]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/hwpmc/hwpmc_mod.c
epoch(9): Make epochs non-preemptible by default
[FreeBSD/FreeBSD.git] / sys / dev / hwpmc / hwpmc_mod.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003-2008 Joseph Koshy
5  * Copyright (c) 2007 The FreeBSD Foundation
6  * Copyright (c) 2018 Matthew Macy
7  * All rights reserved.
8  *
9  * Portions of this software were developed by A. Joseph Koshy under
10  * sponsorship from the FreeBSD Foundation and Google, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 #include <sys/param.h>
39 #include <sys/eventhandler.h>
40 #include <sys/gtaskqueue.h>
41 #include <sys/jail.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/module.h>
48 #include <sys/mount.h>
49 #include <sys/mutex.h>
50 #include <sys/pmc.h>
51 #include <sys/pmckern.h>
52 #include <sys/pmclog.h>
53 #include <sys/priv.h>
54 #include <sys/proc.h>
55 #include <sys/queue.h>
56 #include <sys/resourcevar.h>
57 #include <sys/rwlock.h>
58 #include <sys/sched.h>
59 #include <sys/signalvar.h>
60 #include <sys/smp.h>
61 #include <sys/sx.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #include <sys/systm.h>
65 #include <sys/vnode.h>
66
67 #include <sys/linker.h>         /* needs to be after <sys/malloc.h> */
68
69 #include <machine/atomic.h>
70 #include <machine/md_var.h>
71
72 #include <vm/vm.h>
73 #include <vm/vm_extern.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_map.h>
76 #include <vm/vm_object.h>
77
78 #include "hwpmc_soft.h"
79
80 #ifdef NUMA
81 #define NDOMAINS vm_ndomains
82 #else
83 #define NDOMAINS 1
84 #define malloc_domain(size, type, domain, flags) malloc((size), (type), (flags))
85 #define free_domain(addr, type) free(addr, type)
86 #endif
87
88 /*
89  * Types
90  */
91
92 enum pmc_flags {
93         PMC_FLAG_NONE     = 0x00, /* do nothing */
94         PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
95         PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
96         PMC_FLAG_NOWAIT   = 0x04, /* do not wait for mallocs */
97 };
98
99 /*
100  * The offset in sysent where the syscall is allocated.
101  */
102
103 static int pmc_syscall_num = NO_SYSCALL;
104 struct pmc_cpu          **pmc_pcpu;      /* per-cpu state */
105 pmc_value_t             *pmc_pcpu_saved; /* saved PMC values: CSW handling */
106
107 #define PMC_PCPU_SAVED(C,R)     pmc_pcpu_saved[(R) + md->pmd_npmc*(C)]
108
109 struct mtx_pool         *pmc_mtxpool;
110 static int              *pmc_pmcdisp;    /* PMC row dispositions */
111
112 #define PMC_ROW_DISP_IS_FREE(R)         (pmc_pmcdisp[(R)] == 0)
113 #define PMC_ROW_DISP_IS_THREAD(R)       (pmc_pmcdisp[(R)] > 0)
114 #define PMC_ROW_DISP_IS_STANDALONE(R)   (pmc_pmcdisp[(R)] < 0)
115
116 #define PMC_MARK_ROW_FREE(R) do {                                         \
117         pmc_pmcdisp[(R)] = 0;                                             \
118 } while (0)
119
120 #define PMC_MARK_ROW_STANDALONE(R) do {                                   \
121         KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
122                     __LINE__));                                           \
123         atomic_add_int(&pmc_pmcdisp[(R)], -1);                            \
124         KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),              \
125                 ("[pmc,%d] row disposition error", __LINE__));            \
126 } while (0)
127
128 #define PMC_UNMARK_ROW_STANDALONE(R) do {                                 \
129         atomic_add_int(&pmc_pmcdisp[(R)], 1);                             \
130         KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
131                     __LINE__));                                           \
132 } while (0)
133
134 #define PMC_MARK_ROW_THREAD(R) do {                                       \
135         KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
136                     __LINE__));                                           \
137         atomic_add_int(&pmc_pmcdisp[(R)], 1);                             \
138 } while (0)
139
140 #define PMC_UNMARK_ROW_THREAD(R) do {                                     \
141         atomic_add_int(&pmc_pmcdisp[(R)], -1);                            \
142         KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
143                     __LINE__));                                           \
144 } while (0)
145
146
147 /* various event handlers */
148 static eventhandler_tag pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
149     pmc_kld_unload_tag;
150
151 /* Module statistics */
152 struct pmc_driverstats pmc_stats;
153
154
155 /* Machine/processor dependent operations */
156 static struct pmc_mdep  *md;
157
158 /*
159  * Hash tables mapping owner processes and target threads to PMCs.
160  */
161
162 struct mtx pmc_processhash_mtx;         /* spin mutex */
163 static u_long pmc_processhashmask;
164 static LIST_HEAD(pmc_processhash, pmc_process)  *pmc_processhash;
165
166 /*
167  * Hash table of PMC owner descriptors.  This table is protected by
168  * the shared PMC "sx" lock.
169  */
170
171 static u_long pmc_ownerhashmask;
172 static LIST_HEAD(pmc_ownerhash, pmc_owner)      *pmc_ownerhash;
173
174 /*
175  * List of PMC owners with system-wide sampling PMCs.
176  */
177
178 static LIST_HEAD(, pmc_owner)                   pmc_ss_owners;
179
180 /*
181  * List of free thread entries. This is protected by the spin
182  * mutex.
183  */
184 static struct mtx pmc_threadfreelist_mtx;       /* spin mutex */
185 static LIST_HEAD(, pmc_thread)                  pmc_threadfreelist;
186 static int pmc_threadfreelist_entries=0;
187 #define THREADENTRY_SIZE                                                \
188 (sizeof(struct pmc_thread) + (md->pmd_npmc * sizeof(struct pmc_threadpmcstate)))
189
190 /*
191  * Task to free thread descriptors
192  */
193 static struct grouptask free_gtask;
194
195 /*
196  * A map of row indices to classdep structures.
197  */
198 static struct pmc_classdep **pmc_rowindex_to_classdep;
199
200 /*
201  * Prototypes
202  */
203
204 #ifdef  HWPMC_DEBUG
205 static int      pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
206 static int      pmc_debugflags_parse(char *newstr, char *fence);
207 #endif
208
209 static int      load(struct module *module, int cmd, void *arg);
210 static void     pmc_add_thread_descriptors_from_proc(struct proc *p,
211     struct pmc_process *pp);
212 static int      pmc_attach_process(struct proc *p, struct pmc *pm);
213 static struct pmc *pmc_allocate_pmc_descriptor(void);
214 static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
215 static int      pmc_attach_one_process(struct proc *p, struct pmc *pm);
216 static int      pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
217     int cpu);
218 static int      pmc_can_attach(struct pmc *pm, struct proc *p);
219 static void     pmc_capture_user_callchain(int cpu, int soft, struct trapframe *tf);
220 static void     pmc_cleanup(void);
221 static int      pmc_detach_process(struct proc *p, struct pmc *pm);
222 static int      pmc_detach_one_process(struct proc *p, struct pmc *pm,
223     int flags);
224 static void     pmc_destroy_owner_descriptor(struct pmc_owner *po);
225 static void     pmc_destroy_pmc_descriptor(struct pmc *pm);
226 static void     pmc_destroy_process_descriptor(struct pmc_process *pp);
227 static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
228 static int      pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
229 static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
230     pmc_id_t pmc);
231 static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
232     uint32_t mode);
233 static struct pmc_thread *pmc_find_thread_descriptor(struct pmc_process *pp,
234     struct thread *td, uint32_t mode);
235 static void     pmc_force_context_switch(void);
236 static void     pmc_link_target_process(struct pmc *pm,
237     struct pmc_process *pp);
238 static void     pmc_log_all_process_mappings(struct pmc_owner *po);
239 static void     pmc_log_kernel_mappings(struct pmc *pm);
240 static void     pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
241 static void     pmc_maybe_remove_owner(struct pmc_owner *po);
242 static void     pmc_process_csw_in(struct thread *td);
243 static void     pmc_process_csw_out(struct thread *td);
244 static void     pmc_process_exit(void *arg, struct proc *p);
245 static void     pmc_process_fork(void *arg, struct proc *p1,
246     struct proc *p2, int n);
247 static void     pmc_process_samples(int cpu, int soft);
248 static void     pmc_release_pmc_descriptor(struct pmc *pmc);
249 static void     pmc_process_thread_add(struct thread *td);
250 static void     pmc_process_thread_delete(struct thread *td);
251 static void     pmc_remove_owner(struct pmc_owner *po);
252 static void     pmc_remove_process_descriptor(struct pmc_process *pp);
253 static void     pmc_restore_cpu_binding(struct pmc_binding *pb);
254 static void     pmc_save_cpu_binding(struct pmc_binding *pb);
255 static void     pmc_select_cpu(int cpu);
256 static int      pmc_start(struct pmc *pm);
257 static int      pmc_stop(struct pmc *pm);
258 static int      pmc_syscall_handler(struct thread *td, void *syscall_args);
259 static struct pmc_thread *pmc_thread_descriptor_pool_alloc(void);
260 static void     pmc_thread_descriptor_pool_drain(void);
261 static void     pmc_thread_descriptor_pool_free(struct pmc_thread *pt);
262 static void     pmc_unlink_target_process(struct pmc *pmc,
263     struct pmc_process *pp);
264 static int generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
265 static int generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
266 static struct pmc_mdep *pmc_generic_cpu_initialize(void);
267 static void pmc_generic_cpu_finalize(struct pmc_mdep *md);
268
269 /*
270  * Kernel tunables and sysctl(8) interface.
271  */
272
273 SYSCTL_DECL(_kern_hwpmc);
274 SYSCTL_NODE(_kern_hwpmc, OID_AUTO, stats, CTLFLAG_RW, 0, "HWPMC stats");
275
276
277 /* Stats. */
278 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_ignored, CTLFLAG_RW,
279                                    &pmc_stats.pm_intr_ignored, "# of interrupts ignored");
280 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_processed, CTLFLAG_RW,
281                                    &pmc_stats.pm_intr_processed, "# of interrupts processed");
282 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_bufferfull, CTLFLAG_RW,
283                                    &pmc_stats.pm_intr_bufferfull, "# of interrupts where buffer was full");
284 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscalls, CTLFLAG_RW,
285                                    &pmc_stats.pm_syscalls, "# of syscalls");
286 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscall_errors, CTLFLAG_RW,
287                                    &pmc_stats.pm_syscall_errors, "# of syscall_errors");
288 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests, CTLFLAG_RW,
289                                    &pmc_stats.pm_buffer_requests, "# of buffer requests");
290 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests_failed, CTLFLAG_RW,
291                                    &pmc_stats.pm_buffer_requests_failed, "# of buffer requests which failed");
292 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, log_sweeps, CTLFLAG_RW,
293                                    &pmc_stats.pm_log_sweeps, "# of ?");
294
295 static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
296 SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN,
297     &pmc_callchaindepth, 0, "depth of call chain records");
298
299 char pmc_cpuid[64];
300 SYSCTL_STRING(_kern_hwpmc, OID_AUTO, cpuid, CTLFLAG_RD,
301         pmc_cpuid, 0, "cpu version string");
302 #ifdef  HWPMC_DEBUG
303 struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
304 char    pmc_debugstr[PMC_DEBUG_STRSIZE];
305 TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
306     sizeof(pmc_debugstr));
307 SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
308     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
309     0, 0, pmc_debugflags_sysctl_handler, "A", "debug flags");
310 #endif
311
312
313 /*
314  * kern.hwpmc.hashrows -- determines the number of rows in the
315  * of the hash table used to look up threads
316  */
317
318 static int pmc_hashsize = PMC_HASH_SIZE;
319 SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN,
320     &pmc_hashsize, 0, "rows in hash tables");
321
322 /*
323  * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
324  */
325
326 static int pmc_nsamples = PMC_NSAMPLES;
327 SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN,
328     &pmc_nsamples, 0, "number of PC samples per CPU");
329
330
331 /*
332  * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
333  */
334
335 static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
336 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN,
337     &pmc_mtxpool_size, 0, "size of spin mutex pool");
338
339
340 /*
341  * kern.hwpmc.threadfreelist_entries -- number of free entries
342  */
343
344 SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_entries, CTLFLAG_RD,
345     &pmc_threadfreelist_entries, 0, "number of avalable thread entries");
346
347
348 /*
349  * kern.hwpmc.threadfreelist_max -- maximum number of free entries
350  */
351
352 static int pmc_threadfreelist_max = PMC_THREADLIST_MAX;
353 SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_max, CTLFLAG_RW,
354     &pmc_threadfreelist_max, 0,
355     "maximum number of available thread entries before freeing some");
356
357
358 /*
359  * security.bsd.unprivileged_syspmcs -- allow non-root processes to
360  * allocate system-wide PMCs.
361  *
362  * Allowing unprivileged processes to allocate system PMCs is convenient
363  * if system-wide measurements need to be taken concurrently with other
364  * per-process measurements.  This feature is turned off by default.
365  */
366
367 static int pmc_unprivileged_syspmcs = 0;
368 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN,
369     &pmc_unprivileged_syspmcs, 0,
370     "allow unprivileged process to allocate system PMCs");
371
372 /*
373  * Hash function.  Discard the lower 2 bits of the pointer since
374  * these are always zero for our uses.  The hash multiplier is
375  * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
376  */
377
378 #if     LONG_BIT == 64
379 #define _PMC_HM         11400714819323198486u
380 #elif   LONG_BIT == 32
381 #define _PMC_HM         2654435769u
382 #else
383 #error  Must know the size of 'long' to compile
384 #endif
385
386 #define PMC_HASH_PTR(P,M)       ((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
387
388 /*
389  * Syscall structures
390  */
391
392 /* The `sysent' for the new syscall */
393 static struct sysent pmc_sysent = {
394         .sy_narg =      2,
395         .sy_call =      pmc_syscall_handler,
396 };
397
398 static struct syscall_module_data pmc_syscall_mod = {
399         .chainevh =     load,
400         .chainarg =     NULL,
401         .offset =       &pmc_syscall_num,
402         .new_sysent =   &pmc_sysent,
403         .old_sysent =   { .sy_narg = 0, .sy_call = NULL },
404         .flags =        SY_THR_STATIC_KLD,
405 };
406
407 static moduledata_t pmc_mod = {
408         .name =         PMC_MODULE_NAME,
409         .evhand =       syscall_module_handler,
410         .priv =         &pmc_syscall_mod,
411 };
412
413 #ifdef EARLY_AP_STARTUP
414 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SYSCALLS, SI_ORDER_ANY);
415 #else
416 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
417 #endif
418 MODULE_VERSION(pmc, PMC_VERSION);
419
420 #ifdef  HWPMC_DEBUG
421 enum pmc_dbgparse_state {
422         PMCDS_WS,               /* in whitespace */
423         PMCDS_MAJOR,            /* seen a major keyword */
424         PMCDS_MINOR
425 };
426
427 static int
428 pmc_debugflags_parse(char *newstr, char *fence)
429 {
430         char c, *p, *q;
431         struct pmc_debugflags *tmpflags;
432         int error, found, *newbits, tmp;
433         size_t kwlen;
434
435         tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK|M_ZERO);
436
437         p = newstr;
438         error = 0;
439
440         for (; p < fence && (c = *p); p++) {
441
442                 /* skip white space */
443                 if (c == ' ' || c == '\t')
444                         continue;
445
446                 /* look for a keyword followed by "=" */
447                 for (q = p; p < fence && (c = *p) && c != '='; p++)
448                         ;
449                 if (c != '=') {
450                         error = EINVAL;
451                         goto done;
452                 }
453
454                 kwlen = p - q;
455                 newbits = NULL;
456
457                 /* lookup flag group name */
458 #define DBG_SET_FLAG_MAJ(S,F)                                           \
459                 if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)  \
460                         newbits = &tmpflags->pdb_ ## F;
461
462                 DBG_SET_FLAG_MAJ("cpu",         CPU);
463                 DBG_SET_FLAG_MAJ("csw",         CSW);
464                 DBG_SET_FLAG_MAJ("logging",     LOG);
465                 DBG_SET_FLAG_MAJ("module",      MOD);
466                 DBG_SET_FLAG_MAJ("md",          MDP);
467                 DBG_SET_FLAG_MAJ("owner",       OWN);
468                 DBG_SET_FLAG_MAJ("pmc",         PMC);
469                 DBG_SET_FLAG_MAJ("process",     PRC);
470                 DBG_SET_FLAG_MAJ("sampling",    SAM);
471
472                 if (newbits == NULL) {
473                         error = EINVAL;
474                         goto done;
475                 }
476
477                 p++;            /* skip the '=' */
478
479                 /* Now parse the individual flags */
480                 tmp = 0;
481         newflag:
482                 for (q = p; p < fence && (c = *p); p++)
483                         if (c == ' ' || c == '\t' || c == ',')
484                                 break;
485
486                 /* p == fence or c == ws or c == "," or c == 0 */
487
488                 if ((kwlen = p - q) == 0) {
489                         *newbits = tmp;
490                         continue;
491                 }
492
493                 found = 0;
494 #define DBG_SET_FLAG_MIN(S,F)                                           \
495                 if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)  \
496                         tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
497
498                 /* a '*' denotes all possible flags in the group */
499                 if (kwlen == 1 && *q == '*')
500                         tmp = found = ~0;
501                 /* look for individual flag names */
502                 DBG_SET_FLAG_MIN("allocaterow", ALR);
503                 DBG_SET_FLAG_MIN("allocate",    ALL);
504                 DBG_SET_FLAG_MIN("attach",      ATT);
505                 DBG_SET_FLAG_MIN("bind",        BND);
506                 DBG_SET_FLAG_MIN("config",      CFG);
507                 DBG_SET_FLAG_MIN("exec",        EXC);
508                 DBG_SET_FLAG_MIN("exit",        EXT);
509                 DBG_SET_FLAG_MIN("find",        FND);
510                 DBG_SET_FLAG_MIN("flush",       FLS);
511                 DBG_SET_FLAG_MIN("fork",        FRK);
512                 DBG_SET_FLAG_MIN("getbuf",      GTB);
513                 DBG_SET_FLAG_MIN("hook",        PMH);
514                 DBG_SET_FLAG_MIN("init",        INI);
515                 DBG_SET_FLAG_MIN("intr",        INT);
516                 DBG_SET_FLAG_MIN("linktarget",  TLK);
517                 DBG_SET_FLAG_MIN("mayberemove", OMR);
518                 DBG_SET_FLAG_MIN("ops",         OPS);
519                 DBG_SET_FLAG_MIN("read",        REA);
520                 DBG_SET_FLAG_MIN("register",    REG);
521                 DBG_SET_FLAG_MIN("release",     REL);
522                 DBG_SET_FLAG_MIN("remove",      ORM);
523                 DBG_SET_FLAG_MIN("sample",      SAM);
524                 DBG_SET_FLAG_MIN("scheduleio",  SIO);
525                 DBG_SET_FLAG_MIN("select",      SEL);
526                 DBG_SET_FLAG_MIN("signal",      SIG);
527                 DBG_SET_FLAG_MIN("swi",         SWI);
528                 DBG_SET_FLAG_MIN("swo",         SWO);
529                 DBG_SET_FLAG_MIN("start",       STA);
530                 DBG_SET_FLAG_MIN("stop",        STO);
531                 DBG_SET_FLAG_MIN("syscall",     PMS);
532                 DBG_SET_FLAG_MIN("unlinktarget", TUL);
533                 DBG_SET_FLAG_MIN("write",       WRI);
534                 if (found == 0) {
535                         /* unrecognized flag name */
536                         error = EINVAL;
537                         goto done;
538                 }
539
540                 if (c == 0 || c == ' ' || c == '\t') {  /* end of flag group */
541                         *newbits = tmp;
542                         continue;
543                 }
544
545                 p++;
546                 goto newflag;
547         }
548
549         /* save the new flag set */
550         bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
551
552  done:
553         free(tmpflags, M_PMC);
554         return error;
555 }
556
557 static int
558 pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
559 {
560         char *fence, *newstr;
561         int error;
562         unsigned int n;
563
564         (void) arg1; (void) arg2; /* unused parameters */
565
566         n = sizeof(pmc_debugstr);
567         newstr = malloc(n, M_PMC, M_WAITOK|M_ZERO);
568         (void) strlcpy(newstr, pmc_debugstr, n);
569
570         error = sysctl_handle_string(oidp, newstr, n, req);
571
572         /* if there is a new string, parse and copy it */
573         if (error == 0 && req->newptr != NULL) {
574                 fence = newstr + (n < req->newlen ? n : req->newlen + 1);
575                 if ((error = pmc_debugflags_parse(newstr, fence)) == 0)
576                         (void) strlcpy(pmc_debugstr, newstr,
577                             sizeof(pmc_debugstr));
578         }
579
580         free(newstr, M_PMC);
581
582         return error;
583 }
584 #endif
585
586 /*
587  * Map a row index to a classdep structure and return the adjusted row
588  * index for the PMC class index.
589  */
590 static struct pmc_classdep *
591 pmc_ri_to_classdep(struct pmc_mdep *md, int ri, int *adjri)
592 {
593         struct pmc_classdep *pcd;
594
595         (void) md;
596
597         KASSERT(ri >= 0 && ri < md->pmd_npmc,
598             ("[pmc,%d] illegal row-index %d", __LINE__, ri));
599
600         pcd = pmc_rowindex_to_classdep[ri];
601
602         KASSERT(pcd != NULL,
603             ("[pmc,%d] ri %d null pcd", __LINE__, ri));
604
605         *adjri = ri - pcd->pcd_ri;
606
607         KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
608             ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
609
610         return (pcd);
611 }
612
613 /*
614  * Concurrency Control
615  *
616  * The driver manages the following data structures:
617  *
618  *   - target process descriptors, one per target process
619  *   - owner process descriptors (and attached lists), one per owner process
620  *   - lookup hash tables for owner and target processes
621  *   - PMC descriptors (and attached lists)
622  *   - per-cpu hardware state
623  *   - the 'hook' variable through which the kernel calls into
624  *     this module
625  *   - the machine hardware state (managed by the MD layer)
626  *
627  * These data structures are accessed from:
628  *
629  * - thread context-switch code
630  * - interrupt handlers (possibly on multiple cpus)
631  * - kernel threads on multiple cpus running on behalf of user
632  *   processes doing system calls
633  * - this driver's private kernel threads
634  *
635  * = Locks and Locking strategy =
636  *
637  * The driver uses four locking strategies for its operation:
638  *
639  * - The global SX lock "pmc_sx" is used to protect internal
640  *   data structures.
641  *
642  *   Calls into the module by syscall() start with this lock being
643  *   held in exclusive mode.  Depending on the requested operation,
644  *   the lock may be downgraded to 'shared' mode to allow more
645  *   concurrent readers into the module.  Calls into the module from
646  *   other parts of the kernel acquire the lock in shared mode.
647  *
648  *   This SX lock is held in exclusive mode for any operations that
649  *   modify the linkages between the driver's internal data structures.
650  *
651  *   The 'pmc_hook' function pointer is also protected by this lock.
652  *   It is only examined with the sx lock held in exclusive mode.  The
653  *   kernel module is allowed to be unloaded only with the sx lock held
654  *   in exclusive mode.  In normal syscall handling, after acquiring the
655  *   pmc_sx lock we first check that 'pmc_hook' is non-null before
656  *   proceeding.  This prevents races between the thread unloading the module
657  *   and other threads seeking to use the module.
658  *
659  * - Lookups of target process structures and owner process structures
660  *   cannot use the global "pmc_sx" SX lock because these lookups need
661  *   to happen during context switches and in other critical sections
662  *   where sleeping is not allowed.  We protect these lookup tables
663  *   with their own private spin-mutexes, "pmc_processhash_mtx" and
664  *   "pmc_ownerhash_mtx".
665  *
666  * - Interrupt handlers work in a lock free manner.  At interrupt
667  *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
668  *   when the PMC was started.  If this pointer is NULL, the interrupt
669  *   is ignored after updating driver statistics.  We ensure that this
670  *   pointer is set (using an atomic operation if necessary) before the
671  *   PMC hardware is started.  Conversely, this pointer is unset atomically
672  *   only after the PMC hardware is stopped.
673  *
674  *   We ensure that everything needed for the operation of an
675  *   interrupt handler is available without it needing to acquire any
676  *   locks.  We also ensure that a PMC's software state is destroyed only
677  *   after the PMC is taken off hardware (on all CPUs).
678  *
679  * - Context-switch handling with process-private PMCs needs more
680  *   care.
681  *
682  *   A given process may be the target of multiple PMCs.  For example,
683  *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
684  *   while the target process is running on another.  A PMC could also
685  *   be getting released because its owner is exiting.  We tackle
686  *   these situations in the following manner:
687  *
688  *   - each target process structure 'pmc_process' has an array
689  *     of 'struct pmc *' pointers, one for each hardware PMC.
690  *
691  *   - At context switch IN time, each "target" PMC in RUNNING state
692  *     gets started on hardware and a pointer to each PMC is copied into
693  *     the per-cpu phw array.  The 'runcount' for the PMC is
694  *     incremented.
695  *
696  *   - At context switch OUT time, all process-virtual PMCs are stopped
697  *     on hardware.  The saved value is added to the PMCs value field
698  *     only if the PMC is in a non-deleted state (the PMCs state could
699  *     have changed during the current time slice).
700  *
701  *     Note that since in-between a switch IN on a processor and a switch
702  *     OUT, the PMC could have been released on another CPU.  Therefore
703  *     context switch OUT always looks at the hardware state to turn
704  *     OFF PMCs and will update a PMC's saved value only if reachable
705  *     from the target process record.
706  *
707  *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
708  *     be attached to many processes at the time of the call and could
709  *     be active on multiple CPUs).
710  *
711  *     We prevent further scheduling of the PMC by marking it as in
712  *     state 'DELETED'.  If the runcount of the PMC is non-zero then
713  *     this PMC is currently running on a CPU somewhere.  The thread
714  *     doing the PMCRELEASE operation waits by repeatedly doing a
715  *     pause() till the runcount comes to zero.
716  *
717  * The contents of a PMC descriptor (struct pmc) are protected using
718  * a spin-mutex.  In order to save space, we use a mutex pool.
719  *
720  * In terms of lock types used by witness(4), we use:
721  * - Type "pmc-sx", used by the global SX lock.
722  * - Type "pmc-sleep", for sleep mutexes used by logger threads.
723  * - Type "pmc-per-proc", for protecting PMC owner descriptors.
724  * - Type "pmc-leaf", used for all other spin mutexes.
725  */
726
727 /*
728  * save the cpu binding of the current kthread
729  */
730
731 static void
732 pmc_save_cpu_binding(struct pmc_binding *pb)
733 {
734         PMCDBG0(CPU,BND,2, "save-cpu");
735         thread_lock(curthread);
736         pb->pb_bound = sched_is_bound(curthread);
737         pb->pb_cpu   = curthread->td_oncpu;
738         thread_unlock(curthread);
739         PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
740 }
741
742 /*
743  * restore the cpu binding of the current thread
744  */
745
746 static void
747 pmc_restore_cpu_binding(struct pmc_binding *pb)
748 {
749         PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
750             curthread->td_oncpu, pb->pb_cpu);
751         thread_lock(curthread);
752         if (pb->pb_bound)
753                 sched_bind(curthread, pb->pb_cpu);
754         else
755                 sched_unbind(curthread);
756         thread_unlock(curthread);
757         PMCDBG0(CPU,BND,2, "restore-cpu done");
758 }
759
760 /*
761  * move execution over the specified cpu and bind it there.
762  */
763
764 static void
765 pmc_select_cpu(int cpu)
766 {
767         KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
768             ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
769
770         /* Never move to an inactive CPU. */
771         KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
772             "CPU %d", __LINE__, cpu));
773
774         PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu);
775         thread_lock(curthread);
776         sched_bind(curthread, cpu);
777         thread_unlock(curthread);
778
779         KASSERT(curthread->td_oncpu == cpu,
780             ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
781                 cpu, curthread->td_oncpu));
782
783         PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
784 }
785
786 /*
787  * Force a context switch.
788  *
789  * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
790  * guaranteed to force a context switch.
791  */
792
793 static void
794 pmc_force_context_switch(void)
795 {
796
797         pause("pmcctx", 1);
798 }
799
800 /*
801  * Get the file name for an executable.  This is a simple wrapper
802  * around vn_fullpath(9).
803  */
804
805 static void
806 pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
807 {
808
809         *fullpath = "unknown";
810         *freepath = NULL;
811         vn_fullpath(curthread, v, fullpath, freepath);
812 }
813
814 /*
815  * remove an process owning PMCs
816  */
817
818 void
819 pmc_remove_owner(struct pmc_owner *po)
820 {
821         struct pmc *pm, *tmp;
822
823         sx_assert(&pmc_sx, SX_XLOCKED);
824
825         PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po);
826
827         /* Remove descriptor from the owner hash table */
828         LIST_REMOVE(po, po_next);
829
830         /* release all owned PMC descriptors */
831         LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
832                 PMCDBG1(OWN,ORM,2, "pmc=%p", pm);
833                 KASSERT(pm->pm_owner == po,
834                     ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
835
836                 pmc_release_pmc_descriptor(pm); /* will unlink from the list */
837                 pmc_destroy_pmc_descriptor(pm);
838         }
839
840         KASSERT(po->po_sscount == 0,
841             ("[pmc,%d] SS count not zero", __LINE__));
842         KASSERT(LIST_EMPTY(&po->po_pmcs),
843             ("[pmc,%d] PMC list not empty", __LINE__));
844
845         /* de-configure the log file if present */
846         if (po->po_flags & PMC_PO_OWNS_LOGFILE)
847                 pmclog_deconfigure_log(po);
848 }
849
850 /*
851  * remove an owner process record if all conditions are met.
852  */
853
854 static void
855 pmc_maybe_remove_owner(struct pmc_owner *po)
856 {
857
858         PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po);
859
860         /*
861          * Remove owner record if
862          * - this process does not own any PMCs
863          * - this process has not allocated a system-wide sampling buffer
864          */
865
866         if (LIST_EMPTY(&po->po_pmcs) &&
867             ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
868                 pmc_remove_owner(po);
869                 pmc_destroy_owner_descriptor(po);
870         }
871 }
872
873 /*
874  * Add an association between a target process and a PMC.
875  */
876
877 static void
878 pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
879 {
880         int ri;
881         struct pmc_target *pt;
882 #ifdef INVARIANTS
883         struct pmc_thread *pt_td;
884 #endif
885
886         sx_assert(&pmc_sx, SX_XLOCKED);
887
888         KASSERT(pm != NULL && pp != NULL,
889             ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
890         KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
891             ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
892                 __LINE__, pm, pp->pp_proc->p_pid));
893         KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
894             ("[pmc,%d] Illegal reference count %d for process record %p",
895                 __LINE__, pp->pp_refcnt, (void *) pp));
896
897         ri = PMC_TO_ROWINDEX(pm);
898
899         PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
900             pm, ri, pp);
901
902 #ifdef  HWPMC_DEBUG
903         LIST_FOREACH(pt, &pm->pm_targets, pt_next)
904             if (pt->pt_process == pp)
905                     KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
906                                 __LINE__, pp, pm));
907 #endif
908
909         pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK|M_ZERO);
910         pt->pt_process = pp;
911
912         LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
913
914         atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
915             (uintptr_t)pm);
916
917         if (pm->pm_owner->po_owner == pp->pp_proc)
918                 pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
919
920         /*
921          * Initialize the per-process values at this row index.
922          */
923         pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
924             pm->pm_sc.pm_reloadcount : 0;
925
926         pp->pp_refcnt++;
927
928 #ifdef INVARIANTS
929         /* Confirm that the per-thread values at this row index are cleared. */
930         if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
931                 mtx_lock_spin(pp->pp_tdslock);
932                 LIST_FOREACH(pt_td, &pp->pp_tds, pt_next) {
933                         KASSERT(pt_td->pt_pmcs[ri].pt_pmcval == (pmc_value_t) 0,
934                             ("[pmc,%d] pt_pmcval not cleared for pid=%d at "
935                             "ri=%d", __LINE__, pp->pp_proc->p_pid, ri));
936                 }
937                 mtx_unlock_spin(pp->pp_tdslock);
938         }
939 #endif
940 }
941
942 /*
943  * Removes the association between a target process and a PMC.
944  */
945
946 static void
947 pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
948 {
949         int ri;
950         struct proc *p;
951         struct pmc_target *ptgt;
952         struct pmc_thread *pt;
953
954         sx_assert(&pmc_sx, SX_XLOCKED);
955
956         KASSERT(pm != NULL && pp != NULL,
957             ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
958
959         KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
960             ("[pmc,%d] Illegal ref count %d on process record %p",
961                 __LINE__, pp->pp_refcnt, (void *) pp));
962
963         ri = PMC_TO_ROWINDEX(pm);
964
965         PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
966             pm, ri, pp);
967
968         KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
969             ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
970                 ri, pm, pp->pp_pmcs[ri].pp_pmc));
971
972         pp->pp_pmcs[ri].pp_pmc = NULL;
973         pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t) 0;
974
975         /* Clear the per-thread values at this row index. */
976         if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
977                 mtx_lock_spin(pp->pp_tdslock);
978                 LIST_FOREACH(pt, &pp->pp_tds, pt_next)
979                         pt->pt_pmcs[ri].pt_pmcval = (pmc_value_t) 0;
980                 mtx_unlock_spin(pp->pp_tdslock);
981         }
982
983         /* Remove owner-specific flags */
984         if (pm->pm_owner->po_owner == pp->pp_proc) {
985                 pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
986                 pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
987         }
988
989         pp->pp_refcnt--;
990
991         /* Remove the target process from the PMC structure */
992         LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
993                 if (ptgt->pt_process == pp)
994                         break;
995
996         KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
997                     "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
998
999         LIST_REMOVE(ptgt, pt_next);
1000         free(ptgt, M_PMC);
1001
1002         /* if the PMC now lacks targets, send the owner a SIGIO */
1003         if (LIST_EMPTY(&pm->pm_targets)) {
1004                 p = pm->pm_owner->po_owner;
1005                 PROC_LOCK(p);
1006                 kern_psignal(p, SIGIO);
1007                 PROC_UNLOCK(p);
1008
1009                 PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p,
1010                     SIGIO);
1011         }
1012 }
1013
1014 /*
1015  * Check if PMC 'pm' may be attached to target process 't'.
1016  */
1017
1018 static int
1019 pmc_can_attach(struct pmc *pm, struct proc *t)
1020 {
1021         struct proc *o;         /* pmc owner */
1022         struct ucred *oc, *tc;  /* owner, target credentials */
1023         int decline_attach, i;
1024
1025         /*
1026          * A PMC's owner can always attach that PMC to itself.
1027          */
1028
1029         if ((o = pm->pm_owner->po_owner) == t)
1030                 return 0;
1031
1032         PROC_LOCK(o);
1033         oc = o->p_ucred;
1034         crhold(oc);
1035         PROC_UNLOCK(o);
1036
1037         PROC_LOCK(t);
1038         tc = t->p_ucred;
1039         crhold(tc);
1040         PROC_UNLOCK(t);
1041
1042         /*
1043          * The effective uid of the PMC owner should match at least one
1044          * of the {effective,real,saved} uids of the target process.
1045          */
1046
1047         decline_attach = oc->cr_uid != tc->cr_uid &&
1048             oc->cr_uid != tc->cr_svuid &&
1049             oc->cr_uid != tc->cr_ruid;
1050
1051         /*
1052          * Every one of the target's group ids, must be in the owner's
1053          * group list.
1054          */
1055         for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
1056                 decline_attach = !groupmember(tc->cr_groups[i], oc);
1057
1058         /* check the read and saved gids too */
1059         if (decline_attach == 0)
1060                 decline_attach = !groupmember(tc->cr_rgid, oc) ||
1061                     !groupmember(tc->cr_svgid, oc);
1062
1063         crfree(tc);
1064         crfree(oc);
1065
1066         return !decline_attach;
1067 }
1068
1069 /*
1070  * Attach a process to a PMC.
1071  */
1072
1073 static int
1074 pmc_attach_one_process(struct proc *p, struct pmc *pm)
1075 {
1076         int ri, error;
1077         char *fullpath, *freepath;
1078         struct pmc_process      *pp;
1079
1080         sx_assert(&pmc_sx, SX_XLOCKED);
1081
1082         PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
1083             PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1084
1085         /*
1086          * Locate the process descriptor corresponding to process 'p',
1087          * allocating space as needed.
1088          *
1089          * Verify that rowindex 'pm_rowindex' is free in the process
1090          * descriptor.
1091          *
1092          * If not, allocate space for a descriptor and link the
1093          * process descriptor and PMC.
1094          */
1095         ri = PMC_TO_ROWINDEX(pm);
1096
1097         /* mark process as using HWPMCs */
1098         PROC_LOCK(p);
1099         p->p_flag |= P_HWPMC;
1100         PROC_UNLOCK(p);
1101
1102         if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL) {
1103                 error = ENOMEM;
1104                 goto fail;
1105         }
1106
1107         if (pp->pp_pmcs[ri].pp_pmc == pm) {/* already present at slot [ri] */
1108                 error = EEXIST;
1109                 goto fail;
1110         }
1111
1112         if (pp->pp_pmcs[ri].pp_pmc != NULL) {
1113                 error = EBUSY;
1114                 goto fail;
1115         }
1116
1117         pmc_link_target_process(pm, pp);
1118
1119         if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
1120             (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
1121                 pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
1122
1123         pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
1124
1125         /* issue an attach event to a configured log file */
1126         if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
1127                 if (p->p_flag & P_KPROC) {
1128                         fullpath = kernelname;
1129                         freepath = NULL;
1130                 } else {
1131                         pmc_getfilename(p->p_textvp, &fullpath, &freepath);
1132                         pmclog_process_pmcattach(pm, p->p_pid, fullpath);
1133                 }
1134                 free(freepath, M_TEMP);
1135                 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1136                         pmc_log_process_mappings(pm->pm_owner, p);
1137         }
1138
1139         return (0);
1140  fail:
1141         PROC_LOCK(p);
1142         p->p_flag &= ~P_HWPMC;
1143         PROC_UNLOCK(p);
1144         return (error);
1145 }
1146
1147 /*
1148  * Attach a process and optionally its children
1149  */
1150
1151 static int
1152 pmc_attach_process(struct proc *p, struct pmc *pm)
1153 {
1154         int error;
1155         struct proc *top;
1156
1157         sx_assert(&pmc_sx, SX_XLOCKED);
1158
1159         PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
1160             PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1161
1162
1163         /*
1164          * If this PMC successfully allowed a GETMSR operation
1165          * in the past, disallow further ATTACHes.
1166          */
1167
1168         if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
1169                 return EPERM;
1170
1171         if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1172                 return pmc_attach_one_process(p, pm);
1173
1174         /*
1175          * Traverse all child processes, attaching them to
1176          * this PMC.
1177          */
1178
1179         sx_slock(&proctree_lock);
1180
1181         top = p;
1182
1183         for (;;) {
1184                 if ((error = pmc_attach_one_process(p, pm)) != 0)
1185                         break;
1186                 if (!LIST_EMPTY(&p->p_children))
1187                         p = LIST_FIRST(&p->p_children);
1188                 else for (;;) {
1189                         if (p == top)
1190                                 goto done;
1191                         if (LIST_NEXT(p, p_sibling)) {
1192                                 p = LIST_NEXT(p, p_sibling);
1193                                 break;
1194                         }
1195                         p = p->p_pptr;
1196                 }
1197         }
1198
1199         if (error)
1200                 (void) pmc_detach_process(top, pm);
1201
1202  done:
1203         sx_sunlock(&proctree_lock);
1204         return error;
1205 }
1206
1207 /*
1208  * Detach a process from a PMC.  If there are no other PMCs tracking
1209  * this process, remove the process structure from its hash table.  If
1210  * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
1211  */
1212
1213 static int
1214 pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
1215 {
1216         int ri;
1217         struct pmc_process *pp;
1218
1219         sx_assert(&pmc_sx, SX_XLOCKED);
1220
1221         KASSERT(pm != NULL,
1222             ("[pmc,%d] null pm pointer", __LINE__));
1223
1224         ri = PMC_TO_ROWINDEX(pm);
1225
1226         PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
1227             pm, ri, p, p->p_pid, p->p_comm, flags);
1228
1229         if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
1230                 return ESRCH;
1231
1232         if (pp->pp_pmcs[ri].pp_pmc != pm)
1233                 return EINVAL;
1234
1235         pmc_unlink_target_process(pm, pp);
1236
1237         /* Issue a detach entry if a log file is configured */
1238         if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
1239                 pmclog_process_pmcdetach(pm, p->p_pid);
1240
1241         /*
1242          * If there are no PMCs targeting this process, we remove its
1243          * descriptor from the target hash table and unset the P_HWPMC
1244          * flag in the struct proc.
1245          */
1246         KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
1247             ("[pmc,%d] Illegal refcnt %d for process struct %p",
1248                 __LINE__, pp->pp_refcnt, pp));
1249
1250         if (pp->pp_refcnt != 0) /* still a target of some PMC */
1251                 return 0;
1252
1253         pmc_remove_process_descriptor(pp);
1254
1255         if (flags & PMC_FLAG_REMOVE)
1256                 pmc_destroy_process_descriptor(pp);
1257
1258         PROC_LOCK(p);
1259         p->p_flag &= ~P_HWPMC;
1260         PROC_UNLOCK(p);
1261
1262         return 0;
1263 }
1264
1265 /*
1266  * Detach a process and optionally its descendants from a PMC.
1267  */
1268
1269 static int
1270 pmc_detach_process(struct proc *p, struct pmc *pm)
1271 {
1272         struct proc *top;
1273
1274         sx_assert(&pmc_sx, SX_XLOCKED);
1275
1276         PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
1277             PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
1278
1279         if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
1280                 return pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1281
1282         /*
1283          * Traverse all children, detaching them from this PMC.  We
1284          * ignore errors since we could be detaching a PMC from a
1285          * partially attached proc tree.
1286          */
1287
1288         sx_slock(&proctree_lock);
1289
1290         top = p;
1291
1292         for (;;) {
1293                 (void) pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
1294
1295                 if (!LIST_EMPTY(&p->p_children))
1296                         p = LIST_FIRST(&p->p_children);
1297                 else for (;;) {
1298                         if (p == top)
1299                                 goto done;
1300                         if (LIST_NEXT(p, p_sibling)) {
1301                                 p = LIST_NEXT(p, p_sibling);
1302                                 break;
1303                         }
1304                         p = p->p_pptr;
1305                 }
1306         }
1307
1308  done:
1309         sx_sunlock(&proctree_lock);
1310
1311         if (LIST_EMPTY(&pm->pm_targets))
1312                 pm->pm_flags &= ~PMC_F_ATTACH_DONE;
1313
1314         return 0;
1315 }
1316
1317
1318 /*
1319  * Thread context switch IN
1320  */
1321
1322 static void
1323 pmc_process_csw_in(struct thread *td)
1324 {
1325         int cpu;
1326         unsigned int adjri, ri;
1327         struct pmc *pm;
1328         struct proc *p;
1329         struct pmc_cpu *pc;
1330         struct pmc_hw *phw;
1331         pmc_value_t newvalue;
1332         struct pmc_process *pp;
1333         struct pmc_thread *pt;
1334         struct pmc_classdep *pcd;
1335
1336         p = td->td_proc;
1337         pt = NULL;
1338         if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
1339                 return;
1340
1341         KASSERT(pp->pp_proc == td->td_proc,
1342             ("[pmc,%d] not my thread state", __LINE__));
1343
1344         critical_enter(); /* no preemption from this point */
1345
1346         cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1347
1348         PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1349             p->p_pid, p->p_comm, pp);
1350
1351         KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1352             ("[pmc,%d] weird CPU id %d", __LINE__, cpu));
1353
1354         pc = pmc_pcpu[cpu];
1355
1356         for (ri = 0; ri < md->pmd_npmc; ri++) {
1357
1358                 if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
1359                         continue;
1360
1361                 KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
1362                     ("[pmc,%d] Target PMC in non-virtual mode (%d)",
1363                         __LINE__, PMC_TO_MODE(pm)));
1364
1365                 KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1366                     ("[pmc,%d] Row index mismatch pmc %d != ri %d",
1367                         __LINE__, PMC_TO_ROWINDEX(pm), ri));
1368
1369                 /*
1370                  * Only PMCs that are marked as 'RUNNING' need
1371                  * be placed on hardware.
1372                  */
1373
1374                 if (pm->pm_state != PMC_STATE_RUNNING)
1375                         continue;
1376
1377                 /* increment PMC runcount */
1378                 counter_u64_add(pm->pm_runcount, 1);
1379
1380                 /* configure the HWPMC we are going to use. */
1381                 pcd = pmc_ri_to_classdep(md, ri, &adjri);
1382                 pcd->pcd_config_pmc(cpu, adjri, pm);
1383
1384                 phw = pc->pc_hwpmcs[ri];
1385
1386                 KASSERT(phw != NULL,
1387                     ("[pmc,%d] null hw pointer", __LINE__));
1388
1389                 KASSERT(phw->phw_pmc == pm,
1390                     ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
1391                         phw->phw_pmc, pm));
1392
1393                 /*
1394                  * Write out saved value and start the PMC.
1395                  *
1396                  * Sampling PMCs use a per-thread value, while
1397                  * counting mode PMCs use a per-pmc value that is
1398                  * inherited across descendants.
1399                  */
1400                 if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
1401                         if (pt == NULL)
1402                                 pt = pmc_find_thread_descriptor(pp, td,
1403                                     PMC_FLAG_NONE);
1404
1405                         KASSERT(pt != NULL,
1406                             ("[pmc,%d] No thread found for td=%p", __LINE__,
1407                             td));
1408
1409                         mtx_pool_lock_spin(pmc_mtxpool, pm);
1410
1411                         /*
1412                          * If we have a thread descriptor, use the per-thread
1413                          * counter in the descriptor. If not, we will use
1414                          * a per-process counter. 
1415                          *
1416                          * TODO: Remove the per-process "safety net" once
1417                          * we have thoroughly tested that we don't hit the
1418                          * above assert.
1419                          */
1420                         if (pt != NULL) {
1421                                 if (pt->pt_pmcs[ri].pt_pmcval > 0)
1422                                         newvalue = pt->pt_pmcs[ri].pt_pmcval;
1423                                 else
1424                                         newvalue = pm->pm_sc.pm_reloadcount;
1425                         } else {
1426                                 /*
1427                                  * Use the saved value calculated after the most
1428                                  * recent time a thread using the shared counter
1429                                  * switched out. Reset the saved count in case
1430                                  * another thread from this process switches in
1431                                  * before any threads switch out.
1432                                  */
1433
1434                                 newvalue = pp->pp_pmcs[ri].pp_pmcval;
1435                                 pp->pp_pmcs[ri].pp_pmcval =
1436                                     pm->pm_sc.pm_reloadcount;
1437                         }
1438                         mtx_pool_unlock_spin(pmc_mtxpool, pm);
1439                         KASSERT(newvalue > 0 && newvalue <=
1440                             pm->pm_sc.pm_reloadcount,
1441                             ("[pmc,%d] pmcval outside of expected range cpu=%d "
1442                             "ri=%d pmcval=%jx pm_reloadcount=%jx", __LINE__,
1443                             cpu, ri, newvalue, pm->pm_sc.pm_reloadcount));
1444                 } else {
1445                         KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
1446                             ("[pmc,%d] illegal mode=%d", __LINE__,
1447                             PMC_TO_MODE(pm)));
1448                         mtx_pool_lock_spin(pmc_mtxpool, pm);
1449                         newvalue = PMC_PCPU_SAVED(cpu, ri) =
1450                             pm->pm_gv.pm_savedvalue;
1451                         mtx_pool_unlock_spin(pmc_mtxpool, pm);
1452                 }
1453
1454                 PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
1455
1456                 pcd->pcd_write_pmc(cpu, adjri, newvalue);
1457
1458                 /* If a sampling mode PMC, reset stalled state. */
1459                 if (PMC_TO_MODE(pm) == PMC_MODE_TS)
1460                         pm->pm_pcpu_state[cpu].pps_stalled = 0;
1461
1462                 /* Indicate that we desire this to run. */
1463                 pm->pm_pcpu_state[cpu].pps_cpustate = 1;
1464
1465                 /* Start the PMC. */
1466                 pcd->pcd_start_pmc(cpu, adjri);
1467         }
1468
1469         /*
1470          * perform any other architecture/cpu dependent thread
1471          * switch-in actions.
1472          */
1473
1474         (void) (*md->pmd_switch_in)(pc, pp);
1475
1476         critical_exit();
1477
1478 }
1479
1480 /*
1481  * Thread context switch OUT.
1482  */
1483
1484 static void
1485 pmc_process_csw_out(struct thread *td)
1486 {
1487         int cpu;
1488         int64_t tmp;
1489         struct pmc *pm;
1490         struct proc *p;
1491         enum pmc_mode mode;
1492         struct pmc_cpu *pc;
1493         pmc_value_t newvalue;
1494         unsigned int adjri, ri;
1495         struct pmc_process *pp;
1496         struct pmc_thread *pt = NULL;
1497         struct pmc_classdep *pcd;
1498
1499
1500         /*
1501          * Locate our process descriptor; this may be NULL if
1502          * this process is exiting and we have already removed
1503          * the process from the target process table.
1504          *
1505          * Note that due to kernel preemption, multiple
1506          * context switches may happen while the process is
1507          * exiting.
1508          *
1509          * Note also that if the target process cannot be
1510          * found we still need to deconfigure any PMCs that
1511          * are currently running on hardware.
1512          */
1513
1514         p = td->td_proc;
1515         pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
1516
1517         /*
1518          * save PMCs
1519          */
1520
1521         critical_enter();
1522
1523         cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
1524
1525         PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
1526             p->p_pid, p->p_comm, pp);
1527
1528         KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
1529             ("[pmc,%d weird CPU id %d", __LINE__, cpu));
1530
1531         pc = pmc_pcpu[cpu];
1532
1533         /*
1534          * When a PMC gets unlinked from a target PMC, it will
1535          * be removed from the target's pp_pmc[] array.
1536          *
1537          * However, on a MP system, the target could have been
1538          * executing on another CPU at the time of the unlink.
1539          * So, at context switch OUT time, we need to look at
1540          * the hardware to determine if a PMC is scheduled on
1541          * it.
1542          */
1543
1544         for (ri = 0; ri < md->pmd_npmc; ri++) {
1545
1546                 pcd = pmc_ri_to_classdep(md, ri, &adjri);
1547                 pm  = NULL;
1548                 (void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
1549
1550                 if (pm == NULL) /* nothing at this row index */
1551                         continue;
1552
1553                 mode = PMC_TO_MODE(pm);
1554                 if (!PMC_IS_VIRTUAL_MODE(mode))
1555                         continue; /* not a process virtual PMC */
1556
1557                 KASSERT(PMC_TO_ROWINDEX(pm) == ri,
1558                     ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
1559                         __LINE__, PMC_TO_ROWINDEX(pm), ri));
1560
1561                 /*
1562                  * Change desired state, and then stop if not stalled.
1563                  * This two-step dance should avoid race conditions where
1564                  * an interrupt re-enables the PMC after this code has
1565                  * already checked the pm_stalled flag.
1566                  */
1567                 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
1568                 if (pm->pm_pcpu_state[cpu].pps_stalled == 0)
1569                         pcd->pcd_stop_pmc(cpu, adjri);
1570
1571                 /* reduce this PMC's runcount */
1572                 counter_u64_add(pm->pm_runcount, -1);
1573
1574                 /*
1575                  * If this PMC is associated with this process,
1576                  * save the reading.
1577                  */
1578
1579                 if (pm->pm_state != PMC_STATE_DELETED && pp != NULL &&
1580                     pp->pp_pmcs[ri].pp_pmc != NULL) {
1581                         KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
1582                             ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
1583                                 pm, ri, pp->pp_pmcs[ri].pp_pmc));
1584
1585                         KASSERT(pp->pp_refcnt > 0,
1586                             ("[pmc,%d] pp refcnt = %d", __LINE__,
1587                                 pp->pp_refcnt));
1588
1589                         pcd->pcd_read_pmc(cpu, adjri, &newvalue);
1590
1591                         if (mode == PMC_MODE_TS) {
1592                                 PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d val=%jd (samp)",
1593                                     cpu, ri, newvalue);
1594
1595                                 if (pt == NULL)
1596                                         pt = pmc_find_thread_descriptor(pp, td,
1597                                             PMC_FLAG_NONE);
1598
1599                                 KASSERT(pt != NULL,
1600                                     ("[pmc,%d] No thread found for td=%p",
1601                                     __LINE__, td));
1602
1603                                 mtx_pool_lock_spin(pmc_mtxpool, pm);
1604
1605                                 /*
1606                                  * If we have a thread descriptor, save the
1607                                  * per-thread counter in the descriptor. If not,
1608                                  * we will update the per-process counter.
1609                                  *
1610                                  * TODO: Remove the per-process "safety net"
1611                                  * once we have thoroughly tested that we
1612                                  * don't hit the above assert.
1613                                  */
1614                                 if (pt != NULL)
1615                                         pt->pt_pmcs[ri].pt_pmcval = newvalue;
1616                                 else {
1617                                         /*
1618                                          * For sampling process-virtual PMCs,
1619                                          * newvalue is the number of events to
1620                                          * be seen until the next sampling
1621                                          * interrupt. We can just add the events
1622                                          * left from this invocation to the
1623                                          * counter, then adjust in case we
1624                                          * overflow our range.
1625                                          *
1626                                          * (Recall that we reload the counter
1627                                          * every time we use it.)
1628                                          */
1629                                         pp->pp_pmcs[ri].pp_pmcval += newvalue;
1630                                         if (pp->pp_pmcs[ri].pp_pmcval >
1631                                             pm->pm_sc.pm_reloadcount)
1632                                                 pp->pp_pmcs[ri].pp_pmcval -=
1633                                                     pm->pm_sc.pm_reloadcount;
1634                                 }
1635                                 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1636                         } else {
1637                                 tmp = newvalue - PMC_PCPU_SAVED(cpu,ri);
1638
1639                                 PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (count)",
1640                                     cpu, ri, tmp);
1641
1642                                 /*
1643                                  * For counting process-virtual PMCs,
1644                                  * we expect the count to be
1645                                  * increasing monotonically, modulo a 64
1646                                  * bit wraparound.
1647                                  */
1648                                 KASSERT(tmp >= 0,
1649                                     ("[pmc,%d] negative increment cpu=%d "
1650                                      "ri=%d newvalue=%jx saved=%jx "
1651                                      "incr=%jx", __LINE__, cpu, ri,
1652                                      newvalue, PMC_PCPU_SAVED(cpu,ri), tmp));
1653
1654                                 mtx_pool_lock_spin(pmc_mtxpool, pm);
1655                                 pm->pm_gv.pm_savedvalue += tmp;
1656                                 pp->pp_pmcs[ri].pp_pmcval += tmp;
1657                                 mtx_pool_unlock_spin(pmc_mtxpool, pm);
1658
1659                                 if (pm->pm_flags & PMC_F_LOG_PROCCSW)
1660                                         pmclog_process_proccsw(pm, pp, tmp);
1661                         }
1662                 }
1663
1664                 /* mark hardware as free */
1665                 pcd->pcd_config_pmc(cpu, adjri, NULL);
1666         }
1667
1668         /*
1669          * perform any other architecture/cpu dependent thread
1670          * switch out functions.
1671          */
1672
1673         (void) (*md->pmd_switch_out)(pc, pp);
1674
1675         critical_exit();
1676 }
1677
1678 /*
1679  * A new thread for a process.
1680  */
1681 static void
1682 pmc_process_thread_add(struct thread *td)
1683 {
1684         struct pmc_process *pmc;
1685
1686         pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE);
1687         if (pmc != NULL)
1688                 pmc_find_thread_descriptor(pmc, td, PMC_FLAG_ALLOCATE);
1689 }
1690
1691 /*
1692  * A thread delete for a process.
1693  */
1694 static void
1695 pmc_process_thread_delete(struct thread *td)
1696 {
1697         struct pmc_process *pmc;
1698
1699         pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE);
1700         if (pmc != NULL)
1701                 pmc_thread_descriptor_pool_free(pmc_find_thread_descriptor(pmc,
1702                     td, PMC_FLAG_REMOVE));
1703 }
1704
1705 /*
1706  * A mapping change for a process.
1707  */
1708
1709 static void
1710 pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
1711 {
1712         int ri;
1713         pid_t pid;
1714         char *fullpath, *freepath;
1715         const struct pmc *pm;
1716         struct pmc_owner *po;
1717         const struct pmc_process *pp;
1718
1719         freepath = fullpath = NULL;
1720         epoch_exit_preempt(global_epoch_preempt);
1721         pmc_getfilename((struct vnode *) pkm->pm_file, &fullpath, &freepath);
1722
1723         pid = td->td_proc->p_pid;
1724
1725         epoch_enter_preempt(global_epoch_preempt);
1726         /* Inform owners of all system-wide sampling PMCs. */
1727         CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1728             if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1729                         pmclog_process_map_in(po, pid, pkm->pm_address, fullpath);
1730
1731         if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1732                 goto done;
1733
1734         /*
1735          * Inform sampling PMC owners tracking this process.
1736          */
1737         for (ri = 0; ri < md->pmd_npmc; ri++)
1738                 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1739                     PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1740                         pmclog_process_map_in(pm->pm_owner,
1741                             pid, pkm->pm_address, fullpath);
1742
1743   done:
1744         if (freepath)
1745                 free(freepath, M_TEMP);
1746 }
1747
1748
1749 /*
1750  * Log an munmap request.
1751  */
1752
1753 static void
1754 pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
1755 {
1756         int ri;
1757         pid_t pid;
1758         struct pmc_owner *po;
1759         const struct pmc *pm;
1760         const struct pmc_process *pp;
1761
1762         pid = td->td_proc->p_pid;
1763
1764         epoch_enter_preempt(global_epoch_preempt);
1765         CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
1766             if (po->po_flags & PMC_PO_OWNS_LOGFILE)
1767                 pmclog_process_map_out(po, pid, pkm->pm_address,
1768                     pkm->pm_address + pkm->pm_size);
1769         epoch_exit_preempt(global_epoch_preempt);
1770
1771         if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
1772                 return;
1773
1774         for (ri = 0; ri < md->pmd_npmc; ri++)
1775                 if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
1776                     PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
1777                         pmclog_process_map_out(pm->pm_owner, pid,
1778                             pkm->pm_address, pkm->pm_address + pkm->pm_size);
1779 }
1780
1781 /*
1782  * Log mapping information about the kernel.
1783  */
1784
1785 static void
1786 pmc_log_kernel_mappings(struct pmc *pm)
1787 {
1788         struct pmc_owner *po;
1789         struct pmckern_map_in *km, *kmbase;
1790
1791         MPASS(in_epoch() || sx_xlocked(&pmc_sx));
1792         KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
1793             ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
1794                 __LINE__, (void *) pm));
1795
1796         po = pm->pm_owner;
1797
1798         if (po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE)
1799                 return;
1800
1801         /*
1802          * Log the current set of kernel modules.
1803          */
1804         kmbase = linker_hwpmc_list_objects();
1805         for (km = kmbase; km->pm_file != NULL; km++) {
1806                 PMCDBG2(LOG,REG,1,"%s %p", (char *) km->pm_file,
1807                     (void *) km->pm_address);
1808                 pmclog_process_map_in(po, (pid_t) -1, km->pm_address,
1809                     km->pm_file);
1810         }
1811         free(kmbase, M_LINKER);
1812
1813         po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
1814 }
1815
1816 /*
1817  * Log the mappings for a single process.
1818  */
1819
1820 static void
1821 pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
1822 {
1823         vm_map_t map;
1824         struct vnode *vp;
1825         struct vmspace *vm;
1826         vm_map_entry_t entry;
1827         vm_offset_t last_end;
1828         u_int last_timestamp;
1829         struct vnode *last_vp;
1830         vm_offset_t start_addr;
1831         vm_object_t obj, lobj, tobj;
1832         char *fullpath, *freepath;
1833
1834         last_vp = NULL;
1835         last_end = (vm_offset_t) 0;
1836         fullpath = freepath = NULL;
1837
1838         if ((vm = vmspace_acquire_ref(p)) == NULL)
1839                 return;
1840
1841         map = &vm->vm_map;
1842         vm_map_lock_read(map);
1843
1844         for (entry = map->header.next; entry != &map->header; entry = entry->next) {
1845
1846                 if (entry == NULL) {
1847                         PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
1848                             "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
1849                         break;
1850                 }
1851
1852                 /*
1853                  * We only care about executable map entries.
1854                  */
1855                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) ||
1856                     !(entry->protection & VM_PROT_EXECUTE) ||
1857                     (entry->object.vm_object == NULL)) {
1858                         continue;
1859                 }
1860
1861                 obj = entry->object.vm_object;
1862                 VM_OBJECT_RLOCK(obj);
1863
1864                 /* 
1865                  * Walk the backing_object list to find the base
1866                  * (non-shadowed) vm_object.
1867                  */
1868                 for (lobj = tobj = obj; tobj != NULL; tobj = tobj->backing_object) {
1869                         if (tobj != obj)
1870                                 VM_OBJECT_RLOCK(tobj);
1871                         if (lobj != obj)
1872                                 VM_OBJECT_RUNLOCK(lobj);
1873                         lobj = tobj;
1874                 }
1875
1876                 /*
1877                  * At this point lobj is the base vm_object and it is locked.
1878                  */
1879                 if (lobj == NULL) {
1880                         PMCDBG3(LOG,OPS,2, "hwpmc: lobj unexpectedly NULL! pid=%d "
1881                             "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
1882                         VM_OBJECT_RUNLOCK(obj);
1883                         continue;
1884                 }
1885
1886                 vp = vm_object_vnode(lobj);
1887                 if (vp == NULL) {
1888                         if (lobj != obj)
1889                                 VM_OBJECT_RUNLOCK(lobj);
1890                         VM_OBJECT_RUNLOCK(obj);
1891                         continue;
1892                 }
1893
1894                 /*
1895                  * Skip contiguous regions that point to the same
1896                  * vnode, so we don't emit redundant MAP-IN
1897                  * directives.
1898                  */
1899                 if (entry->start == last_end && vp == last_vp) {
1900                         last_end = entry->end;
1901                         if (lobj != obj)
1902                                 VM_OBJECT_RUNLOCK(lobj);
1903                         VM_OBJECT_RUNLOCK(obj);
1904                         continue;
1905                 }
1906
1907                 /* 
1908                  * We don't want to keep the proc's vm_map or this
1909                  * vm_object locked while we walk the pathname, since
1910                  * vn_fullpath() can sleep.  However, if we drop the
1911                  * lock, it's possible for concurrent activity to
1912                  * modify the vm_map list.  To protect against this,
1913                  * we save the vm_map timestamp before we release the
1914                  * lock, and check it after we reacquire the lock
1915                  * below.
1916                  */
1917                 start_addr = entry->start;
1918                 last_end = entry->end;
1919                 last_timestamp = map->timestamp;
1920                 vm_map_unlock_read(map);
1921
1922                 vref(vp);
1923                 if (lobj != obj)
1924                         VM_OBJECT_RUNLOCK(lobj);
1925
1926                 VM_OBJECT_RUNLOCK(obj);
1927
1928                 freepath = NULL;
1929                 pmc_getfilename(vp, &fullpath, &freepath);
1930                 last_vp = vp;
1931
1932                 vrele(vp);
1933
1934                 vp = NULL;
1935                 pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
1936                 if (freepath)
1937                         free(freepath, M_TEMP);
1938
1939                 vm_map_lock_read(map);
1940
1941                 /*
1942                  * If our saved timestamp doesn't match, this means
1943                  * that the vm_map was modified out from under us and
1944                  * we can't trust our current "entry" pointer.  Do a
1945                  * new lookup for this entry.  If there is no entry
1946                  * for this address range, vm_map_lookup_entry() will
1947                  * return the previous one, so we always want to go to
1948                  * entry->next on the next loop iteration.
1949                  * 
1950                  * There is an edge condition here that can occur if
1951                  * there is no entry at or before this address.  In
1952                  * this situation, vm_map_lookup_entry returns
1953                  * &map->header, which would cause our loop to abort
1954                  * without processing the rest of the map.  However,
1955                  * in practice this will never happen for process
1956                  * vm_map.  This is because the executable's text
1957                  * segment is the first mapping in the proc's address
1958                  * space, and this mapping is never removed until the
1959                  * process exits, so there will always be a non-header
1960                  * entry at or before the requested address for
1961                  * vm_map_lookup_entry to return.
1962                  */
1963                 if (map->timestamp != last_timestamp)
1964                         vm_map_lookup_entry(map, last_end - 1, &entry);
1965         }
1966
1967         vm_map_unlock_read(map);
1968         vmspace_free(vm);
1969         return;
1970 }
1971
1972 /*
1973  * Log mappings for all processes in the system.
1974  */
1975
1976 static void
1977 pmc_log_all_process_mappings(struct pmc_owner *po)
1978 {
1979         struct proc *p, *top;
1980
1981         sx_assert(&pmc_sx, SX_XLOCKED);
1982
1983         if ((p = pfind(1)) == NULL)
1984                 panic("[pmc,%d] Cannot find init", __LINE__);
1985
1986         PROC_UNLOCK(p);
1987
1988         sx_slock(&proctree_lock);
1989
1990         top = p;
1991
1992         for (;;) {
1993                 pmc_log_process_mappings(po, p);
1994                 if (!LIST_EMPTY(&p->p_children))
1995                         p = LIST_FIRST(&p->p_children);
1996                 else for (;;) {
1997                         if (p == top)
1998                                 goto done;
1999                         if (LIST_NEXT(p, p_sibling)) {
2000                                 p = LIST_NEXT(p, p_sibling);
2001                                 break;
2002                         }
2003                         p = p->p_pptr;
2004                 }
2005         }
2006  done:
2007         sx_sunlock(&proctree_lock);
2008 }
2009
2010 /*
2011  * The 'hook' invoked from the kernel proper
2012  */
2013
2014
2015 #ifdef  HWPMC_DEBUG
2016 const char *pmc_hooknames[] = {
2017         /* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
2018         "",
2019         "EXEC",
2020         "CSW-IN",
2021         "CSW-OUT",
2022         "SAMPLE",
2023         "UNUSED1",
2024         "UNUSED2",
2025         "MMAP",
2026         "MUNMAP",
2027         "CALLCHAIN-NMI",
2028         "CALLCHAIN-SOFT",
2029         "SOFTSAMPLING",
2030         "THR-CREATE",
2031         "THR-EXIT",
2032 };
2033 #endif
2034
2035 static int
2036 pmc_hook_handler(struct thread *td, int function, void *arg)
2037 {
2038         int cpu;
2039
2040         PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
2041             pmc_hooknames[function], arg);
2042
2043         switch (function)
2044         {
2045
2046         /*
2047          * Process exec()
2048          */
2049
2050         case PMC_FN_PROCESS_EXEC:
2051         {
2052                 char *fullpath, *freepath;
2053                 unsigned int ri;
2054                 int is_using_hwpmcs;
2055                 struct pmc *pm;
2056                 struct proc *p;
2057                 struct pmc_owner *po;
2058                 struct pmc_process *pp;
2059                 struct pmckern_procexec *pk;
2060
2061                 sx_assert(&pmc_sx, SX_XLOCKED);
2062
2063                 p = td->td_proc;
2064                 pmc_getfilename(p->p_textvp, &fullpath, &freepath);
2065
2066                 pk = (struct pmckern_procexec *) arg;
2067
2068                 epoch_enter_preempt(global_epoch_preempt);
2069                 /* Inform owners of SS mode PMCs of the exec event. */
2070                 CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
2071                     if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2072                             pmclog_process_procexec(po, PMC_ID_INVALID,
2073                                 p->p_pid, pk->pm_entryaddr, fullpath);
2074                 epoch_exit_preempt(global_epoch_preempt);
2075
2076                 PROC_LOCK(p);
2077                 is_using_hwpmcs = p->p_flag & P_HWPMC;
2078                 PROC_UNLOCK(p);
2079
2080                 if (!is_using_hwpmcs) {
2081                         if (freepath)
2082                                 free(freepath, M_TEMP);
2083                         break;
2084                 }
2085
2086                 /*
2087                  * PMCs are not inherited across an exec():  remove any
2088                  * PMCs that this process is the owner of.
2089                  */
2090
2091                 if ((po = pmc_find_owner_descriptor(p)) != NULL) {
2092                         pmc_remove_owner(po);
2093                         pmc_destroy_owner_descriptor(po);
2094                 }
2095
2096                 /*
2097                  * If the process being exec'ed is not the target of any
2098                  * PMC, we are done.
2099                  */
2100                 if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
2101                         if (freepath)
2102                                 free(freepath, M_TEMP);
2103                         break;
2104                 }
2105
2106                 /*
2107                  * Log the exec event to all monitoring owners.  Skip
2108                  * owners who have already received the event because
2109                  * they had system sampling PMCs active.
2110                  */
2111                 for (ri = 0; ri < md->pmd_npmc; ri++)
2112                         if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
2113                                 po = pm->pm_owner;
2114                                 if (po->po_sscount == 0 &&
2115                                     po->po_flags & PMC_PO_OWNS_LOGFILE)
2116                                         pmclog_process_procexec(po, pm->pm_id,
2117                                             p->p_pid, pk->pm_entryaddr,
2118                                             fullpath);
2119                         }
2120
2121                 if (freepath)
2122                         free(freepath, M_TEMP);
2123
2124
2125                 PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
2126                     p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
2127
2128                 if (pk->pm_credentialschanged == 0) /* no change */
2129                         break;
2130
2131                 /*
2132                  * If the newly exec()'ed process has a different credential
2133                  * than before, allow it to be the target of a PMC only if
2134                  * the PMC's owner has sufficient privilege.
2135                  */
2136
2137                 for (ri = 0; ri < md->pmd_npmc; ri++)
2138                         if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL)
2139                                 if (pmc_can_attach(pm, td->td_proc) != 0)
2140                                         pmc_detach_one_process(td->td_proc,
2141                                             pm, PMC_FLAG_NONE);
2142
2143                 KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
2144                     ("[pmc,%d] Illegal ref count %d on pp %p", __LINE__,
2145                         pp->pp_refcnt, pp));
2146
2147                 /*
2148                  * If this process is no longer the target of any
2149                  * PMCs, we can remove the process entry and free
2150                  * up space.
2151                  */
2152
2153                 if (pp->pp_refcnt == 0) {
2154                         pmc_remove_process_descriptor(pp);
2155                         pmc_destroy_process_descriptor(pp);
2156                         break;
2157                 }
2158
2159         }
2160         break;
2161
2162         case PMC_FN_CSW_IN:
2163                 pmc_process_csw_in(td);
2164                 break;
2165
2166         case PMC_FN_CSW_OUT:
2167                 pmc_process_csw_out(td);
2168                 break;
2169
2170         /*
2171          * Process accumulated PC samples.
2172          *
2173          * This function is expected to be called by hardclock() for
2174          * each CPU that has accumulated PC samples.
2175          *
2176          * This function is to be executed on the CPU whose samples
2177          * are being processed.
2178          */
2179         case PMC_FN_DO_SAMPLES:
2180
2181                 /*
2182                  * Clear the cpu specific bit in the CPU mask before
2183                  * do the rest of the processing.  If the NMI handler
2184                  * gets invoked after the "atomic_clear_int()" call
2185                  * below but before "pmc_process_samples()" gets
2186                  * around to processing the interrupt, then we will
2187                  * come back here at the next hardclock() tick (and
2188                  * may find nothing to do if "pmc_process_samples()"
2189                  * had already processed the interrupt).  We don't
2190                  * lose the interrupt sample.
2191                  */
2192                 DPCPU_SET(pmc_sampled, 0);
2193                 cpu = PCPU_GET(cpuid);
2194                 pmc_process_samples(cpu, PMC_HR);
2195                 pmc_process_samples(cpu, PMC_SR);
2196                 break;
2197
2198         case PMC_FN_MMAP:
2199                 MPASS(in_epoch() || sx_xlocked(&pmc_sx));
2200                 pmc_process_mmap(td, (struct pmckern_map_in *) arg);
2201                 break;
2202
2203         case PMC_FN_MUNMAP:
2204                 MPASS(in_epoch() || sx_xlocked(&pmc_sx));
2205                 pmc_process_munmap(td, (struct pmckern_map_out *) arg);
2206                 break;
2207
2208         case PMC_FN_USER_CALLCHAIN:
2209                 /*
2210                  * Record a call chain.
2211                  */
2212                 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2213                     __LINE__));
2214
2215                 pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
2216                     (struct trapframe *) arg);
2217                 td->td_pflags &= ~TDP_CALLCHAIN;
2218                 break;
2219
2220         case PMC_FN_USER_CALLCHAIN_SOFT:
2221                 /*
2222                  * Record a call chain.
2223                  */
2224                 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2225                     __LINE__));
2226                 pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_SR,
2227                     (struct trapframe *) arg);
2228                 td->td_pflags &= ~TDP_CALLCHAIN;
2229                 break;
2230
2231         case PMC_FN_SOFT_SAMPLING:
2232                 /*
2233                  * Call soft PMC sampling intr.
2234                  */
2235                 pmc_soft_intr((struct pmckern_soft *) arg);
2236                 break;
2237
2238         case PMC_FN_THR_CREATE:
2239                 pmc_process_thread_add(td);
2240                 break;
2241
2242         case PMC_FN_THR_EXIT:
2243                 KASSERT(td == curthread, ("[pmc,%d] td != curthread",
2244                     __LINE__));
2245                 pmc_process_thread_delete(td);
2246                 break;
2247
2248         default:
2249 #ifdef  HWPMC_DEBUG
2250                 KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
2251 #endif
2252                 break;
2253
2254         }
2255
2256         return 0;
2257 }
2258
2259 /*
2260  * allocate a 'struct pmc_owner' descriptor in the owner hash table.
2261  */
2262
2263 static struct pmc_owner *
2264 pmc_allocate_owner_descriptor(struct proc *p)
2265 {
2266         uint32_t hindex;
2267         struct pmc_owner *po;
2268         struct pmc_ownerhash *poh;
2269
2270         hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2271         poh = &pmc_ownerhash[hindex];
2272
2273         /* allocate space for N pointers and one descriptor struct */
2274         po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK|M_ZERO);
2275         po->po_owner = p;
2276         LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
2277
2278         TAILQ_INIT(&po->po_logbuffers);
2279         mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
2280
2281         PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
2282             p, p->p_pid, p->p_comm, po);
2283
2284         return po;
2285 }
2286
2287 static void
2288 pmc_destroy_owner_descriptor(struct pmc_owner *po)
2289 {
2290
2291         PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
2292             po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
2293
2294         mtx_destroy(&po->po_mtx);
2295         free(po, M_PMC);
2296 }
2297
2298 /*
2299  * Allocate a thread descriptor from the free pool.
2300  *
2301  * NOTE: This *can* return NULL.
2302  */
2303 static struct pmc_thread *
2304 pmc_thread_descriptor_pool_alloc(void)
2305 {
2306         struct pmc_thread *pt;
2307
2308         mtx_lock_spin(&pmc_threadfreelist_mtx);
2309         if ((pt = LIST_FIRST(&pmc_threadfreelist)) != NULL) {
2310                 LIST_REMOVE(pt, pt_next);
2311                 pmc_threadfreelist_entries--;
2312         }
2313         mtx_unlock_spin(&pmc_threadfreelist_mtx);
2314
2315         return (pt);
2316 }
2317
2318 /*
2319  * Add a thread descriptor to the free pool. We use this instead of free()
2320  * to maintain a cache of free entries. Additionally, we can safely call
2321  * this function when we cannot call free(), such as in a critical section.
2322  * 
2323  */
2324 static void
2325 pmc_thread_descriptor_pool_free(struct pmc_thread *pt)
2326 {
2327
2328         if (pt == NULL)
2329                 return;
2330
2331         memset(pt, 0, THREADENTRY_SIZE);
2332         mtx_lock_spin(&pmc_threadfreelist_mtx);
2333         LIST_INSERT_HEAD(&pmc_threadfreelist, pt, pt_next);
2334         pmc_threadfreelist_entries++;
2335         if (pmc_threadfreelist_entries > pmc_threadfreelist_max)
2336                 GROUPTASK_ENQUEUE(&free_gtask);
2337         mtx_unlock_spin(&pmc_threadfreelist_mtx);
2338 }
2339
2340 /*
2341  * A callout to manage the free list.
2342  */
2343 static void
2344 pmc_thread_descriptor_pool_free_task(void *arg __unused)
2345 {
2346         struct pmc_thread *pt;
2347         LIST_HEAD(, pmc_thread) tmplist;
2348         int delta;
2349
2350         LIST_INIT(&tmplist);
2351         /* Determine what changes, if any, we need to make. */
2352         mtx_lock_spin(&pmc_threadfreelist_mtx);
2353         delta = pmc_threadfreelist_entries - pmc_threadfreelist_max;
2354         while (delta > 0) {
2355                 pt = LIST_FIRST(&pmc_threadfreelist);
2356                 MPASS(pt);
2357                 LIST_REMOVE(pt, pt_next);
2358                 LIST_INSERT_HEAD(&tmplist, pt, pt_next);
2359         }
2360         mtx_unlock_spin(&pmc_threadfreelist_mtx);
2361
2362         /* If there are entries to free, free them. */
2363         while (!LIST_EMPTY(&tmplist)) {
2364                 pt = LIST_FIRST(&pmc_threadfreelist);
2365                 LIST_REMOVE(pt, pt_next);
2366                 free(pt, M_PMC);
2367         }
2368 }
2369
2370 /*
2371  * Drain the thread free pool, freeing all allocations.
2372  */
2373 static void
2374 pmc_thread_descriptor_pool_drain()
2375 {
2376         struct pmc_thread *pt, *next;
2377
2378         LIST_FOREACH_SAFE(pt, &pmc_threadfreelist, pt_next, next) {
2379                 LIST_REMOVE(pt, pt_next);
2380                 free(pt, M_PMC);
2381         }
2382 }
2383
2384 /*
2385  * find the descriptor corresponding to thread 'td', adding or removing it
2386  * as specified by 'mode'.
2387  *
2388  * Note that this supports additional mode flags in addition to those
2389  * supported by pmc_find_process_descriptor():
2390  * PMC_FLAG_NOWAIT: Causes the function to not wait for mallocs.
2391  *     This makes it safe to call while holding certain other locks.
2392  */
2393
2394 static struct pmc_thread *
2395 pmc_find_thread_descriptor(struct pmc_process *pp, struct thread *td,
2396     uint32_t mode)
2397 {
2398         struct pmc_thread *pt = NULL, *ptnew = NULL;
2399         int wait_flag;
2400
2401         KASSERT(td != NULL, ("[pmc,%d] called to add NULL td", __LINE__));
2402
2403         /*
2404          * Pre-allocate memory in the PMC_FLAG_ALLOCATE case prior to
2405          * acquiring the lock.
2406          */
2407         if (mode & PMC_FLAG_ALLOCATE) {
2408                 if ((ptnew = pmc_thread_descriptor_pool_alloc()) == NULL) {
2409                         wait_flag = (mode & PMC_FLAG_NOWAIT) ? M_NOWAIT :
2410                             M_WAITOK;
2411                         ptnew = malloc(THREADENTRY_SIZE, M_PMC,
2412                             wait_flag|M_ZERO);
2413                 }
2414         }
2415
2416         mtx_lock_spin(pp->pp_tdslock);
2417
2418         LIST_FOREACH(pt, &pp->pp_tds, pt_next)
2419                 if (pt->pt_td == td)
2420                         break;
2421
2422         if ((mode & PMC_FLAG_REMOVE) && pt != NULL)
2423                 LIST_REMOVE(pt, pt_next);
2424
2425         if ((mode & PMC_FLAG_ALLOCATE) && pt == NULL && ptnew != NULL) {
2426                 pt = ptnew;
2427                 ptnew = NULL;
2428                 pt->pt_td = td;
2429                 LIST_INSERT_HEAD(&pp->pp_tds, pt, pt_next);
2430         }
2431
2432         mtx_unlock_spin(pp->pp_tdslock);
2433
2434         if (ptnew != NULL) {
2435                 free(ptnew, M_PMC);
2436         }
2437
2438         return pt;
2439 }
2440
2441 /*
2442  * Try to add thread descriptors for each thread in a process.
2443  */
2444
2445 static void
2446 pmc_add_thread_descriptors_from_proc(struct proc *p, struct pmc_process *pp)
2447 {
2448         struct thread *curtd;
2449         struct pmc_thread **tdlist;
2450         int i, tdcnt, tdlistsz;
2451
2452         KASSERT(!PROC_LOCKED(p), ("[pmc,%d] proc unexpectedly locked",
2453             __LINE__));
2454         tdcnt = 32;
2455  restart:
2456         tdlistsz = roundup2(tdcnt, 32);
2457
2458         tdcnt = 0;
2459         tdlist = malloc(sizeof(struct pmc_thread*) * tdlistsz, M_TEMP, M_WAITOK);
2460
2461         PROC_LOCK(p);
2462         FOREACH_THREAD_IN_PROC(p, curtd)
2463                 tdcnt++;
2464         if (tdcnt >= tdlistsz) {
2465                 PROC_UNLOCK(p);
2466                 free(tdlist, M_TEMP);
2467                 goto restart;
2468         }
2469         /*
2470          * Try to add each thread to the list without sleeping. If unable,
2471          * add to a queue to retry after dropping the process lock.
2472          */
2473         tdcnt = 0;
2474         FOREACH_THREAD_IN_PROC(p, curtd) {
2475                 tdlist[tdcnt] = pmc_find_thread_descriptor(pp, curtd,
2476                                                    PMC_FLAG_ALLOCATE|PMC_FLAG_NOWAIT);
2477                 if (tdlist[tdcnt] == NULL) {
2478                         PROC_UNLOCK(p);
2479                         for (i = 0; i <= tdcnt; i++)
2480                                 pmc_thread_descriptor_pool_free(tdlist[i]);
2481                         free(tdlist, M_TEMP);
2482                         goto restart;
2483                 }
2484                 tdcnt++;
2485         }
2486         PROC_UNLOCK(p);
2487         free(tdlist, M_TEMP);
2488 }
2489
2490 /*
2491  * find the descriptor corresponding to process 'p', adding or removing it
2492  * as specified by 'mode'.
2493  */
2494
2495 static struct pmc_process *
2496 pmc_find_process_descriptor(struct proc *p, uint32_t mode)
2497 {
2498         uint32_t hindex;
2499         struct pmc_process *pp, *ppnew;
2500         struct pmc_processhash *pph;
2501
2502         hindex = PMC_HASH_PTR(p, pmc_processhashmask);
2503         pph = &pmc_processhash[hindex];
2504
2505         ppnew = NULL;
2506
2507         /*
2508          * Pre-allocate memory in the PMC_FLAG_ALLOCATE case since we
2509          * cannot call malloc(9) once we hold a spin lock.
2510          */
2511         if (mode & PMC_FLAG_ALLOCATE)
2512                 ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
2513                     sizeof(struct pmc_targetstate), M_PMC, M_WAITOK|M_ZERO);
2514
2515         mtx_lock_spin(&pmc_processhash_mtx);
2516         LIST_FOREACH(pp, pph, pp_next)
2517             if (pp->pp_proc == p)
2518                     break;
2519
2520         if ((mode & PMC_FLAG_REMOVE) && pp != NULL)
2521                 LIST_REMOVE(pp, pp_next);
2522
2523         if ((mode & PMC_FLAG_ALLOCATE) && pp == NULL &&
2524             ppnew != NULL) {
2525                 ppnew->pp_proc = p;
2526                 LIST_INIT(&ppnew->pp_tds);
2527                 ppnew->pp_tdslock = mtx_pool_find(pmc_mtxpool, ppnew);
2528                 LIST_INSERT_HEAD(pph, ppnew, pp_next);
2529                 mtx_unlock_spin(&pmc_processhash_mtx);
2530                 pp = ppnew;
2531                 ppnew = NULL;
2532
2533                 /* Add thread descriptors for this process' current threads. */
2534                 pmc_add_thread_descriptors_from_proc(p, pp);
2535         }
2536         else
2537                 mtx_unlock_spin(&pmc_processhash_mtx);
2538
2539         if (ppnew != NULL)
2540                 free(ppnew, M_PMC);
2541
2542         return pp;
2543 }
2544
2545 /*
2546  * remove a process descriptor from the process hash table.
2547  */
2548
2549 static void
2550 pmc_remove_process_descriptor(struct pmc_process *pp)
2551 {
2552         KASSERT(pp->pp_refcnt == 0,
2553             ("[pmc,%d] Removing process descriptor %p with count %d",
2554                 __LINE__, pp, pp->pp_refcnt));
2555
2556         mtx_lock_spin(&pmc_processhash_mtx);
2557         LIST_REMOVE(pp, pp_next);
2558         mtx_unlock_spin(&pmc_processhash_mtx);
2559 }
2560
2561 /*
2562  * destroy a process descriptor.
2563  */
2564
2565 static void
2566 pmc_destroy_process_descriptor(struct pmc_process *pp)
2567 {
2568         struct pmc_thread *pmc_td;
2569
2570         while ((pmc_td = LIST_FIRST(&pp->pp_tds)) != NULL) {
2571                 LIST_REMOVE(pmc_td, pt_next);
2572                 pmc_thread_descriptor_pool_free(pmc_td);
2573         }
2574         free(pp, M_PMC);
2575 }
2576
2577
2578 /*
2579  * find an owner descriptor corresponding to proc 'p'
2580  */
2581
2582 static struct pmc_owner *
2583 pmc_find_owner_descriptor(struct proc *p)
2584 {
2585         uint32_t hindex;
2586         struct pmc_owner *po;
2587         struct pmc_ownerhash *poh;
2588
2589         hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
2590         poh = &pmc_ownerhash[hindex];
2591
2592         po = NULL;
2593         LIST_FOREACH(po, poh, po_next)
2594             if (po->po_owner == p)
2595                     break;
2596
2597         PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
2598             "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
2599
2600         return po;
2601 }
2602
2603 /*
2604  * pmc_allocate_pmc_descriptor
2605  *
2606  * Allocate a pmc descriptor and initialize its
2607  * fields.
2608  */
2609
2610 static struct pmc *
2611 pmc_allocate_pmc_descriptor(void)
2612 {
2613         struct pmc *pmc;
2614
2615         pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK|M_ZERO);
2616         pmc->pm_runcount = counter_u64_alloc(M_WAITOK);
2617         pmc->pm_pcpu_state = malloc(sizeof(struct pmc_pcpu_state)*mp_ncpus, M_PMC, M_WAITOK|M_ZERO);
2618         PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
2619
2620         return pmc;
2621 }
2622
2623 /*
2624  * Destroy a pmc descriptor.
2625  */
2626
2627 static void
2628 pmc_destroy_pmc_descriptor(struct pmc *pm)
2629 {
2630
2631         KASSERT(pm->pm_state == PMC_STATE_DELETED ||
2632             pm->pm_state == PMC_STATE_FREE,
2633             ("[pmc,%d] destroying non-deleted PMC", __LINE__));
2634         KASSERT(LIST_EMPTY(&pm->pm_targets),
2635             ("[pmc,%d] destroying pmc with targets", __LINE__));
2636         KASSERT(pm->pm_owner == NULL,
2637             ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
2638         KASSERT(counter_u64_fetch(pm->pm_runcount) == 0,
2639             ("[pmc,%d] pmc has non-zero run count %ld", __LINE__,
2640                  (unsigned long)counter_u64_fetch(pm->pm_runcount)));
2641
2642         counter_u64_free(pm->pm_runcount);
2643         free(pm->pm_pcpu_state, M_PMC);
2644         free(pm, M_PMC);
2645 }
2646
2647 static void
2648 pmc_wait_for_pmc_idle(struct pmc *pm)
2649 {
2650 #ifdef HWPMC_DEBUG
2651         volatile int maxloop;
2652
2653         maxloop = 100 * pmc_cpu_max();
2654 #endif
2655         /*
2656          * Loop (with a forced context switch) till the PMC's runcount
2657          * comes down to zero.
2658          */
2659         while (counter_u64_fetch(pm->pm_runcount) > 0) {
2660 #ifdef HWPMC_DEBUG
2661                 maxloop--;
2662                 KASSERT(maxloop > 0,
2663                     ("[pmc,%d] (ri%d, rc%ld) waiting too long for "
2664                         "pmc to be free", __LINE__,
2665                          PMC_TO_ROWINDEX(pm), (unsigned long)counter_u64_fetch(pm->pm_runcount)));
2666 #endif
2667                 pmc_force_context_switch();
2668         }
2669 }
2670
2671 /*
2672  * This function does the following things:
2673  *
2674  *  - detaches the PMC from hardware
2675  *  - unlinks all target threads that were attached to it
2676  *  - removes the PMC from its owner's list
2677  *  - destroys the PMC private mutex
2678  *
2679  * Once this function completes, the given pmc pointer can be freed by
2680  * calling pmc_destroy_pmc_descriptor().
2681  */
2682
2683 static void
2684 pmc_release_pmc_descriptor(struct pmc *pm)
2685 {
2686         enum pmc_mode mode;
2687         struct pmc_hw *phw;
2688         u_int adjri, ri, cpu;
2689         struct pmc_owner *po;
2690         struct pmc_binding pb;
2691         struct pmc_process *pp;
2692         struct pmc_classdep *pcd;
2693         struct pmc_target *ptgt, *tmp;
2694
2695         sx_assert(&pmc_sx, SX_XLOCKED);
2696
2697         KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
2698
2699         ri   = PMC_TO_ROWINDEX(pm);
2700         pcd  = pmc_ri_to_classdep(md, ri, &adjri);
2701         mode = PMC_TO_MODE(pm);
2702
2703         PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
2704             mode);
2705
2706         /*
2707          * First, we take the PMC off hardware.
2708          */
2709         cpu = 0;
2710         if (PMC_IS_SYSTEM_MODE(mode)) {
2711
2712                 /*
2713                  * A system mode PMC runs on a specific CPU.  Switch
2714                  * to this CPU and turn hardware off.
2715                  */
2716                 pmc_save_cpu_binding(&pb);
2717
2718                 cpu = PMC_TO_CPU(pm);
2719
2720                 pmc_select_cpu(cpu);
2721
2722                 /* switch off non-stalled CPUs */
2723                 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
2724                 if (pm->pm_state == PMC_STATE_RUNNING &&
2725                         pm->pm_pcpu_state[cpu].pps_stalled == 0) {
2726
2727                         phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
2728
2729                         KASSERT(phw->phw_pmc == pm,
2730                             ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
2731                                 __LINE__, ri, phw->phw_pmc, pm));
2732                         PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
2733
2734                         critical_enter();
2735                         pcd->pcd_stop_pmc(cpu, adjri);
2736                         critical_exit();
2737                 }
2738
2739                 PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
2740
2741                 critical_enter();
2742                 pcd->pcd_config_pmc(cpu, adjri, NULL);
2743                 critical_exit();
2744
2745                 /* adjust the global and process count of SS mode PMCs */
2746                 if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
2747                         po = pm->pm_owner;
2748                         po->po_sscount--;
2749                         if (po->po_sscount == 0) {
2750                                 atomic_subtract_rel_int(&pmc_ss_count, 1);
2751                                 CK_LIST_REMOVE(po, po_ssnext);
2752                                 epoch_wait_preempt(global_epoch_preempt);
2753                         }
2754                 }
2755
2756                 pm->pm_state = PMC_STATE_DELETED;
2757
2758                 pmc_restore_cpu_binding(&pb);
2759
2760                 /*
2761                  * We could have references to this PMC structure in
2762                  * the per-cpu sample queues.  Wait for the queue to
2763                  * drain.
2764                  */
2765                 pmc_wait_for_pmc_idle(pm);
2766
2767         } else if (PMC_IS_VIRTUAL_MODE(mode)) {
2768
2769                 /*
2770                  * A virtual PMC could be running on multiple CPUs at
2771                  * a given instant.
2772                  *
2773                  * By marking its state as DELETED, we ensure that
2774                  * this PMC is never further scheduled on hardware.
2775                  *
2776                  * Then we wait till all CPUs are done with this PMC.
2777                  */
2778                 pm->pm_state = PMC_STATE_DELETED;
2779
2780
2781                 /* Wait for the PMCs runcount to come to zero. */
2782                 pmc_wait_for_pmc_idle(pm);
2783
2784                 /*
2785                  * At this point the PMC is off all CPUs and cannot be
2786                  * freshly scheduled onto a CPU.  It is now safe to
2787                  * unlink all targets from this PMC.  If a
2788                  * process-record's refcount falls to zero, we remove
2789                  * it from the hash table.  The module-wide SX lock
2790                  * protects us from races.
2791                  */
2792                 LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
2793                         pp = ptgt->pt_process;
2794                         pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
2795
2796                         PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
2797
2798                         /*
2799                          * If the target process record shows that no
2800                          * PMCs are attached to it, reclaim its space.
2801                          */
2802
2803                         if (pp->pp_refcnt == 0) {
2804                                 pmc_remove_process_descriptor(pp);
2805                                 pmc_destroy_process_descriptor(pp);
2806                         }
2807                 }
2808
2809                 cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
2810
2811         }
2812
2813         /*
2814          * Release any MD resources
2815          */
2816         (void) pcd->pcd_release_pmc(cpu, adjri, pm);
2817
2818         /*
2819          * Update row disposition
2820          */
2821
2822         if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
2823                 PMC_UNMARK_ROW_STANDALONE(ri);
2824         else
2825                 PMC_UNMARK_ROW_THREAD(ri);
2826
2827         /* unlink from the owner's list */
2828         if (pm->pm_owner) {
2829                 LIST_REMOVE(pm, pm_next);
2830                 pm->pm_owner = NULL;
2831         }
2832 }
2833
2834 /*
2835  * Register an owner and a pmc.
2836  */
2837
2838 static int
2839 pmc_register_owner(struct proc *p, struct pmc *pmc)
2840 {
2841         struct pmc_owner *po;
2842
2843         sx_assert(&pmc_sx, SX_XLOCKED);
2844
2845         if ((po = pmc_find_owner_descriptor(p)) == NULL)
2846                 if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
2847                         return ENOMEM;
2848
2849         KASSERT(pmc->pm_owner == NULL,
2850             ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
2851         pmc->pm_owner  = po;
2852
2853         LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
2854
2855         PROC_LOCK(p);
2856         p->p_flag |= P_HWPMC;
2857         PROC_UNLOCK(p);
2858
2859         if (po->po_flags & PMC_PO_OWNS_LOGFILE)
2860                 pmclog_process_pmcallocate(pmc);
2861
2862         PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
2863             po, pmc);
2864
2865         return 0;
2866 }
2867
2868 /*
2869  * Return the current row disposition:
2870  * == 0 => FREE
2871  *  > 0 => PROCESS MODE
2872  *  < 0 => SYSTEM MODE
2873  */
2874
2875 int
2876 pmc_getrowdisp(int ri)
2877 {
2878         return pmc_pmcdisp[ri];
2879 }
2880
2881 /*
2882  * Check if a PMC at row index 'ri' can be allocated to the current
2883  * process.
2884  *
2885  * Allocation can fail if:
2886  *   - the current process is already being profiled by a PMC at index 'ri',
2887  *     attached to it via OP_PMCATTACH.
2888  *   - the current process has already allocated a PMC at index 'ri'
2889  *     via OP_ALLOCATE.
2890  */
2891
2892 static int
2893 pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
2894 {
2895         enum pmc_mode mode;
2896         struct pmc *pm;
2897         struct pmc_owner *po;
2898         struct pmc_process *pp;
2899
2900         PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
2901             "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
2902
2903         /*
2904          * We shouldn't have already allocated a process-mode PMC at
2905          * row index 'ri'.
2906          *
2907          * We shouldn't have allocated a system-wide PMC on the same
2908          * CPU and same RI.
2909          */
2910         if ((po = pmc_find_owner_descriptor(p)) != NULL)
2911                 LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
2912                     if (PMC_TO_ROWINDEX(pm) == ri) {
2913                             mode = PMC_TO_MODE(pm);
2914                             if (PMC_IS_VIRTUAL_MODE(mode))
2915                                     return EEXIST;
2916                             if (PMC_IS_SYSTEM_MODE(mode) &&
2917                                 (int) PMC_TO_CPU(pm) == cpu)
2918                                     return EEXIST;
2919                     }
2920                 }
2921
2922         /*
2923          * We also shouldn't be the target of any PMC at this index
2924          * since otherwise a PMC_ATTACH to ourselves will fail.
2925          */
2926         if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
2927                 if (pp->pp_pmcs[ri].pp_pmc)
2928                         return EEXIST;
2929
2930         PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
2931             p, p->p_pid, p->p_comm, ri);
2932
2933         return 0;
2934 }
2935
2936 /*
2937  * Check if a given PMC at row index 'ri' can be currently used in
2938  * mode 'mode'.
2939  */
2940
2941 static int
2942 pmc_can_allocate_row(int ri, enum pmc_mode mode)
2943 {
2944         enum pmc_disp   disp;
2945
2946         sx_assert(&pmc_sx, SX_XLOCKED);
2947
2948         PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
2949
2950         if (PMC_IS_SYSTEM_MODE(mode))
2951                 disp = PMC_DISP_STANDALONE;
2952         else
2953                 disp = PMC_DISP_THREAD;
2954
2955         /*
2956          * check disposition for PMC row 'ri':
2957          *
2958          * Expected disposition         Row-disposition         Result
2959          *
2960          * STANDALONE                   STANDALONE or FREE      proceed
2961          * STANDALONE                   THREAD                  fail
2962          * THREAD                       THREAD or FREE          proceed
2963          * THREAD                       STANDALONE              fail
2964          */
2965
2966         if (!PMC_ROW_DISP_IS_FREE(ri) &&
2967             !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
2968             !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
2969                 return EBUSY;
2970
2971         /*
2972          * All OK
2973          */
2974
2975         PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
2976
2977         return 0;
2978
2979 }
2980
2981 /*
2982  * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
2983  */
2984
2985 static struct pmc *
2986 pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
2987 {
2988         struct pmc *pm;
2989
2990         KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
2991             ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
2992                 PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
2993
2994         LIST_FOREACH(pm, &po->po_pmcs, pm_next)
2995             if (pm->pm_id == pmcid)
2996                     return pm;
2997
2998         return NULL;
2999 }
3000
3001 static int
3002 pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
3003 {
3004
3005         struct pmc *pm, *opm;
3006         struct pmc_owner *po;
3007         struct pmc_process *pp;
3008
3009         PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid);
3010         if (PMC_ID_TO_ROWINDEX(pmcid) >= md->pmd_npmc)
3011                 return (EINVAL);
3012
3013         if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL) {
3014                 /*
3015                  * In case of PMC_F_DESCENDANTS child processes we will not find
3016                  * the current process in the owners hash list.  Find the owner
3017                  * process first and from there lookup the po.
3018                  */
3019                 if ((pp = pmc_find_process_descriptor(curthread->td_proc,
3020                     PMC_FLAG_NONE)) == NULL) {
3021                         return ESRCH;
3022                 } else {
3023                         opm = pp->pp_pmcs[PMC_ID_TO_ROWINDEX(pmcid)].pp_pmc;
3024                         if (opm == NULL)
3025                                 return ESRCH;
3026                         if ((opm->pm_flags & (PMC_F_ATTACHED_TO_OWNER|
3027                             PMC_F_DESCENDANTS)) != (PMC_F_ATTACHED_TO_OWNER|
3028                             PMC_F_DESCENDANTS))
3029                                 return ESRCH;
3030                         po = opm->pm_owner;
3031                 }
3032         }
3033
3034         if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
3035                 return EINVAL;
3036
3037         PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
3038
3039         *pmc = pm;
3040         return 0;
3041 }
3042
3043 /*
3044  * Start a PMC.
3045  */
3046
3047 static int
3048 pmc_start(struct pmc *pm)
3049 {
3050         enum pmc_mode mode;
3051         struct pmc_owner *po;
3052         struct pmc_binding pb;
3053         struct pmc_classdep *pcd;
3054         int adjri, error, cpu, ri;
3055
3056         KASSERT(pm != NULL,
3057             ("[pmc,%d] null pm", __LINE__));
3058
3059         mode = PMC_TO_MODE(pm);
3060         ri   = PMC_TO_ROWINDEX(pm);
3061         pcd  = pmc_ri_to_classdep(md, ri, &adjri);
3062
3063         error = 0;
3064
3065         PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
3066
3067         po = pm->pm_owner;
3068
3069         /*
3070          * Disallow PMCSTART if a logfile is required but has not been
3071          * configured yet.
3072          */
3073         if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) &&
3074             (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
3075                 return (EDOOFUS);       /* programming error */
3076
3077         /*
3078          * If this is a sampling mode PMC, log mapping information for
3079          * the kernel modules that are currently loaded.
3080          */
3081         if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3082             pmc_log_kernel_mappings(pm);
3083
3084         if (PMC_IS_VIRTUAL_MODE(mode)) {
3085
3086                 /*
3087                  * If a PMCATTACH has never been done on this PMC,
3088                  * attach it to its owner process.
3089                  */
3090
3091                 if (LIST_EMPTY(&pm->pm_targets))
3092                         error = (pm->pm_flags & PMC_F_ATTACH_DONE) ? ESRCH :
3093                             pmc_attach_process(po->po_owner, pm);
3094
3095                 /*
3096                  * If the PMC is attached to its owner, then force a context
3097                  * switch to ensure that the MD state gets set correctly.
3098                  */
3099
3100                 if (error == 0) {
3101                         pm->pm_state = PMC_STATE_RUNNING;
3102                         if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER)
3103                                 pmc_force_context_switch();
3104                 }
3105
3106                 return (error);
3107         }
3108
3109
3110         /*
3111          * A system-wide PMC.
3112          *
3113          * Add the owner to the global list if this is a system-wide
3114          * sampling PMC.
3115          */
3116
3117         if (mode == PMC_MODE_SS) {
3118                 /*
3119                  * Log mapping information for all existing processes in the
3120                  * system.  Subsequent mappings are logged as they happen;
3121                  * see pmc_process_mmap().
3122                  */
3123                 if (po->po_logprocmaps == 0) {
3124                         pmc_log_all_process_mappings(po);
3125                         po->po_logprocmaps = 1;
3126                 }
3127                 po->po_sscount++;
3128                 if (po->po_sscount == 1) {
3129                         atomic_add_rel_int(&pmc_ss_count, 1);
3130                         CK_LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
3131                         PMCDBG1(PMC,OPS,1, "po=%p in global list", po);
3132                 }
3133         }
3134
3135         /*
3136          * Move to the CPU associated with this
3137          * PMC, and start the hardware.
3138          */
3139
3140         pmc_save_cpu_binding(&pb);
3141
3142         cpu = PMC_TO_CPU(pm);
3143
3144         if (!pmc_cpu_is_active(cpu))
3145                 return (ENXIO);
3146
3147         pmc_select_cpu(cpu);
3148
3149         /*
3150          * global PMCs are configured at allocation time
3151          * so write out the initial value and start the PMC.
3152          */
3153
3154         pm->pm_state = PMC_STATE_RUNNING;
3155
3156         critical_enter();
3157         if ((error = pcd->pcd_write_pmc(cpu, adjri,
3158                  PMC_IS_SAMPLING_MODE(mode) ?
3159                  pm->pm_sc.pm_reloadcount :
3160                  pm->pm_sc.pm_initial)) == 0) {
3161                 /* If a sampling mode PMC, reset stalled state. */
3162                 if (PMC_IS_SAMPLING_MODE(mode))
3163                         pm->pm_pcpu_state[cpu].pps_stalled = 0;
3164
3165                 /* Indicate that we desire this to run. Start it. */
3166                 pm->pm_pcpu_state[cpu].pps_cpustate = 1;
3167                 error = pcd->pcd_start_pmc(cpu, adjri);
3168         }
3169         critical_exit();
3170
3171         pmc_restore_cpu_binding(&pb);
3172
3173         return (error);
3174 }
3175
3176 /*
3177  * Stop a PMC.
3178  */
3179
3180 static int
3181 pmc_stop(struct pmc *pm)
3182 {
3183         struct pmc_owner *po;
3184         struct pmc_binding pb;
3185         struct pmc_classdep *pcd;
3186         int adjri, cpu, error, ri;
3187
3188         KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
3189
3190         PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm,
3191             PMC_TO_MODE(pm), PMC_TO_ROWINDEX(pm));
3192
3193         pm->pm_state = PMC_STATE_STOPPED;
3194
3195         /*
3196          * If the PMC is a virtual mode one, changing the state to
3197          * non-RUNNING is enough to ensure that the PMC never gets
3198          * scheduled.
3199          *
3200          * If this PMC is current running on a CPU, then it will
3201          * handled correctly at the time its target process is context
3202          * switched out.
3203          */
3204
3205         if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
3206                 return 0;
3207
3208         /*
3209          * A system-mode PMC.  Move to the CPU associated with
3210          * this PMC, and stop the hardware.  We update the
3211          * 'initial count' so that a subsequent PMCSTART will
3212          * resume counting from the current hardware count.
3213          */
3214
3215         pmc_save_cpu_binding(&pb);
3216
3217         cpu = PMC_TO_CPU(pm);
3218
3219         KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
3220             ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
3221
3222         if (!pmc_cpu_is_active(cpu))
3223                 return ENXIO;
3224
3225         pmc_select_cpu(cpu);
3226
3227         ri = PMC_TO_ROWINDEX(pm);
3228         pcd = pmc_ri_to_classdep(md, ri, &adjri);
3229
3230         pm->pm_pcpu_state[cpu].pps_cpustate = 0;
3231         critical_enter();
3232         if ((error = pcd->pcd_stop_pmc(cpu, adjri)) == 0)
3233                 error = pcd->pcd_read_pmc(cpu, adjri, &pm->pm_sc.pm_initial);
3234         critical_exit();
3235
3236         pmc_restore_cpu_binding(&pb);
3237
3238         po = pm->pm_owner;
3239
3240         /* remove this owner from the global list of SS PMC owners */
3241         if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
3242                 po->po_sscount--;
3243                 if (po->po_sscount == 0) {
3244                         atomic_subtract_rel_int(&pmc_ss_count, 1);
3245                         CK_LIST_REMOVE(po, po_ssnext);
3246                         epoch_wait_preempt(global_epoch_preempt);
3247                         PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po);
3248                 }
3249         }
3250
3251         return (error);
3252 }
3253
3254
3255 #ifdef  HWPMC_DEBUG
3256 static const char *pmc_op_to_name[] = {
3257 #undef  __PMC_OP
3258 #define __PMC_OP(N, D)  #N ,
3259         __PMC_OPS()
3260         NULL
3261 };
3262 #endif
3263
3264 /*
3265  * The syscall interface
3266  */
3267
3268 #define PMC_GET_SX_XLOCK(...) do {              \
3269         sx_xlock(&pmc_sx);                      \
3270         if (pmc_hook == NULL) {                 \
3271                 sx_xunlock(&pmc_sx);            \
3272                 return __VA_ARGS__;             \
3273         }                                       \
3274 } while (0)
3275
3276 #define PMC_DOWNGRADE_SX() do {                 \
3277         sx_downgrade(&pmc_sx);                  \
3278         is_sx_downgraded = 1;                   \
3279 } while (0)
3280
3281 static int
3282 pmc_syscall_handler(struct thread *td, void *syscall_args)
3283 {
3284         int error, is_sx_downgraded, op;
3285         struct pmc_syscall_args *c;
3286         void *pmclog_proc_handle;
3287         void *arg;
3288
3289         c = (struct pmc_syscall_args *)syscall_args;
3290         op = c->pmop_code;
3291         arg = c->pmop_data;
3292         /* PMC isn't set up yet */
3293         if (pmc_hook == NULL)
3294                 return (EINVAL);
3295         if (op == PMC_OP_CONFIGURELOG) {
3296                 /*
3297                  * We cannot create the logging process inside
3298                  * pmclog_configure_log() because there is a LOR
3299                  * between pmc_sx and process structure locks.
3300                  * Instead, pre-create the process and ignite the loop
3301                  * if everything is fine, otherwise direct the process
3302                  * to exit.
3303                  */
3304                 error = pmclog_proc_create(td, &pmclog_proc_handle);
3305                 if (error != 0)
3306                         goto done_syscall;
3307         }
3308
3309         PMC_GET_SX_XLOCK(ENOSYS);
3310         is_sx_downgraded = 0;
3311         PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
3312             pmc_op_to_name[op], arg);
3313
3314         error = 0;
3315         counter_u64_add(pmc_stats.pm_syscalls, 1);
3316
3317         switch (op) {
3318
3319
3320         /*
3321          * Configure a log file.
3322          *
3323          * XXX This OP will be reworked.
3324          */
3325
3326         case PMC_OP_CONFIGURELOG:
3327         {
3328                 struct proc *p;
3329                 struct pmc *pm;
3330                 struct pmc_owner *po;
3331                 struct pmc_op_configurelog cl;
3332
3333                 if ((error = copyin(arg, &cl, sizeof(cl))) != 0) {
3334                         pmclog_proc_ignite(pmclog_proc_handle, NULL);
3335                         break;
3336                 }
3337
3338                 /* mark this process as owning a log file */
3339                 p = td->td_proc;
3340                 if ((po = pmc_find_owner_descriptor(p)) == NULL)
3341                         if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
3342                                 pmclog_proc_ignite(pmclog_proc_handle, NULL);
3343                                 error = ENOMEM;
3344                                 break;
3345                         }
3346
3347                 /*
3348                  * If a valid fd was passed in, try to configure that,
3349                  * otherwise if 'fd' was less than zero and there was
3350                  * a log file configured, flush its buffers and
3351                  * de-configure it.
3352                  */
3353                 if (cl.pm_logfd >= 0) {
3354                         error = pmclog_configure_log(md, po, cl.pm_logfd);
3355                         pmclog_proc_ignite(pmclog_proc_handle, error == 0 ?
3356                             po : NULL);
3357                 } else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
3358                         pmclog_proc_ignite(pmclog_proc_handle, NULL);
3359                         error = pmclog_close(po);
3360                         if (error == 0) {
3361                                 LIST_FOREACH(pm, &po->po_pmcs, pm_next)
3362                                     if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
3363                                         pm->pm_state == PMC_STATE_RUNNING)
3364                                             pmc_stop(pm);
3365                                 error = pmclog_deconfigure_log(po);
3366                         }
3367                 } else {
3368                         pmclog_proc_ignite(pmclog_proc_handle, NULL);
3369                         error = EINVAL;
3370                 }
3371         }
3372         break;
3373
3374         /*
3375          * Flush a log file.
3376          */
3377
3378         case PMC_OP_FLUSHLOG:
3379         {
3380                 struct pmc_owner *po;
3381
3382                 sx_assert(&pmc_sx, SX_XLOCKED);
3383
3384                 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3385                         error = EINVAL;
3386                         break;
3387                 }
3388
3389                 error = pmclog_flush(po);
3390         }
3391         break;
3392
3393         /*
3394          * Close a log file.
3395          */
3396
3397         case PMC_OP_CLOSELOG:
3398         {
3399                 struct pmc_owner *po;
3400
3401                 sx_assert(&pmc_sx, SX_XLOCKED);
3402
3403                 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
3404                         error = EINVAL;
3405                         break;
3406                 }
3407
3408                 error = pmclog_close(po);
3409         }
3410         break;
3411
3412         /*
3413          * Retrieve hardware configuration.
3414          */
3415
3416         case PMC_OP_GETCPUINFO: /* CPU information */
3417         {
3418                 struct pmc_op_getcpuinfo gci;
3419                 struct pmc_classinfo *pci;
3420                 struct pmc_classdep *pcd;
3421                 int cl;
3422
3423                 gci.pm_cputype = md->pmd_cputype;
3424                 gci.pm_ncpu    = pmc_cpu_max();
3425                 gci.pm_npmc    = md->pmd_npmc;
3426                 gci.pm_nclass  = md->pmd_nclass;
3427                 pci = gci.pm_classes;
3428                 pcd = md->pmd_classdep;
3429                 for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
3430                         pci->pm_caps  = pcd->pcd_caps;
3431                         pci->pm_class = pcd->pcd_class;
3432                         pci->pm_width = pcd->pcd_width;
3433                         pci->pm_num   = pcd->pcd_num;
3434                 }
3435                 error = copyout(&gci, arg, sizeof(gci));
3436         }
3437         break;
3438
3439         /*
3440          * Retrieve soft events list.
3441          */
3442         case PMC_OP_GETDYNEVENTINFO:
3443         {
3444                 enum pmc_class                  cl;
3445                 enum pmc_event                  ev;
3446                 struct pmc_op_getdyneventinfo   *gei;
3447                 struct pmc_dyn_event_descr      dev;
3448                 struct pmc_soft                 *ps;
3449                 uint32_t                        nevent;
3450
3451                 sx_assert(&pmc_sx, SX_LOCKED);
3452
3453                 gei = (struct pmc_op_getdyneventinfo *) arg;
3454
3455                 if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
3456                         break;
3457
3458                 /* Only SOFT class is dynamic. */
3459                 if (cl != PMC_CLASS_SOFT) {
3460                         error = EINVAL;
3461                         break;
3462                 }
3463
3464                 nevent = 0;
3465                 for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
3466                         ps = pmc_soft_ev_acquire(ev);
3467                         if (ps == NULL)
3468                                 continue;
3469                         bcopy(&ps->ps_ev, &dev, sizeof(dev));
3470                         pmc_soft_ev_release(ps);
3471
3472                         error = copyout(&dev,
3473                             &gei->pm_events[nevent],
3474                             sizeof(struct pmc_dyn_event_descr));
3475                         if (error != 0)
3476                                 break;
3477                         nevent++;
3478                 }
3479                 if (error != 0)
3480                         break;
3481
3482                 error = copyout(&nevent, &gei->pm_nevent,
3483                     sizeof(nevent));
3484         }
3485         break;
3486
3487         /*
3488          * Get module statistics
3489          */
3490
3491         case PMC_OP_GETDRIVERSTATS:
3492         {
3493                 struct pmc_op_getdriverstats gms;
3494 #define CFETCH(a, b, field) a.field = counter_u64_fetch(b.field)
3495                 CFETCH(gms, pmc_stats, pm_intr_ignored);
3496                 CFETCH(gms, pmc_stats, pm_intr_processed);
3497                 CFETCH(gms, pmc_stats, pm_intr_bufferfull);
3498                 CFETCH(gms, pmc_stats, pm_syscalls);
3499                 CFETCH(gms, pmc_stats, pm_syscall_errors);
3500                 CFETCH(gms, pmc_stats, pm_buffer_requests);
3501                 CFETCH(gms, pmc_stats, pm_buffer_requests_failed);
3502                 CFETCH(gms, pmc_stats, pm_log_sweeps);
3503 #undef CFETCH
3504                 error = copyout(&gms, arg, sizeof(gms));
3505         }
3506         break;
3507
3508
3509         /*
3510          * Retrieve module version number
3511          */
3512
3513         case PMC_OP_GETMODULEVERSION:
3514         {
3515                 uint32_t cv, modv;
3516
3517                 /* retrieve the client's idea of the ABI version */
3518                 if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
3519                         break;
3520                 /* don't service clients newer than our driver */
3521                 modv = PMC_VERSION;
3522                 if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
3523                         error = EPROGMISMATCH;
3524                         break;
3525                 }
3526                 error = copyout(&modv, arg, sizeof(int));
3527         }
3528         break;
3529
3530
3531         /*
3532          * Retrieve the state of all the PMCs on a given
3533          * CPU.
3534          */
3535
3536         case PMC_OP_GETPMCINFO:
3537         {
3538                 int ari;
3539                 struct pmc *pm;
3540                 size_t pmcinfo_size;
3541                 uint32_t cpu, n, npmc;
3542                 struct pmc_owner *po;
3543                 struct pmc_binding pb;
3544                 struct pmc_classdep *pcd;
3545                 struct pmc_info *p, *pmcinfo;
3546                 struct pmc_op_getpmcinfo *gpi;
3547
3548                 PMC_DOWNGRADE_SX();
3549
3550                 gpi = (struct pmc_op_getpmcinfo *) arg;
3551
3552                 if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
3553                         break;
3554
3555                 if (cpu >= pmc_cpu_max()) {
3556                         error = EINVAL;
3557                         break;
3558                 }
3559
3560                 if (!pmc_cpu_is_active(cpu)) {
3561                         error = ENXIO;
3562                         break;
3563                 }
3564
3565                 /* switch to CPU 'cpu' */
3566                 pmc_save_cpu_binding(&pb);
3567                 pmc_select_cpu(cpu);
3568
3569                 npmc = md->pmd_npmc;
3570
3571                 pmcinfo_size = npmc * sizeof(struct pmc_info);
3572                 pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK);
3573
3574                 p = pmcinfo;
3575
3576                 for (n = 0; n < md->pmd_npmc; n++, p++) {
3577
3578                         pcd = pmc_ri_to_classdep(md, n, &ari);
3579
3580                         KASSERT(pcd != NULL,
3581                             ("[pmc,%d] null pcd ri=%d", __LINE__, n));
3582
3583                         if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
3584                                 break;
3585
3586                         if (PMC_ROW_DISP_IS_STANDALONE(n))
3587                                 p->pm_rowdisp = PMC_DISP_STANDALONE;
3588                         else if (PMC_ROW_DISP_IS_THREAD(n))
3589                                 p->pm_rowdisp = PMC_DISP_THREAD;
3590                         else
3591                                 p->pm_rowdisp = PMC_DISP_FREE;
3592
3593                         p->pm_ownerpid = -1;
3594
3595                         if (pm == NULL) /* no PMC associated */
3596                                 continue;
3597
3598                         po = pm->pm_owner;
3599
3600                         KASSERT(po->po_owner != NULL,
3601                             ("[pmc,%d] pmc_owner had a null proc pointer",
3602                                 __LINE__));
3603
3604                         p->pm_ownerpid = po->po_owner->p_pid;
3605                         p->pm_mode     = PMC_TO_MODE(pm);
3606                         p->pm_event    = pm->pm_event;
3607                         p->pm_flags    = pm->pm_flags;
3608
3609                         if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
3610                                 p->pm_reloadcount =
3611                                     pm->pm_sc.pm_reloadcount;
3612                 }
3613
3614                 pmc_restore_cpu_binding(&pb);
3615
3616                 /* now copy out the PMC info collected */
3617                 if (error == 0)
3618                         error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
3619
3620                 free(pmcinfo, M_PMC);
3621         }
3622         break;
3623
3624
3625         /*
3626          * Set the administrative state of a PMC.  I.e. whether
3627          * the PMC is to be used or not.
3628          */
3629
3630         case PMC_OP_PMCADMIN:
3631         {
3632                 int cpu, ri;
3633                 enum pmc_state request;
3634                 struct pmc_cpu *pc;
3635                 struct pmc_hw *phw;
3636                 struct pmc_op_pmcadmin pma;
3637                 struct pmc_binding pb;
3638
3639                 sx_assert(&pmc_sx, SX_XLOCKED);
3640
3641                 KASSERT(td == curthread,
3642                     ("[pmc,%d] td != curthread", __LINE__));
3643
3644                 error = priv_check(td, PRIV_PMC_MANAGE);
3645                 if (error)
3646                         break;
3647
3648                 if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
3649                         break;
3650
3651                 cpu = pma.pm_cpu;
3652
3653                 if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
3654                         error = EINVAL;
3655                         break;
3656                 }
3657
3658                 if (!pmc_cpu_is_active(cpu)) {
3659                         error = ENXIO;
3660                         break;
3661                 }
3662
3663                 request = pma.pm_state;
3664
3665                 if (request != PMC_STATE_DISABLED &&
3666                     request != PMC_STATE_FREE) {
3667                         error = EINVAL;
3668                         break;
3669                 }
3670
3671                 ri = pma.pm_pmc; /* pmc id == row index */
3672                 if (ri < 0 || ri >= (int) md->pmd_npmc) {
3673                         error = EINVAL;
3674                         break;
3675                 }
3676
3677                 /*
3678                  * We can't disable a PMC with a row-index allocated
3679                  * for process virtual PMCs.
3680                  */
3681
3682                 if (PMC_ROW_DISP_IS_THREAD(ri) &&
3683                     request == PMC_STATE_DISABLED) {
3684                         error = EBUSY;
3685                         break;
3686                 }
3687
3688                 /*
3689                  * otherwise, this PMC on this CPU is either free or
3690                  * in system-wide mode.
3691                  */
3692
3693                 pmc_save_cpu_binding(&pb);
3694                 pmc_select_cpu(cpu);
3695
3696                 pc  = pmc_pcpu[cpu];
3697                 phw = pc->pc_hwpmcs[ri];
3698
3699                 /*
3700                  * XXX do we need some kind of 'forced' disable?
3701                  */
3702
3703                 if (phw->phw_pmc == NULL) {
3704                         if (request == PMC_STATE_DISABLED &&
3705                             (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
3706                                 phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
3707                                 PMC_MARK_ROW_STANDALONE(ri);
3708                         } else if (request == PMC_STATE_FREE &&
3709                             (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
3710                                 phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
3711                                 PMC_UNMARK_ROW_STANDALONE(ri);
3712                         }
3713                         /* other cases are a no-op */
3714                 } else
3715                         error = EBUSY;
3716
3717                 pmc_restore_cpu_binding(&pb);
3718         }
3719         break;
3720
3721
3722         /*
3723          * Allocate a PMC.
3724          */
3725
3726         case PMC_OP_PMCALLOCATE:
3727         {
3728                 int adjri, n;
3729                 u_int cpu;
3730                 uint32_t caps;
3731                 struct pmc *pmc;
3732                 enum pmc_mode mode;
3733                 struct pmc_hw *phw;
3734                 struct pmc_binding pb;
3735                 struct pmc_classdep *pcd;
3736                 struct pmc_op_pmcallocate pa;
3737
3738                 if ((error = copyin(arg, &pa, sizeof(pa))) != 0)
3739                         break;
3740
3741                 caps = pa.pm_caps;
3742                 mode = pa.pm_mode;
3743                 cpu  = pa.pm_cpu;
3744
3745                 if ((mode != PMC_MODE_SS  &&  mode != PMC_MODE_SC  &&
3746                      mode != PMC_MODE_TS  &&  mode != PMC_MODE_TC) ||
3747                     (cpu != (u_int) PMC_CPU_ANY && cpu >= pmc_cpu_max())) {
3748                         error = EINVAL;
3749                         break;
3750                 }
3751
3752                 /*
3753                  * Virtual PMCs should only ask for a default CPU.
3754                  * System mode PMCs need to specify a non-default CPU.
3755                  */
3756
3757                 if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != (u_int) PMC_CPU_ANY) ||
3758                     (PMC_IS_SYSTEM_MODE(mode) && cpu == (u_int) PMC_CPU_ANY)) {
3759                         error = EINVAL;
3760                         break;
3761                 }
3762
3763                 /*
3764                  * Check that an inactive CPU is not being asked for.
3765                  */
3766
3767                 if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu)) {
3768                         error = ENXIO;
3769                         break;
3770                 }
3771
3772                 /*
3773                  * Refuse an allocation for a system-wide PMC if this
3774                  * process has been jailed, or if this process lacks
3775                  * super-user credentials and the sysctl tunable
3776                  * 'security.bsd.unprivileged_syspmcs' is zero.
3777                  */
3778
3779                 if (PMC_IS_SYSTEM_MODE(mode)) {
3780                         if (jailed(curthread->td_ucred)) {
3781                                 error = EPERM;
3782                                 break;
3783                         }
3784                         if (!pmc_unprivileged_syspmcs) {
3785                                 error = priv_check(curthread,
3786                                     PRIV_PMC_SYSTEM);
3787                                 if (error)
3788                                         break;
3789                         }
3790                 }
3791
3792                 /*
3793                  * Look for valid values for 'pm_flags'
3794                  */
3795
3796                 if ((pa.pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
3797                     PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN)) != 0) {
3798                         error = EINVAL;
3799                         break;
3800                 }
3801
3802                 /* process logging options are not allowed for system PMCs */
3803                 if (PMC_IS_SYSTEM_MODE(mode) && (pa.pm_flags &
3804                     (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT))) {
3805                         error = EINVAL;
3806                         break;
3807                 }
3808
3809                 /*
3810                  * All sampling mode PMCs need to be able to interrupt the
3811                  * CPU.
3812                  */
3813                 if (PMC_IS_SAMPLING_MODE(mode))
3814                         caps |= PMC_CAP_INTERRUPT;
3815
3816                 /* A valid class specifier should have been passed in. */
3817                 for (n = 0; n < md->pmd_nclass; n++)
3818                         if (md->pmd_classdep[n].pcd_class == pa.pm_class)
3819                                 break;
3820                 if (n == md->pmd_nclass) {
3821                         error = EINVAL;
3822                         break;
3823                 }
3824
3825                 /* The requested PMC capabilities should be feasible. */
3826                 if ((md->pmd_classdep[n].pcd_caps & caps) != caps) {
3827                         error = EOPNOTSUPP;
3828                         break;
3829                 }
3830
3831                 PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d",
3832                     pa.pm_ev, caps, mode, cpu);
3833
3834                 pmc = pmc_allocate_pmc_descriptor();
3835                 pmc->pm_id    = PMC_ID_MAKE_ID(cpu,pa.pm_mode,pa.pm_class,
3836                     PMC_ID_INVALID);
3837                 pmc->pm_event = pa.pm_ev;
3838                 pmc->pm_state = PMC_STATE_FREE;
3839                 pmc->pm_caps  = caps;
3840                 pmc->pm_flags = pa.pm_flags;
3841
3842                 /* switch thread to CPU 'cpu' */
3843                 pmc_save_cpu_binding(&pb);
3844
3845 #define PMC_IS_SHAREABLE_PMC(cpu, n)                            \
3846         (pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &           \
3847          PMC_PHW_FLAG_IS_SHAREABLE)
3848 #define PMC_IS_UNALLOCATED(cpu, n)                              \
3849         (pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
3850
3851                 if (PMC_IS_SYSTEM_MODE(mode)) {
3852                         pmc_select_cpu(cpu);
3853                         for (n = 0; n < (int) md->pmd_npmc; n++) {
3854                                 pcd = pmc_ri_to_classdep(md, n, &adjri);
3855                                 if (pmc_can_allocate_row(n, mode) == 0 &&
3856                                     pmc_can_allocate_rowindex(
3857                                             curthread->td_proc, n, cpu) == 0 &&
3858                                     (PMC_IS_UNALLOCATED(cpu, n) ||
3859                                      PMC_IS_SHAREABLE_PMC(cpu, n)) &&
3860                                     pcd->pcd_allocate_pmc(cpu, adjri, pmc,
3861                                         &pa) == 0)
3862                                         break;
3863                         }
3864                 } else {
3865                         /* Process virtual mode */
3866                         for (n = 0; n < (int) md->pmd_npmc; n++) {
3867                                 pcd = pmc_ri_to_classdep(md, n, &adjri);
3868                                 if (pmc_can_allocate_row(n, mode) == 0 &&
3869                                     pmc_can_allocate_rowindex(
3870                                             curthread->td_proc, n,
3871                                             PMC_CPU_ANY) == 0 &&
3872                                     pcd->pcd_allocate_pmc(curthread->td_oncpu,
3873                                         adjri, pmc, &pa) == 0)
3874                                         break;
3875                         }
3876                 }
3877
3878 #undef  PMC_IS_UNALLOCATED
3879 #undef  PMC_IS_SHAREABLE_PMC
3880
3881                 pmc_restore_cpu_binding(&pb);
3882
3883                 if (n == (int) md->pmd_npmc) {
3884                         pmc_destroy_pmc_descriptor(pmc);
3885                         pmc = NULL;
3886                         error = EINVAL;
3887                         break;
3888                 }
3889
3890                 /* Fill in the correct value in the ID field */
3891                 pmc->pm_id = PMC_ID_MAKE_ID(cpu,mode,pa.pm_class,n);
3892
3893                 PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
3894                     pmc->pm_event, pa.pm_class, mode, n, pmc->pm_id);
3895
3896                 /* Process mode PMCs with logging enabled need log files */
3897                 if (pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW))
3898                         pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3899
3900                 /* All system mode sampling PMCs require a log file */
3901                 if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
3902                         pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
3903
3904                 /*
3905                  * Configure global pmc's immediately
3906                  */
3907
3908                 if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
3909
3910                         pmc_save_cpu_binding(&pb);
3911                         pmc_select_cpu(cpu);
3912
3913                         phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
3914                         pcd = pmc_ri_to_classdep(md, n, &adjri);
3915
3916                         if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
3917                             (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
3918                                 (void) pcd->pcd_release_pmc(cpu, adjri, pmc);
3919                                 pmc_destroy_pmc_descriptor(pmc);
3920                                 pmc = NULL;
3921                                 pmc_restore_cpu_binding(&pb);
3922                                 error = EPERM;
3923                                 break;
3924                         }
3925
3926                         pmc_restore_cpu_binding(&pb);
3927                 }
3928
3929                 pmc->pm_state    = PMC_STATE_ALLOCATED;
3930
3931                 /*
3932                  * mark row disposition
3933                  */
3934
3935                 if (PMC_IS_SYSTEM_MODE(mode))
3936                         PMC_MARK_ROW_STANDALONE(n);
3937                 else
3938                         PMC_MARK_ROW_THREAD(n);
3939
3940                 /*
3941                  * Register this PMC with the current thread as its owner.
3942                  */
3943
3944                 if ((error =
3945                     pmc_register_owner(curthread->td_proc, pmc)) != 0) {
3946                         pmc_release_pmc_descriptor(pmc);
3947                         pmc_destroy_pmc_descriptor(pmc);
3948                         pmc = NULL;
3949                         break;
3950                 }
3951
3952                 /*
3953                  * Return the allocated index.
3954                  */
3955
3956                 pa.pm_pmcid = pmc->pm_id;
3957
3958                 error = copyout(&pa, arg, sizeof(pa));
3959         }
3960         break;
3961
3962
3963         /*
3964          * Attach a PMC to a process.
3965          */
3966
3967         case PMC_OP_PMCATTACH:
3968         {
3969                 struct pmc *pm;
3970                 struct proc *p;
3971                 struct pmc_op_pmcattach a;
3972
3973                 sx_assert(&pmc_sx, SX_XLOCKED);
3974
3975                 if ((error = copyin(arg, &a, sizeof(a))) != 0)
3976                         break;
3977
3978                 if (a.pm_pid < 0) {
3979                         error = EINVAL;
3980                         break;
3981                 } else if (a.pm_pid == 0)
3982                         a.pm_pid = td->td_proc->p_pid;
3983
3984                 if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
3985                         break;
3986
3987                 if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm))) {
3988                         error = EINVAL;
3989                         break;
3990                 }
3991
3992                 /* PMCs may be (re)attached only when allocated or stopped */
3993                 if (pm->pm_state == PMC_STATE_RUNNING) {
3994                         error = EBUSY;
3995                         break;
3996                 } else if (pm->pm_state != PMC_STATE_ALLOCATED &&
3997                     pm->pm_state != PMC_STATE_STOPPED) {
3998                         error = EINVAL;
3999                         break;
4000                 }
4001
4002                 /* lookup pid */
4003                 if ((p = pfind(a.pm_pid)) == NULL) {
4004                         error = ESRCH;
4005                         break;
4006                 }
4007
4008                 /*
4009                  * Ignore processes that are working on exiting.
4010                  */
4011                 if (p->p_flag & P_WEXIT) {
4012                         error = ESRCH;
4013                         PROC_UNLOCK(p); /* pfind() returns a locked process */
4014                         break;
4015                 }
4016
4017                 /*
4018                  * we are allowed to attach a PMC to a process if
4019                  * we can debug it.
4020                  */
4021                 error = p_candebug(curthread, p);
4022
4023                 PROC_UNLOCK(p);
4024
4025                 if (error == 0)
4026                         error = pmc_attach_process(p, pm);
4027         }
4028         break;
4029
4030
4031         /*
4032          * Detach an attached PMC from a process.
4033          */
4034
4035         case PMC_OP_PMCDETACH:
4036         {
4037                 struct pmc *pm;
4038                 struct proc *p;
4039                 struct pmc_op_pmcattach a;
4040
4041                 if ((error = copyin(arg, &a, sizeof(a))) != 0)
4042                         break;
4043
4044                 if (a.pm_pid < 0) {
4045                         error = EINVAL;
4046                         break;
4047                 } else if (a.pm_pid == 0)
4048                         a.pm_pid = td->td_proc->p_pid;
4049
4050                 if ((error = pmc_find_pmc(a.pm_pmc, &pm)) != 0)
4051                         break;
4052
4053                 if ((p = pfind(a.pm_pid)) == NULL) {
4054                         error = ESRCH;
4055                         break;
4056                 }
4057
4058                 /*
4059                  * Treat processes that are in the process of exiting
4060                  * as if they were not present.
4061                  */
4062
4063                 if (p->p_flag & P_WEXIT)
4064                         error = ESRCH;
4065
4066                 PROC_UNLOCK(p); /* pfind() returns a locked process */
4067
4068                 if (error == 0)
4069                         error = pmc_detach_process(p, pm);
4070         }
4071         break;
4072
4073
4074         /*
4075          * Retrieve the MSR number associated with the counter
4076          * 'pmc_id'.  This allows processes to directly use RDPMC
4077          * instructions to read their PMCs, without the overhead of a
4078          * system call.
4079          */
4080
4081         case PMC_OP_PMCGETMSR:
4082         {
4083                 int adjri, ri;
4084                 struct pmc *pm;
4085                 struct pmc_target *pt;
4086                 struct pmc_op_getmsr gm;
4087                 struct pmc_classdep *pcd;
4088
4089                 PMC_DOWNGRADE_SX();
4090
4091                 if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
4092                         break;
4093
4094                 if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
4095                         break;
4096
4097                 /*
4098                  * The allocated PMC has to be a process virtual PMC,
4099                  * i.e., of type MODE_T[CS].  Global PMCs can only be
4100                  * read using the PMCREAD operation since they may be
4101                  * allocated on a different CPU than the one we could
4102                  * be running on at the time of the RDPMC instruction.
4103                  *
4104                  * The GETMSR operation is not allowed for PMCs that
4105                  * are inherited across processes.
4106                  */
4107
4108                 if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
4109                     (pm->pm_flags & PMC_F_DESCENDANTS)) {
4110                         error = EINVAL;
4111                         break;
4112                 }
4113
4114                 /*
4115                  * It only makes sense to use a RDPMC (or its
4116                  * equivalent instruction on non-x86 architectures) on
4117                  * a process that has allocated and attached a PMC to
4118                  * itself.  Conversely the PMC is only allowed to have
4119                  * one process attached to it -- its owner.
4120                  */
4121
4122                 if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
4123                     LIST_NEXT(pt, pt_next) != NULL ||
4124                     pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
4125                         error = EINVAL;
4126                         break;
4127                 }
4128
4129                 ri = PMC_TO_ROWINDEX(pm);
4130                 pcd = pmc_ri_to_classdep(md, ri, &adjri);
4131
4132                 /* PMC class has no 'GETMSR' support */
4133                 if (pcd->pcd_get_msr == NULL) {
4134                         error = ENOSYS;
4135                         break;
4136                 }
4137
4138                 if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
4139                         break;
4140
4141                 if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
4142                         break;
4143
4144                 /*
4145                  * Mark our process as using MSRs.  Update machine
4146                  * state using a forced context switch.
4147                  */
4148
4149                 pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
4150                 pmc_force_context_switch();
4151
4152         }
4153         break;
4154
4155         /*
4156          * Release an allocated PMC
4157          */
4158
4159         case PMC_OP_PMCRELEASE:
4160         {
4161                 pmc_id_t pmcid;
4162                 struct pmc *pm;
4163                 struct pmc_owner *po;
4164                 struct pmc_op_simple sp;
4165
4166                 /*
4167                  * Find PMC pointer for the named PMC.
4168                  *
4169                  * Use pmc_release_pmc_descriptor() to switch off the
4170                  * PMC, remove all its target threads, and remove the
4171                  * PMC from its owner's list.
4172                  *
4173                  * Remove the owner record if this is the last PMC
4174                  * owned.
4175                  *
4176                  * Free up space.
4177                  */
4178
4179                 if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
4180                         break;
4181
4182                 pmcid = sp.pm_pmcid;
4183
4184                 if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
4185                         break;
4186
4187                 po = pm->pm_owner;
4188                 pmc_release_pmc_descriptor(pm);
4189                 pmc_maybe_remove_owner(po);
4190                 pmc_destroy_pmc_descriptor(pm);
4191         }
4192         break;
4193
4194
4195         /*
4196          * Read and/or write a PMC.
4197          */
4198
4199         case PMC_OP_PMCRW:
4200         {
4201                 int adjri;
4202                 struct pmc *pm;
4203                 uint32_t cpu, ri;
4204                 pmc_value_t oldvalue;
4205                 struct pmc_binding pb;
4206                 struct pmc_op_pmcrw prw;
4207                 struct pmc_classdep *pcd;
4208                 struct pmc_op_pmcrw *pprw;
4209
4210                 PMC_DOWNGRADE_SX();
4211
4212                 if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
4213                         break;
4214
4215                 ri = 0;
4216                 PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
4217                     prw.pm_flags);
4218
4219                 /* must have at least one flag set */
4220                 if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
4221                         error = EINVAL;
4222                         break;
4223                 }
4224
4225                 /* locate pmc descriptor */
4226                 if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
4227                         break;
4228
4229                 /* Can't read a PMC that hasn't been started. */
4230                 if (pm->pm_state != PMC_STATE_ALLOCATED &&
4231                     pm->pm_state != PMC_STATE_STOPPED &&
4232                     pm->pm_state != PMC_STATE_RUNNING) {
4233                         error = EINVAL;
4234                         break;
4235                 }
4236
4237                 /* writing a new value is allowed only for 'STOPPED' pmcs */
4238                 if (pm->pm_state == PMC_STATE_RUNNING &&
4239                     (prw.pm_flags & PMC_F_NEWVALUE)) {
4240                         error = EBUSY;
4241                         break;
4242                 }
4243
4244                 if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
4245
4246                         /*
4247                          * If this PMC is attached to its owner (i.e.,
4248                          * the process requesting this operation) and
4249                          * is running, then attempt to get an
4250                          * upto-date reading from hardware for a READ.
4251                          * Writes are only allowed when the PMC is
4252                          * stopped, so only update the saved value
4253                          * field.
4254                          *
4255                          * If the PMC is not running, or is not
4256                          * attached to its owner, read/write to the
4257                          * savedvalue field.
4258                          */
4259
4260                         ri = PMC_TO_ROWINDEX(pm);
4261                         pcd = pmc_ri_to_classdep(md, ri, &adjri);
4262
4263                         mtx_pool_lock_spin(pmc_mtxpool, pm);
4264                         cpu = curthread->td_oncpu;
4265
4266                         if (prw.pm_flags & PMC_F_OLDVALUE) {
4267                                 if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
4268                                     (pm->pm_state == PMC_STATE_RUNNING))
4269                                         error = (*pcd->pcd_read_pmc)(cpu, adjri,
4270                                             &oldvalue);
4271                                 else
4272                                         oldvalue = pm->pm_gv.pm_savedvalue;
4273                         }
4274                         if (prw.pm_flags & PMC_F_NEWVALUE)
4275                                 pm->pm_gv.pm_savedvalue = prw.pm_value;
4276
4277                         mtx_pool_unlock_spin(pmc_mtxpool, pm);
4278
4279                 } else { /* System mode PMCs */
4280                         cpu = PMC_TO_CPU(pm);
4281                         ri  = PMC_TO_ROWINDEX(pm);
4282                         pcd = pmc_ri_to_classdep(md, ri, &adjri);
4283
4284                         if (!pmc_cpu_is_active(cpu)) {
4285                                 error = ENXIO;
4286                                 break;
4287                         }
4288
4289                         /* move this thread to CPU 'cpu' */
4290                         pmc_save_cpu_binding(&pb);
4291                         pmc_select_cpu(cpu);
4292
4293                         critical_enter();
4294                         /* save old value */
4295                         if (prw.pm_flags & PMC_F_OLDVALUE)
4296                                 if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
4297                                          &oldvalue)))
4298                                         goto error;
4299                         /* write out new value */
4300                         if (prw.pm_flags & PMC_F_NEWVALUE)
4301                                 error = (*pcd->pcd_write_pmc)(cpu, adjri,
4302                                     prw.pm_value);
4303                 error:
4304                         critical_exit();
4305                         pmc_restore_cpu_binding(&pb);
4306                         if (error)
4307                                 break;
4308                 }
4309
4310                 pprw = (struct pmc_op_pmcrw *) arg;
4311
4312 #ifdef  HWPMC_DEBUG
4313                 if (prw.pm_flags & PMC_F_NEWVALUE)
4314                         PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
4315                             ri, prw.pm_value, oldvalue);
4316                 else if (prw.pm_flags & PMC_F_OLDVALUE)
4317                         PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
4318 #endif
4319
4320                 /* return old value if requested */
4321                 if (prw.pm_flags & PMC_F_OLDVALUE)
4322                         if ((error = copyout(&oldvalue, &pprw->pm_value,
4323                                  sizeof(prw.pm_value))))
4324                                 break;
4325
4326         }
4327         break;
4328
4329
4330         /*
4331          * Set the sampling rate for a sampling mode PMC and the
4332          * initial count for a counting mode PMC.
4333          */
4334
4335         case PMC_OP_PMCSETCOUNT:
4336         {
4337                 struct pmc *pm;
4338                 struct pmc_op_pmcsetcount sc;
4339
4340                 PMC_DOWNGRADE_SX();
4341
4342                 if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
4343                         break;
4344
4345                 if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
4346                         break;
4347
4348                 if (pm->pm_state == PMC_STATE_RUNNING) {
4349                         error = EBUSY;
4350                         break;
4351                 }
4352
4353                 if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
4354                         pm->pm_sc.pm_reloadcount = sc.pm_count;
4355                 else
4356                         pm->pm_sc.pm_initial = sc.pm_count;
4357         }
4358         break;
4359
4360
4361         /*
4362          * Start a PMC.
4363          */
4364
4365         case PMC_OP_PMCSTART:
4366         {
4367                 pmc_id_t pmcid;
4368                 struct pmc *pm;
4369                 struct pmc_op_simple sp;
4370
4371                 sx_assert(&pmc_sx, SX_XLOCKED);
4372
4373                 if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
4374                         break;
4375
4376                 pmcid = sp.pm_pmcid;
4377
4378                 if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
4379                         break;
4380
4381                 KASSERT(pmcid == pm->pm_id,
4382                     ("[pmc,%d] pmcid %x != id %x", __LINE__,
4383                         pm->pm_id, pmcid));
4384
4385                 if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
4386                         break;
4387                 else if (pm->pm_state != PMC_STATE_STOPPED &&
4388                     pm->pm_state != PMC_STATE_ALLOCATED) {
4389                         error = EINVAL;
4390                         break;
4391                 }
4392
4393                 error = pmc_start(pm);
4394         }
4395         break;
4396
4397
4398         /*
4399          * Stop a PMC.
4400          */
4401
4402         case PMC_OP_PMCSTOP:
4403         {
4404                 pmc_id_t pmcid;
4405                 struct pmc *pm;
4406                 struct pmc_op_simple sp;
4407
4408                 PMC_DOWNGRADE_SX();
4409
4410                 if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
4411                         break;
4412
4413                 pmcid = sp.pm_pmcid;
4414
4415                 /*
4416                  * Mark the PMC as inactive and invoke the MD stop
4417                  * routines if needed.
4418                  */
4419
4420                 if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
4421                         break;
4422
4423                 KASSERT(pmcid == pm->pm_id,
4424                     ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
4425                         pm->pm_id, pmcid));
4426
4427                 if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
4428                         break;
4429                 else if (pm->pm_state != PMC_STATE_RUNNING) {
4430                         error = EINVAL;
4431                         break;
4432                 }
4433
4434                 error = pmc_stop(pm);
4435         }
4436         break;
4437
4438
4439         /*
4440          * Write a user supplied value to the log file.
4441          */
4442
4443         case PMC_OP_WRITELOG:
4444         {
4445                 struct pmc_op_writelog wl;
4446                 struct pmc_owner *po;
4447
4448                 PMC_DOWNGRADE_SX();
4449
4450                 if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
4451                         break;
4452
4453                 if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
4454                         error = EINVAL;
4455                         break;
4456                 }
4457
4458                 if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
4459                         error = EINVAL;
4460                         break;
4461                 }
4462
4463                 error = pmclog_process_userlog(po, &wl);
4464         }
4465         break;
4466
4467
4468         default:
4469                 error = EINVAL;
4470                 break;
4471         }
4472
4473         if (is_sx_downgraded)
4474                 sx_sunlock(&pmc_sx);
4475         else
4476                 sx_xunlock(&pmc_sx);
4477 done_syscall:
4478         if (error)
4479                 counter_u64_add(pmc_stats.pm_syscall_errors, 1);
4480
4481         return (error);
4482 }
4483
4484 /*
4485  * Helper functions
4486  */
4487
4488
4489 /*
4490  * Mark the thread as needing callchain capture and post an AST.  The
4491  * actual callchain capture will be done in a context where it is safe
4492  * to take page faults.
4493  */
4494
4495 static void
4496 pmc_post_callchain_callback(void)
4497 {
4498         struct thread *td;
4499
4500         td = curthread;
4501
4502         /*
4503          * If there is multiple PMCs for the same interrupt ignore new post
4504          */
4505         if (td->td_pflags & TDP_CALLCHAIN)
4506                 return;
4507
4508         /*
4509          * Mark this thread as needing callchain capture.
4510          * `td->td_pflags' will be safe to touch because this thread
4511          * was in user space when it was interrupted.
4512          */
4513         td->td_pflags |= TDP_CALLCHAIN;
4514
4515         /*
4516          * Don't let this thread migrate between CPUs until callchain
4517          * capture completes.
4518          */
4519         sched_pin();
4520
4521         return;
4522 }
4523
4524 /*
4525  * Interrupt processing.
4526  *
4527  * Find a free slot in the per-cpu array of samples and capture the
4528  * current callchain there.  If a sample was successfully added, a bit
4529  * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
4530  * needs to be invoked from the clock handler.
4531  *
4532  * This function is meant to be called from an NMI handler.  It cannot
4533  * use any of the locking primitives supplied by the OS.
4534  */
4535
4536 int
4537 pmc_process_interrupt(int cpu, int ring, struct pmc *pm, struct trapframe *tf,
4538     int inuserspace)
4539 {
4540         int error, callchaindepth;
4541         struct thread *td;
4542         struct pmc_sample *ps;
4543         struct pmc_samplebuffer *psb;
4544
4545         error = 0;
4546
4547         /*
4548          * Allocate space for a sample buffer.
4549          */
4550         psb = pmc_pcpu[cpu]->pc_sb[ring];
4551
4552         ps = psb->ps_write;
4553         if (ps->ps_nsamples) {  /* in use, reader hasn't caught up */
4554                 pm->pm_pcpu_state[cpu].pps_stalled = 1;
4555                 counter_u64_add(pmc_stats.pm_intr_bufferfull, 1);
4556                 PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
4557                     cpu, pm, (void *) tf, inuserspace,
4558                     (int) (psb->ps_write - psb->ps_samples),
4559                     (int) (psb->ps_read - psb->ps_samples));
4560                 callchaindepth = 1;
4561                 error = ENOMEM;
4562                 goto done;
4563         }
4564
4565
4566         /* Fill in entry. */
4567         PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm,
4568             (void *) tf, inuserspace,
4569             (int) (psb->ps_write - psb->ps_samples),
4570             (int) (psb->ps_read - psb->ps_samples));
4571
4572         KASSERT(counter_u64_fetch(pm->pm_runcount) >= 0,
4573             ("[pmc,%d] pm=%p runcount %ld", __LINE__, (void *) pm,
4574                  (unsigned long)counter_u64_fetch(pm->pm_runcount)));
4575
4576         counter_u64_add(pm->pm_runcount, 1);    /* hold onto PMC */
4577
4578         ps->ps_pmc = pm;
4579         if ((td = curthread) && td->td_proc)
4580                 ps->ps_pid = td->td_proc->p_pid;
4581         else
4582                 ps->ps_pid = -1;
4583         ps->ps_cpu = cpu;
4584         ps->ps_td = td;
4585         ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
4586
4587         callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
4588             pmc_callchaindepth : 1;
4589
4590         if (callchaindepth == 1)
4591                 ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
4592         else {
4593                 /*
4594                  * Kernel stack traversals can be done immediately,
4595                  * while we defer to an AST for user space traversals.
4596                  */
4597                 if (!inuserspace) {
4598                         callchaindepth =
4599                             pmc_save_kernel_callchain(ps->ps_pc,
4600                                 callchaindepth, tf);
4601                 } else {
4602                         pmc_post_callchain_callback();
4603                         callchaindepth = PMC_SAMPLE_INUSE;
4604                 }
4605         }
4606
4607         ps->ps_nsamples = callchaindepth;       /* mark entry as in use */
4608
4609         /* increment write pointer, modulo ring buffer size */
4610         ps++;
4611         if (ps == psb->ps_fence)
4612                 psb->ps_write = psb->ps_samples;
4613         else
4614                 psb->ps_write = ps;
4615
4616  done:
4617         /* mark CPU as needing processing */
4618         if (callchaindepth != PMC_SAMPLE_INUSE)
4619                 DPCPU_SET(pmc_sampled, 1);
4620
4621         return (error);
4622 }
4623
4624 /*
4625  * Capture a user call chain.  This function will be called from ast()
4626  * before control returns to userland and before the process gets
4627  * rescheduled.
4628  */
4629
4630 static void
4631 pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
4632 {
4633         struct pmc *pm;
4634         struct thread *td;
4635         struct pmc_sample *ps, *ps_end;
4636         struct pmc_samplebuffer *psb;
4637 #ifdef  INVARIANTS
4638         int ncallchains;
4639         int nfree;
4640 #endif
4641
4642         psb = pmc_pcpu[cpu]->pc_sb[ring];
4643         td = curthread;
4644
4645         KASSERT(td->td_pflags & TDP_CALLCHAIN,
4646             ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
4647                 __LINE__));
4648
4649 #ifdef  INVARIANTS
4650         ncallchains = 0;
4651         nfree = 0;
4652 #endif
4653
4654         /*
4655          * Iterate through all deferred callchain requests.
4656          * Walk from the current read pointer to the current
4657          * write pointer.
4658          */
4659
4660         ps = psb->ps_read;
4661         ps_end = psb->ps_write;
4662         do {
4663 #ifdef  INVARIANTS
4664                 if ((ps->ps_pmc == NULL) ||
4665                     (ps->ps_pmc->pm_state != PMC_STATE_RUNNING))
4666                         nfree++;
4667 #endif
4668                 if (ps->ps_nsamples != PMC_SAMPLE_INUSE)
4669                         goto next;
4670                 if (ps->ps_td != td)
4671                         goto next;
4672
4673                 KASSERT(ps->ps_cpu == cpu,
4674                     ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
4675                         ps->ps_cpu, PCPU_GET(cpuid)));
4676
4677                 pm = ps->ps_pmc;
4678
4679                 KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
4680                     ("[pmc,%d] Retrieving callchain for PMC that doesn't "
4681                         "want it", __LINE__));
4682
4683                 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4684                     ("[pmc,%d] runcount %ld", __LINE__, (unsigned long)counter_u64_fetch(pm->pm_runcount)));
4685
4686                 /*
4687                  * Retrieve the callchain and mark the sample buffer
4688                  * as 'processable' by the timer tick sweep code.
4689                  */
4690                 ps->ps_nsamples = pmc_save_user_callchain(ps->ps_pc,
4691                     pmc_callchaindepth, tf);
4692
4693 #ifdef  INVARIANTS
4694                 ncallchains++;
4695 #endif
4696
4697 next:
4698                 /* increment the pointer, modulo sample ring size */
4699                 if (++ps == psb->ps_fence)
4700                         ps = psb->ps_samples;
4701         } while (ps != ps_end);
4702
4703 #ifdef  INVARIANTS
4704         KASSERT(ncallchains > 0 || nfree > 0,
4705             ("[pmc,%d] cpu %d didn't find a sample to collect", __LINE__,
4706                 cpu));
4707 #endif
4708
4709         KASSERT(td->td_pinned == 1,
4710             ("[pmc,%d] invalid td_pinned value", __LINE__));
4711         sched_unpin();  /* Can migrate safely now. */
4712
4713         /* mark CPU as needing processing */
4714         DPCPU_SET(pmc_sampled, 1);
4715 }
4716
4717 /*
4718  * Process saved PC samples.
4719  */
4720
4721 static void
4722 pmc_process_samples(int cpu, int ring)
4723 {
4724         struct pmc *pm;
4725         int adjri, n;
4726         struct thread *td;
4727         struct pmc_owner *po;
4728         struct pmc_sample *ps;
4729         struct pmc_classdep *pcd;
4730         struct pmc_samplebuffer *psb;
4731
4732         KASSERT(PCPU_GET(cpuid) == cpu,
4733             ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
4734                 PCPU_GET(cpuid), cpu));
4735
4736         psb = pmc_pcpu[cpu]->pc_sb[ring];
4737
4738         for (n = 0; n < pmc_nsamples; n++) { /* bound on #iterations */
4739
4740                 ps = psb->ps_read;
4741                 if (ps->ps_nsamples == PMC_SAMPLE_FREE)
4742                         break;
4743
4744                 pm = ps->ps_pmc;
4745
4746                 KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4747                     ("[pmc,%d] pm=%p runcount %ld", __LINE__, (void *) pm,
4748                          (unsigned long)counter_u64_fetch(pm->pm_runcount)));
4749
4750                 po = pm->pm_owner;
4751
4752                 KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
4753                     ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
4754                         pm, PMC_TO_MODE(pm)));
4755
4756                 /* Ignore PMCs that have been switched off */
4757                 if (pm->pm_state != PMC_STATE_RUNNING)
4758                         goto entrydone;
4759
4760                 /* If there is a pending AST wait for completion */
4761                 if (ps->ps_nsamples == PMC_SAMPLE_INUSE) {
4762                         /* Need a rescan at a later time. */
4763                         DPCPU_SET(pmc_sampled, 1);
4764                         break;
4765                 }
4766
4767                 PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
4768                     pm, ps->ps_nsamples, ps->ps_flags,
4769                     (int) (psb->ps_write - psb->ps_samples),
4770                     (int) (psb->ps_read - psb->ps_samples));
4771
4772                 /*
4773                  * If this is a process-mode PMC that is attached to
4774                  * its owner, and if the PC is in user mode, update
4775                  * profiling statistics like timer-based profiling
4776                  * would have done.
4777                  */
4778                 if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
4779                         if (ps->ps_flags & PMC_CC_F_USERSPACE) {
4780                                 td = FIRST_THREAD_IN_PROC(po->po_owner);
4781                                 addupc_intr(td, ps->ps_pc[0], 1);
4782                         }
4783                         goto entrydone;
4784                 }
4785
4786                 /*
4787                  * Otherwise, this is either a sampling mode PMC that
4788                  * is attached to a different process than its owner,
4789                  * or a system-wide sampling PMC.  Dispatch a log
4790                  * entry to the PMC's owner process.
4791                  */
4792                 pmclog_process_callchain(pm, ps);
4793
4794         entrydone:
4795                 ps->ps_nsamples = 0; /* mark entry as free */
4796                 counter_u64_add(pm->pm_runcount, -1);
4797
4798                 /* increment read pointer, modulo sample size */
4799                 if (++ps == psb->ps_fence)
4800                         psb->ps_read = psb->ps_samples;
4801                 else
4802                         psb->ps_read = ps;
4803         }
4804
4805         counter_u64_add(pmc_stats.pm_log_sweeps, 1);
4806
4807         /* Do not re-enable stalled PMCs if we failed to process any samples */
4808         if (n == 0)
4809                 return;
4810
4811         /*
4812          * Restart any stalled sampling PMCs on this CPU.
4813          *
4814          * If the NMI handler sets the pm_stalled field of a PMC after
4815          * the check below, we'll end up processing the stalled PMC at
4816          * the next hardclock tick.
4817          */
4818         for (n = 0; n < md->pmd_npmc; n++) {
4819                 pcd = pmc_ri_to_classdep(md, n, &adjri);
4820                 KASSERT(pcd != NULL,
4821                     ("[pmc,%d] null pcd ri=%d", __LINE__, n));
4822                 (void) (*pcd->pcd_get_config)(cpu,adjri,&pm);
4823
4824                 if (pm == NULL ||                        /* !cfg'ed */
4825                     pm->pm_state != PMC_STATE_RUNNING || /* !active */
4826                     !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) || /* !sampling */
4827                         !pm->pm_pcpu_state[cpu].pps_cpustate  || /* !desired */
4828                     !pm->pm_pcpu_state[cpu].pps_stalled) /* !stalled */
4829                         continue;
4830
4831                 pm->pm_pcpu_state[cpu].pps_stalled = 0;
4832                 (*pcd->pcd_start_pmc)(cpu, adjri);
4833         }
4834 }
4835
4836 /*
4837  * Event handlers.
4838  */
4839
4840 /*
4841  * Handle a process exit.
4842  *
4843  * Remove this process from all hash tables.  If this process
4844  * owned any PMCs, turn off those PMCs and deallocate them,
4845  * removing any associations with target processes.
4846  *
4847  * This function will be called by the last 'thread' of a
4848  * process.
4849  *
4850  * XXX This eventhandler gets called early in the exit process.
4851  * Consider using a 'hook' invocation from thread_exit() or equivalent
4852  * spot.  Another negative is that kse_exit doesn't seem to call
4853  * exit1() [??].
4854  *
4855  */
4856
4857 static void
4858 pmc_process_exit(void *arg __unused, struct proc *p)
4859 {
4860         struct pmc *pm;
4861         int adjri, cpu;
4862         unsigned int ri;
4863         int is_using_hwpmcs;
4864         struct pmc_owner *po;
4865         struct pmc_process *pp;
4866         struct pmc_classdep *pcd;
4867         pmc_value_t newvalue, tmp;
4868
4869         PROC_LOCK(p);
4870         is_using_hwpmcs = p->p_flag & P_HWPMC;
4871         PROC_UNLOCK(p);
4872
4873         /*
4874          * Log a sysexit event to all SS PMC owners.
4875          */
4876         epoch_enter_preempt(global_epoch_preempt);
4877         CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
4878             if (po->po_flags & PMC_PO_OWNS_LOGFILE)
4879                     pmclog_process_sysexit(po, p->p_pid);
4880         epoch_exit_preempt(global_epoch_preempt);
4881
4882         if (!is_using_hwpmcs)
4883                 return;
4884
4885         PMC_GET_SX_XLOCK();
4886         PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
4887             p->p_comm);
4888
4889         /*
4890          * Since this code is invoked by the last thread in an exiting
4891          * process, we would have context switched IN at some prior
4892          * point.  However, with PREEMPTION, kernel mode context
4893          * switches may happen any time, so we want to disable a
4894          * context switch OUT till we get any PMCs targeting this
4895          * process off the hardware.
4896          *
4897          * We also need to atomically remove this process'
4898          * entry from our target process hash table, using
4899          * PMC_FLAG_REMOVE.
4900          */
4901         PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
4902             p->p_comm);
4903
4904         critical_enter(); /* no preemption */
4905
4906         cpu = curthread->td_oncpu;
4907
4908         if ((pp = pmc_find_process_descriptor(p,
4909                  PMC_FLAG_REMOVE)) != NULL) {
4910
4911                 PMCDBG2(PRC,EXT,2,
4912                     "process-exit proc=%p pmc-process=%p", p, pp);
4913
4914                 /*
4915                  * The exiting process could the target of
4916                  * some PMCs which will be running on
4917                  * currently executing CPU.
4918                  *
4919                  * We need to turn these PMCs off like we
4920                  * would do at context switch OUT time.
4921                  */
4922                 for (ri = 0; ri < md->pmd_npmc; ri++) {
4923
4924                         /*
4925                          * Pick up the pmc pointer from hardware
4926                          * state similar to the CSW_OUT code.
4927                          */
4928                         pm = NULL;
4929
4930                         pcd = pmc_ri_to_classdep(md, ri, &adjri);
4931
4932                         (void) (*pcd->pcd_get_config)(cpu, adjri, &pm);
4933
4934                         PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
4935
4936                         if (pm == NULL ||
4937                             !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
4938                                 continue;
4939
4940                         PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
4941                             "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
4942                             pm, pm->pm_state);
4943
4944                         KASSERT(PMC_TO_ROWINDEX(pm) == ri,
4945                             ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
4946                                 __LINE__, PMC_TO_ROWINDEX(pm), ri));
4947
4948                         KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
4949                             ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
4950                                 __LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
4951
4952                         KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
4953                             ("[pmc,%d] bad runcount ri %d rc %ld",
4954                                  __LINE__, ri, (unsigned long)counter_u64_fetch(pm->pm_runcount)));
4955
4956                         /*
4957                          * Change desired state, and then stop if not
4958                          * stalled. This two-step dance should avoid
4959                          * race conditions where an interrupt re-enables
4960                          * the PMC after this code has already checked
4961                          * the pm_stalled flag.
4962                          */
4963                         if (pm->pm_pcpu_state[cpu].pps_cpustate) {
4964                                 pm->pm_pcpu_state[cpu].pps_cpustate = 0;
4965                                 if (!pm->pm_pcpu_state[cpu].pps_stalled) {
4966                                         (void) pcd->pcd_stop_pmc(cpu, adjri);
4967
4968                                         if (PMC_TO_MODE(pm) == PMC_MODE_TC) {
4969                                                 pcd->pcd_read_pmc(cpu, adjri,
4970                                                     &newvalue);
4971                                                 tmp = newvalue -
4972                                                     PMC_PCPU_SAVED(cpu,ri);
4973
4974                                                 mtx_pool_lock_spin(pmc_mtxpool,
4975                                                     pm);
4976                                                 pm->pm_gv.pm_savedvalue += tmp;
4977                                                 pp->pp_pmcs[ri].pp_pmcval +=
4978                                                     tmp;
4979                                                 mtx_pool_unlock_spin(
4980                                                     pmc_mtxpool, pm);
4981                                         }
4982                                 }
4983                         }
4984
4985                         counter_u64_add(pm->pm_runcount, -1);
4986
4987                         KASSERT((int) counter_u64_fetch(pm->pm_runcount) >= 0,
4988                             ("[pmc,%d] runcount is %d", __LINE__, ri));
4989
4990                         (void) pcd->pcd_config_pmc(cpu, adjri, NULL);
4991                 }
4992
4993                 /*
4994                  * Inform the MD layer of this pseudo "context switch
4995                  * out"
4996                  */
4997                 (void) md->pmd_switch_out(pmc_pcpu[cpu], pp);
4998
4999                 critical_exit(); /* ok to be pre-empted now */
5000
5001                 /*
5002                  * Unlink this process from the PMCs that are
5003                  * targeting it.  This will send a signal to
5004                  * all PMC owner's whose PMCs are orphaned.
5005                  *
5006                  * Log PMC value at exit time if requested.
5007                  */
5008                 for (ri = 0; ri < md->pmd_npmc; ri++)
5009                         if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
5010                                 if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
5011                                     PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm)))
5012                                         pmclog_process_procexit(pm, pp);
5013                                 pmc_unlink_target_process(pm, pp);
5014                         }
5015                 free(pp, M_PMC);
5016
5017         } else
5018                 critical_exit(); /* pp == NULL */
5019
5020
5021         /*
5022          * If the process owned PMCs, free them up and free up
5023          * memory.
5024          */
5025         if ((po = pmc_find_owner_descriptor(p)) != NULL) {
5026                 pmc_remove_owner(po);
5027                 pmc_destroy_owner_descriptor(po);
5028         }
5029
5030         sx_xunlock(&pmc_sx);
5031 }
5032
5033 /*
5034  * Handle a process fork.
5035  *
5036  * If the parent process 'p1' is under HWPMC monitoring, then copy
5037  * over any attached PMCs that have 'do_descendants' semantics.
5038  */
5039
5040 static void
5041 pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
5042     int flags)
5043 {
5044         int is_using_hwpmcs;
5045         unsigned int ri;
5046         uint32_t do_descendants;
5047         struct pmc *pm;
5048         struct pmc_owner *po;
5049         struct pmc_process *ppnew, *ppold;
5050
5051         (void) flags;           /* unused parameter */
5052
5053         PROC_LOCK(p1);
5054         is_using_hwpmcs = p1->p_flag & P_HWPMC;
5055         PROC_UNLOCK(p1);
5056
5057         /*
5058          * If there are system-wide sampling PMCs active, we need to
5059          * log all fork events to their owner's logs.
5060          */
5061         epoch_enter_preempt(global_epoch_preempt);
5062         CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5063             if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5064                     pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
5065         epoch_exit_preempt(global_epoch_preempt);
5066
5067         if (!is_using_hwpmcs)
5068                 return;
5069
5070         PMC_GET_SX_XLOCK();
5071         PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
5072             p1->p_pid, p1->p_comm, newproc);
5073
5074         /*
5075          * If the parent process (curthread->td_proc) is a
5076          * target of any PMCs, look for PMCs that are to be
5077          * inherited, and link these into the new process
5078          * descriptor.
5079          */
5080         if ((ppold = pmc_find_process_descriptor(curthread->td_proc,
5081                  PMC_FLAG_NONE)) == NULL)
5082                 goto done;              /* nothing to do */
5083
5084         do_descendants = 0;
5085         for (ri = 0; ri < md->pmd_npmc; ri++)
5086                 if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL)
5087                         do_descendants |= pm->pm_flags & PMC_F_DESCENDANTS;
5088         if (do_descendants == 0) /* nothing to do */
5089                 goto done;
5090
5091         /*
5092          * Now mark the new process as being tracked by this driver.
5093          */
5094         PROC_LOCK(newproc);
5095         newproc->p_flag |= P_HWPMC;
5096         PROC_UNLOCK(newproc);
5097
5098         /* allocate a descriptor for the new process  */
5099         if ((ppnew = pmc_find_process_descriptor(newproc,
5100                  PMC_FLAG_ALLOCATE)) == NULL)
5101                 goto done;
5102
5103         /*
5104          * Run through all PMCs that were targeting the old process
5105          * and which specified F_DESCENDANTS and attach them to the
5106          * new process.
5107          *
5108          * Log the fork event to all owners of PMCs attached to this
5109          * process, if not already logged.
5110          */
5111         for (ri = 0; ri < md->pmd_npmc; ri++)
5112                 if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
5113                     (pm->pm_flags & PMC_F_DESCENDANTS)) {
5114                         pmc_link_target_process(pm, ppnew);
5115                         po = pm->pm_owner;
5116                         if (po->po_sscount == 0 &&
5117                             po->po_flags & PMC_PO_OWNS_LOGFILE)
5118                                 pmclog_process_procfork(po, p1->p_pid,
5119                                     newproc->p_pid);
5120                 }
5121
5122  done:
5123         sx_xunlock(&pmc_sx);
5124 }
5125
5126 static void
5127 pmc_kld_load(void *arg __unused, linker_file_t lf)
5128 {
5129         struct pmc_owner *po;
5130
5131         /*
5132          * Notify owners of system sampling PMCs about KLD operations.
5133          */
5134         epoch_enter_preempt(global_epoch_preempt);
5135         CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5136                 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5137                         pmclog_process_map_in(po, (pid_t) -1,
5138                             (uintfptr_t) lf->address, lf->filename);
5139         epoch_exit_preempt(global_epoch_preempt);
5140
5141         /*
5142          * TODO: Notify owners of (all) process-sampling PMCs too.
5143          */
5144 }
5145
5146 static void
5147 pmc_kld_unload(void *arg __unused, const char *filename __unused,
5148     caddr_t address, size_t size)
5149 {
5150         struct pmc_owner *po;
5151
5152         epoch_enter_preempt(global_epoch_preempt);
5153         CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext)
5154                 if (po->po_flags & PMC_PO_OWNS_LOGFILE)
5155                         pmclog_process_map_out(po, (pid_t) -1,
5156                             (uintfptr_t) address, (uintfptr_t) address + size);
5157         epoch_exit_preempt(global_epoch_preempt);
5158
5159         /*
5160          * TODO: Notify owners of process-sampling PMCs.
5161          */
5162 }
5163
5164 /*
5165  * initialization
5166  */
5167 static const char *
5168 pmc_name_of_pmcclass(enum pmc_class class)
5169 {
5170
5171         switch (class) {
5172 #undef  __PMC_CLASS
5173 #define __PMC_CLASS(S,V,D)                                              \
5174         case PMC_CLASS_##S:                                             \
5175                 return #S;
5176         __PMC_CLASSES();
5177         default:
5178                 return ("<unknown>");
5179         }
5180 }
5181
5182 /*
5183  * Base class initializer: allocate structure and set default classes.
5184  */
5185 struct pmc_mdep *
5186 pmc_mdep_alloc(int nclasses)
5187 {
5188         struct pmc_mdep *md;
5189         int     n;
5190
5191         /* SOFT + md classes */
5192         n = 1 + nclasses;
5193         md = malloc(sizeof(struct pmc_mdep) + n *
5194             sizeof(struct pmc_classdep), M_PMC, M_WAITOK|M_ZERO);
5195         md->pmd_nclass = n;
5196
5197         /* Add base class. */
5198         pmc_soft_initialize(md);
5199         return md;
5200 }
5201
5202 void
5203 pmc_mdep_free(struct pmc_mdep *md)
5204 {
5205         pmc_soft_finalize(md);
5206         free(md, M_PMC);
5207 }
5208
5209 static int
5210 generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp)
5211 {
5212         (void) pc; (void) pp;
5213
5214         return (0);
5215 }
5216
5217 static int
5218 generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp)
5219 {
5220         (void) pc; (void) pp;
5221
5222         return (0);
5223 }
5224
5225 static struct pmc_mdep *
5226 pmc_generic_cpu_initialize(void)
5227 {
5228         struct pmc_mdep *md;
5229
5230         md = pmc_mdep_alloc(0);
5231
5232         md->pmd_cputype    = PMC_CPU_GENERIC;
5233
5234         md->pmd_pcpu_init  = NULL;
5235         md->pmd_pcpu_fini  = NULL;
5236         md->pmd_switch_in  = generic_switch_in;
5237         md->pmd_switch_out = generic_switch_out;
5238
5239         return (md);
5240 }
5241
5242 static void
5243 pmc_generic_cpu_finalize(struct pmc_mdep *md)
5244 {
5245         (void) md;
5246 }
5247
5248
5249 static int
5250 pmc_initialize(void)
5251 {
5252         int c, cpu, error, n, ri;
5253         unsigned int maxcpu, domain;
5254         struct pcpu *pc;
5255         struct pmc_binding pb;
5256         struct pmc_sample *ps;
5257         struct pmc_classdep *pcd;
5258         struct pmc_samplebuffer *sb;
5259
5260         md = NULL;
5261         error = 0;
5262
5263         pmc_stats.pm_intr_ignored = counter_u64_alloc(M_WAITOK);
5264         pmc_stats.pm_intr_processed = counter_u64_alloc(M_WAITOK);
5265         pmc_stats.pm_intr_bufferfull = counter_u64_alloc(M_WAITOK);
5266         pmc_stats.pm_syscalls = counter_u64_alloc(M_WAITOK);
5267         pmc_stats.pm_syscall_errors = counter_u64_alloc(M_WAITOK);
5268         pmc_stats.pm_buffer_requests = counter_u64_alloc(M_WAITOK);
5269         pmc_stats.pm_buffer_requests_failed = counter_u64_alloc(M_WAITOK);
5270         pmc_stats.pm_log_sweeps = counter_u64_alloc(M_WAITOK);
5271
5272 #ifdef  HWPMC_DEBUG
5273         /* parse debug flags first */
5274         if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
5275                 pmc_debugstr, sizeof(pmc_debugstr)))
5276                 pmc_debugflags_parse(pmc_debugstr,
5277                     pmc_debugstr+strlen(pmc_debugstr));
5278 #endif
5279
5280         PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
5281
5282         /* check kernel version */
5283         if (pmc_kernel_version != PMC_VERSION) {
5284                 if (pmc_kernel_version == 0)
5285                         printf("hwpmc: this kernel has not been compiled with "
5286                             "'options HWPMC_HOOKS'.\n");
5287                 else
5288                         printf("hwpmc: kernel version (0x%x) does not match "
5289                             "module version (0x%x).\n", pmc_kernel_version,
5290                             PMC_VERSION);
5291                 return EPROGMISMATCH;
5292         }
5293
5294         /*
5295          * check sysctl parameters
5296          */
5297
5298         if (pmc_hashsize <= 0) {
5299                 (void) printf("hwpmc: tunable \"hashsize\"=%d must be "
5300                     "greater than zero.\n", pmc_hashsize);
5301                 pmc_hashsize = PMC_HASH_SIZE;
5302         }
5303
5304         if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
5305                 (void) printf("hwpmc: tunable \"nsamples\"=%d out of "
5306                     "range.\n", pmc_nsamples);
5307                 pmc_nsamples = PMC_NSAMPLES;
5308         }
5309
5310         if (pmc_callchaindepth <= 0 ||
5311             pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
5312                 (void) printf("hwpmc: tunable \"callchaindepth\"=%d out of "
5313                     "range - using %d.\n", pmc_callchaindepth,
5314                     PMC_CALLCHAIN_DEPTH_MAX);
5315                 pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
5316         }
5317
5318         md = pmc_md_initialize();
5319         if (md == NULL) {
5320                 /* Default to generic CPU. */
5321                 md = pmc_generic_cpu_initialize();
5322                 if (md == NULL)
5323                         return (ENOSYS);
5324         }
5325
5326         KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
5327             ("[pmc,%d] no classes or pmcs", __LINE__));
5328
5329         /* Compute the map from row-indices to classdep pointers. */
5330         pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
5331             md->pmd_npmc, M_PMC, M_WAITOK|M_ZERO);
5332
5333         for (n = 0; n < md->pmd_npmc; n++)
5334                 pmc_rowindex_to_classdep[n] = NULL;
5335         for (ri = c = 0; c < md->pmd_nclass; c++) {
5336                 pcd = &md->pmd_classdep[c];
5337                 for (n = 0; n < pcd->pcd_num; n++, ri++)
5338                         pmc_rowindex_to_classdep[ri] = pcd;
5339         }
5340
5341         KASSERT(ri == md->pmd_npmc,
5342             ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
5343             ri, md->pmd_npmc));
5344
5345         maxcpu = pmc_cpu_max();
5346
5347         /* allocate space for the per-cpu array */
5348         pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
5349             M_WAITOK|M_ZERO);
5350
5351         /* per-cpu 'saved values' for managing process-mode PMCs */
5352         pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
5353             M_PMC, M_WAITOK);
5354
5355         /* Perform CPU-dependent initialization. */
5356         pmc_save_cpu_binding(&pb);
5357         error = 0;
5358         for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
5359                 if (!pmc_cpu_is_active(cpu))
5360                         continue;
5361                 pmc_select_cpu(cpu);
5362                 pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
5363                     md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
5364                     M_WAITOK|M_ZERO);
5365                 if (md->pmd_pcpu_init)
5366                         error = md->pmd_pcpu_init(md, cpu);
5367                 for (n = 0; error == 0 && n < md->pmd_nclass; n++)
5368                         error = md->pmd_classdep[n].pcd_pcpu_init(md, cpu);
5369         }
5370         pmc_restore_cpu_binding(&pb);
5371
5372         if (error)
5373                 return (error);
5374
5375         /* allocate space for the sample array */
5376         for (cpu = 0; cpu < maxcpu; cpu++) {
5377                 if (!pmc_cpu_is_active(cpu))
5378                         continue;
5379                 pc = pcpu_find(cpu);
5380                 domain = pc->pc_domain;
5381                 sb = malloc_domain(sizeof(struct pmc_samplebuffer) +
5382                         pmc_nsamples * sizeof(struct pmc_sample), M_PMC, domain,
5383                     M_WAITOK|M_ZERO);
5384                 sb->ps_read = sb->ps_write = sb->ps_samples;
5385                 sb->ps_fence = sb->ps_samples + pmc_nsamples;
5386
5387                 KASSERT(pmc_pcpu[cpu] != NULL,
5388                     ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
5389
5390                 sb->ps_callchains = malloc_domain(pmc_callchaindepth * pmc_nsamples *
5391                         sizeof(uintptr_t), M_PMC, domain, M_WAITOK|M_ZERO);
5392
5393                 for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
5394                         ps->ps_pc = sb->ps_callchains +
5395                             (n * pmc_callchaindepth);
5396
5397                 pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
5398
5399                 sb = malloc_domain(sizeof(struct pmc_samplebuffer) +
5400                         pmc_nsamples * sizeof(struct pmc_sample), M_PMC, domain,
5401                     M_WAITOK|M_ZERO);
5402                 sb->ps_read = sb->ps_write = sb->ps_samples;
5403                 sb->ps_fence = sb->ps_samples + pmc_nsamples;
5404
5405                 KASSERT(pmc_pcpu[cpu] != NULL,
5406                     ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
5407
5408                 sb->ps_callchains = malloc_domain(pmc_callchaindepth * pmc_nsamples *
5409                         sizeof(uintptr_t), M_PMC, domain, M_WAITOK|M_ZERO);
5410
5411                 for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
5412                         ps->ps_pc = sb->ps_callchains +
5413                             (n * pmc_callchaindepth);
5414
5415                 pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
5416         }
5417
5418         /* allocate space for the row disposition array */
5419         pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
5420             M_PMC, M_WAITOK|M_ZERO);
5421
5422         /* mark all PMCs as available */
5423         for (n = 0; n < (int) md->pmd_npmc; n++)
5424                 PMC_MARK_ROW_FREE(n);
5425
5426         /* allocate thread hash tables */
5427         pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
5428             &pmc_ownerhashmask);
5429
5430         pmc_processhash = hashinit(pmc_hashsize, M_PMC,
5431             &pmc_processhashmask);
5432         mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
5433             MTX_SPIN);
5434
5435         LIST_INIT(&pmc_ss_owners);
5436         pmc_ss_count = 0;
5437
5438         /* allocate a pool of spin mutexes */
5439         pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
5440             MTX_SPIN);
5441
5442         PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
5443             "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
5444             pmc_processhash, pmc_processhashmask);
5445
5446         /* Initialize a spin mutex for the thread free list. */
5447         mtx_init(&pmc_threadfreelist_mtx, "pmc-threadfreelist", "pmc-leaf",
5448             MTX_SPIN);
5449
5450         /*
5451          * Initialize the callout to monitor the thread free list.
5452          * This callout will also handle the initial population of the list.
5453          */
5454         taskqgroup_config_gtask_init(NULL, &free_gtask, pmc_thread_descriptor_pool_free_task, "thread descriptor pool free task");
5455
5456         /* register process {exit,fork,exec} handlers */
5457         pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
5458             pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
5459         pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
5460             pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
5461
5462         /* register kld event handlers */
5463         pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
5464             NULL, EVENTHANDLER_PRI_ANY);
5465         pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
5466             NULL, EVENTHANDLER_PRI_ANY);
5467
5468         /* initialize logging */
5469         pmclog_initialize();
5470
5471         /* set hook functions */
5472         pmc_intr = md->pmd_intr;
5473         wmb();
5474         pmc_hook = pmc_hook_handler;
5475
5476         if (error == 0) {
5477                 printf(PMC_MODULE_NAME ":");
5478                 for (n = 0; n < (int) md->pmd_nclass; n++) {
5479                         pcd = &md->pmd_classdep[n];
5480                         printf(" %s/%d/%d/0x%b",
5481                             pmc_name_of_pmcclass(pcd->pcd_class),
5482                             pcd->pcd_num,
5483                             pcd->pcd_width,
5484                             pcd->pcd_caps,
5485                             "\20"
5486                             "\1INT\2USR\3SYS\4EDG\5THR"
5487                             "\6REA\7WRI\10INV\11QUA\12PRC"
5488                             "\13TAG\14CSC");
5489                 }
5490                 printf("\n");
5491         }
5492
5493         return (error);
5494 }
5495
5496 /* prepare to be unloaded */
5497 static void
5498 pmc_cleanup(void)
5499 {
5500         int c, cpu;
5501         unsigned int maxcpu;
5502         struct pmc_ownerhash *ph;
5503         struct pmc_owner *po, *tmp;
5504         struct pmc_binding pb;
5505 #ifdef  HWPMC_DEBUG
5506         struct pmc_processhash *prh;
5507 #endif
5508
5509         PMCDBG0(MOD,INI,0, "cleanup");
5510
5511         /* switch off sampling */
5512         CPU_FOREACH(cpu)
5513                 DPCPU_ID_SET(cpu, pmc_sampled, 0);
5514         pmc_intr = NULL;
5515
5516         sx_xlock(&pmc_sx);
5517         if (pmc_hook == NULL) { /* being unloaded already */
5518                 sx_xunlock(&pmc_sx);
5519                 return;
5520         }
5521
5522         pmc_hook = NULL; /* prevent new threads from entering module */
5523
5524         /* deregister event handlers */
5525         EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
5526         EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
5527         EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
5528         EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
5529
5530         /* send SIGBUS to all owner threads, free up allocations */
5531         if (pmc_ownerhash)
5532                 for (ph = pmc_ownerhash;
5533                      ph <= &pmc_ownerhash[pmc_ownerhashmask];
5534                      ph++) {
5535                         LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
5536                                 pmc_remove_owner(po);
5537
5538                                 /* send SIGBUS to owner processes */
5539                                 PMCDBG3(MOD,INI,2, "cleanup signal proc=%p "
5540                                     "(%d, %s)", po->po_owner,
5541                                     po->po_owner->p_pid,
5542                                     po->po_owner->p_comm);
5543
5544                                 PROC_LOCK(po->po_owner);
5545                                 kern_psignal(po->po_owner, SIGBUS);
5546                                 PROC_UNLOCK(po->po_owner);
5547
5548                                 pmc_destroy_owner_descriptor(po);
5549                         }
5550                 }
5551
5552         /* reclaim allocated data structures */
5553         mtx_destroy(&pmc_threadfreelist_mtx);
5554         pmc_thread_descriptor_pool_drain();
5555
5556         if (pmc_mtxpool)
5557                 mtx_pool_destroy(&pmc_mtxpool);
5558
5559         mtx_destroy(&pmc_processhash_mtx);
5560         if (pmc_processhash) {
5561 #ifdef  HWPMC_DEBUG
5562                 struct pmc_process *pp;
5563
5564                 PMCDBG0(MOD,INI,3, "destroy process hash");
5565                 for (prh = pmc_processhash;
5566                      prh <= &pmc_processhash[pmc_processhashmask];
5567                      prh++)
5568                         LIST_FOREACH(pp, prh, pp_next)
5569                             PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
5570 #endif
5571
5572                 hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
5573                 pmc_processhash = NULL;
5574         }
5575
5576         if (pmc_ownerhash) {
5577                 PMCDBG0(MOD,INI,3, "destroy owner hash");
5578                 hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
5579                 pmc_ownerhash = NULL;
5580         }
5581
5582         KASSERT(LIST_EMPTY(&pmc_ss_owners),
5583             ("[pmc,%d] Global SS owner list not empty", __LINE__));
5584         KASSERT(pmc_ss_count == 0,
5585             ("[pmc,%d] Global SS count not empty", __LINE__));
5586
5587         /* do processor and pmc-class dependent cleanup */
5588         maxcpu = pmc_cpu_max();
5589
5590         PMCDBG0(MOD,INI,3, "md cleanup");
5591         if (md) {
5592                 pmc_save_cpu_binding(&pb);
5593                 for (cpu = 0; cpu < maxcpu; cpu++) {
5594                         PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
5595                             cpu, pmc_pcpu[cpu]);
5596                         if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
5597                                 continue;
5598                         pmc_select_cpu(cpu);
5599                         for (c = 0; c < md->pmd_nclass; c++)
5600                                 md->pmd_classdep[c].pcd_pcpu_fini(md, cpu);
5601                         if (md->pmd_pcpu_fini)
5602                                 md->pmd_pcpu_fini(md, cpu);
5603                 }
5604
5605                 if (md->pmd_cputype == PMC_CPU_GENERIC)
5606                         pmc_generic_cpu_finalize(md);
5607                 else
5608                         pmc_md_finalize(md);
5609
5610                 pmc_mdep_free(md);
5611                 md = NULL;
5612                 pmc_restore_cpu_binding(&pb);
5613         }
5614
5615         /* Free per-cpu descriptors. */
5616         for (cpu = 0; cpu < maxcpu; cpu++) {
5617                 if (!pmc_cpu_is_active(cpu))
5618                         continue;
5619                 KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
5620                     ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
5621                         cpu));
5622                 KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
5623                     ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
5624                         cpu));
5625                 free_domain(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
5626                 free_domain(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
5627                 free_domain(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
5628                 free_domain(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
5629                 free_domain(pmc_pcpu[cpu], M_PMC);
5630         }
5631
5632         free(pmc_pcpu, M_PMC);
5633         pmc_pcpu = NULL;
5634
5635         free(pmc_pcpu_saved, M_PMC);
5636         pmc_pcpu_saved = NULL;
5637
5638         if (pmc_pmcdisp) {
5639                 free(pmc_pmcdisp, M_PMC);
5640                 pmc_pmcdisp = NULL;
5641         }
5642
5643         if (pmc_rowindex_to_classdep) {
5644                 free(pmc_rowindex_to_classdep, M_PMC);
5645                 pmc_rowindex_to_classdep = NULL;
5646         }
5647
5648         pmclog_shutdown();
5649         counter_u64_free(pmc_stats.pm_intr_ignored);
5650         counter_u64_free(pmc_stats.pm_intr_processed);
5651         counter_u64_free(pmc_stats.pm_intr_bufferfull);
5652         counter_u64_free(pmc_stats.pm_syscalls);
5653         counter_u64_free(pmc_stats.pm_syscall_errors);
5654         counter_u64_free(pmc_stats.pm_buffer_requests);
5655         counter_u64_free(pmc_stats.pm_buffer_requests_failed);
5656         counter_u64_free(pmc_stats.pm_log_sweeps);
5657         sx_xunlock(&pmc_sx);    /* we are done */
5658 }
5659
5660 /*
5661  * The function called at load/unload.
5662  */
5663
5664 static int
5665 load (struct module *module __unused, int cmd, void *arg __unused)
5666 {
5667         int error;
5668
5669         error = 0;
5670
5671         switch (cmd) {
5672         case MOD_LOAD :
5673                 /* initialize the subsystem */
5674                 error = pmc_initialize();
5675                 if (error != 0)
5676                         break;
5677                 PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d",
5678                     pmc_syscall_num, pmc_cpu_max());
5679                 break;
5680
5681
5682         case MOD_UNLOAD :
5683         case MOD_SHUTDOWN:
5684                 pmc_cleanup();
5685                 PMCDBG0(MOD,INI,1, "unloaded");
5686                 break;
5687
5688         default :
5689                 error = EINVAL; /* XXX should panic(9) */
5690                 break;
5691         }
5692
5693         return error;
5694 }