat, ctrl;
1785
1786         link_check = thstat = ctrl = 0;
1787         /* Get the cached link value or read phy for real */
1788         switch (hw->phy.media_type) {
1789         case e1000_media_type_copper:
1790                 if (hw->mac.get_link_status) {
1791                         if (hw->mac.type == e1000_pch_spt)
1792                                 msec_delay(50);
1793                         /* Do the work to read phy */
1794                         e1000_check_for_link(hw);
1795                         link_check = !hw->mac.get_link_status;
1796                         if (link_check) /* ESB2 fix */
1797                                 e1000_cfg_on_link_up(hw);
1798                 } else {
1799                         link_check = TRUE;
1800                 }
1801                 break;
1802         case e1000_media_type_fiber:
1803                 e1000_check_for_link(hw);
1804                 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1805                             E1000_STATUS_LU);
1806                 break;
1807         case e1000_media_type_internal_serdes:
1808                 e1000_check_for_link(hw);
1809                 link_check = hw->mac.serdes_has_link;
1810                 break;
1811         /* VF device is type_unknown */
1812         case e1000_media_type_unknown:
1813                 e1000_check_for_link(hw);
1814                 link_check = !hw->mac.get_link_status;
1815                 /* FALLTHROUGH */
1816         default:
1817                 break;
1818         }
1819
1820         /* Check for thermal downshift or shutdown */
1821         if (hw->mac.type == e1000_i350) {
1822                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1823                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1824         }
1825
1826         /* Now check for a transition */
1827         if (link_check && (adapter->link_active == 0)) {
1828                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1829                     &adapter->link_duplex);
1830                 /* Check if we must disable SPEED_MODE bit on PCI-E */
1831                 if ((adapter->link_speed != SPEED_1000) &&
1832                     ((hw->mac.type == e1000_82571) ||
1833                     (hw->mac.type == e1000_82572))) {
1834                         int tarc0;
1835                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1836                         tarc0 &= ~TARC_SPEED_MODE_BIT;
1837                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1838                 }
1839                 if (bootverbose)
1840                         device_printf(dev, "Link is up %d Mbps %s\n",
1841                             adapter->link_speed,
1842                             ((adapter->link_duplex == FULL_DUPLEX) ?
1843                             "Full Duplex" : "Half Duplex"));
1844                 adapter->link_active = 1;
1845                 adapter->smartspeed = 0;
1846                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
1847                     E1000_CTRL_EXT_LINK_MODE_GMII &&
1848                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1849                         device_printf(dev, "Link: thermal downshift\n");
1850                 /* Delay Link Up for Phy update */
1851                 if (((hw->mac.type == e1000_i210) ||
1852                     (hw->mac.type == e1000_i211)) &&
1853                     (hw->phy.id == I210_I_PHY_ID))
1854                         msec_delay(I210_LINK_DELAY);
1855                 /* Reset if the media type changed. */
1856                 if (hw->dev_spec._82575.media_changed &&
1857                     hw->mac.type >= igb_mac_min) {
1858                         hw->dev_spec._82575.media_changed = false;
1859                         adapter->flags |= IGB_MEDIA_RESET;
1860                         em_reset(ctx);
1861                 }
1862                 iflib_link_state_change(ctx, LINK_STATE_UP,
1863                     IF_Mbps(adapter->link_speed));
1864         } else if (!link_check && (adapter->link_active == 1)) {
1865                 adapter->link_speed = 0;
1866                 adapter->link_duplex = 0;
1867                 adapter->link_active = 0;
1868                 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
1869         }
1870         em_update_stats_counters(adapter);
1871
1872         /* Reset LAA into RAR[0] on 82571 */
1873         if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
1874                 e1000_rar_set(hw, hw->mac.addr, 0);
1875
1876         if (hw->mac.type < em_mac_min)
1877                 lem_smartspeed(adapter);
1878         else if (hw->mac.type >= igb_mac_min &&
1879             adapter->intr_type == IFLIB_INTR_MSIX) {
1880                 E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
1881                 E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
1882         } else if (hw->mac.type == e1000_82574 &&
1883             adapter->intr_type == IFLIB_INTR_MSIX)
1884                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1885 }
1886
1887 static void
1888 em_if_watchdog_reset(if_ctx_t ctx)
1889 {
1890         struct adapter *adapter = iflib_get_softc(ctx);
1891
1892         /*
1893          * Just count the event; iflib(4) will already trigger a
1894          * sufficient reset of the controller.
1895          */
1896         adapter->watchdog_events++;
1897 }
1898
1899 /*********************************************************************
1900  *
1901  *  This routine disables all traffic on the adapter by issuing a
1902  *  global reset on the MAC.
1903  *
1904  **********************************************************************/
1905 static void
1906 em_if_stop(if_ctx_t ctx)
1907 {
1908         struct adapter *adapter = iflib_get_softc(ctx);
1909
1910         INIT_DEBUGOUT("em_if_stop: begin");
1911
1912         e1000_reset_hw(&adapter->hw);
1913         if (adapter->hw.mac.type >= e1000_82544)
1914                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0);
1915
1916         e1000_led_off(&adapter->hw);
1917         e1000_cleanup_led(&adapter->hw);
1918 }
1919
1920 /*********************************************************************
1921  *
1922  *  Determine hardware revision.
1923  *
1924  **********************************************************************/
1925 static void
1926 em_identify_hardware(if_ctx_t ctx)
1927 {
1928         device_t dev = iflib_get_dev(ctx);
1929         struct adapter *adapter = iflib_get_softc(ctx);
1930
1931         /* Make sure our PCI config space has the necessary stuff set */
1932         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1933
1934         /* Save off the information about this board */
1935         adapter->hw.vendor_id = pci_get_vendor(dev);
1936         adapter->hw.device_id = pci_get_device(dev);
1937         adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
1938         adapter->hw.subsystem_vendor_id =
1939             pci_read_config(dev, PCIR_SUBVEND_0, 2);
1940         adapter->hw.subsystem_device_id =
1941             pci_read_config(dev, PCIR_SUBDEV_0, 2);
1942
1943         /* Do Shared Code Init and Setup */
1944         if (e1000_set_mac_type(&adapter->hw)) {
1945                 device_printf(dev, "Setup init failure\n");
1946                 return;
1947         }
1948
1949         /* Are we a VF device? */
1950         if ((adapter->hw.mac.type == e1000_vfadapt) ||
1951             (adapter->hw.mac.type == e1000_vfadapt_i350))
1952                 adapter->vf_ifp = 1;
1953         else
1954                 adapter->vf_ifp = 0;
1955 }
1956
1957 static int
1958 em_allocate_pci_resources(if_ctx_t ctx)
1959 {
1960         struct adapter *adapter = iflib_get_softc(ctx);
1961         device_t dev = iflib_get_dev(ctx);
1962         int rid, val;
1963
1964         rid = PCIR_BAR(0);
1965         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1966             &rid, RF_ACTIVE);
1967         if (adapter->memory == NULL) {
1968                 device_printf(dev, "Unable to allocate bus resource: memory\n");
1969                 return (ENXIO);
1970         }
1971         adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory);
1972         adapter->osdep.mem_bus_space_handle =
1973             rman_get_bushandle(adapter->memory);
1974         adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
1975
1976         /* Only older adapters use IO mapping */
1977         if (adapter->hw.mac.type < em_mac_min &&
1978             adapter->hw.mac.type > e1000_82543) {
1979                 /* Figure our where our IO BAR is ? */
1980                 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1981                         val = pci_read_config(dev, rid, 4);
1982                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1983                                 break;
1984                         }
1985                         rid += 4;
1986                         /* check for 64bit BAR */
1987                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1988                                 rid += 4;
1989                 }
1990                 if (rid >= PCIR_CIS) {
1991                         device_printf(dev, "Unable to locate IO BAR\n");
1992                         return (ENXIO);
1993                 }
1994                 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
1995                     &rid, RF_ACTIVE);
1996                 if (adapter->ioport == NULL) {
1997                         device_printf(dev, "Unable to allocate bus resource: "
1998                             "ioport\n");
1999                         return (ENXIO);
2000                 }
2001                 adapter->hw.io_base = 0;
2002                 adapter->osdep.io_bus_space_tag =
2003                     rman_get_bustag(adapter->ioport);
2004                 adapter->osdep.io_bus_space_handle =
2005                     rman_get_bushandle(adapter->ioport);
2006         }
2007
2008         adapter->hw.back = &adapter->osdep;
2009
2010         return (0);
2011 }
2012
2013 /*********************************************************************
2014  *
2015  *  Set up the MSI-X Interrupt handlers
2016  *
2017  **********************************************************************/
2018 static int
2019 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2020 {
2021         struct adapter *adapter = iflib_get_softc(ctx);
2022         struct em_rx_queue *rx_que = adapter->rx_queues;
2023         struct em_tx_queue *tx_que = adapter->tx_queues;
2024         int error, rid, i, vector = 0, rx_vectors;
2025         char buf[16];
2026
2027         /* First set up ring resources */
2028         for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) {
2029                 rid = vector + 1;
2030                 snprintf(buf, sizeof(buf), "rxq%d", i);
2031                 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2032                 if (error) {
2033                         device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error);
2034                         adapter->rx_num_queues = i + 1;
2035                         goto fail;
2036                 }
2037
2038                 rx_que->msix =  vector;
2039
2040                 /*
2041                  * Set the bit to enable interrupt
2042                  * in E1000_IMS -- bits 20 and 21
2043                  * are for RX0 and RX1, note this has
2044                  * NOTHING to do with the MSI-X vector
2045                  */
2046                 if (adapter->hw.mac.type == e1000_82574) {
2047                         rx_que->eims = 1 << (20 + i);
2048                         adapter->ims |= rx_que->eims;
2049                         adapter->ivars |= (8 | rx_que->msix) << (i * 4);
2050                 } else if (adapter->hw.mac.type == e1000_82575)
2051                         rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2052                 else
2053                         rx_que->eims = 1 << vector;
2054         }
2055         rx_vectors = vector;
2056
2057         vector = 0;
2058         for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) {
2059                 snprintf(buf, sizeof(buf), "txq%d", i);
2060                 tx_que = &adapter->tx_queues[i];
2061                 iflib_softirq_alloc_generic(ctx,
2062                     &adapter->rx_queues[i % adapter->rx_num_queues].que_irq,
2063                     IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2064
2065                 tx_que->msix = (vector % adapter->rx_num_queues);
2066
2067                 /*
2068                  * Set the bit to enable interrupt
2069                  * in E1000_IMS -- bits 22 and 23
2070                  * are for TX0 and TX1, note this has
2071                  * NOTHING to do with the MSI-X vector
2072                  */
2073                 if (adapter->hw.mac.type == e1000_82574) {
2074                         tx_que->eims = 1 << (22 + i);
2075                         adapter->ims |= tx_que->eims;
2076                         adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2077                 } else if (adapter->hw.mac.type == e1000_82575) {
2078                         tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2079                 } else {
2080                         tx_que->eims = 1 << i;
2081                 }
2082         }
2083
2084         /* Link interrupt */
2085         rid = rx_vectors + 1;
2086         error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq");
2087
2088         if (error) {
2089                 device_printf(iflib_get_dev(ctx), "Failed to register admin handler");
2090                 goto fail;
2091         }
2092         adapter->linkvec = rx_vectors;
2093         if (adapter->hw.mac.type < igb_mac_min) {
2094                 adapter->ivars |=  (8 | rx_vectors) << 16;
2095                 adapter->ivars |= 0x80000000;
2096                 /* Enable the "Other" interrupt type for link status change */
2097                 adapter->ims |= E1000_IMS_OTHER;
2098         }
2099
2100         return (0);
2101 fail:
2102         iflib_irq_free(ctx, &adapter->irq);
2103         rx_que = adapter->rx_queues;
2104         for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++)
2105                 iflib_irq_free(ctx, &rx_que->que_irq);
2106         return (error);
2107 }
2108
2109 static void
2110 igb_configure_queues(struct adapter *adapter)
2111 {
2112         struct e1000_hw *hw = &adapter->hw;
2113         struct em_rx_queue *rx_que;
2114         struct em_tx_queue *tx_que;
2115         u32 tmp, ivar = 0, newitr = 0;
2116
2117         /* First turn on RSS capability */
2118         if (hw->mac.type != e1000_82575)
2119                 E1000_WRITE_REG(hw, E1000_GPIE,
2120                     E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2121                     E1000_GPIE_PBA | E1000_GPIE_NSICR);
2122
2123         /* Turn on MSI-X */
2124         switch (hw->mac.type) {
2125         case e1000_82580:
2126         case e1000_i350:
2127         case e1000_i354:
2128         case e1000_i210:
2129         case e1000_i211:
2130         case e1000_vfadapt:
2131         case e1000_vfadapt_i350:
2132                 /* RX entries */
2133                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2134                         u32 index = i >> 1;
2135                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2136                         rx_que = &adapter->rx_queues[i];
2137                         if (i & 1) {
2138                                 ivar &= 0xFF00FFFF;
2139                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2140                         } else {
2141                                 ivar &= 0xFFFFFF00;
2142                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2143                         }
2144                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2145                 }
2146                 /* TX entries */
2147                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2148                         u32 index = i >> 1;
2149                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2150                         tx_que = &adapter->tx_queues[i];
2151                         if (i & 1) {
2152                                 ivar &= 0x00FFFFFF;
2153                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2154                         } else {
2155                                 ivar &= 0xFFFF00FF;
2156                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2157                         }
2158                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2159                         adapter->que_mask |= tx_que->eims;
2160                 }
2161
2162                 /* And for the link interrupt */
2163                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2164                 adapter->link_mask = 1 << adapter->linkvec;
2165                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2166                 break;
2167         case e1000_82576:
2168                 /* RX entries */
2169                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2170                         u32 index = i & 0x7; /* Each IVAR has two entries */
2171                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2172                         rx_que = &adapter->rx_queues[i];
2173                         if (i < 8) {
2174                                 ivar &= 0xFFFFFF00;
2175                                 ivar |= rx_que->msix | E1000_IVAR_VALID;
2176                         } else {
2177                                 ivar &= 0xFF00FFFF;
2178                                 ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16;
2179                         }
2180                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2181                         adapter->que_mask |= rx_que->eims;
2182                 }
2183                 /* TX entries */
2184                 for (int i = 0; i < adapter->tx_num_queues; i++) {
2185                         u32 index = i & 0x7; /* Each IVAR has two entries */
2186                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2187                         tx_que = &adapter->tx_queues[i];
2188                         if (i < 8) {
2189                                 ivar &= 0xFFFF00FF;
2190                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8;
2191                         } else {
2192                                 ivar &= 0x00FFFFFF;
2193                                 ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24;
2194                         }
2195                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2196                         adapter->que_mask |= tx_que->eims;
2197                 }
2198
2199                 /* And for the link interrupt */
2200                 ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
2201                 adapter->link_mask = 1 << adapter->linkvec;
2202                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2203                 break;
2204
2205         case e1000_82575:
2206                 /* enable MSI-X support*/
2207                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2208                 tmp |= E1000_CTRL_EXT_PBA_CLR;
2209                 /* Auto-Mask interrupts upon ICR read. */
2210                 tmp |= E1000_CTRL_EXT_EIAME;
2211                 tmp |= E1000_CTRL_EXT_IRCA;
2212                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2213
2214                 /* Queues */
2215                 for (int i = 0; i < adapter->rx_num_queues; i++) {
2216                         rx_que = &adapter->rx_queues[i];
2217                         tmp = E1000_EICR_RX_QUEUE0 << i;
2218                         tmp |= E1000_EICR_TX_QUEUE0 << i;
2219                         rx_que->eims = tmp;
2220                         E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
2221                             i, rx_que->eims);
2222                         adapter->que_mask |= rx_que->eims;
2223                 }
2224
2225                 /* Link */
2226                 E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
2227                     E1000_EIMS_OTHER);
2228                 adapter->link_mask |= E1000_EIMS_OTHER;
2229         default:
2230                 break;
2231         }
2232
2233         /* Set the starting interrupt rate */
2234         if (em_max_interrupt_rate > 0)
2235                 newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC;
2236
2237         if (hw->mac.type == e1000_82575)
2238                 newitr |= newitr << 16;
2239         else
2240                 newitr |= E1000_EITR_CNT_IGNR;
2241
2242         for (int i = 0; i < adapter->rx_num_queues; i++) {
2243                 rx_que = &adapter->rx_queues[i];
2244                 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2245         }
2246
2247         return;
2248 }
2249
2250 static void
2251 em_free_pci_resources(if_ctx_t ctx)
2252 {
2253         struct adapter *adapter = iflib_get_softc(ctx);
2254         struct em_rx_queue *que = adapter->rx_queues;
2255         device_t dev = iflib_get_dev(ctx);
2256
2257         /* Release all MSI-X queue resources */
2258         if (adapter->intr_type == IFLIB_INTR_MSIX)
2259                 iflib_irq_free(ctx, &adapter->irq);
2260
2261         if (que != NULL) {
2262                 for (int i = 0; i < adapter->rx_num_queues; i++, que++) {
2263                         iflib_irq_free(ctx, &que->que_irq);
2264                 }
2265         }
2266
2267         if (adapter->memory != NULL) {
2268                 bus_release_resource(dev, SYS_RES_MEMORY,
2269                     rman_get_rid(adapter->memory), adapter->memory);
2270                 adapter->memory = NULL;
2271         }
2272
2273         if (adapter->flash != NULL) {
2274                 bus_release_resource(dev, SYS_RES_MEMORY,
2275                     rman_get_rid(adapter->flash), adapter->flash);
2276                 adapter->flash = NULL;
2277         }
2278
2279         if (adapter->ioport != NULL) {
2280                 bus_release_resource(dev, SYS_RES_IOPORT,
2281                     rman_get_rid(adapter->ioport), adapter->ioport);
2282                 adapter->ioport = NULL;
2283         }
2284 }
2285
2286 /* Set up MSI or MSI-X */
2287 static int
2288 em_setup_msix(if_ctx_t ctx)
2289 {
2290         struct adapter *adapter = iflib_get_softc(ctx);
2291
2292         if (adapter->hw.mac.type == e1000_82574) {
2293                 em_enable_vectors_82574(ctx);
2294         }
2295         return (0);
2296 }
2297
2298 /*********************************************************************
2299  *
2300  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2301  *
2302  **********************************************************************/
2303 static void
2304 lem_smartspeed(struct adapter *adapter)
2305 {
2306         u16 phy_tmp;
2307
2308         if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) ||
2309             adapter->hw.mac.autoneg == 0 ||
2310             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2311                 return;
2312
2313         if (adapter->smartspeed == 0) {
2314                 /* If Master/Slave config fault is asserted twice,
2315                  * we assume back-to-back */
2316                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2317                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2318                         return;
2319                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2320                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2321                         e1000_read_phy_reg(&adapter->hw,
2322                             PHY_1000T_CTRL, &phy_tmp);
2323                         if(phy_tmp & CR_1000T_MS_ENABLE) {
2324                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2325                                 e1000_write_phy_reg(&adapter->hw,
2326                                     PHY_1000T_CTRL, phy_tmp);
2327                                 adapter->smartspeed++;
2328                                 if(adapter->hw.mac.autoneg &&
2329                                    !e1000_copper_link_autoneg(&adapter->hw) &&
2330                                    !e1000_read_phy_reg(&adapter->hw,
2331                                     PHY_CONTROL, &phy_tmp)) {
2332                                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2333                                                     MII_CR_RESTART_AUTO_NEG);
2334                                         e1000_write_phy_reg(&adapter->hw,
2335                                             PHY_CONTROL, phy_tmp);
2336                                 }
2337                         }
2338                 }
2339                 return;
2340         } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2341                 /* If still no link, perhaps using 2/3 pair cable */
2342                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2343                 phy_tmp |= CR_1000T_MS_ENABLE;
2344                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2345                 if(adapter->hw.mac.autoneg &&
2346                    !e1000_copper_link_autoneg(&adapter->hw) &&
2347                    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2348                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2349                                     MII_CR_RESTART_AUTO_NEG);
2350                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2351                 }
2352         }
2353         /* Restart process after EM_SMARTSPEED_MAX iterations */
2354         if(adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2355                 adapter->smartspeed = 0;
2356 }
2357
2358 /*********************************************************************
2359  *
2360  *  Initialize the DMA Coalescing feature
2361  *
2362  **********************************************************************/
2363 static void
2364 igb_init_dmac(struct adapter *adapter, u32 pba)
2365 {
2366         device_t        dev = adapter->dev;
2367         struct e1000_hw *hw = &adapter->hw;
2368         u32             dmac, reg = ~E1000_DMACR_DMAC_EN;
2369         u16             hwm;
2370         u16             max_frame_size;
2371
2372         if (hw->mac.type == e1000_i211)
2373                 return;
2374
2375         max_frame_size = adapter->shared->isc_max_frame_size;
2376         if (hw->mac.type > e1000_82580) {
2377
2378                 if (adapter->dmac == 0) { /* Disabling it */
2379                         E1000_WRITE_REG(hw, E1000_DMACR, reg);
2380                         return;
2381                 } else
2382                         device_printf(dev, "DMA Coalescing enabled\n");
2383
2384                 /* Set starting threshold */
2385                 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2386
2387                 hwm = 64 * pba - max_frame_size / 16;
2388                 if (hwm < 64 * (pba - 6))
2389                         hwm = 64 * (pba - 6);
2390                 reg = E1000_READ_REG(hw, E1000_FCRTC);
2391                 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2392                 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2393                     & E1000_FCRTC_RTH_COAL_MASK);
2394                 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2395
2396
2397                 dmac = pba - max_frame_size / 512;
2398                 if (dmac < pba - 10)
2399                         dmac = pba - 10;
2400                 reg = E1000_READ_REG(hw, E1000_DMACR);
2401                 reg &= ~E1000_DMACR_DMACTHR_MASK;
2402                 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2403                     & E1000_DMACR_DMACTHR_MASK);
2404
2405                 /* transition to L0x or L1 if available..*/
2406                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2407
2408                 /* Check if status is 2.5Gb backplane connection
2409                 * before configuration of watchdog timer, which is
2410                 * in msec values in 12.8usec intervals
2411                 * watchdog timer= msec values in 32usec intervals
2412                 * for non 2.5Gb connection
2413                 */
2414                 if (hw->mac.type == e1000_i354) {
2415                         int status = E1000_READ_REG(hw, E1000_STATUS);
2416                         if ((status & E1000_STATUS_2P5_SKU) &&
2417                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2418                                 reg |= ((adapter->dmac * 5) >> 6);
2419                         else
2420                                 reg |= (adapter->dmac >> 5);
2421                 } else {
2422                         reg |= (adapter->dmac >> 5);
2423                 }
2424
2425                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2426
2427                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2428
2429                 /* Set the interval before transition */
2430                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
2431                 if (hw->mac.type == e1000_i350)
2432                         reg |= IGB_DMCTLX_DCFLUSH_DIS;
2433                 /*
2434                 ** in 2.5Gb connection, TTLX unit is 0.4 usec
2435                 ** which is 0x4*2 = 0xA. But delay is still 4 usec
2436                 */
2437                 if (hw->mac.type == e1000_i354) {
2438                         int status = E1000_READ_REG(hw, E1000_STATUS);
2439                         if ((status & E1000_STATUS_2P5_SKU) &&
2440                             (!(status & E1000_STATUS_2P5_SKU_OVER)))
2441                                 reg |= 0xA;
2442                         else
2443                                 reg |= 0x4;
2444                 } else {
2445                         reg |= 0x4;
2446                 }
2447
2448                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2449
2450                 /* free space in tx packet buffer to wake from DMA coal */
2451                 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2452                     (2 * max_frame_size)) >> 6);
2453
2454                 /* make low power state decision controlled by DMA coal */
2455                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2456                 reg &= ~E1000_PCIEMISC_LX_DECISION;
2457                 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2458
2459         } else if (hw->mac.type == e1000_82580) {
2460                 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2461                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
2462                     reg & ~E1000_PCIEMISC_LX_DECISION);
2463                 E1000_WRITE_REG(hw, E1000_DMACR, 0);
2464         }
2465 }
2466
2467 /*********************************************************************
2468  *
2469  *  Initialize the hardware to a configuration as specified by the
2470  *  adapter structure.
2471  *
2472  **********************************************************************/
2473 static void
2474 em_reset(if_ctx_t ctx)
2475 {
2476         device_t dev = iflib_get_dev(ctx);
2477         struct adapter *adapter = iflib_get_softc(ctx);
2478         struct ifnet *ifp = iflib_get_ifp(ctx);
2479         struct e1000_hw *hw = &adapter->hw;
2480         u16 rx_buffer_size;
2481         u32 pba;
2482
2483         INIT_DEBUGOUT("em_reset: begin");
2484         /* Let the firmware know the OS is in control */
2485         em_get_hw_control(adapter);
2486
2487         /* Set up smart power down as default off on newer adapters. */
2488         if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
2489             hw->mac.type == e1000_82572)) {
2490                 u16 phy_tmp = 0;
2491
2492                 /* Speed up time to link by disabling smart power down. */
2493                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2494                 phy_tmp &= ~IGP02E1000_PM_SPD;
2495                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2496         }
2497
2498         /*
2499          * Packet Buffer Allocation (PBA)
2500          * Writing PBA sets the receive portion of the buffer
2501          * the remainder is used for the transmit buffer.
2502          */
2503         switch (hw->mac.type) {
2504         /* 82547: Total Packet Buffer is 40K */
2505         case e1000_82547:
2506         case e1000_82547_rev_2:
2507                 if (hw->mac.max_frame_size > 8192)
2508                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2509                 else
2510                         pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2511                 break;
2512         /* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
2513         case e1000_82571:
2514         case e1000_82572:
2515         case e1000_80003es2lan:
2516                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2517                 break;
2518         /* 82573: Total Packet Buffer is 32K */
2519         case e1000_82573:
2520                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2521                 break;
2522         case e1000_82574:
2523         case e1000_82583:
2524                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2525                 break;
2526         case e1000_ich8lan:
2527                 pba = E1000_PBA_8K;
2528                 break;
2529         case e1000_ich9lan:
2530         case e1000_ich10lan:
2531                 /* Boost Receive side for jumbo frames */
2532                 if (hw->mac.max_frame_size > 4096)
2533                         pba = E1000_PBA_14K;
2534                 else
2535                         pba = E1000_PBA_10K;
2536                 break;
2537         case e1000_pchlan:
2538         case e1000_pch2lan:
2539         case e1000_pch_lpt:
2540         case e1000_pch_spt:
2541         case e1000_pch_cnp:
2542         case e1000_pch_tgp:
2543         case e1000_pch_adp:
2544         case e1000_pch_mtp:
2545                 pba = E1000_PBA_26K;
2546                 break;
2547         case e1000_82575:
2548                 pba = E1000_PBA_32K;
2549                 break;
2550         case e1000_82576:
2551         case e1000_vfadapt:
2552                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2553                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2554                 break;
2555         case e1000_82580:
2556         case e1000_i350:
2557         case e1000_i354:
2558         case e1000_vfadapt_i350:
2559                 pba = E1000_READ_REG(hw, E1000_RXPBS);
2560                 pba = e1000_rxpbs_adjust_82580(pba);
2561                 break;
2562         case e1000_i210:
2563         case e1000_i211:
2564                 pba = E1000_PBA_34K;
2565                 break;
2566         default:
2567                 /* Remaining devices assumed to have a Packet Buffer of 64K. */
2568                 if (hw->mac.max_frame_size > 8192)
2569                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2570                 else
2571                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2572         }
2573
2574         /* Special needs in case of Jumbo frames */
2575         if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
2576                 u32 tx_space, min_tx, min_rx;
2577                 pba = E1000_READ_REG(hw, E1000_PBA);
2578                 tx_space = pba >> 16;
2579                 pba &= 0xffff;
2580                 min_tx = (hw->mac.max_frame_size +
2581                     sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
2582                 min_tx = roundup2(min_tx, 1024);
2583                 min_tx >>= 10;
2584                 min_rx = hw->mac.max_frame_size;
2585                 min_rx = roundup2(min_rx, 1024);
2586                 min_rx >>= 10;
2587                 if (tx_space < min_tx &&
2588                     ((min_tx - tx_space) < pba)) {
2589                         pba = pba - (min_tx - tx_space);
2590                         /*
2591                          * if short on rx space, rx wins
2592                          * and must trump tx adjustment
2593                          */
2594                         if (pba < min_rx)
2595                                 pba = min_rx;
2596                 }
2597                 E1000_WRITE_REG(hw, E1000_PBA, pba);
2598         }
2599
2600         if (hw->mac.type < igb_mac_min)
2601                 E1000_WRITE_REG(hw, E1000_PBA, pba);
2602
2603         INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
2604
2605         /*
2606          * These parameters control the automatic generation (Tx) and
2607          * response (Rx) to Ethernet PAUSE frames.
2608          * - High water mark should allow for at least two frames to be
2609          *   received after sending an XOFF.
2610          * - Low water mark works best when it is very near the high water mark.
2611          *   This allows the receiver to restart by sending XON when it has
2612          *   drained a bit. Here we use an arbitrary value of 1500 which will
2613          *   restart after one full frame is pulled from the buffer. There
2614          *   could be several smaller frames in the buffer and if so they will
2615          *   not trigger the XON until their total number reduces the buffer
2616          *   by 1500.
2617          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2618          */
2619         rx_buffer_size = (pba & 0xffff) << 10;
2620         hw->fc.high_water = rx_buffer_size -
2621             roundup2(hw->mac.max_frame_size, 1024);
2622         hw->fc.low_water = hw->fc.high_water - 1500;
2623
2624         if (adapter->fc) /* locally set flow control value? */
2625                 hw->fc.requested_mode = adapter->fc;
2626         else
2627                 hw->fc.requested_mode = e1000_fc_full;
2628
2629         if (hw->mac.type == e1000_80003es2lan)
2630                 hw->fc.pause_time = 0xFFFF;
2631         else
2632                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
2633
2634         hw->fc.send_xon = TRUE;
2635
2636         /* Device specific overrides/settings */
2637         switch (hw->mac.type) {
2638         case e1000_pchlan:
2639                 /* Workaround: no TX flow ctrl for PCH */
2640                 hw->fc.requested_mode = e1000_fc_rx_pause;
2641                 hw->fc.pause_time = 0xFFFF; /* override */
2642                 if (if_getmtu(ifp) > ETHERMTU) {
2643                         hw->fc.high_water = 0x3500;
2644                         hw->fc.low_water = 0x1500;
2645                 } else {
2646                         hw->fc.high_water = 0x5000;
2647                         hw->fc.low_water = 0x3000;
2648                 }
2649                 hw->fc.refresh_time = 0x1000;
2650                 break;
2651         case e1000_pch2lan:
2652         case e1000_pch_lpt:
2653         case e1000_pch_spt:
2654         case e1000_pch_cnp:
2655         case e1000_pch_tgp:
2656         case e1000_pch_adp:
2657         case e1000_pch_mtp:
2658                 hw->fc.high_water = 0x5C20;
2659                 hw->fc.low_water = 0x5048;
2660                 hw->fc.pause_time = 0x0650;
2661                 hw->fc.refresh_time = 0x0400;
2662                 /* Jumbos need adjusted PBA */
2663                 if (if_getmtu(ifp) > ETHERMTU)
2664                         E1000_WRITE_REG(hw, E1000_PBA, 12);
2665                 else
2666                         E1000_WRITE_REG(hw, E1000_PBA, 26);
2667                 break;
2668         case e1000_82575:
2669         case e1000_82576:
2670                 /* 8-byte granularity */
2671                 hw->fc.low_water = hw->fc.high_water - 8;
2672                 break;
2673         case e1000_82580:
2674         case e1000_i350:
2675         case e1000_i354:
2676         case e1000_i210:
2677         case e1000_i211:
2678         case e1000_vfadapt:
2679         case e1000_vfadapt_i350:
2680                 /* 16-byte granularity */
2681                 hw->fc.low_water = hw->fc.high_water - 16;
2682                 break;
2683         case e1000_ich9lan:
2684         case e1000_ich10lan:
2685                 if (if_getmtu(ifp) > ETHERMTU) {
2686                         hw->fc.high_water = 0x2800;
2687                         hw->fc.low_water = hw->fc.high_water - 8;
2688                         break;
2689                 }
2690                 /* FALLTHROUGH */
2691         default:
2692                 if (hw->mac.type == e1000_80003es2lan)
2693                         hw->fc.pause_time = 0xFFFF;
2694                 break;
2695         }
2696
2697         /* Issue a global reset */
2698         e1000_reset_hw(hw);
2699         if (hw->mac.type >= igb_mac_min) {
2700                 E1000_WRITE_REG(hw, E1000_WUC, 0);
2701         } else {
2702                 E1000_WRITE_REG(hw, E1000_WUFC, 0);
2703                 em_disable_aspm(adapter);
2704         }
2705         if (adapter->flags & IGB_MEDIA_RESET) {
2706                 e1000_setup_init_funcs(hw, TRUE);
2707                 e1000_get_bus_info(hw);
2708                 adapter->flags &= ~IGB_MEDIA_RESET;
2709         }
2710         /* and a re-init */
2711         if (e1000_init_hw(hw) < 0) {
2712                 device_printf(dev, "Hardware Initialization Failed\n");
2713                 return;
2714         }
2715         if (hw->mac.type >= igb_mac_min)
2716                 igb_init_dmac(adapter, pba);
2717
2718         E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
2719         e1000_get_phy_info(hw);
2720         e1000_check_for_link(hw);
2721 }
2722
2723 /*
2724  * Initialise the RSS mapping for NICs that support multiple transmit/
2725  * receive rings.
2726  */
2727
2728 #define RSSKEYLEN 10
2729 static void
2730 em_initialize_rss_mapping(struct adapter *adapter)
2731 {
2732         uint8_t  rss_key[4 * RSSKEYLEN];
2733         uint32_t reta = 0;
2734         struct e1000_hw *hw = &adapter->hw;
2735         int i;
2736
2737         /*
2738          * Configure RSS key
2739          */
2740         arc4rand(rss_key, sizeof(rss_key), 0);
2741         for (i = 0; i < RSSKEYLEN; ++i) {
2742                 uint32_t rssrk = 0;
2743
2744                 rssrk = EM_RSSRK_VAL(rss_key, i);
2745                 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
2746         }
2747
2748         /*
2749          * Configure RSS redirect table in following fashion:
2750          * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2751          */
2752         for (i = 0; i < sizeof(reta); ++i) {
2753                 uint32_t q;
2754
2755                 q = (i % adapter->rx_num_queues) << 7;
2756                 reta |= q << (8 * i);
2757         }
2758
2759         for (i = 0; i < 32; ++i)
2760                 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
2761
2762         E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
2763                         E1000_MRQC_RSS_FIELD_IPV4_TCP |
2764                         E1000_MRQC_RSS_FIELD_IPV4 |
2765                         E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
2766                         E1000_MRQC_RSS_FIELD_IPV6_EX |
2767                         E1000_MRQC_RSS_FIELD_IPV6);
2768 }
2769
2770 static void
2771 igb_initialize_rss_mapping(struct adapter *adapter)
2772 {
2773         struct e1000_hw *hw = &adapter->hw;
2774         int i;
2775         int queue_id;
2776         u32 reta;
2777         u32 rss_key[10], mrqc, shift = 0;
2778
2779         /* XXX? */
2780         if (hw->mac.type == e1000_82575)
2781                 shift = 6;
2782
2783         /*
2784          * The redirection table controls which destination
2785          * queue each bucket redirects traffic to.
2786          * Each DWORD represents four queues, with the LSB
2787          * being the first queue in the DWORD.
2788          *
2789          * This just allocates buckets to queues using round-robin
2790          * allocation.
2791          *
2792          * NOTE: It Just Happens to line up with the default
2793          * RSS allocation method.
2794          */
2795
2796         /* Warning FM follows */
2797         reta = 0;
2798         for (i = 0; i < 128; i++) {
2799 #ifdef RSS
2800                 queue_id = rss_get_indirection_to_bucket(i);
2801                 /*
2802                  * If we have more queues than buckets, we'll
2803                  * end up mapping buckets to a subset of the
2804                  * queues.
2805                  *
2806                  * If we have more buckets than queues, we'll
2807                  * end up instead assigning multiple buckets
2808                  * to queues.
2809                  *
2810                  * Both are suboptimal, but we need to handle
2811                  * the case so we don't go out of bounds
2812                  * indexing arrays and such.
2813                  */
2814                 queue_id = queue_id % adapter->rx_num_queues;
2815 #else
2816                 queue_id = (i % adapter->rx_num_queues);
2817 #endif
2818                 /* Adjust if required */
2819                 queue_id = queue_id << shift;
2820
2821                 /*
2822                  * The low 8 bits are for hash value (n+0);
2823                  * The next 8 bits are for hash value (n+1), etc.
2824                  */
2825                 reta = reta >> 8;
2826                 reta = reta | ( ((uint32_t) queue_id) << 24);
2827                 if ((i & 3) == 3) {
2828                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
2829                         reta = 0;
2830                 }
2831         }
2832
2833         /* Now fill in hash table */
2834
2835         /*
2836          * MRQC: Multiple Receive Queues Command
2837          * Set queuing to RSS control, number depends on the device.
2838          */
2839         mrqc = E1000_MRQC_ENABLE_RSS_MQ;
2840
2841 #ifdef RSS
2842         /* XXX ew typecasting */
2843         rss_getkey((uint8_t *) &rss_key);
2844 #else
2845         arc4rand(&rss_key, sizeof(rss_key), 0);
2846 #endif
2847         for (i = 0; i < 10; i++)
2848                 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
2849
2850         /*
2851          * Configure the RSS fields to hash upon.
2852          */
2853         mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2854             E1000_MRQC_RSS_FIELD_IPV4_TCP);
2855         mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2856             E1000_MRQC_RSS_FIELD_IPV6_TCP);
2857         mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2858             E1000_MRQC_RSS_FIELD_IPV6_UDP);
2859         mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2860             E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2861
2862         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2863 }
2864
2865 /*********************************************************************
2866  *
2867  *  Setup networking device structure and register interface media.
2868  *
2869  **********************************************************************/
2870 static int
2871 em_setup_interface(if_ctx_t ctx)
2872 {
2873         struct ifnet *ifp = iflib_get_ifp(ctx);
2874         struct adapter *adapter = iflib_get_softc(ctx);
2875         if_softc_ctx_t scctx = adapter->shared;
2876
2877         INIT_DEBUGOUT("em_setup_interface: begin");
2878
2879         /* Single Queue */
2880         if (adapter->tx_num_queues == 1) {
2881                 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
2882                 if_setsendqready(ifp);
2883         }
2884
2885         /*
2886          * Specify the media types supported by this adapter and register
2887          * callbacks to update media and link information
2888          */
2889         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2890             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2891                 u_char fiber_type = IFM_1000_SX;        /* default type */
2892
2893                 if (adapter->hw.mac.type == e1000_82545)
2894                         fiber_type = IFM_1000_LX;
2895                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
2896                 ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2897         } else {
2898                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2899                 ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
2900                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL);
2901                 ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
2902                 if (adapter->hw.phy.type != e1000_phy_ife) {
2903                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2904                         ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2905                 }
2906         }
2907         ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2908         ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO);
2909         return (0);
2910 }
2911
2912 static int
2913 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets)
2914 {
2915         struct adapter *adapter = iflib_get_softc(ctx);
2916         if_softc_ctx_t scctx = adapter->shared;
2917         int error = E1000_SUCCESS;
2918         struct em_tx_queue *que;
2919         int i, j;
2920
2921         MPASS(adapter->tx_num_queues > 0);
2922         MPASS(adapter->tx_num_queues == ntxqsets);
2923
2924         /* First allocate the top level queue structs */
2925         if (!(adapter->tx_queues =
2926             (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
2927             adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2928                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2929                 return(ENOMEM);
2930         }
2931
2932         for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) {
2933                 /* Set up some basics */
2934
2935                 struct tx_ring *txr = &que->txr;
2936                 txr->adapter = que->adapter = adapter;
2937                 que->me = txr->me =  i;
2938
2939                 /* Allocate report status array */
2940                 if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) {
2941                         device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n");
2942                         error = ENOMEM;
2943                         goto fail;
2944                 }
2945                 for (j = 0; j < scctx->isc_ntxd[0]; j++)
2946                         txr->tx_rsq[j] = QIDX_INVALID;
2947                 /* get the virtual and physical address of the hardware queues */
2948                 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
2949                 txr->tx_paddr = paddrs[i*ntxqs];
2950         }
2951
2952         if (bootverbose)
2953                 device_printf(iflib_get_dev(ctx),
2954                     "allocated for %d tx_queues\n", adapter->tx_num_queues);
2955         return (0);
2956 fail:
2957         em_if_queues_free(ctx);
2958         return (error);
2959 }
2960
2961 static int
2962 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets)
2963 {
2964         struct adapter *adapter = iflib_get_softc(ctx);
2965         int error = E1000_SUCCESS;
2966         struct em_rx_queue *que;
2967         int i;
2968
2969         MPASS(adapter->rx_num_queues > 0);
2970         MPASS(adapter->rx_num_queues == nrxqsets);
2971
2972         /* First allocate the top level queue structs */
2973         if (!(adapter->rx_queues =
2974             (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
2975             adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
2976                 device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n");
2977                 error = ENOMEM;
2978                 goto fail;
2979         }
2980
2981         for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) {
2982                 /* Set up some basics */
2983                 struct rx_ring *rxr = &que->rxr;
2984                 rxr->adapter = que->adapter = adapter;
2985                 rxr->que = que;
2986                 que->me = rxr->me =  i;
2987
2988                 /* get the virtual and physical address of the hardware queues */
2989                 rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
2990                 rxr->rx_paddr = paddrs[i*nrxqs];
2991         }
2992  
2993         if (bootverbose)
2994                 device_printf(iflib_get_dev(ctx),
2995                     "allocated for %d rx_queues\n", adapter->rx_num_queues);
2996
2997         return (0);
2998 fail:
2999         em_if_queues_free(ctx);
3000         return (error);
3001 }
3002
3003 static void
3004 em_if_queues_free(if_ctx_t ctx)
3005 {
3006         struct adapter *adapter = iflib_get_softc(ctx);
3007         struct em_tx_queue *tx_que = adapter->tx_queues;
3008         struct em_rx_queue *rx_que = adapter->rx_queues;
3009
3010         if (tx_que != NULL) {
3011                 for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
3012                         struct tx_ring *txr = &tx_que->txr;
3013                         if (txr->tx_rsq == NULL)
3014                                 break;
3015
3016                         free(txr->tx_rsq, M_DEVBUF);
3017                         txr->tx_rsq = NULL;
3018                 }
3019                 free(adapter->tx_queues, M_DEVBUF);
3020                 adapter->tx_queues = NULL;
3021         }
3022
3023         if (rx_que != NULL) {
3024                 free(adapter->rx_queues, M_DEVBUF);
3025                 adapter->rx_queues = NULL;
3026         }
3027 }
3028
3029 /*********************************************************************
3030  *
3031  *  Enable transmit unit.
3032  *
3033  **********************************************************************/
3034 static void
3035 em_initialize_transmit_unit(if_ctx_t ctx)
3036 {
3037         struct adapter *adapter = iflib_get_softc(ctx);
3038         if_softc_ctx_t scctx = adapter->shared;
3039         struct em_tx_queue *que;
3040         struct tx_ring  *txr;
3041         struct e1000_hw *hw = &adapter->hw;
3042         u32 tctl, txdctl = 0, tarc, tipg = 0;
3043
3044         INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3045
3046         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
3047                 u64 bus_addr;
3048                 caddr_t offp, endp;
3049
3050                 que = &adapter->tx_queues[i];
3051                 txr = &que->txr;
3052                 bus_addr = txr->tx_paddr;
3053
3054                 /* Clear checksum offload context. */
3055                 offp = (caddr_t)&txr->csum_flags;
3056                 endp = (caddr_t)(txr + 1);
3057                 bzero(offp, endp - offp);
3058
3059                 /* Base and Len of TX Ring */
3060                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
3061                     scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3062                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
3063                     (u32)(bus_addr >> 32));
3064                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
3065                     (u32)bus_addr);
3066                 /* Init the HEAD/TAIL indices */
3067                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3068                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3069
3070                 HW_DEBUGOUT2("Base = %x, Length = %x\n",
3071                     E1000_READ_REG(hw, E1000_TDBAL(i)),
3072                     E1000_READ_REG(hw, E1000_TDLEN(i)));
3073
3074                 txdctl = 0; /* clear txdctl */
3075                 txdctl |= 0x1f; /* PTHRESH */
3076                 txdctl |= 1 << 8; /* HTHRESH */
3077                 txdctl |= 1 << 16;/* WTHRESH */
3078                 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3079                 txdctl |= E1000_TXDCTL_GRAN;
3080                 txdctl |= 1 << 25; /* LWTHRESH */
3081
3082                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3083         }
3084
3085         /* Set the default values for the Tx Inter Packet Gap timer */
3086         switch (hw->mac.type) {
3087         case e1000_80003es2lan:
3088                 tipg = DEFAULT_82543_TIPG_IPGR1;
3089                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3090                     E1000_TIPG_IPGR2_SHIFT;
3091                 break;
3092         case e1000_82542:
3093                 tipg = DEFAULT_82542_TIPG_IPGT;
3094                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3095                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3096                 break;
3097         default:
3098                 if (hw->phy.media_type == e1000_media_type_fiber ||
3099                     hw->phy.media_type == e1000_media_type_internal_serdes)
3100                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3101                 else
3102                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3103                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3104                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3105         }
3106
3107         E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3108         E1000_WRITE_REG(hw, E1000_TIDV, adapter->tx_int_delay.value);
3109
3110         if(hw->mac.type >= e1000_82540)
3111                 E1000_WRITE_REG(hw, E1000_TADV,
3112                     adapter->tx_abs_int_delay.value);
3113
3114         if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3115                 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3116                 tarc |= TARC_SPEED_MODE_BIT;
3117                 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3118         } else if (hw->mac.type == e1000_80003es2lan) {
3119                 /* errata: program both queues to unweighted RR */
3120                 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3121                 tarc |= 1;
3122                 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3123                 tarc = E1000_READ_REG(hw, E1000_TARC(1));
3124                 tarc |= 1;
3125                 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3126         } else if (hw->mac.type == e1000_82574) {
3127                 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3128                 tarc |= TARC_ERRATA_BIT;
3129                 if ( adapter->tx_num_queues > 1) {
3130                         tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3131                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3132                         E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3133                 } else
3134                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3135         }
3136
3137         if (adapter->tx_int_delay.value > 0)
3138                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3139
3140         /* Program the Transmit Control Register */
3141         tctl = E1000_READ_REG(hw, E1000_TCTL);
3142         tctl &= ~E1000_TCTL_CT;
3143         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3144                    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3145
3146         if (hw->mac.type >= e1000_82571)
3147                 tctl |= E1000_TCTL_MULR;
3148
3149         /* This write will effectively turn on the transmit unit. */
3150         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3151
3152         /* SPT and KBL errata workarounds */
3153         if (hw->mac.type == e1000_pch_spt) {
3154                 u32 reg;
3155                 reg = E1000_READ_REG(hw, E1000_IOSFPC);
3156                 reg |= E1000_RCTL_RDMTS_HEX;
3157                 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3158                 /* i218-i219 Specification Update 1.5.4.5 */
3159                 reg = E1000_READ_REG(hw, E1000_TARC(0));
3160                 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3161                 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3162                 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3163         }
3164 }
3165
3166 /*********************************************************************
3167  *
3168  *  Enable receive unit.
3169  *
3170  **********************************************************************/
3171 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3172
3173 static void
3174 em_initialize_receive_unit(if_ctx_t ctx)
3175 {
3176         struct adapter *adapter = iflib_get_softc(ctx);
3177         if_softc_ctx_t scctx = adapter->shared;
3178         struct ifnet *ifp = iflib_get_ifp(ctx);
3179         struct e1000_hw *hw = &adapter->hw;
3180         struct em_rx_queue *que;
3181         int i;
3182         uint32_t rctl, rxcsum;
3183
3184         INIT_DEBUGOUT("em_initialize_receive_units: begin");
3185
3186         /*
3187          * Make sure receives are disabled while setting
3188          * up the descriptor ring
3189          */
3190         rctl = E1000_READ_REG(hw, E1000_RCTL);
3191         /* Do not disable if ever enabled on this hardware */
3192         if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3193                 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3194
3195         /* Setup the Receive Control Register */
3196         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3197         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3198             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3199             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3200
3201         /* Do not store bad packets */
3202         rctl &= ~E1000_RCTL_SBP;
3203
3204         /* Enable Long Packet receive */
3205         if (if_getmtu(ifp) > ETHERMTU)
3206                 rctl |= E1000_RCTL_LPE;
3207         else
3208                 rctl &= ~E1000_RCTL_LPE;
3209
3210         /* Strip the CRC */
3211         if (!em_disable_crc_stripping)
3212                 rctl |= E1000_RCTL_SECRC;
3213
3214         if (hw->mac.type >= e1000_82540) {
3215                 E1000_WRITE_REG(hw, E1000_RADV,
3216                     adapter->rx_abs_int_delay.value);
3217
3218                 /*
3219                  * Set the interrupt throttling rate. Value is calculated
3220                  * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns)
3221                  */
3222                 E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR);
3223         }
3224         E1000_WRITE_REG(hw, E1000_RDTR, adapter->rx_int_delay.value);
3225
3226         if (hw->mac.type >= em_mac_min) {
3227                 uint32_t rfctl;
3228                 /* Use extended rx descriptor formats */
3229                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3230                 rfctl |= E1000_RFCTL_EXTEN;
3231
3232                 /*
3233                  * When using MSI-X interrupts we need to throttle
3234                  * using the EITR register (82574 only)
3235                  */
3236                 if (hw->mac.type == e1000_82574) {
3237                         for (int i = 0; i < 4; i++)
3238                                 E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3239                                     DEFAULT_ITR);
3240                         /* Disable accelerated acknowledge */
3241                         rfctl |= E1000_RFCTL_ACK_DIS;
3242                 }
3243                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3244         }
3245
3246         /* Set up L3 and L4 csum Rx descriptor offloads */
3247         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3248         if (scctx->isc_capenable & IFCAP_RXCSUM) {
3249                 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3250                 if (hw->mac.type > e1000_82575)
3251                         rxcsum |= E1000_RXCSUM_CRCOFL;
3252                 else if (hw->mac.type < em_mac_min &&
3253                     scctx->isc_capenable & IFCAP_HWCSUM_IPV6)
3254                         rxcsum |= E1000_RXCSUM_IPV6OFL;
3255         } else {
3256                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3257                 if (hw->mac.type > e1000_82575)
3258                         rxcsum &= ~E1000_RXCSUM_CRCOFL;
3259                 else if (hw->mac.type < em_mac_min)
3260                         rxcsum &= ~E1000_RXCSUM_IPV6OFL;
3261         }
3262
3263         if (adapter->rx_num_queues > 1) {
3264                 /* RSS hash needed in the Rx descriptor */
3265                 rxcsum |= E1000_RXCSUM_PCSD;
3266
3267                 if (hw->mac.type >= igb_mac_min)
3268                         igb_initialize_rss_mapping(adapter);
3269                 else
3270                         em_initialize_rss_mapping(adapter);
3271         }
3272         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3273
3274         /*
3275          * XXX TEMPORARY WORKAROUND: on some systems with 82573
3276          * long latencies are observed, like Lenovo X60. This
3277          * change eliminates the problem, but since having positive
3278          * values in RDTR is a known source of problems on other
3279          * platforms another solution is being sought.
3280          */
3281         if (hw->mac.type == e1000_82573)
3282                 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3283
3284         for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3285                 struct rx_ring *rxr = &que->rxr;
3286                 /* Setup the Base and Length of the Rx Descriptor Ring */
3287                 u64 bus_addr = rxr->rx_paddr;
3288 #if 0
3289                 u32 rdt = adapter->rx_num_queues -1;  /* default */
3290 #endif
3291
3292                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3293                     scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended));
3294                 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3295                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3296                 /* Setup the Head and Tail Descriptor Pointers */
3297                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3298                 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3299         }
3300
3301         /*
3302          * Set PTHRESH for improved jumbo performance
3303          * According to 10.2.5.11 of Intel 82574 Datasheet,
3304          * RXDCTL(1) is written whenever RXDCTL(0) is written.
3305          * Only write to RXDCTL(1) if there is a need for different
3306          * settings.
3307          */
3308         if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3309             hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3310                 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3311                 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3312         } else if (hw->mac.type == e1000_82574) {
3313                 for (int i = 0; i < adapter->rx_num_queues; i++) {
3314                         u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3315                         rxdctl |= 0x20; /* PTHRESH */
3316                         rxdctl |= 4 << 8; /* HTHRESH */
3317                         rxdctl |= 4 << 16;/* WTHRESH */
3318                         rxdctl |= 1 << 24; /* Switch to granularity */
3319                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3320                 }
3321         } else if (hw->mac.type >= igb_mac_min) {
3322                 u32 psize, srrctl = 0;
3323
3324                 if (if_getmtu(ifp) > ETHERMTU) {
3325                         psize = scctx->isc_max_frame_size;
3326                         /* are we on a vlan? */
3327                         if (ifp->if_vlantrunk != NULL)
3328                                 psize += VLAN_TAG_SIZE;
3329                         E1000_WRITE_REG(hw, E1000_RLPML, psize);
3330                 }
3331
3332                 /* Set maximum packet buffer len */
3333                 srrctl |= (adapter->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3334                     E1000_SRRCTL_BSIZEPKT_SHIFT;
3335
3336                 /*
3337                  * If TX flow control is disabled and there's >1 queue defined,
3338                  * enable DROP.
3339                  *
3340                  * This drops frames rather than hanging the RX MAC for all queues.
3341                  */
3342                 if ((adapter->rx_num_queues > 1) &&
3343                     (adapter->fc == e1000_fc_none ||
3344                      adapter->fc == e1000_fc_rx_pause)) {
3345                         srrctl |= E1000_SRRCTL_DROP_EN;
3346                 }
3347                         /* Setup the Base and Length of the Rx Descriptor Rings */
3348                 for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) {
3349                         struct rx_ring *rxr = &que->rxr;
3350                         u64 bus_addr = rxr->rx_paddr;
3351                         u32 rxdctl;
3352
3353 #ifdef notyet
3354                         /* Configure for header split? -- ignore for now */
3355                         rxr->hdr_split = igb_header_split;
3356 #else
3357                         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3358 #endif
3359
3360                         E1000_WRITE_REG(hw, E1000_RDLEN(i),
3361                                         scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc));
3362                         E1000_WRITE_REG(hw, E1000_RDBAH(i),
3363                                         (uint32_t)(bus_addr >> 32));
3364                         E1000_WRITE_REG(hw, E1000_RDBAL(i),
3365                                         (uint32_t)bus_addr);
3366                         E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3367                         /* Enable this Queue */
3368                         rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3369                         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3370                         rxdctl &= 0xFFF00000;
3371                         rxdctl |= IGB_RX_PTHRESH;
3372                         rxdctl |= IGB_RX_HTHRESH << 8;
3373                         rxdctl |= IGB_RX_WTHRESH << 16;
3374                         E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3375                 }               
3376         } else if (hw->mac.type >= e1000_pch2lan) {
3377                 if (if_getmtu(ifp) > ETHERMTU)
3378                         e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
3379                 else
3380                         e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
3381         }
3382
3383         /* Make sure VLAN Filters are off */
3384         rctl &= ~E1000_RCTL_VFE;
3385
3386         /* Set up packet buffer size, overridden by per queue srrctl on igb */
3387         if (hw->mac.type < igb_mac_min) {
3388                 if (adapter->rx_mbuf_sz > 2048 && adapter->rx_mbuf_sz <= 4096)
3389                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3390                 else if (adapter->rx_mbuf_sz > 4096 && adapter->rx_mbuf_sz <= 8192)
3391                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
3392                 else if (adapter->rx_mbuf_sz > 8192)
3393                         rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
3394                 else {
3395                         rctl |= E1000_RCTL_SZ_2048;
3396                         rctl &= ~E1000_RCTL_BSEX;
3397                 }
3398         } else
3399                 rctl |= E1000_RCTL_SZ_2048;
3400
3401         /*
3402          * rctl bits 11:10 are as follows
3403          * lem: reserved
3404          * em: DTYPE
3405          * igb: reserved
3406          * and should be 00 on all of the above
3407          */
3408         rctl &= ~0x00000C00;
3409
3410         /* Write out the settings */
3411         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3412
3413         return;
3414 }
3415
3416 static void
3417 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
3418 {
3419         struct adapter *adapter = iflib_get_softc(ctx);
3420         u32 index, bit;
3421
3422         index = (vtag >> 5) & 0x7F;
3423         bit = vtag & 0x1F;
3424         adapter->shadow_vfta[index] |= (1 << bit);
3425         ++adapter->num_vlans;
3426 }
3427
3428 static void
3429 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
3430 {
3431         struct adapter *adapter = iflib_get_softc(ctx);
3432         u32 index, bit;
3433
3434         index = (vtag >> 5) & 0x7F;
3435         bit = vtag & 0x1F;
3436         adapter->shadow_vfta[index] &= ~(1 << bit);
3437         --adapter->num_vlans;
3438 }
3439
3440 static void
3441 em_setup_vlan_hw_support(struct adapter *adapter)
3442 {
3443         struct e1000_hw *hw = &adapter->hw;
3444         u32 reg;
3445
3446         /*
3447          * We get here thru init_locked, meaning
3448          * a soft reset, this has already cleared
3449          * the VFTA and other state, so if there
3450          * have been no vlan's registered do nothing.
3451          */
3452         if (adapter->num_vlans == 0)
3453                 return;
3454
3455         /*
3456          * A soft reset zero's out the VFTA, so
3457          * we need to repopulate it now.
3458          */
3459         for (int i = 0; i < EM_VFTA_SIZE; i++)
3460                 if (adapter->shadow_vfta[i] != 0)
3461                         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
3462                             i, adapter->shadow_vfta[i]);
3463
3464         reg = E1000_READ_REG(hw, E1000_CTRL);
3465         reg |= E1000_CTRL_VME;
3466         E1000_WRITE_REG(hw, E1000_CTRL, reg);
3467
3468         /* Enable the Filter Table */
3469         reg = E1000_READ_REG(hw, E1000_RCTL);
3470         reg &= ~E1000_RCTL_CFIEN;
3471         reg |= E1000_RCTL_VFE;
3472         E1000_WRITE_REG(hw, E1000_RCTL, reg);
3473 }
3474
3475 static void
3476 em_if_intr_enable(if_ctx_t ctx)
3477 {
3478         struct adapter *adapter = iflib_get_softc(ctx);
3479         struct e1000_hw *hw = &adapter->hw;
3480         u32 ims_mask = IMS_ENABLE_MASK;
3481
3482         if (adapter->intr_type == IFLIB_INTR_MSIX) {
3483                 E1000_WRITE_REG(hw, EM_EIAC, adapter->ims);
3484                 ims_mask |= adapter->ims;
3485         }
3486         E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
3487 }
3488
3489 static void
3490 em_if_intr_disable(if_ctx_t ctx)
3491 {
3492         struct adapter *adapter = iflib_get_softc(ctx);
3493         struct e1000_hw *hw = &adapter->hw;
3494
3495         if (adapter->intr_type == IFLIB_INTR_MSIX)
3496                 E1000_WRITE_REG(hw, EM_EIAC, 0);
3497         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3498 }
3499
3500 static void
3501 igb_if_intr_enable(if_ctx_t ctx)
3502 {
3503         struct adapter *adapter = iflib_get_softc(ctx);
3504         struct e1000_hw *hw = &adapter->hw;
3505         u32 mask;
3506
3507         if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3508                 mask = (adapter->que_mask | adapter->link_mask);
3509                 E1000_WRITE_REG(hw, E1000_EIAC, mask);
3510                 E1000_WRITE_REG(hw, E1000_EIAM, mask);
3511                 E1000_WRITE_REG(hw, E1000_EIMS, mask);
3512                 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3513         } else
3514                 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3515         E1000_WRITE_FLUSH(hw);
3516 }
3517
3518 static void
3519 igb_if_intr_disable(if_ctx_t ctx)
3520 {
3521         struct adapter *adapter = iflib_get_softc(ctx);
3522         struct e1000_hw *hw = &adapter->hw;
3523
3524         if (__predict_true(adapter->intr_type == IFLIB_INTR_MSIX)) {
3525                 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
3526                 E1000_WRITE_REG(hw, E1000_EIAC, 0);
3527         }
3528         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
3529         E1000_WRITE_FLUSH(hw);
3530 }
3531
3532 /*
3533  * Bit of a misnomer, what this really means is
3534  * to enable OS management of the system... aka
3535  * to disable special hardware management features
3536  */
3537 static void
3538 em_init_manageability(struct adapter *adapter)
3539 {
3540         /* A shared code workaround */
3541 #define E1000_82542_MANC2H E1000_MANC2H
3542         if (adapter->has_manage) {
3543                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3544                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3545
3546                 /* disable hardware interception of ARP */
3547                 manc &= ~(E1000_MANC_ARP_EN);
3548
3549                 /* enable receiving management packets to the host */
3550                 manc |= E1000_MANC_EN_MNG2HOST;
3551 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3552 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3553                 manc2h |= E1000_MNG2HOST_PORT_623;
3554                 manc2h |= E1000_MNG2HOST_PORT_664;
3555                 E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3556                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3557         }
3558 }
3559
3560 /*
3561  * Give control back to hardware management
3562  * controller if there is one.
3563  */
3564 static void
3565 em_release_manageability(struct adapter *adapter)
3566 {
3567         if (adapter->has_manage) {
3568                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3569
3570                 /* re-enable hardware interception of ARP */
3571                 manc |= E1000_MANC_ARP_EN;
3572                 manc &= ~E1000_MANC_EN_MNG2HOST;
3573
3574                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3575         }
3576 }
3577
3578 /*
3579  * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
3580  * For ASF and Pass Through versions of f/w this means
3581  * that the driver is loaded. For AMT version type f/w
3582  * this means that the network i/f is open.
3583  */
3584 static void
3585 em_get_hw_control(struct adapter *adapter)
3586 {
3587         u32 ctrl_ext, swsm;
3588
3589         if (adapter->vf_ifp)
3590                 return;
3591
3592         if (adapter->hw.mac.type == e1000_82573) {
3593                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3594                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3595                     swsm | E1000_SWSM_DRV_LOAD);
3596                 return;
3597         }
3598         /* else */
3599         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3600         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3601             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3602 }
3603
3604 /*
3605  * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3606  * For ASF and Pass Through versions of f/w this means that
3607  * the driver is no longer loaded. For AMT versions of the
3608  * f/w this means that the network i/f is closed.
3609  */
3610 static void
3611 em_release_hw_control(struct adapter *adapter)
3612 {
3613         u32 ctrl_ext, swsm;
3614
3615         if (!adapter->has_manage)
3616                 return;
3617
3618         if (adapter->hw.mac.type == e1000_82573) {
3619                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3620                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3621                     swsm & ~E1000_SWSM_DRV_LOAD);
3622                 return;
3623         }
3624         /* else */
3625         ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3626         E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3627             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3628         return;
3629 }
3630
3631 static int
3632 em_is_valid_ether_addr(u8 *addr)
3633 {
3634         char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3635
3636         if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
3637                 return (FALSE);
3638         }
3639
3640         return (TRUE);
3641 }
3642
3643 /*
3644 ** Parse the interface capabilities with regard
3645 ** to both system management and wake-on-lan for
3646 ** later use.
3647 */
3648 static void
3649 em_get_wakeup(if_ctx_t ctx)
3650 {
3651         struct adapter *adapter = iflib_get_softc(ctx);
3652         device_t dev = iflib_get_dev(ctx);
3653         u16 eeprom_data = 0, device_id, apme_mask;
3654
3655         adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
3656         apme_mask = EM_EEPROM_APME;
3657
3658         switch (adapter->hw.mac.type) {
3659         case e1000_82542:
3660         case e1000_82543:
3661                 break;
3662         case e1000_82544:
3663                 e1000_read_nvm(&adapter->hw,
3664                     NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
3665                 apme_mask = EM_82544_APME;
3666                 break;
3667         case e1000_82546:
3668         case e1000_82546_rev_3:
3669                 if (adapter->hw.bus.func == 1) {
3670                         e1000_read_nvm(&adapter->hw,
3671                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3672                         break;
3673                 } else
3674                         e1000_read_nvm(&adapter->hw,
3675                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3676                 break;
3677         case e1000_82573:
3678         case e1000_82583:
3679                 adapter->has_amt = TRUE;
3680                 /* FALLTHROUGH */
3681         case e1000_82571:
3682         case e1000_82572:
3683         case e1000_80003es2lan:
3684                 if (adapter->hw.bus.func == 1) {
3685                         e1000_read_nvm(&adapter->hw,
3686                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3687                         break;
3688                 } else
3689                         e1000_read_nvm(&adapter->hw,
3690                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3691                 break;
3692         case e1000_ich8lan:
3693         case e1000_ich9lan:
3694         case e1000_ich10lan:
3695         case e1000_pchlan:
3696         case e1000_pch2lan:
3697         case e1000_pch_lpt:
3698         case e1000_pch_spt:
3699         case e1000_82575:       /* listing all igb devices */
3700         case e1000_82576:
3701         case e1000_82580:
3702         case e1000_i350:
3703         case e1000_i354:
3704         case e1000_i210:
3705         case e1000_i211:
3706         case e1000_vfadapt:
3707         case e1000_vfadapt_i350:
3708                 apme_mask = E1000_WUC_APME;
3709                 adapter->has_amt = TRUE;
3710                 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
3711                 break;
3712         default:
3713                 e1000_read_nvm(&adapter->hw,
3714                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3715                 break;
3716         }
3717         if (eeprom_data & apme_mask)
3718                 adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
3719         /*
3720          * We have the eeprom settings, now apply the special cases
3721          * where the eeprom may be wrong or the board won't support
3722          * wake on lan on a particular port
3723          */
3724         device_id = pci_get_device(dev);
3725         switch (device_id) {
3726         case E1000_DEV_ID_82546GB_PCIE:
3727                 adapter->wol = 0;
3728                 break;
3729         case E1000_DEV_ID_82546EB_FIBER:
3730         case E1000_DEV_ID_82546GB_FIBER:
3731                 /* Wake events only supported on port A for dual fiber
3732                  * regardless of eeprom setting */
3733                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3734                     E1000_STATUS_FUNC_1)
3735                         adapter->wol = 0;
3736                 break;
3737         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
3738                 /* if quad port adapter, disable WoL on all but port A */
3739                 if (global_quad_port_a != 0)
3740                         adapter->wol = 0;
3741                 /* Reset for multiple quad port adapters */
3742                 if (++global_quad_port_a == 4)
3743                         global_quad_port_a = 0;
3744                 break;
3745         case E1000_DEV_ID_82571EB_FIBER:
3746                 /* Wake events only supported on port A for dual fiber
3747                  * regardless of eeprom setting */
3748                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
3749                     E1000_STATUS_FUNC_1)
3750                         adapter->wol = 0;
3751                 break;
3752         case E1000_DEV_ID_82571EB_QUAD_COPPER:
3753         case E1000_DEV_ID_82571EB_QUAD_FIBER:
3754         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
3755                 /* if quad port adapter, disable WoL on all but port A */
3756                 if (global_quad_port_a != 0)
3757                         adapter->wol = 0;
3758                 /* Reset for multiple quad port adapters */
3759                 if (++global_quad_port_a == 4)
3760                         global_quad_port_a = 0;
3761                 break;
3762         }
3763         return;
3764 }
3765
3766
3767 /*
3768  * Enable PCI Wake On Lan capability
3769  */
3770 static void
3771 em_enable_wakeup(if_ctx_t ctx)
3772 {
3773         struct adapter *adapter = iflib_get_softc(ctx);
3774         device_t dev = iflib_get_dev(ctx);
3775         if_t ifp = iflib_get_ifp(ctx);
3776         int error = 0;
3777         u32 pmc, ctrl, ctrl_ext, rctl;
3778         u16 status;
3779
3780         if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
3781                 return;
3782
3783         /*
3784          * Determine type of Wakeup: note that wol
3785          * is set with all bits on by default.
3786          */
3787         if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
3788                 adapter->wol &= ~E1000_WUFC_MAG;
3789
3790         if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
3791                 adapter->wol &= ~E1000_WUFC_EX;
3792
3793         if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
3794                 adapter->wol &= ~E1000_WUFC_MC;
3795         else {
3796                 rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3797                 rctl |= E1000_RCTL_MPE;
3798                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3799         }
3800
3801         if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC))) {
3802                 if (adapter->hw.mac.type >= e1000_pch_lpt) {
3803                         e1000_enable_ulp_lpt_lp(&adapter->hw, TRUE);
3804                 }
3805                 goto pme;
3806         }
3807
3808         /* Advertise the wakeup capability */
3809         ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
3810         ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3811         E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
3812
3813         /* Keep the laser running on Fiber adapters */
3814         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3815             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
3816                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3817                 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3818                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext);
3819         }
3820
3821         if ((adapter->hw.mac.type == e1000_ich8lan) ||
3822             (adapter->hw.mac.type == e1000_pchlan) ||
3823             (adapter->hw.mac.type == e1000_ich9lan) ||
3824             (adapter->hw.mac.type == e1000_ich10lan))
3825                 e1000_suspend_workarounds_ich8lan(&adapter->hw);
3826
3827         if ( adapter->hw.mac.type >= e1000_pchlan) {
3828                 error = em_enable_phy_wakeup(adapter);
3829                 if (error)
3830                         goto pme;
3831         } else {
3832                 /* Enable wakeup by the MAC */
3833                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
3834                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
3835         }
3836
3837         if (adapter->hw.phy.type == e1000_phy_igp_3)
3838                 e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3839
3840 pme:
3841         status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3842         status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3843         if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
3844                 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3845         pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3846
3847         return;
3848 }
3849
3850 /*
3851  * WOL in the newer chipset interfaces (pchlan)
3852  * require thing to be copied into the phy
3853  */
3854 static int
3855 em_enable_phy_wakeup(struct adapter *adapter)
3856 {
3857         struct e1000_hw *hw = &adapter->hw;
3858         u32 mreg, ret = 0;
3859         u16 preg;
3860
3861         /* copy MAC RARs to PHY RARs */
3862         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3863
3864         /* copy MAC MTA to PHY MTA */
3865         for (int i = 0; i < hw->mac.mta_reg_count; i++) {
3866                 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3867                 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
3868                 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3869                     (u16)((mreg >> 16) & 0xFFFF));
3870         }
3871
3872         /* configure PHY Rx Control register */
3873         e1000_read_phy_reg(hw, BM_RCTL, &preg);
3874         mreg = E1000_READ_REG(hw, E1000_RCTL);
3875         if (mreg & E1000_RCTL_UPE)
3876                 preg |= BM_RCTL_UPE;
3877         if (mreg & E1000_RCTL_MPE)
3878                 preg |= BM_RCTL_MPE;
3879         preg &= ~(BM_RCTL_MO_MASK);
3880         if (mreg & E1000_RCTL_MO_3)
3881                 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3882                                 << BM_RCTL_MO_SHIFT);
3883         if (mreg & E1000_RCTL_BAM)
3884                 preg |= BM_RCTL_BAM;
3885         if (mreg & E1000_RCTL_PMCF)
3886                 preg |= BM_RCTL_PMCF;
3887         mreg = E1000_READ_REG(hw, E1000_CTRL);
3888         if (mreg & E1000_CTRL_RFCE)
3889                 preg |= BM_RCTL_RFCE;
3890         e1000_write_phy_reg(hw, BM_RCTL, preg);
3891
3892         /* enable PHY wakeup in MAC register */
3893         E1000_WRITE_REG(hw, E1000_WUC,
3894             E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3895         E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol);
3896
3897         /* configure and enable PHY wakeup in PHY registers */
3898         e1000_write_phy_reg(hw, BM_WUFC, adapter->wol);
3899         e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
3900
3901         /* activate PHY wakeup */
3902         ret = hw->phy.ops.acquire(hw);
3903         if (ret) {
3904                 printf("Could not acquire PHY\n");
3905                 return ret;
3906         }
3907         e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3908                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3909         ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3910         if (ret) {
3911                 printf("Could not read PHY page 769\n");
3912                 goto out;
3913         }
3914         preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3915         ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3916         if (ret)
3917                 printf("Could not set PHY Host Wakeup bit\n");
3918 out:
3919         hw->phy.ops.release(hw);
3920
3921         return ret;
3922 }
3923
3924 static void
3925 em_if_led_func(if_ctx_t ctx, int onoff)
3926 {
3927         struct adapter *adapter = iflib_get_softc(ctx);
3928
3929         if (onoff) {
3930                 e1000_setup_led(&adapter->hw);
3931                 e1000_led_on(&adapter->hw);
3932         } else {
3933                 e1000_led_off(&adapter->hw);
3934                 e1000_cleanup_led(&adapter->hw);
3935         }
3936 }
3937
3938 /*
3939  * Disable the L0S and L1 LINK states
3940  */
3941 static void
3942 em_disable_aspm(struct adapter *adapter)
3943 {
3944         int base, reg;
3945         u16 link_cap,link_ctrl;
3946         device_t dev = adapter->dev;
3947
3948         switch (adapter->hw.mac.type) {
3949         case e1000_82573:
3950         case e1000_82574:
3951         case e1000_82583:
3952                 break;
3953         default:
3954                 return;
3955         }
3956         if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
3957                 return;
3958         reg = base + PCIER_LINK_CAP;
3959         link_cap = pci_read_config(dev, reg, 2);
3960         if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
3961                 return;
3962         reg = base + PCIER_LINK_CTL;
3963         link_ctrl = pci_read_config(dev, reg, 2);
3964         link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
3965         pci_write_config(dev, reg, link_ctrl, 2);
3966         return;
3967 }
3968
3969 /**********************************************************************
3970  *
3971  *  Update the board statistics counters.
3972  *
3973  **********************************************************************/
3974 static void
3975 em_update_stats_counters(struct adapter *adapter)
3976 {
3977         u64 prev_xoffrxc = adapter->stats.xoffrxc;
3978
3979         if(adapter->hw.phy.media_type == e1000_media_type_copper ||
3980            (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3981                 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3982                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3983         }
3984         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3985         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3986         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3987         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3988
3989         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3990         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3991         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3992         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3993         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3994         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3995         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3996         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3997         /*
3998          ** For watchdog management we need to know if we have been
3999          ** paused during the last interval, so capture that here.
4000         */
4001         if (adapter->stats.xoffrxc != prev_xoffrxc)
4002                 adapter->shared->isc_pause_frames = 1;
4003         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
4004         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
4005         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
4006         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
4007         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
4008         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
4009         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
4010         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
4011         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
4012         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
4013         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
4014         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
4015
4016         /* For the 64-bit byte counters the low dword must be read first. */
4017         /* Both registers clear on the read of the high dword */
4018
4019         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) +
4020             ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32);
4021         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) +
4022             ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32);
4023
4024         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
4025         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
4026         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
4027         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
4028         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
4029
4030         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
4031         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
4032
4033         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
4034         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
4035         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
4036         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
4037         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
4038         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
4039         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
4040         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
4041         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
4042         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
4043
4044         /* Interrupt Counts */
4045
4046         adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC);
4047         adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC);
4048         adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC);
4049         adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC);
4050         adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC);
4051         adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC);
4052         adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC);
4053         adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC);
4054         adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC);
4055
4056         if (adapter->hw.mac.type >= e1000_82543) {
4057                 adapter->stats.algnerrc +=
4058                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4059                 adapter->stats.rxerrc +=
4060                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4061                 adapter->stats.tncrs +=
4062                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4063                 adapter->stats.cexterr +=
4064                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4065                 adapter->stats.tsctc +=
4066                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4067                 adapter->stats.tsctfc +=
4068                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4069         }
4070 }
4071
4072 static uint64_t
4073 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4074 {
4075         struct adapter *adapter = iflib_get_softc(ctx);
4076         struct ifnet *ifp = iflib_get_ifp(ctx);
4077
4078         switch (cnt) {
4079         case IFCOUNTER_COLLISIONS:
4080                 return (adapter->stats.colc);
4081         case IFCOUNTER_IERRORS:
4082                 return (adapter->dropped_pkts + adapter->stats.rxerrc +
4083                     adapter->stats.crcerrs + adapter->stats.algnerrc +
4084                     adapter->stats.ruc + adapter->stats.roc +
4085                     adapter->stats.mpc + adapter->stats.cexterr);
4086         case IFCOUNTER_OERRORS:
4087                 return (adapter->stats.ecol + adapter->stats.latecol +
4088                     adapter->watchdog_events);
4089         default:
4090                 return (if_get_counter_default(ifp, cnt));
4091         }
4092 }
4093
4094 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4095  * @ctx: iflib context
4096  * @event: event code to check
4097  *
4098  * Defaults to returning true for unknown events.
4099  *
4100  * @returns true if iflib needs to reinit the interface
4101  */
4102 static bool
4103 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4104 {
4105         switch (event) {
4106         case IFLIB_RESTART_VLAN_CONFIG:
4107         default:
4108                 return (true);
4109         }
4110 }
4111
4112 /* Export a single 32-bit register via a read-only sysctl. */
4113 static int
4114 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4115 {
4116         struct adapter *adapter;
4117         u_int val;
4118
4119         adapter = oidp->oid_arg1;
4120         val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
4121         return (sysctl_handle_int(oidp, &val, 0, req));
4122 }
4123
4124 /*
4125  * Add sysctl variables, one per statistic, to the system.
4126  */
4127 static void
4128 em_add_hw_stats(struct adapter *adapter)
4129 {
4130         device_t dev = iflib_get_dev(adapter->ctx);
4131         struct em_tx_queue *tx_que = adapter->tx_queues;
4132         struct em_rx_queue *rx_que = adapter->rx_queues;
4133
4134         struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4135         struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4136         struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4137         struct e1000_hw_stats *stats = &adapter->stats;
4138
4139         struct sysctl_oid *stat_node, *queue_node, *int_node;
4140         struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4141
4142 #define QUEUE_NAME_LEN 32
4143         char namebuf[QUEUE_NAME_LEN];
4144
4145         /* Driver Statistics */
4146         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4147                         CTLFLAG_RD, &adapter->dropped_pkts,
4148                         "Driver dropped packets");
4149         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4150                         CTLFLAG_RD, &adapter->link_irq,
4151                         "Link MSI-X IRQ Handled");
4152         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4153                         CTLFLAG_RD, &adapter->rx_overruns,
4154                         "RX overruns");
4155         SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4156                         CTLFLAG_RD, &adapter->watchdog_events,
4157                         "Watchdog timeouts");
4158         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4159             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4160             adapter, E1000_CTRL, em_sysctl_reg_handler, "IU",
4161             "Device Control Register");
4162         SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4163             CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
4164             adapter, E1000_RCTL, em_sysctl_reg_handler, "IU",
4165             "Receiver Control Register");
4166         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4167                         CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
4168                         "Flow Control High Watermark");
4169         SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4170                         CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
4171                         "Flow Control Low Watermark");
4172
4173         for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) {
4174                 struct tx_ring *txr = &tx_que->txr;
4175                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4176                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4177                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4178                 queue_list = SYSCTL_CHILDREN(queue_node);
4179
4180                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4181                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4182                     E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4183                     "Transmit Descriptor Head");
4184                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4185                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4186                     E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4187                     "Transmit Descriptor Tail");
4188                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4189                                 CTLFLAG_RD, &txr->tx_irq,
4190                                 "Queue MSI-X Transmit Interrupts");
4191         }
4192
4193         for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) {
4194                 struct rx_ring *rxr = &rx_que->rxr;
4195                 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4196                 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4197                     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4198                 queue_list = SYSCTL_CHILDREN(queue_node);
4199
4200                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4201                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4202                     E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4203                     "Receive Descriptor Head");
4204                 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4205                     CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, adapter,
4206                     E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4207                     "Receive Descriptor Tail");
4208                 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
4209                                 CTLFLAG_RD, &rxr->rx_irq,
4210                                 "Queue MSI-X Receive Interrupts");
4211         }
4212
4213         /* MAC stats get their own sub node */
4214
4215         stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
4216             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
4217         stat_list = SYSCTL_CHILDREN(stat_node);
4218
4219         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
4220                         CTLFLAG_RD, &stats->ecol,
4221                         "Excessive collisions");
4222         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
4223                         CTLFLAG_RD, &stats->scc,
4224                         "Single collisions");
4225         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
4226                         CTLFLAG_RD, &stats->mcc,
4227                         "Multiple collisions");
4228         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
4229                         CTLFLAG_RD, &stats->latecol,
4230                         "Late collisions");
4231         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
4232                         CTLFLAG_RD, &stats->colc,
4233                         "Collision Count");
4234         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
4235                         CTLFLAG_RD, &adapter->stats.symerrs,
4236                         "Symbol Errors");
4237         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
4238                         CTLFLAG_RD, &adapter->stats.sec,
4239                         "Sequence Errors");
4240         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
4241                         CTLFLAG_RD, &adapter->stats.dc,
4242                         "Defer Count");
4243         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
4244                         CTLFLAG_RD, &adapter->stats.mpc,
4245                         "Missed Packets");
4246         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
4247                         CTLFLAG_RD, &adapter->stats.rnbc,
4248                         "Receive No Buffers");
4249         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
4250                         CTLFLAG_RD, &adapter->stats.ruc,
4251                         "Receive Undersize");
4252         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
4253                         CTLFLAG_RD, &adapter->stats.rfc,
4254                         "Fragmented Packets Received ");
4255         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
4256                         CTLFLAG_RD, &adapter->stats.roc,
4257                         "Oversized Packets Received");
4258         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
4259                         CTLFLAG_RD, &adapter->stats.rjc,
4260                         "Recevied Jabber");
4261         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
4262                         CTLFLAG_RD, &adapter->stats.rxerrc,
4263                         "Receive Errors");
4264         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
4265                         CTLFLAG_RD, &adapter->stats.crcerrs,
4266                         "CRC errors");
4267         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
4268                         CTLFLAG_RD, &adapter->stats.algnerrc,
4269                         "Alignment Errors");
4270         /* On 82575 these are collision counts */
4271         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
4272                         CTLFLAG_RD, &adapter->stats.cexterr,
4273                         "Collision/Carrier extension errors");
4274         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
4275                         CTLFLAG_RD, &adapter->stats.xonrxc,
4276                         "XON Received");
4277         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
4278                         CTLFLAG_RD, &adapter->stats.xontxc,
4279                         "XON Transmitted");
4280         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
4281                         CTLFLAG_RD, &adapter->stats.xoffrxc,
4282                         "XOFF Received");
4283         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
4284                         CTLFLAG_RD, &adapter->stats.xofftxc,
4285                         "XOFF Transmitted");
4286
4287         /* Packet Reception Stats */
4288         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
4289                         CTLFLAG_RD, &adapter->stats.tpr,
4290                         "Total Packets Received ");
4291         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
4292                         CTLFLAG_RD, &adapter->stats.gprc,
4293                         "Good Packets Received");
4294         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
4295                         CTLFLAG_RD, &adapter->stats.bprc,
4296                         "Broadcast Packets Received");
4297         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
4298                         CTLFLAG_RD, &adapter->stats.mprc,
4299                         "Multicast Packets Received");
4300         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
4301                         CTLFLAG_RD, &adapter->stats.prc64,
4302                         "64 byte frames received ");
4303         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
4304                         CTLFLAG_RD, &adapter->stats.prc127,
4305                         "65-127 byte frames received");
4306         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
4307                         CTLFLAG_RD, &adapter->stats.prc255,
4308                         "128-255 byte frames received");
4309         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
4310                         CTLFLAG_RD, &adapter->stats.prc511,
4311                         "256-511 byte frames received");
4312         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
4313                         CTLFLAG_RD, &adapter->stats.prc1023,
4314                         "512-1023 byte frames received");
4315         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
4316                         CTLFLAG_RD, &adapter->stats.prc1522,
4317                         "1023-1522 byte frames received");
4318         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
4319                         CTLFLAG_RD, &adapter->stats.gorc,
4320                         "Good Octets Received");
4321
4322         /* Packet Transmission Stats */
4323         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
4324                         CTLFLAG_RD, &adapter->stats.gotc,
4325                         "Good Octets Transmitted");
4326         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
4327                         CTLFLAG_RD, &adapter->stats.tpt,
4328                         "Total Packets Transmitted");
4329         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
4330                         CTLFLAG_RD, &adapter->stats.gptc,
4331                         "Good Packets Transmitted");
4332         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
4333                         CTLFLAG_RD, &adapter->stats.bptc,
4334                         "Broadcast Packets Transmitted");
4335         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
4336                         CTLFLAG_RD, &adapter->stats.mptc,
4337                         "Multicast Packets Transmitted");
4338         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
4339                         CTLFLAG_RD, &adapter->stats.ptc64,
4340                         "64 byte frames transmitted ");
4341         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
4342                         CTLFLAG_RD, &adapter->stats.ptc127,
4343                         "65-127 byte frames transmitted");
4344         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
4345                         CTLFLAG_RD, &adapter->stats.ptc255,
4346                         "128-255 byte frames transmitted");
4347         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
4348                         CTLFLAG_RD, &adapter->stats.ptc511,
4349                         "256-511 byte frames transmitted");
4350         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
4351                         CTLFLAG_RD, &adapter->stats.ptc1023,
4352                         "512-1023 byte frames transmitted");
4353         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
4354                         CTLFLAG_RD, &adapter->stats.ptc1522,
4355                         "1024-1522 byte frames transmitted");
4356         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
4357                         CTLFLAG_RD, &adapter->stats.tsctc,
4358                         "TSO Contexts Transmitted");
4359         SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
4360                         CTLFLAG_RD, &adapter->stats.tsctfc,
4361                         "TSO Contexts Failed");
4362
4363
4364         /* Interrupt Stats */
4365
4366         int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
4367             CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
4368         int_list = SYSCTL_CHILDREN(int_node);
4369
4370         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
4371                         CTLFLAG_RD, &adapter->stats.iac,
4372                         "Interrupt Assertion Count");
4373
4374         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
4375                         CTLFLAG_RD, &adapter->stats.icrxptc,
4376                         "Interrupt Cause Rx Pkt Timer Expire Count");
4377
4378         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
4379                         CTLFLAG_RD, &adapter->stats.icrxatc,
4380                         "Interrupt Cause Rx Abs Timer Expire Count");
4381
4382         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
4383                         CTLFLAG_RD, &adapter->stats.ictxptc,
4384                         "Interrupt Cause Tx Pkt Timer Expire Count");
4385
4386         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
4387                         CTLFLAG_RD, &adapter->stats.ictxatc,
4388                         "Interrupt Cause Tx Abs Timer Expire Count");
4389
4390         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
4391                         CTLFLAG_RD, &adapter->stats.ictxqec,
4392                         "Interrupt Cause Tx Queue Empty Count");
4393
4394         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
4395                         CTLFLAG_RD, &adapter->stats.ictxqmtc,
4396                         "Interrupt Cause Tx Queue Min Thresh Count");
4397
4398         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
4399                         CTLFLAG_RD, &adapter->stats.icrxdmtc,
4400                         "Interrupt Cause Rx Desc Min Thresh Count");
4401
4402         SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
4403                         CTLFLAG_RD, &adapter->stats.icrxoc,
4404                         "Interrupt Cause Receiver Overrun Count");
4405 }
4406
4407 /**********************************************************************
4408  *
4409  *  This routine provides a way to dump out the adapter eeprom,
4410  *  often a useful debug/service tool. This only dumps the first
4411  *  32 words, stuff that matters is in that extent.
4412  *
4413  **********************************************************************/
4414 static int
4415 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
4416 {
4417         struct adapter *adapter = (struct adapter *)arg1;
4418         int error;
4419         int result;
4420
4421         result = -1;
4422         error = sysctl_handle_int(oidp, &result, 0, req);
4423
4424         if (error || !req->newptr)
4425                 return (error);
4426
4427         /*
4428          * This value will cause a hex dump of the
4429          * first 32 16-bit words of the EEPROM to
4430          * the screen.
4431          */
4432         if (result == 1)
4433                 em_print_nvm_info(adapter);
4434
4435         return (error);
4436 }
4437
4438 static void
4439 em_print_nvm_info(struct adapter *adapter)
4440 {
4441         u16 eeprom_data;
4442         int i, j, row = 0;
4443
4444         /* Its a bit crude, but it gets the job done */
4445         printf("\nInterface EEPROM Dump:\n");
4446         printf("Offset\n0x0000  ");
4447         for (i = 0, j = 0; i < 32; i++, j++) {
4448                 if (j == 8) { /* Make the offset block */
4449                         j = 0; ++row;
4450                         printf("\n0x00%x0  ",row);
4451                 }
4452                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4453                 printf("%04x ", eeprom_data);
4454         }
4455         printf("\n");
4456 }
4457
4458 static int
4459 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
4460 {
4461         struct em_int_delay_info *info;
4462         struct adapter *adapter;
4463         u32 regval;
4464         int error, usecs, ticks;
4465
4466         info = (struct em_int_delay_info *) arg1;
4467         usecs = info->value;
4468         error = sysctl_handle_int(oidp, &usecs, 0, req);
4469         if (error != 0 || req->newptr == NULL)
4470                 return (error);
4471         if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
4472                 return (EINVAL);
4473         info->value = usecs;
4474         ticks = EM_USECS_TO_TICKS(usecs);
4475         if (info->offset == E1000_ITR)  /* units are 256ns here */
4476                 ticks *= 4;
4477
4478         adapter = info->adapter;
4479
4480         regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
4481         regval = (regval & ~0xffff) | (ticks & 0xffff);
4482         /* Handle a few special cases. */
4483         switch (info->offset) {
4484         case E1000_RDTR:
4485                 break;
4486         case E1000_TIDV:
4487                 if (ticks == 0) {
4488                         adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
4489                         /* Don't write 0 into the TIDV register. */
4490                         regval++;
4491                 } else
4492                         adapter->txd_cmd |= E1000_TXD_CMD_IDE;
4493                 break;
4494         }
4495         E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
4496         return (0);
4497 }
4498
4499 static void
4500 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
4501         const char *description, struct em_int_delay_info *info,
4502         int offset, int value)
4503 {
4504         info->adapter = adapter;
4505         info->offset = offset;
4506         info->value = value;
4507         SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev),
4508             SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
4509             OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
4510             info, 0, em_sysctl_int_delay, "I", description);
4511 }
4512
4513 /*
4514  * Set flow control using sysctl:
4515  * Flow control values:
4516  *      0 - off
4517  *      1 - rx pause
4518  *      2 - tx pause
4519  *      3 - full
4520  */
4521 static int
4522 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
4523 {
4524         int error;
4525         static int input = 3; /* default is full */
4526         struct adapter  *adapter = (struct adapter *) arg1;
4527
4528         error = sysctl_handle_int(oidp, &input, 0, req);
4529
4530         if ((error) || (req->newptr == NULL))
4531                 return (error);
4532
4533         if (input == adapter->fc) /* no change? */
4534                 return (error);
4535
4536         switch (input) {
4537         case e1000_fc_rx_pause:
4538         case e1000_fc_tx_pause:
4539         case e1000_fc_full:
4540         case e1000_fc_none:
4541                 adapter->hw.fc.requested_mode = input;
4542                 adapter->fc = input;
4543                 break;
4544         default:
4545                 /* Do nothing */
4546                 return (error);
4547         }
4548
4549         adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
4550         e1000_force_mac_fc(&adapter->hw);
4551         return (error);
4552 }
4553
4554 /*
4555  * Manage Energy Efficient Ethernet:
4556  * Control values:
4557  *     0/1 - enabled/disabled
4558  */
4559 static int
4560 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
4561 {
4562         struct adapter *adapter = (struct adapter *) arg1;
4563         int error, value;
4564
4565         value = adapter->hw.dev_spec.ich8lan.eee_disable;
4566         error = sysctl_handle_int(oidp, &value, 0, req);
4567         if (error || req->newptr == NULL)
4568                 return (error);
4569         adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0);
4570         em_if_init(adapter->ctx);
4571
4572         return (0);
4573 }
4574
4575 static int
4576 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4577 {
4578         struct adapter *adapter;
4579         int error;
4580         int result;
4581
4582         result = -1;
4583         error = sysctl_handle_int(oidp, &result, 0, req);
4584
4585         if (error || !req->newptr)
4586                 return (error);
4587
4588         if (result == 1) {
4589                 adapter = (struct adapter *) arg1;
4590                 em_print_debug_info(adapter);
4591         }
4592
4593         return (error);
4594 }
4595
4596 static int
4597 em_get_rs(SYSCTL_HANDLER_ARGS)
4598 {
4599         struct adapter *adapter = (struct adapter *) arg1;
4600         int error;
4601         int result;
4602
4603         result = 0;
4604         error = sysctl_handle_int(oidp, &result, 0, req);
4605
4606         if (error || !req->newptr || result != 1)
4607                 return (error);
4608         em_dump_rs(adapter);
4609
4610         return (error);
4611 }
4612
4613 static void
4614 em_if_debug(if_ctx_t ctx)
4615 {
4616         em_dump_rs(iflib_get_softc(ctx));
4617 }
4618
4619 /*
4620  * This routine is meant to be fluid, add whatever is
4621  * needed for debugging a problem.  -jfv
4622  */
4623 static void
4624 em_print_debug_info(struct adapter *adapter)
4625 {
4626         device_t dev = iflib_get_dev(adapter->ctx);
4627         struct ifnet *ifp = iflib_get_ifp(adapter->ctx);
4628         struct tx_ring *txr = &adapter->tx_queues->txr;
4629         struct rx_ring *rxr = &adapter->rx_queues->rxr;
4630
4631         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
4632                 printf("Interface is RUNNING ");
4633         else
4634                 printf("Interface is NOT RUNNING\n");
4635
4636         if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
4637                 printf("and INACTIVE\n");
4638         else
4639                 printf("and ACTIVE\n");
4640
4641         for (int i = 0; i < adapter->tx_num_queues; i++, txr++) {
4642                 device_printf(dev, "TX Queue %d ------\n", i);
4643                 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4644                         E1000_READ_REG(&adapter->hw, E1000_TDH(i)),
4645                         E1000_READ_REG(&adapter->hw, E1000_TDT(i)));
4646
4647         }
4648         for (int j=0; j < adapter->rx_num_queues; j++, rxr++) {
4649                 device_printf(dev, "RX Queue %d ------\n", j);
4650                 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4651                         E1000_READ_REG(&adapter->hw, E1000_RDH(j)),
4652                         E1000_READ_REG(&adapter->hw, E1000_RDT(j)));
4653         }
4654 }
4655
4656 /*
4657  * 82574 only:
4658  * Write a new value to the EEPROM increasing the number of MSI-X
4659  * vectors from 3 to 5, for proper multiqueue support.
4660  */
4661 static void
4662 em_enable_vectors_82574(if_ctx_t ctx)
4663 {
4664         struct adapter *adapter = iflib_get_softc(ctx);
4665         struct e1000_hw *hw = &adapter->hw;
4666         device_t dev = iflib_get_dev(ctx);
4667         u16 edata;
4668
4669         e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4670         if (bootverbose)
4671                 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
4672         if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
4673                 device_printf(dev, "Writing to eeprom: increasing "
4674                     "reported MSI-X vectors from 3 to 5...\n");
4675                 edata &= ~(EM_NVM_MSIX_N_MASK);
4676                 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
4677                 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
4678                 e1000_update_nvm_checksum(hw);
4679                 device_printf(dev, "Writing to eeprom: done\n");
4680         }
4681 }