]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/glxsb/glxsb.c
MFV: r333378
[FreeBSD/FreeBSD.git] / sys / dev / glxsb / glxsb.c
1 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
2
3 /*
4  * Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org>
5  * Copyright (c) 2003, 2004 Theo de Raadt
6  * Copyright (c) 2003 Jason Wright
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21 /*
22  * Driver for the security block on the AMD Geode LX processors
23  * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
24  */
25
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/bus.h>
32 #include <sys/errno.h>
33 #include <sys/kernel.h>
34 #include <sys/lock.h>
35 #include <sys/malloc.h>
36 #include <sys/mbuf.h>
37 #include <sys/module.h>
38 #include <sys/mutex.h>
39 #include <sys/proc.h>
40 #include <sys/random.h>
41 #include <sys/rman.h>
42 #include <sys/rwlock.h>
43 #include <sys/sysctl.h>
44 #include <sys/taskqueue.h>
45
46 #include <machine/bus.h>
47 #include <machine/cpufunc.h>
48 #include <machine/resource.h>
49
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pcireg.h>
52
53 #include <opencrypto/cryptodev.h>
54 #include <opencrypto/cryptosoft.h>
55 #include <opencrypto/xform.h>
56
57 #include "cryptodev_if.h"
58 #include "glxsb.h"
59
60 #define PCI_VENDOR_AMD                  0x1022  /* AMD */
61 #define PCI_PRODUCT_AMD_GEODE_LX_CRYPTO 0x2082  /* Geode LX Crypto */
62
63 #define SB_GLD_MSR_CAP          0x58002000      /* RO - Capabilities */
64 #define SB_GLD_MSR_CONFIG       0x58002001      /* RW - Master Config */
65 #define SB_GLD_MSR_SMI          0x58002002      /* RW - SMI */
66 #define SB_GLD_MSR_ERROR        0x58002003      /* RW - Error */
67 #define SB_GLD_MSR_PM           0x58002004      /* RW - Power Mgmt */
68 #define SB_GLD_MSR_DIAG         0x58002005      /* RW - Diagnostic */
69 #define SB_GLD_MSR_CTRL         0x58002006      /* RW - Security Block Cntrl */
70
71                                                 /* For GLD_MSR_CTRL: */
72 #define SB_GMC_DIV0             0x0000          /* AES update divisor values */
73 #define SB_GMC_DIV1             0x0001
74 #define SB_GMC_DIV2             0x0002
75 #define SB_GMC_DIV3             0x0003
76 #define SB_GMC_DIV_MASK         0x0003
77 #define SB_GMC_SBI              0x0004          /* AES swap bits */
78 #define SB_GMC_SBY              0x0008          /* AES swap bytes */
79 #define SB_GMC_TW               0x0010          /* Time write (EEPROM) */
80 #define SB_GMC_T_SEL0           0x0000          /* RNG post-proc: none */
81 #define SB_GMC_T_SEL1           0x0100          /* RNG post-proc: LFSR */
82 #define SB_GMC_T_SEL2           0x0200          /* RNG post-proc: whitener */
83 #define SB_GMC_T_SEL3           0x0300          /* RNG LFSR+whitener */
84 #define SB_GMC_T_SEL_MASK       0x0300
85 #define SB_GMC_T_NE             0x0400          /* Noise (generator) Enable */
86 #define SB_GMC_T_TM             0x0800          /* RNG test mode */
87                                                 /*     (deterministic) */
88
89 /* Security Block configuration/control registers (offsets from base) */
90 #define SB_CTL_A                0x0000          /* RW - SB Control A */
91 #define SB_CTL_B                0x0004          /* RW - SB Control B */
92 #define SB_AES_INT              0x0008          /* RW - SB AES Interrupt */
93 #define SB_SOURCE_A             0x0010          /* RW - Source A */
94 #define SB_DEST_A               0x0014          /* RW - Destination A */
95 #define SB_LENGTH_A             0x0018          /* RW - Length A */
96 #define SB_SOURCE_B             0x0020          /* RW - Source B */
97 #define SB_DEST_B               0x0024          /* RW - Destination B */
98 #define SB_LENGTH_B             0x0028          /* RW - Length B */
99 #define SB_WKEY                 0x0030          /* WO - Writable Key 0-3 */
100 #define SB_WKEY_0               0x0030          /* WO - Writable Key 0 */
101 #define SB_WKEY_1               0x0034          /* WO - Writable Key 1 */
102 #define SB_WKEY_2               0x0038          /* WO - Writable Key 2 */
103 #define SB_WKEY_3               0x003C          /* WO - Writable Key 3 */
104 #define SB_CBC_IV               0x0040          /* RW - CBC IV 0-3 */
105 #define SB_CBC_IV_0             0x0040          /* RW - CBC IV 0 */
106 #define SB_CBC_IV_1             0x0044          /* RW - CBC IV 1 */
107 #define SB_CBC_IV_2             0x0048          /* RW - CBC IV 2 */
108 #define SB_CBC_IV_3             0x004C          /* RW - CBC IV 3 */
109 #define SB_RANDOM_NUM           0x0050          /* RW - Random Number */
110 #define SB_RANDOM_NUM_STATUS    0x0054          /* RW - Random Number Status */
111 #define SB_EEPROM_COMM          0x0800          /* RW - EEPROM Command */
112 #define SB_EEPROM_ADDR          0x0804          /* RW - EEPROM Address */
113 #define SB_EEPROM_DATA          0x0808          /* RW - EEPROM Data */
114 #define SB_EEPROM_SEC_STATE     0x080C          /* RW - EEPROM Security State */
115
116                                                 /* For SB_CTL_A and _B */
117 #define SB_CTL_ST               0x0001          /* Start operation (enc/dec) */
118 #define SB_CTL_ENC              0x0002          /* Encrypt (0 is decrypt) */
119 #define SB_CTL_DEC              0x0000          /* Decrypt */
120 #define SB_CTL_WK               0x0004          /* Use writable key (we set) */
121 #define SB_CTL_DC               0x0008          /* Destination coherent */
122 #define SB_CTL_SC               0x0010          /* Source coherent */
123 #define SB_CTL_CBC              0x0020          /* CBC (0 is ECB) */
124
125                                                 /* For SB_AES_INT */
126 #define SB_AI_DISABLE_AES_A     0x0001          /* Disable AES A compl int */
127 #define SB_AI_ENABLE_AES_A      0x0000          /* Enable AES A compl int */
128 #define SB_AI_DISABLE_AES_B     0x0002          /* Disable AES B compl int */
129 #define SB_AI_ENABLE_AES_B      0x0000          /* Enable AES B compl int */
130 #define SB_AI_DISABLE_EEPROM    0x0004          /* Disable EEPROM op comp int */
131 #define SB_AI_ENABLE_EEPROM     0x0000          /* Enable EEPROM op compl int */
132 #define SB_AI_AES_A_COMPLETE   0x10000          /* AES A operation complete */
133 #define SB_AI_AES_B_COMPLETE   0x20000          /* AES B operation complete */
134 #define SB_AI_EEPROM_COMPLETE  0x40000          /* EEPROM operation complete */
135
136 #define SB_AI_CLEAR_INTR \
137         (SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |\
138         SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |\
139         SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE)
140
141 #define SB_RNS_TRNG_VALID       0x0001          /* in SB_RANDOM_NUM_STATUS */
142
143 #define SB_MEM_SIZE             0x0810          /* Size of memory block */
144
145 #define SB_AES_ALIGN            0x0010          /* Source and dest buffers */
146                                                 /* must be 16-byte aligned */
147 #define SB_AES_BLOCK_SIZE       0x0010
148
149 /*
150  * The Geode LX security block AES acceleration doesn't perform scatter-
151  * gather: it just takes source and destination addresses.  Therefore the
152  * plain- and ciphertexts need to be contiguous.  To this end, we allocate
153  * a buffer for both, and accept the overhead of copying in and out.  If
154  * the number of bytes in one operation is bigger than allowed for by the
155  * buffer (buffer is twice the size of the max length, as it has both input
156  * and output) then we have to perform multiple encryptions/decryptions.
157  */
158
159 #define GLXSB_MAX_AES_LEN       16384
160
161 MALLOC_DEFINE(M_GLXSB, "glxsb_data", "Glxsb Data");
162
163 struct glxsb_dma_map {
164         bus_dmamap_t            dma_map;        /* DMA map */
165         bus_dma_segment_t       dma_seg;        /* segments */
166         int                     dma_nsegs;      /* #segments */
167         int                     dma_size;       /* size */
168         caddr_t                 dma_vaddr;      /* virtual address */
169         bus_addr_t              dma_paddr;      /* physical address */
170 };
171
172 struct glxsb_taskop {
173         struct glxsb_session    *to_ses;        /* crypto session */
174         struct cryptop          *to_crp;        /* cryptop to perfom */
175         struct cryptodesc       *to_enccrd;     /* enccrd to perform */
176         struct cryptodesc       *to_maccrd;     /* maccrd to perform */
177 };
178
179 struct glxsb_softc {
180         device_t                sc_dev;         /* device backpointer */
181         struct resource         *sc_sr;         /* resource */
182         int                     sc_rid;         /* resource rid */
183         struct callout          sc_rngco;       /* RNG callout */
184         int                     sc_rnghz;       /* RNG callout ticks */
185         bus_dma_tag_t           sc_dmat;        /* DMA tag */
186         struct glxsb_dma_map    sc_dma;         /* DMA map */
187         int32_t                 sc_cid;         /* crypto tag */
188         uint32_t                sc_sid;         /* session id */
189         TAILQ_HEAD(ses_head, glxsb_session)
190                                 sc_sessions;    /* crypto sessions */
191         struct rwlock           sc_sessions_lock;/* sessions lock */
192         struct mtx              sc_task_mtx;    /* task mutex */
193         struct taskqueue        *sc_tq;         /* task queue */
194         struct task             sc_cryptotask;  /* task */
195         struct glxsb_taskop     sc_to;          /* task's crypto operation */
196         int                     sc_task_count;  /* tasks count */
197 };
198
199 static int glxsb_probe(device_t);
200 static int glxsb_attach(device_t);
201 static int glxsb_detach(device_t);
202
203 static void glxsb_dmamap_cb(void *, bus_dma_segment_t *, int, int);
204 static int  glxsb_dma_alloc(struct glxsb_softc *);
205 static void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
206 static void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
207 static void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
208
209 static void glxsb_rnd(void *);
210 static int  glxsb_crypto_setup(struct glxsb_softc *);
211 static int  glxsb_crypto_newsession(device_t, uint32_t *, struct cryptoini *);
212 static int  glxsb_crypto_freesession(device_t, uint64_t);
213 static int  glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
214         uint32_t, void *, int, void *);
215
216 static int  glxsb_crypto_encdec(struct cryptop *, struct cryptodesc *,
217         struct glxsb_session *, struct glxsb_softc *);
218
219 static void glxsb_crypto_task(void *, int);
220 static int  glxsb_crypto_process(device_t, struct cryptop *, int);
221
222 static device_method_t glxsb_methods[] = {
223         /* device interface */
224         DEVMETHOD(device_probe,         glxsb_probe),
225         DEVMETHOD(device_attach,        glxsb_attach),
226         DEVMETHOD(device_detach,        glxsb_detach),
227
228         /* crypto device methods */
229         DEVMETHOD(cryptodev_newsession,         glxsb_crypto_newsession),
230         DEVMETHOD(cryptodev_freesession,        glxsb_crypto_freesession),
231         DEVMETHOD(cryptodev_process,            glxsb_crypto_process),
232
233         {0,0}
234 };
235
236 static driver_t glxsb_driver = {
237         "glxsb",
238         glxsb_methods,
239         sizeof(struct glxsb_softc)
240 };
241
242 static devclass_t glxsb_devclass;
243
244 DRIVER_MODULE(glxsb, pci, glxsb_driver, glxsb_devclass, 0, 0);
245 MODULE_VERSION(glxsb, 1);
246 MODULE_DEPEND(glxsb, crypto, 1, 1, 1);
247
248 static int
249 glxsb_probe(device_t dev)
250 {
251
252         if (pci_get_vendor(dev) == PCI_VENDOR_AMD &&
253             pci_get_device(dev) == PCI_PRODUCT_AMD_GEODE_LX_CRYPTO) {
254                 device_set_desc(dev,
255                     "AMD Geode LX Security Block (AES-128-CBC, RNG)");
256                 return (BUS_PROBE_DEFAULT);
257         }
258
259         return (ENXIO);
260 }
261
262 static int
263 glxsb_attach(device_t dev)
264 {
265         struct glxsb_softc *sc = device_get_softc(dev);
266         uint64_t msr;
267
268         sc->sc_dev = dev;
269         msr = rdmsr(SB_GLD_MSR_CAP);
270
271         if ((msr & 0xFFFF00) != 0x130400) {
272                 device_printf(dev, "unknown ID 0x%x\n",
273                     (int)((msr & 0xFFFF00) >> 16));
274                 return (ENXIO);
275         }
276
277         pci_enable_busmaster(dev);
278
279         /* Map in the security block configuration/control registers */
280         sc->sc_rid = PCIR_BAR(0);
281         sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rid,
282             RF_ACTIVE);
283         if (sc->sc_sr == NULL) {
284                 device_printf(dev, "cannot map register space\n");
285                 return (ENXIO);
286         }
287
288         /*
289          * Configure the Security Block.
290          *
291          * We want to enable the noise generator (T_NE), and enable the
292          * linear feedback shift register and whitener post-processing
293          * (T_SEL = 3).  Also ensure that test mode (deterministic values)
294          * is disabled.
295          */
296         msr = rdmsr(SB_GLD_MSR_CTRL);
297         msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
298         msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
299 #if 0
300         msr |= SB_GMC_SBI | SB_GMC_SBY;         /* for AES, if necessary */
301 #endif
302         wrmsr(SB_GLD_MSR_CTRL, msr);
303
304         /* Disable interrupts */
305         bus_write_4(sc->sc_sr, SB_AES_INT, SB_AI_CLEAR_INTR);
306
307         /* Allocate a contiguous DMA-able buffer to work in */
308         if (glxsb_dma_alloc(sc) != 0)
309                 goto fail0;
310
311         /* Initialize our task queue */
312         sc->sc_tq = taskqueue_create("glxsb_taskq", M_NOWAIT | M_ZERO,
313             taskqueue_thread_enqueue, &sc->sc_tq);
314         if (sc->sc_tq == NULL) {
315                 device_printf(dev, "cannot create task queue\n");
316                 goto fail0;
317         }
318         if (taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
319             device_get_nameunit(dev)) != 0) {
320                 device_printf(dev, "cannot start task queue\n");
321                 goto fail1;
322         }
323         TASK_INIT(&sc->sc_cryptotask, 0, glxsb_crypto_task, sc);
324
325         /* Initialize crypto */
326         if (glxsb_crypto_setup(sc) != 0)
327                 goto fail1;
328
329         /* Install a periodic collector for the "true" (AMD's word) RNG */
330         if (hz > 100)
331                 sc->sc_rnghz = hz / 100;
332         else
333                 sc->sc_rnghz = 1;
334         callout_init(&sc->sc_rngco, 1);
335         glxsb_rnd(sc);
336
337         return (0);
338
339 fail1:
340         taskqueue_free(sc->sc_tq);
341 fail0:
342         bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr);
343         return (ENXIO);
344 }
345
346 static int
347 glxsb_detach(device_t dev)
348 {
349         struct glxsb_softc *sc = device_get_softc(dev);
350         struct glxsb_session *ses;
351
352         rw_wlock(&sc->sc_sessions_lock);
353         TAILQ_FOREACH(ses, &sc->sc_sessions, ses_next) {
354                 if (ses->ses_used) {
355                         rw_wunlock(&sc->sc_sessions_lock);
356                         device_printf(dev,
357                                 "cannot detach, sessions still active.\n");
358                         return (EBUSY);
359                 }
360         }
361         while (!TAILQ_EMPTY(&sc->sc_sessions)) {
362                 ses = TAILQ_FIRST(&sc->sc_sessions);
363                 TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next);
364                 free(ses, M_GLXSB);
365         }
366         rw_wunlock(&sc->sc_sessions_lock);
367         crypto_unregister_all(sc->sc_cid);
368         callout_drain(&sc->sc_rngco);
369         taskqueue_drain(sc->sc_tq, &sc->sc_cryptotask);
370         bus_generic_detach(dev);
371         glxsb_dma_free(sc, &sc->sc_dma);
372         bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rid, sc->sc_sr);
373         taskqueue_free(sc->sc_tq);
374         rw_destroy(&sc->sc_sessions_lock);
375         mtx_destroy(&sc->sc_task_mtx);
376         return (0);
377 }
378
379 /*
380  *      callback for bus_dmamap_load()
381  */
382 static void
383 glxsb_dmamap_cb(void *arg, bus_dma_segment_t *seg, int nseg, int error)
384 {
385
386         bus_addr_t *paddr = (bus_addr_t*) arg;
387         *paddr = seg[0].ds_addr;
388 }
389
390 static int
391 glxsb_dma_alloc(struct glxsb_softc *sc)
392 {
393         struct glxsb_dma_map *dma = &sc->sc_dma;
394         int rc;
395
396         dma->dma_nsegs = 1;
397         dma->dma_size = GLXSB_MAX_AES_LEN * 2;
398
399         /* Setup DMA descriptor area */
400         rc = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),    /* parent */
401                                 SB_AES_ALIGN, 0,        /* alignments, bounds */
402                                 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
403                                 BUS_SPACE_MAXADDR,      /* highaddr */
404                                 NULL, NULL,             /* filter, filterarg */
405                                 dma->dma_size,          /* maxsize */
406                                 dma->dma_nsegs,         /* nsegments */
407                                 dma->dma_size,          /* maxsegsize */
408                                 BUS_DMA_ALLOCNOW,       /* flags */
409                                 NULL, NULL,             /* lockfunc, lockarg */
410                                 &sc->sc_dmat);
411         if (rc != 0) {
412                 device_printf(sc->sc_dev,
413                     "cannot allocate DMA tag (%d)\n", rc);
414                 return (rc);
415         }
416
417         rc = bus_dmamem_alloc(sc->sc_dmat, (void **)&dma->dma_vaddr,
418             BUS_DMA_NOWAIT, &dma->dma_map);
419         if (rc != 0) {
420                 device_printf(sc->sc_dev,
421                     "cannot allocate DMA memory of %d bytes (%d)\n",
422                         dma->dma_size, rc);
423                 goto fail0;
424         }
425
426         rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
427             dma->dma_size, glxsb_dmamap_cb, &dma->dma_paddr, BUS_DMA_NOWAIT);
428         if (rc != 0) {
429                 device_printf(sc->sc_dev,
430                     "cannot load DMA memory for %d bytes (%d)\n",
431                    dma->dma_size, rc);
432                 goto fail1;
433         }
434
435         return (0);
436
437 fail1:
438         bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map);
439 fail0:
440         bus_dma_tag_destroy(sc->sc_dmat);
441         return (rc);
442 }
443
444 static void
445 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
446 {
447
448         bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
449             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
450 }
451
452 static void
453 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
454 {
455
456         bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
457             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
458 }
459
460 static void
461 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
462 {
463
464         bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
465         bus_dmamem_free(sc->sc_dmat, dma->dma_vaddr, dma->dma_map);
466         bus_dma_tag_destroy(sc->sc_dmat);
467 }
468
469 static void
470 glxsb_rnd(void *v)
471 {
472         struct glxsb_softc *sc = v;
473         uint32_t status, value;
474
475         status = bus_read_4(sc->sc_sr, SB_RANDOM_NUM_STATUS);
476         if (status & SB_RNS_TRNG_VALID) {
477                 value = bus_read_4(sc->sc_sr, SB_RANDOM_NUM);
478                 /* feed with one uint32 */
479                 /* MarkM: FIX!! Check that this does not swamp the harvester! */
480                 random_harvest_queue(&value, sizeof(value), 32/2, RANDOM_PURE_GLXSB);
481         }
482
483         callout_reset(&sc->sc_rngco, sc->sc_rnghz, glxsb_rnd, sc);
484 }
485
486 static int
487 glxsb_crypto_setup(struct glxsb_softc *sc)
488 {
489
490         sc->sc_cid = crypto_get_driverid(sc->sc_dev, CRYPTOCAP_F_HARDWARE);
491
492         if (sc->sc_cid < 0) {
493                 device_printf(sc->sc_dev, "cannot get crypto driver id\n");
494                 return (ENOMEM);
495         }
496
497         TAILQ_INIT(&sc->sc_sessions);
498         sc->sc_sid = 1;
499         rw_init(&sc->sc_sessions_lock, "glxsb_sessions_lock");
500         mtx_init(&sc->sc_task_mtx, "glxsb_crypto_mtx", NULL, MTX_DEF);
501
502         if (crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0) != 0)
503                 goto crypto_fail;
504         if (crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0) != 0)
505                 goto crypto_fail;
506         if (crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0) != 0)
507                 goto crypto_fail;
508         if (crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0) != 0)
509                 goto crypto_fail;
510         if (crypto_register(sc->sc_cid, CRYPTO_RIPEMD160_HMAC, 0, 0) != 0)
511                 goto crypto_fail;
512         if (crypto_register(sc->sc_cid, CRYPTO_SHA2_256_HMAC, 0, 0) != 0)
513                 goto crypto_fail;
514         if (crypto_register(sc->sc_cid, CRYPTO_SHA2_384_HMAC, 0, 0) != 0)
515                 goto crypto_fail;
516         if (crypto_register(sc->sc_cid, CRYPTO_SHA2_512_HMAC, 0, 0) != 0)
517                 goto crypto_fail;
518
519         return (0);
520
521 crypto_fail:
522         device_printf(sc->sc_dev, "cannot register crypto\n");
523         crypto_unregister_all(sc->sc_cid);
524         rw_destroy(&sc->sc_sessions_lock);
525         mtx_destroy(&sc->sc_task_mtx);
526         return (ENOMEM);
527 }
528
529 static int
530 glxsb_crypto_newsession(device_t dev, uint32_t *sidp, struct cryptoini *cri)
531 {
532         struct glxsb_softc *sc = device_get_softc(dev);
533         struct glxsb_session *ses = NULL;
534         struct cryptoini *encini, *macini;
535         int error;
536
537         if (sc == NULL || sidp == NULL || cri == NULL)
538                 return (EINVAL);
539
540         encini = macini = NULL;
541         for (; cri != NULL; cri = cri->cri_next) {
542                 switch(cri->cri_alg) {
543                 case CRYPTO_NULL_HMAC:
544                 case CRYPTO_MD5_HMAC:
545                 case CRYPTO_SHA1_HMAC:
546                 case CRYPTO_RIPEMD160_HMAC:
547                 case CRYPTO_SHA2_256_HMAC:
548                 case CRYPTO_SHA2_384_HMAC:
549                 case CRYPTO_SHA2_512_HMAC:
550                         if (macini != NULL)
551                                 return (EINVAL);
552                         macini = cri;
553                         break;
554                 case CRYPTO_AES_CBC:
555                         if (encini != NULL)
556                                 return (EINVAL);
557                         encini = cri;
558                         break;
559                 default:
560                         return (EINVAL);
561                 }
562         }
563
564         /*
565          * We only support HMAC algorithms to be able to work with
566          * ipsec(4), so if we are asked only for authentication without
567          * encryption, don't pretend we can accellerate it.
568          */
569         if (encini == NULL)
570                 return (EINVAL);
571
572         /*
573          * Look for a free session
574          *
575          * Free sessions goes first, so if first session is used, we need to
576          * allocate one.
577          */
578
579         rw_wlock(&sc->sc_sessions_lock);
580         ses = TAILQ_FIRST(&sc->sc_sessions);
581         if (ses == NULL || ses->ses_used) {
582                 ses = malloc(sizeof(*ses), M_GLXSB, M_NOWAIT | M_ZERO);
583                 if (ses == NULL) {
584                         rw_wunlock(&sc->sc_sessions_lock);
585                         return (ENOMEM);
586                 }
587                 ses->ses_id = sc->sc_sid++;
588         } else {
589                 TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next);
590         }
591         ses->ses_used = 1;
592         TAILQ_INSERT_TAIL(&sc->sc_sessions, ses, ses_next);
593         rw_wunlock(&sc->sc_sessions_lock);
594
595         if (encini->cri_alg == CRYPTO_AES_CBC) {
596                 if (encini->cri_klen != 128) {
597                         glxsb_crypto_freesession(sc->sc_dev, ses->ses_id);
598                         return (EINVAL);
599                 }
600                 arc4rand(ses->ses_iv, sizeof(ses->ses_iv), 0);
601                 ses->ses_klen = encini->cri_klen;
602
603                 /* Copy the key (Geode LX wants the primary key only) */
604                 bcopy(encini->cri_key, ses->ses_key, sizeof(ses->ses_key));
605         }
606
607         if (macini != NULL) {
608                 error = glxsb_hash_setup(ses, macini);
609                 if (error != 0) {
610                         glxsb_crypto_freesession(sc->sc_dev, ses->ses_id);
611                         return (error);
612                 }
613         }
614
615         *sidp = ses->ses_id;
616         return (0);
617 }
618
619 static int
620 glxsb_crypto_freesession(device_t dev, uint64_t tid)
621 {
622         struct glxsb_softc *sc = device_get_softc(dev);
623         struct glxsb_session *ses = NULL;
624         uint32_t sid = ((uint32_t)tid) & 0xffffffff;
625
626         if (sc == NULL)
627                 return (EINVAL);
628
629         rw_wlock(&sc->sc_sessions_lock);
630         TAILQ_FOREACH_REVERSE(ses, &sc->sc_sessions, ses_head, ses_next) {
631                 if (ses->ses_id == sid)
632                         break;
633         }
634         if (ses == NULL) {
635                 rw_wunlock(&sc->sc_sessions_lock);
636                 return (EINVAL);
637         }
638         TAILQ_REMOVE(&sc->sc_sessions, ses, ses_next);
639         glxsb_hash_free(ses);
640         bzero(ses, sizeof(*ses));
641         ses->ses_used = 0;
642         ses->ses_id = sid;
643         TAILQ_INSERT_HEAD(&sc->sc_sessions, ses, ses_next);
644         rw_wunlock(&sc->sc_sessions_lock);
645
646         return (0);
647 }
648
649 static int
650 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
651     uint32_t pdst, void *key, int len, void *iv)
652 {
653         uint32_t status;
654         int i;
655
656         if (len & 0xF) {
657                 device_printf(sc->sc_dev,
658                     "len must be a multiple of 16 (not %d)\n", len);
659                 return (EINVAL);
660         }
661
662         /* Set the source */
663         bus_write_4(sc->sc_sr, SB_SOURCE_A, psrc);
664
665         /* Set the destination address */
666         bus_write_4(sc->sc_sr, SB_DEST_A, pdst);
667
668         /* Set the data length */
669         bus_write_4(sc->sc_sr, SB_LENGTH_A, len);
670
671         /* Set the IV */
672         if (iv != NULL) {
673                 bus_write_region_4(sc->sc_sr, SB_CBC_IV, iv, 4);
674                 control |= SB_CTL_CBC;
675         }
676
677         /* Set the key */
678         bus_write_region_4(sc->sc_sr, SB_WKEY, key, 4);
679
680         /* Ask the security block to do it */
681         bus_write_4(sc->sc_sr, SB_CTL_A,
682             control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
683
684         /*
685          * Now wait until it is done.
686          *
687          * We do a busy wait.  Obviously the number of iterations of
688          * the loop required to perform the AES operation depends upon
689          * the number of bytes to process.
690          *
691          * On a 500 MHz Geode LX we see
692          *
693          *      length (bytes)  typical max iterations
694          *          16             12
695          *          64             22
696          *         256             59
697          *        1024            212
698          *        8192          1,537
699          *
700          * Since we have a maximum size of operation defined in
701          * GLXSB_MAX_AES_LEN, we use this constant to decide how long
702          * to wait.  Allow an order of magnitude longer than it should
703          * really take, just in case.
704          */
705
706         for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
707                 status = bus_read_4(sc->sc_sr, SB_CTL_A);
708                 if ((status & SB_CTL_ST) == 0)          /* Done */
709                         return (0);
710         }
711
712         device_printf(sc->sc_dev, "operation failed to complete\n");
713         return (EIO);
714 }
715
716 static int
717 glxsb_crypto_encdec(struct cryptop *crp, struct cryptodesc *crd,
718     struct glxsb_session *ses, struct glxsb_softc *sc)
719 {
720         char *op_src, *op_dst;
721         uint32_t op_psrc, op_pdst;
722         uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv;
723         int error;
724         int len, tlen, xlen;
725         int offset;
726         uint32_t control;
727
728         if (crd == NULL || (crd->crd_len % SB_AES_BLOCK_SIZE) != 0)
729                 return (EINVAL);
730
731         /* How much of our buffer will we need to use? */
732         xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
733             GLXSB_MAX_AES_LEN : crd->crd_len;
734
735         /*
736          * XXX Check if we can have input == output on Geode LX.
737          * XXX In the meantime, use two separate (adjacent) buffers.
738          */
739         op_src = sc->sc_dma.dma_vaddr;
740         op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
741
742         op_psrc = sc->sc_dma.dma_paddr;
743         op_pdst = sc->sc_dma.dma_paddr + xlen;
744
745         if (crd->crd_flags & CRD_F_ENCRYPT) {
746                 control = SB_CTL_ENC;
747                 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
748                         bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
749                 else
750                         bcopy(ses->ses_iv, op_iv, sizeof(op_iv));
751
752                 if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
753                         crypto_copyback(crp->crp_flags, crp->crp_buf,
754                             crd->crd_inject, sizeof(op_iv), op_iv);
755                 }
756         } else {
757                 control = SB_CTL_DEC;
758                 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
759                         bcopy(crd->crd_iv, op_iv, sizeof(op_iv));
760                 else {
761                         crypto_copydata(crp->crp_flags, crp->crp_buf,
762                             crd->crd_inject, sizeof(op_iv), op_iv);
763                 }
764         }
765
766         offset = 0;
767         tlen = crd->crd_len;
768         piv = op_iv;
769
770         /* Process the data in GLXSB_MAX_AES_LEN chunks */
771         while (tlen > 0) {
772                 len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
773                 crypto_copydata(crp->crp_flags, crp->crp_buf,
774                     crd->crd_skip + offset, len, op_src);
775
776                 glxsb_dma_pre_op(sc, &sc->sc_dma);
777
778                 error = glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
779                     len, op_iv);
780
781                 glxsb_dma_post_op(sc, &sc->sc_dma);
782                 if (error != 0)
783                         return (error);
784
785                 crypto_copyback(crp->crp_flags, crp->crp_buf,
786                     crd->crd_skip + offset, len, op_dst);
787
788                 offset += len;
789                 tlen -= len;
790
791                 if (tlen <= 0) {        /* Ideally, just == 0 */
792                         /* Finished - put the IV in session IV */
793                         piv = ses->ses_iv;
794                 }
795
796                 /*
797                  * Copy out last block for use as next iteration/session IV.
798                  *
799                  * piv is set to op_iv[] before the loop starts, but is
800                  * set to ses->ses_iv if we're going to exit the loop this
801                  * time.
802                  */
803                 if (crd->crd_flags & CRD_F_ENCRYPT)
804                         bcopy(op_dst + len - sizeof(op_iv), piv, sizeof(op_iv));
805                 else {
806                         /* Decryption, only need this if another iteration */
807                         if (tlen > 0) {
808                                 bcopy(op_src + len - sizeof(op_iv), piv,
809                                     sizeof(op_iv));
810                         }
811                 }
812         } /* while */
813
814         /* All AES processing has now been done. */
815         bzero(sc->sc_dma.dma_vaddr, xlen * 2);
816
817         return (0);
818 }
819
820 static void
821 glxsb_crypto_task(void *arg, int pending)
822 {
823         struct glxsb_softc *sc = arg;
824         struct glxsb_session *ses;
825         struct cryptop *crp;
826         struct cryptodesc *enccrd, *maccrd;
827         int error;
828
829         maccrd = sc->sc_to.to_maccrd;
830         enccrd = sc->sc_to.to_enccrd;
831         crp = sc->sc_to.to_crp;
832         ses = sc->sc_to.to_ses;
833
834         /* Perform data authentication if requested before encryption */
835         if (maccrd != NULL && maccrd->crd_next == enccrd) {
836                 error = glxsb_hash_process(ses, maccrd, crp);
837                 if (error != 0)
838                         goto out;
839         }
840
841         error = glxsb_crypto_encdec(crp, enccrd, ses, sc);
842         if (error != 0)
843                 goto out;
844
845         /* Perform data authentication if requested after encryption */
846         if (maccrd != NULL && enccrd->crd_next == maccrd) {
847                 error = glxsb_hash_process(ses, maccrd, crp);
848                 if (error != 0)
849                         goto out;
850         }
851 out:
852         mtx_lock(&sc->sc_task_mtx);
853         sc->sc_task_count--;
854         mtx_unlock(&sc->sc_task_mtx);
855
856         crp->crp_etype = error;
857         crypto_unblock(sc->sc_cid, CRYPTO_SYMQ);
858         crypto_done(crp);
859 }
860
861 static int
862 glxsb_crypto_process(device_t dev, struct cryptop *crp, int hint)
863 {
864         struct glxsb_softc *sc = device_get_softc(dev);
865         struct glxsb_session *ses;
866         struct cryptodesc *crd, *enccrd, *maccrd;
867         uint32_t sid;
868         int error = 0;
869
870         enccrd = maccrd = NULL;
871
872         /* Sanity check. */
873         if (crp == NULL)
874                 return (EINVAL);
875
876         if (crp->crp_callback == NULL || crp->crp_desc == NULL) {
877                 error = EINVAL;
878                 goto fail;
879         }
880
881         for (crd = crp->crp_desc; crd != NULL; crd = crd->crd_next) {
882                 switch (crd->crd_alg) {
883                 case CRYPTO_NULL_HMAC:
884                 case CRYPTO_MD5_HMAC:
885                 case CRYPTO_SHA1_HMAC:
886                 case CRYPTO_RIPEMD160_HMAC:
887                 case CRYPTO_SHA2_256_HMAC:
888                 case CRYPTO_SHA2_384_HMAC:
889                 case CRYPTO_SHA2_512_HMAC:
890                         if (maccrd != NULL) {
891                                 error = EINVAL;
892                                 goto fail;
893                         }
894                         maccrd = crd;
895                         break;
896                 case CRYPTO_AES_CBC:
897                         if (enccrd != NULL) {
898                                 error = EINVAL;
899                                 goto fail;
900                         }
901                         enccrd = crd;
902                         break;
903                 default:
904                         error = EINVAL;
905                         goto fail;
906                 }
907         }
908
909         if (enccrd == NULL || enccrd->crd_len % AES_BLOCK_LEN != 0) {
910                 error = EINVAL;
911                 goto fail;
912         }
913
914         sid = crp->crp_sid & 0xffffffff;
915         rw_rlock(&sc->sc_sessions_lock);
916         TAILQ_FOREACH_REVERSE(ses, &sc->sc_sessions, ses_head, ses_next) {
917                 if (ses->ses_id == sid)
918                         break;
919         }
920         rw_runlock(&sc->sc_sessions_lock);
921         if (ses == NULL || !ses->ses_used) {
922                 error = EINVAL;
923                 goto fail;
924         }
925
926         mtx_lock(&sc->sc_task_mtx);
927         if (sc->sc_task_count != 0) {
928                 mtx_unlock(&sc->sc_task_mtx);
929                 return (ERESTART);
930         }
931         sc->sc_task_count++;
932
933         sc->sc_to.to_maccrd = maccrd;
934         sc->sc_to.to_enccrd = enccrd;
935         sc->sc_to.to_crp = crp;
936         sc->sc_to.to_ses = ses;
937         mtx_unlock(&sc->sc_task_mtx);
938
939         taskqueue_enqueue(sc->sc_tq, &sc->sc_cryptotask);
940         return(0);
941
942 fail:
943         crp->crp_etype = error;
944         crypto_done(crp);
945         return (error);
946 }