]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/hwpmc/hwpmc_mod.c
MFV r329807:
[FreeBSD/FreeBSD.git] / sys / dev / hwpmc / hwpmc_mod.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003-2008 Joseph Koshy
5  * Copyright (c) 2007 The FreeBSD Foundation
6  * All rights reserved.
7  *
8  * Portions of this software were developed by A. Joseph Koshy under
9  * sponsorship from the FreeBSD Foundation and Google, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include <sys/param.h>
38 #include <sys/eventhandler.h>
39 #include <sys/jail.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/mount.h>
47 #include <sys/mutex.h>
48 #include <sys/pmc.h>
49 #include <sys/pmckern.h>
50 #include <sys/pmclog.h>
51 #include <sys/priv.h>
52 #include <sys/proc.h>
53 #include <sys/queue.h>
54 #include <sys/resourcevar.h>
55 #include <sys/rwlock.h>
56 #include <sys/sched.h>
57 #include <sys/signalvar.h>
58 #include <sys/smp.h>
59 #include <sys/sx.h>
60 #include <sys/sysctl.h>
61 #include <sys/sysent.h>
62 #include <sys/systm.h>
63 #include <sys/vnode.h>
64
65 #include <sys/linker.h>         /* needs to be after <sys/malloc.h> */
66
67 #include <machine/atomic.h>
68 #include <machine/md_var.h>
69
70 #include <vm/vm.h>
71 #include <vm/vm_extern.h>
72 #include <vm/pmap.h>
73 #include <vm/vm_map.h>
74 #include <vm/vm_object.h>
75
76 #include "hwpmc_soft.h"
77
78 /*
79  * Types
80  */
81
82 enum pmc_flags {
83         PMC_FLAG_NONE     = 0x00, /* do nothing */
84         PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
85         PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
86 };
87
88 /*
89  * The offset in sysent where the syscall is allocated.
90  */
91
92 static int pmc_syscall_num = NO_SYSCALL;
93 struct pmc_cpu          **pmc_pcpu;      /* per-cpu state */
94 pmc_value_t             *pmc_pcpu_saved; /* saved PMC values: CSW handling */
95
96 #define PMC_PCPU_SAVED(C,R)     pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
97
98 struct mtx_pool         *pmc_mtxpool;
99 static int              *pmc_pmcdisp;    /* PMC row dispositions */
100
101 #define PMC_ROW_DISP_IS_FREE(R)         (pmc_pmcdisp[(R)] == 0)
102 #define PMC_ROW_DISP_IS_THREAD(R)       (pmc_pmcdisp[(R)] > 0)
103 #define PMC_ROW_DISP_IS_STANDALONE(R)   (pmc_pmcdisp[(R)] < 0)
104
105 #define PMC_MARK_ROW_FREE(R) do {                                         \
106         pmc_pmcdisp[(R)] = 0;                                             \
107 } while (0)
108
109 #define PMC_MARK_ROW_STANDALONE(R) do {                                   \
110         KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
111                     __LINE__));                                           \
112         atomic_add_int(&pmc_pmcdisp[(R)], -1);                            \
113         KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),              \
114                 ("[pmc,%d] row disposition error", __LINE__));            \
115 } while (0)
116
117 #define PMC_UNMARK_ROW_STANDALONE(R) do {                                 \
118         atomic_add_int(&pmc_pmcdisp[(R)], 1);                             \
119         KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
120                     __LINE__));                                           \
121 } while (0)
122
123 #define PMC_MARK_ROW_THREAD(R) do {                                       \
124         KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
125                     __LINE__));                                           \
126         atomic_add_int(&pmc_pmcdisp[(R)], 1);                             \
127 } while (0)
128
129 #define PMC_UNMARK_ROW_THREAD(R) do {                                     \
130         atomic_add_int(&pmc_pmcdisp[(R)], -1);                            \
131         KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
132                     __LINE__));                                           \
133 } while (0)
134
135
136 /* various event handlers */
137 static eventhandler_tag pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
138     pmc_kld_unload_tag;
139
140 /* Module statistics */
141 struct pmc_op_getdriverstats pmc_stats;
142
143 /* Machine/processor dependent operations */
144 static struct pmc_mdep  *md;
145
146 /*
147  * Hash tables mapping owner processes and target threads to PMCs.
148  */
149
150 struct mtx pmc_processhash_mtx;         /* spin mutex */
151 static u_long pmc_processhashmask;
152 static LIST_HEAD(pmc_processhash, pmc_process)  *pmc_processhash;
153
154 /*
155  * Hash table of PMC owner descriptors.  This table is protected by
156  * the shared PMC "sx" lock.
157  */
158
159 static u_long pmc_ownerhashmask;
160 static LIST_HEAD(pmc_ownerhash, pmc_owner)      *pmc_ownerhash;
161
162 /*
163  * List of PMC owners with system-wide sampling PMCs.
164  */
165
166 static LIST_HEAD(, pmc_owner)                   pmc_ss_owners;
167
168
169 /*
170  * A map of row indices to classdep structures.
171  */
172 static struct pmc_classdep **pmc_rowindex_to_classdep;
173
174 /*
175  * Prototypes
176  */
177
178 #ifdef  HWPMC_DEBUG
179 static int      pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
180 static int      pmc_debugflags_parse(char *newstr, char *fence);
181 #endif
182
183 static int      load(struct module *module, int cmd, void *arg);
184 static int      pmc_attach_process(struct proc *p, struct pmc *pm);
185 static struct pmc *pmc_allocate_pmc_descriptor(void);
186 static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
187 static int      pmc_attach_one_process(struct proc *p, struct pmc *pm);
188 static int      pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
189     int cpu);
190 static int      pmc_can_attach(struct pmc *pm, struct proc *p);
191 static void     pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf);
192 static void     pmc_cleanup(void);
193 static int      pmc_detach_process(struct proc *p, struct pmc *pm);
194 static int      pmc_detach_one_process(struct proc *p, struct pmc *pm,
195     int flags);
196 static void     pmc_destroy_owner_descriptor(struct pmc_owner *po);
197 static void     pmc_destroy_pmc_descriptor(struct pmc *pm);
198 static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
199 static int      pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
200 static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
201     pmc_id_t pmc);
202 static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
203     uint32_t mode);
204 static void     pmc_force_context_switch(void);
205 static void     pmc_link_target_process(struct pmc *pm,
206     struct pmc_process *pp);
207 static void     pmc_log_all_process_mappings(struct pmc_owner *po);
208 static void     pmc_log_kernel_mappings(struct pmc *pm);
209 static void     pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
210 static void     pmc_maybe_remove_owner(struct pmc_owner *po);
211 static void     pmc_process_csw_in(struct thread *td);
212 static void     pmc_process_csw_out(struct thread *td);
213 static void     pmc_process_exit(void *arg, struct proc *p);
214 static void     pmc_process_fork(void *arg, struct proc *p1,
215     struct proc *p2, int n);
216 static void     pmc_process_samples(int cpu, int soft);
217 static void     pmc_release_pmc_descriptor(struct pmc *pmc);
218 static void     pmc_remove_owner(struct pmc_owner *po);
219 static void     pmc_remove_process_descriptor(struct pmc_process *pp);
220 static void     pmc_restore_cpu_binding(struct pmc_binding *pb);
221 static void     pmc_save_cpu_binding(struct pmc_binding *pb);
222 static void     pmc_select_cpu(int cpu);
223 static int      pmc_start(struct pmc *pm);
224 static int      pmc_stop(struct pmc *pm);
225 static int      pmc_syscall_handler(struct thread *td, void *syscall_args);
226 static void     pmc_unlink_target_process(struct pmc *pmc,
227     struct pmc_process *pp);
228 static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
229 static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
230 static struct pmc_mdep *pmc_generic_cpu_initialize(void);
231 static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
232
233 /*
234  * Kernel tunables and sysctl(8) interface.
235  */
236
237 SYSCTL_DECL(_kern_hwpmc);
238
239 static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
240 SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN,
241     &pmc_callchaindepth, 0, "depth of call chain records");
242
243 #ifdef  HWPMC_DEBUG
244 struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
245 char    pmc_debugstr[PMC_DEBUG_STRSIZE];
246 TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
247     sizeof(pmc_debugstr));
248 SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
249     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
250     0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
251 #endif
252
253 /*
254  * kern.hwpmc.hashrows -- determines the number of rows in the
255  * of the hash table used to look up threads
256  */
257
258 static int pmc_hashsize = PMC_HASH_SIZE;
259 SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN,
260     &pmc_hashsize, 0, "rows in hash tables");
261
262 /*
263  * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
264  */
265
266 static int pmc_nsamples = PMC_NSAMPLES;
267 SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN,
268     &pmc_nsamples, 0, "number of PC samples per CPU");
269
270
271 /*
272  * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
273  */
274
275 static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
276 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN,
277     &pmc_mtxpool_size, 0, "size of spin mutex pool");
278
279
280 /*
281  * security.bsd.unprivileged_syspmcs -- allow non-root processes to
282  * allocate system-wide PMCs.
283  *
284  * Allowing unprivileged processes to allocate system PMCs is convenient
285  * if system-wide measurements need to be taken concurrently with other
286  * per-process measurements.  This feature is turned off by default.
287  */
288
289 static int pmc_unprivileged_syspmcs = 0;
290 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN,
291     &pmc_unprivileged_syspmcs, 0,
292     "allow unprivileged process to allocate system PMCs");
293
294 /*
295  * Hash function.  Discard the lower 2 bits of the pointer since
296  * these are always zero for our uses.  The hash multiplier is
297  * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
298  */
299
300 #if     LONG_BIT == 64
301 #define _PMC_HM         11400714819323198486u
302 #elif   LONG_BIT == 32
303 #define _PMC_HM         2654435769u
304 #else
305 #error  Must know the size of 'long' to compile
306 #endif
307
308 #define PMC_HASH_PTR(P,M)       ((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
309
310 /*
311  * Syscall structures
312  */
313
314 /* The `sysent' for the new syscall */
315 static struct sysent pmc_sysent = {
316         .sy_narg =      2,
317         .sy_call =      pmc_syscall_handler,
318 };
319
320 static struct syscall_module_data pmc_syscall_mod = {
321         .chainevh =     load,
322         .chainarg =     NULL,
323         .offset =       &pmc_syscall_num,
324         .new_sysent =   &pmc_sysent,
325         .old_sysent =   { .sy_narg = 0, .sy_call = NULL },
326         .flags =        SY_THR_STATIC_KLD,
327 };
328
329 static moduledata_t pmc_mod = {
330         .name =         PMC_MODULE_NAME,
331         .evhand =       syscall_module_handler,
332         .priv =         &pmc_syscall_mod,
333 };
334
335 #ifdef EARLY_AP_STARTUP
336 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SYSCALLS, SI_ORDER_ANY);
337 #else
338 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
339 #endif
340 MODULE_VERSION(pmc, PMC_VERSION);
341
342 #ifdef  HWPMC_DEBUG
343 enum pmc_dbgparse_state {
344         PMCDS_WS,               /* in whitespace */
345         PMCDS_MAJOR,            /* seen a major keyword */
346         PMCDS_MINOR
347 };
348
349 static int
350 pmc_debugflags_parse(char *newstr, char *fence)
351 {
352         char c, *p, *q;
353         struct pmc_debugflags *tmpflags;
354         int error, found, *newbits, tmp;
355         size_t kwlen;
356
357         tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
358
359         p = newstr;
360         error = 0;
361
362         for (; p < fence && (c = *p); p++) {
363
364                 /* skip white space */
365                 if (c == ' ' || c == '\t')
366                         continue;
367
368                 /* look for a keyword followed by "=" */
369                 for (q = p; p < fence && (c = *p) && c != '='; p++)
370                         ;
371                 if (c != '=') {
372                         error = EINVAL;
373                         goto done;
374                 }
375
376                 kwlen = p - q;
377                 newbits = NULL;
378
379                 /* lookup flag group name */
380 #define DBG_SET_FLAG_MAJ(S,F)                                           \
381                 if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)  \
382                         newbits = &tmpflags->pdb_ ## F;
383
384                 DBG_SET_FLAG_MAJ("cpu",         CPU);
385                 DBG_SET_FLAG_MAJ("csw",         CSW);
386                 DBG_SET_FLAG_MAJ("logging",     LOG);
387                 DBG_SET_FLAG_MAJ("module",      MOD);
388                 DBG_SET_FLAG_MAJ("md",          MDP);
389                 DBG_SET_FLAG_MAJ("owner",       OWN);
390                 DBG_SET_FLAG_MAJ("pmc",         PMC);
391                 DBG_SET_FLAG_MAJ("process",     PRC);
392                 DBG_SET_FLAG_MAJ("sampling",    SAM);
393
394                 if (newbits == NULL) {
395                         error = EINVAL;
396                         goto done;
397                 }
398
399                 p++;            /* skip the '=' */
400
401                 /* Now parse the individual flags */
402                 tmp = 0;
403         newflag:
404                 for (q = p; p < fence && (c = *p); p++)
405                         if (c == ' ' || c == '\t' || c == ',')
406                                 break;
407
408                 /* p == fence or c == ws or c == "," or c == 0 */
409
410                 if ((kwlen = p - q) == 0) {
411                         *newbits = tmp;
412                         continue;
413                 }
414
415                 found = 0;
416 #define DBG_SET_FLAG_MIN(S,F)                                           \
417                 if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)  \
418                         tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
419
420                 /* a '*' denotes all possible flags in the group */
421                 if (kwlen == 1 && *q == '*')
422                         tmp = found = ~0;
423                 /* look for individual flag names */
424                 DBG_SET_FLAG_MIN("allocaterow", ALR);
425                 DBG_SET_FLAG_MIN("allocate",    ALL);
426                 DBG_SET_FLAG_MIN("attach",      ATT);
427                 DBG_SET_FLAG_MIN("bind",        BND);
428                 DBG_SET_FLAG_MIN("config",      CFG);
429                 DBG_SET_FLAG_MIN("exec",        EXC);
430                 DBG_SET_FLAG_MIN("exit",        EXT);
431                 DBG_SET_FLAG_MIN("find",        FND);
432                 DBG_SET_FLAG_MIN("flush",       FLS);
433                 DBG_SET_FLAG_MIN("fork",        FRK);
434                 DBG_SET_FLAG_MIN("getbuf",      GTB);
435                 DBG_SET_FLAG_MIN("hook",        PMH);
436                 DBG_SET_FLAG_MIN("init",        INI);
437                 DBG_SET_FLAG_MIN("intr",        INT);
438                 DBG_SET_FLAG_MIN("linktarget",  TLK);
439                 DBG_SET_FLAG_MIN("mayberemove", OMR);
440                 DBG_SET_FLAG_MIN("ops",         OPS);
441                 DBG_SET_FLAG_MIN("read",        REA);
442                 DBG_SET_FLAG_MIN("register",    REG);
443                 DBG_SET_FLAG_MIN("release",     REL);
444                 DBG_SET_FLAG_MIN("remove",      ORM);
445                 DBG_SET_FLAG_MIN("sample",      SAM);
446                 DBG_SET_FLAG_MIN("scheduleio",  SIO);
447                 DBG_SET_FLAG_MIN("select",      SEL);
448                 DBG_SET_FLAG_MIN("signal",      SIG);
449                 DBG_SET_FLAG_MIN("swi",         SWI);
450                 DBG_SET_FLAG_MIN("swo",         SWO);
451                 DBG_SET_FLAG_MIN("start",       STA);
452                 DBG_SET_FLAG_MIN("stop",        STO);
453                 DBG_SET_FLAG_MIN("syscall",     PMS);
454                 DBG_SET_FLAG_MIN("unlinktarget", TUL);
455                 DBG_SET_FLAG_MIN("write",       WRI);
456                 if (found == 0) {
457                         /* unrecognized flag name */
458                         error = EINVAL;
459                         goto done;
460                 }
461
462                 if (c == 0 || c == ' ' || c == '\t') {  /* end of flag group */
463                         *newbits = tmp;
464                         continue;
465                 }
466
467                 p++;
468                 goto newflag;
469         }
470
471         /* save the new flag set */
472         bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
473
474  done:
475         free(tmpflags, M_PMC);
476         return error;
477 }
478
479 static int
480 pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
481 {
482         char *fence, *newstr;
483         int error;
484         unsigned int n;
485
486         (void) arg1; (void) arg2; /* unused parameters */
487
488         n = sizeof(pmc_debugstr);
489         newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
490         (void) strlcpy(newstr, pmc_debugstr, n);
491
492         error = sysctl_handle_string(oidp, newstr, n, req);
493
494         /* if there is a new string, parse and copy it */
495         if (error == 0 && req->newptr != NULL) {
496                 fence = newstr + (n < req->newlen ? n : req->newlen + 1);
497                 if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
498                         (void) strlcpy(pmc_debugstr, newstr,
499                             sizeof(pmc_debugstr));
500         }
501
502         free(newstr, M_PMC);
503
504         return error;
505 }
506 #endif
507
508 /*
509  * Map a row index to a classdep structure and return the adjusted row
510  * index for the PMC class index.
511  */
512 static struct pmc_classdep *
513 pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
514 {
515         struct pmc_classdep *pcd;
516
517         (void) md;
518
519         KASSERT(ri >= 0 && ri < md->pmd_npmc,
520             ("[pmc,%d] illegal row-index %d", __LINE__, ri));
521
522         pcd = pmc_rowindex_to_classdep[ri];
523
524         KASSERT(pcd != NULL,
525             ("[pmc,%d] ri %d null pcd", __LINE__, ri));
526
527         *adjri = ri - pcd->pcd_ri;
528
529         KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
530             ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
531
532         return (pcd);
533 }
534
535 /*
536  * Concurrency Control
537  *
538  * The driver manages the following data structures:
539  *
540  *   - target process descriptors, one per target process
541  *   - owner process descriptors (and attached lists), one per owner process
542  *   - lookup hash tables for owner and target processes
543  *   - PMC descriptors (and attached lists)
544  *   - per-cpu hardware state
545  *   - the 'hook' variable through which the kernel calls into
546  *     this module
547  *   - the machine hardware state (managed by the MD layer)
548  *
549  * These data structures are accessed from:
550  *
551  * - thread context-switch code
552  * - interrupt handlers (possibly on multiple cpus)
553  * - kernel threads on multiple cpus running on behalf of user
554  *   processes doing system calls
555  * - this driver's private kernel threads
556  *
557  * = Locks and Locking strategy =
558  *
559  * The driver uses four locking strategies for its operation:
560  *
561  * - The global SX lock "pmc_sx" is used to protect internal
562  *   data structures.
563  *
564  *   Calls into the module by syscall() start with this lock being
565  *   held in exclusive mode.  Depending on the requested operation,
566  *   the lock may be downgraded to 'shared' mode to allow more
567  *   concurrent readers into the module.  Calls into the module from
568  *   other parts of the kernel acquire the lock in shared mode.
569  *
570  *   This SX lock is held in exclusive mode for any operations that
571  *   modify the linkages between the driver's internal data structures.
572  *
573  *   The 'pmc_hook' function pointer is also protected by this lock.
574  *   It is only examined with the sx lock held in exclusive mode.  The
575  *   kernel module is allowed to be unloaded only with the sx lock held
576  *   in exclusive mode.  In normal syscall handling, after acquiring the
577  *   pmc_sx lock we first check that 'pmc_hook' is non-null before
578  *   proceeding.  This prevents races between the thread unloading the module
579  *   and other threads seeking to use the module.
580  *
581  * - Lookups of target process structures and owner process structures
582  *   cannot use the global "pmc_sx" SX lock because these lookups need
583  *   to happen during context switches and in other critical sections
584  *   where sleeping is not allowed.  We protect these lookup tables
585  *   with their own private spin-mutexes, "pmc_processhash_mtx" and
586  *   "pmc_ownerhash_mtx".
587  *
588  * - Interrupt handlers work in a lock free manner.  At interrupt
589  *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
590  *   when the PMC was started.  If this pointer is NULL, the interrupt
591  *   is ignored after updating driver statistics.  We ensure that this
592  *   pointer is set (using an atomic operation if necessary) before the
593  *   PMC hardware is started.  Conversely, this pointer is unset atomically
594  *   only after the PMC hardware is stopped.
595  *
596  *   We ensure that everything needed for the operation of an
597  *   interrupt handler is available without it needing to acquire any
598  *   locks.  We also ensure that a PMC's software state is destroyed only
599  *   after the PMC is taken off hardware (on all CPUs).
600  *
601  * - Context-switch handling with process-private PMCs needs more
602  *   care.
603  *
604  *   A given process may be the target of multiple PMCs.  For example,
605  *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
606  *   while the target process is running on another.  A PMC could also
607  *   be getting released because its owner is exiting.  We tackle
608  *   these situations in the following manner:
609  *
610  *   - each target process structure 'pmc_process' has an array
611  *     of 'struct pmc *' pointers, one for each hardware PMC.
612  *
613  *   - At context switch IN time, each "target" PMC in RUNNING state
614  *     gets started on hardware and a pointer to each PMC is copied into
615  *     the per-cpu phw array.  The 'runcount' for the PMC is
616  *     incremented.
617  *
618  *   - At context switch OUT time, all process-virtual PMCs are stopped
619  *     on hardware.  The saved value is added to the PMCs value field
620  *     only if the PMC is in a non-deleted state (the PMCs state could
621  *     have changed during the current time slice).
622  *
623  *     Note that since in-between a switch IN on a processor and a switch
624  *     OUT, the PMC could have been released on another CPU.  Therefore
625  *     context switch OUT always looks at the hardware state to turn
626  *     OFF PMCs and will update a PMC's saved value only if reachable
627  *     from the target process record.
628  *
629  *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
630  *     be attached to many processes at the time of the call and could
631  *     be active on multiple CPUs).
632  *
633  *     We prevent further scheduling of the PMC by marking it as in
634  *     state 'DELETED'.  If the runcount of the PMC is non-zero then
635  *     this PMC is currently running on a CPU somewhere.  The thread
636  *     doing the PMCRELEASE operation waits by repeatedly doing a
637  *     pause() till the runcount comes to zero.
638  *
639  * The contents of a PMC descriptor (struct pmc) are protected using
640  * a spin-mutex.  In order to save space, we use a mutex pool.
641  *
642  * In terms of lock types used by witness(4), we use:
643  * - Type "pmc-sx", used by the global SX lock.
644  * - Type "pmc-sleep", for sleep mutexes used by logger threads.
645  * - Type "pmc-per-proc", for protecting PMC owner descriptors.
646  * - Type "pmc-leaf", used for all other spin mutexes.
647  */
648
649 /*
650  * save the cpu binding of the current kthread
651  */
652
653 static void
654 pmc_save_cpu_binding(struct pmc_binding *pb)
655 {
656         PMCDBG0(CPU,BND,2, "save-cpu");
657         thread_lock(curthread);
658         pb->pb_bound = sched_is_bound(curthread);
659         pb->pb_cpu   = curthread->td_oncpu;
660         thread_unlock(curthread);
661         PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
662 }
663
664 /*
665  * restore the cpu binding of the current thread
666  */
667
668 static void
669 pmc_restore_cpu_binding(struct pmc_binding *pb)
670 {
671         PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
672             curthread->td_oncpu, pb->pb_cpu);
673         thread_lock(curthread);
674         if (pb->pb_bound)
675                 sched_bind(curthread, pb->pb_cpu);
676         else
677                 sched_unbind(curthread);
678         thread_unlock(curthread);
679         PMCDBG0(CPU,BND,2, "restore-cpu done");
680 }
681
682 /*
683  * move execution over the specified cpu and bind it there.
684  */
685
686 static void
687 pmc_select_cpu(int cpu)
688 {
689         KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
690             ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
691
692         /* Never move to an inactive CPU. */
693         KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
694             "CPU %d", __LINE__, cpu));
695
696         PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu);
697         thread_lock(curthread);
698         sched_bind(curthread, cpu);
699         thread_unlock(curthread);
700
701         KASSERT(curthread->td_oncpu == cpu,
702             ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
703                 cpu, curthread->td_oncpu));
704
705         PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
706 }
707
708 /*
709  * Force a context switch.
710  *
711  * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
712  * guaranteed to force a context switch.
713  */
714
715 static void
716 pmc_force_context_switch(void)
717 {
718
719         pause("pmcctx", 1);
720 }
721
722 /*
723  * Get the file name for an executable.  This is a simple wrapper
724  * around vn_fullpath(9).
725  */
726
727 static void
728 pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
729 {
730
731         *fullpath = "unknown";
732         *freepath = NULL;
733         vn_fullpath(curthread, v, fullpath, freepath);
734 }
735
736 /*
737  * remove an process owning PMCs
738  */
739
740 void
741 pmc_remove_owner(struct pmc_owner *po)
742 {
743         struct pmc *pm, *tmp;
744
745         sx_assert(&pmc_sx, SX_XLOCKED);
746
747         PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po);
748
749         /* Remove descriptor from the owner hash table */
750         LIST_REMOVE(po, po_next);
751
752         /* release all owned PMC descriptors */
753         LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
754                 PMCDBG1(OWN,ORM,2, "pmc=%p", pm);
755                 KASSERT(pm->pm_owner == po,
756                     ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
757
758                 pmc_release_pmc_descriptor(pm); /* will unlink from the list */
759                 pmc_destroy_pmc_descriptor(pm);
760         }
761
762         KASSERT(po->po_sscount == 0,
763             ("[pmc,%d] SS count not zero", __LINE__));
764         KASSERT(LIST_EMPTY(&po->po_pmcs),
765             ("[pmc,%d] PMC list not empty", __LINE__));
766
767         /* de-configure the log file if present */
768         if (po->po_flags & PMC_PO_OWNS_LOGFILE)
769                 pmclog_deconfigure_log(po);
770 }
771
772 /*
773  * remove an owner process record if all conditions are met.
774  */
775
776 static void
777 pmc_maybe_remove_owner(struct pmc_owner *po)
778 {
779
780         PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po);
781
782         /*
783          * Remove owner record if
784          * - this process does not own any PMCs
785          * - this process has not allocated a system-wide sampling buffer
786          */
787
788         if (LIST_EMPTY(&po->po_pmcs) &&
789             ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
790                 pmc_remove_owner(po);
791                 pmc_destroy_owner_descriptor(po);
792         }
793 }
794
795 /*
796  * Add an association between a target process and a PMC.
797  */
798
799 static void
800 pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
801 {
802         int ri;
803         struct pmc_target *pt;
804
805         sx_assert(&pmc_sx, SX_XLOCKED);
806
807         KASSERT(pm != NULL && pp != NULL,
808             ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
809         KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
810             ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
811                 __LINE__, pm, pp->pp_proc->p_pid));
812         KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
813             ("[pmc,%d] Illegal reference count %d for process record %p",
814                 __LINE__, pp->pp_refcnt, (void *) pp));
815
816         ri = PMC_TO_ROWINDEX(pm);
817
818         PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
819             pm, ri, pp);
820
821 #ifdef  HWPMC_DEBUG
822         LIST_FOREACH(pt, &pm->pm_targets, pt_next)
823             if (pt->pt_process == pp)
824                     KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
825                                 __LINE__, pp, pm));
826 #endif
827
828         pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
829         pt->pt_process = pp;
830
831         LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
832
833         atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
834             (uintptr_t)pm);
835
836         if (pm->pm_owner->po_owner == pp->pp_proc)
837                 pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
838
839         /*
840          * Initialize the per-process values at this row index.
841          */
842         pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
843             pm->pm_sc.pm_reloadcount : 0;
844
845         pp->pp_refcnt++;
846
847 }
848
849 /*
850  * Removes the association between a target process and a PMC.
851  */
852
853 static void
854 pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
855 {
856         int ri;
857         struct proc *p;
858         struct pmc_target *ptgt;
859
860         sx_assert(&pmc_sx, SX_XLOCKED);
861
862         KASSERT(pm != NULL && pp != NULL,
863             ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
864
865         KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
866             ("[pmc,%d] Illegal ref count %d on process record %p",
867                 __LINE__, pp->pp_refcnt, (void *) pp));
868
869         ri = PMC_TO_ROWINDEX(pm);
870
871         PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
872             pm, ri, pp);
873
874         KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
875             ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
876                 ri, pm, pp->pp_pmcs[ri].pp_pmc));
877
878         pp->pp_pmcs[ri].pp_pmc = NULL;
879         pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
880
881         /* Remove owner-specific flags */
882         if (pm->pm_owner->po_owner == pp->pp_proc) {
883                 pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
884                 pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
885         }
886
887         pp->pp_refcnt--;
888
889         /* Remove the target process from the PMC structure */
890         LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
891                 if (ptgt->pt_process == pp)
892                         break;
893
894         KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
895                     "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
896
897         LIST_REMOVE(ptgt, pt_next);
898         free(ptgt, M_PMC);
899
900         /* if the PMC now lacks targets, send the owner a SIGIO */
901         if (LIST_EMPTY(&pm->pm_targets)) {
902                 p = pm->pm_owner->po_owner;
903                 PROC_LOCK(p);
904                 kern_psignal(p, SIGIO);
905                 PROC_UNLOCK(p);
906
907                 PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p,
908                     SIGIO);
909         }
910 }
911
912 /*
913  * Check if PMC 'pm' may be attached to target process 't'.
914  */
915
916 static int
917 pmc_can_attach(struct pmc *pm, struct proc *t)
918 {
919         struct proc *o;         /* pmc owner */
920         struct ucred *oc, *tc;  /* owner, target credentials */
921         int decline_attach, i;
922
923         /*
924          * A PMC's owner can always attach that PMC to itself.
925          */
926
927         if ((o = pm->pm_owner->po_owner) == t)
928                 return 0;
929
930         PROC_LOCK(o);
931         oc = o->p_ucred;
932         crhold(oc);
933         PROC_UNLOCK(o);
934
935         PROC_LOCK(t);
936         tc = t->p_ucred;
937         crhold(tc);
938         PROC_UNLOCK(t);
939
940         /*
941          * The effective uid of the PMC owner should match at least one
942          * of the {effective,real,saved} uids of the target process.
943          */
944
945         decline_attach = oc->cr_uid != tc->cr_uid &&
946             oc->cr_uid != tc->cr_svuid &&
947             oc->cr_uid != tc->cr_ruid;
948
949         /*
950          * Every one of the target's group ids, must be in the owner's
951          * group list.
952          */
953         for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
954                 decline_attach = !groupmember(tc->cr_groups[i], oc);
955
956         /* check the read and saved gids too */
957         if (decline_attach == 0)
958                 decline_attach = !groupmember(tc->cr_rgid, oc) ||
959                     !groupmember(tc->cr_svgid, oc);
960
961         crfree(tc);
962         crfree(oc);
963
964         return !decline_attach;
965 }
966
967 /*
968  * Attach a process to a PMC.
969  */
970
971 static int
972 pmc_attach_one_process(struct proc *p, struct pmc *pm)
973 {
974         int ri;
975         char *fullpath, *freepath;
976         struct pmc_process      *pp;
977
978         sx_assert(&pmc_sx, SX_XLOCKED);
979
980         PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
981             PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
982
983         /*
984          * Locate the process descriptor corresponding to process 'p',
985          * allocating space as needed.
986          *
987          * Verify that rowindex 'pm_rowindex' is free in the process
988          * descriptor.
989          *
990          * If not, allocate space for a descriptor and link the
991          * process descriptor and PMC.
992          */
993         ri = PMC_TO_ROWINDEX(pm);
994
995         if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL)
996                 return ENOMEM;
997
998         if (pp->pp_pmcs[ri].pp_pmc == pm) /* already present at slot [ri] */
999                 return EEXIST;
1000
1001         if (pp->pp_pmcs[ri].pp_pmc != NULL)
1002                 return EBUSY;
1003
1004         pmc_link_target_process(pm, pp);
1005
1006         if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1007             (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1008                 pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1009
1010         pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1011
1012         /* issue an attach event to a configured log file */
1013         if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1014                 if (p->p_flag & P_KPROC) {
1015                         fullpath = kernelname;
1016                         freepath = NULL;
1017                 } else {
1018                         pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1019                         pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1020                 }
1021                 free(freepath, M_TEMP);
1022                 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1023                         pmc_log_process_mappings(pm->pm_owner, p);
1024         }
1025         /* mark process as using HWPMCs */
1026         PROC_LOCK(p);
1027         p->p_flag |= P_HWPMC;
1028         PROC_UNLOCK(p);
1029
1030         return 0;
1031 }
1032
1033 /*
1034  * Attach a process and optionally its children
1035  */
1036
1037 static int
1038 pmc_attach_process(struct proc *p, struct pmc *pm)
1039 {
1040         int error;
1041         struct proc *top;
1042
1043         sx_assert(&pmc_sx, SX_XLOCKED);
1044
1045         PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1046             PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1047
1048
1049         /*
1050          * If this PMC successfully allowed a GETMSR operation
1051          * in the past, disallow further ATTACHes.
1052          */
1053
1054         if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1055                 return EPERM;
1056
1057         if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1058                 return pmc_attach_one_process(p, pm);
1059
1060         /*
1061          * Traverse all child processes, attaching them to
1062          * this PMC.
1063          */
1064
1065         sx_slock(&proctree_lock);
1066
1067         top = p;
1068
1069         for (;;) {
1070                 if ((error = pmc_attach_one_process(p, pm)) != 0)
1071                         break;
1072                 if (!LIST_EMPTY(&p->p_children))
1073                         p = LIST_FIRST(&p->p_children);
1074                 else for (;;) {
1075                         if (p == top)
1076                                 goto done;
1077                         if (LIST_NEXT(p, p_sibling)) {
1078                                 p = LIST_NEXT(p, p_sibling);
1079                                 break;
1080                         }
1081                         p = p->p_pptr;
1082                 }
1083         }
1084
1085         if (error)
1086                 (void) pmc_detach_process(top, pm);
1087
1088  done:
1089         sx_sunlock(&proctree_lock);
1090         return error;
1091 }
1092
1093 /*
1094  * Detach a process from a PMC.  If there are no other PMCs tracking
1095  * this process, remove the process structure from its hash table.  If
1096  * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1097  */
1098
1099 static int
1100 pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1101 {
1102         int ri;
1103         struct pmc_process *pp;
1104
1105         sx_assert(&pmc_sx, SX_XLOCKED);
1106
1107         KASSERT(pm != NULL,
1108             ("[pmc,%d] null pm pointer", __LINE__));
1109
1110         ri = PMC_TO_ROWINDEX(pm);
1111
1112         PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1113             pm, ri, p, p->p_pid, p->p_comm, flags);
1114
1115         if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1116                 return ESRCH;
1117
1118         if (pp->pp_pmcs[ri].pp_pmc != pm)
1119                 return EINVAL;
1120
1121         pmc_unlink_target_process(pm, pp);
1122
1123         /* Issue a detach entry if a log file is configured */
1124         if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1125                 pmclog_process_pmcdetach(pm, p->p_pid);
1126
1127         /*
1128          * If there are no PMCs targeting this process, we remove its
1129          * descriptor from the target hash table and unset the P_HWPMC
1130          * flag in the struct proc.
1131          */
1132         KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1133             ("[pmc,%d] Illegal refcnt %d for process struct %p",
1134                 __LINE__, pp->pp_refcnt, pp));
1135
1136         if (pp->pp_refcnt != 0) /* still a target of some PMC */
1137                 return 0;
1138
1139         pmc_remove_process_descriptor(pp);
1140
1141         if (flags & PMC_FLAG_REMOVE)
1142                 free(pp, M_PMC);
1143
1144         PROC_LOCK(p);
1145         p->p_flag &= ~P_HWPMC;
1146         PROC_UNLOCK(p);
1147
1148         return 0;
1149 }
1150
1151 /*
1152  * Detach a process and optionally its descendants from a PMC.
1153  */
1154
1155 static int
1156 pmc_detach_process(struct proc *p, struct pmc *pm)
1157 {
1158         struct proc *top;
1159
1160         sx_assert(&pmc_sx, SX_XLOCKED);
1161
1162         PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1163             PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1164
1165         if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1166                 return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1167
1168         /*
1169          * Traverse all children, detaching them from this PMC.  We
1170          * ignore errors since we could be detaching a PMC from a
1171          * partially attached proc tree.
1172          */
1173
1174         sx_slock(&proctree_lock);
1175
1176         top = p;
1177
1178         for (;;) {
1179                 (void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1180
1181                 if (!LIST_EMPTY(&p->p_children))
1182                         p = LIST_FIRST(&p->p_children);
1183                 else for (;;) {
1184                         if (p == top)
1185                                 goto done;
1186                         if (LIST_NEXT(p, p_sibling)) {
1187                                 p = LIST_NEXT(p, p_sibling);
1188                                 break;
1189                         }
1190                         p = p->p_pptr;
1191                 }
1192         }
1193
1194  done:
1195         sx_sunlock(&proctree_lock);
1196
1197         if (LIST_EMPTY(&pm->pm_targets))
1198                 pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1199
1200         return 0;
1201 }
1202
1203
1204 /*
1205  * Thread context switch IN
1206  */
1207
1208 static void
1209 pmc_process_csw_in(struct thread *td)
1210 {
1211         int cpu;
1212         unsigned int adjri, ri;
1213         struct pmc *pm;
1214         struct proc *p;
1215         struct pmc_cpu *pc;
1216         struct pmc_hw *phw;
1217         pmc_value_t newvalue;
1218         struct pmc_process *pp;
1219         struct pmc_classdep *pcd;
1220
1221         p = td->td_proc;
1222
1223         if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1224                 return;
1225
1226         KASSERT(pp->pp_proc == td->td_proc,
1227             ("[pmc,%d] not my thread state", __LINE__));
1228
1229         critical_enter(); /* no preemption from this point */
1230
1231         cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1232
1233         PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1234             p->p_pid, p->p_comm, pp);
1235
1236         KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1237             ("[pmc,%d] weird CPU id %d", __LINE__, cpu));
1238
1239         pc = pmc_pcpu[cpu];
1240
1241         for (ri = 0; ri < md->pmd_npmc; ri++) {
1242
1243                 if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1244                         continue;
1245
1246                 KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1247                     ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1248                         __LINE__, PMC_TO_MODE(pm)));
1249
1250                 KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1251                     ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1252                         __LINE__, PMC_TO_ROWINDEX(pm), ri));
1253
1254                 /*
1255                  * Only PMCs that are marked as 'RUNNING' need
1256                  * be placed on hardware.
1257                  */
1258
1259                 if (pm->pm_state != PMC_STATE_RUNNING)
1260                         continue;
1261
1262                 /* increment PMC runcount */
1263                 atomic_add_rel_int(&pm->pm_runcount, 1);
1264
1265                 /* configure the HWPMC we are going to use. */
1266                 pcd = pmc_ri_to_classdep(md, ri, &adjri);
1267                 pcd->pcd_config_pmc(cpu, adjri, pm);
1268
1269                 phw = pc->pc_hwpmcs[ri];
1270
1271                 KASSERT(phw != NULL,
1272                     ("[pmc,%d] null hw pointer", __LINE__));
1273
1274                 KASSERT(phw->phw_pmc == pm,
1275                     ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1276                         phw->phw_pmc, pm));
1277
1278                 /*
1279                  * Write out saved value and start the PMC.
1280                  *
1281                  * Sampling PMCs use a per-process value, while
1282                  * counting mode PMCs use a per-pmc value that is
1283                  * inherited across descendants.
1284                  */
1285                 if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1286                         mtx_pool_lock_spin(pmc_mtxpool, pm);
1287
1288                         /*
1289                          * Use the saved value calculated after the most recent
1290                          * thread switch out to start this counter.  Reset
1291                          * the saved count in case another thread from this
1292                          * process switches in before any threads switch out.
1293                          */
1294                         newvalue = PMC_PCPU_SAVED(cpu,ri) =
1295                             pp->pp_pmcs[ri].pp_pmcval;
1296                         pp->pp_pmcs[ri].pp_pmcval = pm->pm_sc.pm_reloadcount;
1297                         mtx_pool_unlock_spin(pmc_mtxpool, pm);
1298                 } else {
1299                         KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1300                             ("[pmc,%d] illegal mode=%d", __LINE__,
1301                             PMC_TO_MODE(pm)));
1302                         mtx_pool_lock_spin(pmc_mtxpool, pm);
1303                         newvalue = PMC_PCPU_SAVED(cpu, ri) =
1304                             pm->pm_gv.pm_savedvalue;
1305                         mtx_pool_unlock_spin(pmc_mtxpool, pm);
1306                 }
1307
1308                 PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1309
1310                 pcd->pcd_write_pmc(cpu, adjri, newvalue);
1311
1312                 /* If a sampling mode PMC, reset stalled state. */
1313                 if (PMC_TO_MODE(pm) == PMC_MODE_TS)
1314                         CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
1315
1316                 /* Indicate that we desire this to run. */
1317                 CPU_SET_ATOMIC(cpu, &pm->pm_cpustate);
1318
1319                 /* Start the PMC. */
1320                 pcd->pcd_start_pmc(cpu, adjri);
1321         }
1322
1323         /*
1324          * perform any other architecture/cpu dependent thread
1325          * switch-in actions.
1326          */
1327
1328         (void) (*md->pmd_switch_in)(pc, pp);
1329
1330         critical_exit();
1331
1332 }
1333
1334 /*
1335  * Thread context switch OUT.
1336  */
1337
1338 static void
1339 pmc_process_csw_out(struct thread *td)
1340 {
1341         int cpu;
1342         int64_t tmp;
1343         struct pmc *pm;
1344         struct proc *p;
1345         enum pmc_mode mode;
1346         struct pmc_cpu *pc;
1347         pmc_value_t newvalue;
1348         unsigned int adjri, ri;
1349         struct pmc_process *pp;
1350         struct pmc_classdep *pcd;
1351
1352
1353         /*
1354          * Locate our process descriptor; this may be NULL if
1355          * this process is exiting and we have already removed
1356          * the process from the target process table.
1357          *
1358          * Note that due to kernel preemption, multiple
1359          * context switches may happen while the process is
1360          * exiting.
1361          *
1362          * Note also that if the target process cannot be
1363          * found we still need to deconfigure any PMCs that
1364          * are currently running on hardware.
1365          */
1366
1367         p = td->td_proc;
1368         pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1369
1370         /*
1371          * save PMCs
1372          */
1373
1374         critical_enter();
1375
1376         cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1377
1378         PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1379             p->p_pid, p->p_comm, pp);
1380
1381         KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1382             ("[pmc,%d weird CPU id %d", __LINE__, cpu));
1383
1384         pc = pmc_pcpu[cpu];
1385
1386         /*
1387          * When a PMC gets unlinked from a target PMC, it will
1388          * be removed from the target's pp_pmc[] array.
1389          *
1390          * However, on a MP system, the target could have been
1391          * executing on another CPU at the time of the unlink.
1392          * So, at context switch OUT time, we need to look at
1393          * the hardware to determine if a PMC is scheduled on
1394          * it.
1395          */
1396
1397         for (ri = 0; ri < md->pmd_npmc; ri++) {
1398
1399                 pcd = pmc_ri_to_classdep(md, ri, &adjri);
1400                 pm  = NULL;
1401                 (void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
1402
1403                 if (pm == NULL) /* nothing at this row index */
1404                         continue;
1405
1406                 mode = PMC_TO_MODE(pm);
1407                 if (!PMC_IS_VIRTUAL_MODE(mode))
1408                         continue; /* not a process virtual PMC */
1409
1410                 KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1411                     ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1412                         __LINE__, PMC_TO_ROWINDEX(pm), ri));
1413
1414                 /*
1415                  * Change desired state, and then stop if not stalled.
1416                  * This two-step dance should avoid race conditions where
1417                  * an interrupt re-enables the PMC after this code has
1418                  * already checked the pm_stalled flag.
1419                  */
1420                 CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
1421                 if (!CPU_ISSET(cpu, &pm->pm_stalled))
1422                         pcd->pcd_stop_pmc(cpu, adjri);
1423
1424                 /* reduce this PMC's runcount */
1425                 atomic_subtract_rel_int(&pm->pm_runcount, 1);
1426
1427                 /*
1428                  * If this PMC is associated with this process,
1429                  * save the reading.
1430                  */
1431
1432                 if (pm->pm_state != PMC_STATE_DELETED && pp != NULL &&
1433                     pp->pp_pmcs[ri].pp_pmc != NULL) {
1434                         KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1435                             ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1436                                 pm, ri, pp->pp_pmcs[ri].pp_pmc));
1437
1438                         KASSERT(pp->pp_refcnt > 0,
1439                             ("[pmc,%d] pp refcnt = %d", __LINE__,
1440                                 pp->pp_refcnt));
1441
1442                         pcd->pcd_read_pmc(cpu, adjri, &newvalue);
1443
1444                         if (mode == PMC_MODE_TS) {
1445                                 PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (samp)",
1446                                     cpu, ri, PMC_PCPU_SAVED(cpu,ri) - newvalue);
1447
1448                                 /*
1449                                  * For sampling process-virtual PMCs,
1450                                  * newvalue is the number of events to be seen
1451                                  * until the next sampling interrupt.
1452                                  * We can just add the events left from this
1453                                  * invocation to the counter, then adjust
1454                                  * in case we overflow our range.
1455                                  *
1456                                  * (Recall that we reload the counter every
1457                                  * time we use it.)
1458                                  */
1459                                 mtx_pool_lock_spin(pmc_mtxpool, pm);
1460
1461                                 pp->pp_pmcs[ri].pp_pmcval += newvalue;
1462                                 if (pp->pp_pmcs[ri].pp_pmcval >
1463                                     pm->pm_sc.pm_reloadcount)
1464                                         pp->pp_pmcs[ri].pp_pmcval -=
1465                                             pm->pm_sc.pm_reloadcount;
1466                                 KASSERT(pp->pp_pmcs[ri].pp_pmcval > 0 &&
1467                                     pp->pp_pmcs[ri].pp_pmcval <=
1468                                     pm->pm_sc.pm_reloadcount,
1469                                     ("[pmc,%d] pp_pmcval outside of expected "
1470                                     "range cpu=%d ri=%d pp_pmcval=%jx "
1471                                     "pm_reloadcount=%jx", __LINE__, cpu, ri,
1472                                     pp->pp_pmcs[ri].pp_pmcval,
1473                                     pm->pm_sc.pm_reloadcount));
1474                                 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1475
1476                         } else {
1477                                 tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1478
1479                                 PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (count)",
1480                                     cpu, ri, tmp);
1481
1482                                 /*
1483                                  * For counting process-virtual PMCs,
1484                                  * we expect the count to be
1485                                  * increasing monotonically, modulo a 64
1486                                  * bit wraparound.
1487                                  */
1488                                 KASSERT(tmp >= 0,
1489                                     ("[pmc,%d] negative increment cpu=%d "
1490                                      "ri=%d newvalue=%jx saved=%jx "
1491                                      "incr=%jx", __LINE__, cpu, ri,
1492                                      newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1493
1494                                 mtx_pool_lock_spin(pmc_mtxpool, pm);
1495                                 pm->pm_gv.pm_savedvalue += tmp;
1496                                 pp->pp_pmcs[ri].pp_pmcval += tmp;
1497                                 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1498
1499                                 if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1500                                         pmclog_process_proccsw(pm, pp, tmp);
1501                         }
1502                 }
1503
1504                 /* mark hardware as free */
1505                 pcd->pcd_config_pmc(cpu, adjri, NULL);
1506         }
1507
1508         /*
1509          * perform any other architecture/cpu dependent thread
1510          * switch out functions.
1511          */
1512
1513         (void) (*md->pmd_switch_out)(pc, pp);
1514
1515         critical_exit();
1516 }
1517
1518 /*
1519  * A mapping change for a process.
1520  */
1521
1522 static void
1523 pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1524 {
1525         int ri;
1526         pid_t pid;
1527         char *fullpath, *freepath;
1528         const struct pmc *pm;
1529         struct pmc_owner *po;
1530         const struct pmc_process *pp;
1531
1532         freepath = fullpath = NULL;
1533         pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
1534
1535         pid = td->td_proc->p_pid;
1536
1537         /* Inform owners of all system-wide sampling PMCs. */
1538         LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1539             if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1540                 pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
1541
1542         if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1543                 goto done;
1544
1545         /*
1546          * Inform sampling PMC owners tracking this process.
1547          */
1548         for (ri = 0; ri < md->pmd_npmc; ri++)
1549                 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1550                     PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1551                         pmclog_process_map_in(pm->pm_owner,
1552                             pid, pkm->pm_address, fullpath);
1553
1554   done:
1555         if (freepath)
1556                 free(freepath, M_TEMP);
1557 }
1558
1559
1560 /*
1561  * Log an munmap request.
1562  */
1563
1564 static void
1565 pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1566 {
1567         int ri;
1568         pid_t pid;
1569         struct pmc_owner *po;
1570         const struct pmc *pm;
1571         const struct pmc_process *pp;
1572
1573         pid = td->td_proc->p_pid;
1574
1575         LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1576             if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1577                 pmclog_process_map_out(po, pid, pkm->pm_address,
1578                     pkm->pm_address + pkm->pm_size);
1579
1580         if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1581                 return;
1582
1583         for (ri = 0; ri < md->pmd_npmc; ri++)
1584                 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1585                     PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1586                         pmclog_process_map_out(pm->pm_owner, pid,
1587                             pkm->pm_address, pkm->pm_address + pkm->pm_size);
1588 }
1589
1590 /*
1591  * Log mapping information about the kernel.
1592  */
1593
1594 static void
1595 pmc_log_kernel_mappings(struct pmc *pm)
1596 {
1597         struct pmc_owner *po;
1598         struct pmckern_map_in *km, *kmbase;
1599
1600         sx_assert(&pmc_sx, SX_LOCKED);
1601         KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1602             ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1603                 __LINE__, (void *) pm));
1604
1605         po = pm->pm_owner;
1606
1607         if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
1608                 return;
1609
1610         /*
1611          * Log the current set of kernel modules.
1612          */
1613         kmbase = linker_hwpmc_list_objects();
1614         for (km = kmbase; km->pm_file != NULL; km++) {
1615                 PMCDBG2(LOG,REG,1,"%s %p", (char *) km->pm_file,
1616                     (void *) km->pm_address);
1617                 pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
1618                     km->pm_file);
1619         }
1620         free(kmbase, M_LINKER);
1621
1622         po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1623 }
1624
1625 /*
1626  * Log the mappings for a single process.
1627  */
1628
1629 static void
1630 pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1631 {
1632         vm_map_t map;
1633         struct vnode *vp;
1634         struct vmspace *vm;
1635         vm_map_entry_t entry;
1636         vm_offset_t last_end;
1637         u_int last_timestamp;
1638         struct vnode *last_vp;
1639         vm_offset_t start_addr;
1640         vm_object_t obj, lobj, tobj;
1641         char *fullpath, *freepath;
1642
1643         last_vp = NULL;
1644         last_end = (vm_offset_t) 0;
1645         fullpath = freepath = NULL;
1646
1647         if ((vm = vmspace_acquire_ref(p)) == NULL)
1648                 return;
1649
1650         map = &vm->vm_map;
1651         vm_map_lock_read(map);
1652
1653         for (entry = map->header.next; entry != &map->header; entry = entry->next) {
1654
1655                 if (entry == NULL) {
1656                         PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1657                             "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1658                         break;
1659                 }
1660
1661                 /*
1662                  * We only care about executable map entries.
1663                  */
1664                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
1665                     !(entry->protection & VM_PROT_EXECUTE) ||
1666                     (entry->object.vm_object == NULL)) {
1667                         continue;
1668                 }
1669
1670                 obj = entry->object.vm_object;
1671                 VM_OBJECT_RLOCK(obj);
1672
1673                 /* 
1674                  * Walk the backing_object list to find the base
1675                  * (non-shadowed) vm_object.
1676                  */
1677                 for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
1678                         if (tobj != obj)
1679                                 VM_OBJECT_RLOCK(tobj);
1680                         if (lobj != obj)
1681                                 VM_OBJECT_RUNLOCK(lobj);
1682                         lobj = tobj;
1683                 }
1684
1685                 /*
1686                  * At this point lobj is the base vm_object and it is locked.
1687                  */
1688                 if (lobj == NULL) {
1689                         PMCDBG3(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
1690                             "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
1691                         VM_OBJECT_RUNLOCK(obj);
1692                         continue;
1693                 }
1694
1695                 vp = vm_object_vnode(lobj);
1696                 if (vp == NULL) {
1697                         if (lobj != obj)
1698                                 VM_OBJECT_RUNLOCK(lobj);
1699                         VM_OBJECT_RUNLOCK(obj);
1700                         continue;
1701                 }
1702
1703                 /*
1704                  * Skip contiguous regions that point to the same
1705                  * vnode, so we don't emit redundant MAP-IN
1706                  * directives.
1707                  */
1708                 if (entry->start == last_end && vp == last_vp) {
1709                         last_end = entry->end;
1710                         if (lobj != obj)
1711                                 VM_OBJECT_RUNLOCK(lobj);
1712                         VM_OBJECT_RUNLOCK(obj);
1713                         continue;
1714                 }
1715
1716                 /* 
1717                  * We don't want to keep the proc's vm_map or this
1718                  * vm_object locked while we walk the pathname, since
1719                  * vn_fullpath() can sleep.  However, if we drop the
1720                  * lock, it's possible for concurrent activity to
1721                  * modify the vm_map list.  To protect against this,
1722                  * we save the vm_map timestamp before we release the
1723                  * lock, and check it after we reacquire the lock
1724                  * below.
1725                  */
1726                 start_addr = entry->start;
1727                 last_end = entry->end;
1728                 last_timestamp = map->timestamp;
1729                 vm_map_unlock_read(map);
1730
1731                 vref(vp);
1732                 if (lobj != obj)
1733                         VM_OBJECT_RUNLOCK(lobj);
1734
1735                 VM_OBJECT_RUNLOCK(obj);
1736
1737                 freepath = NULL;
1738                 pmc_getfilename(vp, &fullpath, &freepath);
1739                 last_vp = vp;
1740
1741                 vrele(vp);
1742
1743                 vp = NULL;
1744                 pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
1745                 if (freepath)
1746                         free(freepath, M_TEMP);
1747
1748                 vm_map_lock_read(map);
1749
1750                 /*
1751                  * If our saved timestamp doesn't match, this means
1752                  * that the vm_map was modified out from under us and
1753                  * we can't trust our current "entry" pointer.  Do a
1754                  * new lookup for this entry.  If there is no entry
1755                  * for this address range, vm_map_lookup_entry() will
1756                  * return the previous one, so we always want to go to
1757                  * entry->next on the next loop iteration.
1758                  * 
1759                  * There is an edge condition here that can occur if
1760                  * there is no entry at or before this address.  In
1761                  * this situation, vm_map_lookup_entry returns
1762                  * &map->header, which would cause our loop to abort
1763                  * without processing the rest of the map.  However,
1764                  * in practice this will never happen for process
1765                  * vm_map.  This is because the executable's text
1766                  * segment is the first mapping in the proc's address
1767                  * space, and this mapping is never removed until the
1768                  * process exits, so there will always be a non-header
1769                  * entry at or before the requested address for
1770                  * vm_map_lookup_entry to return.
1771                  */
1772                 if (map->timestamp != last_timestamp)
1773                         vm_map_lookup_entry(map, last_end - 1, &entry);
1774         }
1775
1776         vm_map_unlock_read(map);
1777         vmspace_free(vm);
1778         return;
1779 }
1780
1781 /*
1782  * Log mappings for all processes in the system.
1783  */
1784
1785 static void
1786 pmc_log_all_process_mappings(struct pmc_owner *po)
1787 {
1788         struct proc *p, *top;
1789
1790         sx_assert(&pmc_sx, SX_XLOCKED);
1791
1792         if ((p = pfind(1)) == NULL)
1793                 panic("[pmc,%d] Cannot find init", __LINE__);
1794
1795         PROC_UNLOCK(p);
1796
1797         sx_slock(&proctree_lock);
1798
1799         top = p;
1800
1801         for (;;) {
1802                 pmc_log_process_mappings(po, p);
1803                 if (!LIST_EMPTY(&p->p_children))
1804                         p = LIST_FIRST(&p->p_children);
1805                 else for (;;) {
1806                         if (p == top)
1807                                 goto done;
1808                         if (LIST_NEXT(p, p_sibling)) {
1809                                 p = LIST_NEXT(p, p_sibling);
1810                                 break;
1811                         }
1812                         p = p->p_pptr;
1813                 }
1814         }
1815  done:
1816         sx_sunlock(&proctree_lock);
1817 }
1818
1819 /*
1820  * The 'hook' invoked from the kernel proper
1821  */
1822
1823
1824 #ifdef  HWPMC_DEBUG
1825 const char *pmc_hooknames[] = {
1826         /* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
1827         "",
1828         "EXEC",
1829         "CSW-IN",
1830         "CSW-OUT",
1831         "SAMPLE",
1832         "UNUSED1",
1833         "UNUSED2",
1834         "MMAP",
1835         "MUNMAP",
1836         "CALLCHAIN-NMI",
1837         "CALLCHAIN-SOFT",
1838         "SOFTSAMPLING"
1839 };
1840 #endif
1841
1842 static int
1843 pmc_hook_handler(struct thread *td, int function, void *arg)
1844 {
1845
1846         PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
1847             pmc_hooknames[function], arg);
1848
1849         switch (function)
1850         {
1851
1852         /*
1853          * Process exec()
1854          */
1855
1856         case PMC_FN_PROCESS_EXEC:
1857         {
1858                 char *fullpath, *freepath;
1859                 unsigned int ri;
1860                 int is_using_hwpmcs;
1861                 struct pmc *pm;
1862                 struct proc *p;
1863                 struct pmc_owner *po;
1864                 struct pmc_process *pp;
1865                 struct pmckern_procexec *pk;
1866
1867                 sx_assert(&pmc_sx, SX_XLOCKED);
1868
1869                 p = td->td_proc;
1870                 pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1871
1872                 pk = (struct pmckern_procexec *) arg;
1873
1874                 /* Inform owners of SS mode PMCs of the exec event. */
1875                 LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1876                     if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1877                             pmclog_process_procexec(po, PMC_ID_INVALID,
1878                                 p->p_pid, pk->pm_entryaddr, fullpath);
1879
1880                 PROC_LOCK(p);
1881                 is_using_hwpmcs = p->p_flag & P_HWPMC;
1882                 PROC_UNLOCK(p);
1883
1884                 if (!is_using_hwpmcs) {
1885                         if (freepath)
1886                                 free(freepath, M_TEMP);
1887                         break;
1888                 }
1889
1890                 /*
1891                  * PMCs are not inherited across an exec():  remove any
1892                  * PMCs that this process is the owner of.
1893                  */
1894
1895                 if ((po = pmc_find_owner_descriptor(p)) != NULL) {
1896                         pmc_remove_owner(po);
1897                         pmc_destroy_owner_descriptor(po);
1898                 }
1899
1900                 /*
1901                  * If the process being exec'ed is not the target of any
1902                  * PMC, we are done.
1903                  */
1904                 if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
1905                         if (freepath)
1906                                 free(freepath, M_TEMP);
1907                         break;
1908                 }
1909
1910                 /*
1911                  * Log the exec event to all monitoring owners.  Skip
1912                  * owners who have already received the event because
1913                  * they had system sampling PMCs active.
1914                  */
1915                 for (ri = 0; ri < md->pmd_npmc; ri++)
1916                         if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
1917                                 po = pm->pm_owner;
1918                                 if (po->po_sscount == 0 &&
1919                                     po->po_flags & PMC_PO_OWNS_LOGFILE)
1920                                         pmclog_process_procexec(po, pm->pm_id,
1921                                             p->p_pid, pk->pm_entryaddr,
1922                                             fullpath);
1923                         }
1924
1925                 if (freepath)
1926                         free(freepath, M_TEMP);
1927
1928
1929                 PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
1930                     p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
1931
1932                 if (pk->pm_credentialschanged == 0) /* no change */
1933                         break;
1934
1935                 /*
1936                  * If the newly exec()'ed process has a different credential
1937                  * than before, allow it to be the target of a PMC only if
1938                  * the PMC's owner has sufficient privilege.
1939                  */
1940
1941                 for (ri = 0; ri < md->pmd_npmc; ri++)
1942                         if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
1943                                 if (pmc_can_attach(pm, td->td_proc) != 0)
1944                                         pmc_detach_one_process(td->td_proc,
1945                                             pm, PMC_FLAG_NONE);
1946
1947                 KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1948                     ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
1949                         pp->pp_refcnt, pp));
1950
1951                 /*
1952                  * If this process is no longer the target of any
1953                  * PMCs, we can remove the process entry and free
1954                  * up space.
1955                  */
1956
1957                 if (pp->pp_refcnt == 0) {
1958                         pmc_remove_process_descriptor(pp);
1959                         free(pp, M_PMC);
1960                         break;
1961                 }
1962
1963         }
1964         break;
1965
1966         case PMC_FN_CSW_IN:
1967                 pmc_process_csw_in(td);
1968                 break;
1969
1970         case PMC_FN_CSW_OUT:
1971                 pmc_process_csw_out(td);
1972                 break;
1973
1974         /*
1975          * Process accumulated PC samples.
1976          *
1977          * This function is expected to be called by hardclock() for
1978          * each CPU that has accumulated PC samples.
1979          *
1980          * This function is to be executed on the CPU whose samples
1981          * are being processed.
1982          */
1983         case PMC_FN_DO_SAMPLES:
1984
1985                 /*
1986                  * Clear the cpu specific bit in the CPU mask before
1987                  * do the rest of the processing.  If the NMI handler
1988                  * gets invoked after the "atomic_clear_int()" call
1989                  * below but before "pmc_process_samples()" gets
1990                  * around to processing the interrupt, then we will
1991                  * come back here at the next hardclock() tick (and
1992                  * may find nothing to do if "pmc_process_samples()"
1993                  * had already processed the interrupt).  We don't
1994                  * lose the interrupt sample.
1995                  */
1996                 CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmc_cpumask);
1997                 pmc_process_samples(PCPU_GET(cpuid), PMC_HR);
1998                 pmc_process_samples(PCPU_GET(cpuid), PMC_SR);
1999                 break;
2000
2001         case PMC_FN_MMAP:
2002                 sx_assert(&pmc_sx, SX_LOCKED);
2003                 pmc_process_mmap(td, (struct pmckern_map_in *) arg);
2004                 break;
2005
2006         case PMC_FN_MUNMAP:
2007                 sx_assert(&pmc_sx, SX_LOCKED);
2008                 pmc_process_munmap(td, (struct pmckern_map_out *) arg);
2009                 break;
2010
2011         case PMC_FN_USER_CALLCHAIN:
2012                 /*
2013                  * Record a call chain.
2014                  */
2015                 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2016                     __LINE__));
2017
2018                 pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
2019                     (struct trapframe *) arg);
2020                 td->td_pflags &= ~TDP_CALLCHAIN;
2021                 break;
2022
2023         case PMC_FN_USER_CALLCHAIN_SOFT:
2024                 /*
2025                  * Record a call chain.
2026                  */
2027                 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2028                     __LINE__));
2029                 pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_SR,
2030                     (struct trapframe *) arg);
2031                 td->td_pflags &= ~TDP_CALLCHAIN;
2032                 break;
2033
2034         case PMC_FN_SOFT_SAMPLING:
2035                 /*
2036                  * Call soft PMC sampling intr.
2037                  */
2038                 pmc_soft_intr((struct pmckern_soft *) arg);
2039                 break;
2040
2041         default:
2042 #ifdef  HWPMC_DEBUG
2043                 KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2044 #endif
2045                 break;
2046
2047         }
2048
2049         return 0;
2050 }
2051
2052 /*
2053  * allocate a 'struct pmc_owner' descriptor in the owner hash table.
2054  */
2055
2056 static struct pmc_owner *
2057 pmc_allocate_owner_descriptor(struct proc *p)
2058 {
2059         uint32_t hindex;
2060         struct pmc_owner *po;
2061         struct pmc_ownerhash *poh;
2062
2063         hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2064         poh = &pmc_ownerhash[hindex];
2065
2066         /* allocate space for N pointers and one descriptor struct */
2067         po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
2068         po->po_owner = p;
2069         LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2070
2071         TAILQ_INIT(&po->po_logbuffers);
2072         mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2073
2074         PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2075             p, p->p_pid, p->p_comm, po);
2076
2077         return po;
2078 }
2079
2080 static void
2081 pmc_destroy_owner_descriptor(struct pmc_owner *po)
2082 {
2083
2084         PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2085             po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2086
2087         mtx_destroy(&po->po_mtx);
2088         free(po, M_PMC);
2089 }
2090
2091 /*
2092  * find the descriptor corresponding to process 'p', adding or removing it
2093  * as specified by 'mode'.
2094  */
2095
2096 static struct pmc_process *
2097 pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2098 {
2099         uint32_t hindex;
2100         struct pmc_process *pp, *ppnew;
2101         struct pmc_processhash *pph;
2102
2103         hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2104         pph = &pmc_processhash[hindex];
2105
2106         ppnew = NULL;
2107
2108         /*
2109          * Pre-allocate memory in the FIND_ALLOCATE case since we
2110          * cannot call malloc(9) once we hold a spin lock.
2111          */
2112         if (mode & PMC_FLAG_ALLOCATE)
2113                 ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2114                     sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
2115
2116         mtx_lock_spin(&pmc_processhash_mtx);
2117         LIST_FOREACH(pp, pph, pp_next)
2118             if (pp->pp_proc == p)
2119                     break;
2120
2121         if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
2122                 LIST_REMOVE(pp, pp_next);
2123
2124         if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
2125             ppnew != NULL) {
2126                 ppnew->pp_proc = p;
2127                 LIST_INSERT_HEAD(pph, ppnew, pp_next);
2128                 pp = ppnew;
2129                 ppnew = NULL;
2130         }
2131         mtx_unlock_spin(&pmc_processhash_mtx);
2132
2133         if (pp != NULL && ppnew != NULL)
2134                 free(ppnew, M_PMC);
2135
2136         return pp;
2137 }
2138
2139 /*
2140  * remove a process descriptor from the process hash table.
2141  */
2142
2143 static void
2144 pmc_remove_process_descriptor(struct pmc_process *pp)
2145 {
2146         KASSERT(pp->pp_refcnt == 0,
2147             ("[pmc,%d] Removing process descriptor %p with count %d",
2148                 __LINE__, pp, pp->pp_refcnt));
2149
2150         mtx_lock_spin(&pmc_processhash_mtx);
2151         LIST_REMOVE(pp, pp_next);
2152         mtx_unlock_spin(&pmc_processhash_mtx);
2153 }
2154
2155
2156 /*
2157  * find an owner descriptor corresponding to proc 'p'
2158  */
2159
2160 static struct pmc_owner *
2161 pmc_find_owner_descriptor(struct proc *p)
2162 {
2163         uint32_t hindex;
2164         struct pmc_owner *po;
2165         struct pmc_ownerhash *poh;
2166
2167         hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2168         poh = &pmc_ownerhash[hindex];
2169
2170         po = NULL;
2171         LIST_FOREACH(po, poh, po_next)
2172             if (po->po_owner == p)
2173                     break;
2174
2175         PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2176             "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2177
2178         return po;
2179 }
2180
2181 /*
2182  * pmc_allocate_pmc_descriptor
2183  *
2184  * Allocate a pmc descriptor and initialize its
2185  * fields.
2186  */
2187
2188 static struct pmc *
2189 pmc_allocate_pmc_descriptor(void)
2190 {
2191         struct pmc *pmc;
2192
2193         pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
2194
2195         PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2196
2197         return pmc;
2198 }
2199
2200 /*
2201  * Destroy a pmc descriptor.
2202  */
2203
2204 static void
2205 pmc_destroy_pmc_descriptor(struct pmc *pm)
2206 {
2207
2208         KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2209             pm->pm_state == PMC_STATE_FREE,
2210             ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2211         KASSERT(LIST_EMPTY(&pm->pm_targets),
2212             ("[pmc,%d] destroying pmc with targets", __LINE__));
2213         KASSERT(pm->pm_owner == NULL,
2214             ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2215         KASSERT(pm->pm_runcount == 0,
2216             ("[pmc,%d] pmc has non-zero run count %d", __LINE__,
2217                 pm->pm_runcount));
2218
2219         free(pm, M_PMC);
2220 }
2221
2222 static void
2223 pmc_wait_for_pmc_idle(struct pmc *pm)
2224 {
2225 #ifdef HWPMC_DEBUG
2226         volatile int maxloop;
2227
2228         maxloop = 100 * pmc_cpu_max();
2229 #endif
2230         /*
2231          * Loop (with a forced context switch) till the PMC's runcount
2232          * comes down to zero.
2233          */
2234         while (atomic_load_acq_32(&pm->pm_runcount) > 0) {
2235 #ifdef HWPMC_DEBUG
2236                 maxloop--;
2237                 KASSERT(maxloop > 0,
2238                     ("[pmc,%d] (ri%d, rc%d) waiting too long for "
2239                         "pmc to be free", __LINE__,
2240                         PMC_TO_ROWINDEX(pm), pm->pm_runcount));
2241 #endif
2242                 pmc_force_context_switch();
2243         }
2244 }
2245
2246 /*
2247  * This function does the following things:
2248  *
2249  *  - detaches the PMC from hardware
2250  *  - unlinks all target threads that were attached to it
2251  *  - removes the PMC from its owner's list
2252  *  - destroys the PMC private mutex
2253  *
2254  * Once this function completes, the given pmc pointer can be freed by
2255  * calling pmc_destroy_pmc_descriptor().
2256  */
2257
2258 static void
2259 pmc_release_pmc_descriptor(struct pmc *pm)
2260 {
2261         enum pmc_mode mode;
2262         struct pmc_hw *phw;
2263         u_int adjri, ri, cpu;
2264         struct pmc_owner *po;
2265         struct pmc_binding pb;
2266         struct pmc_process *pp;
2267         struct pmc_classdep *pcd;
2268         struct pmc_target *ptgt, *tmp;
2269
2270         sx_assert(&pmc_sx, SX_XLOCKED);
2271
2272         KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2273
2274         ri   = PMC_TO_ROWINDEX(pm);
2275         pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2276         mode = PMC_TO_MODE(pm);
2277
2278         PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2279             mode);
2280
2281         /*
2282          * First, we take the PMC off hardware.
2283          */
2284         cpu = 0;
2285         if (PMC_IS_SYSTEM_MODE(mode)) {
2286
2287                 /*
2288                  * A system mode PMC runs on a specific CPU.  Switch
2289                  * to this CPU and turn hardware off.
2290                  */
2291                 pmc_save_cpu_binding(&pb);
2292
2293                 cpu = PMC_TO_CPU(pm);
2294
2295                 pmc_select_cpu(cpu);
2296
2297                 /* switch off non-stalled CPUs */
2298                 CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
2299                 if (pm->pm_state == PMC_STATE_RUNNING &&
2300                     !CPU_ISSET(cpu, &pm->pm_stalled)) {
2301
2302                         phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2303
2304                         KASSERT(phw->phw_pmc == pm,
2305                             ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2306                                 __LINE__, ri, phw->phw_pmc, pm));
2307                         PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2308
2309                         critical_enter();
2310                         pcd->pcd_stop_pmc(cpu, adjri);
2311                         critical_exit();
2312                 }
2313
2314                 PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2315
2316                 critical_enter();
2317                 pcd->pcd_config_pmc(cpu, adjri, NULL);
2318                 critical_exit();
2319
2320                 /* adjust the global and process count of SS mode PMCs */
2321                 if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2322                         po = pm->pm_owner;
2323                         po->po_sscount--;
2324                         if (po->po_sscount == 0) {
2325                                 atomic_subtract_rel_int(&pmc_ss_count, 1);
2326                                 LIST_REMOVE(po, po_ssnext);
2327                         }
2328                 }
2329
2330                 pm->pm_state = PMC_STATE_DELETED;
2331
2332                 pmc_restore_cpu_binding(&pb);
2333
2334                 /*
2335                  * We could have references to this PMC structure in
2336                  * the per-cpu sample queues.  Wait for the queue to
2337                  * drain.
2338                  */
2339                 pmc_wait_for_pmc_idle(pm);
2340
2341         } else if (PMC_IS_VIRTUAL_MODE(mode)) {
2342
2343                 /*
2344                  * A virtual PMC could be running on multiple CPUs at
2345                  * a given instant.
2346                  *
2347                  * By marking its state as DELETED, we ensure that
2348                  * this PMC is never further scheduled on hardware.
2349                  *
2350                  * Then we wait till all CPUs are done with this PMC.
2351                  */
2352                 pm->pm_state = PMC_STATE_DELETED;
2353
2354
2355                 /* Wait for the PMCs runcount to come to zero. */
2356                 pmc_wait_for_pmc_idle(pm);
2357
2358                 /*
2359                  * At this point the PMC is off all CPUs and cannot be
2360                  * freshly scheduled onto a CPU.  It is now safe to
2361                  * unlink all targets from this PMC.  If a
2362                  * process-record's refcount falls to zero, we remove
2363                  * it from the hash table.  The module-wide SX lock
2364                  * protects us from races.
2365                  */
2366                 LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2367                         pp = ptgt->pt_process;
2368                         pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2369
2370                         PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2371
2372                         /*
2373                          * If the target process record shows that no
2374                          * PMCs are attached to it, reclaim its space.
2375                          */
2376
2377                         if (pp->pp_refcnt == 0) {
2378                                 pmc_remove_process_descriptor(pp);
2379                                 free(pp, M_PMC);
2380                         }
2381                 }
2382
2383                 cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2384
2385         }
2386
2387         /*
2388          * Release any MD resources
2389          */
2390         (void) pcd->pcd_release_pmc(cpu, adjri, pm);
2391
2392         /*
2393          * Update row disposition
2394          */
2395
2396         if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2397                 PMC_UNMARK_ROW_STANDALONE(ri);
2398         else
2399                 PMC_UNMARK_ROW_THREAD(ri);
2400
2401         /* unlink from the owner's list */
2402         if (pm->pm_owner) {
2403                 LIST_REMOVE(pm, pm_next);
2404                 pm->pm_owner = NULL;
2405         }
2406 }
2407
2408 /*
2409  * Register an owner and a pmc.
2410  */
2411
2412 static int
2413 pmc_register_owner(struct proc *p, struct pmc *pmc)
2414 {
2415         struct pmc_owner *po;
2416
2417         sx_assert(&pmc_sx, SX_XLOCKED);
2418
2419         if ((po = pmc_find_owner_descriptor(p)) == NULL)
2420                 if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2421                         return ENOMEM;
2422
2423         KASSERT(pmc->pm_owner == NULL,
2424             ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2425         pmc->pm_owner  = po;
2426
2427         LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2428
2429         PROC_LOCK(p);
2430         p->p_flag |= P_HWPMC;
2431         PROC_UNLOCK(p);
2432
2433         if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2434                 pmclog_process_pmcallocate(pmc);
2435
2436         PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2437             po, pmc);
2438
2439         return 0;
2440 }
2441
2442 /*
2443  * Return the current row disposition:
2444  * == 0 => FREE
2445  *  > 0 => PROCESS MODE
2446  *  < 0 => SYSTEM MODE
2447  */
2448
2449 int
2450 pmc_getrowdisp(int ri)
2451 {
2452         return pmc_pmcdisp[ri];
2453 }
2454
2455 /*
2456  * Check if a PMC at row index 'ri' can be allocated to the current
2457  * process.
2458  *
2459  * Allocation can fail if:
2460  *   - the current process is already being profiled by a PMC at index 'ri',
2461  *     attached to it via OP_PMCATTACH.
2462  *   - the current process has already allocated a PMC at index 'ri'
2463  *     via OP_ALLOCATE.
2464  */
2465
2466 static int
2467 pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2468 {
2469         enum pmc_mode mode;
2470         struct pmc *pm;
2471         struct pmc_owner *po;
2472         struct pmc_process *pp;
2473
2474         PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2475             "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2476
2477         /*
2478          * We shouldn't have already allocated a process-mode PMC at
2479          * row index 'ri'.
2480          *
2481          * We shouldn't have allocated a system-wide PMC on the same
2482          * CPU and same RI.
2483          */
2484         if ((po = pmc_find_owner_descriptor(p)) != NULL)
2485                 LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2486                     if (PMC_TO_ROWINDEX(pm) == ri) {
2487                             mode = PMC_TO_MODE(pm);
2488                             if (PMC_IS_VIRTUAL_MODE(mode))
2489                                     return EEXIST;
2490                             if (PMC_IS_SYSTEM_MODE(mode) &&
2491                                 (int) PMC_TO_CPU(pm) == cpu)
2492                                     return EEXIST;
2493                     }
2494                 }
2495
2496         /*
2497          * We also shouldn't be the target of any PMC at this index
2498          * since otherwise a PMC_ATTACH to ourselves will fail.
2499          */
2500         if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2501                 if (pp->pp_pmcs[ri].pp_pmc)
2502                         return EEXIST;
2503
2504         PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2505             p, p->p_pid, p->p_comm, ri);
2506
2507         return 0;
2508 }
2509
2510 /*
2511  * Check if a given PMC at row index 'ri' can be currently used in
2512  * mode 'mode'.
2513  */
2514
2515 static int
2516 pmc_can_allocate_row(int ri, enum pmc_mode mode)
2517 {
2518         enum pmc_disp   disp;
2519
2520         sx_assert(&pmc_sx, SX_XLOCKED);
2521
2522         PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2523
2524         if (PMC_IS_SYSTEM_MODE(mode))
2525                 disp = PMC_DISP_STANDALONE;
2526         else
2527                 disp = PMC_DISP_THREAD;
2528
2529         /*
2530          * check disposition for PMC row 'ri':
2531          *
2532          * Expected disposition         Row-disposition         Result
2533          *
2534          * STANDALONE                   STANDALONE or FREE      proceed
2535          * STANDALONE                   THREAD                  fail
2536          * THREAD                       THREAD or FREE          proceed
2537          * THREAD                       STANDALONE              fail
2538          */
2539
2540         if (!PMC_ROW_DISP_IS_FREE(ri) &&
2541             !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2542             !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2543                 return EBUSY;
2544
2545         /*
2546          * All OK
2547          */
2548
2549         PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2550
2551         return 0;
2552
2553 }
2554
2555 /*
2556  * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2557  */
2558
2559 static struct pmc *
2560 pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2561 {
2562         struct pmc *pm;
2563
2564         KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2565             ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2566                 PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2567
2568         LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2569             if (pm->pm_id == pmcid)
2570                     return pm;
2571
2572         return NULL;
2573 }
2574
2575 static int
2576 pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
2577 {
2578
2579         struct pmc *pm, *opm;
2580         struct pmc_owner *po;
2581         struct pmc_process *pp;
2582
2583         PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid);
2584         if (PMC_ID_TO_ROWINDEX(pmcid) >= md->pmd_npmc)
2585                 return (EINVAL);
2586
2587         if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL) {
2588                 /*
2589                  * In case of PMC_F_DESCENDANTS child processes we will not find
2590                  * the current process in the owners hash list.  Find the owner
2591                  * process first and from there lookup the po.
2592                  */
2593                 if ((pp = pmc_find_process_descriptor(curthread->td_proc,
2594                     PMC_FLAG_NONE)) == NULL) {
2595                         return ESRCH;
2596                 } else {
2597                         opm = pp->pp_pmcs[PMC_ID_TO_ROWINDEX(pmcid)].pp_pmc;
2598                         if (opm == NULL)
2599                                 return ESRCH;
2600                         if ((opm->pm_flags & (PMC_F_ATTACHED_TO_OWNER|
2601                             PMC_F_DESCENDANTS)) != (PMC_F_ATTACHED_TO_OWNER|
2602                             PMC_F_DESCENDANTS))
2603                                 return ESRCH;
2604                         po = opm->pm_owner;
2605                 }
2606         }
2607
2608         if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
2609                 return EINVAL;
2610
2611         PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
2612
2613         *pmc = pm;
2614         return 0;
2615 }
2616
2617 /*
2618  * Start a PMC.
2619  */
2620
2621 static int
2622 pmc_start(struct pmc *pm)
2623 {
2624         enum pmc_mode mode;
2625         struct pmc_owner *po;
2626         struct pmc_binding pb;
2627         struct pmc_classdep *pcd;
2628         int adjri, error, cpu, ri;
2629
2630         KASSERT(pm != NULL,
2631             ("[pmc,%d] null pm", __LINE__));
2632
2633         mode = PMC_TO_MODE(pm);
2634         ri   = PMC_TO_ROWINDEX(pm);
2635         pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2636
2637         error = 0;
2638
2639         PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
2640
2641         po = pm->pm_owner;
2642
2643         /*
2644          * Disallow PMCSTART if a logfile is required but has not been
2645          * configured yet.
2646          */
2647         if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
2648             (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
2649                 return (EDOOFUS);       /* programming error */
2650
2651         /*
2652          * If this is a sampling mode PMC, log mapping information for
2653          * the kernel modules that are currently loaded.
2654          */
2655         if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
2656             pmc_log_kernel_mappings(pm);
2657
2658         if (PMC_IS_VIRTUAL_MODE(mode)) {
2659
2660                 /*
2661                  * If a PMCATTACH has never been done on this PMC,
2662                  * attach it to its owner process.
2663                  */
2664
2665                 if (LIST_EMPTY(&pm->pm_targets))
2666                         error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
2667                             pmc_attach_process(po->po_owner, pm);
2668
2669                 /*
2670                  * If the PMC is attached to its owner, then force a context
2671                  * switch to ensure that the MD state gets set correctly.
2672                  */
2673
2674                 if (error == 0) {
2675                         pm->pm_state = PMC_STATE_RUNNING;
2676                         if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
2677                                 pmc_force_context_switch();
2678                 }
2679
2680                 return (error);
2681         }
2682
2683
2684         /*
2685          * A system-wide PMC.
2686          *
2687          * Add the owner to the global list if this is a system-wide
2688          * sampling PMC.
2689          */
2690
2691         if (mode == PMC_MODE_SS) {
2692                 if (po->po_sscount == 0) {
2693                         LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
2694                         atomic_add_rel_int(&pmc_ss_count, 1);
2695                         PMCDBG1(PMC,OPS,1, "po=%p in global list", po);
2696                 }
2697                 po->po_sscount++;
2698
2699                 /*
2700                  * Log mapping information for all existing processes in the
2701                  * system.  Subsequent mappings are logged as they happen;
2702                  * see pmc_process_mmap().
2703                  */
2704                 if (po->po_logprocmaps == 0) {
2705                         pmc_log_all_process_mappings(po);
2706                         po->po_logprocmaps = 1;
2707                 }
2708         }
2709
2710         /*
2711          * Move to the CPU associated with this
2712          * PMC, and start the hardware.
2713          */
2714
2715         pmc_save_cpu_binding(&pb);
2716
2717         cpu = PMC_TO_CPU(pm);
2718
2719         if (!pmc_cpu_is_active(cpu))
2720                 return (ENXIO);
2721
2722         pmc_select_cpu(cpu);
2723
2724         /*
2725          * global PMCs are configured at allocation time
2726          * so write out the initial value and start the PMC.
2727          */
2728
2729         pm->pm_state = PMC_STATE_RUNNING;
2730
2731         critical_enter();
2732         if ((error = pcd->pcd_write_pmc(cpu, adjri,
2733                  PMC_IS_SAMPLING_MODE(mode) ?
2734                  pm->pm_sc.pm_reloadcount :
2735                  pm->pm_sc.pm_initial)) == 0) {
2736                 /* If a sampling mode PMC, reset stalled state. */
2737                 if (PMC_IS_SAMPLING_MODE(mode))
2738                         CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
2739
2740                 /* Indicate that we desire this to run. Start it. */
2741                 CPU_SET_ATOMIC(cpu, &pm->pm_cpustate);
2742                 error = pcd->pcd_start_pmc(cpu, adjri);
2743         }
2744         critical_exit();
2745
2746         pmc_restore_cpu_binding(&pb);
2747
2748         return (error);
2749 }
2750
2751 /*
2752  * Stop a PMC.
2753  */
2754
2755 static int
2756 pmc_stop(struct pmc *pm)
2757 {
2758         struct pmc_owner *po;
2759         struct pmc_binding pb;
2760         struct pmc_classdep *pcd;
2761         int adjri, cpu, error, ri;
2762
2763         KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
2764
2765         PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
2766             PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
2767
2768         pm->pm_state = PMC_STATE_STOPPED;
2769
2770         /*
2771          * If the PMC is a virtual mode one, changing the state to
2772          * non-RUNNING is enough to ensure that the PMC never gets
2773          * scheduled.
2774          *
2775          * If this PMC is current running on a CPU, then it will
2776          * handled correctly at the time its target process is context
2777          * switched out.
2778          */
2779
2780         if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
2781                 return 0;
2782
2783         /*
2784          * A system-mode PMC.  Move to the CPU associated with
2785          * this PMC, and stop the hardware.  We update the
2786          * 'initial count' so that a subsequent PMCSTART will
2787          * resume counting from the current hardware count.
2788          */
2789
2790         pmc_save_cpu_binding(&pb);
2791
2792         cpu = PMC_TO_CPU(pm);
2793
2794         KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
2795             ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
2796
2797         if (!pmc_cpu_is_active(cpu))
2798                 return ENXIO;
2799
2800         pmc_select_cpu(cpu);
2801
2802         ri = PMC_TO_ROWINDEX(pm);
2803         pcd = pmc_ri_to_classdep(md, ri, &adjri);
2804
2805         CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
2806         critical_enter();
2807         if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
2808                 error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
2809         critical_exit();
2810
2811         pmc_restore_cpu_binding(&pb);
2812
2813         po = pm->pm_owner;
2814
2815         /* remove this owner from the global list of SS PMC owners */
2816         if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
2817                 po->po_sscount--;
2818                 if (po->po_sscount == 0) {
2819                         atomic_subtract_rel_int(&pmc_ss_count, 1);
2820                         LIST_REMOVE(po, po_ssnext);
2821                         PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po);
2822                 }
2823         }
2824
2825         return (error);
2826 }
2827
2828
2829 #ifdef  HWPMC_DEBUG
2830 static const char *pmc_op_to_name[] = {
2831 #undef  __PMC_OP
2832 #define __PMC_OP(N, D)  #N ,
2833         __PMC_OPS()
2834         NULL
2835 };
2836 #endif
2837
2838 /*
2839  * The syscall interface
2840  */
2841
2842 #define PMC_GET_SX_XLOCK(...) do {              \
2843         sx_xlock(&pmc_sx);                      \
2844         if (pmc_hook == NULL) {                 \
2845                 sx_xunlock(&pmc_sx);            \
2846                 return __VA_ARGS__;             \
2847         }                                       \
2848 } while (0)
2849
2850 #define PMC_DOWNGRADE_SX() do {                 \
2851         sx_downgrade(&pmc_sx);                  \
2852         is_sx_downgraded = 1;                   \
2853 } while (0)
2854
2855 static int
2856 pmc_syscall_handler(struct thread *td, void *syscall_args)
2857 {
2858         int error, is_sx_downgraded, op;
2859         struct pmc_syscall_args *c;
2860         void *pmclog_proc_handle;
2861         void *arg;
2862
2863         c = (struct pmc_syscall_args *)syscall_args;
2864         op = c->pmop_code;
2865         arg = c->pmop_data;
2866         if (op == PMC_OP_CONFIGURELOG) {
2867                 /*
2868                  * We cannot create the logging process inside
2869                  * pmclog_configure_log() because there is a LOR
2870                  * between pmc_sx and process structure locks.
2871                  * Instead, pre-create the process and ignite the loop
2872                  * if everything is fine, otherwise direct the process
2873                  * to exit.
2874                  */
2875                 error = pmclog_proc_create(td, &pmclog_proc_handle);
2876                 if (error != 0)
2877                         goto done_syscall;
2878         }
2879
2880         PMC_GET_SX_XLOCK(ENOSYS);
2881         is_sx_downgraded = 0;
2882
2883         PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
2884             pmc_op_to_name[op], arg);
2885
2886         error = 0;
2887         atomic_add_int(&pmc_stats.pm_syscalls, 1);
2888
2889         switch (op) {
2890
2891
2892         /*
2893          * Configure a log file.
2894          *
2895          * XXX This OP will be reworked.
2896          */
2897
2898         case PMC_OP_CONFIGURELOG:
2899         {
2900                 struct proc *p;
2901                 struct pmc *pm;
2902                 struct pmc_owner *po;
2903                 struct pmc_op_configurelog cl;
2904
2905                 if ((error = copyin(arg, &cl, sizeof(cl))) != 0) {
2906                         pmclog_proc_ignite(pmclog_proc_handle, NULL);
2907                         break;
2908                 }
2909
2910                 /* mark this process as owning a log file */
2911                 p = td->td_proc;
2912                 if ((po = pmc_find_owner_descriptor(p)) == NULL)
2913                         if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
2914                                 pmclog_proc_ignite(pmclog_proc_handle, NULL);
2915                                 error = ENOMEM;
2916                                 break;
2917                         }
2918
2919                 /*
2920                  * If a valid fd was passed in, try to configure that,
2921                  * otherwise if 'fd' was less than zero and there was
2922                  * a log file configured, flush its buffers and
2923                  * de-configure it.
2924                  */
2925                 if (cl.pm_logfd >= 0) {
2926                         error = pmclog_configure_log(md, po, cl.pm_logfd);
2927                         pmclog_proc_ignite(pmclog_proc_handle, error == 0 ?
2928                             po : NULL);
2929                 } else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
2930                         pmclog_proc_ignite(pmclog_proc_handle, NULL);
2931                         error = pmclog_close(po);
2932                         if (error == 0) {
2933                                 LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2934                                     if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
2935                                         pm->pm_state == PMC_STATE_RUNNING)
2936                                             pmc_stop(pm);
2937                                 error = pmclog_deconfigure_log(po);
2938                         }
2939                 } else {
2940                         pmclog_proc_ignite(pmclog_proc_handle, NULL);
2941                         error = EINVAL;
2942                 }
2943         }
2944         break;
2945
2946         /*
2947          * Flush a log file.
2948          */
2949
2950         case PMC_OP_FLUSHLOG:
2951         {
2952                 struct pmc_owner *po;
2953
2954                 sx_assert(&pmc_sx, SX_XLOCKED);
2955
2956                 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2957                         error = EINVAL;
2958                         break;
2959                 }
2960
2961                 error = pmclog_flush(po);
2962         }
2963         break;
2964
2965         /*
2966          * Close a log file.
2967          */
2968
2969         case PMC_OP_CLOSELOG:
2970         {
2971                 struct pmc_owner *po;
2972
2973                 sx_assert(&pmc_sx, SX_XLOCKED);
2974
2975                 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
2976                         error = EINVAL;
2977                         break;
2978                 }
2979
2980                 error = pmclog_close(po);
2981         }
2982         break;
2983
2984         /*
2985          * Retrieve hardware configuration.
2986          */
2987
2988         case PMC_OP_GETCPUINFO: /* CPU information */
2989         {
2990                 struct pmc_op_getcpuinfo gci;
2991                 struct pmc_classinfo *pci;
2992                 struct pmc_classdep *pcd;
2993                 int cl;
2994
2995                 gci.pm_cputype = md->pmd_cputype;
2996                 gci.pm_ncpu    = pmc_cpu_max();
2997                 gci.pm_npmc    = md->pmd_npmc;
2998                 gci.pm_nclass  = md->pmd_nclass;
2999                 pci = gci.pm_classes;
3000                 pcd = md->pmd_classdep;
3001                 for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
3002                         pci->pm_caps  = pcd->pcd_caps;
3003                         pci->pm_class = pcd->pcd_class;
3004                         pci->pm_width = pcd->pcd_width;
3005                         pci->pm_num   = pcd->pcd_num;
3006                 }
3007                 error = copyout(&gci, arg, sizeof(gci));
3008         }
3009         break;
3010
3011         /*
3012          * Retrieve soft events list.
3013          */
3014         case PMC_OP_GETDYNEVENTINFO:
3015         {
3016                 enum pmc_class                  cl;
3017                 enum pmc_event                  ev;
3018                 struct pmc_op_getdyneventinfo   *gei;
3019                 struct pmc_dyn_event_descr      dev;
3020                 struct pmc_soft                 *ps;
3021                 uint32_t                        nevent;
3022
3023                 sx_assert(&pmc_sx, SX_LOCKED);
3024
3025                 gei = (struct pmc_op_getdyneventinfo *) arg;
3026
3027                 if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
3028                         break;
3029
3030                 /* Only SOFT class is dynamic. */
3031                 if (cl != PMC_CLASS_SOFT) {
3032                         error = EINVAL;
3033                         break;
3034                 }
3035
3036                 nevent = 0;
3037                 for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
3038                         ps = pmc_soft_ev_acquire(ev);
3039                         if (ps == NULL)
3040                                 continue;
3041                         bcopy(&ps->ps_ev, &dev, sizeof(dev));
3042                         pmc_soft_ev_release(ps);
3043
3044                         error = copyout(&dev,
3045                             &gei->pm_events[nevent],
3046                             sizeof(struct pmc_dyn_event_descr));
3047                         if (error != 0)
3048                                 break;
3049                         nevent++;
3050                 }
3051                 if (error != 0)
3052                         break;
3053
3054                 error = copyout(&nevent, &gei->pm_nevent,
3055                     sizeof(nevent));
3056         }
3057         break;
3058
3059         /*
3060          * Get module statistics
3061          */
3062
3063         case PMC_OP_GETDRIVERSTATS:
3064         {
3065                 struct pmc_op_getdriverstats gms;
3066
3067                 bcopy(&pmc_stats, &gms, sizeof(gms));
3068                 error = copyout(&gms, arg, sizeof(gms));
3069         }
3070         break;
3071
3072
3073         /*
3074          * Retrieve module version number
3075          */
3076
3077         case PMC_OP_GETMODULEVERSION:
3078         {
3079                 uint32_t cv, modv;
3080
3081                 /* retrieve the client's idea of the ABI version */
3082                 if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
3083                         break;
3084                 /* don't service clients newer than our driver */
3085                 modv = PMC_VERSION;
3086                 if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
3087                         error = EPROGMISMATCH;
3088                         break;
3089                 }
3090                 error = copyout(&modv, arg, sizeof(int));
3091         }
3092         break;
3093
3094
3095         /*
3096          * Retrieve the state of all the PMCs on a given
3097          * CPU.
3098          */
3099
3100         case PMC_OP_GETPMCINFO:
3101         {
3102                 int ari;
3103                 struct pmc *pm;
3104                 size_t pmcinfo_size;
3105                 uint32_t cpu, n, npmc;
3106                 struct pmc_owner *po;
3107                 struct pmc_binding pb;
3108                 struct pmc_classdep *pcd;
3109                 struct pmc_info *p, *pmcinfo;
3110                 struct pmc_op_getpmcinfo *gpi;
3111
3112                 PMC_DOWNGRADE_SX();
3113
3114                 gpi = (struct pmc_op_getpmcinfo *) arg;
3115
3116                 if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
3117                         break;
3118
3119                 if (cpu >= pmc_cpu_max()) {
3120                         error = EINVAL;
3121                         break;
3122                 }
3123
3124                 if (!pmc_cpu_is_active(cpu)) {
3125                         error = ENXIO;
3126                         break;
3127                 }
3128
3129                 /* switch to CPU 'cpu' */
3130                 pmc_save_cpu_binding(&pb);
3131                 pmc_select_cpu(cpu);
3132
3133                 npmc = md->pmd_npmc;
3134
3135                 pmcinfo_size = npmc * sizeof(struct pmc_info);
3136                 pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK);
3137
3138                 p = pmcinfo;
3139
3140                 for (n = 0; n < md->pmd_npmc; n++, p++) {
3141
3142                         pcd = pmc_ri_to_classdep(md, n, &ari);
3143
3144                         KASSERT(pcd != NULL,
3145                             ("[pmc,%d] null pcd ri=%d", __LINE__, n));
3146
3147                         if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
3148                                 break;
3149
3150                         if (PMC_ROW_DISP_IS_STANDALONE(n))
3151                                 p->pm_rowdisp = PMC_DISP_STANDALONE;
3152                         else if (PMC_ROW_DISP_IS_THREAD(n))
3153                                 p->pm_rowdisp = PMC_DISP_THREAD;
3154                         else
3155                                 p->pm_rowdisp = PMC_DISP_FREE;
3156
3157                         p->pm_ownerpid = -1;
3158
3159                         if (pm == NULL) /* no PMC associated */
3160                                 continue;
3161
3162                         po = pm->pm_owner;
3163
3164                         KASSERT(po->po_owner != NULL,
3165                             ("[pmc,%d] pmc_owner had a null proc pointer",
3166                                 __LINE__));
3167
3168                         p->pm_ownerpid = po->po_owner->p_pid;
3169                         p->pm_mode     = PMC_TO_MODE(pm);
3170                         p->pm_event    = pm->pm_event;
3171                         p->pm_flags    = pm->pm_flags;
3172
3173                         if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3174                                 p->pm_reloadcount =
3175                                     pm->pm_sc.pm_reloadcount;
3176                 }
3177
3178                 pmc_restore_cpu_binding(&pb);
3179
3180                 /* now copy out the PMC info collected */
3181                 if (error == 0)
3182                         error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
3183
3184                 free(pmcinfo, M_PMC);
3185         }
3186         break;
3187
3188
3189         /*
3190          * Set the administrative state of a PMC.  I.e. whether
3191          * the PMC is to be used or not.
3192          */
3193
3194         case PMC_OP_PMCADMIN:
3195         {
3196                 int cpu, ri;
3197                 enum pmc_state request;
3198                 struct pmc_cpu *pc;
3199                 struct pmc_hw *phw;
3200                 struct pmc_op_pmcadmin pma;
3201                 struct pmc_binding pb;
3202
3203                 sx_assert(&pmc_sx, SX_XLOCKED);
3204
3205                 KASSERT(td == curthread,
3206                     ("[pmc,%d] td != curthread", __LINE__));
3207
3208                 error = priv_check(td, PRIV_PMC_MANAGE);
3209                 if (error)
3210                         break;
3211
3212                 if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
3213                         break;
3214
3215                 cpu = pma.pm_cpu;
3216
3217                 if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
3218                         error = EINVAL;
3219                         break;
3220                 }
3221
3222                 if (!pmc_cpu_is_active(cpu)) {
3223                         error = ENXIO;
3224                         break;
3225                 }
3226
3227                 request = pma.pm_state;
3228
3229                 if (request != PMC_STATE_DISABLED &&
3230                     request != PMC_STATE_FREE) {
3231                         error = EINVAL;
3232                         break;
3233                 }
3234
3235                 ri = pma.pm_pmc; /* pmc id == row index */
3236                 if (ri < 0 || ri >= (int) md->pmd_npmc) {
3237                         error = EINVAL;
3238                         break;
3239                 }
3240
3241                 /*
3242                  * We can't disable a PMC with a row-index allocated
3243                  * for process virtual PMCs.
3244                  */
3245
3246                 if (PMC_ROW_DISP_IS_THREAD(ri) &&
3247                     request == PMC_STATE_DISABLED) {
3248                         error = EBUSY;
3249                         break;
3250                 }
3251
3252                 /*
3253                  * otherwise, this PMC on this CPU is either free or
3254                  * in system-wide mode.
3255                  */
3256
3257                 pmc_save_cpu_binding(&pb);
3258                 pmc_select_cpu(cpu);
3259
3260                 pc  = pmc_pcpu[cpu];
3261                 phw = pc->pc_hwpmcs[ri];
3262
3263                 /*
3264                  * XXX do we need some kind of 'forced' disable?
3265                  */
3266
3267                 if (phw->phw_pmc == NULL) {
3268                         if (request == PMC_STATE_DISABLED &&
3269                             (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
3270                                 phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
3271                                 PMC_MARK_ROW_STANDALONE(ri);
3272                         } else if (request == PMC_STATE_FREE &&
3273                             (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
3274                                 phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
3275                                 PMC_UNMARK_ROW_STANDALONE(ri);
3276                         }
3277                         /* other cases are a no-op */
3278                 } else
3279                         error = EBUSY;
3280
3281                 pmc_restore_cpu_binding(&pb);
3282         }
3283         break;
3284
3285
3286         /*
3287          * Allocate a PMC.
3288          */
3289
3290         case PMC_OP_PMCALLOCATE:
3291         {
3292                 int adjri, n;
3293                 u_int cpu;
3294                 uint32_t caps;
3295                 struct pmc *pmc;
3296                 enum pmc_mode mode;
3297                 struct pmc_hw *phw;
3298                 struct pmc_binding pb;
3299                 struct pmc_classdep *pcd;
3300                 struct pmc_op_pmcallocate pa;
3301
3302                 if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
3303                         break;
3304
3305                 caps = pa.pm_caps;
3306                 mode = pa.pm_mode;
3307                 cpu  = pa.pm_cpu;
3308
3309                 if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
3310                      mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
3311                     (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
3312                         error = EINVAL;
3313                         break;
3314                 }
3315
3316                 /*
3317                  * Virtual PMCs should only ask for a default CPU.
3318                  * System mode PMCs need to specify a non-default CPU.
3319                  */
3320
3321                 if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
3322                     (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
3323                         error = EINVAL;
3324                         break;
3325                 }
3326
3327                 /*
3328                  * Check that an inactive CPU is not being asked for.
3329                  */
3330
3331                 if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
3332                         error = ENXIO;
3333                         break;
3334                 }
3335
3336                 /*
3337                  * Refuse an allocation for a system-wide PMC if this
3338                  * process has been jailed, or if this process lacks
3339                  * super-user credentials and the sysctl tunable
3340                  * 'security.bsd.unprivileged_syspmcs' is zero.
3341                  */
3342
3343                 if (PMC_IS_SYSTEM_MODE(mode)) {
3344                         if (jailed(curthread->td_ucred)) {
3345                                 error = EPERM;
3346                                 break;
3347                         }
3348                         if (!pmc_unprivileged_syspmcs) {
3349                                 error = priv_check(curthread,
3350                                     PRIV_PMC_SYSTEM);
3351                                 if (error)
3352                                         break;
3353                         }
3354                 }
3355
3356                 /*
3357                  * Look for valid values for 'pm_flags'
3358                  */
3359
3360                 if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3361                     PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN)) != 0) {
3362                         error = EINVAL;
3363                         break;
3364                 }
3365
3366                 /* process logging options are not allowed for system PMCs */
3367                 if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
3368                     (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
3369                         error = EINVAL;
3370                         break;
3371                 }
3372
3373                 /*
3374                  * All sampling mode PMCs need to be able to interrupt the
3375                  * CPU.
3376                  */
3377                 if (PMC_IS_SAMPLING_MODE(mode))
3378                         caps |= PMC_CAP_INTERRUPT;
3379
3380                 /* A valid class specifier should have been passed in. */
3381                 for (n = 0; n < md->pmd_nclass; n++)
3382                         if (md->pmd_classdep[n].pcd_class == pa.pm_class)
3383                                 break;
3384                 if (n == md->pmd_nclass) {
3385                         error = EINVAL;
3386                         break;
3387                 }
3388
3389                 /* The requested PMC capabilities should be feasible. */
3390                 if ((md->pmd_classdep[n].pcd_caps & caps) != caps) {
3391                         error = EOPNOTSUPP;
3392                         break;
3393                 }
3394
3395                 PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
3396                     pa.pm_ev, caps, mode, cpu);
3397
3398                 pmc = pmc_allocate_pmc_descriptor();
3399                 pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
3400                     PMC_ID_INVALID);
3401                 pmc->pm_event = pa.pm_ev;
3402                 pmc->pm_state = PMC_STATE_FREE;
3403                 pmc->pm_caps  = caps;
3404                 pmc->pm_flags = pa.pm_flags;
3405
3406                 /* switch thread to CPU 'cpu' */
3407                 pmc_save_cpu_binding(&pb);
3408
3409 #define PMC_IS_SHAREABLE_PMC(cpu, n)                            \
3410         (pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &           \
3411          PMC_PHW_FLAG_IS_SHAREABLE)
3412 #define PMC_IS_UNALLOCATED(cpu, n)                              \
3413         (pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3414
3415                 if (PMC_IS_SYSTEM_MODE(mode)) {
3416                         pmc_select_cpu(cpu);
3417                         for (n = 0; n < (int) md->pmd_npmc; n++) {
3418                                 pcd = pmc_ri_to_classdep(md, n, &adjri);
3419                                 if (pmc_can_allocate_row(n, mode) == 0 &&
3420                                     pmc_can_allocate_rowindex(
3421                                             curthread->td_proc, n, cpu) == 0 &&
3422                                     (PMC_IS_UNALLOCATED(cpu, n) ||
3423                                      PMC_IS_SHAREABLE_PMC(cpu, n)) &&
3424                                     pcd->pcd_allocate_pmc(cpu, adjri, pmc,
3425                                         &pa) == 0)
3426                                         break;
3427                         }
3428                 } else {
3429                         /* Process virtual mode */
3430                         for (n = 0; n < (int) md->pmd_npmc; n++) {
3431                                 pcd = pmc_ri_to_classdep(md, n, &adjri);
3432                                 if (pmc_can_allocate_row(n, mode) == 0 &&
3433                                     pmc_can_allocate_rowindex(
3434                                             curthread->td_proc, n,
3435                                             PMC_CPU_ANY) == 0 &&
3436                                     pcd->pcd_allocate_pmc(curthread->td_oncpu,
3437                                         adjri, pmc, &pa) == 0)
3438                                         break;
3439                         }
3440                 }
3441
3442 #undef  PMC_IS_UNALLOCATED
3443 #undef  PMC_IS_SHAREABLE_PMC
3444
3445                 pmc_restore_cpu_binding(&pb);
3446
3447                 if (n == (int) md->pmd_npmc) {
3448                         pmc_destroy_pmc_descriptor(pmc);
3449                         pmc = NULL;
3450                         error = EINVAL;
3451                         break;
3452                 }
3453
3454                 /* Fill in the correct value in the ID field */
3455                 pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
3456
3457                 PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
3458                     pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
3459
3460                 /* Process mode PMCs with logging enabled need log files */
3461                 if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
3462                         pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3463
3464                 /* All system mode sampling PMCs require a log file */
3465                 if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
3466                         pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3467
3468                 /*
3469                  * Configure global pmc's immediately
3470                  */
3471
3472                 if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
3473
3474                         pmc_save_cpu_binding(&pb);
3475                         pmc_select_cpu(cpu);
3476
3477                         phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
3478                         pcd = pmc_ri_to_classdep(md, n, &adjri);
3479
3480                         if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
3481                             (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
3482                                 (void) pcd->pcd_release_pmc(cpu, adjri, pmc);
3483                                 pmc_destroy_pmc_descriptor(pmc);
3484                                 pmc = NULL;
3485                                 pmc_restore_cpu_binding(&pb);
3486                                 error = EPERM;
3487                                 break;
3488                         }
3489
3490                         pmc_restore_cpu_binding(&pb);
3491                 }
3492
3493                 pmc->pm_state    = PMC_STATE_ALLOCATED;
3494
3495                 /*
3496                  * mark row disposition
3497                  */
3498
3499                 if (PMC_IS_SYSTEM_MODE(mode))
3500                         PMC_MARK_ROW_STANDALONE(n);
3501                 else
3502                         PMC_MARK_ROW_THREAD(n);
3503
3504                 /*
3505                  * Register this PMC with the current thread as its owner.
3506                  */
3507
3508                 if ((error =
3509                     pmc_register_owner(curthread->td_proc, pmc)) != 0) {
3510                         pmc_release_pmc_descriptor(pmc);
3511                         pmc_destroy_pmc_descriptor(pmc);
3512                         pmc = NULL;
3513                         break;
3514                 }
3515
3516                 /*
3517                  * Return the allocated index.
3518                  */
3519
3520                 pa.pm_pmcid = pmc->pm_id;
3521
3522                 error = copyout(&pa, arg, sizeof(pa));
3523         }
3524         break;
3525
3526
3527         /*
3528          * Attach a PMC to a process.
3529          */
3530
3531         case PMC_OP_PMCATTACH:
3532         {
3533                 struct pmc *pm;
3534                 struct proc *p;
3535                 struct pmc_op_pmcattach a;
3536
3537                 sx_assert(&pmc_sx, SX_XLOCKED);
3538
3539                 if ((error = copyin(arg, &a, sizeof(a))) != 0)
3540                         break;
3541
3542                 if (a.pm_pid < 0) {
3543                         error = EINVAL;
3544                         break;
3545                 } else if (a.pm_pid == 0)
3546                         a.pm_pid = td->td_proc->p_pid;
3547
3548                 if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3549                         break;
3550
3551                 if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
3552                         error = EINVAL;
3553                         break;
3554                 }
3555
3556                 /* PMCs may be (re)attached only when allocated or stopped */
3557                 if (pm->pm_state == PMC_STATE_RUNNING) {
3558                         error = EBUSY;
3559                         break;
3560                 } else if (pm->pm_state != PMC_STATE_ALLOCATED &&
3561                     pm->pm_state != PMC_STATE_STOPPED) {
3562                         error = EINVAL;
3563                         break;
3564                 }
3565
3566                 /* lookup pid */
3567                 if ((p = pfind(a.pm_pid)) == NULL) {
3568                         error = ESRCH;
3569                         break;
3570                 }
3571
3572                 /*
3573                  * Ignore processes that are working on exiting.
3574                  */
3575                 if (p->p_flag & P_WEXIT) {
3576                         error = ESRCH;
3577                         PROC_UNLOCK(p); /* pfind() returns a locked process */
3578                         break;
3579                 }
3580
3581                 /*
3582                  * we are allowed to attach a PMC to a process if
3583                  * we can debug it.
3584                  */
3585                 error = p_candebug(curthread, p);
3586
3587                 PROC_UNLOCK(p);
3588
3589                 if (error == 0)
3590                         error = pmc_attach_process(p, pm);
3591         }
3592         break;
3593
3594
3595         /*
3596          * Detach an attached PMC from a process.
3597          */
3598
3599         case PMC_OP_PMCDETACH:
3600         {
3601                 struct pmc *pm;
3602                 struct proc *p;
3603                 struct pmc_op_pmcattach a;
3604
3605                 if ((error = copyin(arg, &a, sizeof(a))) != 0)
3606                         break;
3607
3608                 if (a.pm_pid < 0) {
3609                         error = EINVAL;
3610                         break;
3611                 } else if (a.pm_pid == 0)
3612                         a.pm_pid = td->td_proc->p_pid;
3613
3614                 if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3615                         break;
3616
3617                 if ((p = pfind(a.pm_pid)) == NULL) {
3618                         error = ESRCH;
3619                         break;
3620                 }
3621
3622                 /*
3623                  * Treat processes that are in the process of exiting
3624                  * as if they were not present.
3625                  */
3626
3627                 if (p->p_flag & P_WEXIT)
3628                         error = ESRCH;
3629
3630                 PROC_UNLOCK(p); /* pfind() returns a locked process */
3631
3632                 if (error == 0)
3633                         error = pmc_detach_process(p, pm);
3634         }
3635         break;
3636
3637
3638         /*
3639          * Retrieve the MSR number associated with the counter
3640          * 'pmc_id'.  This allows processes to directly use RDPMC
3641          * instructions to read their PMCs, without the overhead of a
3642          * system call.
3643          */
3644
3645         case PMC_OP_PMCGETMSR:
3646         {
3647                 int adjri, ri;
3648                 struct pmc *pm;
3649                 struct pmc_target *pt;
3650                 struct pmc_op_getmsr gm;
3651                 struct pmc_classdep *pcd;
3652
3653                 PMC_DOWNGRADE_SX();
3654
3655                 if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
3656                         break;
3657
3658                 if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
3659                         break;
3660
3661                 /*
3662                  * The allocated PMC has to be a process virtual PMC,
3663                  * i.e., of type MODE_T[CS].  Global PMCs can only be
3664                  * read using the PMCREAD operation since they may be
3665                  * allocated on a different CPU than the one we could
3666                  * be running on at the time of the RDPMC instruction.
3667                  *
3668                  * The GETMSR operation is not allowed for PMCs that
3669                  * are inherited across processes.
3670                  */
3671
3672                 if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
3673                     (pm->pm_flags & PMC_F_DESCENDANTS)) {
3674                         error = EINVAL;
3675                         break;
3676                 }
3677
3678                 /*
3679                  * It only makes sense to use a RDPMC (or its
3680                  * equivalent instruction on non-x86 architectures) on
3681                  * a process that has allocated and attached a PMC to
3682                  * itself.  Conversely the PMC is only allowed to have
3683                  * one process attached to it -- its owner.
3684                  */
3685
3686                 if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
3687                     LIST_NEXT(pt, pt_next) != NULL ||
3688                     pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
3689                         error = EINVAL;
3690                         break;
3691                 }
3692
3693                 ri = PMC_TO_ROWINDEX(pm);
3694                 pcd = pmc_ri_to_classdep(md, ri, &adjri);
3695
3696                 /* PMC class has no 'GETMSR' support */
3697                 if (pcd->pcd_get_msr == NULL) {
3698                         error = ENOSYS;
3699                         break;
3700                 }
3701
3702                 if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
3703                         break;
3704
3705                 if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
3706                         break;
3707
3708                 /*
3709                  * Mark our process as using MSRs.  Update machine
3710                  * state using a forced context switch.
3711                  */
3712
3713                 pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
3714                 pmc_force_context_switch();
3715
3716         }
3717         break;
3718
3719         /*
3720          * Release an allocated PMC
3721          */
3722
3723         case PMC_OP_PMCRELEASE:
3724         {
3725                 pmc_id_t pmcid;
3726                 struct pmc *pm;
3727                 struct pmc_owner *po;
3728                 struct pmc_op_simple sp;
3729
3730                 /*
3731                  * Find PMC pointer for the named PMC.
3732                  *
3733                  * Use pmc_release_pmc_descriptor() to switch off the
3734                  * PMC, remove all its target threads, and remove the
3735                  * PMC from its owner's list.
3736                  *
3737                  * Remove the owner record if this is the last PMC
3738                  * owned.
3739                  *
3740                  * Free up space.
3741                  */
3742
3743                 if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3744                         break;
3745
3746                 pmcid = sp.pm_pmcid;
3747
3748                 if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3749                         break;
3750
3751                 po = pm->pm_owner;
3752                 pmc_release_pmc_descriptor(pm);
3753                 pmc_maybe_remove_owner(po);
3754                 pmc_destroy_pmc_descriptor(pm);
3755         }
3756         break;
3757
3758
3759         /*
3760          * Read and/or write a PMC.
3761          */
3762
3763         case PMC_OP_PMCRW:
3764         {
3765                 int adjri;
3766                 struct pmc *pm;
3767                 uint32_t cpu, ri;
3768                 pmc_value_t oldvalue;
3769                 struct pmc_binding pb;
3770                 struct pmc_op_pmcrw prw;
3771                 struct pmc_classdep *pcd;
3772                 struct pmc_op_pmcrw *pprw;
3773
3774                 PMC_DOWNGRADE_SX();
3775
3776                 if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
3777                         break;
3778
3779                 ri = 0;
3780                 PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
3781                     prw.pm_flags);
3782
3783                 /* must have at least one flag set */
3784                 if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
3785                         error = EINVAL;
3786                         break;
3787                 }
3788
3789                 /* locate pmc descriptor */
3790                 if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
3791                         break;
3792
3793                 /* Can't read a PMC that hasn't been started. */
3794                 if (pm->pm_state != PMC_STATE_ALLOCATED &&
3795                     pm->pm_state != PMC_STATE_STOPPED &&
3796                     pm->pm_state != PMC_STATE_RUNNING) {
3797                         error = EINVAL;
3798                         break;
3799                 }
3800
3801                 /* writing a new value is allowed only for 'STOPPED' pmcs */
3802                 if (pm->pm_state == PMC_STATE_RUNNING &&
3803                     (prw.pm_flags & PMC_F_NEWVALUE)) {
3804                         error = EBUSY;
3805                         break;
3806                 }
3807
3808                 if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
3809
3810                         /*
3811                          * If this PMC is attached to its owner (i.e.,
3812                          * the process requesting this operation) and
3813                          * is running, then attempt to get an
3814                          * upto-date reading from hardware for a READ.
3815                          * Writes are only allowed when the PMC is
3816                          * stopped, so only update the saved value
3817                          * field.
3818                          *
3819                          * If the PMC is not running, or is not
3820                          * attached to its owner, read/write to the
3821                          * savedvalue field.
3822                          */
3823
3824                         ri = PMC_TO_ROWINDEX(pm);
3825                         pcd = pmc_ri_to_classdep(md, ri, &adjri);
3826
3827                         mtx_pool_lock_spin(pmc_mtxpool, pm);
3828                         cpu = curthread->td_oncpu;
3829
3830                         if (prw.pm_flags & PMC_F_OLDVALUE) {
3831                                 if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
3832                                     (pm->pm_state == PMC_STATE_RUNNING))
3833                                         error = (*pcd->pcd_read_pmc)(cpu, adjri,
3834                                             &oldvalue);
3835                                 else
3836                                         oldvalue = pm->pm_gv.pm_savedvalue;
3837                         }
3838                         if (prw.pm_flags & PMC_F_NEWVALUE)
3839                                 pm->pm_gv.pm_savedvalue = prw.pm_value;
3840
3841                         mtx_pool_unlock_spin(pmc_mtxpool, pm);
3842
3843                 } else { /* System mode PMCs */
3844                         cpu = PMC_TO_CPU(pm);
3845                         ri  = PMC_TO_ROWINDEX(pm);
3846                         pcd = pmc_ri_to_classdep(md, ri, &adjri);
3847
3848                         if (!pmc_cpu_is_active(cpu)) {
3849                                 error = ENXIO;
3850                                 break;
3851                         }
3852
3853                         /* move this thread to CPU 'cpu' */
3854                         pmc_save_cpu_binding(&pb);
3855                         pmc_select_cpu(cpu);
3856
3857                         critical_enter();
3858                         /* save old value */
3859                         if (prw.pm_flags & PMC_F_OLDVALUE)
3860                                 if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
3861                                          &oldvalue)))
3862                                         goto error;
3863                         /* write out new value */
3864                         if (prw.pm_flags & PMC_F_NEWVALUE)
3865                                 error = (*pcd->pcd_write_pmc)(cpu, adjri,
3866                                     prw.pm_value);
3867                 error:
3868                         critical_exit();
3869                         pmc_restore_cpu_binding(&pb);
3870                         if (error)
3871                                 break;
3872                 }
3873
3874                 pprw = (struct pmc_op_pmcrw *) arg;
3875
3876 #ifdef  HWPMC_DEBUG
3877                 if (prw.pm_flags & PMC_F_NEWVALUE)
3878                         PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
3879                             ri, prw.pm_value, oldvalue);
3880                 else if (prw.pm_flags & PMC_F_OLDVALUE)
3881                         PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
3882 #endif
3883
3884                 /* return old value if requested */
3885                 if (prw.pm_flags & PMC_F_OLDVALUE)
3886                         if ((error = copyout(&oldvalue, &pprw->pm_value,
3887                                  sizeof(prw.pm_value))))
3888                                 break;
3889
3890         }
3891         break;
3892
3893
3894         /*
3895          * Set the sampling rate for a sampling mode PMC and the
3896          * initial count for a counting mode PMC.
3897          */
3898
3899         case PMC_OP_PMCSETCOUNT:
3900         {
3901                 struct pmc *pm;
3902                 struct pmc_op_pmcsetcount sc;
3903
3904                 PMC_DOWNGRADE_SX();
3905
3906                 if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
3907                         break;
3908
3909                 if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
3910                         break;
3911
3912                 if (pm->pm_state == PMC_STATE_RUNNING) {
3913                         error = EBUSY;
3914                         break;
3915                 }
3916
3917                 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3918                         pm->pm_sc.pm_reloadcount = sc.pm_count;
3919                 else
3920                         pm->pm_sc.pm_initial = sc.pm_count;
3921         }
3922         break;
3923
3924
3925         /*
3926          * Start a PMC.
3927          */
3928
3929         case PMC_OP_PMCSTART:
3930         {
3931                 pmc_id_t pmcid;
3932                 struct pmc *pm;
3933                 struct pmc_op_simple sp;
3934
3935                 sx_assert(&pmc_sx, SX_XLOCKED);
3936
3937                 if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3938                         break;
3939
3940                 pmcid = sp.pm_pmcid;
3941
3942                 if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3943                         break;
3944
3945                 KASSERT(pmcid == pm->pm_id,
3946                     ("[pmc,%d] pmcid %x != id %x", __LINE__,
3947                         pm->pm_id, pmcid));
3948
3949                 if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
3950                         break;
3951                 else if (pm->pm_state != PMC_STATE_STOPPED &&
3952                     pm->pm_state != PMC_STATE_ALLOCATED) {
3953                         error = EINVAL;
3954                         break;
3955                 }
3956
3957                 error = pmc_start(pm);
3958         }
3959         break;
3960
3961
3962         /*
3963          * Stop a PMC.
3964          */
3965
3966         case PMC_OP_PMCSTOP:
3967         {
3968                 pmc_id_t pmcid;
3969                 struct pmc *pm;
3970                 struct pmc_op_simple sp;
3971
3972                 PMC_DOWNGRADE_SX();
3973
3974                 if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
3975                         break;
3976
3977                 pmcid = sp.pm_pmcid;
3978
3979                 /*
3980                  * Mark the PMC as inactive and invoke the MD stop
3981                  * routines if needed.
3982                  */
3983
3984                 if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
3985                         break;
3986
3987                 KASSERT(pmcid == pm->pm_id,
3988                     ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
3989                         pm->pm_id, pmcid));
3990
3991                 if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
3992                         break;
3993                 else if (pm->pm_state != PMC_STATE_RUNNING) {
3994                         error = EINVAL;
3995                         break;
3996                 }
3997
3998                 error = pmc_stop(pm);
3999         }
4000         break;
4001
4002
4003         /*
4004          * Write a user supplied value to the log file.
4005          */
4006
4007         case PMC_OP_WRITELOG:
4008         {
4009                 struct pmc_op_writelog wl;
4010                 struct pmc_owner *po;
4011
4012                 PMC_DOWNGRADE_SX();
4013
4014                 if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
4015                         break;
4016
4017                 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
4018                         error = EINVAL;
4019                         break;
4020                 }
4021
4022                 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
4023                         error = EINVAL;
4024                         break;
4025                 }
4026
4027                 error = pmclog_process_userlog(po, &wl);
4028         }
4029         break;
4030
4031
4032         default:
4033                 error = EINVAL;
4034                 break;
4035         }
4036
4037         if (is_sx_downgraded)
4038                 sx_sunlock(&pmc_sx);
4039         else
4040                 sx_xunlock(&pmc_sx);
4041 done_syscall:
4042         if (error)
4043                 atomic_add_int(&pmc_stats.pm_syscall_errors, 1);
4044
4045         return (error);
4046 }
4047
4048 /*
4049  * Helper functions
4050  */
4051
4052
4053 /*
4054  * Mark the thread as needing callchain capture and post an AST.  The
4055  * actual callchain capture will be done in a context where it is safe
4056  * to take page faults.
4057  */
4058
4059 static void
4060 pmc_post_callchain_callback(void)
4061 {
4062         struct thread *td;
4063
4064         td = curthread;
4065
4066         /*
4067          * If there is multiple PMCs for the same interrupt ignore new post
4068          */
4069         if (td->td_pflags & TDP_CALLCHAIN)
4070                 return;
4071
4072         /*
4073          * Mark this thread as needing callchain capture.
4074          * `td->td_pflags' will be safe to touch because this thread
4075          * was in user space when it was interrupted.
4076          */
4077         td->td_pflags |= TDP_CALLCHAIN;
4078
4079         /*
4080          * Don't let this thread migrate between CPUs until callchain
4081          * capture completes.
4082          */
4083         sched_pin();
4084
4085         return;
4086 }
4087
4088 /*
4089  * Interrupt processing.
4090  *
4091  * Find a free slot in the per-cpu array of samples and capture the
4092  * current callchain there.  If a sample was successfully added, a bit
4093  * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4094  * needs to be invoked from the clock handler.
4095  *
4096  * This function is meant to be called from an NMI handler.  It cannot
4097  * use any of the locking primitives supplied by the OS.
4098  */
4099
4100 int
4101 pmc_process_interrupt(int cpu, int ring, struct pmc *pm, struct trapframe *tf,
4102     int inuserspace)
4103 {
4104         int error, callchaindepth;
4105         struct thread *td;
4106         struct pmc_sample *ps;
4107         struct pmc_samplebuffer *psb;
4108
4109         error = 0;
4110
4111         /*
4112          * Allocate space for a sample buffer.
4113          */
4114         psb = pmc_pcpu[cpu]->pc_sb[ring];
4115
4116         ps = psb->ps_write;
4117         if (ps->ps_nsamples) {  /* in use, reader hasn't caught up */
4118                 CPU_SET_ATOMIC(cpu, &pm->pm_stalled);
4119                 atomic_add_int(&pmc_stats.pm_intr_bufferfull, 1);
4120                 PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4121                     cpu, pm, (void *) tf, inuserspace,
4122                     (int) (psb->ps_write - psb->ps_samples),
4123                     (int) (psb->ps_read - psb->ps_samples));
4124                 callchaindepth = 1;
4125                 error = ENOMEM;
4126                 goto done;
4127         }
4128
4129
4130         /* Fill in entry. */
4131         PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
4132             (void *) tf, inuserspace,
4133             (int) (psb->ps_write - psb->ps_samples),
4134             (int) (psb->ps_read - psb->ps_samples));
4135
4136         KASSERT(pm->pm_runcount >= 0,
4137             ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4138                 pm->pm_runcount));
4139
4140         atomic_add_rel_int(&pm->pm_runcount, 1);        /* hold onto PMC */
4141
4142         ps->ps_pmc = pm;
4143         if ((td = curthread) && td->td_proc)
4144                 ps->ps_pid = td->td_proc->p_pid;
4145         else
4146                 ps->ps_pid = -1;
4147         ps->ps_cpu = cpu;
4148         ps->ps_td = td;
4149         ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4150
4151         callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4152             pmc_callchaindepth : 1;
4153
4154         if (callchaindepth == 1)
4155                 ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4156         else {
4157                 /*
4158                  * Kernel stack traversals can be done immediately,
4159                  * while we defer to an AST for user space traversals.
4160                  */
4161                 if (!inuserspace) {
4162                         callchaindepth =
4163                             pmc_save_kernel_callchain(ps->ps_pc,
4164                                 callchaindepth, tf);
4165                 } else {
4166                         pmc_post_callchain_callback();
4167                         callchaindepth = PMC_SAMPLE_INUSE;
4168                 }
4169         }
4170
4171         ps->ps_nsamples = callchaindepth;       /* mark entry as in use */
4172
4173         /* increment write pointer, modulo ring buffer size */
4174         ps++;
4175         if (ps == psb->ps_fence)
4176                 psb->ps_write = psb->ps_samples;
4177         else
4178                 psb->ps_write = ps;
4179
4180  done:
4181         /* mark CPU as needing processing */
4182         if (callchaindepth != PMC_SAMPLE_INUSE)
4183                 CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4184
4185         return (error);
4186 }
4187
4188 /*
4189  * Capture a user call chain.  This function will be called from ast()
4190  * before control returns to userland and before the process gets
4191  * rescheduled.
4192  */
4193
4194 static void
4195 pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4196 {
4197         struct pmc *pm;
4198         struct thread *td;
4199         struct pmc_sample *ps, *ps_end;
4200         struct pmc_samplebuffer *psb;
4201 #ifdef  INVARIANTS
4202         int ncallchains;
4203         int nfree;
4204 #endif
4205
4206         psb = pmc_pcpu[cpu]->pc_sb[ring];
4207         td = curthread;
4208
4209         KASSERT(td->td_pflags & TDP_CALLCHAIN,
4210             ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4211                 __LINE__));
4212
4213 #ifdef  INVARIANTS
4214         ncallchains = 0;
4215         nfree = 0;
4216 #endif
4217
4218         /*
4219          * Iterate through all deferred callchain requests.
4220          * Walk from the current read pointer to the current
4221          * write pointer.
4222          */
4223
4224         ps = psb->ps_read;
4225         ps_end = psb->ps_write;
4226         do {
4227 #ifdef  INVARIANTS
4228                 if ((ps->ps_pmc == NULL) ||
4229                     (ps->ps_pmc->pm_state != PMC_STATE_RUNNING))
4230                         nfree++;
4231 #endif
4232                 if (ps->ps_nsamples != PMC_SAMPLE_INUSE)
4233                         goto next;
4234                 if (ps->ps_td != td)
4235                         goto next;
4236
4237                 KASSERT(ps->ps_cpu == cpu,
4238                     ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4239                         ps->ps_cpu, PCPU_GET(cpuid)));
4240
4241                 pm = ps->ps_pmc;
4242
4243                 KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4244                     ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4245                         "want it", __LINE__));
4246
4247                 KASSERT(pm->pm_runcount > 0,
4248                     ("[pmc,%d] runcount %d", __LINE__, pm->pm_runcount));
4249
4250                 /*
4251                  * Retrieve the callchain and mark the sample buffer
4252                  * as 'processable' by the timer tick sweep code.
4253                  */
4254                 ps->ps_nsamples = pmc_save_user_callchain(ps->ps_pc,
4255                     pmc_callchaindepth, tf);
4256
4257 #ifdef  INVARIANTS
4258                 ncallchains++;
4259 #endif
4260
4261 next:
4262                 /* increment the pointer, modulo sample ring size */
4263                 if (++ps == psb->ps_fence)
4264                         ps = psb->ps_samples;
4265         } while (ps != ps_end);
4266
4267 #ifdef  INVARIANTS
4268         KASSERT(ncallchains > 0 || nfree > 0,
4269             ("[pmc,%d] cpu %d didn't find a sample to collect", __LINE__,
4270                 cpu));
4271 #endif
4272
4273         KASSERT(td->td_pinned == 1,
4274             ("[pmc,%d] invalid td_pinned value", __LINE__));
4275         sched_unpin();  /* Can migrate safely now. */
4276
4277         /* mark CPU as needing processing */
4278         CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4279
4280         return;
4281 }
4282
4283 /*
4284  * Process saved PC samples.
4285  */
4286
4287 static void
4288 pmc_process_samples(int cpu, int ring)
4289 {
4290         struct pmc *pm;
4291         int adjri, n;
4292         struct thread *td;
4293         struct pmc_owner *po;
4294         struct pmc_sample *ps;
4295         struct pmc_classdep *pcd;
4296         struct pmc_samplebuffer *psb;
4297
4298         KASSERT(PCPU_GET(cpuid) == cpu,
4299             ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4300                 PCPU_GET(cpuid), cpu));
4301
4302         psb = pmc_pcpu[cpu]->pc_sb[ring];
4303
4304         for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */
4305
4306                 ps = psb->ps_read;
4307                 if (ps->ps_nsamples == PMC_SAMPLE_FREE)
4308                         break;
4309
4310                 pm = ps->ps_pmc;
4311
4312                 KASSERT(pm->pm_runcount > 0,
4313                     ("[pmc,%d] pm=%p runcount %d", __LINE__, (void *) pm,
4314                         pm->pm_runcount));
4315
4316                 po = pm->pm_owner;
4317
4318                 KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4319                     ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4320                         pm, PMC_TO_MODE(pm)));
4321
4322                 /* Ignore PMCs that have been switched off */
4323                 if (pm->pm_state != PMC_STATE_RUNNING)
4324                         goto entrydone;
4325
4326                 /* If there is a pending AST wait for completion */
4327                 if (ps->ps_nsamples == PMC_SAMPLE_INUSE) {
4328                         /* Need a rescan at a later time. */
4329                         CPU_SET_ATOMIC(cpu, &pmc_cpumask);
4330                         break;
4331                 }
4332
4333                 PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4334                     pm, ps->ps_nsamples, ps->ps_flags,
4335                     (int) (psb->ps_write - psb->ps_samples),
4336                     (int) (psb->ps_read - psb->ps_samples));
4337
4338                 /*
4339                  * If this is a process-mode PMC that is attached to
4340                  * its owner, and if the PC is in user mode, update
4341                  * profiling statistics like timer-based profiling
4342                  * would have done.
4343                  */
4344                 if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4345                         if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4346                                 td = FIRST_THREAD_IN_PROC(po->po_owner);
4347                                 addupc_intr(td, ps->ps_pc[0], 1);
4348                         }
4349                         goto entrydone;
4350                 }
4351
4352                 /*
4353                  * Otherwise, this is either a sampling mode PMC that
4354                  * is attached to a different process than its owner,
4355                  * or a system-wide sampling PMC.  Dispatch a log
4356                  * entry to the PMC's owner process.
4357                  */
4358                 pmclog_process_callchain(pm, ps);
4359
4360         entrydone:
4361                 ps->ps_nsamples = 0; /* mark entry as free */
4362                 atomic_subtract_rel_int(&pm->pm_runcount, 1);
4363
4364                 /* increment read pointer, modulo sample size */
4365                 if (++ps == psb->ps_fence)
4366                         psb->ps_read = psb->ps_samples;
4367                 else
4368                         psb->ps_read = ps;
4369         }
4370
4371         atomic_add_int(&pmc_stats.pm_log_sweeps, 1);
4372
4373         /* Do not re-enable stalled PMCs if we failed to process any samples */
4374         if (n == 0)
4375                 return;
4376
4377         /*
4378          * Restart any stalled sampling PMCs on this CPU.
4379          *
4380          * If the NMI handler sets the pm_stalled field of a PMC after
4381          * the check below, we'll end up processing the stalled PMC at
4382          * the next hardclock tick.
4383          */
4384         for (n = 0; n < md->pmd_npmc; n++) {
4385                 pcd = pmc_ri_to_classdep(md, n, &adjri);
4386                 KASSERT(pcd != NULL,
4387                     ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4388                 (void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
4389
4390                 if (pm == NULL ||                        /* !cfg'ed */
4391                     pm->pm_state != PMC_STATE_RUNNING || /* !active */
4392                     !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
4393                     !CPU_ISSET(cpu, &pm->pm_cpustate) || /* !desired */
4394                     !CPU_ISSET(cpu, &pm->pm_stalled)) /* !stalled */
4395                         continue;
4396
4397                 CPU_CLR_ATOMIC(cpu, &pm->pm_stalled);
4398                 (*pcd->pcd_start_pmc)(cpu, adjri);
4399         }
4400 }
4401
4402 /*
4403  * Event handlers.
4404  */
4405
4406 /*
4407  * Handle a process exit.
4408  *
4409  * Remove this process from all hash tables.  If this process
4410  * owned any PMCs, turn off those PMCs and deallocate them,
4411  * removing any associations with target processes.
4412  *
4413  * This function will be called by the last 'thread' of a
4414  * process.
4415  *
4416  * XXX This eventhandler gets called early in the exit process.
4417  * Consider using a 'hook' invocation from thread_exit() or equivalent
4418  * spot.  Another negative is that kse_exit doesn't seem to call
4419  * exit1() [??].
4420  *
4421  */
4422
4423 static void
4424 pmc_process_exit(void *arg __unused, struct proc *p)
4425 {
4426         struct pmc *pm;
4427         int adjri, cpu;
4428         unsigned int ri;
4429         int is_using_hwpmcs;
4430         struct pmc_owner *po;
4431         struct pmc_process *pp;
4432         struct pmc_classdep *pcd;
4433         pmc_value_t newvalue, tmp;
4434
4435         PROC_LOCK(p);
4436         is_using_hwpmcs = p->p_flag & P_HWPMC;
4437         PROC_UNLOCK(p);
4438
4439         /*
4440          * Log a sysexit event to all SS PMC owners.
4441          */
4442         LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4443             if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4444                     pmclog_process_sysexit(po, p->p_pid);
4445
4446         if (!is_using_hwpmcs)
4447                 return;
4448
4449         PMC_GET_SX_XLOCK();
4450         PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
4451             p->p_comm);
4452
4453         /*
4454          * Since this code is invoked by the last thread in an exiting
4455          * process, we would have context switched IN at some prior
4456          * point.  However, with PREEMPTION, kernel mode context
4457          * switches may happen any time, so we want to disable a
4458          * context switch OUT till we get any PMCs targeting this
4459          * process off the hardware.
4460          *
4461          * We also need to atomically remove this process'
4462          * entry from our target process hash table, using
4463          * PMC_FLAG_REMOVE.
4464          */
4465         PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
4466             p->p_comm);
4467
4468         critical_enter(); /* no preemption */
4469
4470         cpu = curthread->td_oncpu;
4471
4472         if ((pp = pmc_find_process_descriptor(p,
4473                  PMC_FLAG_REMOVE)) != NULL) {
4474
4475                 PMCDBG2(PRC,EXT,2,
4476                     "process-exit proc=%p pmc-process=%p", p, pp);
4477
4478                 /*
4479                  * The exiting process could the target of
4480                  * some PMCs which will be running on
4481                  * currently executing CPU.
4482                  *
4483                  * We need to turn these PMCs off like we
4484                  * would do at context switch OUT time.
4485                  */
4486                 for (ri = 0; ri < md->pmd_npmc; ri++) {
4487
4488                         /*
4489                          * Pick up the pmc pointer from hardware
4490                          * state similar to the CSW_OUT code.
4491                          */
4492                         pm = NULL;
4493
4494                         pcd = pmc_ri_to_classdep(md, ri, &adjri);
4495
4496                         (void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
4497
4498                         PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
4499
4500                         if (pm == NULL ||
4501                             !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
4502                                 continue;
4503
4504                         PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
4505                             "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
4506                             pm, pm->pm_state);
4507
4508                         KASSERT(PMC_TO_ROWINDEX(pm) == ri,
4509                             ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
4510                                 __LINE__, PMC_TO_ROWINDEX(pm), ri));
4511
4512                         KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
4513                             ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
4514                                 __LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
4515
4516                         KASSERT(pm->pm_runcount > 0,
4517                             ("[pmc,%d] bad runcount ri %d rc %d",
4518                                 __LINE__, ri, pm->pm_runcount));
4519
4520                         /*
4521                          * Change desired state, and then stop if not
4522                          * stalled. This two-step dance should avoid
4523                          * race conditions where an interrupt re-enables
4524                          * the PMC after this code has already checked
4525                          * the pm_stalled flag.
4526                          */
4527                         if (CPU_ISSET(cpu, &pm->pm_cpustate)) {
4528                                 CPU_CLR_ATOMIC(cpu, &pm->pm_cpustate);
4529                                 if (!CPU_ISSET(cpu, &pm->pm_stalled)) {
4530                                         (void) pcd->pcd_stop_pmc(cpu, adjri);
4531                                         pcd->pcd_read_pmc(cpu, adjri,
4532                                             &newvalue);
4533                                         tmp = newvalue -
4534                                             PMC_PCPU_SAVED(cpu,ri);
4535
4536                                         mtx_pool_lock_spin(pmc_mtxpool, pm);
4537                                         pm->pm_gv.pm_savedvalue += tmp;
4538                                         pp->pp_pmcs[ri].pp_pmcval += tmp;
4539                                         mtx_pool_unlock_spin(pmc_mtxpool, pm);
4540                                 }
4541                         }
4542
4543                         atomic_subtract_rel_int(&pm->pm_runcount,1);
4544
4545                         KASSERT((int) pm->pm_runcount >= 0,
4546                             ("[pmc,%d] runcount is %d", __LINE__, ri));
4547
4548                         (void) pcd->pcd_config_pmc(cpu, adjri, NULL);
4549                 }
4550
4551                 /*
4552                  * Inform the MD layer of this pseudo "context switch
4553                  * out"
4554                  */
4555                 (void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
4556
4557                 critical_exit(); /* ok to be pre-empted now */
4558
4559                 /*
4560                  * Unlink this process from the PMCs that are
4561                  * targeting it.  This will send a signal to
4562                  * all PMC owner's whose PMCs are orphaned.
4563                  *
4564                  * Log PMC value at exit time if requested.
4565                  */
4566                 for (ri = 0; ri < md->pmd_npmc; ri++)
4567                         if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
4568                                 if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
4569                                     PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
4570                                         pmclog_process_procexit(pm, pp);
4571                                 pmc_unlink_target_process(pm, pp);
4572                         }
4573                 free(pp, M_PMC);
4574
4575         } else
4576                 critical_exit(); /* pp == NULL */
4577
4578
4579         /*
4580          * If the process owned PMCs, free them up and free up
4581          * memory.
4582          */
4583         if ((po = pmc_find_owner_descriptor(p)) != NULL) {
4584                 pmc_remove_owner(po);
4585                 pmc_destroy_owner_descriptor(po);
4586         }
4587
4588         sx_xunlock(&pmc_sx);
4589 }
4590
4591 /*
4592  * Handle a process fork.
4593  *
4594  * If the parent process 'p1' is under HWPMC monitoring, then copy
4595  * over any attached PMCs that have 'do_descendants' semantics.
4596  */
4597
4598 static void
4599 pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
4600     int flags)
4601 {
4602         int is_using_hwpmcs;
4603         unsigned int ri;
4604         uint32_t do_descendants;
4605         struct pmc *pm;
4606         struct pmc_owner *po;
4607         struct pmc_process *ppnew, *ppold;
4608
4609         (void) flags;           /* unused parameter */
4610
4611         PROC_LOCK(p1);
4612         is_using_hwpmcs = p1->p_flag & P_HWPMC;
4613         PROC_UNLOCK(p1);
4614
4615         /*
4616          * If there are system-wide sampling PMCs active, we need to
4617          * log all fork events to their owner's logs.
4618          */
4619
4620         LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4621             if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4622                     pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
4623
4624         if (!is_using_hwpmcs)
4625                 return;
4626
4627         PMC_GET_SX_XLOCK();
4628         PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
4629             p1->p_pid, p1->p_comm, newproc);
4630
4631         /*
4632          * If the parent process (curthread->td_proc) is a
4633          * target of any PMCs, look for PMCs that are to be
4634          * inherited, and link these into the new process
4635          * descriptor.
4636          */
4637         if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
4638                  PMC_FLAG_NONE)) == NULL)
4639                 goto done;              /* nothing to do */
4640
4641         do_descendants = 0;
4642         for (ri = 0; ri < md->pmd_npmc; ri++)
4643                 if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
4644                         do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
4645         if (do_descendants == 0) /* nothing to do */
4646                 goto done;
4647
4648         /* allocate a descriptor for the new process  */
4649         if ((ppnew = pmc_find_process_descriptor(newproc,
4650                  PMC_FLAG_ALLOCATE)) == NULL)
4651                 goto done;
4652
4653         /*
4654          * Run through all PMCs that were targeting the old process
4655          * and which specified F_DESCENDANTS and attach them to the
4656          * new process.
4657          *
4658          * Log the fork event to all owners of PMCs attached to this
4659          * process, if not already logged.
4660          */
4661         for (ri = 0; ri < md->pmd_npmc; ri++)
4662                 if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
4663                     (pm->pm_flags & PMC_F_DESCENDANTS)) {
4664                         pmc_link_target_process(pm, ppnew);
4665                         po = pm->pm_owner;
4666                         if (po->po_sscount == 0 &&
4667                             po->po_flags & PMC_PO_OWNS_LOGFILE)
4668                                 pmclog_process_procfork(po, p1->p_pid,
4669                                     newproc->p_pid);
4670                 }
4671
4672         /*
4673          * Now mark the new process as being tracked by this driver.
4674          */
4675         PROC_LOCK(newproc);
4676         newproc->p_flag |= P_HWPMC;
4677         PROC_UNLOCK(newproc);
4678
4679  done:
4680         sx_xunlock(&pmc_sx);
4681 }
4682
4683 static void
4684 pmc_kld_load(void *arg __unused, linker_file_t lf)
4685 {
4686         struct pmc_owner *po;
4687
4688         sx_slock(&pmc_sx);
4689
4690         /*
4691          * Notify owners of system sampling PMCs about KLD operations.
4692          */
4693         LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4694                 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4695                         pmclog_process_map_in(po, (pid_t) -1,
4696                             (uintfptr_t) lf->address, lf->filename);
4697
4698         /*
4699          * TODO: Notify owners of (all) process-sampling PMCs too.
4700          */
4701
4702         sx_sunlock(&pmc_sx);
4703 }
4704
4705 static void
4706 pmc_kld_unload(void *arg __unused, const char *filename __unused,
4707     caddr_t address, size_t size)
4708 {
4709         struct pmc_owner *po;
4710
4711         sx_slock(&pmc_sx);
4712
4713         LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4714                 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4715                         pmclog_process_map_out(po, (pid_t) -1,
4716                             (uintfptr_t) address, (uintfptr_t) address + size);
4717
4718         /*
4719          * TODO: Notify owners of process-sampling PMCs.
4720          */
4721
4722         sx_sunlock(&pmc_sx);
4723 }
4724
4725 /*
4726  * initialization
4727  */
4728 static const char *
4729 pmc_name_of_pmcclass(enum pmc_class class)
4730 {
4731
4732         switch (class) {
4733 #undef  __PMC_CLASS
4734 #define __PMC_CLASS(S,V,D)                                              \
4735         case PMC_CLASS_##S:                                             \
4736                 return #S;
4737         __PMC_CLASSES();
4738         default:
4739                 return ("<unknown>");
4740         }
4741 }
4742
4743 /*
4744  * Base class initializer: allocate structure and set default classes.
4745  */
4746 struct pmc_mdep *
4747 pmc_mdep_alloc(int nclasses)
4748 {
4749         struct pmc_mdep *md;
4750         int     n;
4751
4752         /* SOFT + md classes */
4753         n = 1 + nclasses;
4754         md = malloc(sizeof(struct pmc_mdep) + n *
4755             sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO);
4756         md->pmd_nclass = n;
4757
4758         /* Add base class. */
4759         pmc_soft_initialize(md);
4760         return md;
4761 }
4762
4763 void
4764 pmc_mdep_free(struct pmc_mdep *md)
4765 {
4766         pmc_soft_finalize(md);
4767         free(md, M_PMC);
4768 }
4769
4770 static int
4771 generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
4772 {
4773         (void) pc; (void) pp;
4774
4775         return (0);
4776 }
4777
4778 static int
4779 generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
4780 {
4781         (void) pc; (void) pp;
4782
4783         return (0);
4784 }
4785
4786 static struct pmc_mdep *
4787 pmc_generic_cpu_initialize(void)
4788 {
4789         struct pmc_mdep *md;
4790
4791         md = pmc_mdep_alloc(0);
4792
4793         md->pmd_cputype    = PMC_CPU_GENERIC;
4794
4795         md->pmd_pcpu_init  = NULL;
4796         md->pmd_pcpu_fini  = NULL;
4797         md->pmd_switch_in  = generic_switch_in;
4798         md->pmd_switch_out = generic_switch_out;
4799
4800         return (md);
4801 }
4802
4803 static void
4804 pmc_generic_cpu_finalize(struct pmc_mdep *md)
4805 {
4806         (void) md;
4807 }
4808
4809
4810 static int
4811 pmc_initialize(void)
4812 {
4813         int c, cpu, error, n, ri;
4814         unsigned int maxcpu;
4815         struct pmc_binding pb;
4816         struct pmc_sample *ps;
4817         struct pmc_classdep *pcd;
4818         struct pmc_samplebuffer *sb;
4819
4820         md = NULL;
4821         error = 0;
4822
4823 #ifdef  HWPMC_DEBUG
4824         /* parse debug flags first */
4825         if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
4826                 pmc_debugstr, sizeof(pmc_debugstr)))
4827                 pmc_debugflags_parse(pmc_debugstr,
4828                     pmc_debugstr+strlen(pmc_debugstr));
4829 #endif
4830
4831         PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
4832
4833         /* check kernel version */
4834         if (pmc_kernel_version != PMC_VERSION) {
4835                 if (pmc_kernel_version == 0)
4836                         printf("hwpmc: this kernel has not been compiled with "
4837                             "'options HWPMC_HOOKS'.\n");
4838                 else
4839                         printf("hwpmc: kernel version (0x%x) does not match "
4840                             "module version (0x%x).\n", pmc_kernel_version,
4841                             PMC_VERSION);
4842                 return EPROGMISMATCH;
4843         }
4844
4845         /*
4846          * check sysctl parameters
4847          */
4848
4849         if (pmc_hashsize <= 0) {
4850                 (void) printf("hwpmc: tunable \"hashsize\"=%d must be "
4851                     "greater than zero.\n", pmc_hashsize);
4852                 pmc_hashsize = PMC_HASH_SIZE;
4853         }
4854
4855         if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
4856                 (void) printf("hwpmc: tunable \"nsamples\"=%d out of "
4857                     "range.\n", pmc_nsamples);
4858                 pmc_nsamples = PMC_NSAMPLES;
4859         }
4860
4861         if (pmc_callchaindepth <= 0 ||
4862             pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
4863                 (void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
4864                     "range - using %d.\n", pmc_callchaindepth,
4865                     PMC_CALLCHAIN_DEPTH_MAX);
4866                 pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
4867         }
4868
4869         md = pmc_md_initialize();
4870         if (md == NULL) {
4871                 /* Default to generic CPU. */
4872                 md = pmc_generic_cpu_initialize();
4873                 if (md == NULL)
4874                         return (ENOSYS);
4875         }
4876
4877         KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
4878             ("[pmc,%d] no classes or pmcs", __LINE__));
4879
4880         /* Compute the map from row-indices to classdep pointers. */
4881         pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
4882             md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
4883
4884         for (n = 0; n < md->pmd_npmc; n++)
4885                 pmc_rowindex_to_classdep[n] = NULL;
4886         for (ri = c = 0; c < md->pmd_nclass; c++) {
4887                 pcd = &md->pmd_classdep[c];
4888                 for (n = 0; n < pcd->pcd_num; n++, ri++)
4889                         pmc_rowindex_to_classdep[ri] = pcd;
4890         }
4891
4892         KASSERT(ri == md->pmd_npmc,
4893             ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
4894             ri, md->pmd_npmc));
4895
4896         maxcpu = pmc_cpu_max();
4897
4898         /* allocate space for the per-cpu array */
4899         pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
4900             M_WAITOK|M_ZERO);
4901
4902         /* per-cpu 'saved values' for managing process-mode PMCs */
4903         pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
4904             M_PMC, M_WAITOK);
4905
4906         /* Perform CPU-dependent initialization. */
4907         pmc_save_cpu_binding(&pb);
4908         error = 0;
4909         for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
4910                 if (!pmc_cpu_is_active(cpu))
4911                         continue;
4912                 pmc_select_cpu(cpu);
4913                 pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
4914                     md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
4915                     M_WAITOK|M_ZERO);
4916                 if (md->pmd_pcpu_init)
4917                         error = md->pmd_pcpu_init(md, cpu);
4918                 for (n = 0; error == 0 && n < md->pmd_nclass; n++)
4919                         error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu);
4920         }
4921         pmc_restore_cpu_binding(&pb);
4922
4923         if (error)
4924                 return (error);
4925
4926         /* allocate space for the sample array */
4927         for (cpu = 0; cpu < maxcpu; cpu++) {
4928                 if (!pmc_cpu_is_active(cpu))
4929                         continue;
4930
4931                 sb = malloc(sizeof(struct pmc_samplebuffer) +
4932                     pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4933                     M_WAITOK|M_ZERO);
4934                 sb->ps_read = sb->ps_write = sb->ps_samples;
4935                 sb->ps_fence = sb->ps_samples + pmc_nsamples;
4936
4937                 KASSERT(pmc_pcpu[cpu] != NULL,
4938                     ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4939
4940                 sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4941                     sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4942
4943                 for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4944                         ps->ps_pc = sb->ps_callchains +
4945                             (n * pmc_callchaindepth);
4946
4947                 pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
4948
4949                 sb = malloc(sizeof(struct pmc_samplebuffer) +
4950                     pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
4951                     M_WAITOK|M_ZERO);
4952                 sb->ps_read = sb->ps_write = sb->ps_samples;
4953                 sb->ps_fence = sb->ps_samples + pmc_nsamples;
4954
4955                 KASSERT(pmc_pcpu[cpu] != NULL,
4956                     ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
4957
4958                 sb->ps_callchains = malloc(pmc_callchaindepth * pmc_nsamples *
4959                     sizeof(uintptr_t), M_PMC, M_WAITOK|M_ZERO);
4960
4961                 for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
4962                         ps->ps_pc = sb->ps_callchains +
4963                             (n * pmc_callchaindepth);
4964
4965                 pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
4966         }
4967
4968         /* allocate space for the row disposition array */
4969         pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
4970             M_PMC, M_WAITOK|M_ZERO);
4971
4972         /* mark all PMCs as available */
4973         for (n = 0; n < (int) md->pmd_npmc; n++)
4974                 PMC_MARK_ROW_FREE(n);
4975
4976         /* allocate thread hash tables */
4977         pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
4978             &pmc_ownerhashmask);
4979
4980         pmc_processhash = hashinit(pmc_hashsize, M_PMC,
4981             &pmc_processhashmask);
4982         mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
4983             MTX_SPIN);
4984
4985         LIST_INIT(&pmc_ss_owners);
4986         pmc_ss_count = 0;
4987
4988         /* allocate a pool of spin mutexes */
4989         pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
4990             MTX_SPIN);
4991
4992         PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
4993             "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
4994             pmc_processhash, pmc_processhashmask);
4995
4996         /* register process {exit,fork,exec} handlers */
4997         pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
4998             pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
4999         pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
5000             pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
5001
5002         /* register kld event handlers */
5003         pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
5004             NULL, EVENTHANDLER_PRI_ANY);
5005         pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
5006             NULL, EVENTHANDLER_PRI_ANY);
5007
5008         /* initialize logging */
5009         pmclog_initialize();
5010
5011         /* set hook functions */
5012         pmc_intr = md->pmd_intr;
5013         pmc_hook = pmc_hook_handler;
5014
5015         if (error == 0) {
5016                 printf(PMC_MODULE_NAME ":");
5017                 for (n = 0; n < (int) md->pmd_nclass; n++) {
5018                         pcd = &md->pmd_classdep[n];
5019                         printf(" %s/%d/%d/0x%b",
5020                             pmc_name_of_pmcclass(pcd->pcd_class),
5021                             pcd->pcd_num,
5022                             pcd->pcd_width,
5023                             pcd->pcd_caps,
5024                             "\20"
5025                             "\1INT\2USR\3SYS\4EDG\5THR"
5026                             "\6REA\7WRI\10INV\11QUA\12PRC"
5027                             "\13TAG\14CSC");
5028                 }
5029                 printf("\n");
5030         }
5031
5032         return (error);
5033 }
5034
5035 /* prepare to be unloaded */
5036 static void
5037 pmc_cleanup(void)
5038 {
5039         int c, cpu;
5040         unsigned int maxcpu;
5041         struct pmc_ownerhash *ph;
5042         struct pmc_owner *po, *tmp;
5043         struct pmc_binding pb;
5044 #ifdef  HWPMC_DEBUG
5045         struct pmc_processhash *prh;
5046 #endif
5047
5048         PMCDBG0(MOD,INI,0, "cleanup");
5049
5050         /* switch off sampling */
5051         CPU_ZERO(&pmc_cpumask);
5052         pmc_intr = NULL;
5053
5054         sx_xlock(&pmc_sx);
5055         if (pmc_hook == NULL) { /* being unloaded already */
5056                 sx_xunlock(&pmc_sx);
5057                 return;
5058         }
5059
5060         pmc_hook = NULL; /* prevent new threads from entering module */
5061
5062         /* deregister event handlers */
5063         EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
5064         EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
5065         EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
5066         EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
5067
5068         /* send SIGBUS to all owner threads, free up allocations */
5069         if (pmc_ownerhash)
5070                 for (ph = pmc_ownerhash;
5071                      ph <= &pmc_ownerhash[pmc_ownerhashmask];
5072                      ph++) {
5073                         LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
5074                                 pmc_remove_owner(po);
5075
5076                                 /* send SIGBUS to owner processes */
5077                                 PMCDBG3(MOD,INI,2, "cleanup signal proc=%p "
5078                                     "(%d, %s)", po->po_owner,
5079                                     po->po_owner->p_pid,
5080                                     po->po_owner->p_comm);
5081
5082                                 PROC_LOCK(po->po_owner);
5083                                 kern_psignal(po->po_owner, SIGBUS);
5084                                 PROC_UNLOCK(po->po_owner);
5085
5086                                 pmc_destroy_owner_descriptor(po);
5087                         }
5088                 }
5089
5090         /* reclaim allocated data structures */
5091         if (pmc_mtxpool)
5092                 mtx_pool_destroy(&pmc_mtxpool);
5093
5094         mtx_destroy(&pmc_processhash_mtx);
5095         if (pmc_processhash) {
5096 #ifdef  HWPMC_DEBUG
5097                 struct pmc_process *pp;
5098
5099                 PMCDBG0(MOD,INI,3, "destroy process hash");
5100                 for (prh = pmc_processhash;
5101                      prh <= &pmc_processhash[pmc_processhashmask];
5102                      prh++)
5103                         LIST_FOREACH(pp, prh, pp_next)
5104                             PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
5105 #endif
5106
5107                 hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
5108                 pmc_processhash = NULL;
5109         }
5110
5111         if (pmc_ownerhash) {
5112                 PMCDBG0(MOD,INI,3, "destroy owner hash");
5113                 hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5114                 pmc_ownerhash = NULL;
5115         }
5116
5117         KASSERT(LIST_EMPTY(&pmc_ss_owners),
5118             ("[pmc,%d] Global SS owner list not empty", __LINE__));
5119         KASSERT(pmc_ss_count == 0,
5120             ("[pmc,%d] Global SS count not empty", __LINE__));
5121
5122         /* do processor and pmc-class dependent cleanup */
5123         maxcpu = pmc_cpu_max();
5124
5125         PMCDBG0(MOD,INI,3, "md cleanup");
5126         if (md) {
5127                 pmc_save_cpu_binding(&pb);
5128                 for (cpu = 0; cpu < maxcpu; cpu++) {
5129                         PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5130                             cpu, pmc_pcpu[cpu]);
5131                         if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5132                                 continue;
5133                         pmc_select_cpu(cpu);
5134                         for (c = 0; c < md->pmd_nclass; c++)
5135                                 md->pmd_classdep[c].pcd_pcpu_fini(md, cpu);
5136                         if (md->pmd_pcpu_fini)
5137                                 md->pmd_pcpu_fini(md, cpu);
5138                 }
5139
5140                 if (md->pmd_cputype == PMC_CPU_GENERIC)
5141                         pmc_generic_cpu_finalize(md);
5142                 else
5143                         pmc_md_finalize(md);
5144
5145                 pmc_mdep_free(md);
5146                 md = NULL;
5147                 pmc_restore_cpu_binding(&pb);
5148         }
5149
5150         /* Free per-cpu descriptors. */
5151         for (cpu = 0; cpu < maxcpu; cpu++) {
5152                 if (!pmc_cpu_is_active(cpu))
5153                         continue;
5154                 KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5155                     ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5156                         cpu));
5157                 KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5158                     ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5159                         cpu));
5160                 free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5161                 free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5162                 free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5163                 free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5164                 free(pmc_pcpu[cpu], M_PMC);
5165         }
5166
5167         free(pmc_pcpu, M_PMC);
5168         pmc_pcpu = NULL;
5169
5170         free(pmc_pcpu_saved, M_PMC);
5171         pmc_pcpu_saved = NULL;
5172
5173         if (pmc_pmcdisp) {
5174                 free(pmc_pmcdisp, M_PMC);
5175                 pmc_pmcdisp = NULL;
5176         }
5177
5178         if (pmc_rowindex_to_classdep) {
5179                 free(pmc_rowindex_to_classdep, M_PMC);
5180                 pmc_rowindex_to_classdep = NULL;
5181         }
5182
5183         pmclog_shutdown();
5184
5185         sx_xunlock(&pmc_sx);    /* we are done */
5186 }
5187
5188 /*
5189  * The function called at load/unload.
5190  */
5191
5192 static int
5193 load (struct module *module __unused, int cmd, void *arg __unused)
5194 {
5195         int error;
5196
5197         error = 0;
5198
5199         switch (cmd) {
5200         case MOD_LOAD :
5201                 /* initialize the subsystem */
5202                 error = pmc_initialize();
5203                 if (error != 0)
5204                         break;
5205                 PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d",
5206                     pmc_syscall_num, pmc_cpu_max());
5207                 break;
5208
5209
5210         case MOD_UNLOAD :
5211         case MOD_SHUTDOWN:
5212                 pmc_cleanup();
5213                 PMCDBG0(MOD,INI,1, "unloaded");
5214                 break;
5215
5216         default :
5217                 error = EINVAL; /* XXX should panic(9) */
5218                 break;
5219         }
5220
5221         return error;
5222 }
5223
5224 /* memory pool */
5225 MALLOC_DEFINE(M_PMC, "pmc", "Memory space for the PMC module");