]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/mps/mps.c
zfs: merge openzfs/zfs@c4c162c1e (master) into main
[FreeBSD/FreeBSD.git] / sys / dev / mps / mps.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2009 Yahoo! Inc.
5  * Copyright (c) 2011-2015 LSI Corp.
6  * Copyright (c) 2013-2015 Avago Technologies
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * Avago Technologies (LSI) MPT-Fusion Host Adapter FreeBSD
31  *
32  * $FreeBSD$
33  */
34
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37
38 /* Communications core for Avago Technologies (LSI) MPT2 */
39
40 /* TODO Move headers to mpsvar */
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/selinfo.h>
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/module.h>
49 #include <sys/bus.h>
50 #include <sys/conf.h>
51 #include <sys/bio.h>
52 #include <sys/malloc.h>
53 #include <sys/uio.h>
54 #include <sys/sysctl.h>
55 #include <sys/smp.h>
56 #include <sys/queue.h>
57 #include <sys/kthread.h>
58 #include <sys/taskqueue.h>
59 #include <sys/endian.h>
60 #include <sys/eventhandler.h>
61 #include <sys/sbuf.h>
62 #include <sys/priv.h>
63
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 #include <sys/rman.h>
67 #include <sys/proc.h>
68
69 #include <dev/pci/pcivar.h>
70
71 #include <cam/cam.h>
72 #include <cam/scsi/scsi_all.h>
73
74 #include <dev/mps/mpi/mpi2_type.h>
75 #include <dev/mps/mpi/mpi2.h>
76 #include <dev/mps/mpi/mpi2_ioc.h>
77 #include <dev/mps/mpi/mpi2_sas.h>
78 #include <dev/mps/mpi/mpi2_cnfg.h>
79 #include <dev/mps/mpi/mpi2_init.h>
80 #include <dev/mps/mpi/mpi2_tool.h>
81 #include <dev/mps/mps_ioctl.h>
82 #include <dev/mps/mpsvar.h>
83 #include <dev/mps/mps_table.h>
84
85 static int mps_diag_reset(struct mps_softc *sc, int sleep_flag);
86 static int mps_init_queues(struct mps_softc *sc);
87 static void mps_resize_queues(struct mps_softc *sc);
88 static int mps_message_unit_reset(struct mps_softc *sc, int sleep_flag);
89 static int mps_transition_operational(struct mps_softc *sc);
90 static int mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching);
91 static void mps_iocfacts_free(struct mps_softc *sc);
92 static void mps_startup(void *arg);
93 static int mps_send_iocinit(struct mps_softc *sc);
94 static int mps_alloc_queues(struct mps_softc *sc);
95 static int mps_alloc_hw_queues(struct mps_softc *sc);
96 static int mps_alloc_replies(struct mps_softc *sc);
97 static int mps_alloc_requests(struct mps_softc *sc);
98 static int mps_attach_log(struct mps_softc *sc);
99 static __inline void mps_complete_command(struct mps_softc *sc,
100     struct mps_command *cm);
101 static void mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
102     MPI2_EVENT_NOTIFICATION_REPLY *reply);
103 static void mps_config_complete(struct mps_softc *sc, struct mps_command *cm);
104 static void mps_periodic(void *);
105 static int mps_reregister_events(struct mps_softc *sc);
106 static void mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm);
107 static int mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts);
108 static int mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag);
109 static int mps_debug_sysctl(SYSCTL_HANDLER_ARGS);
110 static int mps_dump_reqs(SYSCTL_HANDLER_ARGS);
111 static void mps_parse_debug(struct mps_softc *sc, char *list);
112
113 SYSCTL_NODE(_hw, OID_AUTO, mps, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
114     "MPS Driver Parameters");
115
116 MALLOC_DEFINE(M_MPT2, "mps", "mpt2 driver memory");
117 MALLOC_DECLARE(M_MPSUSER);
118
119 /*
120  * Do a "Diagnostic Reset" aka a hard reset.  This should get the chip out of
121  * any state and back to its initialization state machine.
122  */
123 static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d };
124
125 /* Added this union to smoothly convert le64toh cm->cm_desc.Words.
126  * Compiler only support unint64_t to be passed as argument.
127  * Otherwise it will throw below error
128  * "aggregate value used where an integer was expected"
129  */
130
131 typedef union {
132         u64 word;
133         struct {
134                 u32 low;
135                 u32 high;
136         } u;
137 } request_descriptor_t;
138
139 /* Rate limit chain-fail messages to 1 per minute */
140 static struct timeval mps_chainfail_interval = { 60, 0 };
141
142 /* 
143  * sleep_flag can be either CAN_SLEEP or NO_SLEEP.
144  * If this function is called from process context, it can sleep
145  * and there is no harm to sleep, in case if this fuction is called
146  * from Interrupt handler, we can not sleep and need NO_SLEEP flag set.
147  * based on sleep flags driver will call either msleep, pause or DELAY.
148  * msleep and pause are of same variant, but pause is used when mps_mtx
149  * is not hold by driver.
150  *
151  */
152 static int
153 mps_diag_reset(struct mps_softc *sc,int sleep_flag)
154 {
155         uint32_t reg;
156         int i, error, tries = 0;
157         uint8_t first_wait_done = FALSE;
158
159         mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
160
161         /* Clear any pending interrupts */
162         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
163
164         /*
165          * Force NO_SLEEP for threads prohibited to sleep
166          * e.a Thread from interrupt handler are prohibited to sleep.
167          */
168         if (curthread->td_no_sleeping != 0)
169                 sleep_flag = NO_SLEEP;
170
171         mps_dprint(sc, MPS_INIT, "sequence start, sleep_flag= %d\n", sleep_flag);
172
173         /* Push the magic sequence */
174         error = ETIMEDOUT;
175         while (tries++ < 20) {
176                 for (i = 0; i < sizeof(mpt2_reset_magic); i++)
177                         mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET,
178                             mpt2_reset_magic[i]);
179                 /* wait 100 msec */
180                 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
181                         msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
182                             "mpsdiag", hz/10);
183                 else if (sleep_flag == CAN_SLEEP)
184                         pause("mpsdiag", hz/10);
185                 else
186                         DELAY(100 * 1000);
187
188                 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
189                 if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) {
190                         error = 0;
191                         break;
192                 }
193         }
194         if (error) {
195                 mps_dprint(sc, MPS_INIT, "sequence failed, error=%d, exit\n",
196                     error);
197                 return (error);
198         }
199
200         /* Send the actual reset.  XXX need to refresh the reg? */
201         reg |= MPI2_DIAG_RESET_ADAPTER;
202         mps_dprint(sc, MPS_INIT, "sequence success, sending reset, reg= 0x%x\n",
203                 reg);
204         mps_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg);
205
206         /* Wait up to 300 seconds in 50ms intervals */
207         error = ETIMEDOUT;
208         for (i = 0; i < 6000; i++) {
209                 /*
210                  * Wait 50 msec. If this is the first time through, wait 256
211                  * msec to satisfy Diag Reset timing requirements.
212                  */
213                 if (first_wait_done) {
214                         if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
215                                 msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0,
216                                     "mpsdiag", hz/20);
217                         else if (sleep_flag == CAN_SLEEP)
218                                 pause("mpsdiag", hz/20);
219                         else
220                                 DELAY(50 * 1000);
221                 } else {
222                         DELAY(256 * 1000);
223                         first_wait_done = TRUE;
224                 }
225                 /*
226                  * Check for the RESET_ADAPTER bit to be cleared first, then
227                  * wait for the RESET state to be cleared, which takes a little
228                  * longer.
229                  */
230                 reg = mps_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET);
231                 if (reg & MPI2_DIAG_RESET_ADAPTER) {
232                         continue;
233                 }
234                 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
235                 if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) {
236                         error = 0;
237                         break;
238                 }
239         }
240         if (error) {
241                 mps_dprint(sc, MPS_INIT, "reset failed, error= %d, exit\n",
242                     error);
243                 return (error);
244         }
245
246         mps_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0);
247         mps_dprint(sc, MPS_INIT, "diag reset success, exit\n");
248
249         return (0);
250 }
251
252 static int
253 mps_message_unit_reset(struct mps_softc *sc, int sleep_flag)
254 {
255         int error;
256
257         MPS_FUNCTRACE(sc);
258
259         mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
260
261         error = 0;
262         mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
263             MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET <<
264             MPI2_DOORBELL_FUNCTION_SHIFT);
265
266         if (mps_wait_db_ack(sc, 5, sleep_flag) != 0) {
267                 mps_dprint(sc, MPS_INIT|MPS_FAULT,
268                     "Doorbell handshake failed\n");
269                 error = ETIMEDOUT;
270         }
271
272         mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
273         return (error);
274 }
275
276 static int
277 mps_transition_ready(struct mps_softc *sc)
278 {
279         uint32_t reg, state;
280         int error, tries = 0;
281         int sleep_flags;
282
283         MPS_FUNCTRACE(sc);
284         /* If we are in attach call, do not sleep */
285         sleep_flags = (sc->mps_flags & MPS_FLAGS_ATTACH_DONE)
286                                         ? CAN_SLEEP:NO_SLEEP;
287         error = 0;
288
289         mps_dprint(sc, MPS_INIT, "%s entered, sleep_flags= %d\n",
290            __func__, sleep_flags);
291
292         while (tries++ < 1200) {
293                 reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
294                 mps_dprint(sc, MPS_INIT, "  Doorbell= 0x%x\n", reg);
295
296                 /*
297                  * Ensure the IOC is ready to talk.  If it's not, try
298                  * resetting it.
299                  */
300                 if (reg & MPI2_DOORBELL_USED) {
301                         mps_dprint(sc, MPS_INIT, "  Not ready, sending diag "
302                             "reset\n");
303                         mps_diag_reset(sc, sleep_flags);
304                         DELAY(50000);
305                         continue;
306                 }
307
308                 /* Is the adapter owned by another peer? */
309                 if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) ==
310                     (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) {
311                         mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC is under the "
312                             "control of another peer host, aborting "
313                             "initialization.\n");
314                         error = ENXIO;
315                         break;
316                 }
317                 
318                 state = reg & MPI2_IOC_STATE_MASK;
319                 if (state == MPI2_IOC_STATE_READY) {
320                         /* Ready to go! */
321                         error = 0;
322                         break;
323                 } else if (state == MPI2_IOC_STATE_FAULT) {
324                         mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC in fault "
325                             "state 0x%x, resetting\n",
326                             state & MPI2_DOORBELL_FAULT_CODE_MASK);
327                         mps_diag_reset(sc, sleep_flags);
328                 } else if (state == MPI2_IOC_STATE_OPERATIONAL) {
329                         /* Need to take ownership */
330                         mps_message_unit_reset(sc, sleep_flags);
331                 } else if (state == MPI2_IOC_STATE_RESET) {
332                         /* Wait a bit, IOC might be in transition */
333                         mps_dprint(sc, MPS_INIT|MPS_FAULT,
334                             "IOC in unexpected reset state\n");
335                 } else {
336                         mps_dprint(sc, MPS_INIT|MPS_FAULT,
337                             "IOC in unknown state 0x%x\n", state);
338                         error = EINVAL;
339                         break;
340                 }
341
342                 /* Wait 50ms for things to settle down. */
343                 DELAY(50000);
344         }
345
346         if (error)
347                 mps_dprint(sc, MPS_INIT|MPS_FAULT,
348                     "Cannot transition IOC to ready\n");
349         mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
350
351         return (error);
352 }
353
354 static int
355 mps_transition_operational(struct mps_softc *sc)
356 {
357         uint32_t reg, state;
358         int error;
359
360         MPS_FUNCTRACE(sc);
361
362         error = 0;
363         reg = mps_regread(sc, MPI2_DOORBELL_OFFSET);
364         mps_dprint(sc, MPS_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg);
365
366         state = reg & MPI2_IOC_STATE_MASK;
367         if (state != MPI2_IOC_STATE_READY) {
368                 mps_dprint(sc, MPS_INIT, "IOC not ready\n");
369                 if ((error = mps_transition_ready(sc)) != 0) {
370                         mps_dprint(sc, MPS_INIT|MPS_FAULT, 
371                             "failed to transition ready, exit\n");
372                         return (error);
373                 }
374         }
375
376         error = mps_send_iocinit(sc);
377         mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
378
379         return (error);
380 }
381
382 static void
383 mps_resize_queues(struct mps_softc *sc)
384 {
385         u_int reqcr, prireqcr, maxio, sges_per_frame;
386
387         /*
388          * Size the queues. Since the reply queues always need one free
389          * entry, we'll deduct one reply message here.  The LSI documents
390          * suggest instead to add a count to the request queue, but I think
391          * that it's better to deduct from reply queue.
392          */
393         prireqcr = MAX(1, sc->max_prireqframes);
394         prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit);
395
396         reqcr = MAX(2, sc->max_reqframes);
397         reqcr = MIN(reqcr, sc->facts->RequestCredit);
398
399         sc->num_reqs = prireqcr + reqcr;
400         sc->num_prireqs = prireqcr;
401         sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes,
402             sc->facts->MaxReplyDescriptorPostQueueDepth) - 1;
403
404         /* Store the request frame size in bytes rather than as 32bit words */
405         sc->reqframesz = sc->facts->IOCRequestFrameSize * 4;
406
407         /*
408          * Max IO Size is Page Size * the following:
409          * ((SGEs per frame - 1 for chain element) * Max Chain Depth)
410          * + 1 for no chain needed in last frame
411          *
412          * If user suggests a Max IO size to use, use the smaller of the
413          * user's value and the calculated value as long as the user's
414          * value is larger than 0. The user's value is in pages.
415          */
416         sges_per_frame = sc->reqframesz / sizeof(MPI2_SGE_SIMPLE64) - 1;
417         maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE;
418
419         /*
420          * If I/O size limitation requested, then use it and pass up to CAM.
421          * If not, use maxphys as an optimization hint, but report HW limit.
422          */
423         if (sc->max_io_pages > 0) {
424                 maxio = min(maxio, sc->max_io_pages * PAGE_SIZE);
425                 sc->maxio = maxio;
426         } else {
427                 sc->maxio = maxio;
428                 maxio = min(maxio, maxphys);
429         }
430
431         sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) /
432             sges_per_frame * reqcr;
433         if (sc->max_chains > 0 && sc->max_chains < sc->num_chains)
434                 sc->num_chains = sc->max_chains;
435
436         /*
437          * Figure out the number of MSIx-based queues.  If the firmware or
438          * user has done something crazy and not allowed enough credit for
439          * the queues to be useful then don't enable multi-queue.
440          */
441         if (sc->facts->MaxMSIxVectors < 2)
442                 sc->msi_msgs = 1;
443
444         if (sc->msi_msgs > 1) {
445                 sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus);
446                 sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors);
447                 if (sc->num_reqs / sc->msi_msgs < 2)
448                         sc->msi_msgs = 1;
449         }
450
451         mps_dprint(sc, MPS_INIT, "Sized queues to q=%d reqs=%d replies=%d\n",
452             sc->msi_msgs, sc->num_reqs, sc->num_replies);
453 }
454
455 /*
456  * This is called during attach and when re-initializing due to a Diag Reset.
457  * IOC Facts is used to allocate many of the structures needed by the driver.
458  * If called from attach, de-allocation is not required because the driver has
459  * not allocated any structures yet, but if called from a Diag Reset, previously
460  * allocated structures based on IOC Facts will need to be freed and re-
461  * allocated bases on the latest IOC Facts.
462  */
463 static int
464 mps_iocfacts_allocate(struct mps_softc *sc, uint8_t attaching)
465 {
466         int error;
467         Mpi2IOCFactsReply_t saved_facts;
468         uint8_t saved_mode, reallocating;
469
470         mps_dprint(sc, MPS_INIT|MPS_TRACE, "%s entered\n", __func__);
471
472         /* Save old IOC Facts and then only reallocate if Facts have changed */
473         if (!attaching) {
474                 bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY));
475         }
476
477         /*
478          * Get IOC Facts.  In all cases throughout this function, panic if doing
479          * a re-initialization and only return the error if attaching so the OS
480          * can handle it.
481          */
482         if ((error = mps_get_iocfacts(sc, sc->facts)) != 0) {
483                 if (attaching) {
484                         mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to get "
485                             "IOC Facts with error %d, exit\n", error);
486                         return (error);
487                 } else {
488                         panic("%s failed to get IOC Facts with error %d\n",
489                             __func__, error);
490                 }
491         }
492
493         MPS_DPRINT_PAGE(sc, MPS_XINFO, iocfacts, sc->facts);
494
495         snprintf(sc->fw_version, sizeof(sc->fw_version), 
496             "%02d.%02d.%02d.%02d", 
497             sc->facts->FWVersion.Struct.Major,
498             sc->facts->FWVersion.Struct.Minor,
499             sc->facts->FWVersion.Struct.Unit,
500             sc->facts->FWVersion.Struct.Dev);
501
502         snprintf(sc->msg_version, sizeof(sc->msg_version), "%d.%d",
503             (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MAJOR_MASK) >>
504             MPI2_IOCFACTS_MSGVERSION_MAJOR_SHIFT, 
505             (sc->facts->MsgVersion & MPI2_IOCFACTS_MSGVERSION_MINOR_MASK) >>
506             MPI2_IOCFACTS_MSGVERSION_MINOR_SHIFT);
507
508         mps_dprint(sc, MPS_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version,
509             MPS_DRIVER_VERSION);
510         mps_dprint(sc, MPS_INFO, "IOCCapabilities: %b\n",
511              sc->facts->IOCCapabilities,
512             "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf"
513             "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR"
514             "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc");
515
516         /*
517          * If the chip doesn't support event replay then a hard reset will be
518          * required to trigger a full discovery.  Do the reset here then
519          * retransition to Ready.  A hard reset might have already been done,
520          * but it doesn't hurt to do it again.  Only do this if attaching, not
521          * for a Diag Reset.
522          */
523         if (attaching && ((sc->facts->IOCCapabilities &
524             MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) {
525                 mps_dprint(sc, MPS_INIT, "No event replay, reseting\n");
526                 mps_diag_reset(sc, NO_SLEEP);
527                 if ((error = mps_transition_ready(sc)) != 0) {
528                         mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to "
529                             "transition to ready with error %d, exit\n",
530                             error);
531                         return (error);
532                 }
533         }
534
535         /*
536          * Set flag if IR Firmware is loaded.  If the RAID Capability has
537          * changed from the previous IOC Facts, log a warning, but only if
538          * checking this after a Diag Reset and not during attach.
539          */
540         saved_mode = sc->ir_firmware;
541         if (sc->facts->IOCCapabilities &
542             MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)
543                 sc->ir_firmware = 1;
544         if (!attaching) {
545                 if (sc->ir_firmware != saved_mode) {
546                         mps_dprint(sc, MPS_INIT|MPS_FAULT, "new IR/IT mode "
547                             "in IOC Facts does not match previous mode\n");
548                 }
549         }
550
551         /* Only deallocate and reallocate if relevant IOC Facts have changed */
552         reallocating = FALSE;
553         sc->mps_flags &= ~MPS_FLAGS_REALLOCATED;
554
555         if ((!attaching) &&
556             ((saved_facts.MsgVersion != sc->facts->MsgVersion) ||
557             (saved_facts.HeaderVersion != sc->facts->HeaderVersion) ||
558             (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) ||
559             (saved_facts.RequestCredit != sc->facts->RequestCredit) ||
560             (saved_facts.ProductID != sc->facts->ProductID) ||
561             (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) ||
562             (saved_facts.IOCRequestFrameSize !=
563             sc->facts->IOCRequestFrameSize) ||
564             (saved_facts.MaxTargets != sc->facts->MaxTargets) ||
565             (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) ||
566             (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) ||
567             (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) ||
568             (saved_facts.MaxReplyDescriptorPostQueueDepth !=
569             sc->facts->MaxReplyDescriptorPostQueueDepth) ||
570             (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) ||
571             (saved_facts.MaxVolumes != sc->facts->MaxVolumes) ||
572             (saved_facts.MaxPersistentEntries !=
573             sc->facts->MaxPersistentEntries))) {
574                 reallocating = TRUE;
575
576                 /* Record that we reallocated everything */
577                 sc->mps_flags |= MPS_FLAGS_REALLOCATED;
578         }
579
580         /*
581          * Some things should be done if attaching or re-allocating after a Diag
582          * Reset, but are not needed after a Diag Reset if the FW has not
583          * changed.
584          */
585         if (attaching || reallocating) {
586                 /*
587                  * Check if controller supports FW diag buffers and set flag to
588                  * enable each type.
589                  */
590                 if (sc->facts->IOCCapabilities &
591                     MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
592                         sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE].
593                             enabled = TRUE;
594                 if (sc->facts->IOCCapabilities &
595                     MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
596                         sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT].
597                             enabled = TRUE;
598                 if (sc->facts->IOCCapabilities &
599                     MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
600                         sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED].
601                             enabled = TRUE;
602
603                 /*
604                  * Set flag if EEDP is supported and if TLR is supported.
605                  */
606                 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP)
607                         sc->eedp_enabled = TRUE;
608                 if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR)
609                         sc->control_TLR = TRUE;
610
611                 mps_resize_queues(sc);
612
613                 /*
614                  * Initialize all Tail Queues
615                  */
616                 TAILQ_INIT(&sc->req_list);
617                 TAILQ_INIT(&sc->high_priority_req_list);
618                 TAILQ_INIT(&sc->chain_list);
619                 TAILQ_INIT(&sc->tm_list);
620         }
621
622         /*
623          * If doing a Diag Reset and the FW is significantly different
624          * (reallocating will be set above in IOC Facts comparison), then all
625          * buffers based on the IOC Facts will need to be freed before they are
626          * reallocated.
627          */
628         if (reallocating) {
629                 mps_iocfacts_free(sc);
630                 mpssas_realloc_targets(sc, saved_facts.MaxTargets +
631                     saved_facts.MaxVolumes);
632         }
633
634         /*
635          * Any deallocation has been completed.  Now start reallocating
636          * if needed.  Will only need to reallocate if attaching or if the new
637          * IOC Facts are different from the previous IOC Facts after a Diag
638          * Reset. Targets have already been allocated above if needed.
639          */
640         error = 0;
641         while (attaching || reallocating) {
642                 if ((error = mps_alloc_hw_queues(sc)) != 0)
643                         break;
644                 if ((error = mps_alloc_replies(sc)) != 0)
645                         break;
646                 if ((error = mps_alloc_requests(sc)) != 0)
647                         break;
648                 if ((error = mps_alloc_queues(sc)) != 0)
649                         break;
650
651                 break;
652         }
653         if (error) {
654                 mps_dprint(sc, MPS_INIT|MPS_FAULT,
655                     "Failed to alloc queues with error %d\n", error);
656                 mps_free(sc);
657                 return (error);
658         }
659
660         /* Always initialize the queues */
661         bzero(sc->free_queue, sc->fqdepth * 4);
662         mps_init_queues(sc);
663
664         /*
665          * Always get the chip out of the reset state, but only panic if not
666          * attaching.  If attaching and there is an error, that is handled by
667          * the OS.
668          */
669         error = mps_transition_operational(sc);
670         if (error != 0) {
671                 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to "
672                     "transition to operational with error %d\n", error);
673                 mps_free(sc);
674                 return (error);
675         }
676
677         /*
678          * Finish the queue initialization.
679          * These are set here instead of in mps_init_queues() because the
680          * IOC resets these values during the state transition in
681          * mps_transition_operational().  The free index is set to 1
682          * because the corresponding index in the IOC is set to 0, and the
683          * IOC treats the queues as full if both are set to the same value.
684          * Hence the reason that the queue can't hold all of the possible
685          * replies.
686          */
687         sc->replypostindex = 0;
688         mps_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex);
689         mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0);
690
691         /*
692          * Attach the subsystems so they can prepare their event masks.
693          * XXX Should be dynamic so that IM/IR and user modules can attach
694          */
695         error = 0;
696         while (attaching) {
697                 mps_dprint(sc, MPS_INIT, "Attaching subsystems\n");
698                 if ((error = mps_attach_log(sc)) != 0)
699                         break;
700                 if ((error = mps_attach_sas(sc)) != 0)
701                         break;
702                 if ((error = mps_attach_user(sc)) != 0)
703                         break;
704                 break;
705         }
706         if (error) {
707                 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to attach all "
708                     "subsystems: error %d\n", error);
709                 mps_free(sc);
710                 return (error);
711         }
712
713         /*
714          * XXX If the number of MSI-X vectors changes during re-init, this
715          * won't see it and adjust.
716          */
717         if (attaching && (error = mps_pci_setup_interrupts(sc)) != 0) {
718                 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Failed to setup "
719                     "interrupts\n");
720                 mps_free(sc);
721                 return (error);
722         }
723
724         /*
725          * Set flag if this is a WD controller.  This shouldn't ever change, but
726          * reset it after a Diag Reset, just in case.
727          */
728         sc->WD_available = FALSE;
729         if (pci_get_device(sc->mps_dev) == MPI2_MFGPAGE_DEVID_SSS6200)
730                 sc->WD_available = TRUE;
731
732         return (error);
733 }
734
735 /*
736  * This is called if memory is being free (during detach for example) and when
737  * buffers need to be reallocated due to a Diag Reset.
738  */
739 static void
740 mps_iocfacts_free(struct mps_softc *sc)
741 {
742         struct mps_command *cm;
743         int i;
744
745         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
746
747         if (sc->free_busaddr != 0)
748                 bus_dmamap_unload(sc->queues_dmat, sc->queues_map);
749         if (sc->free_queue != NULL)
750                 bus_dmamem_free(sc->queues_dmat, sc->free_queue,
751                     sc->queues_map);
752         if (sc->queues_dmat != NULL)
753                 bus_dma_tag_destroy(sc->queues_dmat);
754
755         if (sc->chain_frames != NULL) {
756                 bus_dmamap_unload(sc->chain_dmat, sc->chain_map);
757                 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
758                     sc->chain_map);
759         }
760         if (sc->chain_dmat != NULL)
761                 bus_dma_tag_destroy(sc->chain_dmat);
762
763         if (sc->sense_busaddr != 0)
764                 bus_dmamap_unload(sc->sense_dmat, sc->sense_map);
765         if (sc->sense_frames != NULL)
766                 bus_dmamem_free(sc->sense_dmat, sc->sense_frames,
767                     sc->sense_map);
768         if (sc->sense_dmat != NULL)
769                 bus_dma_tag_destroy(sc->sense_dmat);
770
771         if (sc->reply_busaddr != 0)
772                 bus_dmamap_unload(sc->reply_dmat, sc->reply_map);
773         if (sc->reply_frames != NULL)
774                 bus_dmamem_free(sc->reply_dmat, sc->reply_frames,
775                     sc->reply_map);
776         if (sc->reply_dmat != NULL)
777                 bus_dma_tag_destroy(sc->reply_dmat);
778
779         if (sc->req_busaddr != 0)
780                 bus_dmamap_unload(sc->req_dmat, sc->req_map);
781         if (sc->req_frames != NULL)
782                 bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map);
783         if (sc->req_dmat != NULL)
784                 bus_dma_tag_destroy(sc->req_dmat);
785
786         if (sc->chains != NULL)
787                 free(sc->chains, M_MPT2);
788         if (sc->commands != NULL) {
789                 for (i = 1; i < sc->num_reqs; i++) {
790                         cm = &sc->commands[i];
791                         bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap);
792                 }
793                 free(sc->commands, M_MPT2);
794         }
795         if (sc->buffer_dmat != NULL)
796                 bus_dma_tag_destroy(sc->buffer_dmat);
797
798         mps_pci_free_interrupts(sc);
799         free(sc->queues, M_MPT2);
800         sc->queues = NULL;
801 }
802
803 /* 
804  * The terms diag reset and hard reset are used interchangeably in the MPI
805  * docs to mean resetting the controller chip.  In this code diag reset
806  * cleans everything up, and the hard reset function just sends the reset
807  * sequence to the chip.  This should probably be refactored so that every
808  * subsystem gets a reset notification of some sort, and can clean up
809  * appropriately.
810  */
811 int
812 mps_reinit(struct mps_softc *sc)
813 {
814         int error;
815         struct mpssas_softc *sassc;
816
817         sassc = sc->sassc;
818
819         MPS_FUNCTRACE(sc);
820
821         mtx_assert(&sc->mps_mtx, MA_OWNED);
822
823         mps_dprint(sc, MPS_INIT|MPS_INFO, "Reinitializing controller\n");
824         if (sc->mps_flags & MPS_FLAGS_DIAGRESET) {
825                 mps_dprint(sc, MPS_INIT, "Reset already in progress\n");
826                 return 0;
827         }
828
829         /* make sure the completion callbacks can recognize they're getting
830          * a NULL cm_reply due to a reset.
831          */
832         sc->mps_flags |= MPS_FLAGS_DIAGRESET;
833
834         /*
835          * Mask interrupts here.
836          */
837         mps_dprint(sc, MPS_INIT, "masking interrupts and resetting\n");
838         mps_mask_intr(sc);
839
840         error = mps_diag_reset(sc, CAN_SLEEP);
841         if (error != 0) {
842                 /* XXXSL No need to panic here */
843                 panic("%s hard reset failed with error %d\n",
844                     __func__, error);
845         }
846
847         /* Restore the PCI state, including the MSI-X registers */
848         mps_pci_restore(sc);
849
850         /* Give the I/O subsystem special priority to get itself prepared */
851         mpssas_handle_reinit(sc);
852
853         /*
854          * Get IOC Facts and allocate all structures based on this information.
855          * The attach function will also call mps_iocfacts_allocate at startup.
856          * If relevant values have changed in IOC Facts, this function will free
857          * all of the memory based on IOC Facts and reallocate that memory.
858          */
859         if ((error = mps_iocfacts_allocate(sc, FALSE)) != 0) {
860                 panic("%s IOC Facts based allocation failed with error %d\n",
861                     __func__, error);
862         }
863
864         /*
865          * Mapping structures will be re-allocated after getting IOC Page8, so
866          * free these structures here.
867          */
868         mps_mapping_exit(sc);
869
870         /*
871          * The static page function currently read is IOC Page8.  Others can be
872          * added in future.  It's possible that the values in IOC Page8 have
873          * changed after a Diag Reset due to user modification, so always read
874          * these.  Interrupts are masked, so unmask them before getting config
875          * pages.
876          */
877         mps_unmask_intr(sc);
878         sc->mps_flags &= ~MPS_FLAGS_DIAGRESET;
879         mps_base_static_config_pages(sc);
880
881         /*
882          * Some mapping info is based in IOC Page8 data, so re-initialize the
883          * mapping tables.
884          */
885         mps_mapping_initialize(sc);
886
887         /*
888          * Restart will reload the event masks clobbered by the reset, and
889          * then enable the port.
890          */
891         mps_reregister_events(sc);
892
893         /* the end of discovery will release the simq, so we're done. */
894         mps_dprint(sc, MPS_INIT|MPS_XINFO, "Finished sc %p post %u free %u\n", 
895             sc, sc->replypostindex, sc->replyfreeindex);
896
897         mpssas_release_simq_reinit(sassc);
898         mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
899
900         return 0;
901 }
902
903 /* Wait for the chip to ACK a word that we've put into its FIFO 
904  * Wait for <timeout> seconds. In single loop wait for busy loop
905  * for 500 microseconds.
906  * Total is [ 0.5 * (2000 * <timeout>) ] in miliseconds.
907  * */
908 static int
909 mps_wait_db_ack(struct mps_softc *sc, int timeout, int sleep_flag)
910 {
911
912         u32 cntdn, count;
913         u32 int_status;
914         u32 doorbell;
915
916         count = 0;
917         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
918         do {
919                 int_status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
920                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
921                         mps_dprint(sc, MPS_TRACE, 
922                         "%s: successful count(%d), timeout(%d)\n",
923                         __func__, count, timeout);
924                 return 0;
925                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
926                         doorbell = mps_regread(sc, MPI2_DOORBELL_OFFSET);
927                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
928                                 MPI2_IOC_STATE_FAULT) {
929                                 mps_dprint(sc, MPS_FAULT, 
930                                         "fault_state(0x%04x)!\n", doorbell);
931                                 return (EFAULT);
932                         }
933                 } else if (int_status == 0xFFFFFFFF)
934                         goto out;
935
936                 /* If it can sleep, sleep for 1 milisecond, else busy loop for 
937                 * 0.5 milisecond */
938                 if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP)
939                         msleep(&sc->msleep_fake_chan, &sc->mps_mtx, 0, 
940                         "mpsdba", hz/1000);
941                 else if (sleep_flag == CAN_SLEEP)
942                         pause("mpsdba", hz/1000);
943                 else
944                         DELAY(500);
945                 count++;
946         } while (--cntdn);
947
948         out:
949         mps_dprint(sc, MPS_FAULT, "%s: failed due to timeout count(%d), "
950                 "int_status(%x)!\n", __func__, count, int_status);
951         return (ETIMEDOUT);
952
953 }
954
955 /* Wait for the chip to signal that the next word in its FIFO can be fetched */
956 static int
957 mps_wait_db_int(struct mps_softc *sc)
958 {
959         int retry;
960
961         for (retry = 0; retry < MPS_DB_MAX_WAIT; retry++) {
962                 if ((mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) &
963                     MPI2_HIS_IOC2SYS_DB_STATUS) != 0)
964                         return (0);
965                 DELAY(2000);
966         }
967         return (ETIMEDOUT);
968 }
969
970 /* Step through the synchronous command state machine, i.e. "Doorbell mode" */
971 static int
972 mps_request_sync(struct mps_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply,
973     int req_sz, int reply_sz, int timeout)
974 {
975         uint32_t *data32;
976         uint16_t *data16;
977         int i, count, ioc_sz, residual;
978         int sleep_flags = CAN_SLEEP;
979
980         if (curthread->td_no_sleeping != 0)
981                 sleep_flags = NO_SLEEP;
982
983         /* Step 1 */
984         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
985
986         /* Step 2 */
987         if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
988                 return (EBUSY);
989
990         /* Step 3
991          * Announce that a message is coming through the doorbell.  Messages
992          * are pushed at 32bit words, so round up if needed.
993          */
994         count = (req_sz + 3) / 4;
995         mps_regwrite(sc, MPI2_DOORBELL_OFFSET,
996             (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) |
997             (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT));
998
999         /* Step 4 */
1000         if (mps_wait_db_int(sc) ||
1001             (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) {
1002                 mps_dprint(sc, MPS_FAULT, "Doorbell failed to activate\n");
1003                 return (ENXIO);
1004         }
1005         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1006         if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) {
1007                 mps_dprint(sc, MPS_FAULT, "Doorbell handshake failed\n");
1008                 return (ENXIO);
1009         }
1010
1011         /* Step 5 */
1012         /* Clock out the message data synchronously in 32-bit dwords*/
1013         data32 = (uint32_t *)req;
1014         for (i = 0; i < count; i++) {
1015                 mps_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i]));
1016                 if (mps_wait_db_ack(sc, 5, sleep_flags) != 0) {
1017                         mps_dprint(sc, MPS_FAULT,
1018                             "Timeout while writing doorbell\n");
1019                         return (ENXIO);
1020                 }
1021         }
1022
1023         /* Step 6 */
1024         /* Clock in the reply in 16-bit words.  The total length of the
1025          * message is always in the 4th byte, so clock out the first 2 words
1026          * manually, then loop the rest.
1027          */
1028         data16 = (uint16_t *)reply;
1029         if (mps_wait_db_int(sc) != 0) {
1030                 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 0\n");
1031                 return (ENXIO);
1032         }
1033         data16[0] =
1034             mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1035         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1036         if (mps_wait_db_int(sc) != 0) {
1037                 mps_dprint(sc, MPS_FAULT, "Timeout reading doorbell 1\n");
1038                 return (ENXIO);
1039         }
1040         data16[1] =
1041             mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK;
1042         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1043
1044         /* Number of 32bit words in the message */
1045         ioc_sz = reply->MsgLength;
1046
1047         /*
1048          * Figure out how many 16bit words to clock in without overrunning.
1049          * The precision loss with dividing reply_sz can safely be
1050          * ignored because the messages can only be multiples of 32bits.
1051          */
1052         residual = 0;
1053         count = MIN((reply_sz / 4), ioc_sz) * 2;
1054         if (count < ioc_sz * 2) {
1055                 residual = ioc_sz * 2 - count;
1056                 mps_dprint(sc, MPS_ERROR, "Driver error, throwing away %d "
1057                     "residual message words\n", residual);
1058         }
1059
1060         for (i = 2; i < count; i++) {
1061                 if (mps_wait_db_int(sc) != 0) {
1062                         mps_dprint(sc, MPS_FAULT,
1063                             "Timeout reading doorbell %d\n", i);
1064                         return (ENXIO);
1065                 }
1066                 data16[i] = mps_regread(sc, MPI2_DOORBELL_OFFSET) &
1067                     MPI2_DOORBELL_DATA_MASK;
1068                 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1069         }
1070
1071         /*
1072          * Pull out residual words that won't fit into the provided buffer.
1073          * This keeps the chip from hanging due to a driver programming
1074          * error.
1075          */
1076         while (residual--) {
1077                 if (mps_wait_db_int(sc) != 0) {
1078                         mps_dprint(sc, MPS_FAULT,
1079                             "Timeout reading doorbell\n");
1080                         return (ENXIO);
1081                 }
1082                 (void)mps_regread(sc, MPI2_DOORBELL_OFFSET);
1083                 mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1084         }
1085
1086         /* Step 7 */
1087         if (mps_wait_db_int(sc) != 0) {
1088                 mps_dprint(sc, MPS_FAULT, "Timeout waiting to exit doorbell\n");
1089                 return (ENXIO);
1090         }
1091         if (mps_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED)
1092                 mps_dprint(sc, MPS_FAULT, "Warning, doorbell still active\n");
1093         mps_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0);
1094
1095         return (0);
1096 }
1097
1098 static void
1099 mps_enqueue_request(struct mps_softc *sc, struct mps_command *cm)
1100 {
1101         request_descriptor_t rd;
1102         MPS_FUNCTRACE(sc);
1103         mps_dprint(sc, MPS_TRACE, "SMID %u cm %p ccb %p\n",
1104             cm->cm_desc.Default.SMID, cm, cm->cm_ccb);
1105
1106         if (sc->mps_flags & MPS_FLAGS_ATTACH_DONE && !(sc->mps_flags & MPS_FLAGS_SHUTDOWN))
1107                 mtx_assert(&sc->mps_mtx, MA_OWNED);
1108
1109         if (++sc->io_cmds_active > sc->io_cmds_highwater)
1110                 sc->io_cmds_highwater++;
1111         rd.u.low = cm->cm_desc.Words.Low;
1112         rd.u.high = cm->cm_desc.Words.High;
1113         rd.word = htole64(rd.word);
1114
1115         KASSERT(cm->cm_state == MPS_CM_STATE_BUSY,
1116             ("command not busy, state = %u\n", cm->cm_state));
1117         cm->cm_state = MPS_CM_STATE_INQUEUE;
1118
1119         /* TODO-We may need to make below regwrite atomic */
1120         mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET,
1121             rd.u.low);
1122         mps_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET,
1123             rd.u.high);
1124 }
1125
1126 /*
1127  * Just the FACTS, ma'am.
1128  */
1129 static int
1130 mps_get_iocfacts(struct mps_softc *sc, MPI2_IOC_FACTS_REPLY *facts)
1131 {
1132         MPI2_DEFAULT_REPLY *reply;
1133         MPI2_IOC_FACTS_REQUEST request;
1134         int error, req_sz, reply_sz;
1135
1136         MPS_FUNCTRACE(sc);
1137         mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
1138
1139         req_sz = sizeof(MPI2_IOC_FACTS_REQUEST);
1140         reply_sz = sizeof(MPI2_IOC_FACTS_REPLY);
1141         reply = (MPI2_DEFAULT_REPLY *)facts;
1142
1143         bzero(&request, req_sz);
1144         request.Function = MPI2_FUNCTION_IOC_FACTS;
1145         error = mps_request_sync(sc, &request, reply, req_sz, reply_sz, 5);
1146         mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error);
1147
1148         return (error);
1149 }
1150
1151 static int
1152 mps_send_iocinit(struct mps_softc *sc)
1153 {
1154         MPI2_IOC_INIT_REQUEST   init;
1155         MPI2_DEFAULT_REPLY      reply;
1156         int req_sz, reply_sz, error;
1157         struct timeval now;
1158         uint64_t time_in_msec;
1159
1160         MPS_FUNCTRACE(sc);
1161         mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
1162
1163         /* Do a quick sanity check on proper initialization */
1164         if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0)
1165             || (sc->replyframesz == 0)) {
1166                 mps_dprint(sc, MPS_INIT|MPS_ERROR,
1167                     "Driver not fully initialized for IOCInit\n");
1168                 return (EINVAL);
1169         }
1170
1171         req_sz = sizeof(MPI2_IOC_INIT_REQUEST);
1172         reply_sz = sizeof(MPI2_IOC_INIT_REPLY);
1173         bzero(&init, req_sz);
1174         bzero(&reply, reply_sz);
1175
1176         /*
1177          * Fill in the init block.  Note that most addresses are
1178          * deliberately in the lower 32bits of memory.  This is a micro-
1179          * optimzation for PCI/PCIX, though it's not clear if it helps PCIe.
1180          */
1181         init.Function = MPI2_FUNCTION_IOC_INIT;
1182         init.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
1183         init.MsgVersion = htole16(MPI2_VERSION);
1184         init.HeaderVersion = htole16(MPI2_HEADER_VERSION);
1185         init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4));
1186         init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth);
1187         init.ReplyFreeQueueDepth = htole16(sc->fqdepth);
1188         init.SenseBufferAddressHigh = 0;
1189         init.SystemReplyAddressHigh = 0;
1190         init.SystemRequestFrameBaseAddress.High = 0;
1191         init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr);
1192         init.ReplyDescriptorPostQueueAddress.High = 0;
1193         init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr);
1194         init.ReplyFreeQueueAddress.High = 0;
1195         init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr);
1196         getmicrotime(&now);
1197         time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000);
1198         init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF);
1199         init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF);
1200
1201         error = mps_request_sync(sc, &init, &reply, req_sz, reply_sz, 5);
1202         if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
1203                 error = ENXIO;
1204
1205         mps_dprint(sc, MPS_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus);
1206         mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
1207         return (error);
1208 }
1209
1210 void
1211 mps_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1212 {
1213         bus_addr_t *addr;
1214
1215         addr = arg;
1216         *addr = segs[0].ds_addr;
1217 }
1218
1219 void
1220 mps_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1221 {
1222         struct mps_busdma_context *ctx;
1223         int need_unload, need_free;
1224
1225         ctx = (struct mps_busdma_context *)arg;
1226         need_unload = 0;
1227         need_free = 0;
1228
1229         mps_lock(ctx->softc);
1230         ctx->error = error;
1231         ctx->completed = 1;
1232         if ((error == 0) && (ctx->abandoned == 0)) {
1233                 *ctx->addr = segs[0].ds_addr;
1234         } else {
1235                 if (nsegs != 0)
1236                         need_unload = 1;
1237                 if (ctx->abandoned != 0)
1238                         need_free = 1;
1239         }
1240         if (need_free == 0)
1241                 wakeup(ctx);
1242
1243         mps_unlock(ctx->softc);
1244
1245         if (need_unload != 0) {
1246                 bus_dmamap_unload(ctx->buffer_dmat,
1247                                   ctx->buffer_dmamap);
1248                 *ctx->addr = 0;
1249         }
1250
1251         if (need_free != 0)
1252                 free(ctx, M_MPSUSER);
1253 }
1254
1255 static int
1256 mps_alloc_queues(struct mps_softc *sc)
1257 {
1258         struct mps_queue *q;
1259         u_int nq, i;
1260
1261         nq = sc->msi_msgs;
1262         mps_dprint(sc, MPS_INIT|MPS_XINFO, "Allocating %d I/O queues\n", nq);
1263
1264         sc->queues = malloc(sizeof(struct mps_queue) * nq, M_MPT2,
1265             M_NOWAIT|M_ZERO);
1266         if (sc->queues == NULL)
1267                 return (ENOMEM);
1268
1269         for (i = 0; i < nq; i++) {
1270                 q = &sc->queues[i];
1271                 mps_dprint(sc, MPS_INIT, "Configuring queue %d %p\n", i, q);
1272                 q->sc = sc;
1273                 q->qnum = i;
1274         }
1275
1276         return (0);
1277 }
1278
1279 static int
1280 mps_alloc_hw_queues(struct mps_softc *sc)
1281 {
1282         bus_dma_template_t t;
1283         bus_addr_t queues_busaddr;
1284         uint8_t *queues;
1285         int qsize, fqsize, pqsize;
1286
1287         /*
1288          * The reply free queue contains 4 byte entries in multiples of 16 and
1289          * aligned on a 16 byte boundary. There must always be an unused entry.
1290          * This queue supplies fresh reply frames for the firmware to use.
1291          *
1292          * The reply descriptor post queue contains 8 byte entries in
1293          * multiples of 16 and aligned on a 16 byte boundary.  This queue
1294          * contains filled-in reply frames sent from the firmware to the host.
1295          *
1296          * These two queues are allocated together for simplicity.
1297          */
1298         sc->fqdepth = roundup2(sc->num_replies + 1, 16);
1299         sc->pqdepth = roundup2(sc->num_replies + 1, 16);
1300         fqsize= sc->fqdepth * 4;
1301         pqsize = sc->pqdepth * 8;
1302         qsize = fqsize + pqsize;
1303
1304         bus_dma_template_init(&t, sc->mps_parent_dmat);
1305         BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(qsize),
1306             BD_MAXSEGSIZE(qsize), BD_NSEGMENTS(1),
1307             BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1308         if (bus_dma_template_tag(&t, &sc->queues_dmat)) {
1309                 mps_dprint(sc, MPS_ERROR, "Cannot allocate queues DMA tag\n");
1310                 return (ENOMEM);
1311         }
1312         if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT,
1313             &sc->queues_map)) {
1314                 mps_dprint(sc, MPS_ERROR, "Cannot allocate queues memory\n");
1315                 return (ENOMEM);
1316         }
1317         bzero(queues, qsize);
1318         bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize,
1319             mps_memaddr_cb, &queues_busaddr, 0);
1320
1321         sc->free_queue = (uint32_t *)queues;
1322         sc->free_busaddr = queues_busaddr;
1323         sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize);
1324         sc->post_busaddr = queues_busaddr + fqsize;
1325         mps_dprint(sc, MPS_INIT, "free queue busaddr= %#016jx size= %d\n",
1326             (uintmax_t)sc->free_busaddr, fqsize);
1327         mps_dprint(sc, MPS_INIT, "reply queue busaddr= %#016jx size= %d\n",
1328             (uintmax_t)sc->post_busaddr, pqsize);
1329
1330         return (0);
1331 }
1332
1333 static int
1334 mps_alloc_replies(struct mps_softc *sc)
1335 {
1336         bus_dma_template_t t;
1337         int rsize, num_replies;
1338
1339         /* Store the reply frame size in bytes rather than as 32bit words */
1340         sc->replyframesz = sc->facts->ReplyFrameSize * 4;
1341
1342         /*
1343          * sc->num_replies should be one less than sc->fqdepth.  We need to
1344          * allocate space for sc->fqdepth replies, but only sc->num_replies
1345          * replies can be used at once.
1346          */
1347         num_replies = max(sc->fqdepth, sc->num_replies);
1348
1349         rsize = sc->replyframesz * num_replies; 
1350         bus_dma_template_init(&t, sc->mps_parent_dmat);
1351         BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(4), BD_MAXSIZE(rsize),
1352             BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1353             BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1354         if (bus_dma_template_tag(&t, &sc->reply_dmat)) {
1355                 mps_dprint(sc, MPS_ERROR, "Cannot allocate replies DMA tag\n");
1356                 return (ENOMEM);
1357         }
1358         if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames,
1359             BUS_DMA_NOWAIT, &sc->reply_map)) {
1360                 mps_dprint(sc, MPS_ERROR, "Cannot allocate replies memory\n");
1361                 return (ENOMEM);
1362         }
1363         bzero(sc->reply_frames, rsize);
1364         bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize,
1365             mps_memaddr_cb, &sc->reply_busaddr, 0);
1366
1367         mps_dprint(sc, MPS_INIT, "reply frames busaddr= %#016jx size= %d\n",
1368             (uintmax_t)sc->reply_busaddr, rsize);
1369
1370         return (0);
1371 }
1372
1373 static void
1374 mps_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1375 {
1376         struct mps_softc *sc = arg;
1377         struct mps_chain *chain;
1378         bus_size_t bo;
1379         int i, o, s;
1380
1381         if (error != 0)
1382                 return;
1383
1384         for (i = 0, o = 0, s = 0; s < nsegs; s++) {
1385                 for (bo = 0; bo + sc->reqframesz <= segs[s].ds_len;
1386                     bo += sc->reqframesz) {
1387                         chain = &sc->chains[i++];
1388                         chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o);
1389                         chain->chain_busaddr = segs[s].ds_addr + bo;
1390                         o += sc->reqframesz;
1391                         mps_free_chain(sc, chain);
1392                 }
1393                 if (bo != segs[s].ds_len)
1394                         o += segs[s].ds_len - bo;
1395         }
1396         sc->chain_free_lowwater = i;
1397 }
1398
1399 static int
1400 mps_alloc_requests(struct mps_softc *sc)
1401 {
1402         bus_dma_template_t t;
1403         struct mps_command *cm;
1404         int i, rsize, nsegs;
1405
1406         rsize = sc->reqframesz * sc->num_reqs;
1407         bus_dma_template_init(&t, sc->mps_parent_dmat);
1408         BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(16), BD_MAXSIZE(rsize),
1409             BD_MAXSEGSIZE(rsize), BD_NSEGMENTS(1),
1410             BD_LOWADDR(BUS_SPACE_MAXADDR_32BIT));
1411         if (bus_dma_template_tag(&t, &sc->req_dmat)) {
1412                 mps_dprint(sc, MPS_ERROR, "Cannot allocate request DMA tag\n");
1413                 return (ENOMEM);
1414         }
1415         if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames,
1416             BUS_DMA_NOWAIT, &sc->req_map)) {
1417                 mps_dprint(sc, MPS_ERROR, "Cannot allocate request memory\n");
1418                 return (ENOMEM);
1419         }
1420         bzero(sc->req_frames, rsize);
1421         bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize,
1422             mps_memaddr_cb, &sc->req_busaddr, 0);
1423         mps_dprint(sc, MPS_INIT, "request frames busaddr= %#016jx size= %d\n",
1424             (uintmax_t)sc->req_busaddr, rsize);
1425
1426         sc->chains = malloc(sizeof(struct mps_chain) * sc->num_chains, M_MPT2,
1427             M_NOWAIT | M_ZERO);
1428         if (!sc->chains) {
1429                 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n");
1430                 return (ENOMEM);
1431         }
1432         rsize = sc->reqframesz * sc->num_chains;
1433         bus_dma_template_clone(&t, sc->req_dmat);
1434         BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(rsize), BD_MAXSEGSIZE(rsize),
1435             BD_NSEGMENTS(howmany(rsize, PAGE_SIZE)));
1436         if (bus_dma_template_tag(&t, &sc->chain_dmat)) {
1437                 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain DMA tag\n");
1438                 return (ENOMEM);
1439         }
1440         if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames,
1441             BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) {
1442                 mps_dprint(sc, MPS_ERROR, "Cannot allocate chain memory\n");
1443                 return (ENOMEM);
1444         }
1445         if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames,
1446             rsize, mps_load_chains_cb, sc, BUS_DMA_NOWAIT)) {
1447                 mps_dprint(sc, MPS_ERROR, "Cannot load chain memory\n");
1448                 bus_dmamem_free(sc->chain_dmat, sc->chain_frames,
1449                     sc->chain_map);
1450                 return (ENOMEM);
1451         }
1452
1453         rsize = MPS_SENSE_LEN * sc->num_reqs;
1454         bus_dma_template_clone(&t, sc->req_dmat);
1455         BUS_DMA_TEMPLATE_FILL(&t, BD_ALIGNMENT(1), BD_MAXSIZE(rsize),
1456             BD_MAXSEGSIZE(rsize));
1457         if (bus_dma_template_tag(&t, &sc->sense_dmat)) {
1458                 mps_dprint(sc, MPS_ERROR, "Cannot allocate sense DMA tag\n");
1459                 return (ENOMEM);
1460         }
1461         if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames,
1462             BUS_DMA_NOWAIT, &sc->sense_map)) {
1463                 mps_dprint(sc, MPS_ERROR, "Cannot allocate sense memory\n");
1464                 return (ENOMEM);
1465         }
1466         bzero(sc->sense_frames, rsize);
1467         bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize,
1468             mps_memaddr_cb, &sc->sense_busaddr, 0);
1469         mps_dprint(sc, MPS_INIT, "sense frames busaddr= %#016jx size= %d\n",
1470             (uintmax_t)sc->sense_busaddr, rsize);
1471
1472         nsegs = (sc->maxio / PAGE_SIZE) + 1;
1473         bus_dma_template_init(&t, sc->mps_parent_dmat);
1474         BUS_DMA_TEMPLATE_FILL(&t, BD_MAXSIZE(BUS_SPACE_MAXSIZE_32BIT),
1475             BD_NSEGMENTS(nsegs), BD_MAXSEGSIZE(BUS_SPACE_MAXSIZE_24BIT),
1476             BD_FLAGS(BUS_DMA_ALLOCNOW), BD_LOCKFUNC(busdma_lock_mutex),
1477             BD_LOCKFUNCARG(&sc->mps_mtx));
1478         if (bus_dma_template_tag(&t, &sc->buffer_dmat)) {
1479                 mps_dprint(sc, MPS_ERROR, "Cannot allocate buffer DMA tag\n");
1480                 return (ENOMEM);
1481         }
1482
1483         /*
1484          * SMID 0 cannot be used as a free command per the firmware spec.
1485          * Just drop that command instead of risking accounting bugs.
1486          */
1487         sc->commands = malloc(sizeof(struct mps_command) * sc->num_reqs,
1488             M_MPT2, M_WAITOK | M_ZERO);
1489         for (i = 1; i < sc->num_reqs; i++) {
1490                 cm = &sc->commands[i];
1491                 cm->cm_req = sc->req_frames + i * sc->reqframesz;
1492                 cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz;
1493                 cm->cm_sense = &sc->sense_frames[i];
1494                 cm->cm_sense_busaddr = sc->sense_busaddr + i * MPS_SENSE_LEN;
1495                 cm->cm_desc.Default.SMID = i;
1496                 cm->cm_sc = sc;
1497                 cm->cm_state = MPS_CM_STATE_BUSY;
1498                 TAILQ_INIT(&cm->cm_chain_list);
1499                 callout_init_mtx(&cm->cm_callout, &sc->mps_mtx, 0);
1500
1501                 /* XXX Is a failure here a critical problem? */
1502                 if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0)
1503                         if (i <= sc->num_prireqs)
1504                                 mps_free_high_priority_command(sc, cm);
1505                         else
1506                                 mps_free_command(sc, cm);
1507                 else {
1508                         panic("failed to allocate command %d\n", i);
1509                         sc->num_reqs = i;
1510                         break;
1511                 }
1512         }
1513
1514         return (0);
1515 }
1516
1517 static int
1518 mps_init_queues(struct mps_softc *sc)
1519 {
1520         int i;
1521
1522         memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8);
1523
1524         /*
1525          * According to the spec, we need to use one less reply than we
1526          * have space for on the queue.  So sc->num_replies (the number we
1527          * use) should be less than sc->fqdepth (allocated size).
1528          */
1529         if (sc->num_replies >= sc->fqdepth)
1530                 return (EINVAL);
1531
1532         /*
1533          * Initialize all of the free queue entries.
1534          */
1535         for (i = 0; i < sc->fqdepth; i++)
1536                 sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz);
1537         sc->replyfreeindex = sc->num_replies;
1538
1539         return (0);
1540 }
1541
1542 /* Get the driver parameter tunables.  Lowest priority are the driver defaults.
1543  * Next are the global settings, if they exist.  Highest are the per-unit
1544  * settings, if they exist.
1545  */
1546 void
1547 mps_get_tunables(struct mps_softc *sc)
1548 {
1549         char tmpstr[80], mps_debug[80];
1550
1551         /* XXX default to some debugging for now */
1552         sc->mps_debug = MPS_INFO|MPS_FAULT;
1553         sc->disable_msix = 0;
1554         sc->disable_msi = 0;
1555         sc->max_msix = MPS_MSIX_MAX;
1556         sc->max_chains = MPS_CHAIN_FRAMES;
1557         sc->max_io_pages = MPS_MAXIO_PAGES;
1558         sc->enable_ssu = MPS_SSU_ENABLE_SSD_DISABLE_HDD;
1559         sc->spinup_wait_time = DEFAULT_SPINUP_WAIT;
1560         sc->use_phynum = 1;
1561         sc->max_reqframes = MPS_REQ_FRAMES;
1562         sc->max_prireqframes = MPS_PRI_REQ_FRAMES;
1563         sc->max_replyframes = MPS_REPLY_FRAMES;
1564         sc->max_evtframes = MPS_EVT_REPLY_FRAMES;
1565
1566         /*
1567          * Grab the global variables.
1568          */
1569         bzero(mps_debug, 80);
1570         if (TUNABLE_STR_FETCH("hw.mps.debug_level", mps_debug, 80) != 0)
1571                 mps_parse_debug(sc, mps_debug);
1572         TUNABLE_INT_FETCH("hw.mps.disable_msix", &sc->disable_msix);
1573         TUNABLE_INT_FETCH("hw.mps.disable_msi", &sc->disable_msi);
1574         TUNABLE_INT_FETCH("hw.mps.max_msix", &sc->max_msix);
1575         TUNABLE_INT_FETCH("hw.mps.max_chains", &sc->max_chains);
1576         TUNABLE_INT_FETCH("hw.mps.max_io_pages", &sc->max_io_pages);
1577         TUNABLE_INT_FETCH("hw.mps.enable_ssu", &sc->enable_ssu);
1578         TUNABLE_INT_FETCH("hw.mps.spinup_wait_time", &sc->spinup_wait_time);
1579         TUNABLE_INT_FETCH("hw.mps.use_phy_num", &sc->use_phynum);
1580         TUNABLE_INT_FETCH("hw.mps.max_reqframes", &sc->max_reqframes);
1581         TUNABLE_INT_FETCH("hw.mps.max_prireqframes", &sc->max_prireqframes);
1582         TUNABLE_INT_FETCH("hw.mps.max_replyframes", &sc->max_replyframes);
1583         TUNABLE_INT_FETCH("hw.mps.max_evtframes", &sc->max_evtframes);
1584
1585         /* Grab the unit-instance variables */
1586         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.debug_level",
1587             device_get_unit(sc->mps_dev));
1588         bzero(mps_debug, 80);
1589         if (TUNABLE_STR_FETCH(tmpstr, mps_debug, 80) != 0)
1590                 mps_parse_debug(sc, mps_debug);
1591
1592         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msix",
1593             device_get_unit(sc->mps_dev));
1594         TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix);
1595
1596         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.disable_msi",
1597             device_get_unit(sc->mps_dev));
1598         TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi);
1599
1600         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_msix",
1601             device_get_unit(sc->mps_dev));
1602         TUNABLE_INT_FETCH(tmpstr, &sc->max_msix);
1603
1604         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_chains",
1605             device_get_unit(sc->mps_dev));
1606         TUNABLE_INT_FETCH(tmpstr, &sc->max_chains);
1607
1608         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_io_pages",
1609             device_get_unit(sc->mps_dev));
1610         TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages);
1611
1612         bzero(sc->exclude_ids, sizeof(sc->exclude_ids));
1613         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.exclude_ids",
1614             device_get_unit(sc->mps_dev));
1615         TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids));
1616
1617         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.enable_ssu",
1618             device_get_unit(sc->mps_dev));
1619         TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu);
1620
1621         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.spinup_wait_time",
1622             device_get_unit(sc->mps_dev));
1623         TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time);
1624
1625         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.use_phy_num",
1626             device_get_unit(sc->mps_dev));
1627         TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum);
1628
1629         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_reqframes",
1630             device_get_unit(sc->mps_dev));
1631         TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes);
1632
1633         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_prireqframes",
1634             device_get_unit(sc->mps_dev));
1635         TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes);
1636
1637         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_replyframes",
1638             device_get_unit(sc->mps_dev));
1639         TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes);
1640
1641         snprintf(tmpstr, sizeof(tmpstr), "dev.mps.%d.max_evtframes",
1642             device_get_unit(sc->mps_dev));
1643         TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes);
1644
1645 }
1646
1647 static void
1648 mps_setup_sysctl(struct mps_softc *sc)
1649 {
1650         struct sysctl_ctx_list  *sysctl_ctx = NULL;
1651         struct sysctl_oid       *sysctl_tree = NULL;
1652         char tmpstr[80], tmpstr2[80];
1653
1654         /*
1655          * Setup the sysctl variable so the user can change the debug level
1656          * on the fly.
1657          */
1658         snprintf(tmpstr, sizeof(tmpstr), "MPS controller %d",
1659             device_get_unit(sc->mps_dev));
1660         snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mps_dev));
1661
1662         sysctl_ctx = device_get_sysctl_ctx(sc->mps_dev);
1663         if (sysctl_ctx != NULL)
1664                 sysctl_tree = device_get_sysctl_tree(sc->mps_dev);
1665
1666         if (sysctl_tree == NULL) {
1667                 sysctl_ctx_init(&sc->sysctl_ctx);
1668                 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1669                     SYSCTL_STATIC_CHILDREN(_hw_mps), OID_AUTO, tmpstr2,
1670                     CTLFLAG_RD | CTLFLAG_MPSAFE, 0, tmpstr);
1671                 if (sc->sysctl_tree == NULL)
1672                         return;
1673                 sysctl_ctx = &sc->sysctl_ctx;
1674                 sysctl_tree = sc->sysctl_tree;
1675         }
1676
1677         SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1678             OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW |CTLFLAG_MPSAFE,
1679             sc, 0, mps_debug_sysctl, "A", "mps debug level");
1680
1681         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1682             OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0,
1683             "Disable the use of MSI-X interrupts");
1684
1685         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1686             OID_AUTO, "disable_msi", CTLFLAG_RD, &sc->disable_msi, 0,
1687             "Disable the use of MSI interrupts");
1688
1689         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1690             OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0,
1691             "User-defined maximum number of MSIX queues");
1692
1693         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1694             OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0,
1695             "Negotiated number of MSIX queues");
1696
1697         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1698             OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0,
1699             "Total number of allocated request frames");
1700
1701         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1702             OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0,
1703             "Total number of allocated high priority request frames");
1704
1705         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1706             OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0,
1707             "Total number of allocated reply frames");
1708
1709         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1710             OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0,
1711             "Total number of event frames allocated");
1712
1713         SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1714             OID_AUTO, "firmware_version", CTLFLAG_RD, sc->fw_version,
1715             strlen(sc->fw_version), "firmware version");
1716
1717         SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1718             OID_AUTO, "driver_version", CTLFLAG_RD, MPS_DRIVER_VERSION,
1719             strlen(MPS_DRIVER_VERSION), "driver version");
1720
1721         SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1722             OID_AUTO, "msg_version", CTLFLAG_RD, sc->msg_version,
1723             strlen(sc->msg_version), "message interface version");
1724
1725         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1726             OID_AUTO, "io_cmds_active", CTLFLAG_RD,
1727             &sc->io_cmds_active, 0, "number of currently active commands");
1728
1729         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1730             OID_AUTO, "io_cmds_highwater", CTLFLAG_RD,
1731             &sc->io_cmds_highwater, 0, "maximum active commands seen");
1732
1733         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1734             OID_AUTO, "chain_free", CTLFLAG_RD,
1735             &sc->chain_free, 0, "number of free chain elements");
1736
1737         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1738             OID_AUTO, "chain_free_lowwater", CTLFLAG_RD,
1739             &sc->chain_free_lowwater, 0,"lowest number of free chain elements");
1740
1741         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1742             OID_AUTO, "max_chains", CTLFLAG_RD,
1743             &sc->max_chains, 0,"maximum chain frames that will be allocated");
1744
1745         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1746             OID_AUTO, "max_io_pages", CTLFLAG_RD,
1747             &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use "
1748             "IOCFacts)");
1749
1750         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1751             OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0,
1752             "enable SSU to SATA SSD/HDD at shutdown");
1753
1754         SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1755             OID_AUTO, "chain_alloc_fail", CTLFLAG_RD,
1756             &sc->chain_alloc_fail, "chain allocation failures");
1757
1758         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1759             OID_AUTO, "spinup_wait_time", CTLFLAG_RD,
1760             &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for "
1761             "spinup after SATA ID error");
1762
1763         SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1764             OID_AUTO, "mapping_table_dump",
1765             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
1766             mps_mapping_dump, "A", "Mapping Table Dump");
1767
1768         SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1769             OID_AUTO, "encl_table_dump",
1770             CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
1771             mps_mapping_encl_dump, "A", "Enclosure Table Dump");
1772
1773         SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1774             OID_AUTO, "dump_reqs",
1775             CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT,
1776             sc, 0, mps_dump_reqs, "I", "Dump Active Requests");
1777
1778         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1779             OID_AUTO, "dump_reqs_alltypes", CTLFLAG_RW,
1780             &sc->dump_reqs_alltypes, 0,
1781             "dump all request types not just inqueue");
1782
1783         SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree),
1784             OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0,
1785             "Use the phy number for enumeration");
1786 }
1787
1788 static struct mps_debug_string {
1789         char    *name;
1790         int     flag;
1791 } mps_debug_strings[] = {
1792         {"info", MPS_INFO},
1793         {"fault", MPS_FAULT},
1794         {"event", MPS_EVENT},
1795         {"log", MPS_LOG},
1796         {"recovery", MPS_RECOVERY},
1797         {"error", MPS_ERROR},
1798         {"init", MPS_INIT},
1799         {"xinfo", MPS_XINFO},
1800         {"user", MPS_USER},
1801         {"mapping", MPS_MAPPING},
1802         {"trace", MPS_TRACE}
1803 };
1804
1805 enum mps_debug_level_combiner {
1806         COMB_NONE,
1807         COMB_ADD,
1808         COMB_SUB
1809 };
1810
1811 static int
1812 mps_debug_sysctl(SYSCTL_HANDLER_ARGS)
1813 {
1814         struct mps_softc *sc;
1815         struct mps_debug_string *string;
1816         struct sbuf *sbuf;
1817         char *buffer;
1818         size_t sz;
1819         int i, len, debug, error;
1820
1821         sc = (struct mps_softc *)arg1;
1822
1823         error = sysctl_wire_old_buffer(req, 0);
1824         if (error != 0)
1825                 return (error);
1826
1827         sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
1828         debug = sc->mps_debug;
1829
1830         sbuf_printf(sbuf, "%#x", debug);
1831
1832         sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]);
1833         for (i = 0; i < sz; i++) {
1834                 string = &mps_debug_strings[i];
1835                 if (debug & string->flag)
1836                         sbuf_printf(sbuf, ",%s", string->name);
1837         }
1838
1839         error = sbuf_finish(sbuf);
1840         sbuf_delete(sbuf);
1841
1842         if (error || req->newptr == NULL)
1843                 return (error);
1844
1845         len = req->newlen - req->newidx;
1846         if (len == 0)
1847                 return (0);
1848
1849         buffer = malloc(len, M_MPT2, M_ZERO|M_WAITOK);
1850         error = SYSCTL_IN(req, buffer, len);
1851
1852         mps_parse_debug(sc, buffer);
1853
1854         free(buffer, M_MPT2);
1855         return (error);
1856 }
1857
1858 static void
1859 mps_parse_debug(struct mps_softc *sc, char *list)
1860 {
1861         struct mps_debug_string *string;
1862         enum mps_debug_level_combiner op;
1863         char *token, *endtoken;
1864         size_t sz;
1865         int flags, i;
1866
1867         if (list == NULL || *list == '\0')
1868                 return;
1869
1870         if (*list == '+') {
1871                 op = COMB_ADD;
1872                 list++;
1873         } else if (*list == '-') {
1874                 op = COMB_SUB;
1875                 list++;
1876         } else
1877                 op = COMB_NONE;
1878         if (*list == '\0')
1879                 return;
1880
1881         flags = 0;
1882         sz = sizeof(mps_debug_strings) / sizeof(mps_debug_strings[0]);
1883         while ((token = strsep(&list, ":,")) != NULL) {
1884                 /* Handle integer flags */
1885                 flags |= strtol(token, &endtoken, 0);
1886                 if (token != endtoken)
1887                         continue;
1888
1889                 /* Handle text flags */
1890                 for (i = 0; i < sz; i++) {
1891                         string = &mps_debug_strings[i];
1892                         if (strcasecmp(token, string->name) == 0) {
1893                                 flags |= string->flag;
1894                                 break;
1895                         }
1896                 }
1897         }
1898
1899         switch (op) {
1900         case COMB_NONE:
1901                 sc->mps_debug = flags;
1902                 break;
1903         case COMB_ADD:
1904                 sc->mps_debug |= flags;
1905                 break;
1906         case COMB_SUB:
1907                 sc->mps_debug &= (~flags);
1908                 break;
1909         }
1910
1911         return;
1912 }
1913
1914 struct mps_dumpreq_hdr {
1915         uint32_t        smid;
1916         uint32_t        state;
1917         uint32_t        numframes;
1918         uint32_t        deschi;
1919         uint32_t        desclo;
1920 };
1921
1922 static int
1923 mps_dump_reqs(SYSCTL_HANDLER_ARGS)
1924 {
1925         struct mps_softc *sc;
1926         struct mps_chain *chain, *chain1;
1927         struct mps_command *cm;
1928         struct mps_dumpreq_hdr hdr;
1929         struct sbuf *sb;
1930         uint32_t smid, state;
1931         int i, numreqs, error = 0;
1932
1933         sc = (struct mps_softc *)arg1;
1934
1935         if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) {
1936                 printf("priv check error %d\n", error);
1937                 return (error);
1938         }
1939
1940         state = MPS_CM_STATE_INQUEUE;
1941         smid = 1;
1942         numreqs = sc->num_reqs;
1943
1944         if (req->newptr != NULL)
1945                 return (EINVAL);
1946
1947         if (smid == 0 || smid > sc->num_reqs)
1948                 return (EINVAL);
1949         if (numreqs <= 0 || (numreqs + smid > sc->num_reqs))
1950                 numreqs = sc->num_reqs;
1951         sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
1952
1953         /* Best effort, no locking */
1954         for (i = smid; i < numreqs; i++) {
1955                 cm = &sc->commands[i];
1956                 if ((sc->dump_reqs_alltypes == 0) && (cm->cm_state != state))
1957                         continue;
1958                 hdr.smid = i;
1959                 hdr.state = cm->cm_state;
1960                 hdr.numframes = 1;
1961                 hdr.deschi = cm->cm_desc.Words.High;
1962                 hdr.desclo = cm->cm_desc.Words.Low;
1963                 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
1964                    chain1)
1965                         hdr.numframes++;
1966                 sbuf_bcat(sb, &hdr, sizeof(hdr));
1967                 sbuf_bcat(sb, cm->cm_req, 128);
1968                 TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link,
1969                     chain1)
1970                         sbuf_bcat(sb, chain->chain, 128);
1971         }
1972
1973         error = sbuf_finish(sb);
1974         sbuf_delete(sb);
1975         return (error);
1976 }
1977
1978 int
1979 mps_attach(struct mps_softc *sc)
1980 {
1981         int error;
1982
1983         MPS_FUNCTRACE(sc);
1984         mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
1985
1986         mtx_init(&sc->mps_mtx, "MPT2SAS lock", NULL, MTX_DEF);
1987         callout_init_mtx(&sc->periodic, &sc->mps_mtx, 0);
1988         callout_init_mtx(&sc->device_check_callout, &sc->mps_mtx, 0);
1989         TAILQ_INIT(&sc->event_list);
1990         timevalclear(&sc->lastfail);
1991
1992         if ((error = mps_transition_ready(sc)) != 0) {
1993                 mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to transition "
1994                     "ready\n");
1995                 return (error);
1996         }
1997
1998         sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPT2,
1999             M_ZERO|M_NOWAIT);
2000         if(!sc->facts) {
2001                 mps_dprint(sc, MPS_INIT|MPS_FAULT, "Cannot allocate memory, "
2002                     "exit\n");
2003                 return (ENOMEM);
2004         }
2005
2006         /*
2007          * Get IOC Facts and allocate all structures based on this information.
2008          * A Diag Reset will also call mps_iocfacts_allocate and re-read the IOC
2009          * Facts. If relevant values have changed in IOC Facts, this function
2010          * will free all of the memory based on IOC Facts and reallocate that
2011          * memory.  If this fails, any allocated memory should already be freed.
2012          */
2013         if ((error = mps_iocfacts_allocate(sc, TRUE)) != 0) {
2014                 mps_dprint(sc, MPS_INIT|MPS_FAULT, "IOC Facts based allocation "
2015                     "failed with error %d, exit\n", error);
2016                 return (error);
2017         }
2018
2019         /* Start the periodic watchdog check on the IOC Doorbell */
2020         mps_periodic(sc);
2021
2022         /*
2023          * The portenable will kick off discovery events that will drive the
2024          * rest of the initialization process.  The CAM/SAS module will
2025          * hold up the boot sequence until discovery is complete.
2026          */
2027         sc->mps_ich.ich_func = mps_startup;
2028         sc->mps_ich.ich_arg = sc;
2029         if (config_intrhook_establish(&sc->mps_ich) != 0) {
2030                 mps_dprint(sc, MPS_INIT|MPS_ERROR,
2031                     "Cannot establish MPS config hook\n");
2032                 error = EINVAL;
2033         }
2034
2035         /*
2036          * Allow IR to shutdown gracefully when shutdown occurs.
2037          */
2038         sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final,
2039             mpssas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT);
2040
2041         if (sc->shutdown_eh == NULL)
2042                 mps_dprint(sc, MPS_INIT|MPS_ERROR,
2043                     "shutdown event registration failed\n");
2044
2045         mps_setup_sysctl(sc);
2046
2047         sc->mps_flags |= MPS_FLAGS_ATTACH_DONE;
2048         mps_dprint(sc, MPS_INIT, "%s exit error= %d\n", __func__, error);
2049
2050         return (error);
2051 }
2052
2053 /* Run through any late-start handlers. */
2054 static void
2055 mps_startup(void *arg)
2056 {
2057         struct mps_softc *sc;
2058
2059         sc = (struct mps_softc *)arg;
2060         mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
2061
2062         mps_lock(sc);
2063         mps_unmask_intr(sc);
2064
2065         /* initialize device mapping tables */
2066         mps_base_static_config_pages(sc);
2067         mps_mapping_initialize(sc);
2068         mpssas_startup(sc);
2069         mps_unlock(sc);
2070
2071         mps_dprint(sc, MPS_INIT, "disestablish config intrhook\n");
2072         config_intrhook_disestablish(&sc->mps_ich);
2073         sc->mps_ich.ich_arg = NULL;
2074
2075         mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
2076 }
2077
2078 /* Periodic watchdog.  Is called with the driver lock already held. */
2079 static void
2080 mps_periodic(void *arg)
2081 {
2082         struct mps_softc *sc;
2083         uint32_t db;
2084
2085         sc = (struct mps_softc *)arg;
2086         if (sc->mps_flags & MPS_FLAGS_SHUTDOWN)
2087                 return;
2088
2089         db = mps_regread(sc, MPI2_DOORBELL_OFFSET);
2090         if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
2091                 mps_dprint(sc, MPS_FAULT, "IOC Fault 0x%08x, Resetting\n", db);
2092                 mps_reinit(sc);
2093         }
2094
2095         callout_reset(&sc->periodic, MPS_PERIODIC_DELAY * hz, mps_periodic, sc);
2096 }
2097
2098 static void
2099 mps_log_evt_handler(struct mps_softc *sc, uintptr_t data,
2100     MPI2_EVENT_NOTIFICATION_REPLY *event)
2101 {
2102         MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry;
2103
2104         MPS_DPRINT_EVENT(sc, generic, event);
2105
2106         switch (event->Event) {
2107         case MPI2_EVENT_LOG_DATA:
2108                 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_DATA:\n");
2109                 if (sc->mps_debug & MPS_EVENT)
2110                         hexdump(event->EventData, event->EventDataLength, NULL, 0);
2111                 break;
2112         case MPI2_EVENT_LOG_ENTRY_ADDED:
2113                 entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData;
2114                 mps_dprint(sc, MPS_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event "
2115                     "0x%x Sequence %d:\n", entry->LogEntryQualifier,
2116                      entry->LogSequence);
2117                 break;
2118         default:
2119                 break;
2120         }
2121         return;
2122 }
2123
2124 static int
2125 mps_attach_log(struct mps_softc *sc)
2126 {
2127         u32 events[MPI2_EVENT_NOTIFY_EVENTMASK_WORDS];
2128
2129         bzero(events, 16);
2130         setbit(events, MPI2_EVENT_LOG_DATA);
2131         setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED);
2132
2133         mps_register_events(sc, events, mps_log_evt_handler, NULL,
2134             &sc->mps_log_eh);
2135
2136         return (0);
2137 }
2138
2139 static int
2140 mps_detach_log(struct mps_softc *sc)
2141 {
2142
2143         if (sc->mps_log_eh != NULL)
2144                 mps_deregister_events(sc, sc->mps_log_eh);
2145         return (0);
2146 }
2147
2148 /*
2149  * Free all of the driver resources and detach submodules.  Should be called
2150  * without the lock held.
2151  */
2152 int
2153 mps_free(struct mps_softc *sc)
2154 {
2155         int error;
2156
2157         mps_dprint(sc, MPS_INIT, "%s entered\n", __func__);
2158         /* Turn off the watchdog */
2159         mps_lock(sc);
2160         sc->mps_flags |= MPS_FLAGS_SHUTDOWN;
2161         mps_unlock(sc);
2162         /* Lock must not be held for this */
2163         callout_drain(&sc->periodic);
2164         callout_drain(&sc->device_check_callout);
2165
2166         if (((error = mps_detach_log(sc)) != 0) ||
2167             ((error = mps_detach_sas(sc)) != 0)) {
2168                 mps_dprint(sc, MPS_INIT|MPS_FAULT, "failed to detach "
2169                     "subsystems, exit\n");
2170                 return (error);
2171         }
2172
2173         mps_detach_user(sc);
2174
2175         /* Put the IOC back in the READY state. */
2176         mps_lock(sc);
2177         if ((error = mps_transition_ready(sc)) != 0) {
2178                 mps_unlock(sc);
2179                 return (error);
2180         }
2181         mps_unlock(sc);
2182
2183         if (sc->facts != NULL)
2184                 free(sc->facts, M_MPT2);
2185
2186         /*
2187          * Free all buffers that are based on IOC Facts.  A Diag Reset may need
2188          * to free these buffers too.
2189          */
2190         mps_iocfacts_free(sc);
2191
2192         if (sc->sysctl_tree != NULL)
2193                 sysctl_ctx_free(&sc->sysctl_ctx);
2194
2195         /* Deregister the shutdown function */
2196         if (sc->shutdown_eh != NULL)
2197                 EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh);
2198
2199         mtx_destroy(&sc->mps_mtx);
2200         mps_dprint(sc, MPS_INIT, "%s exit\n", __func__);
2201
2202         return (0);
2203 }
2204
2205 static __inline void
2206 mps_complete_command(struct mps_softc *sc, struct mps_command *cm)
2207 {
2208         MPS_FUNCTRACE(sc);
2209
2210         if (cm == NULL) {
2211                 mps_dprint(sc, MPS_ERROR, "Completing NULL command\n");
2212                 return;
2213         }
2214
2215         KASSERT(cm->cm_state == MPS_CM_STATE_INQUEUE,
2216             ("command not inqueue, state = %u\n", cm->cm_state));
2217         cm->cm_state = MPS_CM_STATE_BUSY; 
2218         if (cm->cm_flags & MPS_CM_FLAGS_POLLED)
2219                 cm->cm_flags |= MPS_CM_FLAGS_COMPLETE;
2220
2221         if (cm->cm_complete != NULL) {
2222                 mps_dprint(sc, MPS_TRACE,
2223                            "%s cm %p calling cm_complete %p data %p reply %p\n",
2224                            __func__, cm, cm->cm_complete, cm->cm_complete_data,
2225                            cm->cm_reply);
2226                 cm->cm_complete(sc, cm);
2227         }
2228
2229         if (cm->cm_flags & MPS_CM_FLAGS_WAKEUP) {
2230                 mps_dprint(sc, MPS_TRACE, "waking up %p\n", cm);
2231                 wakeup(cm);
2232         }
2233
2234         if (cm->cm_sc->io_cmds_active != 0) {
2235                 cm->cm_sc->io_cmds_active--;
2236         } else {
2237                 mps_dprint(sc, MPS_ERROR, "Warning: io_cmds_active is "
2238                     "out of sync - resynching to 0\n");
2239         }
2240 }
2241
2242 static void
2243 mps_sas_log_info(struct mps_softc *sc , u32 log_info)
2244 {
2245         union loginfo_type {
2246                 u32     loginfo;
2247                 struct {
2248                         u32     subcode:16;
2249                         u32     code:8;
2250                         u32     originator:4;
2251                         u32     bus_type:4;
2252                 } dw;
2253         };
2254         union loginfo_type sas_loginfo;
2255         char *originator_str = NULL;
2256
2257         sas_loginfo.loginfo = log_info;
2258         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
2259                 return;
2260
2261         /* each nexus loss loginfo */
2262         if (log_info == 0x31170000)
2263                 return;
2264
2265         /* eat the loginfos associated with task aborts */
2266         if ((log_info == 30050000 || log_info ==
2267             0x31140000 || log_info == 0x31130000))
2268                 return;
2269
2270         switch (sas_loginfo.dw.originator) {
2271         case 0:
2272                 originator_str = "IOP";
2273                 break;
2274         case 1:
2275                 originator_str = "PL";
2276                 break;
2277         case 2:
2278                 originator_str = "IR";
2279                 break;
2280 }
2281
2282         mps_dprint(sc, MPS_LOG, "log_info(0x%08x): originator(%s), "
2283         "code(0x%02x), sub_code(0x%04x)\n", log_info,
2284         originator_str, sas_loginfo.dw.code,
2285         sas_loginfo.dw.subcode);
2286 }
2287
2288 static void
2289 mps_display_reply_info(struct mps_softc *sc, uint8_t *reply)
2290 {
2291         MPI2DefaultReply_t *mpi_reply;
2292         u16 sc_status;
2293
2294         mpi_reply = (MPI2DefaultReply_t*)reply;
2295         sc_status = le16toh(mpi_reply->IOCStatus);
2296         if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE)
2297                 mps_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo));
2298 }
2299 void
2300 mps_intr(void *data)
2301 {
2302         struct mps_softc *sc;
2303         uint32_t status;
2304
2305         sc = (struct mps_softc *)data;
2306         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2307
2308         /*
2309          * Check interrupt status register to flush the bus.  This is
2310          * needed for both INTx interrupts and driver-driven polling
2311          */
2312         status = mps_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET);
2313         if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0)
2314                 return;
2315
2316         mps_lock(sc);
2317         mps_intr_locked(data);
2318         mps_unlock(sc);
2319         return;
2320 }
2321
2322 /*
2323  * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the
2324  * chip.  Hopefully this theory is correct.
2325  */
2326 void
2327 mps_intr_msi(void *data)
2328 {
2329         struct mps_softc *sc;
2330
2331         sc = (struct mps_softc *)data;
2332         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2333         mps_lock(sc);
2334         mps_intr_locked(data);
2335         mps_unlock(sc);
2336         return;
2337 }
2338
2339 /*
2340  * The locking is overly broad and simplistic, but easy to deal with for now.
2341  */
2342 void
2343 mps_intr_locked(void *data)
2344 {
2345         MPI2_REPLY_DESCRIPTORS_UNION *desc;
2346         MPI2_DIAG_RELEASE_REPLY *rel_rep;
2347         mps_fw_diagnostic_buffer_t *pBuffer;
2348         struct mps_softc *sc;
2349         struct mps_command *cm = NULL;
2350         uint64_t tdesc;
2351         uint8_t flags;
2352         u_int pq;
2353
2354         sc = (struct mps_softc *)data;
2355
2356         pq = sc->replypostindex;
2357         mps_dprint(sc, MPS_TRACE,
2358             "%s sc %p starting with replypostindex %u\n", 
2359             __func__, sc, sc->replypostindex);
2360
2361         for ( ;; ) {
2362                 cm = NULL;
2363                 desc = &sc->post_queue[sc->replypostindex];
2364
2365                 /*
2366                  * Copy and clear out the descriptor so that any reentry will
2367                  * immediately know that this descriptor has already been
2368                  * looked at.  There is unfortunate casting magic because the
2369                  * MPI API doesn't have a cardinal 64bit type.
2370                  */
2371                 tdesc = 0xffffffffffffffff;
2372                 tdesc = atomic_swap_64((uint64_t *)desc, tdesc);
2373                 desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc;
2374
2375                 flags = desc->Default.ReplyFlags &
2376                     MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
2377                 if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
2378                  || (le32toh(desc->Words.High) == 0xffffffff))
2379                         break;
2380
2381                 /* increment the replypostindex now, so that event handlers
2382                  * and cm completion handlers which decide to do a diag
2383                  * reset can zero it without it getting incremented again
2384                  * afterwards, and we break out of this loop on the next
2385                  * iteration since the reply post queue has been cleared to
2386                  * 0xFF and all descriptors look unused (which they are).
2387                  */
2388                 if (++sc->replypostindex >= sc->pqdepth)
2389                         sc->replypostindex = 0;
2390
2391                 switch (flags) {
2392                 case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS:
2393                         cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)];
2394                         cm->cm_reply = NULL;
2395                         break;
2396                 case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY:
2397                 {
2398                         uint32_t baddr;
2399                         uint8_t *reply;
2400
2401                         /*
2402                          * Re-compose the reply address from the address
2403                          * sent back from the chip.  The ReplyFrameAddress
2404                          * is the lower 32 bits of the physical address of
2405                          * particular reply frame.  Convert that address to
2406                          * host format, and then use that to provide the
2407                          * offset against the virtual address base
2408                          * (sc->reply_frames).
2409                          */
2410                         baddr = le32toh(desc->AddressReply.ReplyFrameAddress);
2411                         reply = sc->reply_frames +
2412                                 (baddr - ((uint32_t)sc->reply_busaddr));
2413                         /*
2414                          * Make sure the reply we got back is in a valid
2415                          * range.  If not, go ahead and panic here, since
2416                          * we'll probably panic as soon as we deference the
2417                          * reply pointer anyway.
2418                          */
2419                         if ((reply < sc->reply_frames)
2420                          || (reply > (sc->reply_frames +
2421                              (sc->fqdepth * sc->replyframesz)))) {
2422                                 printf("%s: WARNING: reply %p out of range!\n",
2423                                        __func__, reply);
2424                                 printf("%s: reply_frames %p, fqdepth %d, "
2425                                        "frame size %d\n", __func__,
2426                                        sc->reply_frames, sc->fqdepth,
2427                                        sc->replyframesz);
2428                                 printf("%s: baddr %#x,\n", __func__, baddr);
2429                                 /* LSI-TODO. See Linux Code for Graceful exit */
2430                                 panic("Reply address out of range");
2431                         }
2432                         if (le16toh(desc->AddressReply.SMID) == 0) {
2433                                 if (((MPI2_DEFAULT_REPLY *)reply)->Function ==
2434                                     MPI2_FUNCTION_DIAG_BUFFER_POST) {
2435                                         /*
2436                                          * If SMID is 0 for Diag Buffer Post,
2437                                          * this implies that the reply is due to
2438                                          * a release function with a status that
2439                                          * the buffer has been released.  Set
2440                                          * the buffer flags accordingly.
2441                                          */
2442                                         rel_rep =
2443                                             (MPI2_DIAG_RELEASE_REPLY *)reply;
2444                                         if ((le16toh(rel_rep->IOCStatus) &
2445                                             MPI2_IOCSTATUS_MASK) ==
2446                                             MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED)
2447                                         {
2448                                                 pBuffer =
2449                                                     &sc->fw_diag_buffer_list[
2450                                                     rel_rep->BufferType];
2451                                                 pBuffer->valid_data = TRUE;
2452                                                 pBuffer->owned_by_firmware =
2453                                                     FALSE;
2454                                                 pBuffer->immediate = FALSE;
2455                                         }
2456                                 } else
2457                                         mps_dispatch_event(sc, baddr,
2458                                             (MPI2_EVENT_NOTIFICATION_REPLY *)
2459                                             reply);
2460                         } else {
2461                                 /*
2462                                  * Ignore commands not in INQUEUE state
2463                                  * since they've already been completed
2464                                  * via another path.
2465                                  */
2466                                 cm = &sc->commands[
2467                                     le16toh(desc->AddressReply.SMID)];
2468                                 if (cm->cm_state == MPS_CM_STATE_INQUEUE) {
2469                                         cm->cm_reply = reply;
2470                                         cm->cm_reply_data = le32toh(
2471                                             desc->AddressReply.ReplyFrameAddress);
2472                                 } else {
2473                                         mps_dprint(sc, MPS_RECOVERY,
2474                                             "Bad state for ADDRESS_REPLY status,"
2475                                             " ignoring state %d cm %p\n",
2476                                             cm->cm_state, cm);
2477                                 }
2478                         }
2479                         break;
2480                 }
2481                 case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS:
2482                 case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER:
2483                 case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS:
2484                 default:
2485                         /* Unhandled */
2486                         mps_dprint(sc, MPS_ERROR, "Unhandled reply 0x%x\n",
2487                             desc->Default.ReplyFlags);
2488                         cm = NULL;
2489                         break;
2490                 }
2491                 
2492
2493                 if (cm != NULL) {
2494                         // Print Error reply frame
2495                         if (cm->cm_reply)
2496                                 mps_display_reply_info(sc,cm->cm_reply);
2497                         mps_complete_command(sc, cm);
2498                 }
2499         }
2500
2501         if (pq != sc->replypostindex) {
2502                 mps_dprint(sc, MPS_TRACE, "%s sc %p writing postindex %d\n",
2503                     __func__, sc, sc->replypostindex);
2504                 mps_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET,
2505                     sc->replypostindex);
2506         }
2507
2508         return;
2509 }
2510
2511 static void
2512 mps_dispatch_event(struct mps_softc *sc, uintptr_t data,
2513     MPI2_EVENT_NOTIFICATION_REPLY *reply)
2514 {
2515         struct mps_event_handle *eh;
2516         int event, handled = 0;
2517
2518         event = le16toh(reply->Event);
2519         TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2520                 if (isset(eh->mask, event)) {
2521                         eh->callback(sc, data, reply);
2522                         handled++;
2523                 }
2524         }
2525
2526         if (handled == 0)
2527                 mps_dprint(sc, MPS_EVENT, "Unhandled event 0x%x\n", le16toh(event));
2528
2529         /*
2530          * This is the only place that the event/reply should be freed.
2531          * Anything wanting to hold onto the event data should have
2532          * already copied it into their own storage.
2533          */
2534         mps_free_reply(sc, data);
2535 }
2536
2537 static void
2538 mps_reregister_events_complete(struct mps_softc *sc, struct mps_command *cm)
2539 {
2540         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2541
2542         if (cm->cm_reply)
2543                 MPS_DPRINT_EVENT(sc, generic,
2544                         (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply);
2545
2546         mps_free_command(sc, cm);
2547
2548         /* next, send a port enable */
2549         mpssas_startup(sc);
2550 }
2551
2552 /*
2553  * For both register_events and update_events, the caller supplies a bitmap
2554  * of events that it _wants_.  These functions then turn that into a bitmask
2555  * suitable for the controller.
2556  */
2557 int
2558 mps_register_events(struct mps_softc *sc, u32 *mask,
2559     mps_evt_callback_t *cb, void *data, struct mps_event_handle **handle)
2560 {
2561         struct mps_event_handle *eh;
2562         int error = 0;
2563
2564         eh = malloc(sizeof(struct mps_event_handle), M_MPT2, M_WAITOK|M_ZERO);
2565         eh->callback = cb;
2566         eh->data = data;
2567         TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list);
2568         if (mask != NULL)
2569                 error = mps_update_events(sc, eh, mask);
2570         *handle = eh;
2571
2572         return (error);
2573 }
2574
2575 int
2576 mps_update_events(struct mps_softc *sc, struct mps_event_handle *handle,
2577     u32 *mask)
2578 {
2579         MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2580         MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL;
2581         struct mps_command *cm;
2582         int error, i;
2583
2584         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2585
2586         if ((mask != NULL) && (handle != NULL))
2587                 bcopy(mask, &handle->mask[0], sizeof(u32) * 
2588                                 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2589     
2590         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2591                 sc->event_mask[i] = -1;
2592
2593         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2594                 sc->event_mask[i] &= ~handle->mask[i];
2595
2596         if ((cm = mps_alloc_command(sc)) == NULL)
2597                 return (EBUSY);
2598         evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2599         evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2600         evtreq->MsgFlags = 0;
2601         evtreq->SASBroadcastPrimitiveMasks = 0;
2602 #ifdef MPS_DEBUG_ALL_EVENTS
2603         {
2604                 u_char fullmask[16];
2605                 memset(fullmask, 0x00, 16);
2606                 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) * 
2607                                 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2608         }
2609 #else
2610         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2611                 evtreq->EventMasks[i] =
2612                     htole32(sc->event_mask[i]);
2613 #endif
2614         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2615         cm->cm_data = NULL;
2616
2617         error = mps_wait_command(sc, &cm, 60, 0);
2618         if (cm != NULL)
2619                 reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply;
2620         if ((reply == NULL) ||
2621             (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS)
2622                 error = ENXIO;
2623
2624         if (reply)
2625                 MPS_DPRINT_EVENT(sc, generic, reply);
2626
2627         mps_dprint(sc, MPS_TRACE, "%s finished error %d\n", __func__, error);
2628
2629         if (cm != NULL)
2630                 mps_free_command(sc, cm);
2631         return (error);
2632 }
2633
2634 static int
2635 mps_reregister_events(struct mps_softc *sc)
2636 {
2637         MPI2_EVENT_NOTIFICATION_REQUEST *evtreq;
2638         struct mps_command *cm;
2639         struct mps_event_handle *eh;
2640         int error, i;
2641
2642         mps_dprint(sc, MPS_TRACE, "%s\n", __func__);
2643
2644         /* first, reregister events */
2645
2646         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2647                 sc->event_mask[i] = -1;
2648
2649         TAILQ_FOREACH(eh, &sc->event_list, eh_list) {
2650                 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2651                         sc->event_mask[i] &= ~eh->mask[i];
2652         }
2653
2654         if ((cm = mps_alloc_command(sc)) == NULL)
2655                 return (EBUSY);
2656         evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req;
2657         evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
2658         evtreq->MsgFlags = 0;
2659         evtreq->SASBroadcastPrimitiveMasks = 0;
2660 #ifdef MPS_DEBUG_ALL_EVENTS
2661         {
2662                 u_char fullmask[16];
2663                 memset(fullmask, 0x00, 16);
2664                 bcopy(fullmask, &evtreq->EventMasks[0], sizeof(u32) *
2665                         MPI2_EVENT_NOTIFY_EVENTMASK_WORDS);
2666         }
2667 #else
2668         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
2669                 evtreq->EventMasks[i] =
2670                     htole32(sc->event_mask[i]);
2671 #endif
2672         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2673         cm->cm_data = NULL;
2674         cm->cm_complete = mps_reregister_events_complete;
2675
2676         error = mps_map_command(sc, cm);
2677
2678         mps_dprint(sc, MPS_TRACE, "%s finished with error %d\n", __func__,
2679             error);
2680         return (error);
2681 }
2682
2683 void
2684 mps_deregister_events(struct mps_softc *sc, struct mps_event_handle *handle)
2685 {
2686
2687         TAILQ_REMOVE(&sc->event_list, handle, eh_list);
2688         free(handle, M_MPT2);
2689 }
2690
2691 /*
2692  * Add a chain element as the next SGE for the specified command.
2693  * Reset cm_sge and cm_sgesize to indicate all the available space.
2694  */
2695 static int
2696 mps_add_chain(struct mps_command *cm)
2697 {
2698         MPI2_SGE_CHAIN32 *sgc;
2699         struct mps_chain *chain;
2700         u_int space;
2701
2702         if (cm->cm_sglsize < MPS_SGC_SIZE)
2703                 panic("MPS: Need SGE Error Code\n");
2704
2705         chain = mps_alloc_chain(cm->cm_sc);
2706         if (chain == NULL)
2707                 return (ENOBUFS);
2708
2709         space = cm->cm_sc->reqframesz;
2710
2711         /*
2712          * Note: a double-linked list is used to make it easier to
2713          * walk for debugging.
2714          */
2715         TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link);
2716
2717         sgc = (MPI2_SGE_CHAIN32 *)&cm->cm_sge->MpiChain;
2718         sgc->Length = htole16(space);
2719         sgc->NextChainOffset = 0;
2720         /* TODO Looks like bug in Setting sgc->Flags. 
2721          *      sgc->Flags = ( MPI2_SGE_FLAGS_CHAIN_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2722          *                  MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT
2723          *      This is fine.. because we are not using simple element. In case of 
2724          *      MPI2_SGE_CHAIN32, we have separate Length and Flags feild.
2725          */
2726         sgc->Flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT;
2727         sgc->Address = htole32(chain->chain_busaddr);
2728
2729         cm->cm_sge = (MPI2_SGE_IO_UNION *)&chain->chain->MpiSimple;
2730         cm->cm_sglsize = space;
2731         return (0);
2732 }
2733
2734 /*
2735  * Add one scatter-gather element (chain, simple, transaction context)
2736  * to the scatter-gather list for a command.  Maintain cm_sglsize and
2737  * cm_sge as the remaining size and pointer to the next SGE to fill
2738  * in, respectively.
2739  */
2740 int
2741 mps_push_sge(struct mps_command *cm, void *sgep, size_t len, int segsleft)
2742 {
2743         MPI2_SGE_TRANSACTION_UNION *tc = sgep;
2744         MPI2_SGE_SIMPLE64 *sge = sgep;
2745         int error, type;
2746         uint32_t saved_buf_len, saved_address_low, saved_address_high;
2747
2748         type = (tc->Flags & MPI2_SGE_FLAGS_ELEMENT_MASK);
2749
2750 #ifdef INVARIANTS
2751         switch (type) {
2752         case MPI2_SGE_FLAGS_TRANSACTION_ELEMENT: {
2753                 if (len != tc->DetailsLength + 4)
2754                         panic("TC %p length %u or %zu?", tc,
2755                             tc->DetailsLength + 4, len);
2756                 }
2757                 break;
2758         case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
2759                 /* Driver only uses 32-bit chain elements */
2760                 if (len != MPS_SGC_SIZE)
2761                         panic("CHAIN %p length %u or %zu?", sgep,
2762                             MPS_SGC_SIZE, len);
2763                 break;
2764         case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
2765                 /* Driver only uses 64-bit SGE simple elements */
2766                 if (len != MPS_SGE64_SIZE)
2767                         panic("SGE simple %p length %u or %zu?", sge,
2768                             MPS_SGE64_SIZE, len);
2769                 if (((le32toh(sge->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT) &
2770                     MPI2_SGE_FLAGS_ADDRESS_SIZE) == 0)
2771                         panic("SGE simple %p not marked 64-bit?", sge);
2772
2773                 break;
2774         default:
2775                 panic("Unexpected SGE %p, flags %02x", tc, tc->Flags);
2776         }
2777 #endif
2778
2779         /*
2780          * case 1: 1 more segment, enough room for it
2781          * case 2: 2 more segments, enough room for both
2782          * case 3: >=2 more segments, only enough room for 1 and a chain
2783          * case 4: >=1 more segment, enough room for only a chain
2784          * case 5: >=1 more segment, no room for anything (error)
2785          */
2786
2787         /*
2788          * There should be room for at least a chain element, or this
2789          * code is buggy.  Case (5).
2790          */
2791         if (cm->cm_sglsize < MPS_SGC_SIZE)
2792                 panic("MPS: Need SGE Error Code\n");
2793
2794         if (segsleft >= 1 && cm->cm_sglsize < len + MPS_SGC_SIZE) {
2795                 /*
2796                  * 1 or more segment, enough room for only a chain.
2797                  * Hope the previous element wasn't a Simple entry
2798                  * that needed to be marked with
2799                  * MPI2_SGE_FLAGS_LAST_ELEMENT.  Case (4).
2800                  */
2801                 if ((error = mps_add_chain(cm)) != 0)
2802                         return (error);
2803         }
2804
2805         if (segsleft >= 2 &&
2806             cm->cm_sglsize < len + MPS_SGC_SIZE + MPS_SGE64_SIZE) {
2807                 /*
2808                  * There are 2 or more segments left to add, and only
2809                  * enough room for 1 and a chain.  Case (3).
2810                  *
2811                  * Mark as last element in this chain if necessary.
2812                  */
2813                 if (type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
2814                         sge->FlagsLength |= htole32(
2815                             MPI2_SGE_FLAGS_LAST_ELEMENT << MPI2_SGE_FLAGS_SHIFT);
2816                 }
2817
2818                 /*
2819                  * Add the item then a chain.  Do the chain now,
2820                  * rather than on the next iteration, to simplify
2821                  * understanding the code.
2822                  */
2823                 cm->cm_sglsize -= len;
2824                 bcopy(sgep, cm->cm_sge, len);
2825                 cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2826                 return (mps_add_chain(cm));
2827         }
2828
2829 #ifdef INVARIANTS
2830         /* Case 1: 1 more segment, enough room for it. */
2831         if (segsleft == 1 && cm->cm_sglsize < len)
2832                 panic("1 seg left and no room? %u versus %zu",
2833                     cm->cm_sglsize, len);
2834
2835         /* Case 2: 2 more segments, enough room for both */
2836         if (segsleft == 2 && cm->cm_sglsize < len + MPS_SGE64_SIZE)
2837                 panic("2 segs left and no room? %u versus %zu",
2838                     cm->cm_sglsize, len);
2839 #endif
2840
2841         if (segsleft == 1 && type == MPI2_SGE_FLAGS_SIMPLE_ELEMENT) {
2842                 /*
2843                  * If this is a bi-directional request, need to account for that
2844                  * here.  Save the pre-filled sge values.  These will be used
2845                  * either for the 2nd SGL or for a single direction SGL.  If
2846                  * cm_out_len is non-zero, this is a bi-directional request, so
2847                  * fill in the OUT SGL first, then the IN SGL, otherwise just
2848                  * fill in the IN SGL.  Note that at this time, when filling in
2849                  * 2 SGL's for a bi-directional request, they both use the same
2850                  * DMA buffer (same cm command).
2851                  */
2852                 saved_buf_len = le32toh(sge->FlagsLength) & 0x00FFFFFF;
2853                 saved_address_low = sge->Address.Low;
2854                 saved_address_high = sge->Address.High;
2855                 if (cm->cm_out_len) {
2856                         sge->FlagsLength = htole32(cm->cm_out_len |
2857                             ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2858                             MPI2_SGE_FLAGS_END_OF_BUFFER |
2859                             MPI2_SGE_FLAGS_HOST_TO_IOC |
2860                             MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2861                             MPI2_SGE_FLAGS_SHIFT));
2862                         cm->cm_sglsize -= len;
2863                         bcopy(sgep, cm->cm_sge, len);
2864                         cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge
2865                             + len);
2866                 }
2867                 saved_buf_len |=
2868                     ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2869                     MPI2_SGE_FLAGS_END_OF_BUFFER |
2870                     MPI2_SGE_FLAGS_LAST_ELEMENT |
2871                     MPI2_SGE_FLAGS_END_OF_LIST |
2872                     MPI2_SGE_FLAGS_64_BIT_ADDRESSING) <<
2873                     MPI2_SGE_FLAGS_SHIFT);
2874                 if (cm->cm_flags & MPS_CM_FLAGS_DATAIN) {
2875                         saved_buf_len |=
2876                             ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) <<
2877                             MPI2_SGE_FLAGS_SHIFT);
2878                 } else {
2879                         saved_buf_len |=
2880                             ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) <<
2881                             MPI2_SGE_FLAGS_SHIFT);
2882                 }
2883                 sge->FlagsLength = htole32(saved_buf_len);
2884                 sge->Address.Low = saved_address_low;
2885                 sge->Address.High = saved_address_high;
2886         }
2887
2888         cm->cm_sglsize -= len;
2889         bcopy(sgep, cm->cm_sge, len);
2890         cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len);
2891         return (0);
2892 }
2893
2894 /*
2895  * Add one dma segment to the scatter-gather list for a command.
2896  */
2897 int
2898 mps_add_dmaseg(struct mps_command *cm, vm_paddr_t pa, size_t len, u_int flags,
2899     int segsleft)
2900 {
2901         MPI2_SGE_SIMPLE64 sge;
2902
2903         /*
2904          * This driver always uses 64-bit address elements for simplicity.
2905          */
2906         bzero(&sge, sizeof(sge));
2907         flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2908             MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
2909         sge.FlagsLength = htole32(len | (flags << MPI2_SGE_FLAGS_SHIFT));
2910         mps_from_u64(pa, &sge.Address);
2911
2912         return (mps_push_sge(cm, &sge, sizeof sge, segsleft));
2913 }
2914
2915 static void
2916 mps_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2917 {
2918         struct mps_softc *sc;
2919         struct mps_command *cm;
2920         u_int i, dir, sflags;
2921
2922         cm = (struct mps_command *)arg;
2923         sc = cm->cm_sc;
2924
2925         /*
2926          * In this case, just print out a warning and let the chip tell the
2927          * user they did the wrong thing.
2928          */
2929         if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) {
2930                 mps_dprint(sc, MPS_ERROR,
2931                            "%s: warning: busdma returned %d segments, "
2932                            "more than the %d allowed\n", __func__, nsegs,
2933                            cm->cm_max_segs);
2934         }
2935
2936         /*
2937          * Set up DMA direction flags.  Bi-directional requests are also handled
2938          * here.  In that case, both direction flags will be set.
2939          */
2940         sflags = 0;
2941         if (cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) {
2942                 /*
2943                  * We have to add a special case for SMP passthrough, there
2944                  * is no easy way to generically handle it.  The first
2945                  * S/G element is used for the command (therefore the
2946                  * direction bit needs to be set).  The second one is used
2947                  * for the reply.  We'll leave it to the caller to make
2948                  * sure we only have two buffers.
2949                  */
2950                 /*
2951                  * Even though the busdma man page says it doesn't make
2952                  * sense to have both direction flags, it does in this case.
2953                  * We have one s/g element being accessed in each direction.
2954                  */
2955                 dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD;
2956
2957                 /*
2958                  * Set the direction flag on the first buffer in the SMP
2959                  * passthrough request.  We'll clear it for the second one.
2960                  */
2961                 sflags |= MPI2_SGE_FLAGS_DIRECTION |
2962                           MPI2_SGE_FLAGS_END_OF_BUFFER;
2963         } else if (cm->cm_flags & MPS_CM_FLAGS_DATAOUT) {
2964                 sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2965                 dir = BUS_DMASYNC_PREWRITE;
2966         } else
2967                 dir = BUS_DMASYNC_PREREAD;
2968
2969         for (i = 0; i < nsegs; i++) {
2970                 if ((cm->cm_flags & MPS_CM_FLAGS_SMP_PASS) && (i != 0)) {
2971                         sflags &= ~MPI2_SGE_FLAGS_DIRECTION;
2972                 }
2973                 error = mps_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len,
2974                     sflags, nsegs - i);
2975                 if (error != 0) {
2976                         /* Resource shortage, roll back! */
2977                         if (ratecheck(&sc->lastfail, &mps_chainfail_interval))
2978                                 mps_dprint(sc, MPS_INFO, "Out of chain frames, "
2979                                     "consider increasing hw.mps.max_chains.\n");
2980                         cm->cm_flags |= MPS_CM_FLAGS_CHAIN_FAILED;
2981                         cm->cm_state = MPS_CM_STATE_INQUEUE;
2982                         mps_complete_command(sc, cm);
2983                         return;
2984                 }
2985         }
2986
2987         bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir);
2988         mps_enqueue_request(sc, cm);
2989
2990         return;
2991 }
2992
2993 static void
2994 mps_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize,
2995              int error)
2996 {
2997         mps_data_cb(arg, segs, nsegs, error);
2998 }
2999
3000 /*
3001  * This is the routine to enqueue commands ansynchronously.
3002  * Note that the only error path here is from bus_dmamap_load(), which can
3003  * return EINPROGRESS if it is waiting for resources.  Other than this, it's
3004  * assumed that if you have a command in-hand, then you have enough credits
3005  * to use it.
3006  */
3007 int
3008 mps_map_command(struct mps_softc *sc, struct mps_command *cm)
3009 {
3010         int error = 0;
3011
3012         if (cm->cm_flags & MPS_CM_FLAGS_USE_UIO) {
3013                 error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap,
3014                     &cm->cm_uio, mps_data_cb2, cm, 0);
3015         } else if (cm->cm_flags & MPS_CM_FLAGS_USE_CCB) {
3016                 error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap,
3017                     cm->cm_data, mps_data_cb, cm, 0);
3018         } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) {
3019                 error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap,
3020                     cm->cm_data, cm->cm_length, mps_data_cb, cm, 0);
3021         } else {
3022                 /* Add a zero-length element as needed */
3023                 if (cm->cm_sge != NULL)
3024                         mps_add_dmaseg(cm, 0, 0, 0, 1);
3025                 mps_enqueue_request(sc, cm);    
3026         }
3027
3028         return (error);
3029 }
3030
3031 /*
3032  * This is the routine to enqueue commands synchronously.  An error of
3033  * EINPROGRESS from mps_map_command() is ignored since the command will
3034  * be executed and enqueued automatically.  Other errors come from msleep().
3035  */
3036 int
3037 mps_wait_command(struct mps_softc *sc, struct mps_command **cmp, int timeout,
3038     int sleep_flag)
3039 {
3040         int error, rc;
3041         struct timeval cur_time, start_time;
3042         struct mps_command *cm = *cmp;
3043
3044         if (sc->mps_flags & MPS_FLAGS_DIAGRESET) 
3045                 return  EBUSY;
3046
3047         cm->cm_complete = NULL;
3048         cm->cm_flags |= MPS_CM_FLAGS_POLLED;
3049         error = mps_map_command(sc, cm);
3050         if ((error != 0) && (error != EINPROGRESS))
3051                 return (error);
3052
3053         /*
3054          * Check for context and wait for 50 mSec at a time until time has
3055          * expired or the command has finished.  If msleep can't be used, need
3056          * to poll.
3057          */
3058         if (curthread->td_no_sleeping != 0)
3059                 sleep_flag = NO_SLEEP;
3060         getmicrouptime(&start_time);
3061         if (mtx_owned(&sc->mps_mtx) && sleep_flag == CAN_SLEEP) {
3062                 cm->cm_flags |= MPS_CM_FLAGS_WAKEUP;
3063                 error = msleep(cm, &sc->mps_mtx, 0, "mpswait", timeout*hz);
3064                 if (error == EWOULDBLOCK) {
3065                         /*
3066                          * Record the actual elapsed time in the case of a
3067                          * timeout for the message below.
3068                          */
3069                         getmicrouptime(&cur_time);
3070                         timevalsub(&cur_time, &start_time);
3071                 }
3072         } else {
3073                 while ((cm->cm_flags & MPS_CM_FLAGS_COMPLETE) == 0) {
3074                         mps_intr_locked(sc);
3075                         if (sleep_flag == CAN_SLEEP)
3076                                 pause("mpswait", hz/20);
3077                         else
3078                                 DELAY(50000);
3079                 
3080                         getmicrouptime(&cur_time);
3081                         timevalsub(&cur_time, &start_time);
3082                         if (cur_time.tv_sec > timeout) {
3083                                 error = EWOULDBLOCK;
3084                                 break;
3085                         }
3086                 }
3087         }
3088
3089         if (error == EWOULDBLOCK) {
3090                 if (cm->cm_timeout_handler == NULL) {
3091                         mps_dprint(sc, MPS_FAULT, "Calling Reinit from %s, timeout=%d,"
3092                             " elapsed=%jd\n", __func__, timeout,
3093                             (intmax_t)cur_time.tv_sec);
3094                         rc = mps_reinit(sc);
3095                         mps_dprint(sc, MPS_FAULT, "Reinit %s\n", (rc == 0) ? "success" :
3096                             "failed");
3097                 } else
3098                         cm->cm_timeout_handler(sc, cm);
3099                 if (sc->mps_flags & MPS_FLAGS_REALLOCATED) {
3100                         /*
3101                          * Tell the caller that we freed the command in a
3102                          * reinit.
3103                          */
3104                         *cmp = NULL;
3105                 }
3106                 error = ETIMEDOUT;
3107         }
3108         return (error);
3109 }
3110
3111 /*
3112  * The MPT driver had a verbose interface for config pages.  In this driver,
3113  * reduce it to much simpler terms, similar to the Linux driver.
3114  */
3115 int
3116 mps_read_config_page(struct mps_softc *sc, struct mps_config_params *params)
3117 {
3118         MPI2_CONFIG_REQUEST *req;
3119         struct mps_command *cm;
3120         int error;
3121
3122         if (sc->mps_flags & MPS_FLAGS_BUSY) {
3123                 return (EBUSY);
3124         }
3125
3126         cm = mps_alloc_command(sc);
3127         if (cm == NULL) {
3128                 return (EBUSY);
3129         }
3130
3131         req = (MPI2_CONFIG_REQUEST *)cm->cm_req;
3132         req->Function = MPI2_FUNCTION_CONFIG;
3133         req->Action = params->action;
3134         req->SGLFlags = 0;
3135         req->ChainOffset = 0;
3136         req->PageAddress = params->page_address;
3137         if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3138                 MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr;
3139
3140                 hdr = &params->hdr.Ext;
3141                 req->ExtPageType = hdr->ExtPageType;
3142                 req->ExtPageLength = hdr->ExtPageLength;
3143                 req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED;
3144                 req->Header.PageLength = 0; /* Must be set to zero */
3145                 req->Header.PageNumber = hdr->PageNumber;
3146                 req->Header.PageVersion = hdr->PageVersion;
3147         } else {
3148                 MPI2_CONFIG_PAGE_HEADER *hdr;
3149
3150                 hdr = &params->hdr.Struct;
3151                 req->Header.PageType = hdr->PageType;
3152                 req->Header.PageNumber = hdr->PageNumber;
3153                 req->Header.PageLength = hdr->PageLength;
3154                 req->Header.PageVersion = hdr->PageVersion;
3155         }
3156
3157         cm->cm_data = params->buffer;
3158         cm->cm_length = params->length;
3159         if (cm->cm_data != NULL) {
3160                 cm->cm_sge = &req->PageBufferSGE;
3161                 cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION);
3162                 cm->cm_flags = MPS_CM_FLAGS_SGE_SIMPLE | MPS_CM_FLAGS_DATAIN;
3163         } else
3164                 cm->cm_sge = NULL;
3165         cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3166
3167         cm->cm_complete_data = params;
3168         if (params->callback != NULL) {
3169                 cm->cm_complete = mps_config_complete;
3170                 return (mps_map_command(sc, cm));
3171         } else {
3172                 error = mps_wait_command(sc, &cm, 0, CAN_SLEEP);
3173                 if (error) {
3174                         mps_dprint(sc, MPS_FAULT,
3175                             "Error %d reading config page\n", error);
3176                         if (cm != NULL)
3177                                 mps_free_command(sc, cm);
3178                         return (error);
3179                 }
3180                 mps_config_complete(sc, cm);
3181         }
3182
3183         return (0);
3184 }
3185
3186 int
3187 mps_write_config_page(struct mps_softc *sc, struct mps_config_params *params)
3188 {
3189         return (EINVAL);
3190 }
3191
3192 static void
3193 mps_config_complete(struct mps_softc *sc, struct mps_command *cm)
3194 {
3195         MPI2_CONFIG_REPLY *reply;
3196         struct mps_config_params *params;
3197
3198         MPS_FUNCTRACE(sc);
3199         params = cm->cm_complete_data;
3200
3201         if (cm->cm_data != NULL) {
3202                 bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap,
3203                     BUS_DMASYNC_POSTREAD);
3204                 bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap);
3205         }
3206
3207         /*
3208          * XXX KDM need to do more error recovery?  This results in the
3209          * device in question not getting probed.
3210          */
3211         if ((cm->cm_flags & MPS_CM_FLAGS_ERROR_MASK) != 0) {
3212                 params->status = MPI2_IOCSTATUS_BUSY;
3213                 goto done;
3214         }
3215
3216         reply = (MPI2_CONFIG_REPLY *)cm->cm_reply;
3217         if (reply == NULL) {
3218                 params->status = MPI2_IOCSTATUS_BUSY;
3219                 goto done;
3220         }
3221         params->status = reply->IOCStatus;
3222         if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) {
3223                 params->hdr.Ext.ExtPageType = reply->ExtPageType;
3224                 params->hdr.Ext.ExtPageLength = reply->ExtPageLength;
3225                 params->hdr.Ext.PageType = reply->Header.PageType;
3226                 params->hdr.Ext.PageNumber = reply->Header.PageNumber;
3227                 params->hdr.Ext.PageVersion = reply->Header.PageVersion;
3228         } else {
3229                 params->hdr.Struct.PageType = reply->Header.PageType;
3230                 params->hdr.Struct.PageNumber = reply->Header.PageNumber;
3231                 params->hdr.Struct.PageLength = reply->Header.PageLength;
3232                 params->hdr.Struct.PageVersion = reply->Header.PageVersion;
3233         }
3234
3235 done:
3236         mps_free_command(sc, cm);
3237         if (params->callback != NULL)
3238                 params->callback(sc, params);
3239
3240         return;
3241 }