]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/iwm/if_iwm.c
MFV r308392: file 5.29.
[FreeBSD/FreeBSD.git] / sys / dev / iwm / if_iwm.c
1 /*      $OpenBSD: if_iwm.c,v 1.42 2015/05/30 02:49:23 deraadt Exp $     */
2
3 /*
4  * Copyright (c) 2014 genua mbh <info@genua.de>
5  * Copyright (c) 2014 Fixup Software Ltd.
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19
20 /*-
21  * Based on BSD-licensed source modules in the Linux iwlwifi driver,
22  * which were used as the reference documentation for this implementation.
23  *
24  * Driver version we are currently based off of is
25  * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd)
26  *
27  ***********************************************************************
28  *
29  * This file is provided under a dual BSD/GPLv2 license.  When using or
30  * redistributing this file, you may do so under either license.
31  *
32  * GPL LICENSE SUMMARY
33  *
34  * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved.
35  *
36  * This program is free software; you can redistribute it and/or modify
37  * it under the terms of version 2 of the GNU General Public License as
38  * published by the Free Software Foundation.
39  *
40  * This program is distributed in the hope that it will be useful, but
41  * WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * General Public License for more details.
44  *
45  * You should have received a copy of the GNU General Public License
46  * along with this program; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
48  * USA
49  *
50  * The full GNU General Public License is included in this distribution
51  * in the file called COPYING.
52  *
53  * Contact Information:
54  *  Intel Linux Wireless <ilw@linux.intel.com>
55  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
56  *
57  *
58  * BSD LICENSE
59  *
60  * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  *
67  *  * Redistributions of source code must retain the above copyright
68  *    notice, this list of conditions and the following disclaimer.
69  *  * Redistributions in binary form must reproduce the above copyright
70  *    notice, this list of conditions and the following disclaimer in
71  *    the documentation and/or other materials provided with the
72  *    distribution.
73  *  * Neither the name Intel Corporation nor the names of its
74  *    contributors may be used to endorse or promote products derived
75  *    from this software without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
78  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
79  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
80  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
81  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
82  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
83  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
84  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
85  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
86  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
87  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
88  */
89
90 /*-
91  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
92  *
93  * Permission to use, copy, modify, and distribute this software for any
94  * purpose with or without fee is hereby granted, provided that the above
95  * copyright notice and this permission notice appear in all copies.
96  *
97  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
98  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
99  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
100  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
101  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
102  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
103  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
104  */
105 #include <sys/cdefs.h>
106 __FBSDID("$FreeBSD$");
107
108 #include "opt_wlan.h"
109
110 #include <sys/param.h>
111 #include <sys/bus.h>
112 #include <sys/conf.h>
113 #include <sys/endian.h>
114 #include <sys/firmware.h>
115 #include <sys/kernel.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/module.h>
120 #include <sys/proc.h>
121 #include <sys/rman.h>
122 #include <sys/socket.h>
123 #include <sys/sockio.h>
124 #include <sys/sysctl.h>
125 #include <sys/linker.h>
126
127 #include <machine/bus.h>
128 #include <machine/endian.h>
129 #include <machine/resource.h>
130
131 #include <dev/pci/pcivar.h>
132 #include <dev/pci/pcireg.h>
133
134 #include <net/bpf.h>
135
136 #include <net/if.h>
137 #include <net/if_var.h>
138 #include <net/if_arp.h>
139 #include <net/if_dl.h>
140 #include <net/if_media.h>
141 #include <net/if_types.h>
142
143 #include <netinet/in.h>
144 #include <netinet/in_systm.h>
145 #include <netinet/if_ether.h>
146 #include <netinet/ip.h>
147
148 #include <net80211/ieee80211_var.h>
149 #include <net80211/ieee80211_regdomain.h>
150 #include <net80211/ieee80211_ratectl.h>
151 #include <net80211/ieee80211_radiotap.h>
152
153 #include <dev/iwm/if_iwmreg.h>
154 #include <dev/iwm/if_iwmvar.h>
155 #include <dev/iwm/if_iwm_debug.h>
156 #include <dev/iwm/if_iwm_util.h>
157 #include <dev/iwm/if_iwm_binding.h>
158 #include <dev/iwm/if_iwm_phy_db.h>
159 #include <dev/iwm/if_iwm_mac_ctxt.h>
160 #include <dev/iwm/if_iwm_phy_ctxt.h>
161 #include <dev/iwm/if_iwm_time_event.h>
162 #include <dev/iwm/if_iwm_power.h>
163 #include <dev/iwm/if_iwm_scan.h>
164
165 #include <dev/iwm/if_iwm_pcie_trans.h>
166 #include <dev/iwm/if_iwm_led.h>
167
168 const uint8_t iwm_nvm_channels[] = {
169         /* 2.4 GHz */
170         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
171         /* 5 GHz */
172         36, 40, 44, 48, 52, 56, 60, 64,
173         100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
174         149, 153, 157, 161, 165
175 };
176 _Static_assert(nitems(iwm_nvm_channels) <= IWM_NUM_CHANNELS,
177     "IWM_NUM_CHANNELS is too small");
178
179 const uint8_t iwm_nvm_channels_8000[] = {
180         /* 2.4 GHz */
181         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
182         /* 5 GHz */
183         36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
184         96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
185         149, 153, 157, 161, 165, 169, 173, 177, 181
186 };
187 _Static_assert(nitems(iwm_nvm_channels_8000) <= IWM_NUM_CHANNELS_8000,
188     "IWM_NUM_CHANNELS_8000 is too small");
189
190 #define IWM_NUM_2GHZ_CHANNELS   14
191 #define IWM_N_HW_ADDR_MASK      0xF
192
193 /*
194  * XXX For now, there's simply a fixed set of rate table entries
195  * that are populated.
196  */
197 const struct iwm_rate {
198         uint8_t rate;
199         uint8_t plcp;
200 } iwm_rates[] = {
201         {   2,  IWM_RATE_1M_PLCP  },
202         {   4,  IWM_RATE_2M_PLCP  },
203         {  11,  IWM_RATE_5M_PLCP  },
204         {  22,  IWM_RATE_11M_PLCP },
205         {  12,  IWM_RATE_6M_PLCP  },
206         {  18,  IWM_RATE_9M_PLCP  },
207         {  24,  IWM_RATE_12M_PLCP },
208         {  36,  IWM_RATE_18M_PLCP },
209         {  48,  IWM_RATE_24M_PLCP },
210         {  72,  IWM_RATE_36M_PLCP },
211         {  96,  IWM_RATE_48M_PLCP },
212         { 108,  IWM_RATE_54M_PLCP },
213 };
214 #define IWM_RIDX_CCK    0
215 #define IWM_RIDX_OFDM   4
216 #define IWM_RIDX_MAX    (nitems(iwm_rates)-1)
217 #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
218 #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
219
220 struct iwm_nvm_section {
221         uint16_t length;
222         uint8_t *data;
223 };
224
225 static int      iwm_store_cscheme(struct iwm_softc *, const uint8_t *, size_t);
226 static int      iwm_firmware_store_section(struct iwm_softc *,
227                                            enum iwm_ucode_type,
228                                            const uint8_t *, size_t);
229 static int      iwm_set_default_calib(struct iwm_softc *, const void *);
230 static void     iwm_fw_info_free(struct iwm_fw_info *);
231 static int      iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
232 static void     iwm_dma_map_addr(void *, bus_dma_segment_t *, int, int);
233 static int      iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *,
234                                      bus_size_t, bus_size_t);
235 static void     iwm_dma_contig_free(struct iwm_dma_info *);
236 static int      iwm_alloc_fwmem(struct iwm_softc *);
237 static int      iwm_alloc_sched(struct iwm_softc *);
238 static int      iwm_alloc_kw(struct iwm_softc *);
239 static int      iwm_alloc_ict(struct iwm_softc *);
240 static int      iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
241 static void     iwm_disable_rx_dma(struct iwm_softc *);
242 static void     iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
243 static void     iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
244 static int      iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
245                                   int);
246 static void     iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
247 static void     iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
248 static void     iwm_enable_interrupts(struct iwm_softc *);
249 static void     iwm_restore_interrupts(struct iwm_softc *);
250 static void     iwm_disable_interrupts(struct iwm_softc *);
251 static void     iwm_ict_reset(struct iwm_softc *);
252 static int      iwm_allow_mcast(struct ieee80211vap *, struct iwm_softc *);
253 static void     iwm_stop_device(struct iwm_softc *);
254 static void     iwm_mvm_nic_config(struct iwm_softc *);
255 static int      iwm_nic_rx_init(struct iwm_softc *);
256 static int      iwm_nic_tx_init(struct iwm_softc *);
257 static int      iwm_nic_init(struct iwm_softc *);
258 static int      iwm_enable_txq(struct iwm_softc *, int, int, int);
259 static int      iwm_post_alive(struct iwm_softc *);
260 static int      iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
261                                    uint16_t, uint8_t *, uint16_t *);
262 static int      iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
263                                      uint16_t *, size_t);
264 static uint32_t iwm_eeprom_channel_flags(uint16_t);
265 static void     iwm_add_channel_band(struct iwm_softc *,
266                     struct ieee80211_channel[], int, int *, int, size_t,
267                     const uint8_t[]);
268 static void     iwm_init_channel_map(struct ieee80211com *, int, int *,
269                     struct ieee80211_channel[]);
270 static int      iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
271                                    const uint16_t *, const uint16_t *,
272                                    const uint16_t *, const uint16_t *,
273                                    const uint16_t *);
274 static void     iwm_set_hw_address_8000(struct iwm_softc *,
275                                         struct iwm_nvm_data *,
276                                         const uint16_t *, const uint16_t *);
277 static int      iwm_get_sku(const struct iwm_softc *, const uint16_t *,
278                             const uint16_t *);
279 static int      iwm_get_nvm_version(const struct iwm_softc *, const uint16_t *);
280 static int      iwm_get_radio_cfg(const struct iwm_softc *, const uint16_t *,
281                                   const uint16_t *);
282 static int      iwm_get_n_hw_addrs(const struct iwm_softc *,
283                                    const uint16_t *);
284 static void     iwm_set_radio_cfg(const struct iwm_softc *,
285                                   struct iwm_nvm_data *, uint32_t);
286 static int      iwm_parse_nvm_sections(struct iwm_softc *,
287                                        struct iwm_nvm_section *);
288 static int      iwm_nvm_init(struct iwm_softc *);
289 static int      iwm_firmware_load_sect(struct iwm_softc *, uint32_t,
290                                        const uint8_t *, uint32_t);
291 static int      iwm_firmware_load_chunk(struct iwm_softc *, uint32_t,
292                                         const uint8_t *, uint32_t);
293 static int      iwm_load_firmware_7000(struct iwm_softc *, enum iwm_ucode_type);
294 static int      iwm_load_cpu_sections_8000(struct iwm_softc *,
295                                            struct iwm_fw_sects *, int , int *);
296 static int      iwm_load_firmware_8000(struct iwm_softc *, enum iwm_ucode_type);
297 static int      iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
298 static int      iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
299 static int      iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
300 static int      iwm_send_phy_cfg_cmd(struct iwm_softc *);
301 static int      iwm_mvm_load_ucode_wait_alive(struct iwm_softc *,
302                                               enum iwm_ucode_type);
303 static int      iwm_run_init_mvm_ucode(struct iwm_softc *, int);
304 static int      iwm_rx_addbuf(struct iwm_softc *, int, int);
305 static int      iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *);
306 static int      iwm_mvm_get_signal_strength(struct iwm_softc *,
307                                             struct iwm_rx_phy_info *);
308 static void     iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *,
309                                       struct iwm_rx_packet *,
310                                       struct iwm_rx_data *);
311 static int      iwm_get_noise(struct iwm_softc *sc,
312                     const struct iwm_mvm_statistics_rx_non_phy *);
313 static void     iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *,
314                                    struct iwm_rx_data *);
315 static int      iwm_mvm_rx_tx_cmd_single(struct iwm_softc *,
316                                          struct iwm_rx_packet *,
317                                          struct iwm_node *);
318 static void     iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
319                                   struct iwm_rx_data *);
320 static void     iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *);
321 #if 0
322 static void     iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
323                                  uint16_t);
324 #endif
325 static const struct iwm_rate *
326         iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
327                         struct mbuf *, struct iwm_tx_cmd *);
328 static int      iwm_tx(struct iwm_softc *, struct mbuf *,
329                        struct ieee80211_node *, int);
330 static int      iwm_raw_xmit(struct ieee80211_node *, struct mbuf *,
331                              const struct ieee80211_bpf_params *);
332 static int      iwm_mvm_flush_tx_path(struct iwm_softc *sc,
333                                       uint32_t tfd_msk, uint32_t flags);
334 static int      iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *,
335                                                 struct iwm_mvm_add_sta_cmd_v7 *,
336                                                 int *);
337 static int      iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *,
338                                        int);
339 static int      iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *);
340 static int      iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *);
341 static int      iwm_mvm_add_int_sta_common(struct iwm_softc *,
342                                            struct iwm_int_sta *,
343                                            const uint8_t *, uint16_t, uint16_t);
344 static int      iwm_mvm_add_aux_sta(struct iwm_softc *);
345 static int      iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *);
346 static int      iwm_auth(struct ieee80211vap *, struct iwm_softc *);
347 static int      iwm_assoc(struct ieee80211vap *, struct iwm_softc *);
348 static int      iwm_release(struct iwm_softc *, struct iwm_node *);
349 static struct ieee80211_node *
350                 iwm_node_alloc(struct ieee80211vap *,
351                                const uint8_t[IEEE80211_ADDR_LEN]);
352 static void     iwm_setrates(struct iwm_softc *, struct iwm_node *);
353 static int      iwm_media_change(struct ifnet *);
354 static int      iwm_newstate(struct ieee80211vap *, enum ieee80211_state, int);
355 static void     iwm_endscan_cb(void *, int);
356 static void     iwm_mvm_fill_sf_command(struct iwm_softc *,
357                                         struct iwm_sf_cfg_cmd *,
358                                         struct ieee80211_node *);
359 static int      iwm_mvm_sf_config(struct iwm_softc *, enum iwm_sf_state);
360 static int      iwm_send_bt_init_conf(struct iwm_softc *);
361 static int      iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
362 static void     iwm_mvm_tt_tx_backoff(struct iwm_softc *, uint32_t);
363 static int      iwm_init_hw(struct iwm_softc *);
364 static void     iwm_init(struct iwm_softc *);
365 static void     iwm_start(struct iwm_softc *);
366 static void     iwm_stop(struct iwm_softc *);
367 static void     iwm_watchdog(void *);
368 static void     iwm_parent(struct ieee80211com *);
369 #ifdef IWM_DEBUG
370 static const char *
371                 iwm_desc_lookup(uint32_t);
372 static void     iwm_nic_error(struct iwm_softc *);
373 static void     iwm_nic_umac_error(struct iwm_softc *);
374 #endif
375 static void     iwm_notif_intr(struct iwm_softc *);
376 static void     iwm_intr(void *);
377 static int      iwm_attach(device_t);
378 static int      iwm_is_valid_ether_addr(uint8_t *);
379 static void     iwm_preinit(void *);
380 static int      iwm_detach_local(struct iwm_softc *sc, int);
381 static void     iwm_init_task(void *);
382 static void     iwm_radiotap_attach(struct iwm_softc *);
383 static struct ieee80211vap *
384                 iwm_vap_create(struct ieee80211com *,
385                                const char [IFNAMSIZ], int,
386                                enum ieee80211_opmode, int,
387                                const uint8_t [IEEE80211_ADDR_LEN],
388                                const uint8_t [IEEE80211_ADDR_LEN]);
389 static void     iwm_vap_delete(struct ieee80211vap *);
390 static void     iwm_scan_start(struct ieee80211com *);
391 static void     iwm_scan_end(struct ieee80211com *);
392 static void     iwm_update_mcast(struct ieee80211com *);
393 static void     iwm_set_channel(struct ieee80211com *);
394 static void     iwm_scan_curchan(struct ieee80211_scan_state *, unsigned long);
395 static void     iwm_scan_mindwell(struct ieee80211_scan_state *);
396 static int      iwm_detach(device_t);
397
398 /*
399  * Firmware parser.
400  */
401
402 static int
403 iwm_store_cscheme(struct iwm_softc *sc, const uint8_t *data, size_t dlen)
404 {
405         const struct iwm_fw_cscheme_list *l = (const void *)data;
406
407         if (dlen < sizeof(*l) ||
408             dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
409                 return EINVAL;
410
411         /* we don't actually store anything for now, always use s/w crypto */
412
413         return 0;
414 }
415
416 static int
417 iwm_firmware_store_section(struct iwm_softc *sc,
418     enum iwm_ucode_type type, const uint8_t *data, size_t dlen)
419 {
420         struct iwm_fw_sects *fws;
421         struct iwm_fw_onesect *fwone;
422
423         if (type >= IWM_UCODE_TYPE_MAX)
424                 return EINVAL;
425         if (dlen < sizeof(uint32_t))
426                 return EINVAL;
427
428         fws = &sc->sc_fw.fw_sects[type];
429         if (fws->fw_count >= IWM_UCODE_SECT_MAX)
430                 return EINVAL;
431
432         fwone = &fws->fw_sect[fws->fw_count];
433
434         /* first 32bit are device load offset */
435         memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
436
437         /* rest is data */
438         fwone->fws_data = data + sizeof(uint32_t);
439         fwone->fws_len = dlen - sizeof(uint32_t);
440
441         fws->fw_count++;
442
443         return 0;
444 }
445
446 #define IWM_DEFAULT_SCAN_CHANNELS 40
447
448 /* iwlwifi: iwl-drv.c */
449 struct iwm_tlv_calib_data {
450         uint32_t ucode_type;
451         struct iwm_tlv_calib_ctrl calib;
452 } __packed;
453
454 static int
455 iwm_set_default_calib(struct iwm_softc *sc, const void *data)
456 {
457         const struct iwm_tlv_calib_data *def_calib = data;
458         uint32_t ucode_type = le32toh(def_calib->ucode_type);
459
460         if (ucode_type >= IWM_UCODE_TYPE_MAX) {
461                 device_printf(sc->sc_dev,
462                     "Wrong ucode_type %u for default "
463                     "calibration.\n", ucode_type);
464                 return EINVAL;
465         }
466
467         sc->sc_default_calib[ucode_type].flow_trigger =
468             def_calib->calib.flow_trigger;
469         sc->sc_default_calib[ucode_type].event_trigger =
470             def_calib->calib.event_trigger;
471
472         return 0;
473 }
474
475 static void
476 iwm_fw_info_free(struct iwm_fw_info *fw)
477 {
478         firmware_put(fw->fw_fp, FIRMWARE_UNLOAD);
479         fw->fw_fp = NULL;
480         /* don't touch fw->fw_status */
481         memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
482 }
483
484 static int
485 iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
486 {
487         struct iwm_fw_info *fw = &sc->sc_fw;
488         const struct iwm_tlv_ucode_header *uhdr;
489         struct iwm_ucode_tlv tlv;
490         enum iwm_ucode_tlv_type tlv_type;
491         const struct firmware *fwp;
492         const uint8_t *data;
493         int error = 0;
494         size_t len;
495
496         if (fw->fw_status == IWM_FW_STATUS_DONE &&
497             ucode_type != IWM_UCODE_TYPE_INIT)
498                 return 0;
499
500         while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
501                 msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfwp", 0);
502         fw->fw_status = IWM_FW_STATUS_INPROGRESS;
503
504         if (fw->fw_fp != NULL)
505                 iwm_fw_info_free(fw);
506
507         /*
508          * Load firmware into driver memory.
509          * fw_fp will be set.
510          */
511         IWM_UNLOCK(sc);
512         fwp = firmware_get(sc->sc_fwname);
513         IWM_LOCK(sc);
514         if (fwp == NULL) {
515                 device_printf(sc->sc_dev,
516                     "could not read firmware %s (error %d)\n",
517                     sc->sc_fwname, error);
518                 goto out;
519         }
520         fw->fw_fp = fwp;
521
522         /* (Re-)Initialize default values. */
523         sc->sc_capaflags = 0;
524         sc->sc_capa_n_scan_channels = IWM_DEFAULT_SCAN_CHANNELS;
525         memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa));
526         memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc));
527
528         /*
529          * Parse firmware contents
530          */
531
532         uhdr = (const void *)fw->fw_fp->data;
533         if (*(const uint32_t *)fw->fw_fp->data != 0
534             || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
535                 device_printf(sc->sc_dev, "invalid firmware %s\n",
536                     sc->sc_fwname);
537                 error = EINVAL;
538                 goto out;
539         }
540
541         snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d (API ver %d)",
542             IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
543             IWM_UCODE_MINOR(le32toh(uhdr->ver)),
544             IWM_UCODE_API(le32toh(uhdr->ver)));
545         data = uhdr->data;
546         len = fw->fw_fp->datasize - sizeof(*uhdr);
547
548         while (len >= sizeof(tlv)) {
549                 size_t tlv_len;
550                 const void *tlv_data;
551
552                 memcpy(&tlv, data, sizeof(tlv));
553                 tlv_len = le32toh(tlv.length);
554                 tlv_type = le32toh(tlv.type);
555
556                 len -= sizeof(tlv);
557                 data += sizeof(tlv);
558                 tlv_data = data;
559
560                 if (len < tlv_len) {
561                         device_printf(sc->sc_dev,
562                             "firmware too short: %zu bytes\n",
563                             len);
564                         error = EINVAL;
565                         goto parse_out;
566                 }
567
568                 switch ((int)tlv_type) {
569                 case IWM_UCODE_TLV_PROBE_MAX_LEN:
570                         if (tlv_len < sizeof(uint32_t)) {
571                                 device_printf(sc->sc_dev,
572                                     "%s: PROBE_MAX_LEN (%d) < sizeof(uint32_t)\n",
573                                     __func__,
574                                     (int) tlv_len);
575                                 error = EINVAL;
576                                 goto parse_out;
577                         }
578                         sc->sc_capa_max_probe_len
579                             = le32toh(*(const uint32_t *)tlv_data);
580                         /* limit it to something sensible */
581                         if (sc->sc_capa_max_probe_len >
582                             IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
583                                 IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
584                                     "%s: IWM_UCODE_TLV_PROBE_MAX_LEN "
585                                     "ridiculous\n", __func__);
586                                 error = EINVAL;
587                                 goto parse_out;
588                         }
589                         break;
590                 case IWM_UCODE_TLV_PAN:
591                         if (tlv_len) {
592                                 device_printf(sc->sc_dev,
593                                     "%s: IWM_UCODE_TLV_PAN: tlv_len (%d) > 0\n",
594                                     __func__,
595                                     (int) tlv_len);
596                                 error = EINVAL;
597                                 goto parse_out;
598                         }
599                         sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
600                         break;
601                 case IWM_UCODE_TLV_FLAGS:
602                         if (tlv_len < sizeof(uint32_t)) {
603                                 device_printf(sc->sc_dev,
604                                     "%s: IWM_UCODE_TLV_FLAGS: tlv_len (%d) < sizeof(uint32_t)\n",
605                                     __func__,
606                                     (int) tlv_len);
607                                 error = EINVAL;
608                                 goto parse_out;
609                         }
610                         /*
611                          * Apparently there can be many flags, but Linux driver
612                          * parses only the first one, and so do we.
613                          *
614                          * XXX: why does this override IWM_UCODE_TLV_PAN?
615                          * Intentional or a bug?  Observations from
616                          * current firmware file:
617                          *  1) TLV_PAN is parsed first
618                          *  2) TLV_FLAGS contains TLV_FLAGS_PAN
619                          * ==> this resets TLV_PAN to itself... hnnnk
620                          */
621                         sc->sc_capaflags = le32toh(*(const uint32_t *)tlv_data);
622                         break;
623                 case IWM_UCODE_TLV_CSCHEME:
624                         if ((error = iwm_store_cscheme(sc,
625                             tlv_data, tlv_len)) != 0) {
626                                 device_printf(sc->sc_dev,
627                                     "%s: iwm_store_cscheme(): returned %d\n",
628                                     __func__,
629                                     error);
630                                 goto parse_out;
631                         }
632                         break;
633                 case IWM_UCODE_TLV_NUM_OF_CPU: {
634                         uint32_t num_cpu;
635                         if (tlv_len != sizeof(uint32_t)) {
636                                 device_printf(sc->sc_dev,
637                                     "%s: IWM_UCODE_TLV_NUM_OF_CPU: tlv_len (%d) < sizeof(uint32_t)\n",
638                                     __func__,
639                                     (int) tlv_len);
640                                 error = EINVAL;
641                                 goto parse_out;
642                         }
643                         num_cpu = le32toh(*(const uint32_t *)tlv_data);
644                         if (num_cpu < 1 || num_cpu > 2) {
645                                 device_printf(sc->sc_dev,
646                                     "%s: Driver supports only 1 or 2 CPUs\n",
647                                     __func__);
648                                 error = EINVAL;
649                                 goto parse_out;
650                         }
651                         break;
652                 }
653                 case IWM_UCODE_TLV_SEC_RT:
654                         if ((error = iwm_firmware_store_section(sc,
655                             IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) {
656                                 device_printf(sc->sc_dev,
657                                     "%s: IWM_UCODE_TYPE_REGULAR: iwm_firmware_store_section() failed; %d\n",
658                                     __func__,
659                                     error);
660                                 goto parse_out;
661                         }
662                         break;
663                 case IWM_UCODE_TLV_SEC_INIT:
664                         if ((error = iwm_firmware_store_section(sc,
665                             IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) {
666                                 device_printf(sc->sc_dev,
667                                     "%s: IWM_UCODE_TYPE_INIT: iwm_firmware_store_section() failed; %d\n",
668                                     __func__,
669                                     error);
670                                 goto parse_out;
671                         }
672                         break;
673                 case IWM_UCODE_TLV_SEC_WOWLAN:
674                         if ((error = iwm_firmware_store_section(sc,
675                             IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) {
676                                 device_printf(sc->sc_dev,
677                                     "%s: IWM_UCODE_TYPE_WOW: iwm_firmware_store_section() failed; %d\n",
678                                     __func__,
679                                     error);
680                                 goto parse_out;
681                         }
682                         break;
683                 case IWM_UCODE_TLV_DEF_CALIB:
684                         if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
685                                 device_printf(sc->sc_dev,
686                                     "%s: IWM_UCODE_TLV_DEV_CALIB: tlv_len (%d) < sizeof(iwm_tlv_calib_data) (%d)\n",
687                                     __func__,
688                                     (int) tlv_len,
689                                     (int) sizeof(struct iwm_tlv_calib_data));
690                                 error = EINVAL;
691                                 goto parse_out;
692                         }
693                         if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) {
694                                 device_printf(sc->sc_dev,
695                                     "%s: iwm_set_default_calib() failed: %d\n",
696                                     __func__,
697                                     error);
698                                 goto parse_out;
699                         }
700                         break;
701                 case IWM_UCODE_TLV_PHY_SKU:
702                         if (tlv_len != sizeof(uint32_t)) {
703                                 error = EINVAL;
704                                 device_printf(sc->sc_dev,
705                                     "%s: IWM_UCODE_TLV_PHY_SKU: tlv_len (%d) < sizeof(uint32_t)\n",
706                                     __func__,
707                                     (int) tlv_len);
708                                 goto parse_out;
709                         }
710                         sc->sc_fw_phy_config =
711                             le32toh(*(const uint32_t *)tlv_data);
712                         break;
713
714                 case IWM_UCODE_TLV_API_CHANGES_SET: {
715                         const struct iwm_ucode_api *api;
716                         if (tlv_len != sizeof(*api)) {
717                                 error = EINVAL;
718                                 goto parse_out;
719                         }
720                         api = (const struct iwm_ucode_api *)tlv_data;
721                         /* Flags may exceed 32 bits in future firmware. */
722                         if (le32toh(api->api_index) > 0) {
723                                 device_printf(sc->sc_dev,
724                                     "unsupported API index %d\n",
725                                     le32toh(api->api_index));
726                                 goto parse_out;
727                         }
728                         sc->sc_ucode_api = le32toh(api->api_flags);
729                         break;
730                 }
731
732                 case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
733                         const struct iwm_ucode_capa *capa;
734                         int idx, i;
735                         if (tlv_len != sizeof(*capa)) {
736                                 error = EINVAL;
737                                 goto parse_out;
738                         }
739                         capa = (const struct iwm_ucode_capa *)tlv_data;
740                         idx = le32toh(capa->api_index);
741                         if (idx >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
742                                 device_printf(sc->sc_dev,
743                                     "unsupported API index %d\n", idx);
744                                 goto parse_out;
745                         }
746                         for (i = 0; i < 32; i++) {
747                                 if ((le32toh(capa->api_capa) & (1U << i)) == 0)
748                                         continue;
749                                 setbit(sc->sc_enabled_capa, i + (32 * idx));
750                         }
751                         break;
752                 }
753
754                 case 48: /* undocumented TLV */
755                 case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
756                 case IWM_UCODE_TLV_FW_GSCAN_CAPA:
757                         /* ignore, not used by current driver */
758                         break;
759
760                 case IWM_UCODE_TLV_SEC_RT_USNIFFER:
761                         if ((error = iwm_firmware_store_section(sc,
762                             IWM_UCODE_TYPE_REGULAR_USNIFFER, tlv_data,
763                             tlv_len)) != 0)
764                                 goto parse_out;
765                         break;
766
767                 case IWM_UCODE_TLV_N_SCAN_CHANNELS:
768                         if (tlv_len != sizeof(uint32_t)) {
769                                 error = EINVAL;
770                                 goto parse_out;
771                         }
772                         sc->sc_capa_n_scan_channels =
773                           le32toh(*(const uint32_t *)tlv_data);
774                         break;
775
776                 case IWM_UCODE_TLV_FW_VERSION:
777                         if (tlv_len != sizeof(uint32_t) * 3) {
778                                 error = EINVAL;
779                                 goto parse_out;
780                         }
781                         snprintf(sc->sc_fwver, sizeof(sc->sc_fwver),
782                             "%d.%d.%d",
783                             le32toh(((const uint32_t *)tlv_data)[0]),
784                             le32toh(((const uint32_t *)tlv_data)[1]),
785                             le32toh(((const uint32_t *)tlv_data)[2]));
786                         break;
787
788                 default:
789                         device_printf(sc->sc_dev,
790                             "%s: unknown firmware section %d, abort\n",
791                             __func__, tlv_type);
792                         error = EINVAL;
793                         goto parse_out;
794                 }
795
796                 len -= roundup(tlv_len, 4);
797                 data += roundup(tlv_len, 4);
798         }
799
800         KASSERT(error == 0, ("unhandled error"));
801
802  parse_out:
803         if (error) {
804                 device_printf(sc->sc_dev, "firmware parse error %d, "
805                     "section type %d\n", error, tlv_type);
806         }
807
808         if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) {
809                 device_printf(sc->sc_dev,
810                     "device uses unsupported power ops\n");
811                 error = ENOTSUP;
812         }
813
814  out:
815         if (error) {
816                 fw->fw_status = IWM_FW_STATUS_NONE;
817                 if (fw->fw_fp != NULL)
818                         iwm_fw_info_free(fw);
819         } else
820                 fw->fw_status = IWM_FW_STATUS_DONE;
821         wakeup(&sc->sc_fw);
822
823         return error;
824 }
825
826 /*
827  * DMA resource routines
828  */
829
830 static void
831 iwm_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
832 {
833         if (error != 0)
834                 return;
835         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
836         *(bus_addr_t *)arg = segs[0].ds_addr;
837 }
838
839 static int
840 iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
841     bus_size_t size, bus_size_t alignment)
842 {
843         int error;
844
845         dma->tag = NULL;
846         dma->map = NULL;
847         dma->size = size;
848         dma->vaddr = NULL;
849
850         error = bus_dma_tag_create(tag, alignment,
851             0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
852             1, size, 0, NULL, NULL, &dma->tag);
853         if (error != 0)
854                 goto fail;
855
856         error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
857             BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
858         if (error != 0)
859                 goto fail;
860
861         error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
862             iwm_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
863         if (error != 0) {
864                 bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
865                 dma->vaddr = NULL;
866                 goto fail;
867         }
868
869         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
870
871         return 0;
872
873 fail:
874         iwm_dma_contig_free(dma);
875
876         return error;
877 }
878
879 static void
880 iwm_dma_contig_free(struct iwm_dma_info *dma)
881 {
882         if (dma->vaddr != NULL) {
883                 bus_dmamap_sync(dma->tag, dma->map,
884                     BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
885                 bus_dmamap_unload(dma->tag, dma->map);
886                 bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
887                 dma->vaddr = NULL;
888         }
889         if (dma->tag != NULL) {
890                 bus_dma_tag_destroy(dma->tag);
891                 dma->tag = NULL;
892         }
893 }
894
895 /* fwmem is used to load firmware onto the card */
896 static int
897 iwm_alloc_fwmem(struct iwm_softc *sc)
898 {
899         /* Must be aligned on a 16-byte boundary. */
900         return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma,
901             sc->sc_fwdmasegsz, 16);
902 }
903
904 /* tx scheduler rings.  not used? */
905 static int
906 iwm_alloc_sched(struct iwm_softc *sc)
907 {
908         /* TX scheduler rings must be aligned on a 1KB boundary. */
909         return iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
910             nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
911 }
912
913 /* keep-warm page is used internally by the card.  see iwl-fh.h for more info */
914 static int
915 iwm_alloc_kw(struct iwm_softc *sc)
916 {
917         return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
918 }
919
920 /* interrupt cause table */
921 static int
922 iwm_alloc_ict(struct iwm_softc *sc)
923 {
924         return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
925             IWM_ICT_SIZE, 1<<IWM_ICT_PADDR_SHIFT);
926 }
927
928 static int
929 iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
930 {
931         bus_size_t size;
932         int i, error;
933
934         ring->cur = 0;
935
936         /* Allocate RX descriptors (256-byte aligned). */
937         size = IWM_RX_RING_COUNT * sizeof(uint32_t);
938         error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
939         if (error != 0) {
940                 device_printf(sc->sc_dev,
941                     "could not allocate RX ring DMA memory\n");
942                 goto fail;
943         }
944         ring->desc = ring->desc_dma.vaddr;
945
946         /* Allocate RX status area (16-byte aligned). */
947         error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
948             sizeof(*ring->stat), 16);
949         if (error != 0) {
950                 device_printf(sc->sc_dev,
951                     "could not allocate RX status DMA memory\n");
952                 goto fail;
953         }
954         ring->stat = ring->stat_dma.vaddr;
955
956         /* Create RX buffer DMA tag. */
957         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
958             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
959             IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
960         if (error != 0) {
961                 device_printf(sc->sc_dev,
962                     "%s: could not create RX buf DMA tag, error %d\n",
963                     __func__, error);
964                 goto fail;
965         }
966
967         /* Allocate spare bus_dmamap_t for iwm_rx_addbuf() */
968         error = bus_dmamap_create(ring->data_dmat, 0, &ring->spare_map);
969         if (error != 0) {
970                 device_printf(sc->sc_dev,
971                     "%s: could not create RX buf DMA map, error %d\n",
972                     __func__, error);
973                 goto fail;
974         }
975         /*
976          * Allocate and map RX buffers.
977          */
978         for (i = 0; i < IWM_RX_RING_COUNT; i++) {
979                 struct iwm_rx_data *data = &ring->data[i];
980                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
981                 if (error != 0) {
982                         device_printf(sc->sc_dev,
983                             "%s: could not create RX buf DMA map, error %d\n",
984                             __func__, error);
985                         goto fail;
986                 }
987                 data->m = NULL;
988
989                 if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) {
990                         goto fail;
991                 }
992         }
993         return 0;
994
995 fail:   iwm_free_rx_ring(sc, ring);
996         return error;
997 }
998
999 static void
1000 iwm_disable_rx_dma(struct iwm_softc *sc)
1001 {
1002         /* XXX conditional nic locks are stupid */
1003         /* XXX print out if we can't lock the NIC? */
1004         if (iwm_nic_lock(sc)) {
1005                 /* XXX handle if RX stop doesn't finish? */
1006                 (void) iwm_pcie_rx_stop(sc);
1007                 iwm_nic_unlock(sc);
1008         }
1009 }
1010
1011 static void
1012 iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1013 {
1014         /* Reset the ring state */
1015         ring->cur = 0;
1016
1017         /*
1018          * The hw rx ring index in shared memory must also be cleared,
1019          * otherwise the discrepancy can cause reprocessing chaos.
1020          */
1021         memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1022 }
1023
1024 static void
1025 iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
1026 {
1027         int i;
1028
1029         iwm_dma_contig_free(&ring->desc_dma);
1030         iwm_dma_contig_free(&ring->stat_dma);
1031
1032         for (i = 0; i < IWM_RX_RING_COUNT; i++) {
1033                 struct iwm_rx_data *data = &ring->data[i];
1034
1035                 if (data->m != NULL) {
1036                         bus_dmamap_sync(ring->data_dmat, data->map,
1037                             BUS_DMASYNC_POSTREAD);
1038                         bus_dmamap_unload(ring->data_dmat, data->map);
1039                         m_freem(data->m);
1040                         data->m = NULL;
1041                 }
1042                 if (data->map != NULL) {
1043                         bus_dmamap_destroy(ring->data_dmat, data->map);
1044                         data->map = NULL;
1045                 }
1046         }
1047         if (ring->spare_map != NULL) {
1048                 bus_dmamap_destroy(ring->data_dmat, ring->spare_map);
1049                 ring->spare_map = NULL;
1050         }
1051         if (ring->data_dmat != NULL) {
1052                 bus_dma_tag_destroy(ring->data_dmat);
1053                 ring->data_dmat = NULL;
1054         }
1055 }
1056
1057 static int
1058 iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
1059 {
1060         bus_addr_t paddr;
1061         bus_size_t size;
1062         size_t maxsize;
1063         int nsegments;
1064         int i, error;
1065
1066         ring->qid = qid;
1067         ring->queued = 0;
1068         ring->cur = 0;
1069
1070         /* Allocate TX descriptors (256-byte aligned). */
1071         size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
1072         error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
1073         if (error != 0) {
1074                 device_printf(sc->sc_dev,
1075                     "could not allocate TX ring DMA memory\n");
1076                 goto fail;
1077         }
1078         ring->desc = ring->desc_dma.vaddr;
1079
1080         /*
1081          * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
1082          * to allocate commands space for other rings.
1083          */
1084         if (qid > IWM_MVM_CMD_QUEUE)
1085                 return 0;
1086
1087         size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
1088         error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
1089         if (error != 0) {
1090                 device_printf(sc->sc_dev,
1091                     "could not allocate TX cmd DMA memory\n");
1092                 goto fail;
1093         }
1094         ring->cmd = ring->cmd_dma.vaddr;
1095
1096         /* FW commands may require more mapped space than packets. */
1097         if (qid == IWM_MVM_CMD_QUEUE) {
1098                 maxsize = IWM_RBUF_SIZE;
1099                 nsegments = 1;
1100         } else {
1101                 maxsize = MCLBYTES;
1102                 nsegments = IWM_MAX_SCATTER - 2;
1103         }
1104
1105         error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1106             BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, maxsize,
1107             nsegments, maxsize, 0, NULL, NULL, &ring->data_dmat);
1108         if (error != 0) {
1109                 device_printf(sc->sc_dev, "could not create TX buf DMA tag\n");
1110                 goto fail;
1111         }
1112
1113         paddr = ring->cmd_dma.paddr;
1114         for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1115                 struct iwm_tx_data *data = &ring->data[i];
1116
1117                 data->cmd_paddr = paddr;
1118                 data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
1119                     + offsetof(struct iwm_tx_cmd, scratch);
1120                 paddr += sizeof(struct iwm_device_cmd);
1121
1122                 error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1123                 if (error != 0) {
1124                         device_printf(sc->sc_dev,
1125                             "could not create TX buf DMA map\n");
1126                         goto fail;
1127                 }
1128         }
1129         KASSERT(paddr == ring->cmd_dma.paddr + size,
1130             ("invalid physical address"));
1131         return 0;
1132
1133 fail:   iwm_free_tx_ring(sc, ring);
1134         return error;
1135 }
1136
1137 static void
1138 iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1139 {
1140         int i;
1141
1142         for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1143                 struct iwm_tx_data *data = &ring->data[i];
1144
1145                 if (data->m != NULL) {
1146                         bus_dmamap_sync(ring->data_dmat, data->map,
1147                             BUS_DMASYNC_POSTWRITE);
1148                         bus_dmamap_unload(ring->data_dmat, data->map);
1149                         m_freem(data->m);
1150                         data->m = NULL;
1151                 }
1152         }
1153         /* Clear TX descriptors. */
1154         memset(ring->desc, 0, ring->desc_dma.size);
1155         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1156             BUS_DMASYNC_PREWRITE);
1157         sc->qfullmsk &= ~(1 << ring->qid);
1158         ring->queued = 0;
1159         ring->cur = 0;
1160 }
1161
1162 static void
1163 iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
1164 {
1165         int i;
1166
1167         iwm_dma_contig_free(&ring->desc_dma);
1168         iwm_dma_contig_free(&ring->cmd_dma);
1169
1170         for (i = 0; i < IWM_TX_RING_COUNT; i++) {
1171                 struct iwm_tx_data *data = &ring->data[i];
1172
1173                 if (data->m != NULL) {
1174                         bus_dmamap_sync(ring->data_dmat, data->map,
1175                             BUS_DMASYNC_POSTWRITE);
1176                         bus_dmamap_unload(ring->data_dmat, data->map);
1177                         m_freem(data->m);
1178                         data->m = NULL;
1179                 }
1180                 if (data->map != NULL) {
1181                         bus_dmamap_destroy(ring->data_dmat, data->map);
1182                         data->map = NULL;
1183                 }
1184         }
1185         if (ring->data_dmat != NULL) {
1186                 bus_dma_tag_destroy(ring->data_dmat);
1187                 ring->data_dmat = NULL;
1188         }
1189 }
1190
1191 /*
1192  * High-level hardware frobbing routines
1193  */
1194
1195 static void
1196 iwm_enable_interrupts(struct iwm_softc *sc)
1197 {
1198         sc->sc_intmask = IWM_CSR_INI_SET_MASK;
1199         IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1200 }
1201
1202 static void
1203 iwm_restore_interrupts(struct iwm_softc *sc)
1204 {
1205         IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
1206 }
1207
1208 static void
1209 iwm_disable_interrupts(struct iwm_softc *sc)
1210 {
1211         /* disable interrupts */
1212         IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
1213
1214         /* acknowledge all interrupts */
1215         IWM_WRITE(sc, IWM_CSR_INT, ~0);
1216         IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
1217 }
1218
1219 static void
1220 iwm_ict_reset(struct iwm_softc *sc)
1221 {
1222         iwm_disable_interrupts(sc);
1223
1224         /* Reset ICT table. */
1225         memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
1226         sc->ict_cur = 0;
1227
1228         /* Set physical address of ICT table (4KB aligned). */
1229         IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
1230             IWM_CSR_DRAM_INT_TBL_ENABLE
1231             | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
1232             | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
1233             | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
1234
1235         /* Switch to ICT interrupt mode in driver. */
1236         sc->sc_flags |= IWM_FLAG_USE_ICT;
1237
1238         /* Re-enable interrupts. */
1239         IWM_WRITE(sc, IWM_CSR_INT, ~0);
1240         iwm_enable_interrupts(sc);
1241 }
1242
1243 /* iwlwifi pcie/trans.c */
1244
1245 /*
1246  * Since this .. hard-resets things, it's time to actually
1247  * mark the first vap (if any) as having no mac context.
1248  * It's annoying, but since the driver is potentially being
1249  * stop/start'ed whilst active (thanks openbsd port!) we
1250  * have to correctly track this.
1251  */
1252 static void
1253 iwm_stop_device(struct iwm_softc *sc)
1254 {
1255         struct ieee80211com *ic = &sc->sc_ic;
1256         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1257         int chnl, qid;
1258         uint32_t mask = 0;
1259
1260         /* tell the device to stop sending interrupts */
1261         iwm_disable_interrupts(sc);
1262
1263         /*
1264          * FreeBSD-local: mark the first vap as not-uploaded,
1265          * so the next transition through auth/assoc
1266          * will correctly populate the MAC context.
1267          */
1268         if (vap) {
1269                 struct iwm_vap *iv = IWM_VAP(vap);
1270                 iv->is_uploaded = 0;
1271         }
1272
1273         /* device going down, Stop using ICT table */
1274         sc->sc_flags &= ~IWM_FLAG_USE_ICT;
1275
1276         /* stop tx and rx.  tx and rx bits, as usual, are from if_iwn */
1277
1278         iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1279
1280         if (iwm_nic_lock(sc)) {
1281                 /* Stop each Tx DMA channel */
1282                 for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1283                         IWM_WRITE(sc,
1284                             IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
1285                         mask |= IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(chnl);
1286                 }
1287
1288                 /* Wait for DMA channels to be idle */
1289                 if (!iwm_poll_bit(sc, IWM_FH_TSSR_TX_STATUS_REG, mask, mask,
1290                     5000)) {
1291                         device_printf(sc->sc_dev,
1292                             "Failing on timeout while stopping DMA channel: [0x%08x]\n",
1293                             IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG));
1294                 }
1295                 iwm_nic_unlock(sc);
1296         }
1297         iwm_disable_rx_dma(sc);
1298
1299         /* Stop RX ring. */
1300         iwm_reset_rx_ring(sc, &sc->rxq);
1301
1302         /* Reset all TX rings. */
1303         for (qid = 0; qid < nitems(sc->txq); qid++)
1304                 iwm_reset_tx_ring(sc, &sc->txq[qid]);
1305
1306         /*
1307          * Power-down device's busmaster DMA clocks
1308          */
1309         iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT);
1310         DELAY(5);
1311
1312         /* Make sure (redundant) we've released our request to stay awake */
1313         IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
1314             IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
1315
1316         /* Stop the device, and put it in low power state */
1317         iwm_apm_stop(sc);
1318
1319         /* Upon stop, the APM issues an interrupt if HW RF kill is set.
1320          * Clean again the interrupt here
1321          */
1322         iwm_disable_interrupts(sc);
1323         /* stop and reset the on-board processor */
1324         IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
1325
1326         /*
1327          * Even if we stop the HW, we still want the RF kill
1328          * interrupt
1329          */
1330         iwm_enable_rfkill_int(sc);
1331         iwm_check_rfkill(sc);
1332 }
1333
1334 /* iwlwifi: mvm/ops.c */
1335 static void
1336 iwm_mvm_nic_config(struct iwm_softc *sc)
1337 {
1338         uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
1339         uint32_t reg_val = 0;
1340
1341         radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
1342             IWM_FW_PHY_CFG_RADIO_TYPE_POS;
1343         radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
1344             IWM_FW_PHY_CFG_RADIO_STEP_POS;
1345         radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
1346             IWM_FW_PHY_CFG_RADIO_DASH_POS;
1347
1348         /* SKU control */
1349         reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
1350             IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
1351         reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
1352             IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
1353
1354         /* radio configuration */
1355         reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
1356         reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
1357         reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
1358
1359         IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
1360
1361         IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1362             "Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
1363             radio_cfg_step, radio_cfg_dash);
1364
1365         /*
1366          * W/A : NIC is stuck in a reset state after Early PCIe power off
1367          * (PCIe power is lost before PERST# is asserted), causing ME FW
1368          * to lose ownership and not being able to obtain it back.
1369          */
1370         if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
1371                 iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
1372                     IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
1373                     ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
1374         }
1375 }
1376
1377 static int
1378 iwm_nic_rx_init(struct iwm_softc *sc)
1379 {
1380         if (!iwm_nic_lock(sc))
1381                 return EBUSY;
1382
1383         /*
1384          * Initialize RX ring.  This is from the iwn driver.
1385          */
1386         memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
1387
1388         /* stop DMA */
1389         iwm_disable_rx_dma(sc);
1390         IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
1391         IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
1392         IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
1393         IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
1394
1395         /* Set physical address of RX ring (256-byte aligned). */
1396         IWM_WRITE(sc,
1397             IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
1398
1399         /* Set physical address of RX status (16-byte aligned). */
1400         IWM_WRITE(sc,
1401             IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
1402
1403         /* Enable RX. */
1404         IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
1405             IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL            |
1406             IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY               |  /* HW bug */
1407             IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL   |
1408             IWM_FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK        |
1409             (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
1410             IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K            |
1411             IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
1412
1413         IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
1414
1415         /* W/A for interrupt coalescing bug in 7260 and 3160 */
1416         if (sc->host_interrupt_operation_mode)
1417                 IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
1418
1419         /*
1420          * Thus sayeth el jefe (iwlwifi) via a comment:
1421          *
1422          * This value should initially be 0 (before preparing any
1423          * RBs), should be 8 after preparing the first 8 RBs (for example)
1424          */
1425         IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
1426
1427         iwm_nic_unlock(sc);
1428
1429         return 0;
1430 }
1431
1432 static int
1433 iwm_nic_tx_init(struct iwm_softc *sc)
1434 {
1435         int qid;
1436
1437         if (!iwm_nic_lock(sc))
1438                 return EBUSY;
1439
1440         /* Deactivate TX scheduler. */
1441         iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
1442
1443         /* Set physical address of "keep warm" page (16-byte aligned). */
1444         IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
1445
1446         /* Initialize TX rings. */
1447         for (qid = 0; qid < nitems(sc->txq); qid++) {
1448                 struct iwm_tx_ring *txq = &sc->txq[qid];
1449
1450                 /* Set physical address of TX ring (256-byte aligned). */
1451                 IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
1452                     txq->desc_dma.paddr >> 8);
1453                 IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
1454                     "%s: loading ring %d descriptors (%p) at %lx\n",
1455                     __func__,
1456                     qid, txq->desc,
1457                     (unsigned long) (txq->desc_dma.paddr >> 8));
1458         }
1459
1460         iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE);
1461
1462         iwm_nic_unlock(sc);
1463
1464         return 0;
1465 }
1466
1467 static int
1468 iwm_nic_init(struct iwm_softc *sc)
1469 {
1470         int error;
1471
1472         iwm_apm_init(sc);
1473         if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1474                 iwm_set_pwr(sc);
1475
1476         iwm_mvm_nic_config(sc);
1477
1478         if ((error = iwm_nic_rx_init(sc)) != 0)
1479                 return error;
1480
1481         /*
1482          * Ditto for TX, from iwn
1483          */
1484         if ((error = iwm_nic_tx_init(sc)) != 0)
1485                 return error;
1486
1487         IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1488             "%s: shadow registers enabled\n", __func__);
1489         IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
1490
1491         return 0;
1492 }
1493
1494 const uint8_t iwm_mvm_ac_to_tx_fifo[] = {
1495         IWM_MVM_TX_FIFO_VO,
1496         IWM_MVM_TX_FIFO_VI,
1497         IWM_MVM_TX_FIFO_BE,
1498         IWM_MVM_TX_FIFO_BK,
1499 };
1500
1501 static int
1502 iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo)
1503 {
1504         if (!iwm_nic_lock(sc)) {
1505                 device_printf(sc->sc_dev,
1506                     "%s: cannot enable txq %d\n",
1507                     __func__,
1508                     qid);
1509                 return EBUSY;
1510         }
1511
1512         IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
1513
1514         if (qid == IWM_MVM_CMD_QUEUE) {
1515                 /* unactivate before configuration */
1516                 iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1517                     (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
1518                     | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
1519
1520                 iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
1521
1522                 iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
1523
1524                 iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
1525                 /* Set scheduler window size and frame limit. */
1526                 iwm_write_mem32(sc,
1527                     sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
1528                     sizeof(uint32_t),
1529                     ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
1530                     IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
1531                     ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
1532                     IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
1533
1534                 iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
1535                     (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
1536                     (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
1537                     (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
1538                     IWM_SCD_QUEUE_STTS_REG_MSK);
1539         } else {
1540                 struct iwm_scd_txq_cfg_cmd cmd;
1541                 int error;
1542
1543                 iwm_nic_unlock(sc);
1544
1545                 memset(&cmd, 0, sizeof(cmd));
1546                 cmd.scd_queue = qid;
1547                 cmd.enable = 1;
1548                 cmd.sta_id = sta_id;
1549                 cmd.tx_fifo = fifo;
1550                 cmd.aggregate = 0;
1551                 cmd.window = IWM_FRAME_LIMIT;
1552
1553                 error = iwm_mvm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, IWM_CMD_SYNC,
1554                     sizeof(cmd), &cmd);
1555                 if (error) {
1556                         device_printf(sc->sc_dev,
1557                             "cannot enable txq %d\n", qid);
1558                         return error;
1559                 }
1560
1561                 if (!iwm_nic_lock(sc))
1562                         return EBUSY;
1563         }
1564
1565         iwm_write_prph(sc, IWM_SCD_EN_CTRL,
1566             iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid);
1567
1568         iwm_nic_unlock(sc);
1569
1570         IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: enabled txq %d FIFO %d\n",
1571             __func__, qid, fifo);
1572
1573         return 0;
1574 }
1575
1576 static int
1577 iwm_post_alive(struct iwm_softc *sc)
1578 {
1579         int nwords;
1580         int error, chnl;
1581         uint32_t base;
1582
1583         if (!iwm_nic_lock(sc))
1584                 return EBUSY;
1585
1586         base = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
1587         if (sc->sched_base != base) {
1588                 device_printf(sc->sc_dev,
1589                     "%s: sched addr mismatch: alive: 0x%x prph: 0x%x\n",
1590                     __func__, sc->sched_base, base);
1591         }
1592
1593         iwm_ict_reset(sc);
1594
1595         /* Clear TX scheduler state in SRAM. */
1596         nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
1597             IWM_SCD_CONTEXT_MEM_LOWER_BOUND)
1598             / sizeof(uint32_t);
1599         error = iwm_write_mem(sc,
1600             sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND,
1601             NULL, nwords);
1602         if (error)
1603                 goto out;
1604
1605         /* Set physical address of TX scheduler rings (1KB aligned). */
1606         iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
1607
1608         iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
1609
1610         iwm_nic_unlock(sc);
1611
1612         /* enable command channel */
1613         error = iwm_enable_txq(sc, 0 /* unused */, IWM_MVM_CMD_QUEUE, 7);
1614         if (error)
1615                 return error;
1616
1617         if (!iwm_nic_lock(sc))
1618                 return EBUSY;
1619
1620         iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
1621
1622         /* Enable DMA channels. */
1623         for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
1624                 IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
1625                     IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1626                     IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
1627         }
1628
1629         IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
1630             IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
1631
1632         /* Enable L1-Active */
1633         if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
1634                 iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
1635                     IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
1636         }
1637
1638  out:
1639         iwm_nic_unlock(sc);
1640         return error;
1641 }
1642
1643 /*
1644  * NVM read access and content parsing.  We do not support
1645  * external NVM or writing NVM.
1646  * iwlwifi/mvm/nvm.c
1647  */
1648
1649 /* list of NVM sections we are allowed/need to read */
1650 const int nvm_to_read[] = {
1651         IWM_NVM_SECTION_TYPE_HW,
1652         IWM_NVM_SECTION_TYPE_SW,
1653         IWM_NVM_SECTION_TYPE_REGULATORY,
1654         IWM_NVM_SECTION_TYPE_CALIBRATION,
1655         IWM_NVM_SECTION_TYPE_PRODUCTION,
1656         IWM_NVM_SECTION_TYPE_HW_8000,
1657         IWM_NVM_SECTION_TYPE_MAC_OVERRIDE,
1658         IWM_NVM_SECTION_TYPE_PHY_SKU,
1659 };
1660
1661 /* Default NVM size to read */
1662 #define IWM_NVM_DEFAULT_CHUNK_SIZE      (2*1024)
1663 #define IWM_MAX_NVM_SECTION_SIZE        8192
1664
1665 #define IWM_NVM_WRITE_OPCODE 1
1666 #define IWM_NVM_READ_OPCODE 0
1667
1668 /* load nvm chunk response */
1669 #define IWM_READ_NVM_CHUNK_SUCCEED              0
1670 #define IWM_READ_NVM_CHUNK_INVALID_ADDRESS      1
1671
1672 static int
1673 iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section,
1674         uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len)
1675 {
1676         offset = 0;
1677         struct iwm_nvm_access_cmd nvm_access_cmd = {
1678                 .offset = htole16(offset),
1679                 .length = htole16(length),
1680                 .type = htole16(section),
1681                 .op_code = IWM_NVM_READ_OPCODE,
1682         };
1683         struct iwm_nvm_access_resp *nvm_resp;
1684         struct iwm_rx_packet *pkt;
1685         struct iwm_host_cmd cmd = {
1686                 .id = IWM_NVM_ACCESS_CMD,
1687                 .flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB |
1688                     IWM_CMD_SEND_IN_RFKILL,
1689                 .data = { &nvm_access_cmd, },
1690         };
1691         int ret, offset_read;
1692         size_t bytes_read;
1693         uint8_t *resp_data;
1694
1695         cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
1696
1697         ret = iwm_send_cmd(sc, &cmd);
1698         if (ret) {
1699                 device_printf(sc->sc_dev,
1700                     "Could not send NVM_ACCESS command (error=%d)\n", ret);
1701                 return ret;
1702         }
1703
1704         pkt = cmd.resp_pkt;
1705         if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
1706                 device_printf(sc->sc_dev,
1707                     "Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n",
1708                     pkt->hdr.flags);
1709                 ret = EIO;
1710                 goto exit;
1711         }
1712
1713         /* Extract NVM response */
1714         nvm_resp = (void *)pkt->data;
1715
1716         ret = le16toh(nvm_resp->status);
1717         bytes_read = le16toh(nvm_resp->length);
1718         offset_read = le16toh(nvm_resp->offset);
1719         resp_data = nvm_resp->data;
1720         if (ret) {
1721                 IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1722                     "NVM access command failed with status %d\n", ret);
1723                 ret = EINVAL;
1724                 goto exit;
1725         }
1726
1727         if (offset_read != offset) {
1728                 device_printf(sc->sc_dev,
1729                     "NVM ACCESS response with invalid offset %d\n",
1730                     offset_read);
1731                 ret = EINVAL;
1732                 goto exit;
1733         }
1734
1735         if (bytes_read > length) {
1736                 device_printf(sc->sc_dev,
1737                     "NVM ACCESS response with too much data "
1738                     "(%d bytes requested, %zd bytes received)\n",
1739                     length, bytes_read);
1740                 ret = EINVAL;
1741                 goto exit;
1742         }
1743
1744         memcpy(data + offset, resp_data, bytes_read);
1745         *len = bytes_read;
1746
1747  exit:
1748         iwm_free_resp(sc, &cmd);
1749         return ret;
1750 }
1751
1752 /*
1753  * Reads an NVM section completely.
1754  * NICs prior to 7000 family don't have a real NVM, but just read
1755  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
1756  * by uCode, we need to manually check in this case that we don't
1757  * overflow and try to read more than the EEPROM size.
1758  * For 7000 family NICs, we supply the maximal size we can read, and
1759  * the uCode fills the response with as much data as we can,
1760  * without overflowing, so no check is needed.
1761  */
1762 static int
1763 iwm_nvm_read_section(struct iwm_softc *sc,
1764         uint16_t section, uint8_t *data, uint16_t *len, size_t max_len)
1765 {
1766         uint16_t chunklen, seglen;
1767         int error = 0;
1768
1769         IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1770             "reading NVM section %d\n", section);
1771
1772         chunklen = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
1773         *len = 0;
1774
1775         /* Read NVM chunks until exhausted (reading less than requested) */
1776         while (seglen == chunklen && *len < max_len) {
1777                 error = iwm_nvm_read_chunk(sc,
1778                     section, *len, chunklen, data, &seglen);
1779                 if (error) {
1780                         IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1781                             "Cannot read from NVM section "
1782                             "%d at offset %d\n", section, *len);
1783                         return error;
1784                 }
1785                 *len += seglen;
1786         }
1787
1788         IWM_DPRINTF(sc, IWM_DEBUG_RESET,
1789             "NVM section %d read completed (%d bytes, error=%d)\n",
1790             section, *len, error);
1791         return error;
1792 }
1793
1794 /*
1795  * BEGIN IWM_NVM_PARSE
1796  */
1797
1798 /* iwlwifi/iwl-nvm-parse.c */
1799
1800 /* NVM offsets (in words) definitions */
1801 enum iwm_nvm_offsets {
1802         /* NVM HW-Section offset (in words) definitions */
1803         IWM_HW_ADDR = 0x15,
1804
1805 /* NVM SW-Section offset (in words) definitions */
1806         IWM_NVM_SW_SECTION = 0x1C0,
1807         IWM_NVM_VERSION = 0,
1808         IWM_RADIO_CFG = 1,
1809         IWM_SKU = 2,
1810         IWM_N_HW_ADDRS = 3,
1811         IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION,
1812
1813 /* NVM calibration section offset (in words) definitions */
1814         IWM_NVM_CALIB_SECTION = 0x2B8,
1815         IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION
1816 };
1817
1818 enum iwm_8000_nvm_offsets {
1819         /* NVM HW-Section offset (in words) definitions */
1820         IWM_HW_ADDR0_WFPM_8000 = 0x12,
1821         IWM_HW_ADDR1_WFPM_8000 = 0x16,
1822         IWM_HW_ADDR0_PCIE_8000 = 0x8A,
1823         IWM_HW_ADDR1_PCIE_8000 = 0x8E,
1824         IWM_MAC_ADDRESS_OVERRIDE_8000 = 1,
1825
1826         /* NVM SW-Section offset (in words) definitions */
1827         IWM_NVM_SW_SECTION_8000 = 0x1C0,
1828         IWM_NVM_VERSION_8000 = 0,
1829         IWM_RADIO_CFG_8000 = 0,
1830         IWM_SKU_8000 = 2,
1831         IWM_N_HW_ADDRS_8000 = 3,
1832
1833         /* NVM REGULATORY -Section offset (in words) definitions */
1834         IWM_NVM_CHANNELS_8000 = 0,
1835         IWM_NVM_LAR_OFFSET_8000_OLD = 0x4C7,
1836         IWM_NVM_LAR_OFFSET_8000 = 0x507,
1837         IWM_NVM_LAR_ENABLED_8000 = 0x7,
1838
1839         /* NVM calibration section offset (in words) definitions */
1840         IWM_NVM_CALIB_SECTION_8000 = 0x2B8,
1841         IWM_XTAL_CALIB_8000 = 0x316 - IWM_NVM_CALIB_SECTION_8000
1842 };
1843
1844 /* SKU Capabilities (actual values from NVM definition) */
1845 enum nvm_sku_bits {
1846         IWM_NVM_SKU_CAP_BAND_24GHZ      = (1 << 0),
1847         IWM_NVM_SKU_CAP_BAND_52GHZ      = (1 << 1),
1848         IWM_NVM_SKU_CAP_11N_ENABLE      = (1 << 2),
1849         IWM_NVM_SKU_CAP_11AC_ENABLE     = (1 << 3),
1850 };
1851
1852 /* radio config bits (actual values from NVM definition) */
1853 #define IWM_NVM_RF_CFG_DASH_MSK(x)   (x & 0x3)         /* bits 0-1   */
1854 #define IWM_NVM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
1855 #define IWM_NVM_RF_CFG_TYPE_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
1856 #define IWM_NVM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
1857 #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
1858 #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
1859
1860 #define IWM_NVM_RF_CFG_FLAVOR_MSK_8000(x)       (x & 0xF)
1861 #define IWM_NVM_RF_CFG_DASH_MSK_8000(x)         ((x >> 4) & 0xF)
1862 #define IWM_NVM_RF_CFG_STEP_MSK_8000(x)         ((x >> 8) & 0xF)
1863 #define IWM_NVM_RF_CFG_TYPE_MSK_8000(x)         ((x >> 12) & 0xFFF)
1864 #define IWM_NVM_RF_CFG_TX_ANT_MSK_8000(x)       ((x >> 24) & 0xF)
1865 #define IWM_NVM_RF_CFG_RX_ANT_MSK_8000(x)       ((x >> 28) & 0xF)
1866
1867 #define DEFAULT_MAX_TX_POWER 16
1868
1869 /**
1870  * enum iwm_nvm_channel_flags - channel flags in NVM
1871  * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo
1872  * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel
1873  * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed
1874  * @IWM_NVM_CHANNEL_RADAR: radar detection required
1875  * XXX cannot find this (DFS) flag in iwl-nvm-parse.c
1876  * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate
1877  * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
1878  * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
1879  * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
1880  * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
1881  */
1882 enum iwm_nvm_channel_flags {
1883         IWM_NVM_CHANNEL_VALID = (1 << 0),
1884         IWM_NVM_CHANNEL_IBSS = (1 << 1),
1885         IWM_NVM_CHANNEL_ACTIVE = (1 << 3),
1886         IWM_NVM_CHANNEL_RADAR = (1 << 4),
1887         IWM_NVM_CHANNEL_DFS = (1 << 7),
1888         IWM_NVM_CHANNEL_WIDE = (1 << 8),
1889         IWM_NVM_CHANNEL_40MHZ = (1 << 9),
1890         IWM_NVM_CHANNEL_80MHZ = (1 << 10),
1891         IWM_NVM_CHANNEL_160MHZ = (1 << 11),
1892 };
1893
1894 /*
1895  * Translate EEPROM flags to net80211.
1896  */
1897 static uint32_t
1898 iwm_eeprom_channel_flags(uint16_t ch_flags)
1899 {
1900         uint32_t nflags;
1901
1902         nflags = 0;
1903         if ((ch_flags & IWM_NVM_CHANNEL_ACTIVE) == 0)
1904                 nflags |= IEEE80211_CHAN_PASSIVE;
1905         if ((ch_flags & IWM_NVM_CHANNEL_IBSS) == 0)
1906                 nflags |= IEEE80211_CHAN_NOADHOC;
1907         if (ch_flags & IWM_NVM_CHANNEL_RADAR) {
1908                 nflags |= IEEE80211_CHAN_DFS;
1909                 /* Just in case. */
1910                 nflags |= IEEE80211_CHAN_NOADHOC;
1911         }
1912
1913         return (nflags);
1914 }
1915
1916 static void
1917 iwm_add_channel_band(struct iwm_softc *sc, struct ieee80211_channel chans[],
1918     int maxchans, int *nchans, int ch_idx, size_t ch_num,
1919     const uint8_t bands[])
1920 {
1921         const uint16_t * const nvm_ch_flags = sc->sc_nvm.nvm_ch_flags;
1922         uint32_t nflags;
1923         uint16_t ch_flags;
1924         uint8_t ieee;
1925         int error;
1926
1927         for (; ch_idx < ch_num; ch_idx++) {
1928                 ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
1929                 if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1930                         ieee = iwm_nvm_channels[ch_idx];
1931                 else
1932                         ieee = iwm_nvm_channels_8000[ch_idx];
1933
1934                 if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
1935                         IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1936                             "Ch. %d Flags %x [%sGHz] - No traffic\n",
1937                             ieee, ch_flags,
1938                             (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1939                             "5.2" : "2.4");
1940                         continue;
1941                 }
1942
1943                 nflags = iwm_eeprom_channel_flags(ch_flags);
1944                 error = ieee80211_add_channel(chans, maxchans, nchans,
1945                     ieee, 0, 0, nflags, bands);
1946                 if (error != 0)
1947                         break;
1948
1949                 IWM_DPRINTF(sc, IWM_DEBUG_EEPROM,
1950                     "Ch. %d Flags %x [%sGHz] - Added\n",
1951                     ieee, ch_flags,
1952                     (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ?
1953                     "5.2" : "2.4");
1954         }
1955 }
1956
1957 static void
1958 iwm_init_channel_map(struct ieee80211com *ic, int maxchans, int *nchans,
1959     struct ieee80211_channel chans[])
1960 {
1961         struct iwm_softc *sc = ic->ic_softc;
1962         struct iwm_nvm_data *data = &sc->sc_nvm;
1963         uint8_t bands[IEEE80211_MODE_BYTES];
1964         size_t ch_num;
1965
1966         memset(bands, 0, sizeof(bands));
1967         /* 1-13: 11b/g channels. */
1968         setbit(bands, IEEE80211_MODE_11B);
1969         setbit(bands, IEEE80211_MODE_11G);
1970         iwm_add_channel_band(sc, chans, maxchans, nchans, 0,
1971             IWM_NUM_2GHZ_CHANNELS - 1, bands);
1972
1973         /* 14: 11b channel only. */
1974         clrbit(bands, IEEE80211_MODE_11G);
1975         iwm_add_channel_band(sc, chans, maxchans, nchans,
1976             IWM_NUM_2GHZ_CHANNELS - 1, IWM_NUM_2GHZ_CHANNELS, bands);
1977
1978         if (data->sku_cap_band_52GHz_enable) {
1979                 if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
1980                         ch_num = nitems(iwm_nvm_channels);
1981                 else
1982                         ch_num = nitems(iwm_nvm_channels_8000);
1983                 memset(bands, 0, sizeof(bands));
1984                 setbit(bands, IEEE80211_MODE_11A);
1985                 iwm_add_channel_band(sc, chans, maxchans, nchans,
1986                     IWM_NUM_2GHZ_CHANNELS, ch_num, bands);
1987         }
1988 }
1989
1990 static void
1991 iwm_set_hw_address_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
1992         const uint16_t *mac_override, const uint16_t *nvm_hw)
1993 {
1994         const uint8_t *hw_addr;
1995
1996         if (mac_override) {
1997                 static const uint8_t reserved_mac[] = {
1998                         0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1999                 };
2000
2001                 hw_addr = (const uint8_t *)(mac_override +
2002                                  IWM_MAC_ADDRESS_OVERRIDE_8000);
2003
2004                 /*
2005                  * Store the MAC address from MAO section.
2006                  * No byte swapping is required in MAO section
2007                  */
2008                 IEEE80211_ADDR_COPY(data->hw_addr, hw_addr);
2009
2010                 /*
2011                  * Force the use of the OTP MAC address in case of reserved MAC
2012                  * address in the NVM, or if address is given but invalid.
2013                  */
2014                 if (!IEEE80211_ADDR_EQ(reserved_mac, hw_addr) &&
2015                     !IEEE80211_ADDR_EQ(ieee80211broadcastaddr, data->hw_addr) &&
2016                     iwm_is_valid_ether_addr(data->hw_addr) &&
2017                     !IEEE80211_IS_MULTICAST(data->hw_addr))
2018                         return;
2019
2020                 IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2021                     "%s: mac address from nvm override section invalid\n",
2022                     __func__);
2023         }
2024
2025         if (nvm_hw) {
2026                 /* read the mac address from WFMP registers */
2027                 uint32_t mac_addr0 =
2028                     htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
2029                 uint32_t mac_addr1 =
2030                     htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
2031
2032                 hw_addr = (const uint8_t *)&mac_addr0;
2033                 data->hw_addr[0] = hw_addr[3];
2034                 data->hw_addr[1] = hw_addr[2];
2035                 data->hw_addr[2] = hw_addr[1];
2036                 data->hw_addr[3] = hw_addr[0];
2037
2038                 hw_addr = (const uint8_t *)&mac_addr1;
2039                 data->hw_addr[4] = hw_addr[1];
2040                 data->hw_addr[5] = hw_addr[0];
2041
2042                 return;
2043         }
2044
2045         device_printf(sc->sc_dev, "%s: mac address not found\n", __func__);
2046         memset(data->hw_addr, 0, sizeof(data->hw_addr));
2047 }
2048
2049 static int
2050 iwm_get_sku(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2051             const uint16_t *phy_sku)
2052 {
2053         if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2054                 return le16_to_cpup(nvm_sw + IWM_SKU);
2055
2056         return le32_to_cpup((const uint32_t *)(phy_sku + IWM_SKU_8000));
2057 }
2058
2059 static int
2060 iwm_get_nvm_version(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2061 {
2062         if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2063                 return le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
2064         else
2065                 return le32_to_cpup((const uint32_t *)(nvm_sw +
2066                                                 IWM_NVM_VERSION_8000));
2067 }
2068
2069 static int
2070 iwm_get_radio_cfg(const struct iwm_softc *sc, const uint16_t *nvm_sw,
2071                   const uint16_t *phy_sku)
2072 {
2073         if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2074                 return le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
2075
2076         return le32_to_cpup((const uint32_t *)(phy_sku + IWM_RADIO_CFG_8000));
2077 }
2078
2079 static int
2080 iwm_get_n_hw_addrs(const struct iwm_softc *sc, const uint16_t *nvm_sw)
2081 {
2082         int n_hw_addr;
2083
2084         if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000)
2085                 return le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
2086
2087         n_hw_addr = le32_to_cpup((const uint32_t *)(nvm_sw + IWM_N_HW_ADDRS_8000));
2088
2089         return n_hw_addr & IWM_N_HW_ADDR_MASK;
2090 }
2091
2092 static void
2093 iwm_set_radio_cfg(const struct iwm_softc *sc, struct iwm_nvm_data *data,
2094                   uint32_t radio_cfg)
2095 {
2096         if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
2097                 data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
2098                 data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
2099                 data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
2100                 data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
2101                 return;
2102         }
2103
2104         /* set the radio configuration for family 8000 */
2105         data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
2106         data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
2107         data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
2108         data->radio_cfg_pnum = IWM_NVM_RF_CFG_FLAVOR_MSK_8000(radio_cfg);
2109         data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
2110         data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
2111 }
2112
2113 static int
2114 iwm_parse_nvm_data(struct iwm_softc *sc,
2115                    const uint16_t *nvm_hw, const uint16_t *nvm_sw,
2116                    const uint16_t *nvm_calib, const uint16_t *mac_override,
2117                    const uint16_t *phy_sku, const uint16_t *regulatory)
2118 {
2119         struct iwm_nvm_data *data = &sc->sc_nvm;
2120         uint8_t hw_addr[IEEE80211_ADDR_LEN];
2121         uint32_t sku, radio_cfg;
2122
2123         data->nvm_version = iwm_get_nvm_version(sc, nvm_sw);
2124
2125         radio_cfg = iwm_get_radio_cfg(sc, nvm_sw, phy_sku);
2126         iwm_set_radio_cfg(sc, data, radio_cfg);
2127
2128         sku = iwm_get_sku(sc, nvm_sw, phy_sku);
2129         data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
2130         data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
2131         data->sku_cap_11n_enable = 0;
2132
2133         data->n_hw_addrs = iwm_get_n_hw_addrs(sc, nvm_sw);
2134
2135         /* The byte order is little endian 16 bit, meaning 214365 */
2136         if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2137                 IEEE80211_ADDR_COPY(hw_addr, nvm_hw + IWM_HW_ADDR);
2138                 data->hw_addr[0] = hw_addr[1];
2139                 data->hw_addr[1] = hw_addr[0];
2140                 data->hw_addr[2] = hw_addr[3];
2141                 data->hw_addr[3] = hw_addr[2];
2142                 data->hw_addr[4] = hw_addr[5];
2143                 data->hw_addr[5] = hw_addr[4];
2144         } else {
2145                 iwm_set_hw_address_8000(sc, data, mac_override, nvm_hw);
2146         }
2147
2148         if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2149                 memcpy(data->nvm_ch_flags, &nvm_sw[IWM_NVM_CHANNELS],
2150                     IWM_NUM_CHANNELS * sizeof(uint16_t));
2151         } else {
2152                 memcpy(data->nvm_ch_flags, &regulatory[IWM_NVM_CHANNELS_8000],
2153                     IWM_NUM_CHANNELS_8000 * sizeof(uint16_t));
2154         }
2155
2156         return 0;
2157 }
2158
2159 /*
2160  * END NVM PARSE
2161  */
2162
2163 static int
2164 iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
2165 {
2166         const uint16_t *hw, *sw, *calib, *regulatory, *mac_override, *phy_sku;
2167
2168         /* Checking for required sections */
2169         if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
2170                 if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2171                     !sections[IWM_NVM_SECTION_TYPE_HW].data) {
2172                         device_printf(sc->sc_dev,
2173                             "Can't parse empty OTP/NVM sections\n");
2174                         return ENOENT;
2175                 }
2176
2177                 hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW].data;
2178         } else if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
2179                 /* SW and REGULATORY sections are mandatory */
2180                 if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
2181                     !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
2182                         device_printf(sc->sc_dev,
2183                             "Can't parse empty OTP/NVM sections\n");
2184                         return ENOENT;
2185                 }
2186                 /* MAC_OVERRIDE or at least HW section must exist */
2187                 if (!sections[IWM_NVM_SECTION_TYPE_HW_8000].data &&
2188                     !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
2189                         device_printf(sc->sc_dev,
2190                             "Can't parse mac_address, empty sections\n");
2191                         return ENOENT;
2192                 }
2193
2194                 /* PHY_SKU section is mandatory in B0 */
2195                 if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
2196                         device_printf(sc->sc_dev,
2197                             "Can't parse phy_sku in B0, empty sections\n");
2198                         return ENOENT;
2199                 }
2200
2201                 hw = (const uint16_t *)
2202                     sections[IWM_NVM_SECTION_TYPE_HW_8000].data;
2203         } else {
2204                 panic("unknown device family %d\n", sc->sc_device_family);
2205         }
2206
2207         sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
2208         calib = (const uint16_t *)
2209             sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
2210         regulatory = (const uint16_t *)
2211             sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
2212         mac_override = (const uint16_t *)
2213             sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
2214         phy_sku = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
2215
2216         return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
2217             phy_sku, regulatory);
2218 }
2219
2220 static int
2221 iwm_nvm_init(struct iwm_softc *sc)
2222 {
2223         struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
2224         int i, section, error;
2225         uint16_t len;
2226         uint8_t *buf;
2227         const size_t bufsz = IWM_MAX_NVM_SECTION_SIZE;
2228
2229         memset(nvm_sections, 0 , sizeof(nvm_sections));
2230
2231         buf = malloc(bufsz, M_DEVBUF, M_NOWAIT);
2232         if (buf == NULL)
2233                 return ENOMEM;
2234
2235         for (i = 0; i < nitems(nvm_to_read); i++) {
2236                 section = nvm_to_read[i];
2237                 KASSERT(section <= nitems(nvm_sections),
2238                     ("too many sections"));
2239
2240                 error = iwm_nvm_read_section(sc, section, buf, &len, bufsz);
2241                 if (error) {
2242                         error = 0;
2243                         continue;
2244                 }
2245                 nvm_sections[section].data = malloc(len, M_DEVBUF, M_NOWAIT);
2246                 if (nvm_sections[section].data == NULL) {
2247                         error = ENOMEM;
2248                         break;
2249                 }
2250                 memcpy(nvm_sections[section].data, buf, len);
2251                 nvm_sections[section].length = len;
2252         }
2253         free(buf, M_DEVBUF);
2254         if (error == 0)
2255                 error = iwm_parse_nvm_sections(sc, nvm_sections);
2256
2257         for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) {
2258                 if (nvm_sections[i].data != NULL)
2259                         free(nvm_sections[i].data, M_DEVBUF);
2260         }
2261
2262         return error;
2263 }
2264
2265 /*
2266  * Firmware loading gunk.  This is kind of a weird hybrid between the
2267  * iwn driver and the Linux iwlwifi driver.
2268  */
2269
2270 static int
2271 iwm_firmware_load_sect(struct iwm_softc *sc, uint32_t dst_addr,
2272         const uint8_t *section, uint32_t byte_cnt)
2273 {
2274         int error = EINVAL;
2275         uint32_t chunk_sz, offset;
2276
2277         chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, byte_cnt);
2278
2279         for (offset = 0; offset < byte_cnt; offset += chunk_sz) {
2280                 uint32_t addr, len;
2281                 const uint8_t *data;
2282
2283                 addr = dst_addr + offset;
2284                 len = MIN(chunk_sz, byte_cnt - offset);
2285                 data = section + offset;
2286
2287                 error = iwm_firmware_load_chunk(sc, addr, data, len);
2288                 if (error)
2289                         break;
2290         }
2291
2292         return error;
2293 }
2294
2295 static int
2296 iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
2297         const uint8_t *chunk, uint32_t byte_cnt)
2298 {
2299         struct iwm_dma_info *dma = &sc->fw_dma;
2300         int error;
2301
2302         /* Copy firmware chunk into pre-allocated DMA-safe memory. */
2303         memcpy(dma->vaddr, chunk, byte_cnt);
2304         bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
2305
2306         if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2307             dst_addr <= IWM_FW_MEM_EXTENDED_END) {
2308                 iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
2309                     IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2310         }
2311
2312         sc->sc_fw_chunk_done = 0;
2313
2314         if (!iwm_nic_lock(sc))
2315                 return EBUSY;
2316
2317         IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2318             IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
2319         IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
2320             dst_addr);
2321         IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
2322             dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
2323         IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
2324             (iwm_get_dma_hi_addr(dma->paddr)
2325               << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
2326         IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
2327             1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
2328             1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
2329             IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
2330         IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
2331             IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE    |
2332             IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
2333             IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
2334
2335         iwm_nic_unlock(sc);
2336
2337         /* wait 1s for this segment to load */
2338         while (!sc->sc_fw_chunk_done)
2339                 if ((error = msleep(&sc->sc_fw, &sc->sc_mtx, 0, "iwmfw", hz)) != 0)
2340                         break;
2341
2342         if (!sc->sc_fw_chunk_done) {
2343                 device_printf(sc->sc_dev,
2344                     "fw chunk addr 0x%x len %d failed to load\n",
2345                     dst_addr, byte_cnt);
2346         }
2347
2348         if (dst_addr >= IWM_FW_MEM_EXTENDED_START &&
2349             dst_addr <= IWM_FW_MEM_EXTENDED_END && iwm_nic_lock(sc)) {
2350                 iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
2351                     IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
2352                 iwm_nic_unlock(sc);
2353         }
2354
2355         return error;
2356 }
2357
2358 int
2359 iwm_load_cpu_sections_8000(struct iwm_softc *sc, struct iwm_fw_sects *fws,
2360     int cpu, int *first_ucode_section)
2361 {
2362         int shift_param;
2363         int i, error = 0, sec_num = 0x1;
2364         uint32_t val, last_read_idx = 0;
2365         const void *data;
2366         uint32_t dlen;
2367         uint32_t offset;
2368
2369         if (cpu == 1) {
2370                 shift_param = 0;
2371                 *first_ucode_section = 0;
2372         } else {
2373                 shift_param = 16;
2374                 (*first_ucode_section)++;
2375         }
2376
2377         for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) {
2378                 last_read_idx = i;
2379                 data = fws->fw_sect[i].fws_data;
2380                 dlen = fws->fw_sect[i].fws_len;
2381                 offset = fws->fw_sect[i].fws_devoff;
2382
2383                 /*
2384                  * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
2385                  * CPU1 to CPU2.
2386                  * PAGING_SEPARATOR_SECTION delimiter - separate between
2387                  * CPU2 non paged to CPU2 paging sec.
2388                  */
2389                 if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
2390                     offset == IWM_PAGING_SEPARATOR_SECTION)
2391                         break;
2392
2393                 IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2394                     "LOAD FIRMWARE chunk %d offset 0x%x len %d for cpu %d\n",
2395                     i, offset, dlen, cpu);
2396
2397                 if (dlen > sc->sc_fwdmasegsz) {
2398                         IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2399                             "chunk %d too large (%d bytes)\n", i, dlen);
2400                         error = EFBIG;
2401                 } else {
2402                         error = iwm_firmware_load_sect(sc, offset, data, dlen);
2403                 }
2404                 if (error) {
2405                         device_printf(sc->sc_dev,
2406                             "could not load firmware chunk %d (error %d)\n",
2407                             i, error);
2408                         return error;
2409                 }
2410
2411                 /* Notify the ucode of the loaded section number and status */
2412                 if (iwm_nic_lock(sc)) {
2413                         val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
2414                         val = val | (sec_num << shift_param);
2415                         IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
2416                         sec_num = (sec_num << 1) | 0x1;
2417                         iwm_nic_unlock(sc);
2418
2419                         /*
2420                          * The firmware won't load correctly without this delay.
2421                          */
2422                         DELAY(8000);
2423                 }
2424         }
2425
2426         *first_ucode_section = last_read_idx;
2427
2428         if (iwm_nic_lock(sc)) {
2429                 if (cpu == 1)
2430                         IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
2431                 else
2432                         IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
2433                 iwm_nic_unlock(sc);
2434         }
2435
2436         return 0;
2437 }
2438
2439 int
2440 iwm_load_firmware_8000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2441 {
2442         struct iwm_fw_sects *fws;
2443         int error = 0;
2444         int first_ucode_section;
2445
2446         IWM_DPRINTF(sc, IWM_DEBUG_RESET, "loading ucode type %d\n",
2447             ucode_type);
2448
2449         fws = &sc->sc_fw.fw_sects[ucode_type];
2450
2451         /* configure the ucode to be ready to get the secured image */
2452         /* release CPU reset */
2453         iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, IWM_RELEASE_CPU_RESET_BIT);
2454
2455         /* load to FW the binary Secured sections of CPU1 */
2456         error = iwm_load_cpu_sections_8000(sc, fws, 1, &first_ucode_section);
2457         if (error)
2458                 return error;
2459
2460         /* load to FW the binary sections of CPU2 */
2461         return iwm_load_cpu_sections_8000(sc, fws, 2, &first_ucode_section);
2462 }
2463
2464 static int
2465 iwm_load_firmware_7000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2466 {
2467         struct iwm_fw_sects *fws;
2468         int error, i;
2469         const void *data;
2470         uint32_t dlen;
2471         uint32_t offset;
2472
2473         sc->sc_uc.uc_intr = 0;
2474
2475         fws = &sc->sc_fw.fw_sects[ucode_type];
2476         for (i = 0; i < fws->fw_count; i++) {
2477                 data = fws->fw_sect[i].fws_data;
2478                 dlen = fws->fw_sect[i].fws_len;
2479                 offset = fws->fw_sect[i].fws_devoff;
2480                 IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
2481                     "LOAD FIRMWARE type %d offset %u len %d\n",
2482                     ucode_type, offset, dlen);
2483                 if (dlen > sc->sc_fwdmasegsz) {
2484                         IWM_DPRINTF(sc, IWM_DEBUG_FIRMWARE_TLV,
2485                             "chunk %d too large (%d bytes)\n", i, dlen);
2486                         error = EFBIG;
2487                 } else {
2488                         error = iwm_firmware_load_sect(sc, offset, data, dlen);
2489                 }
2490                 if (error) {
2491                         device_printf(sc->sc_dev,
2492                             "could not load firmware chunk %u of %u "
2493                             "(error=%d)\n", i, fws->fw_count, error);
2494                         return error;
2495                 }
2496         }
2497
2498         IWM_WRITE(sc, IWM_CSR_RESET, 0);
2499
2500         return 0;
2501 }
2502
2503 static int
2504 iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2505 {
2506         int error, w;
2507
2508         if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
2509                 error = iwm_load_firmware_8000(sc, ucode_type);
2510         else
2511                 error = iwm_load_firmware_7000(sc, ucode_type);
2512         if (error)
2513                 return error;
2514
2515         /* wait for the firmware to load */
2516         for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) {
2517                 error = msleep(&sc->sc_uc, &sc->sc_mtx, 0, "iwmuc", hz/10);
2518         }
2519         if (error || !sc->sc_uc.uc_ok) {
2520                 device_printf(sc->sc_dev, "could not load firmware\n");
2521                 if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
2522                         device_printf(sc->sc_dev, "cpu1 status: 0x%x\n",
2523                             iwm_read_prph(sc, IWM_SB_CPU_1_STATUS));
2524                         device_printf(sc->sc_dev, "cpu2 status: 0x%x\n",
2525                             iwm_read_prph(sc, IWM_SB_CPU_2_STATUS));
2526                 }
2527         }
2528
2529         /*
2530          * Give the firmware some time to initialize.
2531          * Accessing it too early causes errors.
2532          */
2533         msleep(&w, &sc->sc_mtx, 0, "iwmfwinit", hz);
2534
2535         return error;
2536 }
2537
2538 /* iwlwifi: pcie/trans.c */
2539 static int
2540 iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
2541 {
2542         int error;
2543
2544         IWM_WRITE(sc, IWM_CSR_INT, ~0);
2545
2546         if ((error = iwm_nic_init(sc)) != 0) {
2547                 device_printf(sc->sc_dev, "unable to init nic\n");
2548                 return error;
2549         }
2550
2551         /* make sure rfkill handshake bits are cleared */
2552         IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2553         IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
2554             IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
2555
2556         /* clear (again), then enable host interrupts */
2557         IWM_WRITE(sc, IWM_CSR_INT, ~0);
2558         iwm_enable_interrupts(sc);
2559
2560         /* really make sure rfkill handshake bits are cleared */
2561         /* maybe we should write a few times more?  just to make sure */
2562         IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2563         IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
2564
2565         /* Load the given image to the HW */
2566         return iwm_load_firmware(sc, ucode_type);
2567 }
2568
2569 static int
2570 iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
2571 {
2572         struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
2573                 .valid = htole32(valid_tx_ant),
2574         };
2575
2576         return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD,
2577             IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd);
2578 }
2579
2580 /* iwlwifi: mvm/fw.c */
2581 static int
2582 iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
2583 {
2584         struct iwm_phy_cfg_cmd phy_cfg_cmd;
2585         enum iwm_ucode_type ucode_type = sc->sc_uc_current;
2586
2587         /* Set parameters */
2588         phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config);
2589         phy_cfg_cmd.calib_control.event_trigger =
2590             sc->sc_default_calib[ucode_type].event_trigger;
2591         phy_cfg_cmd.calib_control.flow_trigger =
2592             sc->sc_default_calib[ucode_type].flow_trigger;
2593
2594         IWM_DPRINTF(sc, IWM_DEBUG_CMD | IWM_DEBUG_RESET,
2595             "Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg);
2596         return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC,
2597             sizeof(phy_cfg_cmd), &phy_cfg_cmd);
2598 }
2599
2600 static int
2601 iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc,
2602         enum iwm_ucode_type ucode_type)
2603 {
2604         enum iwm_ucode_type old_type = sc->sc_uc_current;
2605         int error;
2606
2607         if ((error = iwm_read_firmware(sc, ucode_type)) != 0) {
2608                 device_printf(sc->sc_dev, "iwm_read_firmware: failed %d\n",
2609                         error);
2610                 return error;
2611         }
2612
2613         sc->sc_uc_current = ucode_type;
2614         error = iwm_start_fw(sc, ucode_type);
2615         if (error) {
2616                 device_printf(sc->sc_dev, "iwm_start_fw: failed %d\n", error);
2617                 sc->sc_uc_current = old_type;
2618                 return error;
2619         }
2620
2621         error = iwm_post_alive(sc);
2622         if (error) {
2623                 device_printf(sc->sc_dev, "iwm_fw_alive: failed %d\n", error);
2624         }
2625         return error;
2626 }
2627
2628 /*
2629  * mvm misc bits
2630  */
2631
2632 /*
2633  * follows iwlwifi/fw.c
2634  */
2635 static int
2636 iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
2637 {
2638         int error;
2639
2640         /* do not operate with rfkill switch turned on */
2641         if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
2642                 device_printf(sc->sc_dev,
2643                     "radio is disabled by hardware switch\n");
2644                 return EPERM;
2645         }
2646
2647         sc->sc_init_complete = 0;
2648         if ((error = iwm_mvm_load_ucode_wait_alive(sc,
2649             IWM_UCODE_TYPE_INIT)) != 0) {
2650                 device_printf(sc->sc_dev, "failed to load init firmware\n");
2651                 return error;
2652         }
2653
2654         if (justnvm) {
2655                 if ((error = iwm_nvm_init(sc)) != 0) {
2656                         device_printf(sc->sc_dev, "failed to read nvm\n");
2657                         return error;
2658                 }
2659                 IEEE80211_ADDR_COPY(sc->sc_ic.ic_macaddr, sc->sc_nvm.hw_addr);
2660
2661                 return 0;
2662         }
2663
2664         if ((error = iwm_send_bt_init_conf(sc)) != 0) {
2665                 device_printf(sc->sc_dev,
2666                     "failed to send bt coex configuration: %d\n", error);
2667                 return error;
2668         }
2669
2670         /* Init Smart FIFO. */
2671         error = iwm_mvm_sf_config(sc, IWM_SF_INIT_OFF);
2672         if (error != 0)
2673                 return error;
2674
2675         IWM_DPRINTF(sc, IWM_DEBUG_RESET,
2676             "%s: phy_txant=0x%08x, nvm_valid_tx_ant=0x%02x, valid=0x%02x\n",
2677             __func__,
2678             ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_TX_CHAIN)
2679               >> IWM_FW_PHY_CFG_TX_CHAIN_POS),
2680             sc->sc_nvm.valid_tx_ant,
2681             iwm_fw_valid_tx_ant(sc));
2682
2683
2684         /* Send TX valid antennas before triggering calibrations */
2685         if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) {
2686                 device_printf(sc->sc_dev,
2687                     "failed to send antennas before calibration: %d\n", error);
2688                 return error;
2689         }
2690
2691         /*
2692          * Send phy configurations command to init uCode
2693          * to start the 16.0 uCode init image internal calibrations.
2694          */
2695         if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) {
2696                 device_printf(sc->sc_dev,
2697                     "%s: failed to run internal calibration: %d\n",
2698                     __func__, error);
2699                 return error;
2700         }
2701
2702         /*
2703          * Nothing to do but wait for the init complete notification
2704          * from the firmware
2705          */
2706         while (!sc->sc_init_complete) {
2707                 error = msleep(&sc->sc_init_complete, &sc->sc_mtx,
2708                                  0, "iwminit", 2*hz);
2709                 if (error) {
2710                         device_printf(sc->sc_dev, "init complete failed: %d\n",
2711                                 sc->sc_init_complete);
2712                         break;
2713                 }
2714         }
2715
2716         IWM_DPRINTF(sc, IWM_DEBUG_RESET, "init %scomplete\n",
2717             sc->sc_init_complete ? "" : "not ");
2718
2719         return error;
2720 }
2721
2722 /*
2723  * receive side
2724  */
2725
2726 /* (re)stock rx ring, called at init-time and at runtime */
2727 static int
2728 iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
2729 {
2730         struct iwm_rx_ring *ring = &sc->rxq;
2731         struct iwm_rx_data *data = &ring->data[idx];
2732         struct mbuf *m;
2733         bus_dmamap_t dmamap = NULL;
2734         bus_dma_segment_t seg;
2735         int nsegs, error;
2736
2737         m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWM_RBUF_SIZE);
2738         if (m == NULL)
2739                 return ENOBUFS;
2740
2741         m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2742         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, ring->spare_map, m,
2743             &seg, &nsegs, BUS_DMA_NOWAIT);
2744         if (error != 0) {
2745                 device_printf(sc->sc_dev,
2746                     "%s: can't map mbuf, error %d\n", __func__, error);
2747                 goto fail;
2748         }
2749
2750         if (data->m != NULL)
2751                 bus_dmamap_unload(ring->data_dmat, data->map);
2752
2753         /* Swap ring->spare_map with data->map */
2754         dmamap = data->map;
2755         data->map = ring->spare_map;
2756         ring->spare_map = dmamap;
2757
2758         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREREAD);
2759         data->m = m;
2760
2761         /* Update RX descriptor. */
2762         KASSERT((seg.ds_addr & 255) == 0, ("seg.ds_addr not aligned"));
2763         ring->desc[idx] = htole32(seg.ds_addr >> 8);
2764         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2765             BUS_DMASYNC_PREWRITE);
2766
2767         return 0;
2768 fail:
2769         m_freem(m);
2770         return error;
2771 }
2772
2773 /* iwlwifi: mvm/rx.c */
2774 #define IWM_RSSI_OFFSET 50
2775 static int
2776 iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2777 {
2778         int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm;
2779         uint32_t agc_a, agc_b;
2780         uint32_t val;
2781
2782         val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]);
2783         agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS;
2784         agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS;
2785
2786         val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]);
2787         rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS;
2788         rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS;
2789
2790         /*
2791          * dBm = rssi dB - agc dB - constant.
2792          * Higher AGC (higher radio gain) means lower signal.
2793          */
2794         rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a;
2795         rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b;
2796         max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm);
2797
2798         IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2799             "Rssi In A %d B %d Max %d AGCA %d AGCB %d\n",
2800             rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b);
2801
2802         return max_rssi_dbm;
2803 }
2804
2805 /* iwlwifi: mvm/rx.c */
2806 /*
2807  * iwm_mvm_get_signal_strength - use new rx PHY INFO API
2808  * values are reported by the fw as positive values - need to negate
2809  * to obtain their dBM.  Account for missing antennas by replacing 0
2810  * values by -256dBm: practically 0 power and a non-feasible 8 bit value.
2811  */
2812 static int
2813 iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
2814 {
2815         int energy_a, energy_b, energy_c, max_energy;
2816         uint32_t val;
2817
2818         val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
2819         energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
2820             IWM_RX_INFO_ENERGY_ANT_A_POS;
2821         energy_a = energy_a ? -energy_a : -256;
2822         energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
2823             IWM_RX_INFO_ENERGY_ANT_B_POS;
2824         energy_b = energy_b ? -energy_b : -256;
2825         energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
2826             IWM_RX_INFO_ENERGY_ANT_C_POS;
2827         energy_c = energy_c ? -energy_c : -256;
2828         max_energy = MAX(energy_a, energy_b);
2829         max_energy = MAX(max_energy, energy_c);
2830
2831         IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2832             "energy In A %d B %d C %d , and max %d\n",
2833             energy_a, energy_b, energy_c, max_energy);
2834
2835         return max_energy;
2836 }
2837
2838 static void
2839 iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc,
2840         struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2841 {
2842         struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
2843
2844         IWM_DPRINTF(sc, IWM_DEBUG_RECV, "received PHY stats\n");
2845         bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2846
2847         memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
2848 }
2849
2850 /*
2851  * Retrieve the average noise (in dBm) among receivers.
2852  */
2853 static int
2854 iwm_get_noise(struct iwm_softc *sc,
2855     const struct iwm_mvm_statistics_rx_non_phy *stats)
2856 {
2857         int i, total, nbant, noise;
2858
2859         total = nbant = noise = 0;
2860         for (i = 0; i < 3; i++) {
2861                 noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
2862                 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: i=%d, noise=%d\n",
2863                     __func__,
2864                     i,
2865                     noise);
2866
2867                 if (noise) {
2868                         total += noise;
2869                         nbant++;
2870                 }
2871         }
2872
2873         IWM_DPRINTF(sc, IWM_DEBUG_RECV, "%s: nbant=%d, total=%d\n",
2874             __func__, nbant, total);
2875 #if 0
2876         /* There should be at least one antenna but check anyway. */
2877         return (nbant == 0) ? -127 : (total / nbant) - 107;
2878 #else
2879         /* For now, just hard-code it to -96 to be safe */
2880         return (-96);
2881 #endif
2882 }
2883
2884 /*
2885  * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler
2886  *
2887  * Handles the actual data of the Rx packet from the fw
2888  */
2889 static void
2890 iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc,
2891         struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
2892 {
2893         struct ieee80211com *ic = &sc->sc_ic;
2894         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2895         struct ieee80211_frame *wh;
2896         struct ieee80211_node *ni;
2897         struct ieee80211_rx_stats rxs;
2898         struct mbuf *m;
2899         struct iwm_rx_phy_info *phy_info;
2900         struct iwm_rx_mpdu_res_start *rx_res;
2901         uint32_t len;
2902         uint32_t rx_pkt_status;
2903         int rssi;
2904
2905         bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2906
2907         phy_info = &sc->sc_last_phy_info;
2908         rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
2909         wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
2910         len = le16toh(rx_res->byte_count);
2911         rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len));
2912
2913         m = data->m;
2914         m->m_data = pkt->data + sizeof(*rx_res);
2915         m->m_pkthdr.len = m->m_len = len;
2916
2917         if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
2918                 device_printf(sc->sc_dev,
2919                     "dsp size out of range [0,20]: %d\n",
2920                     phy_info->cfg_phy_cnt);
2921                 goto fail;
2922         }
2923
2924         if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
2925             !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
2926                 IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2927                     "Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status);
2928                 goto fail;
2929         }
2930
2931         if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) {
2932                 rssi = iwm_mvm_get_signal_strength(sc, phy_info);
2933         } else {
2934                 rssi = iwm_mvm_calc_rssi(sc, phy_info);
2935         }
2936
2937         /* Note: RSSI is absolute (ie a -ve value) */
2938         if (rssi < IWM_MIN_DBM)
2939                 rssi = IWM_MIN_DBM;
2940         else if (rssi > IWM_MAX_DBM)
2941                 rssi = IWM_MAX_DBM;
2942
2943         /* Map it to relative value */
2944         rssi = rssi - sc->sc_noise;
2945
2946         /* replenish ring for the buffer we're going to feed to the sharks */
2947         if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) {
2948                 device_printf(sc->sc_dev, "%s: unable to add more buffers\n",
2949                     __func__);
2950                 goto fail;
2951         }
2952
2953         IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2954             "%s: rssi=%d, noise=%d\n", __func__, rssi, sc->sc_noise);
2955
2956         ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2957
2958         IWM_DPRINTF(sc, IWM_DEBUG_RECV,
2959             "%s: phy_info: channel=%d, flags=0x%08x\n",
2960             __func__,
2961             le16toh(phy_info->channel),
2962             le16toh(phy_info->phy_flags));
2963
2964         /*
2965          * Populate an RX state struct with the provided information.
2966          */
2967         bzero(&rxs, sizeof(rxs));
2968         rxs.r_flags |= IEEE80211_R_IEEE | IEEE80211_R_FREQ;
2969         rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI;
2970         rxs.c_ieee = le16toh(phy_info->channel);
2971         if (le16toh(phy_info->phy_flags & IWM_RX_RES_PHY_FLAGS_BAND_24)) {
2972                 rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_2GHZ);
2973         } else {
2974                 rxs.c_freq = ieee80211_ieee2mhz(rxs.c_ieee, IEEE80211_CHAN_5GHZ);
2975         }
2976
2977         /* rssi is in 1/2db units */
2978         rxs.c_rssi = rssi * 2;
2979         rxs.c_nf = sc->sc_noise;
2980         if (ieee80211_add_rx_params(m, &rxs) == 0)
2981                 goto fail;
2982
2983         if (ieee80211_radiotap_active_vap(vap)) {
2984                 struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
2985
2986                 tap->wr_flags = 0;
2987                 if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
2988                         tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2989                 tap->wr_chan_freq = htole16(rxs.c_freq);
2990                 /* XXX only if ic->ic_curchan->ic_ieee == rxs.c_ieee */
2991                 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
2992                 tap->wr_dbm_antsignal = (int8_t)rssi;
2993                 tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
2994                 tap->wr_tsft = phy_info->system_timestamp;
2995                 switch (phy_info->rate) {
2996                 /* CCK rates. */
2997                 case  10: tap->wr_rate =   2; break;
2998                 case  20: tap->wr_rate =   4; break;
2999                 case  55: tap->wr_rate =  11; break;
3000                 case 110: tap->wr_rate =  22; break;
3001                 /* OFDM rates. */
3002                 case 0xd: tap->wr_rate =  12; break;
3003                 case 0xf: tap->wr_rate =  18; break;
3004                 case 0x5: tap->wr_rate =  24; break;
3005                 case 0x7: tap->wr_rate =  36; break;
3006                 case 0x9: tap->wr_rate =  48; break;
3007                 case 0xb: tap->wr_rate =  72; break;
3008                 case 0x1: tap->wr_rate =  96; break;
3009                 case 0x3: tap->wr_rate = 108; break;
3010                 /* Unknown rate: should not happen. */
3011                 default:  tap->wr_rate =   0;
3012                 }
3013         }
3014
3015         IWM_UNLOCK(sc);
3016         if (ni != NULL) {
3017                 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "input m %p\n", m);
3018                 ieee80211_input_mimo(ni, m);
3019                 ieee80211_free_node(ni);
3020         } else {
3021                 IWM_DPRINTF(sc, IWM_DEBUG_RECV, "inputall m %p\n", m);
3022                 ieee80211_input_mimo_all(ic, m);
3023         }
3024         IWM_LOCK(sc);
3025
3026         return;
3027
3028 fail:   counter_u64_add(ic->ic_ierrors, 1);
3029 }
3030
3031 static int
3032 iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
3033         struct iwm_node *in)
3034 {
3035         struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data;
3036         struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3037         struct ieee80211_node *ni = &in->in_ni;
3038         int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
3039
3040         KASSERT(tx_resp->frame_count == 1, ("too many frames"));
3041
3042         /* Update rate control statistics. */
3043         IWM_DPRINTF(sc, IWM_DEBUG_XMIT, "%s: status=0x%04x, seq=%d, fc=%d, btc=%d, frts=%d, ff=%d, irate=%08x, wmt=%d\n",
3044             __func__,
3045             (int) le16toh(tx_resp->status.status),
3046             (int) le16toh(tx_resp->status.sequence),
3047             tx_resp->frame_count,
3048             tx_resp->bt_kill_count,
3049             tx_resp->failure_rts,
3050             tx_resp->failure_frame,
3051             le32toh(tx_resp->initial_rate),
3052             (int) le16toh(tx_resp->wireless_media_time));
3053
3054         txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3055                      IEEE80211_RATECTL_STATUS_LONG_RETRY;
3056         txs->short_retries = tx_resp->failure_rts;
3057         txs->long_retries = tx_resp->failure_frame;
3058         if (status != IWM_TX_STATUS_SUCCESS &&
3059             status != IWM_TX_STATUS_DIRECT_DONE) {
3060                 switch (status) {
3061                 case IWM_TX_STATUS_FAIL_SHORT_LIMIT:
3062                         txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3063                         break;
3064                 case IWM_TX_STATUS_FAIL_LONG_LIMIT:
3065                         txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3066                         break;
3067                 case IWM_TX_STATUS_FAIL_LIFE_EXPIRE:
3068                         txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3069                         break;
3070                 default:
3071                         txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3072                         break;
3073                 }
3074         } else {
3075                 txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3076         }
3077         ieee80211_ratectl_tx_complete(ni, txs);
3078
3079         return (txs->status != IEEE80211_RATECTL_TX_SUCCESS);
3080 }
3081
3082 static void
3083 iwm_mvm_rx_tx_cmd(struct iwm_softc *sc,
3084         struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
3085 {
3086         struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
3087         int idx = cmd_hdr->idx;
3088         int qid = cmd_hdr->qid;
3089         struct iwm_tx_ring *ring = &sc->txq[qid];
3090         struct iwm_tx_data *txd = &ring->data[idx];
3091         struct iwm_node *in = txd->in;
3092         struct mbuf *m = txd->m;
3093         int status;
3094
3095         KASSERT(txd->done == 0, ("txd not done"));
3096         KASSERT(txd->in != NULL, ("txd without node"));
3097         KASSERT(txd->m != NULL, ("txd without mbuf"));
3098
3099         bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3100
3101         sc->sc_tx_timer = 0;
3102
3103         status = iwm_mvm_rx_tx_cmd_single(sc, pkt, in);
3104
3105         /* Unmap and free mbuf. */
3106         bus_dmamap_sync(ring->data_dmat, txd->map, BUS_DMASYNC_POSTWRITE);
3107         bus_dmamap_unload(ring->data_dmat, txd->map);
3108
3109         IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3110             "free txd %p, in %p\n", txd, txd->in);
3111         txd->done = 1;
3112         txd->m = NULL;
3113         txd->in = NULL;
3114
3115         ieee80211_tx_complete(&in->in_ni, m, status);
3116
3117         if (--ring->queued < IWM_TX_RING_LOMARK) {
3118                 sc->qfullmsk &= ~(1 << ring->qid);
3119                 if (sc->qfullmsk == 0) {
3120                         /*
3121                          * Well, we're in interrupt context, but then again
3122                          * I guess net80211 does all sorts of stunts in
3123                          * interrupt context, so maybe this is no biggie.
3124                          */
3125                         iwm_start(sc);
3126                 }
3127         }
3128 }
3129
3130 /*
3131  * transmit side
3132  */
3133
3134 /*
3135  * Process a "command done" firmware notification.  This is where we wakeup
3136  * processes waiting for a synchronous command completion.
3137  * from if_iwn
3138  */
3139 static void
3140 iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt)
3141 {
3142         struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE];
3143         struct iwm_tx_data *data;
3144
3145         if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) {
3146                 return; /* Not a command ack. */
3147         }
3148
3149         /* XXX wide commands? */
3150         IWM_DPRINTF(sc, IWM_DEBUG_CMD,
3151             "cmd notification type 0x%x qid %d idx %d\n",
3152             pkt->hdr.code, pkt->hdr.qid, pkt->hdr.idx);
3153
3154         data = &ring->data[pkt->hdr.idx];
3155
3156         /* If the command was mapped in an mbuf, free it. */
3157         if (data->m != NULL) {
3158                 bus_dmamap_sync(ring->data_dmat, data->map,
3159                     BUS_DMASYNC_POSTWRITE);
3160                 bus_dmamap_unload(ring->data_dmat, data->map);
3161                 m_freem(data->m);
3162                 data->m = NULL;
3163         }
3164         wakeup(&ring->desc[pkt->hdr.idx]);
3165 }
3166
3167 #if 0
3168 /*
3169  * necessary only for block ack mode
3170  */
3171 void
3172 iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
3173         uint16_t len)
3174 {
3175         struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
3176         uint16_t w_val;
3177
3178         scd_bc_tbl = sc->sched_dma.vaddr;
3179
3180         len += 8; /* magic numbers came naturally from paris */
3181         if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
3182                 len = roundup(len, 4) / 4;
3183
3184         w_val = htole16(sta_id << 12 | len);
3185
3186         /* Update TX scheduler. */
3187         scd_bc_tbl[qid].tfd_offset[idx] = w_val;
3188         bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3189             BUS_DMASYNC_PREWRITE);
3190
3191         /* I really wonder what this is ?!? */
3192         if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
3193                 scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
3194                 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3195                     BUS_DMASYNC_PREWRITE);
3196         }
3197 }
3198 #endif
3199
3200 /*
3201  * Take an 802.11 (non-n) rate, find the relevant rate
3202  * table entry.  return the index into in_ridx[].
3203  *
3204  * The caller then uses that index back into in_ridx
3205  * to figure out the rate index programmed /into/
3206  * the firmware for this given node.
3207  */
3208 static int
3209 iwm_tx_rateidx_lookup(struct iwm_softc *sc, struct iwm_node *in,
3210     uint8_t rate)
3211 {
3212         int i;
3213         uint8_t r;
3214
3215         for (i = 0; i < nitems(in->in_ridx); i++) {
3216                 r = iwm_rates[in->in_ridx[i]].rate;
3217                 if (rate == r)
3218                         return (i);
3219         }
3220
3221         IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3222             "%s: couldn't find an entry for rate=%d\n",
3223             __func__,
3224             rate);
3225
3226         /* XXX Return the first */
3227         /* XXX TODO: have it return the /lowest/ */
3228         return (0);
3229 }
3230
3231 static int
3232 iwm_tx_rateidx_global_lookup(struct iwm_softc *sc, uint8_t rate)
3233 {
3234         int i;
3235
3236         for (i = 0; i < nitems(iwm_rates); i++) {
3237                 if (iwm_rates[i].rate == rate)
3238                         return (i);
3239         }
3240         /* XXX error? */
3241         IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3242             "%s: couldn't find an entry for rate=%d\n",
3243             __func__,
3244             rate);
3245         return (0);
3246 }
3247
3248 /*
3249  * Fill in the rate related information for a transmit command.
3250  */
3251 static const struct iwm_rate *
3252 iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
3253         struct mbuf *m, struct iwm_tx_cmd *tx)
3254 {
3255         struct ieee80211_node *ni = &in->in_ni;
3256         struct ieee80211_frame *wh;
3257         const struct ieee80211_txparam *tp = ni->ni_txparms;
3258         const struct iwm_rate *rinfo;
3259         int type;
3260         int ridx, rate_flags;
3261
3262         wh = mtod(m, struct ieee80211_frame *);
3263         type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3264
3265         tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
3266         tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
3267
3268         if (type == IEEE80211_FC0_TYPE_MGT) {
3269                 ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3270                 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3271                     "%s: MGT (%d)\n", __func__, tp->mgmtrate);
3272         } else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3273                 ridx = iwm_tx_rateidx_global_lookup(sc, tp->mcastrate);
3274                 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3275                     "%s: MCAST (%d)\n", __func__, tp->mcastrate);
3276         } else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
3277                 ridx = iwm_tx_rateidx_global_lookup(sc, tp->ucastrate);
3278                 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3279                     "%s: FIXED_RATE (%d)\n", __func__, tp->ucastrate);
3280         } else if (m->m_flags & M_EAPOL) {
3281                 ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3282                 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
3283                     "%s: EAPOL\n", __func__);
3284         } else if (type == IEEE80211_FC0_TYPE_DATA) {
3285                 int i;
3286
3287                 /* for data frames, use RS table */
3288                 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DATA\n", __func__);
3289                 /* XXX pass pktlen */
3290                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
3291                 i = iwm_tx_rateidx_lookup(sc, in, ni->ni_txrate);
3292                 ridx = in->in_ridx[i];
3293
3294                 /* This is the index into the programmed table */
3295                 tx->initial_rate_index = i;
3296                 tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
3297
3298                 IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3299                     "%s: start with i=%d, txrate %d\n",
3300                     __func__, i, iwm_rates[ridx].rate);
3301         } else {
3302                 ridx = iwm_tx_rateidx_global_lookup(sc, tp->mgmtrate);
3303                 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: DEFAULT (%d)\n",
3304                     __func__, tp->mgmtrate);
3305         }
3306
3307         IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TXRATE,
3308             "%s: frame type=%d txrate %d\n",
3309                 __func__, type, iwm_rates[ridx].rate);
3310
3311         rinfo = &iwm_rates[ridx];
3312
3313         IWM_DPRINTF(sc, IWM_DEBUG_TXRATE, "%s: ridx=%d; rate=%d, CCK=%d\n",
3314             __func__, ridx,
3315             rinfo->rate,
3316             !! (IWM_RIDX_IS_CCK(ridx))
3317             );
3318
3319         /* XXX TODO: hard-coded TX antenna? */
3320         rate_flags = 1 << IWM_RATE_MCS_ANT_POS;
3321         if (IWM_RIDX_IS_CCK(ridx))
3322                 rate_flags |= IWM_RATE_MCS_CCK_MSK;
3323         tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
3324
3325         return rinfo;
3326 }
3327
3328 #define TB0_SIZE 16
3329 static int
3330 iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
3331 {
3332         struct ieee80211com *ic = &sc->sc_ic;
3333         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3334         struct iwm_node *in = IWM_NODE(ni);
3335         struct iwm_tx_ring *ring;
3336         struct iwm_tx_data *data;
3337         struct iwm_tfd *desc;
3338         struct iwm_device_cmd *cmd;
3339         struct iwm_tx_cmd *tx;
3340         struct ieee80211_frame *wh;
3341         struct ieee80211_key *k = NULL;
3342         struct mbuf *m1;
3343         const struct iwm_rate *rinfo;
3344         uint32_t flags;
3345         u_int hdrlen;
3346         bus_dma_segment_t *seg, segs[IWM_MAX_SCATTER];
3347         int nsegs;
3348         uint8_t tid, type;
3349         int i, totlen, error, pad;
3350
3351         wh = mtod(m, struct ieee80211_frame *);
3352         hdrlen = ieee80211_anyhdrsize(wh);
3353         type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3354         tid = 0;
3355         ring = &sc->txq[ac];
3356         desc = &ring->desc[ring->cur];
3357         memset(desc, 0, sizeof(*desc));
3358         data = &ring->data[ring->cur];
3359
3360         /* Fill out iwm_tx_cmd to send to the firmware */
3361         cmd = &ring->cmd[ring->cur];
3362         cmd->hdr.code = IWM_TX_CMD;
3363         cmd->hdr.flags = 0;
3364         cmd->hdr.qid = ring->qid;
3365         cmd->hdr.idx = ring->cur;
3366
3367         tx = (void *)cmd->data;
3368         memset(tx, 0, sizeof(*tx));
3369
3370         rinfo = iwm_tx_fill_cmd(sc, in, m, tx);
3371
3372         /* Encrypt the frame if need be. */
3373         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3374                 /* Retrieve key for TX && do software encryption. */
3375                 k = ieee80211_crypto_encap(ni, m);
3376                 if (k == NULL) {
3377                         m_freem(m);
3378                         return (ENOBUFS);
3379                 }
3380                 /* 802.11 header may have moved. */
3381                 wh = mtod(m, struct ieee80211_frame *);
3382         }
3383
3384         if (ieee80211_radiotap_active_vap(vap)) {
3385                 struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
3386
3387                 tap->wt_flags = 0;
3388                 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3389                 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3390                 tap->wt_rate = rinfo->rate;
3391                 if (k != NULL)
3392                         tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3393                 ieee80211_radiotap_tx(vap, m);
3394         }
3395
3396
3397         totlen = m->m_pkthdr.len;
3398
3399         flags = 0;
3400         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3401                 flags |= IWM_TX_CMD_FLG_ACK;
3402         }
3403
3404         if (type == IEEE80211_FC0_TYPE_DATA
3405             && (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
3406             && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3407                 flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
3408         }
3409
3410         if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3411             type != IEEE80211_FC0_TYPE_DATA)
3412                 tx->sta_id = sc->sc_aux_sta.sta_id;
3413         else
3414                 tx->sta_id = IWM_STATION_ID;
3415
3416         if (type == IEEE80211_FC0_TYPE_MGT) {
3417                 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3418
3419                 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3420                     subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
3421                         tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC);
3422                 } else if (subtype == IEEE80211_FC0_SUBTYPE_ACTION) {
3423                         tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3424                 } else {
3425                         tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT);
3426                 }
3427         } else {
3428                 tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
3429         }
3430
3431         if (hdrlen & 3) {
3432                 /* First segment length must be a multiple of 4. */
3433                 flags |= IWM_TX_CMD_FLG_MH_PAD;
3434                 pad = 4 - (hdrlen & 3);
3435         } else
3436                 pad = 0;
3437
3438         tx->driver_txop = 0;
3439         tx->next_frame_len = 0;
3440
3441         tx->len = htole16(totlen);
3442         tx->tid_tspec = tid;
3443         tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
3444
3445         /* Set physical address of "scratch area". */
3446         tx->dram_lsb_ptr = htole32(data->scratch_paddr);
3447         tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
3448
3449         /* Copy 802.11 header in TX command. */
3450         memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3451
3452         flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
3453
3454         tx->sec_ctl = 0;
3455         tx->tx_flags |= htole32(flags);
3456
3457         /* Trim 802.11 header. */
3458         m_adj(m, hdrlen);
3459         error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3460             segs, &nsegs, BUS_DMA_NOWAIT);
3461         if (error != 0) {
3462                 if (error != EFBIG) {
3463                         device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3464                             error);
3465                         m_freem(m);
3466                         return error;
3467                 }
3468                 /* Too many DMA segments, linearize mbuf. */
3469                 m1 = m_collapse(m, M_NOWAIT, IWM_MAX_SCATTER - 2);
3470                 if (m1 == NULL) {
3471                         device_printf(sc->sc_dev,
3472                             "%s: could not defrag mbuf\n", __func__);
3473                         m_freem(m);
3474                         return (ENOBUFS);
3475                 }
3476                 m = m1;
3477
3478                 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3479                     segs, &nsegs, BUS_DMA_NOWAIT);
3480                 if (error != 0) {
3481                         device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
3482                             error);
3483                         m_freem(m);
3484                         return error;
3485                 }
3486         }
3487         data->m = m;
3488         data->in = in;
3489         data->done = 0;
3490
3491         IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3492             "sending txd %p, in %p\n", data, data->in);
3493         KASSERT(data->in != NULL, ("node is NULL"));
3494
3495         IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3496             "sending data: qid=%d idx=%d len=%d nsegs=%d txflags=0x%08x rate_n_flags=0x%08x rateidx=%u\n",
3497             ring->qid, ring->cur, totlen, nsegs,
3498             le32toh(tx->tx_flags),
3499             le32toh(tx->rate_n_flags),
3500             tx->initial_rate_index
3501             );
3502
3503         /* Fill TX descriptor. */
3504         desc->num_tbs = 2 + nsegs;
3505
3506         desc->tbs[0].lo = htole32(data->cmd_paddr);
3507         desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3508             (TB0_SIZE << 4);
3509         desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
3510         desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
3511             ((sizeof(struct iwm_cmd_header) + sizeof(*tx)
3512               + hdrlen + pad - TB0_SIZE) << 4);
3513
3514         /* Other DMA segments are for data payload. */
3515         for (i = 0; i < nsegs; i++) {
3516                 seg = &segs[i];
3517                 desc->tbs[i+2].lo = htole32(seg->ds_addr);
3518                 desc->tbs[i+2].hi_n_len = \
3519                     htole16(iwm_get_dma_hi_addr(seg->ds_addr))
3520                     | ((seg->ds_len) << 4);
3521         }
3522
3523         bus_dmamap_sync(ring->data_dmat, data->map,
3524             BUS_DMASYNC_PREWRITE);
3525         bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
3526             BUS_DMASYNC_PREWRITE);
3527         bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3528             BUS_DMASYNC_PREWRITE);
3529
3530 #if 0
3531         iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len));
3532 #endif
3533
3534         /* Kick TX ring. */
3535         ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
3536         IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3537
3538         /* Mark TX ring as full if we reach a certain threshold. */
3539         if (++ring->queued > IWM_TX_RING_HIMARK) {
3540                 sc->qfullmsk |= 1 << ring->qid;
3541         }
3542
3543         return 0;
3544 }
3545
3546 static int
3547 iwm_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3548     const struct ieee80211_bpf_params *params)
3549 {
3550         struct ieee80211com *ic = ni->ni_ic;
3551         struct iwm_softc *sc = ic->ic_softc;
3552         int error = 0;
3553
3554         IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3555             "->%s begin\n", __func__);
3556
3557         if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
3558                 m_freem(m);
3559                 IWM_DPRINTF(sc, IWM_DEBUG_XMIT,
3560                     "<-%s not RUNNING\n", __func__);
3561                 return (ENETDOWN);
3562         }
3563
3564         IWM_LOCK(sc);
3565         /* XXX fix this */
3566         if (params == NULL) {
3567                 error = iwm_tx(sc, m, ni, 0);
3568         } else {
3569                 error = iwm_tx(sc, m, ni, 0);
3570         }
3571         sc->sc_tx_timer = 5;
3572         IWM_UNLOCK(sc);
3573
3574         return (error);
3575 }
3576
3577 /*
3578  * mvm/tx.c
3579  */
3580
3581 /*
3582  * Note that there are transports that buffer frames before they reach
3583  * the firmware. This means that after flush_tx_path is called, the
3584  * queue might not be empty. The race-free way to handle this is to:
3585  * 1) set the station as draining
3586  * 2) flush the Tx path
3587  * 3) wait for the transport queues to be empty
3588  */
3589 int
3590 iwm_mvm_flush_tx_path(struct iwm_softc *sc, uint32_t tfd_msk, uint32_t flags)
3591 {
3592         int ret;
3593         struct iwm_tx_path_flush_cmd flush_cmd = {
3594                 .queues_ctl = htole32(tfd_msk),
3595                 .flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
3596         };
3597
3598         ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, flags,
3599             sizeof(flush_cmd), &flush_cmd);
3600         if (ret)
3601                 device_printf(sc->sc_dev,
3602                     "Flushing tx queue failed: %d\n", ret);
3603         return ret;
3604 }
3605
3606 /*
3607  * BEGIN mvm/sta.c
3608  */
3609
3610 static int
3611 iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc,
3612         struct iwm_mvm_add_sta_cmd_v7 *cmd, int *status)
3613 {
3614         return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(*cmd),
3615             cmd, status);
3616 }
3617
3618 /* send station add/update command to firmware */
3619 static int
3620 iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update)
3621 {
3622         struct iwm_mvm_add_sta_cmd_v7 add_sta_cmd;
3623         int ret;
3624         uint32_t status;
3625
3626         memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
3627
3628         add_sta_cmd.sta_id = IWM_STATION_ID;
3629         add_sta_cmd.mac_id_n_color
3630             = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_DEFAULT_MACID,
3631                 IWM_DEFAULT_COLOR));
3632         if (!update) {
3633                 int ac;
3634                 for (ac = 0; ac < WME_NUM_AC; ac++) {
3635                         add_sta_cmd.tfd_queue_msk |=
3636                             htole32(1 << iwm_mvm_ac_to_tx_fifo[ac]);
3637                 }
3638                 IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
3639         }
3640         add_sta_cmd.add_modify = update ? 1 : 0;
3641         add_sta_cmd.station_flags_msk
3642             |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
3643         add_sta_cmd.tid_disable_tx = htole16(0xffff);
3644         if (update)
3645                 add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_TID_DISABLE_TX);
3646
3647         status = IWM_ADD_STA_SUCCESS;
3648         ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status);
3649         if (ret)
3650                 return ret;
3651
3652         switch (status) {
3653         case IWM_ADD_STA_SUCCESS:
3654                 break;
3655         default:
3656                 ret = EIO;
3657                 device_printf(sc->sc_dev, "IWM_ADD_STA failed\n");
3658                 break;
3659         }
3660
3661         return ret;
3662 }
3663
3664 static int
3665 iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in)
3666 {
3667         return iwm_mvm_sta_send_to_fw(sc, in, 0);
3668 }
3669
3670 static int
3671 iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in)
3672 {
3673         return iwm_mvm_sta_send_to_fw(sc, in, 1);
3674 }
3675
3676 static int
3677 iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta,
3678         const uint8_t *addr, uint16_t mac_id, uint16_t color)
3679 {
3680         struct iwm_mvm_add_sta_cmd_v7 cmd;
3681         int ret;
3682         uint32_t status;
3683
3684         memset(&cmd, 0, sizeof(cmd));
3685         cmd.sta_id = sta->sta_id;
3686         cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color));
3687
3688         cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk);
3689         cmd.tid_disable_tx = htole16(0xffff);
3690
3691         if (addr)
3692                 IEEE80211_ADDR_COPY(cmd.addr, addr);
3693
3694         ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status);
3695         if (ret)
3696                 return ret;
3697
3698         switch (status) {
3699         case IWM_ADD_STA_SUCCESS:
3700                 IWM_DPRINTF(sc, IWM_DEBUG_RESET,
3701                     "%s: Internal station added.\n", __func__);
3702                 return 0;
3703         default:
3704                 device_printf(sc->sc_dev,
3705                     "%s: Add internal station failed, status=0x%x\n",
3706                     __func__, status);
3707                 ret = EIO;
3708                 break;
3709         }
3710         return ret;
3711 }
3712
3713 static int
3714 iwm_mvm_add_aux_sta(struct iwm_softc *sc)
3715 {
3716         int ret;
3717
3718         sc->sc_aux_sta.sta_id = IWM_AUX_STA_ID;
3719         sc->sc_aux_sta.tfd_queue_msk = (1 << IWM_MVM_AUX_QUEUE);
3720
3721         ret = iwm_enable_txq(sc, 0, IWM_MVM_AUX_QUEUE, IWM_MVM_TX_FIFO_MCAST);
3722         if (ret)
3723                 return ret;
3724
3725         ret = iwm_mvm_add_int_sta_common(sc,
3726             &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0);
3727
3728         if (ret)
3729                 memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta));
3730         return ret;
3731 }
3732
3733 /*
3734  * END mvm/sta.c
3735  */
3736
3737 /*
3738  * BEGIN mvm/quota.c
3739  */
3740
3741 static int
3742 iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
3743 {
3744         struct iwm_time_quota_cmd cmd;
3745         int i, idx, ret, num_active_macs, quota, quota_rem;
3746         int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
3747         int n_ifs[IWM_MAX_BINDINGS] = {0, };
3748         uint16_t id;
3749
3750         memset(&cmd, 0, sizeof(cmd));
3751
3752         /* currently, PHY ID == binding ID */
3753         if (in) {
3754                 id = in->in_phyctxt->id;
3755                 KASSERT(id < IWM_MAX_BINDINGS, ("invalid id"));
3756                 colors[id] = in->in_phyctxt->color;
3757
3758                 if (1)
3759                         n_ifs[id] = 1;
3760         }
3761
3762         /*
3763          * The FW's scheduling session consists of
3764          * IWM_MVM_MAX_QUOTA fragments. Divide these fragments
3765          * equally between all the bindings that require quota
3766          */
3767         num_active_macs = 0;
3768         for (i = 0; i < IWM_MAX_BINDINGS; i++) {
3769                 cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
3770                 num_active_macs += n_ifs[i];
3771         }
3772
3773         quota = 0;
3774         quota_rem = 0;
3775         if (num_active_macs) {
3776                 quota = IWM_MVM_MAX_QUOTA / num_active_macs;
3777                 quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs;
3778         }
3779
3780         for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
3781                 if (colors[i] < 0)
3782                         continue;
3783
3784                 cmd.quotas[idx].id_and_color =
3785                         htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
3786
3787                 if (n_ifs[i] <= 0) {
3788                         cmd.quotas[idx].quota = htole32(0);
3789                         cmd.quotas[idx].max_duration = htole32(0);
3790                 } else {
3791                         cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
3792                         cmd.quotas[idx].max_duration = htole32(0);
3793                 }
3794                 idx++;
3795         }
3796
3797         /* Give the remainder of the session to the first binding */
3798         cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
3799
3800         ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC,
3801             sizeof(cmd), &cmd);
3802         if (ret)
3803                 device_printf(sc->sc_dev,
3804                     "%s: Failed to send quota: %d\n", __func__, ret);
3805         return ret;
3806 }
3807
3808 /*
3809  * END mvm/quota.c
3810  */
3811
3812 /*
3813  * ieee80211 routines
3814  */
3815
3816 /*
3817  * Change to AUTH state in 80211 state machine.  Roughly matches what
3818  * Linux does in bss_info_changed().
3819  */
3820 static int
3821 iwm_auth(struct ieee80211vap *vap, struct iwm_softc *sc)
3822 {
3823         struct ieee80211_node *ni;
3824         struct iwm_node *in;
3825         struct iwm_vap *iv = IWM_VAP(vap);
3826         uint32_t duration;
3827         int error;
3828
3829         /*
3830          * XXX i have a feeling that the vap node is being
3831          * freed from underneath us. Grr.
3832          */
3833         ni = ieee80211_ref_node(vap->iv_bss);
3834         in = IWM_NODE(ni);
3835         IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_STATE,
3836             "%s: called; vap=%p, bss ni=%p\n",
3837             __func__,
3838             vap,
3839             ni);
3840
3841         in->in_assoc = 0;
3842
3843         error = iwm_mvm_sf_config(sc, IWM_SF_FULL_ON);
3844         if (error != 0)
3845                 return error;
3846
3847         error = iwm_allow_mcast(vap, sc);
3848         if (error) {
3849                 device_printf(sc->sc_dev,
3850                     "%s: failed to set multicast\n", __func__);
3851                 goto out;
3852         }
3853
3854         /*
3855          * This is where it deviates from what Linux does.
3856          *
3857          * Linux iwlwifi doesn't reset the nic each time, nor does it
3858          * call ctxt_add() here.  Instead, it adds it during vap creation,
3859          * and always does a mac_ctx_changed().
3860          *
3861          * The openbsd port doesn't attempt to do that - it reset things
3862          * at odd states and does the add here.
3863          *
3864          * So, until the state handling is fixed (ie, we never reset
3865          * the NIC except for a firmware failure, which should drag
3866          * the NIC back to IDLE, re-setup and re-add all the mac/phy
3867          * contexts that are required), let's do a dirty hack here.
3868          */
3869         if (iv->is_uploaded) {
3870                 if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3871                         device_printf(sc->sc_dev,
3872                             "%s: failed to update MAC\n", __func__);
3873                         goto out;
3874                 }
3875                 if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3876                     in->in_ni.ni_chan, 1, 1)) != 0) {
3877                         device_printf(sc->sc_dev,
3878                             "%s: failed update phy ctxt\n", __func__);
3879                         goto out;
3880                 }
3881                 in->in_phyctxt = &sc->sc_phyctxt[0];
3882
3883                 if ((error = iwm_mvm_binding_update(sc, in)) != 0) {
3884                         device_printf(sc->sc_dev,
3885                             "%s: binding update cmd\n", __func__);
3886                         goto out;
3887                 }
3888                 if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3889                         device_printf(sc->sc_dev,
3890                             "%s: failed to update sta\n", __func__);
3891                         goto out;
3892                 }
3893         } else {
3894                 if ((error = iwm_mvm_mac_ctxt_add(sc, vap)) != 0) {
3895                         device_printf(sc->sc_dev,
3896                             "%s: failed to add MAC\n", __func__);
3897                         goto out;
3898                 }
3899                 if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0],
3900                     in->in_ni.ni_chan, 1, 1)) != 0) {
3901                         device_printf(sc->sc_dev,
3902                             "%s: failed add phy ctxt!\n", __func__);
3903                         error = ETIMEDOUT;
3904                         goto out;
3905                 }
3906                 in->in_phyctxt = &sc->sc_phyctxt[0];
3907
3908                 if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) {
3909                         device_printf(sc->sc_dev,
3910                             "%s: binding add cmd\n", __func__);
3911                         goto out;
3912                 }
3913                 if ((error = iwm_mvm_add_sta(sc, in)) != 0) {
3914                         device_printf(sc->sc_dev,
3915                             "%s: failed to add sta\n", __func__);
3916                         goto out;
3917                 }
3918         }
3919
3920         /*
3921          * Prevent the FW from wandering off channel during association
3922          * by "protecting" the session with a time event.
3923          */
3924         /* XXX duration is in units of TU, not MS */
3925         duration = IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS;
3926         iwm_mvm_protect_session(sc, in, duration, 500 /* XXX magic number */);
3927         DELAY(100);
3928
3929         error = 0;
3930 out:
3931         ieee80211_free_node(ni);
3932         return (error);
3933 }
3934
3935 static int
3936 iwm_assoc(struct ieee80211vap *vap, struct iwm_softc *sc)
3937 {
3938         struct iwm_node *in = IWM_NODE(vap->iv_bss);
3939         int error;
3940
3941         if ((error = iwm_mvm_update_sta(sc, in)) != 0) {
3942                 device_printf(sc->sc_dev,
3943                     "%s: failed to update STA\n", __func__);
3944                 return error;
3945         }
3946
3947         in->in_assoc = 1;
3948         if ((error = iwm_mvm_mac_ctxt_changed(sc, vap)) != 0) {
3949                 device_printf(sc->sc_dev,
3950                     "%s: failed to update MAC\n", __func__);
3951                 return error;
3952         }
3953
3954         return 0;
3955 }
3956
3957 static int
3958 iwm_release(struct iwm_softc *sc, struct iwm_node *in)
3959 {
3960         uint32_t tfd_msk;
3961
3962         /*
3963          * Ok, so *technically* the proper set of calls for going
3964          * from RUN back to SCAN is:
3965          *
3966          * iwm_mvm_power_mac_disable(sc, in);
3967          * iwm_mvm_mac_ctxt_changed(sc, in);
3968          * iwm_mvm_rm_sta(sc, in);
3969          * iwm_mvm_update_quotas(sc, NULL);
3970          * iwm_mvm_mac_ctxt_changed(sc, in);
3971          * iwm_mvm_binding_remove_vif(sc, in);
3972          * iwm_mvm_mac_ctxt_remove(sc, in);
3973          *
3974          * However, that freezes the device not matter which permutations
3975          * and modifications are attempted.  Obviously, this driver is missing
3976          * something since it works in the Linux driver, but figuring out what
3977          * is missing is a little more complicated.  Now, since we're going
3978          * back to nothing anyway, we'll just do a complete device reset.
3979          * Up your's, device!
3980          */
3981         /*
3982          * Just using 0xf for the queues mask is fine as long as we only
3983          * get here from RUN state.
3984          */
3985         tfd_msk = 0xf;
3986         mbufq_drain(&sc->sc_snd);
3987         iwm_mvm_flush_tx_path(sc, tfd_msk, IWM_CMD_SYNC);
3988         /*
3989          * We seem to get away with just synchronously sending the
3990          * IWM_TXPATH_FLUSH command.
3991          */
3992 //      iwm_trans_wait_tx_queue_empty(sc, tfd_msk);
3993         iwm_stop_device(sc);
3994         iwm_init_hw(sc);
3995         if (in)
3996                 in->in_assoc = 0;
3997         return 0;
3998
3999 #if 0
4000         int error;
4001
4002         iwm_mvm_power_mac_disable(sc, in);
4003
4004         if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
4005                 device_printf(sc->sc_dev, "mac ctxt change fail 1 %d\n", error);
4006                 return error;
4007         }
4008
4009         if ((error = iwm_mvm_rm_sta(sc, in)) != 0) {
4010                 device_printf(sc->sc_dev, "sta remove fail %d\n", error);
4011                 return error;
4012         }
4013         error = iwm_mvm_rm_sta(sc, in);
4014         in->in_assoc = 0;
4015         iwm_mvm_update_quotas(sc, NULL);
4016         if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) {
4017                 device_printf(sc->sc_dev, "mac ctxt change fail 2 %d\n", error);
4018                 return error;
4019         }
4020         iwm_mvm_binding_remove_vif(sc, in);
4021
4022         iwm_mvm_mac_ctxt_remove(sc, in);
4023
4024         return error;
4025 #endif
4026 }
4027
4028 static struct ieee80211_node *
4029 iwm_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4030 {
4031         return malloc(sizeof (struct iwm_node), M_80211_NODE,
4032             M_NOWAIT | M_ZERO);
4033 }
4034
4035 static void
4036 iwm_setrates(struct iwm_softc *sc, struct iwm_node *in)
4037 {
4038         struct ieee80211_node *ni = &in->in_ni;
4039         struct iwm_lq_cmd *lq = &in->in_lq;
4040         int nrates = ni->ni_rates.rs_nrates;
4041         int i, ridx, tab = 0;
4042 //      int txant = 0;
4043
4044         if (nrates > nitems(lq->rs_table)) {
4045                 device_printf(sc->sc_dev,
4046                     "%s: node supports %d rates, driver handles "
4047                     "only %zu\n", __func__, nrates, nitems(lq->rs_table));
4048                 return;
4049         }
4050         if (nrates == 0) {
4051                 device_printf(sc->sc_dev,
4052                     "%s: node supports 0 rates, odd!\n", __func__);
4053                 return;
4054         }
4055
4056         /*
4057          * XXX .. and most of iwm_node is not initialised explicitly;
4058          * it's all just 0x0 passed to the firmware.
4059          */
4060
4061         /* first figure out which rates we should support */
4062         /* XXX TODO: this isn't 11n aware /at all/ */
4063         memset(&in->in_ridx, -1, sizeof(in->in_ridx));
4064         IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4065             "%s: nrates=%d\n", __func__, nrates);
4066
4067         /*
4068          * Loop over nrates and populate in_ridx from the highest
4069          * rate to the lowest rate.  Remember, in_ridx[] has
4070          * IEEE80211_RATE_MAXSIZE entries!
4071          */
4072         for (i = 0; i < min(nrates, IEEE80211_RATE_MAXSIZE); i++) {
4073                 int rate = ni->ni_rates.rs_rates[(nrates - 1) - i] & IEEE80211_RATE_VAL;
4074
4075                 /* Map 802.11 rate to HW rate index. */
4076                 for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
4077                         if (iwm_rates[ridx].rate == rate)
4078                                 break;
4079                 if (ridx > IWM_RIDX_MAX) {
4080                         device_printf(sc->sc_dev,
4081                             "%s: WARNING: device rate for %d not found!\n",
4082                             __func__, rate);
4083                 } else {
4084                         IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4085                             "%s: rate: i: %d, rate=%d, ridx=%d\n",
4086                             __func__,
4087                             i,
4088                             rate,
4089                             ridx);
4090                         in->in_ridx[i] = ridx;
4091                 }
4092         }
4093
4094         /* then construct a lq_cmd based on those */
4095         memset(lq, 0, sizeof(*lq));
4096         lq->sta_id = IWM_STATION_ID;
4097
4098         /* For HT, always enable RTS/CTS to avoid excessive retries. */
4099         if (ni->ni_flags & IEEE80211_NODE_HT)
4100                 lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK;
4101
4102         /*
4103          * are these used? (we don't do SISO or MIMO)
4104          * need to set them to non-zero, though, or we get an error.
4105          */
4106         lq->single_stream_ant_msk = 1;
4107         lq->dual_stream_ant_msk = 1;
4108
4109         /*
4110          * Build the actual rate selection table.
4111          * The lowest bits are the rates.  Additionally,
4112          * CCK needs bit 9 to be set.  The rest of the bits
4113          * we add to the table select the tx antenna
4114          * Note that we add the rates in the highest rate first
4115          * (opposite of ni_rates).
4116          */
4117         /*
4118          * XXX TODO: this should be looping over the min of nrates
4119          * and LQ_MAX_RETRY_NUM.  Sigh.
4120          */
4121         for (i = 0; i < nrates; i++) {
4122                 int nextant;
4123
4124 #if 0
4125                 if (txant == 0)
4126                         txant = iwm_fw_valid_tx_ant(sc);
4127                 nextant = 1<<(ffs(txant)-1);
4128                 txant &= ~nextant;
4129 #else
4130                 nextant = iwm_fw_valid_tx_ant(sc);
4131 #endif
4132                 /*
4133                  * Map the rate id into a rate index into
4134                  * our hardware table containing the
4135                  * configuration to use for this rate.
4136                  */
4137                 ridx = in->in_ridx[i];
4138                 tab = iwm_rates[ridx].plcp;
4139                 tab |= nextant << IWM_RATE_MCS_ANT_POS;
4140                 if (IWM_RIDX_IS_CCK(ridx))
4141                         tab |= IWM_RATE_MCS_CCK_MSK;
4142                 IWM_DPRINTF(sc, IWM_DEBUG_TXRATE,
4143                     "station rate i=%d, rate=%d, hw=%x\n",
4144                     i, iwm_rates[ridx].rate, tab);
4145                 lq->rs_table[i] = htole32(tab);
4146         }
4147         /* then fill the rest with the lowest possible rate */
4148         for (i = nrates; i < nitems(lq->rs_table); i++) {
4149                 KASSERT(tab != 0, ("invalid tab"));
4150                 lq->rs_table[i] = htole32(tab);
4151         }
4152 }
4153
4154 static int
4155 iwm_media_change(struct ifnet *ifp)
4156 {
4157         struct ieee80211vap *vap = ifp->if_softc;
4158         struct ieee80211com *ic = vap->iv_ic;
4159         struct iwm_softc *sc = ic->ic_softc;
4160         int error;
4161
4162         error = ieee80211_media_change(ifp);
4163         if (error != ENETRESET)
4164                 return error;
4165
4166         IWM_LOCK(sc);
4167         if (ic->ic_nrunning > 0) {
4168                 iwm_stop(sc);
4169                 iwm_init(sc);
4170         }
4171         IWM_UNLOCK(sc);
4172         return error;
4173 }
4174
4175
4176 static int
4177 iwm_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4178 {
4179         struct iwm_vap *ivp = IWM_VAP(vap);
4180         struct ieee80211com *ic = vap->iv_ic;
4181         struct iwm_softc *sc = ic->ic_softc;
4182         struct iwm_node *in;
4183         int error;
4184
4185         IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4186             "switching state %s -> %s\n",
4187             ieee80211_state_name[vap->iv_state],
4188             ieee80211_state_name[nstate]);
4189         IEEE80211_UNLOCK(ic);
4190         IWM_LOCK(sc);
4191
4192         if (vap->iv_state == IEEE80211_S_SCAN && nstate != vap->iv_state)
4193                 iwm_led_blink_stop(sc);
4194
4195         /* disable beacon filtering if we're hopping out of RUN */
4196         if (vap->iv_state == IEEE80211_S_RUN && nstate != vap->iv_state) {
4197                 iwm_mvm_disable_beacon_filter(sc);
4198
4199                 if (((in = IWM_NODE(vap->iv_bss)) != NULL))
4200                         in->in_assoc = 0;
4201
4202                 if (nstate == IEEE80211_S_INIT) {
4203                         IWM_UNLOCK(sc);
4204                         IEEE80211_LOCK(ic);
4205                         error = ivp->iv_newstate(vap, nstate, arg);
4206                         IEEE80211_UNLOCK(ic);
4207                         IWM_LOCK(sc);
4208                         iwm_release(sc, NULL);
4209                         IWM_UNLOCK(sc);
4210                         IEEE80211_LOCK(ic);
4211                         return error;
4212                 }
4213
4214                 /*
4215                  * It's impossible to directly go RUN->SCAN. If we iwm_release()
4216                  * above then the card will be completely reinitialized,
4217                  * so the driver must do everything necessary to bring the card
4218                  * from INIT to SCAN.
4219                  *
4220                  * Additionally, upon receiving deauth frame from AP,
4221                  * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH
4222                  * state. This will also fail with this driver, so bring the FSM
4223                  * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well.
4224                  *
4225                  * XXX TODO: fix this for FreeBSD!
4226                  */
4227                 if (nstate == IEEE80211_S_SCAN ||
4228                     nstate == IEEE80211_S_AUTH ||
4229                     nstate == IEEE80211_S_ASSOC) {
4230                         IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4231                             "Force transition to INIT; MGT=%d\n", arg);
4232                         IWM_UNLOCK(sc);
4233                         IEEE80211_LOCK(ic);
4234                         /* Always pass arg as -1 since we can't Tx right now. */
4235                         /*
4236                          * XXX arg is just ignored anyway when transitioning
4237                          *     to IEEE80211_S_INIT.
4238                          */
4239                         vap->iv_newstate(vap, IEEE80211_S_INIT, -1);
4240                         IWM_DPRINTF(sc, IWM_DEBUG_STATE,
4241                             "Going INIT->SCAN\n");
4242                         nstate = IEEE80211_S_SCAN;
4243                         IEEE80211_UNLOCK(ic);
4244                         IWM_LOCK(sc);
4245                 }
4246         }
4247
4248         switch (nstate) {
4249         case IEEE80211_S_INIT:
4250                 break;
4251
4252         case IEEE80211_S_AUTH:
4253                 if ((error = iwm_auth(vap, sc)) != 0) {
4254                         device_printf(sc->sc_dev,
4255                             "%s: could not move to auth state: %d\n",
4256                             __func__, error);
4257                         break;
4258                 }
4259                 break;
4260
4261         case IEEE80211_S_ASSOC:
4262                 if ((error = iwm_assoc(vap, sc)) != 0) {
4263                         device_printf(sc->sc_dev,
4264                             "%s: failed to associate: %d\n", __func__,
4265                             error);
4266                         break;
4267                 }
4268                 break;
4269
4270         case IEEE80211_S_RUN:
4271         {
4272                 struct iwm_host_cmd cmd = {
4273                         .id = IWM_LQ_CMD,
4274                         .len = { sizeof(in->in_lq), },
4275                         .flags = IWM_CMD_SYNC,
4276                 };
4277
4278                 /* Update the association state, now we have it all */
4279                 /* (eg associd comes in at this point */
4280                 error = iwm_assoc(vap, sc);
4281                 if (error != 0) {
4282                         device_printf(sc->sc_dev,
4283                             "%s: failed to update association state: %d\n",
4284                             __func__,
4285                             error);
4286                         break;
4287                 }
4288
4289                 in = IWM_NODE(vap->iv_bss);
4290                 iwm_mvm_power_mac_update_mode(sc, in);
4291                 iwm_mvm_enable_beacon_filter(sc, in);
4292                 iwm_mvm_update_quotas(sc, in);
4293                 iwm_setrates(sc, in);
4294
4295                 cmd.data[0] = &in->in_lq;
4296                 if ((error = iwm_send_cmd(sc, &cmd)) != 0) {
4297                         device_printf(sc->sc_dev,
4298                             "%s: IWM_LQ_CMD failed\n", __func__);
4299                 }
4300
4301                 iwm_mvm_led_enable(sc);
4302                 break;
4303         }
4304
4305         default:
4306                 break;
4307         }
4308         IWM_UNLOCK(sc);
4309         IEEE80211_LOCK(ic);
4310
4311         return (ivp->iv_newstate(vap, nstate, arg));
4312 }
4313
4314 void
4315 iwm_endscan_cb(void *arg, int pending)
4316 {
4317         struct iwm_softc *sc = arg;
4318         struct ieee80211com *ic = &sc->sc_ic;
4319
4320         IWM_DPRINTF(sc, IWM_DEBUG_SCAN | IWM_DEBUG_TRACE,
4321             "%s: scan ended\n",
4322             __func__);
4323
4324         ieee80211_scan_done(TAILQ_FIRST(&ic->ic_vaps));
4325 }
4326
4327 /*
4328  * Aging and idle timeouts for the different possible scenarios
4329  * in default configuration
4330  */
4331 static const uint32_t
4332 iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4333         {
4334                 htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF),
4335                 htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
4336         },
4337         {
4338                 htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF),
4339                 htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)
4340         },
4341         {
4342                 htole32(IWM_SF_MCAST_AGING_TIMER_DEF),
4343                 htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)
4344         },
4345         {
4346                 htole32(IWM_SF_BA_AGING_TIMER_DEF),
4347                 htole32(IWM_SF_BA_IDLE_TIMER_DEF)
4348         },
4349         {
4350                 htole32(IWM_SF_TX_RE_AGING_TIMER_DEF),
4351                 htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)
4352         },
4353 };
4354
4355 /*
4356  * Aging and idle timeouts for the different possible scenarios
4357  * in single BSS MAC configuration.
4358  */
4359 static const uint32_t
4360 iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
4361         {
4362                 htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER),
4363                 htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)
4364         },
4365         {
4366                 htole32(IWM_SF_AGG_UNICAST_AGING_TIMER),
4367                 htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)
4368         },
4369         {
4370                 htole32(IWM_SF_MCAST_AGING_TIMER),
4371                 htole32(IWM_SF_MCAST_IDLE_TIMER)
4372         },
4373         {
4374                 htole32(IWM_SF_BA_AGING_TIMER),
4375                 htole32(IWM_SF_BA_IDLE_TIMER)
4376         },
4377         {
4378                 htole32(IWM_SF_TX_RE_AGING_TIMER),
4379                 htole32(IWM_SF_TX_RE_IDLE_TIMER)
4380         },
4381 };
4382
4383 static void
4384 iwm_mvm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd,
4385     struct ieee80211_node *ni)
4386 {
4387         int i, j, watermark;
4388
4389         sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN);
4390
4391         /*
4392          * If we are in association flow - check antenna configuration
4393          * capabilities of the AP station, and choose the watermark accordingly.
4394          */
4395         if (ni) {
4396                 if (ni->ni_flags & IEEE80211_NODE_HT) {
4397 #ifdef notyet
4398                         if (ni->ni_rxmcs[2] != 0)
4399                                 watermark = IWM_SF_W_MARK_MIMO3;
4400                         else if (ni->ni_rxmcs[1] != 0)
4401                                 watermark = IWM_SF_W_MARK_MIMO2;
4402                         else
4403 #endif
4404                                 watermark = IWM_SF_W_MARK_SISO;
4405                 } else {
4406                         watermark = IWM_SF_W_MARK_LEGACY;
4407                 }
4408         /* default watermark value for unassociated mode. */
4409         } else {
4410                 watermark = IWM_SF_W_MARK_MIMO2;
4411         }
4412         sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark);
4413
4414         for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) {
4415                 for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) {
4416                         sf_cmd->long_delay_timeouts[i][j] =
4417                                         htole32(IWM_SF_LONG_DELAY_AGING_TIMER);
4418                 }
4419         }
4420
4421         if (ni) {
4422                 memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,
4423                        sizeof(iwm_sf_full_timeout));
4424         } else {
4425                 memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,
4426                        sizeof(iwm_sf_full_timeout_def));
4427         }
4428 }
4429
4430 static int
4431 iwm_mvm_sf_config(struct iwm_softc *sc, enum iwm_sf_state new_state)
4432 {
4433         struct ieee80211com *ic = &sc->sc_ic;
4434         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4435         struct iwm_sf_cfg_cmd sf_cmd = {
4436                 .state = htole32(IWM_SF_FULL_ON),
4437         };
4438         int ret = 0;
4439
4440         if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
4441                 sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF);
4442
4443         switch (new_state) {
4444         case IWM_SF_UNINIT:
4445         case IWM_SF_INIT_OFF:
4446                 iwm_mvm_fill_sf_command(sc, &sf_cmd, NULL);
4447                 break;
4448         case IWM_SF_FULL_ON:
4449                 iwm_mvm_fill_sf_command(sc, &sf_cmd, vap->iv_bss);
4450                 break;
4451         default:
4452                 IWM_DPRINTF(sc, IWM_DEBUG_PWRSAVE,
4453                     "Invalid state: %d. not sending Smart Fifo cmd\n",
4454                           new_state);
4455                 return EINVAL;
4456         }
4457
4458         ret = iwm_mvm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC,
4459                                    sizeof(sf_cmd), &sf_cmd);
4460         return ret;
4461 }
4462
4463 static int
4464 iwm_send_bt_init_conf(struct iwm_softc *sc)
4465 {
4466         struct iwm_bt_coex_cmd bt_cmd;
4467
4468         bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
4469         bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
4470
4471         return iwm_mvm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd),
4472             &bt_cmd);
4473 }
4474
4475 static int
4476 iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
4477 {
4478         struct iwm_mcc_update_cmd mcc_cmd;
4479         struct iwm_host_cmd hcmd = {
4480                 .id = IWM_MCC_UPDATE_CMD,
4481                 .flags = (IWM_CMD_SYNC | IWM_CMD_WANT_SKB),
4482                 .data = { &mcc_cmd },
4483         };
4484         int ret;
4485 #ifdef IWM_DEBUG
4486         struct iwm_rx_packet *pkt;
4487         struct iwm_mcc_update_resp_v1 *mcc_resp_v1 = NULL;
4488         struct iwm_mcc_update_resp *mcc_resp;
4489         int n_channels;
4490         uint16_t mcc;
4491 #endif
4492         int resp_v2 = isset(sc->sc_enabled_capa,
4493             IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
4494
4495         memset(&mcc_cmd, 0, sizeof(mcc_cmd));
4496         mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
4497         if ((sc->sc_ucode_api & IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
4498             isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC))
4499                 mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
4500         else
4501                 mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
4502
4503         if (resp_v2)
4504                 hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
4505         else
4506                 hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
4507
4508         IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4509             "send MCC update to FW with '%c%c' src = %d\n",
4510             alpha2[0], alpha2[1], mcc_cmd.source_id);
4511
4512         ret = iwm_send_cmd(sc, &hcmd);
4513         if (ret)
4514                 return ret;
4515
4516 #ifdef IWM_DEBUG
4517         pkt = hcmd.resp_pkt;
4518
4519         /* Extract MCC response */
4520         if (resp_v2) {
4521                 mcc_resp = (void *)pkt->data;
4522                 mcc = mcc_resp->mcc;
4523                 n_channels =  le32toh(mcc_resp->n_channels);
4524         } else {
4525                 mcc_resp_v1 = (void *)pkt->data;
4526                 mcc = mcc_resp_v1->mcc;
4527                 n_channels =  le32toh(mcc_resp_v1->n_channels);
4528         }
4529
4530         /* W/A for a FW/NVM issue - returns 0x00 for the world domain */
4531         if (mcc == 0)
4532                 mcc = 0x3030;  /* "00" - world */
4533
4534         IWM_DPRINTF(sc, IWM_DEBUG_NODE,
4535             "regulatory domain '%c%c' (%d channels available)\n",
4536             mcc >> 8, mcc & 0xff, n_channels);
4537 #endif
4538         iwm_free_resp(sc, &hcmd);
4539
4540         return 0;
4541 }
4542
4543 static void
4544 iwm_mvm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
4545 {
4546         struct iwm_host_cmd cmd = {
4547                 .id = IWM_REPLY_THERMAL_MNG_BACKOFF,
4548                 .len = { sizeof(uint32_t), },
4549                 .data = { &backoff, },
4550         };
4551
4552         if (iwm_send_cmd(sc, &cmd) != 0) {
4553                 device_printf(sc->sc_dev,
4554                     "failed to change thermal tx backoff\n");
4555         }
4556 }
4557
4558 static int
4559 iwm_init_hw(struct iwm_softc *sc)
4560 {
4561         struct ieee80211com *ic = &sc->sc_ic;
4562         int error, i, ac;
4563
4564         if ((error = iwm_start_hw(sc)) != 0) {
4565                 printf("iwm_start_hw: failed %d\n", error);
4566                 return error;
4567         }
4568
4569         if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) {
4570                 printf("iwm_run_init_mvm_ucode: failed %d\n", error);
4571                 return error;
4572         }
4573
4574         /*
4575          * should stop and start HW since that INIT
4576          * image just loaded
4577          */
4578         iwm_stop_device(sc);
4579         if ((error = iwm_start_hw(sc)) != 0) {
4580                 device_printf(sc->sc_dev, "could not initialize hardware\n");
4581                 return error;
4582         }
4583
4584         /* omstart, this time with the regular firmware */
4585         error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
4586         if (error) {
4587                 device_printf(sc->sc_dev, "could not load firmware\n");
4588                 goto error;
4589         }
4590
4591         if ((error = iwm_send_bt_init_conf(sc)) != 0) {
4592                 device_printf(sc->sc_dev, "bt init conf failed\n");
4593                 goto error;
4594         }
4595
4596         if ((error = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc))) != 0) {
4597                 device_printf(sc->sc_dev, "antenna config failed\n");
4598                 goto error;
4599         }
4600
4601         /* Send phy db control command and then phy db calibration*/
4602         if ((error = iwm_send_phy_db_data(sc)) != 0) {
4603                 device_printf(sc->sc_dev, "phy_db_data failed\n");
4604                 goto error;
4605         }
4606
4607         if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) {
4608                 device_printf(sc->sc_dev, "phy_cfg_cmd failed\n");
4609                 goto error;
4610         }
4611
4612         /* Add auxiliary station for scanning */
4613         if ((error = iwm_mvm_add_aux_sta(sc)) != 0) {
4614                 device_printf(sc->sc_dev, "add_aux_sta failed\n");
4615                 goto error;
4616         }
4617
4618         for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
4619                 /*
4620                  * The channel used here isn't relevant as it's
4621                  * going to be overwritten in the other flows.
4622                  * For now use the first channel we have.
4623                  */
4624                 if ((error = iwm_mvm_phy_ctxt_add(sc,
4625                     &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0)
4626                         goto error;
4627         }
4628
4629         /* Initialize tx backoffs to the minimum. */
4630         if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
4631                 iwm_mvm_tt_tx_backoff(sc, 0);
4632
4633         error = iwm_mvm_power_update_device(sc);
4634         if (error)
4635                 goto error;
4636
4637         if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT)) {
4638                 if ((error = iwm_send_update_mcc_cmd(sc, "ZZ")) != 0)
4639                         goto error;
4640         }
4641
4642         if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
4643                 if ((error = iwm_mvm_config_umac_scan(sc)) != 0)
4644                         goto error;
4645         }
4646
4647         /* Enable Tx queues. */
4648         for (ac = 0; ac < WME_NUM_AC; ac++) {
4649                 error = iwm_enable_txq(sc, IWM_STATION_ID, ac,
4650                     iwm_mvm_ac_to_tx_fifo[ac]);
4651                 if (error)
4652                         goto error;
4653         }
4654
4655         if ((error = iwm_mvm_disable_beacon_filter(sc)) != 0) {
4656                 device_printf(sc->sc_dev, "failed to disable beacon filter\n");
4657                 goto error;
4658         }
4659
4660         return 0;
4661
4662  error:
4663         iwm_stop_device(sc);
4664         return error;
4665 }
4666
4667 /* Allow multicast from our BSSID. */
4668 static int
4669 iwm_allow_mcast(struct ieee80211vap *vap, struct iwm_softc *sc)
4670 {
4671         struct ieee80211_node *ni = vap->iv_bss;
4672         struct iwm_mcast_filter_cmd *cmd;
4673         size_t size;
4674         int error;
4675
4676         size = roundup(sizeof(*cmd), 4);
4677         cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
4678         if (cmd == NULL)
4679                 return ENOMEM;
4680         cmd->filter_own = 1;
4681         cmd->port_id = 0;
4682         cmd->count = 0;
4683         cmd->pass_all = 1;
4684         IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
4685
4686         error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD,
4687             IWM_CMD_SYNC, size, cmd);
4688         free(cmd, M_DEVBUF);
4689
4690         return (error);
4691 }
4692
4693 /*
4694  * ifnet interfaces
4695  */
4696
4697 static void
4698 iwm_init(struct iwm_softc *sc)
4699 {
4700         int error;
4701
4702         if (sc->sc_flags & IWM_FLAG_HW_INITED) {
4703                 return;
4704         }
4705         sc->sc_generation++;
4706         sc->sc_flags &= ~IWM_FLAG_STOPPED;
4707
4708         if ((error = iwm_init_hw(sc)) != 0) {
4709                 printf("iwm_init_hw failed %d\n", error);
4710                 iwm_stop(sc);
4711                 return;
4712         }
4713
4714         /*
4715          * Ok, firmware loaded and we are jogging
4716          */
4717         sc->sc_flags |= IWM_FLAG_HW_INITED;
4718         callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4719 }
4720
4721 static int
4722 iwm_transmit(struct ieee80211com *ic, struct mbuf *m)
4723 {
4724         struct iwm_softc *sc;
4725         int error;
4726
4727         sc = ic->ic_softc;
4728
4729         IWM_LOCK(sc);
4730         if ((sc->sc_flags & IWM_FLAG_HW_INITED) == 0) {
4731                 IWM_UNLOCK(sc);
4732                 return (ENXIO);
4733         }
4734         error = mbufq_enqueue(&sc->sc_snd, m);
4735         if (error) {
4736                 IWM_UNLOCK(sc);
4737                 return (error);
4738         }
4739         iwm_start(sc);
4740         IWM_UNLOCK(sc);
4741         return (0);
4742 }
4743
4744 /*
4745  * Dequeue packets from sendq and call send.
4746  */
4747 static void
4748 iwm_start(struct iwm_softc *sc)
4749 {
4750         struct ieee80211_node *ni;
4751         struct mbuf *m;
4752         int ac = 0;
4753
4754         IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "->%s\n", __func__);
4755         while (sc->qfullmsk == 0 &&
4756                 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
4757                 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4758                 if (iwm_tx(sc, m, ni, ac) != 0) {
4759                         if_inc_counter(ni->ni_vap->iv_ifp,
4760                             IFCOUNTER_OERRORS, 1);
4761                         ieee80211_free_node(ni);
4762                         continue;
4763                 }
4764                 sc->sc_tx_timer = 15;
4765         }
4766         IWM_DPRINTF(sc, IWM_DEBUG_XMIT | IWM_DEBUG_TRACE, "<-%s\n", __func__);
4767 }
4768
4769 static void
4770 iwm_stop(struct iwm_softc *sc)
4771 {
4772
4773         sc->sc_flags &= ~IWM_FLAG_HW_INITED;
4774         sc->sc_flags |= IWM_FLAG_STOPPED;
4775         sc->sc_generation++;
4776         iwm_led_blink_stop(sc);
4777         sc->sc_tx_timer = 0;
4778         iwm_stop_device(sc);
4779 }
4780
4781 static void
4782 iwm_watchdog(void *arg)
4783 {
4784         struct iwm_softc *sc = arg;
4785         struct ieee80211com *ic = &sc->sc_ic;
4786
4787         if (sc->sc_tx_timer > 0) {
4788                 if (--sc->sc_tx_timer == 0) {
4789                         device_printf(sc->sc_dev, "device timeout\n");
4790 #ifdef IWM_DEBUG
4791                         iwm_nic_error(sc);
4792 #endif
4793                         ieee80211_restart_all(ic);
4794                         counter_u64_add(sc->sc_ic.ic_oerrors, 1);
4795                         return;
4796                 }
4797         }
4798         callout_reset(&sc->sc_watchdog_to, hz, iwm_watchdog, sc);
4799 }
4800
4801 static void
4802 iwm_parent(struct ieee80211com *ic)
4803 {
4804         struct iwm_softc *sc = ic->ic_softc;
4805         int startall = 0;
4806
4807         IWM_LOCK(sc);
4808         if (ic->ic_nrunning > 0) {
4809                 if (!(sc->sc_flags & IWM_FLAG_HW_INITED)) {
4810                         iwm_init(sc);
4811                         startall = 1;
4812                 }
4813         } else if (sc->sc_flags & IWM_FLAG_HW_INITED)
4814                 iwm_stop(sc);
4815         IWM_UNLOCK(sc);
4816         if (startall)
4817                 ieee80211_start_all(ic);
4818 }
4819
4820 /*
4821  * The interrupt side of things
4822  */
4823
4824 /*
4825  * error dumping routines are from iwlwifi/mvm/utils.c
4826  */
4827
4828 /*
4829  * Note: This structure is read from the device with IO accesses,
4830  * and the reading already does the endian conversion. As it is
4831  * read with uint32_t-sized accesses, any members with a different size
4832  * need to be ordered correctly though!
4833  */
4834 struct iwm_error_event_table {
4835         uint32_t valid;         /* (nonzero) valid, (0) log is empty */
4836         uint32_t error_id;              /* type of error */
4837         uint32_t trm_hw_status0;        /* TRM HW status */
4838         uint32_t trm_hw_status1;        /* TRM HW status */
4839         uint32_t blink2;                /* branch link */
4840         uint32_t ilink1;                /* interrupt link */
4841         uint32_t ilink2;                /* interrupt link */
4842         uint32_t data1;         /* error-specific data */
4843         uint32_t data2;         /* error-specific data */
4844         uint32_t data3;         /* error-specific data */
4845         uint32_t bcon_time;             /* beacon timer */
4846         uint32_t tsf_low;               /* network timestamp function timer */
4847         uint32_t tsf_hi;                /* network timestamp function timer */
4848         uint32_t gp1;           /* GP1 timer register */
4849         uint32_t gp2;           /* GP2 timer register */
4850         uint32_t fw_rev_type;   /* firmware revision type */
4851         uint32_t major;         /* uCode version major */
4852         uint32_t minor;         /* uCode version minor */
4853         uint32_t hw_ver;                /* HW Silicon version */
4854         uint32_t brd_ver;               /* HW board version */
4855         uint32_t log_pc;                /* log program counter */
4856         uint32_t frame_ptr;             /* frame pointer */
4857         uint32_t stack_ptr;             /* stack pointer */
4858         uint32_t hcmd;          /* last host command header */
4859         uint32_t isr0;          /* isr status register LMPM_NIC_ISR0:
4860                                  * rxtx_flag */
4861         uint32_t isr1;          /* isr status register LMPM_NIC_ISR1:
4862                                  * host_flag */
4863         uint32_t isr2;          /* isr status register LMPM_NIC_ISR2:
4864                                  * enc_flag */
4865         uint32_t isr3;          /* isr status register LMPM_NIC_ISR3:
4866                                  * time_flag */
4867         uint32_t isr4;          /* isr status register LMPM_NIC_ISR4:
4868                                  * wico interrupt */
4869         uint32_t last_cmd_id;   /* last HCMD id handled by the firmware */
4870         uint32_t wait_event;            /* wait event() caller address */
4871         uint32_t l2p_control;   /* L2pControlField */
4872         uint32_t l2p_duration;  /* L2pDurationField */
4873         uint32_t l2p_mhvalid;   /* L2pMhValidBits */
4874         uint32_t l2p_addr_match;        /* L2pAddrMatchStat */
4875         uint32_t lmpm_pmg_sel;  /* indicate which clocks are turned on
4876                                  * (LMPM_PMG_SEL) */
4877         uint32_t u_timestamp;   /* indicate when the date and time of the
4878                                  * compilation */
4879         uint32_t flow_handler;  /* FH read/write pointers, RX credit */
4880 } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
4881
4882 /*
4883  * UMAC error struct - relevant starting from family 8000 chip.
4884  * Note: This structure is read from the device with IO accesses,
4885  * and the reading already does the endian conversion. As it is
4886  * read with u32-sized accesses, any members with a different size
4887  * need to be ordered correctly though!
4888  */
4889 struct iwm_umac_error_event_table {
4890         uint32_t valid;         /* (nonzero) valid, (0) log is empty */
4891         uint32_t error_id;      /* type of error */
4892         uint32_t blink1;        /* branch link */
4893         uint32_t blink2;        /* branch link */
4894         uint32_t ilink1;        /* interrupt link */
4895         uint32_t ilink2;        /* interrupt link */
4896         uint32_t data1;         /* error-specific data */
4897         uint32_t data2;         /* error-specific data */
4898         uint32_t data3;         /* error-specific data */
4899         uint32_t umac_major;
4900         uint32_t umac_minor;
4901         uint32_t frame_pointer; /* core register 27*/
4902         uint32_t stack_pointer; /* core register 28 */
4903         uint32_t cmd_header;    /* latest host cmd sent to UMAC */
4904         uint32_t nic_isr_pref;  /* ISR status register */
4905 } __packed;
4906
4907 #define ERROR_START_OFFSET  (1 * sizeof(uint32_t))
4908 #define ERROR_ELEM_SIZE     (7 * sizeof(uint32_t))
4909
4910 #ifdef IWM_DEBUG
4911 struct {
4912         const char *name;
4913         uint8_t num;
4914 } advanced_lookup[] = {
4915         { "NMI_INTERRUPT_WDG", 0x34 },
4916         { "SYSASSERT", 0x35 },
4917         { "UCODE_VERSION_MISMATCH", 0x37 },
4918         { "BAD_COMMAND", 0x38 },
4919         { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
4920         { "FATAL_ERROR", 0x3D },
4921         { "NMI_TRM_HW_ERR", 0x46 },
4922         { "NMI_INTERRUPT_TRM", 0x4C },
4923         { "NMI_INTERRUPT_BREAK_POINT", 0x54 },
4924         { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
4925         { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
4926         { "NMI_INTERRUPT_HOST", 0x66 },
4927         { "NMI_INTERRUPT_ACTION_PT", 0x7C },
4928         { "NMI_INTERRUPT_UNKNOWN", 0x84 },
4929         { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
4930         { "ADVANCED_SYSASSERT", 0 },
4931 };
4932
4933 static const char *
4934 iwm_desc_lookup(uint32_t num)
4935 {
4936         int i;
4937
4938         for (i = 0; i < nitems(advanced_lookup) - 1; i++)
4939                 if (advanced_lookup[i].num == num)
4940                         return advanced_lookup[i].name;
4941
4942         /* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
4943         return advanced_lookup[i].name;
4944 }
4945
4946 static void
4947 iwm_nic_umac_error(struct iwm_softc *sc)
4948 {
4949         struct iwm_umac_error_event_table table;
4950         uint32_t base;
4951
4952         base = sc->sc_uc.uc_umac_error_event_table;
4953
4954         if (base < 0x800000) {
4955                 device_printf(sc->sc_dev, "Invalid error log pointer 0x%08x\n",
4956                     base);
4957                 return;
4958         }
4959
4960         if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
4961                 device_printf(sc->sc_dev, "reading errlog failed\n");
4962                 return;
4963         }
4964
4965         if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
4966                 device_printf(sc->sc_dev, "Start UMAC Error Log Dump:\n");
4967                 device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
4968                     sc->sc_flags, table.valid);
4969         }
4970
4971         device_printf(sc->sc_dev, "0x%08X | %s\n", table.error_id,
4972                 iwm_desc_lookup(table.error_id));
4973         device_printf(sc->sc_dev, "0x%08X | umac branchlink1\n", table.blink1);
4974         device_printf(sc->sc_dev, "0x%08X | umac branchlink2\n", table.blink2);
4975         device_printf(sc->sc_dev, "0x%08X | umac interruptlink1\n",
4976             table.ilink1);
4977         device_printf(sc->sc_dev, "0x%08X | umac interruptlink2\n",
4978             table.ilink2);
4979         device_printf(sc->sc_dev, "0x%08X | umac data1\n", table.data1);
4980         device_printf(sc->sc_dev, "0x%08X | umac data2\n", table.data2);
4981         device_printf(sc->sc_dev, "0x%08X | umac data3\n", table.data3);
4982         device_printf(sc->sc_dev, "0x%08X | umac major\n", table.umac_major);
4983         device_printf(sc->sc_dev, "0x%08X | umac minor\n", table.umac_minor);
4984         device_printf(sc->sc_dev, "0x%08X | frame pointer\n",
4985             table.frame_pointer);
4986         device_printf(sc->sc_dev, "0x%08X | stack pointer\n",
4987             table.stack_pointer);
4988         device_printf(sc->sc_dev, "0x%08X | last host cmd\n", table.cmd_header);
4989         device_printf(sc->sc_dev, "0x%08X | isr status reg\n",
4990             table.nic_isr_pref);
4991 }
4992
4993 /*
4994  * Support for dumping the error log seemed like a good idea ...
4995  * but it's mostly hex junk and the only sensible thing is the
4996  * hw/ucode revision (which we know anyway).  Since it's here,
4997  * I'll just leave it in, just in case e.g. the Intel guys want to
4998  * help us decipher some "ADVANCED_SYSASSERT" later.
4999  */
5000 static void
5001 iwm_nic_error(struct iwm_softc *sc)
5002 {
5003         struct iwm_error_event_table table;
5004         uint32_t base;
5005
5006         device_printf(sc->sc_dev, "dumping device error log\n");
5007         base = sc->sc_uc.uc_error_event_table;
5008         if (base < 0x800000) {
5009                 device_printf(sc->sc_dev,
5010                     "Invalid error log pointer 0x%08x\n", base);
5011                 return;
5012         }
5013
5014         if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) {
5015                 device_printf(sc->sc_dev, "reading errlog failed\n");
5016                 return;
5017         }
5018
5019         if (!table.valid) {
5020                 device_printf(sc->sc_dev, "errlog not found, skipping\n");
5021                 return;
5022         }
5023
5024         if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
5025                 device_printf(sc->sc_dev, "Start Error Log Dump:\n");
5026                 device_printf(sc->sc_dev, "Status: 0x%x, count: %d\n",
5027                     sc->sc_flags, table.valid);
5028         }
5029
5030         device_printf(sc->sc_dev, "0x%08X | %-28s\n", table.error_id,
5031             iwm_desc_lookup(table.error_id));
5032         device_printf(sc->sc_dev, "%08X | trm_hw_status0\n",
5033             table.trm_hw_status0);
5034         device_printf(sc->sc_dev, "%08X | trm_hw_status1\n",
5035             table.trm_hw_status1);
5036         device_printf(sc->sc_dev, "%08X | branchlink2\n", table.blink2);
5037         device_printf(sc->sc_dev, "%08X | interruptlink1\n", table.ilink1);
5038         device_printf(sc->sc_dev, "%08X | interruptlink2\n", table.ilink2);
5039         device_printf(sc->sc_dev, "%08X | data1\n", table.data1);
5040         device_printf(sc->sc_dev, "%08X | data2\n", table.data2);
5041         device_printf(sc->sc_dev, "%08X | data3\n", table.data3);
5042         device_printf(sc->sc_dev, "%08X | beacon time\n", table.bcon_time);
5043         device_printf(sc->sc_dev, "%08X | tsf low\n", table.tsf_low);
5044         device_printf(sc->sc_dev, "%08X | tsf hi\n", table.tsf_hi);
5045         device_printf(sc->sc_dev, "%08X | time gp1\n", table.gp1);
5046         device_printf(sc->sc_dev, "%08X | time gp2\n", table.gp2);
5047         device_printf(sc->sc_dev, "%08X | uCode revision type\n",
5048             table.fw_rev_type);
5049         device_printf(sc->sc_dev, "%08X | uCode version major\n", table.major);
5050         device_printf(sc->sc_dev, "%08X | uCode version minor\n", table.minor);
5051         device_printf(sc->sc_dev, "%08X | hw version\n", table.hw_ver);
5052         device_printf(sc->sc_dev, "%08X | board version\n", table.brd_ver);
5053         device_printf(sc->sc_dev, "%08X | hcmd\n", table.hcmd);
5054         device_printf(sc->sc_dev, "%08X | isr0\n", table.isr0);
5055         device_printf(sc->sc_dev, "%08X | isr1\n", table.isr1);
5056         device_printf(sc->sc_dev, "%08X | isr2\n", table.isr2);
5057         device_printf(sc->sc_dev, "%08X | isr3\n", table.isr3);
5058         device_printf(sc->sc_dev, "%08X | isr4\n", table.isr4);
5059         device_printf(sc->sc_dev, "%08X | last cmd Id\n", table.last_cmd_id);
5060         device_printf(sc->sc_dev, "%08X | wait_event\n", table.wait_event);
5061         device_printf(sc->sc_dev, "%08X | l2p_control\n", table.l2p_control);
5062         device_printf(sc->sc_dev, "%08X | l2p_duration\n", table.l2p_duration);
5063         device_printf(sc->sc_dev, "%08X | l2p_mhvalid\n", table.l2p_mhvalid);
5064         device_printf(sc->sc_dev, "%08X | l2p_addr_match\n", table.l2p_addr_match);
5065         device_printf(sc->sc_dev, "%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
5066         device_printf(sc->sc_dev, "%08X | timestamp\n", table.u_timestamp);
5067         device_printf(sc->sc_dev, "%08X | flow_handler\n", table.flow_handler);
5068
5069         if (sc->sc_uc.uc_umac_error_event_table)
5070                 iwm_nic_umac_error(sc);
5071 }
5072 #endif
5073
5074 #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
5075
5076 /*
5077  * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt.
5078  * Basic structure from if_iwn
5079  */
5080 static void
5081 iwm_notif_intr(struct iwm_softc *sc)
5082 {
5083         struct ieee80211com *ic = &sc->sc_ic;
5084         uint16_t hw;
5085
5086         bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
5087             BUS_DMASYNC_POSTREAD);
5088
5089         hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
5090
5091         /*
5092          * Process responses
5093          */
5094         while (sc->rxq.cur != hw) {
5095                 struct iwm_rx_ring *ring = &sc->rxq;
5096                 struct iwm_rx_data *data = &ring->data[ring->cur];
5097                 struct iwm_rx_packet *pkt;
5098                 struct iwm_cmd_response *cresp;
5099                 int qid, idx, code;
5100
5101                 bus_dmamap_sync(ring->data_dmat, data->map,
5102                     BUS_DMASYNC_POSTREAD);
5103                 pkt = mtod(data->m, struct iwm_rx_packet *);
5104
5105                 qid = pkt->hdr.qid & ~0x80;
5106                 idx = pkt->hdr.idx;
5107
5108                 code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
5109                 IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5110                     "rx packet qid=%d idx=%d type=%x %d %d\n",
5111                     pkt->hdr.qid & ~0x80, pkt->hdr.idx, code, ring->cur, hw);
5112
5113                 /*
5114                  * randomly get these from the firmware, no idea why.
5115                  * they at least seem harmless, so just ignore them for now
5116                  */
5117                 if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
5118                     || pkt->len_n_flags == htole32(0x55550000))) {
5119                         ADVANCE_RXQ(sc);
5120                         continue;
5121                 }
5122
5123                 switch (code) {
5124                 case IWM_REPLY_RX_PHY_CMD:
5125                         iwm_mvm_rx_rx_phy_cmd(sc, pkt, data);
5126                         break;
5127
5128                 case IWM_REPLY_RX_MPDU_CMD:
5129                         iwm_mvm_rx_rx_mpdu(sc, pkt, data);
5130                         break;
5131
5132                 case IWM_TX_CMD:
5133                         iwm_mvm_rx_tx_cmd(sc, pkt, data);
5134                         break;
5135
5136                 case IWM_MISSED_BEACONS_NOTIFICATION: {
5137                         struct iwm_missed_beacons_notif *resp;
5138                         int missed;
5139
5140                         /* XXX look at mac_id to determine interface ID */
5141                         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5142
5143                         resp = (void *)pkt->data;
5144                         missed = le32toh(resp->consec_missed_beacons);
5145
5146                         IWM_DPRINTF(sc, IWM_DEBUG_BEACON | IWM_DEBUG_STATE,
5147                             "%s: MISSED_BEACON: mac_id=%d, "
5148                             "consec_since_last_rx=%d, consec=%d, num_expect=%d "
5149                             "num_rx=%d\n",
5150                             __func__,
5151                             le32toh(resp->mac_id),
5152                             le32toh(resp->consec_missed_beacons_since_last_rx),
5153                             le32toh(resp->consec_missed_beacons),
5154                             le32toh(resp->num_expected_beacons),
5155                             le32toh(resp->num_recvd_beacons));
5156
5157                         /* Be paranoid */
5158                         if (vap == NULL)
5159                                 break;
5160
5161                         /* XXX no net80211 locking? */
5162                         if (vap->iv_state == IEEE80211_S_RUN &&
5163                             (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
5164                                 if (missed > vap->iv_bmissthreshold) {
5165                                         /* XXX bad locking; turn into task */
5166                                         IWM_UNLOCK(sc);
5167                                         ieee80211_beacon_miss(ic);
5168                                         IWM_LOCK(sc);
5169                                 }
5170                         }
5171
5172                         break; }
5173
5174                 case IWM_MFUART_LOAD_NOTIFICATION:
5175                         break;
5176
5177                 case IWM_MVM_ALIVE: {
5178                         struct iwm_mvm_alive_resp_v1 *resp1;
5179                         struct iwm_mvm_alive_resp_v2 *resp2;
5180                         struct iwm_mvm_alive_resp_v3 *resp3;
5181
5182                         if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp1)) {
5183                                 resp1 = (void *)pkt->data;
5184                                 sc->sc_uc.uc_error_event_table
5185                                     = le32toh(resp1->error_event_table_ptr);
5186                                 sc->sc_uc.uc_log_event_table
5187                                     = le32toh(resp1->log_event_table_ptr);
5188                                 sc->sched_base = le32toh(resp1->scd_base_ptr);
5189                                 if (resp1->status == IWM_ALIVE_STATUS_OK)
5190                                         sc->sc_uc.uc_ok = 1;
5191                                 else
5192                                         sc->sc_uc.uc_ok = 0;
5193                         }
5194
5195                         if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp2)) {
5196                                 resp2 = (void *)pkt->data;
5197                                 sc->sc_uc.uc_error_event_table
5198                                     = le32toh(resp2->error_event_table_ptr);
5199                                 sc->sc_uc.uc_log_event_table
5200                                     = le32toh(resp2->log_event_table_ptr);
5201                                 sc->sched_base = le32toh(resp2->scd_base_ptr);
5202                                 sc->sc_uc.uc_umac_error_event_table
5203                                     = le32toh(resp2->error_info_addr);
5204                                 if (resp2->status == IWM_ALIVE_STATUS_OK)
5205                                         sc->sc_uc.uc_ok = 1;
5206                                 else
5207                                         sc->sc_uc.uc_ok = 0;
5208                         }
5209
5210                         if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp3)) {
5211                                 resp3 = (void *)pkt->data;
5212                                 sc->sc_uc.uc_error_event_table
5213                                     = le32toh(resp3->error_event_table_ptr);
5214                                 sc->sc_uc.uc_log_event_table
5215                                     = le32toh(resp3->log_event_table_ptr);
5216                                 sc->sched_base = le32toh(resp3->scd_base_ptr);
5217                                 sc->sc_uc.uc_umac_error_event_table
5218                                     = le32toh(resp3->error_info_addr);
5219                                 if (resp3->status == IWM_ALIVE_STATUS_OK)
5220                                         sc->sc_uc.uc_ok = 1;
5221                                 else
5222                                         sc->sc_uc.uc_ok = 0;
5223                         }
5224
5225                         sc->sc_uc.uc_intr = 1;
5226                         wakeup(&sc->sc_uc);
5227                         break; }
5228
5229                 case IWM_CALIB_RES_NOTIF_PHY_DB: {
5230                         struct iwm_calib_res_notif_phy_db *phy_db_notif;
5231                         phy_db_notif = (void *)pkt->data;
5232
5233                         iwm_phy_db_set_section(sc, phy_db_notif);
5234
5235                         break; }
5236
5237                 case IWM_STATISTICS_NOTIFICATION: {
5238                         struct iwm_notif_statistics *stats;
5239                         stats = (void *)pkt->data;
5240                         memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
5241                         sc->sc_noise = iwm_get_noise(sc, &stats->rx.general);
5242                         break; }
5243
5244                 case IWM_NVM_ACCESS_CMD:
5245                 case IWM_MCC_UPDATE_CMD:
5246                         if (sc->sc_wantresp == ((qid << 16) | idx)) {
5247                                 memcpy(sc->sc_cmd_resp,
5248                                     pkt, sizeof(sc->sc_cmd_resp));
5249                         }
5250                         break;
5251
5252                 case IWM_MCC_CHUB_UPDATE_CMD: {
5253                         struct iwm_mcc_chub_notif *notif;
5254                         notif = (void *)pkt->data;
5255
5256                         sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8;
5257                         sc->sc_fw_mcc[1] = notif->mcc & 0xff;
5258                         sc->sc_fw_mcc[2] = '\0';
5259                         IWM_DPRINTF(sc, IWM_DEBUG_RESET,
5260                             "fw source %d sent CC '%s'\n",
5261                             notif->source_id, sc->sc_fw_mcc);
5262                         break; }
5263
5264                 case IWM_DTS_MEASUREMENT_NOTIFICATION:
5265                         break;
5266
5267                 case IWM_PHY_CONFIGURATION_CMD:
5268                 case IWM_TX_ANT_CONFIGURATION_CMD:
5269                 case IWM_ADD_STA:
5270                 case IWM_MAC_CONTEXT_CMD:
5271                 case IWM_REPLY_SF_CFG_CMD:
5272                 case IWM_POWER_TABLE_CMD:
5273                 case IWM_PHY_CONTEXT_CMD:
5274                 case IWM_BINDING_CONTEXT_CMD:
5275                 case IWM_TIME_EVENT_CMD:
5276                 case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD):
5277                 case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC):
5278                 case IWM_SCAN_OFFLOAD_REQUEST_CMD:
5279                 case IWM_REPLY_BEACON_FILTERING_CMD:
5280                 case IWM_MAC_PM_POWER_TABLE:
5281                 case IWM_TIME_QUOTA_CMD:
5282                 case IWM_REMOVE_STA:
5283                 case IWM_TXPATH_FLUSH:
5284                 case IWM_LQ_CMD:
5285                 case IWM_BT_CONFIG:
5286                 case IWM_REPLY_THERMAL_MNG_BACKOFF:
5287                         cresp = (void *)pkt->data;
5288                         if (sc->sc_wantresp == ((qid << 16) | idx)) {
5289                                 memcpy(sc->sc_cmd_resp,
5290                                     pkt, sizeof(*pkt)+sizeof(*cresp));
5291                         }
5292                         break;
5293
5294                 /* ignore */
5295                 case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */
5296                         break;
5297
5298                 case IWM_INIT_COMPLETE_NOTIF:
5299                         sc->sc_init_complete = 1;
5300                         wakeup(&sc->sc_init_complete);
5301                         break;
5302
5303                 case IWM_SCAN_OFFLOAD_COMPLETE: {
5304                         struct iwm_periodic_scan_complete *notif;
5305                         notif = (void *)pkt->data;
5306                         break;
5307                 }
5308
5309                 case IWM_SCAN_ITERATION_COMPLETE: {
5310                         struct iwm_lmac_scan_complete_notif *notif;
5311                         notif = (void *)pkt->data;
5312                         ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5313                         break;
5314                 }
5315  
5316                 case IWM_SCAN_COMPLETE_UMAC: {
5317                         struct iwm_umac_scan_complete *notif;
5318                         notif = (void *)pkt->data;
5319
5320                         IWM_DPRINTF(sc, IWM_DEBUG_SCAN,
5321                             "UMAC scan complete, status=0x%x\n",
5322                             notif->status);
5323 #if 0   /* XXX This would be a duplicate scan end call */
5324                         taskqueue_enqueue(sc->sc_tq, &sc->sc_es_task);
5325 #endif
5326                         break;
5327                 }
5328
5329                 case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
5330                         struct iwm_umac_scan_iter_complete_notif *notif;
5331                         notif = (void *)pkt->data;
5332
5333                         IWM_DPRINTF(sc, IWM_DEBUG_SCAN, "UMAC scan iteration "
5334                             "complete, status=0x%x, %d channels scanned\n",
5335                             notif->status, notif->scanned_channels);
5336                         ieee80211_runtask(&sc->sc_ic, &sc->sc_es_task);
5337                         break;
5338                 }
5339
5340                 case IWM_REPLY_ERROR: {
5341                         struct iwm_error_resp *resp;
5342                         resp = (void *)pkt->data;
5343
5344                         device_printf(sc->sc_dev,
5345                             "firmware error 0x%x, cmd 0x%x\n",
5346                             le32toh(resp->error_type),
5347                             resp->cmd_id);
5348                         break;
5349                 }
5350
5351                 case IWM_TIME_EVENT_NOTIFICATION: {
5352                         struct iwm_time_event_notif *notif;
5353                         notif = (void *)pkt->data;
5354
5355                         IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5356                             "TE notif status = 0x%x action = 0x%x\n",
5357                             notif->status, notif->action);
5358                         break;
5359                 }
5360
5361                 case IWM_MCAST_FILTER_CMD:
5362                         break;
5363
5364                 case IWM_SCD_QUEUE_CFG: {
5365                         struct iwm_scd_txq_cfg_rsp *rsp;
5366                         rsp = (void *)pkt->data;
5367
5368                         IWM_DPRINTF(sc, IWM_DEBUG_CMD,
5369                             "queue cfg token=0x%x sta_id=%d "
5370                             "tid=%d scd_queue=%d\n",
5371                             rsp->token, rsp->sta_id, rsp->tid,
5372                             rsp->scd_queue);
5373                         break;
5374                 }
5375
5376                 default:
5377                         device_printf(sc->sc_dev,
5378                             "frame %d/%d %x UNHANDLED (this should "
5379                             "not happen)\n", qid, idx,
5380                             pkt->len_n_flags);
5381                         break;
5382                 }
5383
5384                 /*
5385                  * Why test bit 0x80?  The Linux driver:
5386                  *
5387                  * There is one exception:  uCode sets bit 15 when it
5388                  * originates the response/notification, i.e. when the
5389                  * response/notification is not a direct response to a
5390                  * command sent by the driver.  For example, uCode issues
5391                  * IWM_REPLY_RX when it sends a received frame to the driver;
5392                  * it is not a direct response to any driver command.
5393                  *
5394                  * Ok, so since when is 7 == 15?  Well, the Linux driver
5395                  * uses a slightly different format for pkt->hdr, and "qid"
5396                  * is actually the upper byte of a two-byte field.
5397                  */
5398                 if (!(pkt->hdr.qid & (1 << 7))) {
5399                         iwm_cmd_done(sc, pkt);
5400                 }
5401
5402                 ADVANCE_RXQ(sc);
5403         }
5404
5405         IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
5406             IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
5407
5408         /*
5409          * Tell the firmware what we have processed.
5410          * Seems like the hardware gets upset unless we align
5411          * the write by 8??
5412          */
5413         hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
5414         IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
5415 }
5416
5417 static void
5418 iwm_intr(void *arg)
5419 {
5420         struct iwm_softc *sc = arg;
5421         int handled = 0;
5422         int r1, r2, rv = 0;
5423         int isperiodic = 0;
5424
5425         IWM_LOCK(sc);
5426         IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
5427
5428         if (sc->sc_flags & IWM_FLAG_USE_ICT) {
5429                 uint32_t *ict = sc->ict_dma.vaddr;
5430                 int tmp;
5431
5432                 tmp = htole32(ict[sc->ict_cur]);
5433                 if (!tmp)
5434                         goto out_ena;
5435
5436                 /*
5437                  * ok, there was something.  keep plowing until we have all.
5438                  */
5439                 r1 = r2 = 0;
5440                 while (tmp) {
5441                         r1 |= tmp;
5442                         ict[sc->ict_cur] = 0;
5443                         sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT;
5444                         tmp = htole32(ict[sc->ict_cur]);
5445                 }
5446
5447                 /* this is where the fun begins.  don't ask */
5448                 if (r1 == 0xffffffff)
5449                         r1 = 0;
5450
5451                 /* i am not expected to understand this */
5452                 if (r1 & 0xc0000)
5453                         r1 |= 0x8000;
5454                 r1 = (0xff & r1) | ((0xff00 & r1) << 16);
5455         } else {
5456                 r1 = IWM_READ(sc, IWM_CSR_INT);
5457                 /* "hardware gone" (where, fishing?) */
5458                 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
5459                         goto out;
5460                 r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
5461         }
5462         if (r1 == 0 && r2 == 0) {
5463                 goto out_ena;
5464         }
5465
5466         IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
5467
5468         /* ignored */
5469         handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/));
5470
5471         if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
5472                 int i;
5473                 struct ieee80211com *ic = &sc->sc_ic;
5474                 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5475
5476 #ifdef IWM_DEBUG
5477                 iwm_nic_error(sc);
5478 #endif
5479                 /* Dump driver status (TX and RX rings) while we're here. */
5480                 device_printf(sc->sc_dev, "driver status:\n");
5481                 for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) {
5482                         struct iwm_tx_ring *ring = &sc->txq[i];
5483                         device_printf(sc->sc_dev,
5484                             "  tx ring %2d: qid=%-2d cur=%-3d "
5485                             "queued=%-3d\n",
5486                             i, ring->qid, ring->cur, ring->queued);
5487                 }
5488                 device_printf(sc->sc_dev,
5489                     "  rx ring: cur=%d\n", sc->rxq.cur);
5490                 device_printf(sc->sc_dev,
5491                     "  802.11 state %d\n", (vap == NULL) ? -1 : vap->iv_state);
5492
5493                 /* Don't stop the device; just do a VAP restart */
5494                 IWM_UNLOCK(sc);
5495
5496                 if (vap == NULL) {
5497                         printf("%s: null vap\n", __func__);
5498                         return;
5499                 }
5500
5501                 device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
5502                     "restarting\n", __func__, vap->iv_state);
5503
5504                 /* XXX TODO: turn this into a callout/taskqueue */
5505                 ieee80211_restart_all(ic);
5506                 return;
5507         }
5508
5509         if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
5510                 handled |= IWM_CSR_INT_BIT_HW_ERR;
5511                 device_printf(sc->sc_dev, "hardware error, stopping device\n");
5512                 iwm_stop(sc);
5513                 rv = 1;
5514                 goto out;
5515         }
5516
5517         /* firmware chunk loaded */
5518         if (r1 & IWM_CSR_INT_BIT_FH_TX) {
5519                 IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
5520                 handled |= IWM_CSR_INT_BIT_FH_TX;
5521                 sc->sc_fw_chunk_done = 1;
5522                 wakeup(&sc->sc_fw);
5523         }
5524
5525         if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
5526                 handled |= IWM_CSR_INT_BIT_RF_KILL;
5527                 if (iwm_check_rfkill(sc)) {
5528                         device_printf(sc->sc_dev,
5529                             "%s: rfkill switch, disabling interface\n",
5530                             __func__);
5531                         iwm_stop(sc);
5532                 }
5533         }
5534
5535         /*
5536          * The Linux driver uses periodic interrupts to avoid races.
5537          * We cargo-cult like it's going out of fashion.
5538          */
5539         if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
5540                 handled |= IWM_CSR_INT_BIT_RX_PERIODIC;
5541                 IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
5542                 if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
5543                         IWM_WRITE_1(sc,
5544                             IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
5545                 isperiodic = 1;
5546         }
5547
5548         if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) {
5549                 handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX);
5550                 IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
5551
5552                 iwm_notif_intr(sc);
5553
5554                 /* enable periodic interrupt, see above */
5555                 if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic)
5556                         IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
5557                             IWM_CSR_INT_PERIODIC_ENA);
5558         }
5559
5560         if (__predict_false(r1 & ~handled))
5561                 IWM_DPRINTF(sc, IWM_DEBUG_INTR,
5562                     "%s: unhandled interrupts: %x\n", __func__, r1);
5563         rv = 1;
5564
5565  out_ena:
5566         iwm_restore_interrupts(sc);
5567  out:
5568         IWM_UNLOCK(sc);
5569         return;
5570 }
5571
5572 /*
5573  * Autoconf glue-sniffing
5574  */
5575 #define PCI_VENDOR_INTEL                0x8086
5576 #define PCI_PRODUCT_INTEL_WL_3160_1     0x08b3
5577 #define PCI_PRODUCT_INTEL_WL_3160_2     0x08b4
5578 #define PCI_PRODUCT_INTEL_WL_3165_1     0x3165
5579 #define PCI_PRODUCT_INTEL_WL_3165_2     0x3166
5580 #define PCI_PRODUCT_INTEL_WL_7260_1     0x08b1
5581 #define PCI_PRODUCT_INTEL_WL_7260_2     0x08b2
5582 #define PCI_PRODUCT_INTEL_WL_7265_1     0x095a
5583 #define PCI_PRODUCT_INTEL_WL_7265_2     0x095b
5584 #define PCI_PRODUCT_INTEL_WL_8260_1     0x24f3
5585 #define PCI_PRODUCT_INTEL_WL_8260_2     0x24f4
5586
5587 static const struct iwm_devices {
5588         uint16_t        device;
5589         const char      *name;
5590 } iwm_devices[] = {
5591         { PCI_PRODUCT_INTEL_WL_3160_1, "Intel Dual Band Wireless AC 3160" },
5592         { PCI_PRODUCT_INTEL_WL_3160_2, "Intel Dual Band Wireless AC 3160" },
5593         { PCI_PRODUCT_INTEL_WL_3165_1, "Intel Dual Band Wireless AC 3165" },
5594         { PCI_PRODUCT_INTEL_WL_3165_2, "Intel Dual Band Wireless AC 3165" },
5595         { PCI_PRODUCT_INTEL_WL_7260_1, "Intel Dual Band Wireless AC 7260" },
5596         { PCI_PRODUCT_INTEL_WL_7260_2, "Intel Dual Band Wireless AC 7260" },
5597         { PCI_PRODUCT_INTEL_WL_7265_1, "Intel Dual Band Wireless AC 7265" },
5598         { PCI_PRODUCT_INTEL_WL_7265_2, "Intel Dual Band Wireless AC 7265" },
5599         { PCI_PRODUCT_INTEL_WL_8260_1, "Intel Dual Band Wireless AC 8260" },
5600         { PCI_PRODUCT_INTEL_WL_8260_2, "Intel Dual Band Wireless AC 8260" },
5601 };
5602
5603 static int
5604 iwm_probe(device_t dev)
5605 {
5606         int i;
5607
5608         for (i = 0; i < nitems(iwm_devices); i++) {
5609                 if (pci_get_vendor(dev) == PCI_VENDOR_INTEL &&
5610                     pci_get_device(dev) == iwm_devices[i].device) {
5611                         device_set_desc(dev, iwm_devices[i].name);
5612                         return (BUS_PROBE_DEFAULT);
5613                 }
5614         }
5615
5616         return (ENXIO);
5617 }
5618
5619 static int
5620 iwm_dev_check(device_t dev)
5621 {
5622         struct iwm_softc *sc;
5623
5624         sc = device_get_softc(dev);
5625
5626         sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
5627         switch (pci_get_device(dev)) {
5628         case PCI_PRODUCT_INTEL_WL_3160_1:
5629         case PCI_PRODUCT_INTEL_WL_3160_2:
5630                 sc->sc_fwname = "iwm3160fw";
5631                 sc->host_interrupt_operation_mode = 1;
5632                 sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5633                 sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5634                 return (0);
5635         case PCI_PRODUCT_INTEL_WL_3165_1:
5636         case PCI_PRODUCT_INTEL_WL_3165_2:
5637                 sc->sc_fwname = "iwm7265fw";
5638                 sc->host_interrupt_operation_mode = 0;
5639                 sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5640                 sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5641                 return (0);
5642         case PCI_PRODUCT_INTEL_WL_7260_1:
5643         case PCI_PRODUCT_INTEL_WL_7260_2:
5644                 sc->sc_fwname = "iwm7260fw";
5645                 sc->host_interrupt_operation_mode = 1;
5646                 sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5647                 sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5648                 return (0);
5649         case PCI_PRODUCT_INTEL_WL_7265_1:
5650         case PCI_PRODUCT_INTEL_WL_7265_2:
5651                 sc->sc_fwname = "iwm7265fw";
5652                 sc->host_interrupt_operation_mode = 0;
5653                 sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
5654                 sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
5655                 return (0);
5656         case PCI_PRODUCT_INTEL_WL_8260_1:
5657         case PCI_PRODUCT_INTEL_WL_8260_2:
5658                 sc->sc_fwname = "iwm8000Cfw";
5659                 sc->host_interrupt_operation_mode = 0;
5660                 sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
5661                 sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
5662                 return (0);
5663         default:
5664                 device_printf(dev, "unknown adapter type\n");
5665                 return ENXIO;
5666         }
5667 }
5668
5669 static int
5670 iwm_pci_attach(device_t dev)
5671 {
5672         struct iwm_softc *sc;
5673         int count, error, rid;
5674         uint16_t reg;
5675
5676         sc = device_get_softc(dev);
5677
5678         /* Clear device-specific "PCI retry timeout" register (41h). */
5679         reg = pci_read_config(dev, 0x40, sizeof(reg));
5680         pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
5681
5682         /* Enable bus-mastering and hardware bug workaround. */
5683         pci_enable_busmaster(dev);
5684         reg = pci_read_config(dev, PCIR_STATUS, sizeof(reg));
5685         /* if !MSI */
5686         if (reg & PCIM_STATUS_INTxSTATE) {
5687                 reg &= ~PCIM_STATUS_INTxSTATE;
5688         }
5689         pci_write_config(dev, PCIR_STATUS, reg, sizeof(reg));
5690
5691         rid = PCIR_BAR(0);
5692         sc->sc_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
5693             RF_ACTIVE);
5694         if (sc->sc_mem == NULL) {
5695                 device_printf(sc->sc_dev, "can't map mem space\n");
5696                 return (ENXIO);
5697         }
5698         sc->sc_st = rman_get_bustag(sc->sc_mem);
5699         sc->sc_sh = rman_get_bushandle(sc->sc_mem);
5700
5701         /* Install interrupt handler. */
5702         count = 1;
5703         rid = 0;
5704         if (pci_alloc_msi(dev, &count) == 0)
5705                 rid = 1;
5706         sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
5707             (rid != 0 ? 0 : RF_SHAREABLE));
5708         if (sc->sc_irq == NULL) {
5709                 device_printf(dev, "can't map interrupt\n");
5710                         return (ENXIO);
5711         }
5712         error = bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
5713             NULL, iwm_intr, sc, &sc->sc_ih);
5714         if (sc->sc_ih == NULL) {
5715                 device_printf(dev, "can't establish interrupt");
5716                         return (ENXIO);
5717         }
5718         sc->sc_dmat = bus_get_dma_tag(sc->sc_dev);
5719
5720         return (0);
5721 }
5722
5723 static void
5724 iwm_pci_detach(device_t dev)
5725 {
5726         struct iwm_softc *sc = device_get_softc(dev);
5727
5728         if (sc->sc_irq != NULL) {
5729                 bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
5730                 bus_release_resource(dev, SYS_RES_IRQ,
5731                     rman_get_rid(sc->sc_irq), sc->sc_irq);
5732                 pci_release_msi(dev);
5733         }
5734         if (sc->sc_mem != NULL)
5735                 bus_release_resource(dev, SYS_RES_MEMORY,
5736                     rman_get_rid(sc->sc_mem), sc->sc_mem);
5737 }
5738
5739
5740
5741 static int
5742 iwm_attach(device_t dev)
5743 {
5744         struct iwm_softc *sc = device_get_softc(dev);
5745         struct ieee80211com *ic = &sc->sc_ic;
5746         int error;
5747         int txq_i, i;
5748
5749         sc->sc_dev = dev;
5750         IWM_LOCK_INIT(sc);
5751         mbufq_init(&sc->sc_snd, ifqmaxlen);
5752         callout_init_mtx(&sc->sc_watchdog_to, &sc->sc_mtx, 0);
5753         callout_init_mtx(&sc->sc_led_blink_to, &sc->sc_mtx, 0);
5754         TASK_INIT(&sc->sc_es_task, 0, iwm_endscan_cb, sc);
5755
5756         /* PCI attach */
5757         error = iwm_pci_attach(dev);
5758         if (error != 0)
5759                 goto fail;
5760
5761         sc->sc_wantresp = -1;
5762
5763         /* Check device type */
5764         error = iwm_dev_check(dev);
5765         if (error != 0)
5766                 goto fail;
5767
5768         /*
5769          * We now start fiddling with the hardware
5770          */
5771         /*
5772          * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
5773          * changed, and now the revision step also includes bit 0-1 (no more
5774          * "dash" value). To keep hw_rev backwards compatible - we'll store it
5775          * in the old format.
5776          */
5777         if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
5778                 sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
5779                                 (IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
5780
5781         if (iwm_prepare_card_hw(sc) != 0) {
5782                 device_printf(dev, "could not initialize hardware\n");
5783                 goto fail;
5784         }
5785
5786         if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
5787                 int ret;
5788                 uint32_t hw_step;
5789
5790                 /*
5791                  * In order to recognize C step the driver should read the
5792                  * chip version id located at the AUX bus MISC address.
5793                  */
5794                 IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
5795                             IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
5796                 DELAY(2);
5797
5798                 ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
5799                                    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5800                                    IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
5801                                    25000);
5802                 if (!ret) {
5803                         device_printf(sc->sc_dev,
5804                             "Failed to wake up the nic\n");
5805                         goto fail;
5806                 }
5807
5808                 if (iwm_nic_lock(sc)) {
5809                         hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
5810                         hw_step |= IWM_ENABLE_WFPM;
5811                         iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
5812                         hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
5813                         hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
5814                         if (hw_step == 0x3)
5815                                 sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
5816                                                 (IWM_SILICON_C_STEP << 2);
5817                         iwm_nic_unlock(sc);
5818                 } else {
5819                         device_printf(sc->sc_dev, "Failed to lock the nic\n");
5820                         goto fail;
5821                 }
5822         }
5823
5824         /* Allocate DMA memory for firmware transfers. */
5825         if ((error = iwm_alloc_fwmem(sc)) != 0) {
5826                 device_printf(dev, "could not allocate memory for firmware\n");
5827                 goto fail;
5828         }
5829
5830         /* Allocate "Keep Warm" page. */
5831         if ((error = iwm_alloc_kw(sc)) != 0) {
5832                 device_printf(dev, "could not allocate keep warm page\n");
5833                 goto fail;
5834         }
5835
5836         /* We use ICT interrupts */
5837         if ((error = iwm_alloc_ict(sc)) != 0) {
5838                 device_printf(dev, "could not allocate ICT table\n");
5839                 goto fail;
5840         }
5841
5842         /* Allocate TX scheduler "rings". */
5843         if ((error = iwm_alloc_sched(sc)) != 0) {
5844                 device_printf(dev, "could not allocate TX scheduler rings\n");
5845                 goto fail;
5846         }
5847
5848         /* Allocate TX rings */
5849         for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) {
5850                 if ((error = iwm_alloc_tx_ring(sc,
5851                     &sc->txq[txq_i], txq_i)) != 0) {
5852                         device_printf(dev,
5853                             "could not allocate TX ring %d\n",
5854                             txq_i);
5855                         goto fail;
5856                 }
5857         }
5858
5859         /* Allocate RX ring. */
5860         if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) {
5861                 device_printf(dev, "could not allocate RX ring\n");
5862                 goto fail;
5863         }
5864
5865         /* Clear pending interrupts. */
5866         IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
5867
5868         ic->ic_softc = sc;
5869         ic->ic_name = device_get_nameunit(sc->sc_dev);
5870         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
5871         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
5872
5873         /* Set device capabilities. */
5874         ic->ic_caps =
5875             IEEE80211_C_STA |
5876             IEEE80211_C_WPA |           /* WPA/RSN */
5877             IEEE80211_C_WME |
5878             IEEE80211_C_SHSLOT |        /* short slot time supported */
5879             IEEE80211_C_SHPREAMBLE      /* short preamble supported */
5880 //          IEEE80211_C_BGSCAN          /* capable of bg scanning */
5881             ;
5882         /* Advertise full-offload scanning */
5883         ic->ic_flags_ext = IEEE80211_FEXT_SCAN_OFFLOAD;
5884         for (i = 0; i < nitems(sc->sc_phyctxt); i++) {
5885                 sc->sc_phyctxt[i].id = i;
5886                 sc->sc_phyctxt[i].color = 0;
5887                 sc->sc_phyctxt[i].ref = 0;
5888                 sc->sc_phyctxt[i].channel = NULL;
5889         }
5890
5891         /* Default noise floor */
5892         sc->sc_noise = -96;
5893
5894         /* Max RSSI */
5895         sc->sc_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
5896
5897         sc->sc_preinit_hook.ich_func = iwm_preinit;
5898         sc->sc_preinit_hook.ich_arg = sc;
5899         if (config_intrhook_establish(&sc->sc_preinit_hook) != 0) {
5900                 device_printf(dev, "config_intrhook_establish failed\n");
5901                 goto fail;
5902         }
5903
5904 #ifdef IWM_DEBUG
5905         SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
5906             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug",
5907             CTLFLAG_RW, &sc->sc_debug, 0, "control debugging");
5908 #endif
5909
5910         IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5911             "<-%s\n", __func__);
5912
5913         return 0;
5914
5915         /* Free allocated memory if something failed during attachment. */
5916 fail:
5917         iwm_detach_local(sc, 0);
5918
5919         return ENXIO;
5920 }
5921
5922 static int
5923 iwm_is_valid_ether_addr(uint8_t *addr)
5924 {
5925         char zero_addr[IEEE80211_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
5926
5927         if ((addr[0] & 1) || IEEE80211_ADDR_EQ(zero_addr, addr))
5928                 return (FALSE);
5929
5930         return (TRUE);
5931 }
5932
5933 static int
5934 iwm_update_edca(struct ieee80211com *ic)
5935 {
5936         struct iwm_softc *sc = ic->ic_softc;
5937
5938         device_printf(sc->sc_dev, "%s: called\n", __func__);
5939         return (0);
5940 }
5941
5942 static void
5943 iwm_preinit(void *arg)
5944 {
5945         struct iwm_softc *sc = arg;
5946         device_t dev = sc->sc_dev;
5947         struct ieee80211com *ic = &sc->sc_ic;
5948         int error;
5949
5950         IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
5951             "->%s\n", __func__);
5952
5953         IWM_LOCK(sc);
5954         if ((error = iwm_start_hw(sc)) != 0) {
5955                 device_printf(dev, "could not initialize hardware\n");
5956                 IWM_UNLOCK(sc);
5957                 goto fail;
5958         }
5959
5960         error = iwm_run_init_mvm_ucode(sc, 1);
5961         iwm_stop_device(sc);
5962         if (error) {
5963                 IWM_UNLOCK(sc);
5964                 goto fail;
5965         }
5966         device_printf(dev,
5967             "hw rev 0x%x, fw ver %s, address %s\n",
5968             sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK,
5969             sc->sc_fwver, ether_sprintf(sc->sc_nvm.hw_addr));
5970
5971         /* not all hardware can do 5GHz band */
5972         if (!sc->sc_nvm.sku_cap_band_52GHz_enable)
5973                 memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0,
5974                     sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A]));
5975         IWM_UNLOCK(sc);
5976
5977         iwm_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
5978             ic->ic_channels);
5979
5980         /*
5981          * At this point we've committed - if we fail to do setup,
5982          * we now also have to tear down the net80211 state.
5983          */
5984         ieee80211_ifattach(ic);
5985         ic->ic_vap_create = iwm_vap_create;
5986         ic->ic_vap_delete = iwm_vap_delete;
5987         ic->ic_raw_xmit = iwm_raw_xmit;
5988         ic->ic_node_alloc = iwm_node_alloc;
5989         ic->ic_scan_start = iwm_scan_start;
5990         ic->ic_scan_end = iwm_scan_end;
5991         ic->ic_update_mcast = iwm_update_mcast;
5992         ic->ic_getradiocaps = iwm_init_channel_map;
5993         ic->ic_set_channel = iwm_set_channel;
5994         ic->ic_scan_curchan = iwm_scan_curchan;
5995         ic->ic_scan_mindwell = iwm_scan_mindwell;
5996         ic->ic_wme.wme_update = iwm_update_edca;
5997         ic->ic_parent = iwm_parent;
5998         ic->ic_transmit = iwm_transmit;
5999         iwm_radiotap_attach(sc);
6000         if (bootverbose)
6001                 ieee80211_announce(ic);
6002
6003         IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6004             "<-%s\n", __func__);
6005         config_intrhook_disestablish(&sc->sc_preinit_hook);
6006
6007         return;
6008 fail:
6009         config_intrhook_disestablish(&sc->sc_preinit_hook);
6010         iwm_detach_local(sc, 0);
6011 }
6012
6013 /*
6014  * Attach the interface to 802.11 radiotap.
6015  */
6016 static void
6017 iwm_radiotap_attach(struct iwm_softc *sc)
6018 {
6019         struct ieee80211com *ic = &sc->sc_ic;
6020
6021         IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6022             "->%s begin\n", __func__);
6023         ieee80211_radiotap_attach(ic,
6024             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
6025                 IWM_TX_RADIOTAP_PRESENT,
6026             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
6027                 IWM_RX_RADIOTAP_PRESENT);
6028         IWM_DPRINTF(sc, IWM_DEBUG_RESET | IWM_DEBUG_TRACE,
6029             "->%s end\n", __func__);
6030 }
6031
6032 static struct ieee80211vap *
6033 iwm_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
6034     enum ieee80211_opmode opmode, int flags,
6035     const uint8_t bssid[IEEE80211_ADDR_LEN],
6036     const uint8_t mac[IEEE80211_ADDR_LEN])
6037 {
6038         struct iwm_vap *ivp;
6039         struct ieee80211vap *vap;
6040
6041         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
6042                 return NULL;
6043         ivp = malloc(sizeof(struct iwm_vap), M_80211_VAP, M_WAITOK | M_ZERO);
6044         vap = &ivp->iv_vap;
6045         ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
6046         vap->iv_bmissthreshold = 10;            /* override default */
6047         /* Override with driver methods. */
6048         ivp->iv_newstate = vap->iv_newstate;
6049         vap->iv_newstate = iwm_newstate;
6050
6051         ieee80211_ratectl_init(vap);
6052         /* Complete setup. */
6053         ieee80211_vap_attach(vap, iwm_media_change, ieee80211_media_status,
6054             mac);
6055         ic->ic_opmode = opmode;
6056
6057         return vap;
6058 }
6059
6060 static void
6061 iwm_vap_delete(struct ieee80211vap *vap)
6062 {
6063         struct iwm_vap *ivp = IWM_VAP(vap);
6064
6065         ieee80211_ratectl_deinit(vap);
6066         ieee80211_vap_detach(vap);
6067         free(ivp, M_80211_VAP);
6068 }
6069
6070 static void
6071 iwm_scan_start(struct ieee80211com *ic)
6072 {
6073         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6074         struct iwm_softc *sc = ic->ic_softc;
6075         int error;
6076
6077         IWM_LOCK(sc);
6078         if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
6079                 error = iwm_mvm_umac_scan(sc);
6080         else
6081                 error = iwm_mvm_lmac_scan(sc);
6082         if (error != 0) {
6083                 device_printf(sc->sc_dev, "could not initiate 2 GHz scan\n");
6084                 IWM_UNLOCK(sc);
6085                 ieee80211_cancel_scan(vap);
6086         } else {
6087                 iwm_led_blink_start(sc);
6088                 IWM_UNLOCK(sc);
6089         }
6090 }
6091
6092 static void
6093 iwm_scan_end(struct ieee80211com *ic)
6094 {
6095         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6096         struct iwm_softc *sc = ic->ic_softc;
6097
6098         IWM_LOCK(sc);
6099         iwm_led_blink_stop(sc);
6100         if (vap->iv_state == IEEE80211_S_RUN)
6101                 iwm_mvm_led_enable(sc);
6102         IWM_UNLOCK(sc);
6103 }
6104
6105 static void
6106 iwm_update_mcast(struct ieee80211com *ic)
6107 {
6108 }
6109
6110 static void
6111 iwm_set_channel(struct ieee80211com *ic)
6112 {
6113 }
6114
6115 static void
6116 iwm_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6117 {
6118 }
6119
6120 static void
6121 iwm_scan_mindwell(struct ieee80211_scan_state *ss)
6122 {
6123         return;
6124 }
6125
6126 void
6127 iwm_init_task(void *arg1)
6128 {
6129         struct iwm_softc *sc = arg1;
6130
6131         IWM_LOCK(sc);
6132         while (sc->sc_flags & IWM_FLAG_BUSY)
6133                 msleep(&sc->sc_flags, &sc->sc_mtx, 0, "iwmpwr", 0);
6134         sc->sc_flags |= IWM_FLAG_BUSY;
6135         iwm_stop(sc);
6136         if (sc->sc_ic.ic_nrunning > 0)
6137                 iwm_init(sc);
6138         sc->sc_flags &= ~IWM_FLAG_BUSY;
6139         wakeup(&sc->sc_flags);
6140         IWM_UNLOCK(sc);
6141 }
6142
6143 static int
6144 iwm_resume(device_t dev)
6145 {
6146         struct iwm_softc *sc = device_get_softc(dev);
6147         int do_reinit = 0;
6148         uint16_t reg;
6149
6150         /* Clear device-specific "PCI retry timeout" register (41h). */
6151         reg = pci_read_config(dev, 0x40, sizeof(reg));
6152         pci_write_config(dev, 0x40, reg & ~0xff00, sizeof(reg));
6153         iwm_init_task(device_get_softc(dev));
6154
6155         IWM_LOCK(sc);
6156         if (sc->sc_flags & IWM_FLAG_SCANNING) {
6157                 sc->sc_flags &= ~IWM_FLAG_SCANNING;
6158                 do_reinit = 1;
6159         }
6160         IWM_UNLOCK(sc);
6161
6162         if (do_reinit)
6163                 ieee80211_resume_all(&sc->sc_ic);
6164
6165         return 0;
6166 }
6167
6168 static int
6169 iwm_suspend(device_t dev)
6170 {
6171         int do_stop = 0;
6172         struct iwm_softc *sc = device_get_softc(dev);
6173
6174         do_stop = !! (sc->sc_ic.ic_nrunning > 0);
6175
6176         ieee80211_suspend_all(&sc->sc_ic);
6177
6178         if (do_stop) {
6179                 IWM_LOCK(sc);
6180                 iwm_stop(sc);
6181                 sc->sc_flags |= IWM_FLAG_SCANNING;
6182                 IWM_UNLOCK(sc);
6183         }
6184
6185         return (0);
6186 }
6187
6188 static int
6189 iwm_detach_local(struct iwm_softc *sc, int do_net80211)
6190 {
6191         struct iwm_fw_info *fw = &sc->sc_fw;
6192         device_t dev = sc->sc_dev;
6193         int i;
6194
6195         ieee80211_draintask(&sc->sc_ic, &sc->sc_es_task);
6196
6197         callout_drain(&sc->sc_led_blink_to);
6198         callout_drain(&sc->sc_watchdog_to);
6199         iwm_stop_device(sc);
6200         if (do_net80211) {
6201                 ieee80211_ifdetach(&sc->sc_ic);
6202         }
6203
6204         iwm_phy_db_free(sc);
6205
6206         /* Free descriptor rings */
6207         iwm_free_rx_ring(sc, &sc->rxq);
6208         for (i = 0; i < nitems(sc->txq); i++)
6209                 iwm_free_tx_ring(sc, &sc->txq[i]);
6210
6211         /* Free firmware */
6212         if (fw->fw_fp != NULL)
6213                 iwm_fw_info_free(fw);
6214
6215         /* Free scheduler */
6216         iwm_dma_contig_free(&sc->sched_dma);
6217         iwm_dma_contig_free(&sc->ict_dma);
6218         iwm_dma_contig_free(&sc->kw_dma);
6219         iwm_dma_contig_free(&sc->fw_dma);
6220
6221         /* Finished with the hardware - detach things */
6222         iwm_pci_detach(dev);
6223
6224         mbufq_drain(&sc->sc_snd);
6225         IWM_LOCK_DESTROY(sc);
6226
6227         return (0);
6228 }
6229
6230 static int
6231 iwm_detach(device_t dev)
6232 {
6233         struct iwm_softc *sc = device_get_softc(dev);
6234
6235         return (iwm_detach_local(sc, 1));
6236 }
6237
6238 static device_method_t iwm_pci_methods[] = {
6239         /* Device interface */
6240         DEVMETHOD(device_probe,         iwm_probe),
6241         DEVMETHOD(device_attach,        iwm_attach),
6242         DEVMETHOD(device_detach,        iwm_detach),
6243         DEVMETHOD(device_suspend,       iwm_suspend),
6244         DEVMETHOD(device_resume,        iwm_resume),
6245
6246         DEVMETHOD_END
6247 };
6248
6249 static driver_t iwm_pci_driver = {
6250         "iwm",
6251         iwm_pci_methods,
6252         sizeof (struct iwm_softc)
6253 };
6254
6255 static devclass_t iwm_devclass;
6256
6257 DRIVER_MODULE(iwm, pci, iwm_pci_driver, iwm_devclass, NULL, NULL);
6258 MODULE_DEPEND(iwm, firmware, 1, 1, 1);
6259 MODULE_DEPEND(iwm, pci, 1, 1, 1);
6260 MODULE_DEPEND(iwm, wlan, 1, 1, 1);