]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/igc/igc_i225.c
igc(4): Introduce new driver for the Intel I225 Ethernet controller.
[FreeBSD/FreeBSD.git] / sys / dev / igc / igc_i225.c
1 /*-
2  * Copyright 2021 Intel Corp
3  * Copyright 2021 Rubicon Communications, LLC (Netgate)
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6
7 #include <sys/cdefs.h>
8 __FBSDID("$FreeBSD$");
9
10 #include "igc_api.h"
11
12 static s32 igc_init_nvm_params_i225(struct igc_hw *hw);
13 static s32 igc_init_mac_params_i225(struct igc_hw *hw);
14 static s32 igc_init_phy_params_i225(struct igc_hw *hw);
15 static s32 igc_reset_hw_i225(struct igc_hw *hw);
16 static s32 igc_acquire_nvm_i225(struct igc_hw *hw);
17 static void igc_release_nvm_i225(struct igc_hw *hw);
18 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw);
19 static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
20                                   u16 *data);
21 static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw);
22
23 /**
24  *  igc_init_nvm_params_i225 - Init NVM func ptrs.
25  *  @hw: pointer to the HW structure
26  **/
27 static s32 igc_init_nvm_params_i225(struct igc_hw *hw)
28 {
29         struct igc_nvm_info *nvm = &hw->nvm;
30         u32 eecd = IGC_READ_REG(hw, IGC_EECD);
31         u16 size;
32
33         DEBUGFUNC("igc_init_nvm_params_i225");
34
35         size = (u16)((eecd & IGC_EECD_SIZE_EX_MASK) >>
36                      IGC_EECD_SIZE_EX_SHIFT);
37         /*
38          * Added to a constant, "size" becomes the left-shift value
39          * for setting word_size.
40          */
41         size += NVM_WORD_SIZE_BASE_SHIFT;
42
43         /* Just in case size is out of range, cap it to the largest
44          * EEPROM size supported
45          */
46         if (size > 15)
47                 size = 15;
48
49         nvm->word_size = 1 << size;
50         nvm->opcode_bits = 8;
51         nvm->delay_usec = 1;
52         nvm->type = igc_nvm_eeprom_spi;
53
54
55         nvm->page_size = eecd & IGC_EECD_ADDR_BITS ? 32 : 8;
56         nvm->address_bits = eecd & IGC_EECD_ADDR_BITS ?
57                             16 : 8;
58
59         if (nvm->word_size == (1 << 15))
60                 nvm->page_size = 128;
61
62         nvm->ops.acquire = igc_acquire_nvm_i225;
63         nvm->ops.release = igc_release_nvm_i225;
64         if (igc_get_flash_presence_i225(hw)) {
65                 hw->nvm.type = igc_nvm_flash_hw;
66                 nvm->ops.read    = igc_read_nvm_srrd_i225;
67                 nvm->ops.write   = igc_write_nvm_srwr_i225;
68                 nvm->ops.validate = igc_validate_nvm_checksum_i225;
69                 nvm->ops.update   = igc_update_nvm_checksum_i225;
70         } else {
71                 hw->nvm.type = igc_nvm_invm;
72                 nvm->ops.write    = igc_null_write_nvm;
73                 nvm->ops.validate = igc_null_ops_generic;
74                 nvm->ops.update   = igc_null_ops_generic;
75         }
76
77         return IGC_SUCCESS;
78 }
79
80 /**
81  *  igc_init_mac_params_i225 - Init MAC func ptrs.
82  *  @hw: pointer to the HW structure
83  **/
84 static s32 igc_init_mac_params_i225(struct igc_hw *hw)
85 {
86         struct igc_mac_info *mac = &hw->mac;
87         struct igc_dev_spec_i225 *dev_spec = &hw->dev_spec._i225;
88
89         DEBUGFUNC("igc_init_mac_params_i225");
90
91         /* Initialize function pointer */
92         igc_init_mac_ops_generic(hw);
93
94         /* Set media type */
95         hw->phy.media_type = igc_media_type_copper;
96         /* Set mta register count */
97         mac->mta_reg_count = 128;
98         /* Set rar entry count */
99         mac->rar_entry_count = IGC_RAR_ENTRIES_BASE;
100
101         /* reset */
102         mac->ops.reset_hw = igc_reset_hw_i225;
103         /* hw initialization */
104         mac->ops.init_hw = igc_init_hw_i225;
105         /* link setup */
106         mac->ops.setup_link = igc_setup_link_generic;
107         /* check for link */
108         mac->ops.check_for_link = igc_check_for_link_i225;
109         /* link info */
110         mac->ops.get_link_up_info = igc_get_speed_and_duplex_copper_generic;
111         /* acquire SW_FW sync */
112         mac->ops.acquire_swfw_sync = igc_acquire_swfw_sync_i225;
113         /* release SW_FW sync */
114         mac->ops.release_swfw_sync = igc_release_swfw_sync_i225;
115
116         /* Allow a single clear of the SW semaphore on I225 */
117         dev_spec->clear_semaphore_once = true;
118         mac->ops.setup_physical_interface = igc_setup_copper_link_i225;
119
120         /* Set if part includes ASF firmware */
121         mac->asf_firmware_present = true;
122
123         /* multicast address update */
124         mac->ops.update_mc_addr_list = igc_update_mc_addr_list_generic;
125
126         mac->ops.write_vfta = igc_write_vfta_generic;
127
128         return IGC_SUCCESS;
129 }
130
131 /**
132  *  igc_init_phy_params_i225 - Init PHY func ptrs.
133  *  @hw: pointer to the HW structure
134  **/
135 static s32 igc_init_phy_params_i225(struct igc_hw *hw)
136 {
137         struct igc_phy_info *phy = &hw->phy;
138         s32 ret_val = IGC_SUCCESS;
139         u32 ctrl_ext;
140
141         DEBUGFUNC("igc_init_phy_params_i225");
142
143
144         if (hw->phy.media_type != igc_media_type_copper) {
145                 phy->type = igc_phy_none;
146                 goto out;
147         }
148
149         phy->ops.power_up   = igc_power_up_phy_copper;
150         phy->ops.power_down = igc_power_down_phy_copper_base;
151
152         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT_2500;
153
154         phy->reset_delay_us     = 100;
155
156         phy->ops.acquire        = igc_acquire_phy_base;
157         phy->ops.check_reset_block = igc_check_reset_block_generic;
158         phy->ops.commit         = igc_phy_sw_reset_generic;
159         phy->ops.release        = igc_release_phy_base;
160
161         ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT);
162
163         /* Make sure the PHY is in a good state. Several people have reported
164          * firmware leaving the PHY's page select register set to something
165          * other than the default of zero, which causes the PHY ID read to
166          * access something other than the intended register.
167          */
168         ret_val = hw->phy.ops.reset(hw);
169         if (ret_val)
170                 goto out;
171
172         IGC_WRITE_REG(hw, IGC_CTRL_EXT, ctrl_ext);
173         phy->ops.read_reg = igc_read_phy_reg_gpy;
174         phy->ops.write_reg = igc_write_phy_reg_gpy;
175
176         ret_val = igc_get_phy_id(hw);
177         /* Verify phy id and set remaining function pointers */
178         switch (phy->id) {
179         case I225_I_PHY_ID:
180                 phy->type               = igc_phy_i225;
181                 phy->ops.set_d0_lplu_state = igc_set_d0_lplu_state_i225;
182                 phy->ops.set_d3_lplu_state = igc_set_d3_lplu_state_i225;
183                 /* TODO - complete with GPY PHY information */
184                 break;
185         default:
186                 ret_val = -IGC_ERR_PHY;
187                 goto out;
188         }
189
190 out:
191         return ret_val;
192 }
193
194 /**
195  *  igc_reset_hw_i225 - Reset hardware
196  *  @hw: pointer to the HW structure
197  *
198  *  This resets the hardware into a known state.
199  **/
200 static s32 igc_reset_hw_i225(struct igc_hw *hw)
201 {
202         u32 ctrl;
203         s32 ret_val;
204
205         DEBUGFUNC("igc_reset_hw_i225");
206
207         /*
208          * Prevent the PCI-E bus from sticking if there is no TLP connection
209          * on the last TLP read/write transaction when MAC is reset.
210          */
211         ret_val = igc_disable_pcie_master_generic(hw);
212         if (ret_val)
213                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
214
215         DEBUGOUT("Masking off all interrupts\n");
216         IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
217
218         IGC_WRITE_REG(hw, IGC_RCTL, 0);
219         IGC_WRITE_REG(hw, IGC_TCTL, IGC_TCTL_PSP);
220         IGC_WRITE_FLUSH(hw);
221
222         msec_delay(10);
223
224         ctrl = IGC_READ_REG(hw, IGC_CTRL);
225
226         DEBUGOUT("Issuing a global reset to MAC\n");
227         IGC_WRITE_REG(hw, IGC_CTRL, ctrl | IGC_CTRL_DEV_RST);
228
229         ret_val = igc_get_auto_rd_done_generic(hw);
230         if (ret_val) {
231                 /*
232                  * When auto config read does not complete, do not
233                  * return with an error. This can happen in situations
234                  * where there is no eeprom and prevents getting link.
235                  */
236                 DEBUGOUT("Auto Read Done did not complete\n");
237         }
238
239         /* Clear any pending interrupt events. */
240         IGC_WRITE_REG(hw, IGC_IMC, 0xffffffff);
241         IGC_READ_REG(hw, IGC_ICR);
242
243         /* Install any alternate MAC address into RAR0 */
244         ret_val = igc_check_alt_mac_addr_generic(hw);
245
246         return ret_val;
247 }
248
249 /* igc_acquire_nvm_i225 - Request for access to EEPROM
250  * @hw: pointer to the HW structure
251  *
252  * Acquire the necessary semaphores for exclusive access to the EEPROM.
253  * Set the EEPROM access request bit and wait for EEPROM access grant bit.
254  * Return successful if access grant bit set, else clear the request for
255  * EEPROM access and return -IGC_ERR_NVM (-1).
256  */
257 static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
258 {
259         s32 ret_val;
260
261         DEBUGFUNC("igc_acquire_nvm_i225");
262
263         ret_val = igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
264
265         return ret_val;
266 }
267
268 /* igc_release_nvm_i225 - Release exclusive access to EEPROM
269  * @hw: pointer to the HW structure
270  *
271  * Stop any current commands to the EEPROM and clear the EEPROM request bit,
272  * then release the semaphores acquired.
273  */
274 static void igc_release_nvm_i225(struct igc_hw *hw)
275 {
276         DEBUGFUNC("igc_release_nvm_i225");
277
278         igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
279 }
280
281 /* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
282  * @hw: pointer to the HW structure
283  * @mask: specifies which semaphore to acquire
284  *
285  * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
286  * will also specify which port we're acquiring the lock for.
287  */
288 s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
289 {
290         u32 swfw_sync;
291         u32 swmask = mask;
292         u32 fwmask = mask << 16;
293         s32 ret_val = IGC_SUCCESS;
294         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
295
296         DEBUGFUNC("igc_acquire_swfw_sync_i225");
297
298         while (i < timeout) {
299                 if (igc_get_hw_semaphore_i225(hw)) {
300                         ret_val = -IGC_ERR_SWFW_SYNC;
301                         goto out;
302                 }
303
304                 swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
305                 if (!(swfw_sync & (fwmask | swmask)))
306                         break;
307
308                 /* Firmware currently using resource (fwmask)
309                  * or other software thread using resource (swmask)
310                  */
311                 igc_put_hw_semaphore_generic(hw);
312                 msec_delay_irq(5);
313                 i++;
314         }
315
316         if (i == timeout) {
317                 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
318                 ret_val = -IGC_ERR_SWFW_SYNC;
319                 goto out;
320         }
321
322         swfw_sync |= swmask;
323         IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
324
325         igc_put_hw_semaphore_generic(hw);
326
327 out:
328         return ret_val;
329 }
330
331 /* igc_release_swfw_sync_i225 - Release SW/FW semaphore
332  * @hw: pointer to the HW structure
333  * @mask: specifies which semaphore to acquire
334  *
335  * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
336  * will also specify which port we're releasing the lock for.
337  */
338 void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
339 {
340         u32 swfw_sync;
341
342         DEBUGFUNC("igc_release_swfw_sync_i225");
343
344         while (igc_get_hw_semaphore_i225(hw) != IGC_SUCCESS)
345                 ; /* Empty */
346
347         swfw_sync = IGC_READ_REG(hw, IGC_SW_FW_SYNC);
348         swfw_sync &= ~mask;
349         IGC_WRITE_REG(hw, IGC_SW_FW_SYNC, swfw_sync);
350
351         igc_put_hw_semaphore_generic(hw);
352 }
353
354 /*
355  * igc_setup_copper_link_i225 - Configure copper link settings
356  * @hw: pointer to the HW structure
357  *
358  * Configures the link for auto-neg or forced speed and duplex.  Then we check
359  * for link, once link is established calls to configure collision distance
360  * and flow control are called.
361  */
362 s32 igc_setup_copper_link_i225(struct igc_hw *hw)
363 {
364         u32 phpm_reg;
365         s32 ret_val;
366         u32 ctrl;
367
368         DEBUGFUNC("igc_setup_copper_link_i225");
369
370         ctrl = IGC_READ_REG(hw, IGC_CTRL);
371         ctrl |= IGC_CTRL_SLU;
372         ctrl &= ~(IGC_CTRL_FRCSPD | IGC_CTRL_FRCDPX);
373         IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
374
375         phpm_reg = IGC_READ_REG(hw, IGC_I225_PHPM);
376         phpm_reg &= ~IGC_I225_PHPM_GO_LINKD;
377         IGC_WRITE_REG(hw, IGC_I225_PHPM, phpm_reg);
378
379         ret_val = igc_setup_copper_link_generic(hw);
380
381         return ret_val;
382 }
383
384 /* igc_get_hw_semaphore_i225 - Acquire hardware semaphore
385  * @hw: pointer to the HW structure
386  *
387  * Acquire the HW semaphore to access the PHY or NVM
388  */
389 static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
390 {
391         u32 swsm;
392         s32 timeout = hw->nvm.word_size + 1;
393         s32 i = 0;
394
395         DEBUGFUNC("igc_get_hw_semaphore_i225");
396
397         /* Get the SW semaphore */
398         while (i < timeout) {
399                 swsm = IGC_READ_REG(hw, IGC_SWSM);
400                 if (!(swsm & IGC_SWSM_SMBI))
401                         break;
402
403                 usec_delay(50);
404                 i++;
405         }
406
407         if (i == timeout) {
408                 /* In rare circumstances, the SW semaphore may already be held
409                  * unintentionally. Clear the semaphore once before giving up.
410                  */
411                 if (hw->dev_spec._i225.clear_semaphore_once) {
412                         hw->dev_spec._i225.clear_semaphore_once = false;
413                         igc_put_hw_semaphore_generic(hw);
414                         for (i = 0; i < timeout; i++) {
415                                 swsm = IGC_READ_REG(hw, IGC_SWSM);
416                                 if (!(swsm & IGC_SWSM_SMBI))
417                                         break;
418
419                                 usec_delay(50);
420                         }
421                 }
422
423                 /* If we do not have the semaphore here, we have to give up. */
424                 if (i == timeout) {
425                         DEBUGOUT("Driver can't access device -\n");
426                         DEBUGOUT("SMBI bit is set.\n");
427                         return -IGC_ERR_NVM;
428                 }
429         }
430
431         /* Get the FW semaphore. */
432         for (i = 0; i < timeout; i++) {
433                 swsm = IGC_READ_REG(hw, IGC_SWSM);
434                 IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
435
436                 /* Semaphore acquired if bit latched */
437                 if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
438                         break;
439
440                 usec_delay(50);
441         }
442
443         if (i == timeout) {
444                 /* Release semaphores */
445                 igc_put_hw_semaphore_generic(hw);
446                 DEBUGOUT("Driver can't access the NVM\n");
447                 return -IGC_ERR_NVM;
448         }
449
450         return IGC_SUCCESS;
451 }
452
453 /* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
454  * @hw: pointer to the HW structure
455  * @offset: offset of word in the Shadow Ram to read
456  * @words: number of words to read
457  * @data: word read from the Shadow Ram
458  *
459  * Reads a 16 bit word from the Shadow Ram using the EERD register.
460  * Uses necessary synchronization semaphores.
461  */
462 s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
463                              u16 *data)
464 {
465         s32 status = IGC_SUCCESS;
466         u16 i, count;
467
468         DEBUGFUNC("igc_read_nvm_srrd_i225");
469
470         /* We cannot hold synchronization semaphores for too long,
471          * because of forceful takeover procedure. However it is more efficient
472          * to read in bursts than synchronizing access for each word.
473          */
474         for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
475                 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
476                         IGC_EERD_EEWR_MAX_COUNT : (words - i);
477                 if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
478                         status = igc_read_nvm_eerd(hw, offset, count,
479                                                      data + i);
480                         hw->nvm.ops.release(hw);
481                 } else {
482                         status = IGC_ERR_SWFW_SYNC;
483                 }
484
485                 if (status != IGC_SUCCESS)
486                         break;
487         }
488
489         return status;
490 }
491
492 /* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
493  * @hw: pointer to the HW structure
494  * @offset: offset within the Shadow RAM to be written to
495  * @words: number of words to write
496  * @data: 16 bit word(s) to be written to the Shadow RAM
497  *
498  * Writes data to Shadow RAM at offset using EEWR register.
499  *
500  * If igc_update_nvm_checksum is not called after this function , the
501  * data will not be committed to FLASH and also Shadow RAM will most likely
502  * contain an invalid checksum.
503  *
504  * If error code is returned, data and Shadow RAM may be inconsistent - buffer
505  * partially written.
506  */
507 s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
508                               u16 *data)
509 {
510         s32 status = IGC_SUCCESS;
511         u16 i, count;
512
513         DEBUGFUNC("igc_write_nvm_srwr_i225");
514
515         /* We cannot hold synchronization semaphores for too long,
516          * because of forceful takeover procedure. However it is more efficient
517          * to write in bursts than synchronizing access for each word.
518          */
519         for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
520                 count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
521                         IGC_EERD_EEWR_MAX_COUNT : (words - i);
522                 if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
523                         status = __igc_write_nvm_srwr(hw, offset, count,
524                                                         data + i);
525                         hw->nvm.ops.release(hw);
526                 } else {
527                         status = IGC_ERR_SWFW_SYNC;
528                 }
529
530                 if (status != IGC_SUCCESS)
531                         break;
532         }
533
534         return status;
535 }
536
537 /* __igc_write_nvm_srwr - Write to Shadow Ram using EEWR
538  * @hw: pointer to the HW structure
539  * @offset: offset within the Shadow Ram to be written to
540  * @words: number of words to write
541  * @data: 16 bit word(s) to be written to the Shadow Ram
542  *
543  * Writes data to Shadow Ram at offset using EEWR register.
544  *
545  * If igc_update_nvm_checksum is not called after this function , the
546  * Shadow Ram will most likely contain an invalid checksum.
547  */
548 static s32 __igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
549                                   u16 *data)
550 {
551         struct igc_nvm_info *nvm = &hw->nvm;
552         u32 i, k, eewr = 0;
553         u32 attempts = 100000;
554         s32 ret_val = IGC_SUCCESS;
555
556         DEBUGFUNC("__igc_write_nvm_srwr");
557
558         /* A check for invalid values:  offset too large, too many words,
559          * too many words for the offset, and not enough words.
560          */
561         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
562             (words == 0)) {
563                 DEBUGOUT("nvm parameter(s) out of bounds\n");
564                 ret_val = -IGC_ERR_NVM;
565                 goto out;
566         }
567
568         for (i = 0; i < words; i++) {
569                 eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
570                         (data[i] << IGC_NVM_RW_REG_DATA) |
571                         IGC_NVM_RW_REG_START;
572
573                 IGC_WRITE_REG(hw, IGC_SRWR, eewr);
574
575                 for (k = 0; k < attempts; k++) {
576                         if (IGC_NVM_RW_REG_DONE &
577                             IGC_READ_REG(hw, IGC_SRWR)) {
578                                 ret_val = IGC_SUCCESS;
579                                 break;
580                         }
581                         usec_delay(5);
582                 }
583
584                 if (ret_val != IGC_SUCCESS) {
585                         DEBUGOUT("Shadow RAM write EEWR timed out\n");
586                         break;
587                 }
588         }
589
590 out:
591         return ret_val;
592 }
593
594 /* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
595  * @hw: pointer to the HW structure
596  *
597  * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
598  * and then verifies that the sum of the EEPROM is equal to 0xBABA.
599  */
600 s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
601 {
602         s32 status = IGC_SUCCESS;
603         s32 (*read_op_ptr)(struct igc_hw *, u16, u16, u16 *);
604
605         DEBUGFUNC("igc_validate_nvm_checksum_i225");
606
607         if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
608                 /* Replace the read function with semaphore grabbing with
609                  * the one that skips this for a while.
610                  * We have semaphore taken already here.
611                  */
612                 read_op_ptr = hw->nvm.ops.read;
613                 hw->nvm.ops.read = igc_read_nvm_eerd;
614
615                 status = igc_validate_nvm_checksum_generic(hw);
616
617                 /* Revert original read operation. */
618                 hw->nvm.ops.read = read_op_ptr;
619
620                 hw->nvm.ops.release(hw);
621         } else {
622                 status = IGC_ERR_SWFW_SYNC;
623         }
624
625         return status;
626 }
627
628 /* igc_update_nvm_checksum_i225 - Update EEPROM checksum
629  * @hw: pointer to the HW structure
630  *
631  * Updates the EEPROM checksum by reading/adding each word of the EEPROM
632  * up to the checksum.  Then calculates the EEPROM checksum and writes the
633  * value to the EEPROM. Next commit EEPROM data onto the Flash.
634  */
635 s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
636 {
637         s32 ret_val;
638         u16 checksum = 0;
639         u16 i, nvm_data;
640
641         DEBUGFUNC("igc_update_nvm_checksum_i225");
642
643         /* Read the first word from the EEPROM. If this times out or fails, do
644          * not continue or we could be in for a very long wait while every
645          * EEPROM read fails
646          */
647         ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
648         if (ret_val != IGC_SUCCESS) {
649                 DEBUGOUT("EEPROM read failed\n");
650                 goto out;
651         }
652
653         if (hw->nvm.ops.acquire(hw) == IGC_SUCCESS) {
654                 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
655                  * because we do not want to take the synchronization
656                  * semaphores twice here.
657                  */
658
659                 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
660                         ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
661                         if (ret_val) {
662                                 hw->nvm.ops.release(hw);
663                                 DEBUGOUT("NVM Read Error while updating\n");
664                                 DEBUGOUT("checksum.\n");
665                                 goto out;
666                         }
667                         checksum += nvm_data;
668                 }
669                 checksum = (u16)NVM_SUM - checksum;
670                 ret_val = __igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
671                                                  &checksum);
672                 if (ret_val != IGC_SUCCESS) {
673                         hw->nvm.ops.release(hw);
674                         DEBUGOUT("NVM Write Error while updating checksum.\n");
675                         goto out;
676                 }
677
678                 hw->nvm.ops.release(hw);
679
680                 ret_val = igc_update_flash_i225(hw);
681         } else {
682                 ret_val = IGC_ERR_SWFW_SYNC;
683         }
684 out:
685         return ret_val;
686 }
687
688 /* igc_get_flash_presence_i225 - Check if flash device is detected.
689  * @hw: pointer to the HW structure
690  */
691 bool igc_get_flash_presence_i225(struct igc_hw *hw)
692 {
693         u32 eec = 0;
694         bool ret_val = false;
695
696         DEBUGFUNC("igc_get_flash_presence_i225");
697
698         eec = IGC_READ_REG(hw, IGC_EECD);
699
700         if (eec & IGC_EECD_FLASH_DETECTED_I225)
701                 ret_val = true;
702
703         return ret_val;
704 }
705
706 /* igc_set_flsw_flash_burst_counter_i225 - sets FLSW NVM Burst
707  * Counter in FLSWCNT register.
708  *
709  * @hw: pointer to the HW structure
710  * @burst_counter: size in bytes of the Flash burst to read or write
711  */
712 s32 igc_set_flsw_flash_burst_counter_i225(struct igc_hw *hw,
713                                             u32 burst_counter)
714 {
715         s32 ret_val = IGC_SUCCESS;
716
717         DEBUGFUNC("igc_set_flsw_flash_burst_counter_i225");
718
719         /* Validate input data */
720         if (burst_counter < IGC_I225_SHADOW_RAM_SIZE) {
721                 /* Write FLSWCNT - burst counter */
722                 IGC_WRITE_REG(hw, IGC_I225_FLSWCNT, burst_counter);
723         } else {
724                 ret_val = IGC_ERR_INVALID_ARGUMENT;
725         }
726
727         return ret_val;
728 }
729
730 /* igc_write_erase_flash_command_i225 - write/erase to a sector
731  * region on a given address.
732  *
733  * @hw: pointer to the HW structure
734  * @opcode: opcode to be used for the write command
735  * @address: the offset to write into the FLASH image
736  */
737 s32 igc_write_erase_flash_command_i225(struct igc_hw *hw, u32 opcode,
738                                          u32 address)
739 {
740         u32 flswctl = 0;
741         s32 timeout = IGC_NVM_GRANT_ATTEMPTS;
742         s32 ret_val = IGC_SUCCESS;
743
744         DEBUGFUNC("igc_write_erase_flash_command_i225");
745
746         flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
747         /* Polling done bit on FLSWCTL register */
748         while (timeout) {
749                 if (flswctl & IGC_FLSWCTL_DONE)
750                         break;
751                 usec_delay(5);
752                 flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
753                 timeout--;
754         }
755
756         if (!timeout) {
757                 DEBUGOUT("Flash transaction was not done\n");
758                 return -IGC_ERR_NVM;
759         }
760
761         /* Build and issue command on FLSWCTL register */
762         flswctl = address | opcode;
763         IGC_WRITE_REG(hw, IGC_I225_FLSWCTL, flswctl);
764
765         /* Check if issued command is valid on FLSWCTL register */
766         flswctl = IGC_READ_REG(hw, IGC_I225_FLSWCTL);
767         if (!(flswctl & IGC_FLSWCTL_CMDV)) {
768                 DEBUGOUT("Write flash command failed\n");
769                 ret_val = IGC_ERR_INVALID_ARGUMENT;
770         }
771
772         return ret_val;
773 }
774
775 /* igc_update_flash_i225 - Commit EEPROM to the flash
776  * if fw_valid_bit is set, FW is active. setting FLUPD bit in EEC
777  * register makes the FW load the internal shadow RAM into the flash.
778  * Otherwise, fw_valid_bit is 0. if FL_SECU.block_prtotected_sw = 0
779  * then FW is not active so the SW is responsible shadow RAM dump.
780  *
781  * @hw: pointer to the HW structure
782  */
783 s32 igc_update_flash_i225(struct igc_hw *hw)
784 {
785         u16 current_offset_data = 0;
786         u32 block_sw_protect = 1;
787         u16 base_address = 0x0;
788         u32 i, fw_valid_bit;
789         u16 current_offset;
790         s32 ret_val = 0;
791         u32 flup;
792
793         DEBUGFUNC("igc_update_flash_i225");
794
795         block_sw_protect = IGC_READ_REG(hw, IGC_I225_FLSECU) &
796                                           IGC_FLSECU_BLK_SW_ACCESS_I225;
797         fw_valid_bit = IGC_READ_REG(hw, IGC_FWSM) &
798                                       IGC_FWSM_FW_VALID_I225;
799         if (fw_valid_bit) {
800                 ret_val = igc_pool_flash_update_done_i225(hw);
801                 if (ret_val == -IGC_ERR_NVM) {
802                         DEBUGOUT("Flash update time out\n");
803                         goto out;
804                 }
805
806                 flup = IGC_READ_REG(hw, IGC_EECD) | IGC_EECD_FLUPD_I225;
807                 IGC_WRITE_REG(hw, IGC_EECD, flup);
808
809                 ret_val = igc_pool_flash_update_done_i225(hw);
810                 if (ret_val == IGC_SUCCESS)
811                         DEBUGOUT("Flash update complete\n");
812                 else
813                         DEBUGOUT("Flash update time out\n");
814         } else if (!block_sw_protect) {
815                 /* FW is not active and security protection is disabled.
816                  * therefore, SW is in charge of shadow RAM dump.
817                  * Check which sector is valid. if sector 0 is valid,
818                  * base address remains 0x0. otherwise, sector 1 is
819                  * valid and it's base address is 0x1000
820                  */
821                 if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_SEC1VAL_I225)
822                         base_address = 0x1000;
823
824                 /* Valid sector erase */
825                 ret_val = igc_write_erase_flash_command_i225(hw,
826                                                   IGC_I225_ERASE_CMD_OPCODE,
827                                                   base_address);
828                 if (!ret_val) {
829                         DEBUGOUT("Sector erase failed\n");
830                         goto out;
831                 }
832
833                 current_offset = base_address;
834
835                 /* Write */
836                 for (i = 0; i < IGC_I225_SHADOW_RAM_SIZE / 2; i++) {
837                         /* Set burst write length */
838                         ret_val = igc_set_flsw_flash_burst_counter_i225(hw,
839                                                                           0x2);
840                         if (ret_val != IGC_SUCCESS)
841                                 break;
842
843                         /* Set address and opcode */
844                         ret_val = igc_write_erase_flash_command_i225(hw,
845                                                 IGC_I225_WRITE_CMD_OPCODE,
846                                                 2 * current_offset);
847                         if (ret_val != IGC_SUCCESS)
848                                 break;
849
850                         ret_val = igc_read_nvm_eerd(hw, current_offset,
851                                                       1, &current_offset_data);
852                         if (ret_val) {
853                                 DEBUGOUT("Failed to read from EEPROM\n");
854                                 goto out;
855                         }
856
857                         /* Write CurrentOffseData to FLSWDATA register */
858                         IGC_WRITE_REG(hw, IGC_I225_FLSWDATA,
859                                         current_offset_data);
860                         current_offset++;
861
862                         /* Wait till operation has finished */
863                         ret_val = igc_poll_eerd_eewr_done(hw,
864                                                 IGC_NVM_POLL_READ);
865                         if (ret_val)
866                                 break;
867
868                         usec_delay(1000);
869                 }
870         }
871 out:
872         return ret_val;
873 }
874
875 /* igc_pool_flash_update_done_i225 - Pool FLUDONE status.
876  * @hw: pointer to the HW structure
877  */
878 s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
879 {
880         s32 ret_val = -IGC_ERR_NVM;
881         u32 i, reg;
882
883         DEBUGFUNC("igc_pool_flash_update_done_i225");
884
885         for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
886                 reg = IGC_READ_REG(hw, IGC_EECD);
887                 if (reg & IGC_EECD_FLUDONE_I225) {
888                         ret_val = IGC_SUCCESS;
889                         break;
890                 }
891                 usec_delay(5);
892         }
893
894         return ret_val;
895 }
896
897 /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds.
898  * @hw: pointer to the HW structure
899  * @link: bool indicating link status
900  *
901  * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
902  * settings, otherwise specify that there is no LTR requirement.
903  */
904 static s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
905 {
906         u16 speed, duplex;
907         u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
908         s32 size;
909
910         DEBUGFUNC("igc_set_ltr_i225");
911
912         /* If we do not have link, LTR thresholds are zero. */
913         if (link) {
914                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
915
916                 /* Check if using copper interface with EEE enabled or if the
917                  * link speed is 10 Mbps.
918                  */
919                 if ((hw->phy.media_type == igc_media_type_copper) &&
920                     !(hw->dev_spec._i225.eee_disable) &&
921                      (speed != SPEED_10)) {
922                         /* EEE enabled, so send LTRMAX threshold. */
923                         ltrc = IGC_READ_REG(hw, IGC_LTRC) |
924                                 IGC_LTRC_EEEMS_EN;
925                         IGC_WRITE_REG(hw, IGC_LTRC, ltrc);
926
927                         /* Calculate tw_system (nsec). */
928                         if (speed == SPEED_100) {
929                                 tw_system = ((IGC_READ_REG(hw, IGC_EEE_SU) &
930                                              IGC_TW_SYSTEM_100_MASK) >>
931                                              IGC_TW_SYSTEM_100_SHIFT) * 500;
932                         } else {
933                                 tw_system = (IGC_READ_REG(hw, IGC_EEE_SU) &
934                                              IGC_TW_SYSTEM_1000_MASK) * 500;
935                                 }
936                 } else {
937                         tw_system = 0;
938                         }
939
940                 /* Get the Rx packet buffer size. */
941                 size = IGC_READ_REG(hw, IGC_RXPBS) &
942                         IGC_RXPBS_SIZE_I225_MASK;
943
944                 /* Calculations vary based on DMAC settings. */
945                 if (IGC_READ_REG(hw, IGC_DMACR) & IGC_DMACR_DMAC_EN) {
946                         size -= (IGC_READ_REG(hw, IGC_DMACR) &
947                                  IGC_DMACR_DMACTHR_MASK) >>
948                                  IGC_DMACR_DMACTHR_SHIFT;
949                         /* Convert size to bits. */
950                         size *= 1024 * 8;
951                 } else {
952                         /* Convert size to bytes, subtract the MTU, and then
953                          * convert the size to bits.
954                          */
955                         size *= 1024;
956                         size -= hw->dev_spec._i225.mtu;
957                         size *= 8;
958                 }
959
960                 if (size < 0) {
961                         DEBUGOUT1("Invalid effective Rx buffer size %d\n",
962                                   size);
963                         return -IGC_ERR_CONFIG;
964                 }
965
966                 /* Calculate the thresholds. Since speed is in Mbps, simplify
967                  * the calculation by multiplying size/speed by 1000 for result
968                  * to be in nsec before dividing by the scale in nsec. Set the
969                  * scale such that the LTR threshold fits in the register.
970                  */
971                 ltr_min = (1000 * size) / speed;
972                 ltr_max = ltr_min + tw_system;
973                 scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
974                             IGC_LTRMINV_SCALE_32768;
975                 scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
976                             IGC_LTRMAXV_SCALE_32768;
977                 ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
978                 ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
979
980                 /* Only write the LTR thresholds if they differ from before. */
981                 ltrv = IGC_READ_REG(hw, IGC_LTRMINV);
982                 if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
983                         ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
984                               (scale_min << IGC_LTRMINV_SCALE_SHIFT);
985                         IGC_WRITE_REG(hw, IGC_LTRMINV, ltrv);
986                 }
987
988                 ltrv = IGC_READ_REG(hw, IGC_LTRMAXV);
989                 if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
990                         ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
991                               (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
992                         IGC_WRITE_REG(hw, IGC_LTRMAXV, ltrv);
993                 }
994         }
995
996         return IGC_SUCCESS;
997 }
998
999 /* igc_check_for_link_i225 - Check for link
1000  * @hw: pointer to the HW structure
1001  *
1002  * Checks to see of the link status of the hardware has changed.  If a
1003  * change in link status has been detected, then we read the PHY registers
1004  * to get the current speed/duplex if link exists.
1005  */
1006 s32 igc_check_for_link_i225(struct igc_hw *hw)
1007 {
1008         struct igc_mac_info *mac = &hw->mac;
1009         s32 ret_val;
1010         bool link = false;
1011
1012         DEBUGFUNC("igc_check_for_link_i225");
1013
1014         /* We only want to go out to the PHY registers to see if
1015          * Auto-Neg has completed and/or if our link status has
1016          * changed.  The get_link_status flag is set upon receiving
1017          * a Link Status Change or Rx Sequence Error interrupt.
1018          */
1019         if (!mac->get_link_status) {
1020                 ret_val = IGC_SUCCESS;
1021                 goto out;
1022         }
1023
1024         /* First we want to see if the MII Status Register reports
1025          * link.  If so, then we want to get the current speed/duplex
1026          * of the PHY.
1027          */
1028         ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1029         if (ret_val)
1030                 goto out;
1031
1032         if (!link)
1033                 goto out; /* No link detected */
1034
1035         /* First we want to see if the MII Status Register reports
1036          * link.  If so, then we want to get the current speed/duplex
1037          * of the PHY.
1038          */
1039         ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
1040         if (ret_val)
1041                 goto out;
1042
1043         if (!link)
1044                 goto out; /* No link detected */
1045
1046         mac->get_link_status = false;
1047
1048         /* Check if there was DownShift, must be checked
1049          * immediately after link-up
1050          */
1051         igc_check_downshift_generic(hw);
1052
1053         /* If we are forcing speed/duplex, then we simply return since
1054          * we have already determined whether we have link or not.
1055          */
1056         if (!mac->autoneg)
1057                 goto out;
1058
1059         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1060          * of MAC speed/duplex configuration.  So we only need to
1061          * configure Collision Distance in the MAC.
1062          */
1063         mac->ops.config_collision_dist(hw);
1064
1065         /* Configure Flow Control now that Auto-Neg has completed.
1066          * First, we need to restore the desired flow control
1067          * settings because we may have had to re-autoneg with a
1068          * different link partner.
1069          */
1070         ret_val = igc_config_fc_after_link_up_generic(hw);
1071         if (ret_val)
1072                 DEBUGOUT("Error configuring flow control\n");
1073 out:
1074         /* Now that we are aware of our link settings, we can set the LTR
1075          * thresholds.
1076          */
1077         ret_val = igc_set_ltr_i225(hw, link);
1078
1079         return ret_val;
1080 }
1081
1082 /* igc_init_function_pointers_i225 - Init func ptrs.
1083  * @hw: pointer to the HW structure
1084  *
1085  * Called to initialize all function pointers and parameters.
1086  */
1087 void igc_init_function_pointers_i225(struct igc_hw *hw)
1088 {
1089         igc_init_mac_ops_generic(hw);
1090         igc_init_phy_ops_generic(hw);
1091         igc_init_nvm_ops_generic(hw);
1092         hw->mac.ops.init_params = igc_init_mac_params_i225;
1093         hw->nvm.ops.init_params = igc_init_nvm_params_i225;
1094         hw->phy.ops.init_params = igc_init_phy_params_i225;
1095 }
1096
1097 /* igc_init_hw_i225 - Init hw for I225
1098  * @hw: pointer to the HW structure
1099  *
1100  * Called to initialize hw for i225 hw family.
1101  */
1102 s32 igc_init_hw_i225(struct igc_hw *hw)
1103 {
1104         s32 ret_val;
1105
1106         DEBUGFUNC("igc_init_hw_i225");
1107
1108         ret_val = igc_init_hw_base(hw);
1109         return ret_val;
1110 }
1111
1112 /*
1113  * igc_set_d0_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D0 state
1114  * @hw: pointer to the HW structure
1115  * @active: true to enable LPLU, false to disable
1116  *
1117  * Note: since I225 does not actually support LPLU, this function
1118  * simply enables/disables 1G and 2.5G speeds in D0.
1119  */
1120 s32 igc_set_d0_lplu_state_i225(struct igc_hw *hw, bool active)
1121 {
1122         u32 data;
1123
1124         DEBUGFUNC("igc_set_d0_lplu_state_i225");
1125
1126         data = IGC_READ_REG(hw, IGC_I225_PHPM);
1127
1128         if (active) {
1129                 data |= IGC_I225_PHPM_DIS_1000;
1130                 data |= IGC_I225_PHPM_DIS_2500;
1131         } else {
1132                 data &= ~IGC_I225_PHPM_DIS_1000;
1133                 data &= ~IGC_I225_PHPM_DIS_2500;
1134         }
1135
1136         IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
1137         return IGC_SUCCESS;
1138 }
1139
1140 /*
1141  * igc_set_d3_lplu_state_i225 - Set Low-Power-Link-Up (LPLU) D3 state
1142  * @hw: pointer to the HW structure
1143  * @active: true to enable LPLU, false to disable
1144  *
1145  * Note: since I225 does not actually support LPLU, this function
1146  * simply enables/disables 100M, 1G and 2.5G speeds in D3.
1147  */
1148 s32 igc_set_d3_lplu_state_i225(struct igc_hw *hw, bool active)
1149 {
1150         u32 data;
1151
1152         DEBUGFUNC("igc_set_d3_lplu_state_i225");
1153
1154         data = IGC_READ_REG(hw, IGC_I225_PHPM);
1155
1156         if (active) {
1157                 data |= IGC_I225_PHPM_DIS_100_D3;
1158                 data |= IGC_I225_PHPM_DIS_1000_D3;
1159                 data |= IGC_I225_PHPM_DIS_2500_D3;
1160         } else {
1161                 data &= ~IGC_I225_PHPM_DIS_100_D3;
1162                 data &= ~IGC_I225_PHPM_DIS_1000_D3;
1163                 data &= ~IGC_I225_PHPM_DIS_2500_D3;
1164         }
1165
1166         IGC_WRITE_REG(hw, IGC_I225_PHPM, data);
1167         return IGC_SUCCESS;
1168 }
1169
1170 /**
1171  *  igc_set_eee_i225 - Enable/disable EEE support
1172  *  @hw: pointer to the HW structure
1173  *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
1174  *  @adv1G: boolean flag enabling 1G EEE advertisement
1175  *  @adv100M: boolean flag enabling 100M EEE advertisement
1176  *
1177  *  Enable/disable EEE based on setting in dev_spec structure.
1178  *
1179  **/
1180 s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
1181                        bool adv100M)
1182 {
1183         u32 ipcnfg, eeer;
1184
1185         DEBUGFUNC("igc_set_eee_i225");
1186
1187         if (hw->mac.type != igc_i225 ||
1188             hw->phy.media_type != igc_media_type_copper)
1189                 goto out;
1190         ipcnfg = IGC_READ_REG(hw, IGC_IPCNFG);
1191         eeer = IGC_READ_REG(hw, IGC_EEER);
1192
1193         /* enable or disable per user setting */
1194         if (!(hw->dev_spec._i225.eee_disable)) {
1195                 u32 eee_su = IGC_READ_REG(hw, IGC_EEE_SU);
1196
1197                 if (adv100M)
1198                         ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
1199                 else
1200                         ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
1201
1202                 if (adv1G)
1203                         ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
1204                 else
1205                         ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
1206
1207                 if (adv2p5G)
1208                         ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
1209                 else
1210                         ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
1211
1212                 eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1213                         IGC_EEER_LPI_FC);
1214
1215                 /* This bit should not be set in normal operation. */
1216                 if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
1217                         DEBUGOUT("LPI Clock Stop Bit should not be set!\n");
1218         } else {
1219                 ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
1220                         IGC_IPCNFG_EEE_100M_AN);
1221                 eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
1222                         IGC_EEER_LPI_FC);
1223         }
1224         IGC_WRITE_REG(hw, IGC_IPCNFG, ipcnfg);
1225         IGC_WRITE_REG(hw, IGC_EEER, eeer);
1226         IGC_READ_REG(hw, IGC_IPCNFG);
1227         IGC_READ_REG(hw, IGC_EEER);
1228 out:
1229
1230         return IGC_SUCCESS;
1231 }
1232