]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/netmap/netmap_freebsd.c
Implement request queue overflow protection.
[FreeBSD/FreeBSD.git] / sys / dev / netmap / netmap_freebsd.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *   1. Redistributions of source code must retain the above copyright
10  *      notice, this list of conditions and the following disclaimer.
11  *   2. Redistributions in binary form must reproduce the above copyright
12  *      notice, this list of conditions and the following disclaimer in the
13  *      documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 /* $FreeBSD$ */
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31
32 #include <sys/param.h>
33 #include <sys/module.h>
34 #include <sys/errno.h>
35 #include <sys/eventhandler.h>
36 #include <sys/jail.h>
37 #include <sys/poll.h>  /* POLLIN, POLLOUT */
38 #include <sys/kernel.h> /* types used in module initialization */
39 #include <sys/conf.h>   /* DEV_MODULE_ORDERED */
40 #include <sys/endian.h>
41 #include <sys/syscallsubr.h> /* kern_ioctl() */
42
43 #include <sys/rwlock.h>
44
45 #include <vm/vm.h>      /* vtophys */
46 #include <vm/pmap.h>    /* vtophys */
47 #include <vm/vm_param.h>
48 #include <vm/vm_object.h>
49 #include <vm/vm_page.h>
50 #include <vm/vm_pager.h>
51 #include <vm/uma.h>
52
53
54 #include <sys/malloc.h>
55 #include <sys/socket.h> /* sockaddrs */
56 #include <sys/selinfo.h>
57 #include <sys/kthread.h> /* kthread_add() */
58 #include <sys/proc.h> /* PROC_LOCK() */
59 #include <sys/unistd.h> /* RFNOWAIT */
60 #include <sys/sched.h> /* sched_bind() */
61 #include <sys/smp.h> /* mp_maxid */
62 #include <sys/taskqueue.h> /* taskqueue_enqueue(), taskqueue_create(), ... */
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_types.h> /* IFT_ETHER */
66 #include <net/ethernet.h> /* ether_ifdetach */
67 #include <net/if_dl.h> /* LLADDR */
68 #include <machine/bus.h>        /* bus_dmamap_* */
69 #include <netinet/in.h>         /* in6_cksum_pseudo() */
70 #include <machine/in_cksum.h>  /* in_pseudo(), in_cksum_hdr() */
71
72 #include <net/netmap.h>
73 #include <dev/netmap/netmap_kern.h>
74 #include <net/netmap_virt.h>
75 #include <dev/netmap/netmap_mem2.h>
76
77
78 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */
79
80 static void
81 nm_kqueue_notify(void *opaque, int pending)
82 {
83         struct nm_selinfo *si = opaque;
84
85         /* We use a non-zero hint to distinguish this notification call
86          * from the call done in kqueue_scan(), which uses hint=0.
87          */
88         KNOTE_UNLOCKED(&si->si.si_note, /*hint=*/0x100);
89 }
90
91 int nm_os_selinfo_init(NM_SELINFO_T *si, const char *name) {
92         int err;
93
94         TASK_INIT(&si->ntfytask, 0, nm_kqueue_notify, si);
95         si->ntfytq = taskqueue_create(name, M_NOWAIT,
96             taskqueue_thread_enqueue, &si->ntfytq);
97         if (si->ntfytq == NULL)
98                 return -ENOMEM;
99         err = taskqueue_start_threads(&si->ntfytq, 1, PI_NET, "tq %s", name);
100         if (err) {
101                 taskqueue_free(si->ntfytq);
102                 si->ntfytq = NULL;
103                 return err;
104         }
105
106         snprintf(si->mtxname, sizeof(si->mtxname), "nmkl%s", name);
107         mtx_init(&si->m, si->mtxname, NULL, MTX_DEF);
108         knlist_init_mtx(&si->si.si_note, &si->m);
109         si->kqueue_users = 0;
110
111         return (0);
112 }
113
114 void
115 nm_os_selinfo_uninit(NM_SELINFO_T *si)
116 {
117         if (si->ntfytq == NULL) {
118                 return; /* si was not initialized */
119         }
120         taskqueue_drain(si->ntfytq, &si->ntfytask);
121         taskqueue_free(si->ntfytq);
122         si->ntfytq = NULL;
123         knlist_delete(&si->si.si_note, curthread, /*islocked=*/0);
124         knlist_destroy(&si->si.si_note);
125         /* now we don't need the mutex anymore */
126         mtx_destroy(&si->m);
127 }
128
129 void *
130 nm_os_malloc(size_t size)
131 {
132         return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
133 }
134
135 void *
136 nm_os_realloc(void *addr, size_t new_size, size_t old_size __unused)
137 {
138         return realloc(addr, new_size, M_DEVBUF, M_NOWAIT | M_ZERO);
139 }
140
141 void
142 nm_os_free(void *addr)
143 {
144         free(addr, M_DEVBUF);
145 }
146
147 void
148 nm_os_ifnet_lock(void)
149 {
150         IFNET_RLOCK();
151 }
152
153 void
154 nm_os_ifnet_unlock(void)
155 {
156         IFNET_RUNLOCK();
157 }
158
159 static int netmap_use_count = 0;
160
161 void
162 nm_os_get_module(void)
163 {
164         netmap_use_count++;
165 }
166
167 void
168 nm_os_put_module(void)
169 {
170         netmap_use_count--;
171 }
172
173 static void
174 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp)
175 {
176         netmap_undo_zombie(ifp);
177 }
178
179 static void
180 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp)
181 {
182         netmap_make_zombie(ifp);
183 }
184
185 static eventhandler_tag nm_ifnet_ah_tag;
186 static eventhandler_tag nm_ifnet_dh_tag;
187
188 int
189 nm_os_ifnet_init(void)
190 {
191         nm_ifnet_ah_tag =
192                 EVENTHANDLER_REGISTER(ifnet_arrival_event,
193                                 netmap_ifnet_arrival_handler,
194                                 NULL, EVENTHANDLER_PRI_ANY);
195         nm_ifnet_dh_tag =
196                 EVENTHANDLER_REGISTER(ifnet_departure_event,
197                                 netmap_ifnet_departure_handler,
198                                 NULL, EVENTHANDLER_PRI_ANY);
199         return 0;
200 }
201
202 void
203 nm_os_ifnet_fini(void)
204 {
205         EVENTHANDLER_DEREGISTER(ifnet_arrival_event,
206                         nm_ifnet_ah_tag);
207         EVENTHANDLER_DEREGISTER(ifnet_departure_event,
208                         nm_ifnet_dh_tag);
209 }
210
211 unsigned
212 nm_os_ifnet_mtu(struct ifnet *ifp)
213 {
214 #if __FreeBSD_version < 1100030
215         return ifp->if_data.ifi_mtu;
216 #else /* __FreeBSD_version >= 1100030 */
217         return ifp->if_mtu;
218 #endif
219 }
220
221 rawsum_t
222 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum)
223 {
224         /* TODO XXX please use the FreeBSD implementation for this. */
225         uint16_t *words = (uint16_t *)data;
226         int nw = len / 2;
227         int i;
228
229         for (i = 0; i < nw; i++)
230                 cur_sum += be16toh(words[i]);
231
232         if (len & 1)
233                 cur_sum += (data[len-1] << 8);
234
235         return cur_sum;
236 }
237
238 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the
239  * return value is in network byte order.
240  */
241 uint16_t
242 nm_os_csum_fold(rawsum_t cur_sum)
243 {
244         /* TODO XXX please use the FreeBSD implementation for this. */
245         while (cur_sum >> 16)
246                 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16);
247
248         return htobe16((~cur_sum) & 0xFFFF);
249 }
250
251 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph)
252 {
253 #if 0
254         return in_cksum_hdr((void *)iph);
255 #else
256         return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0));
257 #endif
258 }
259
260 void
261 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
262                                         size_t datalen, uint16_t *check)
263 {
264 #ifdef INET
265         uint16_t pseudolen = datalen + iph->protocol;
266
267         /* Compute and insert the pseudo-header cheksum. */
268         *check = in_pseudo(iph->saddr, iph->daddr,
269                                  htobe16(pseudolen));
270         /* Compute the checksum on TCP/UDP header + payload
271          * (includes the pseudo-header).
272          */
273         *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
274 #else
275         static int notsupported = 0;
276         if (!notsupported) {
277                 notsupported = 1;
278                 nm_prerr("inet4 segmentation not supported");
279         }
280 #endif
281 }
282
283 void
284 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
285                                         size_t datalen, uint16_t *check)
286 {
287 #ifdef INET6
288         *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0);
289         *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0));
290 #else
291         static int notsupported = 0;
292         if (!notsupported) {
293                 notsupported = 1;
294                 nm_prerr("inet6 segmentation not supported");
295         }
296 #endif
297 }
298
299 /* on FreeBSD we send up one packet at a time */
300 void *
301 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev)
302 {
303         NA(ifp)->if_input(ifp, m);
304         return NULL;
305 }
306
307 int
308 nm_os_mbuf_has_csum_offld(struct mbuf *m)
309 {
310         return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP |
311                                          CSUM_TCP_IPV6 | CSUM_UDP_IPV6 |
312                                          CSUM_SCTP_IPV6);
313 }
314
315 int
316 nm_os_mbuf_has_seg_offld(struct mbuf *m)
317 {
318         return m->m_pkthdr.csum_flags & CSUM_TSO;
319 }
320
321 static void
322 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
323 {
324         int stolen;
325
326         if (unlikely(!NM_NA_VALID(ifp))) {
327                 nm_prlim(1, "Warning: RX packet intercepted, but no"
328                                 " emulated adapter");
329                 return;
330         }
331
332         stolen = generic_rx_handler(ifp, m);
333         if (!stolen) {
334                 struct netmap_generic_adapter *gna =
335                                 (struct netmap_generic_adapter *)NA(ifp);
336                 gna->save_if_input(ifp, m);
337         }
338 }
339
340 /*
341  * Intercept the rx routine in the standard device driver.
342  * Second argument is non-zero to intercept, 0 to restore
343  */
344 int
345 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept)
346 {
347         struct netmap_adapter *na = &gna->up.up;
348         struct ifnet *ifp = na->ifp;
349         int ret = 0;
350
351         nm_os_ifnet_lock();
352         if (intercept) {
353                 if (gna->save_if_input) {
354                         nm_prerr("RX on %s already intercepted", na->name);
355                         ret = EBUSY; /* already set */
356                         goto out;
357                 }
358                 gna->save_if_input = ifp->if_input;
359                 ifp->if_input = freebsd_generic_rx_handler;
360         } else {
361                 if (!gna->save_if_input) {
362                         nm_prerr("Failed to undo RX intercept on %s",
363                                 na->name);
364                         ret = EINVAL;  /* not saved */
365                         goto out;
366                 }
367                 ifp->if_input = gna->save_if_input;
368                 gna->save_if_input = NULL;
369         }
370 out:
371         nm_os_ifnet_unlock();
372
373         return ret;
374 }
375
376
377 /*
378  * Intercept the packet steering routine in the tx path,
379  * so that we can decide which queue is used for an mbuf.
380  * Second argument is non-zero to intercept, 0 to restore.
381  * On freebsd we just intercept if_transmit.
382  */
383 int
384 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept)
385 {
386         struct netmap_adapter *na = &gna->up.up;
387         struct ifnet *ifp = netmap_generic_getifp(gna);
388
389         nm_os_ifnet_lock();
390         if (intercept) {
391                 na->if_transmit = ifp->if_transmit;
392                 ifp->if_transmit = netmap_transmit;
393         } else {
394                 ifp->if_transmit = na->if_transmit;
395         }
396         nm_os_ifnet_unlock();
397
398         return 0;
399 }
400
401
402 /*
403  * Transmit routine used by generic_netmap_txsync(). Returns 0 on success
404  * and non-zero on error (which may be packet drops or other errors).
405  * addr and len identify the netmap buffer, m is the (preallocated)
406  * mbuf to use for transmissions.
407  *
408  * We should add a reference to the mbuf so the m_freem() at the end
409  * of the transmission does not consume resources.
410  *
411  * On FreeBSD, and on multiqueue cards, we can force the queue using
412  *      if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
413  *              i = m->m_pkthdr.flowid % adapter->num_queues;
414  *      else
415  *              i = curcpu % adapter->num_queues;
416  *
417  */
418 int
419 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a)
420 {
421         int ret;
422         u_int len = a->len;
423         struct ifnet *ifp = a->ifp;
424         struct mbuf *m = a->m;
425
426 #if __FreeBSD_version < 1100000
427         /*
428          * Old FreeBSD versions. The mbuf has a cluster attached,
429          * we need to copy from the cluster to the netmap buffer.
430          */
431         if (MBUF_REFCNT(m) != 1) {
432                 nm_prerr("invalid refcnt %d for %p", MBUF_REFCNT(m), m);
433                 panic("in generic_xmit_frame");
434         }
435         if (m->m_ext.ext_size < len) {
436                 nm_prlim(2, "size %d < len %d", m->m_ext.ext_size, len);
437                 len = m->m_ext.ext_size;
438         }
439         bcopy(a->addr, m->m_data, len);
440 #else  /* __FreeBSD_version >= 1100000 */
441         /* New FreeBSD versions. Link the external storage to
442          * the netmap buffer, so that no copy is necessary. */
443         m->m_ext.ext_buf = m->m_data = a->addr;
444         m->m_ext.ext_size = len;
445 #endif /* __FreeBSD_version >= 1100000 */
446
447         m->m_flags |= M_PKTHDR;
448         m->m_len = m->m_pkthdr.len = len;
449
450         /* mbuf refcnt is not contended, no need to use atomic
451          * (a memory barrier is enough). */
452         SET_MBUF_REFCNT(m, 2);
453         M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE);
454         m->m_pkthdr.flowid = a->ring_nr;
455         m->m_pkthdr.rcvif = ifp; /* used for tx notification */
456         CURVNET_SET(ifp->if_vnet);
457         ret = NA(ifp)->if_transmit(ifp, m);
458         CURVNET_RESTORE();
459         return ret ? -1 : 0;
460 }
461
462
463 #if __FreeBSD_version >= 1100005
464 struct netmap_adapter *
465 netmap_getna(if_t ifp)
466 {
467         return (NA((struct ifnet *)ifp));
468 }
469 #endif /* __FreeBSD_version >= 1100005 */
470
471 /*
472  * The following two functions are empty until we have a generic
473  * way to extract the info from the ifp
474  */
475 int
476 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx)
477 {
478         return 0;
479 }
480
481
482 void
483 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq)
484 {
485         unsigned num_rings = netmap_generic_rings ? netmap_generic_rings : 1;
486
487         *txq = num_rings;
488         *rxq = num_rings;
489 }
490
491 void
492 nm_os_generic_set_features(struct netmap_generic_adapter *gna)
493 {
494
495         gna->rxsg = 1; /* Supported through m_copydata. */
496         gna->txqdisc = 0; /* Not supported. */
497 }
498
499 void
500 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na)
501 {
502         mit->mit_pending = 0;
503         mit->mit_ring_idx = idx;
504         mit->mit_na = na;
505 }
506
507
508 void
509 nm_os_mitigation_start(struct nm_generic_mit *mit)
510 {
511 }
512
513
514 void
515 nm_os_mitigation_restart(struct nm_generic_mit *mit)
516 {
517 }
518
519
520 int
521 nm_os_mitigation_active(struct nm_generic_mit *mit)
522 {
523
524         return 0;
525 }
526
527
528 void
529 nm_os_mitigation_cleanup(struct nm_generic_mit *mit)
530 {
531 }
532
533 static int
534 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr)
535 {
536
537         return EINVAL;
538 }
539
540 static void
541 nm_vi_start(struct ifnet *ifp)
542 {
543         panic("nm_vi_start() must not be called");
544 }
545
546 /*
547  * Index manager of persistent virtual interfaces.
548  * It is used to decide the lowest byte of the MAC address.
549  * We use the same algorithm with management of bridge port index.
550  */
551 #define NM_VI_MAX       255
552 static struct {
553         uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */
554         uint8_t active;
555         struct mtx lock;
556 } nm_vi_indices;
557
558 void
559 nm_os_vi_init_index(void)
560 {
561         int i;
562         for (i = 0; i < NM_VI_MAX; i++)
563                 nm_vi_indices.index[i] = i;
564         nm_vi_indices.active = 0;
565         mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF);
566 }
567
568 /* return -1 if no index available */
569 static int
570 nm_vi_get_index(void)
571 {
572         int ret;
573
574         mtx_lock(&nm_vi_indices.lock);
575         ret = nm_vi_indices.active == NM_VI_MAX ? -1 :
576                 nm_vi_indices.index[nm_vi_indices.active++];
577         mtx_unlock(&nm_vi_indices.lock);
578         return ret;
579 }
580
581 static void
582 nm_vi_free_index(uint8_t val)
583 {
584         int i, lim;
585
586         mtx_lock(&nm_vi_indices.lock);
587         lim = nm_vi_indices.active;
588         for (i = 0; i < lim; i++) {
589                 if (nm_vi_indices.index[i] == val) {
590                         /* swap index[lim-1] and j */
591                         int tmp = nm_vi_indices.index[lim-1];
592                         nm_vi_indices.index[lim-1] = val;
593                         nm_vi_indices.index[i] = tmp;
594                         nm_vi_indices.active--;
595                         break;
596                 }
597         }
598         if (lim == nm_vi_indices.active)
599                 nm_prerr("Index %u not found", val);
600         mtx_unlock(&nm_vi_indices.lock);
601 }
602 #undef NM_VI_MAX
603
604 /*
605  * Implementation of a netmap-capable virtual interface that
606  * registered to the system.
607  * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9.
608  *
609  * Note: Linux sets refcount to 0 on allocation of net_device,
610  * then increments it on registration to the system.
611  * FreeBSD sets refcount to 1 on if_alloc(), and does not
612  * increment this refcount on if_attach().
613  */
614 int
615 nm_os_vi_persist(const char *name, struct ifnet **ret)
616 {
617         struct ifnet *ifp;
618         u_short macaddr_hi;
619         uint32_t macaddr_mid;
620         u_char eaddr[6];
621         int unit = nm_vi_get_index(); /* just to decide MAC address */
622
623         if (unit < 0)
624                 return EBUSY;
625         /*
626          * We use the same MAC address generation method with tap
627          * except for the highest octet is 00:be instead of 00:bd
628          */
629         macaddr_hi = htons(0x00be); /* XXX tap + 1 */
630         macaddr_mid = (uint32_t) ticks;
631         bcopy(&macaddr_hi, eaddr, sizeof(short));
632         bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t));
633         eaddr[5] = (uint8_t)unit;
634
635         ifp = if_alloc(IFT_ETHER);
636         if (ifp == NULL) {
637                 nm_prerr("if_alloc failed");
638                 return ENOMEM;
639         }
640         if_initname(ifp, name, IF_DUNIT_NONE);
641         ifp->if_mtu = 65536;
642         ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST;
643         ifp->if_init = (void *)nm_vi_dummy;
644         ifp->if_ioctl = nm_vi_dummy;
645         ifp->if_start = nm_vi_start;
646         ifp->if_mtu = ETHERMTU;
647         IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
648         ifp->if_capabilities |= IFCAP_LINKSTATE;
649         ifp->if_capenable |= IFCAP_LINKSTATE;
650
651         ether_ifattach(ifp, eaddr);
652         *ret = ifp;
653         return 0;
654 }
655
656 /* unregister from the system and drop the final refcount */
657 void
658 nm_os_vi_detach(struct ifnet *ifp)
659 {
660         nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]);
661         ether_ifdetach(ifp);
662         if_free(ifp);
663 }
664
665 #ifdef WITH_EXTMEM
666 #include <vm/vm_map.h>
667 #include <vm/vm_kern.h>
668 struct nm_os_extmem {
669         vm_object_t obj;
670         vm_offset_t kva;
671         vm_offset_t size;
672         uintptr_t scan;
673 };
674
675 void
676 nm_os_extmem_delete(struct nm_os_extmem *e)
677 {
678         nm_prinf("freeing %zx bytes", (size_t)e->size);
679         vm_map_remove(kernel_map, e->kva, e->kva + e->size);
680         nm_os_free(e);
681 }
682
683 char *
684 nm_os_extmem_nextpage(struct nm_os_extmem *e)
685 {
686         char *rv = NULL;
687         if (e->scan < e->kva + e->size) {
688                 rv = (char *)e->scan;
689                 e->scan += PAGE_SIZE;
690         }
691         return rv;
692 }
693
694 int
695 nm_os_extmem_isequal(struct nm_os_extmem *e1, struct nm_os_extmem *e2)
696 {
697         return (e1->obj == e2->obj);
698 }
699
700 int
701 nm_os_extmem_nr_pages(struct nm_os_extmem *e)
702 {
703         return e->size >> PAGE_SHIFT;
704 }
705
706 struct nm_os_extmem *
707 nm_os_extmem_create(unsigned long p, struct nmreq_pools_info *pi, int *perror)
708 {
709         vm_map_t map;
710         vm_map_entry_t entry;
711         vm_object_t obj;
712         vm_prot_t prot;
713         vm_pindex_t index;
714         boolean_t wired;
715         struct nm_os_extmem *e = NULL;
716         int rv, error = 0;
717
718         e = nm_os_malloc(sizeof(*e));
719         if (e == NULL) {
720                 error = ENOMEM;
721                 goto out;
722         }
723
724         map = &curthread->td_proc->p_vmspace->vm_map;
725         rv = vm_map_lookup(&map, p, VM_PROT_RW, &entry,
726                         &obj, &index, &prot, &wired);
727         if (rv != KERN_SUCCESS) {
728                 nm_prerr("address %lx not found", p);
729                 goto out_free;
730         }
731         /* check that we are given the whole vm_object ? */
732         vm_map_lookup_done(map, entry);
733
734         // XXX can we really use obj after releasing the map lock?
735         e->obj = obj;
736         vm_object_reference(obj);
737         /* wire the memory and add the vm_object to the kernel map,
738          * to make sure that it is not fred even if the processes that
739          * are mmap()ing it all exit
740          */
741         e->kva = vm_map_min(kernel_map);
742         e->size = obj->size << PAGE_SHIFT;
743         rv = vm_map_find(kernel_map, obj, 0, &e->kva, e->size, 0,
744                         VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
745                         VM_PROT_READ | VM_PROT_WRITE, 0);
746         if (rv != KERN_SUCCESS) {
747                 nm_prerr("vm_map_find(%zx) failed", (size_t)e->size);
748                 goto out_rel;
749         }
750         rv = vm_map_wire(kernel_map, e->kva, e->kva + e->size,
751                         VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
752         if (rv != KERN_SUCCESS) {
753                 nm_prerr("vm_map_wire failed");
754                 goto out_rem;
755         }
756
757         e->scan = e->kva;
758
759         return e;
760
761 out_rem:
762         vm_map_remove(kernel_map, e->kva, e->kva + e->size);
763         e->obj = NULL;
764 out_rel:
765         vm_object_deallocate(e->obj);
766 out_free:
767         nm_os_free(e);
768 out:
769         if (perror)
770                 *perror = error;
771         return NULL;
772 }
773 #endif /* WITH_EXTMEM */
774
775 /* ================== PTNETMAP GUEST SUPPORT ==================== */
776
777 #ifdef WITH_PTNETMAP
778 #include <sys/bus.h>
779 #include <sys/rman.h>
780 #include <machine/bus.h>        /* bus_dmamap_* */
781 #include <machine/resource.h>
782 #include <dev/pci/pcivar.h>
783 #include <dev/pci/pcireg.h>
784 /*
785  * ptnetmap memory device (memdev) for freebsd guest,
786  * ssed to expose host netmap memory to the guest through a PCI BAR.
787  */
788
789 /*
790  * ptnetmap memdev private data structure
791  */
792 struct ptnetmap_memdev {
793         device_t dev;
794         struct resource *pci_io;
795         struct resource *pci_mem;
796         struct netmap_mem_d *nm_mem;
797 };
798
799 static int      ptn_memdev_probe(device_t);
800 static int      ptn_memdev_attach(device_t);
801 static int      ptn_memdev_detach(device_t);
802 static int      ptn_memdev_shutdown(device_t);
803
804 static device_method_t ptn_memdev_methods[] = {
805         DEVMETHOD(device_probe, ptn_memdev_probe),
806         DEVMETHOD(device_attach, ptn_memdev_attach),
807         DEVMETHOD(device_detach, ptn_memdev_detach),
808         DEVMETHOD(device_shutdown, ptn_memdev_shutdown),
809         DEVMETHOD_END
810 };
811
812 static driver_t ptn_memdev_driver = {
813         PTNETMAP_MEMDEV_NAME,
814         ptn_memdev_methods,
815         sizeof(struct ptnetmap_memdev),
816 };
817
818 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation
819  * below. */
820 static devclass_t ptnetmap_devclass;
821 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass,
822                       NULL, NULL, SI_ORDER_MIDDLE + 1);
823
824 /*
825  * Map host netmap memory through PCI-BAR in the guest OS,
826  * returning physical (nm_paddr) and virtual (nm_addr) addresses
827  * of the netmap memory mapped in the guest.
828  */
829 int
830 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr,
831                       void **nm_addr, uint64_t *mem_size)
832 {
833         int rid;
834
835         nm_prinf("ptn_memdev_driver iomap");
836
837         rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR);
838         *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_HI);
839         *mem_size = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMSIZE_LO) |
840                         (*mem_size << 32);
841
842         /* map memory allocator */
843         ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY,
844                         &rid, 0, ~0, *mem_size, RF_ACTIVE);
845         if (ptn_dev->pci_mem == NULL) {
846                 *nm_paddr = 0;
847                 *nm_addr = NULL;
848                 return ENOMEM;
849         }
850
851         *nm_paddr = rman_get_start(ptn_dev->pci_mem);
852         *nm_addr = rman_get_virtual(ptn_dev->pci_mem);
853
854         nm_prinf("=== BAR %d start %lx len %lx mem_size %lx ===",
855                         PTNETMAP_MEM_PCI_BAR,
856                         (unsigned long)(*nm_paddr),
857                         (unsigned long)rman_get_size(ptn_dev->pci_mem),
858                         (unsigned long)*mem_size);
859         return (0);
860 }
861
862 uint32_t
863 nm_os_pt_memdev_ioread(struct ptnetmap_memdev *ptn_dev, unsigned int reg)
864 {
865         return bus_read_4(ptn_dev->pci_io, reg);
866 }
867
868 /* Unmap host netmap memory. */
869 void
870 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev)
871 {
872         nm_prinf("ptn_memdev_driver iounmap");
873
874         if (ptn_dev->pci_mem) {
875                 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY,
876                         PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
877                 ptn_dev->pci_mem = NULL;
878         }
879 }
880
881 /* Device identification routine, return BUS_PROBE_DEFAULT on success,
882  * positive on failure */
883 static int
884 ptn_memdev_probe(device_t dev)
885 {
886         char desc[256];
887
888         if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID)
889                 return (ENXIO);
890         if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID)
891                 return (ENXIO);
892
893         snprintf(desc, sizeof(desc), "%s PCI adapter",
894                         PTNETMAP_MEMDEV_NAME);
895         device_set_desc_copy(dev, desc);
896
897         return (BUS_PROBE_DEFAULT);
898 }
899
900 /* Device initialization routine. */
901 static int
902 ptn_memdev_attach(device_t dev)
903 {
904         struct ptnetmap_memdev *ptn_dev;
905         int rid;
906         uint16_t mem_id;
907
908         ptn_dev = device_get_softc(dev);
909         ptn_dev->dev = dev;
910
911         pci_enable_busmaster(dev);
912
913         rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR);
914         ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
915                                                  RF_ACTIVE);
916         if (ptn_dev->pci_io == NULL) {
917                 device_printf(dev, "cannot map I/O space\n");
918                 return (ENXIO);
919         }
920
921         mem_id = bus_read_4(ptn_dev->pci_io, PTNET_MDEV_IO_MEMID);
922
923         /* create guest allocator */
924         ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id);
925         if (ptn_dev->nm_mem == NULL) {
926                 ptn_memdev_detach(dev);
927                 return (ENOMEM);
928         }
929         netmap_mem_get(ptn_dev->nm_mem);
930
931         nm_prinf("ptnetmap memdev attached, host memid: %u", mem_id);
932
933         return (0);
934 }
935
936 /* Device removal routine. */
937 static int
938 ptn_memdev_detach(device_t dev)
939 {
940         struct ptnetmap_memdev *ptn_dev;
941
942         ptn_dev = device_get_softc(dev);
943
944         if (ptn_dev->nm_mem) {
945                 nm_prinf("ptnetmap memdev detached, host memid %u",
946                         netmap_mem_get_id(ptn_dev->nm_mem));
947                 netmap_mem_put(ptn_dev->nm_mem);
948                 ptn_dev->nm_mem = NULL;
949         }
950         if (ptn_dev->pci_mem) {
951                 bus_release_resource(dev, SYS_RES_MEMORY,
952                         PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem);
953                 ptn_dev->pci_mem = NULL;
954         }
955         if (ptn_dev->pci_io) {
956                 bus_release_resource(dev, SYS_RES_IOPORT,
957                         PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io);
958                 ptn_dev->pci_io = NULL;
959         }
960
961         return (0);
962 }
963
964 static int
965 ptn_memdev_shutdown(device_t dev)
966 {
967         return bus_generic_shutdown(dev);
968 }
969
970 #endif /* WITH_PTNETMAP */
971
972 /*
973  * In order to track whether pages are still mapped, we hook into
974  * the standard cdev_pager and intercept the constructor and
975  * destructor.
976  */
977
978 struct netmap_vm_handle_t {
979         struct cdev             *dev;
980         struct netmap_priv_d    *priv;
981 };
982
983
984 static int
985 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
986                 vm_ooffset_t foff, struct ucred *cred, u_short *color)
987 {
988         struct netmap_vm_handle_t *vmh = handle;
989
990         if (netmap_verbose)
991                 nm_prinf("handle %p size %jd prot %d foff %jd",
992                         handle, (intmax_t)size, prot, (intmax_t)foff);
993         if (color)
994                 *color = 0;
995         dev_ref(vmh->dev);
996         return 0;
997 }
998
999
1000 static void
1001 netmap_dev_pager_dtor(void *handle)
1002 {
1003         struct netmap_vm_handle_t *vmh = handle;
1004         struct cdev *dev = vmh->dev;
1005         struct netmap_priv_d *priv = vmh->priv;
1006
1007         if (netmap_verbose)
1008                 nm_prinf("handle %p", handle);
1009         netmap_dtor(priv);
1010         free(vmh, M_DEVBUF);
1011         dev_rel(dev);
1012 }
1013
1014
1015 static int
1016 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset,
1017         int prot, vm_page_t *mres)
1018 {
1019         struct netmap_vm_handle_t *vmh = object->handle;
1020         struct netmap_priv_d *priv = vmh->priv;
1021         struct netmap_adapter *na = priv->np_na;
1022         vm_paddr_t paddr;
1023         vm_page_t page;
1024         vm_memattr_t memattr;
1025
1026         nm_prdis("object %p offset %jd prot %d mres %p",
1027                         object, (intmax_t)offset, prot, mres);
1028         memattr = object->memattr;
1029         paddr = netmap_mem_ofstophys(na->nm_mem, offset);
1030         if (paddr == 0)
1031                 return VM_PAGER_FAIL;
1032
1033         if (((*mres)->flags & PG_FICTITIOUS) != 0) {
1034                 /*
1035                  * If the passed in result page is a fake page, update it with
1036                  * the new physical address.
1037                  */
1038                 page = *mres;
1039                 vm_page_updatefake(page, paddr, memattr);
1040         } else {
1041                 /*
1042                  * Replace the passed in reqpage page with our own fake page and
1043                  * free up the all of the original pages.
1044                  */
1045 #ifndef VM_OBJECT_WUNLOCK       /* FreeBSD < 10.x */
1046 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK
1047 #define VM_OBJECT_WLOCK VM_OBJECT_LOCK
1048 #endif /* VM_OBJECT_WUNLOCK */
1049
1050                 VM_OBJECT_WUNLOCK(object);
1051                 page = vm_page_getfake(paddr, memattr);
1052                 VM_OBJECT_WLOCK(object);
1053                 vm_page_replace(page, object, (*mres)->pindex, *mres);
1054                 *mres = page;
1055         }
1056         vm_page_valid(page);
1057         return (VM_PAGER_OK);
1058 }
1059
1060
1061 static struct cdev_pager_ops netmap_cdev_pager_ops = {
1062         .cdev_pg_ctor = netmap_dev_pager_ctor,
1063         .cdev_pg_dtor = netmap_dev_pager_dtor,
1064         .cdev_pg_fault = netmap_dev_pager_fault,
1065 };
1066
1067
1068 static int
1069 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff,
1070         vm_size_t objsize,  vm_object_t *objp, int prot)
1071 {
1072         int error;
1073         struct netmap_vm_handle_t *vmh;
1074         struct netmap_priv_d *priv;
1075         vm_object_t obj;
1076
1077         if (netmap_verbose)
1078                 nm_prinf("cdev %p foff %jd size %jd objp %p prot %d", cdev,
1079                     (intmax_t )*foff, (intmax_t )objsize, objp, prot);
1080
1081         vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF,
1082                               M_NOWAIT | M_ZERO);
1083         if (vmh == NULL)
1084                 return ENOMEM;
1085         vmh->dev = cdev;
1086
1087         NMG_LOCK();
1088         error = devfs_get_cdevpriv((void**)&priv);
1089         if (error)
1090                 goto err_unlock;
1091         if (priv->np_nifp == NULL) {
1092                 error = EINVAL;
1093                 goto err_unlock;
1094         }
1095         vmh->priv = priv;
1096         priv->np_refs++;
1097         NMG_UNLOCK();
1098
1099         obj = cdev_pager_allocate(vmh, OBJT_DEVICE,
1100                 &netmap_cdev_pager_ops, objsize, prot,
1101                 *foff, NULL);
1102         if (obj == NULL) {
1103                 nm_prerr("cdev_pager_allocate failed");
1104                 error = EINVAL;
1105                 goto err_deref;
1106         }
1107
1108         *objp = obj;
1109         return 0;
1110
1111 err_deref:
1112         NMG_LOCK();
1113         priv->np_refs--;
1114 err_unlock:
1115         NMG_UNLOCK();
1116 // err:
1117         free(vmh, M_DEVBUF);
1118         return error;
1119 }
1120
1121 /*
1122  * On FreeBSD the close routine is only called on the last close on
1123  * the device (/dev/netmap) so we cannot do anything useful.
1124  * To track close() on individual file descriptors we pass netmap_dtor() to
1125  * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor
1126  * when the last fd pointing to the device is closed.
1127  *
1128  * Note that FreeBSD does not even munmap() on close() so we also have
1129  * to track mmap() ourselves, and postpone the call to
1130  * netmap_dtor() is called when the process has no open fds and no active
1131  * memory maps on /dev/netmap, as in linux.
1132  */
1133 static int
1134 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
1135 {
1136         if (netmap_verbose)
1137                 nm_prinf("dev %p fflag 0x%x devtype %d td %p",
1138                         dev, fflag, devtype, td);
1139         return 0;
1140 }
1141
1142
1143 static int
1144 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
1145 {
1146         struct netmap_priv_d *priv;
1147         int error;
1148
1149         (void)dev;
1150         (void)oflags;
1151         (void)devtype;
1152         (void)td;
1153
1154         NMG_LOCK();
1155         priv = netmap_priv_new();
1156         if (priv == NULL) {
1157                 error = ENOMEM;
1158                 goto out;
1159         }
1160         error = devfs_set_cdevpriv(priv, netmap_dtor);
1161         if (error) {
1162                 netmap_priv_delete(priv);
1163         }
1164 out:
1165         NMG_UNLOCK();
1166         return error;
1167 }
1168
1169 /******************** kthread wrapper ****************/
1170 #include <sys/sysproto.h>
1171 u_int
1172 nm_os_ncpus(void)
1173 {
1174         return mp_maxid + 1;
1175 }
1176
1177 struct nm_kctx_ctx {
1178         /* Userspace thread (kthread creator). */
1179         struct thread *user_td;
1180
1181         /* worker function and parameter */
1182         nm_kctx_worker_fn_t worker_fn;
1183         void *worker_private;
1184
1185         struct nm_kctx *nmk;
1186
1187         /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */
1188         long type;
1189 };
1190
1191 struct nm_kctx {
1192         struct thread *worker;
1193         struct mtx worker_lock;
1194         struct nm_kctx_ctx worker_ctx;
1195         int run;                        /* used to stop kthread */
1196         int attach_user;                /* kthread attached to user_process */
1197         int affinity;
1198 };
1199
1200 static void
1201 nm_kctx_worker(void *data)
1202 {
1203         struct nm_kctx *nmk = data;
1204         struct nm_kctx_ctx *ctx = &nmk->worker_ctx;
1205
1206         if (nmk->affinity >= 0) {
1207                 thread_lock(curthread);
1208                 sched_bind(curthread, nmk->affinity);
1209                 thread_unlock(curthread);
1210         }
1211
1212         while (nmk->run) {
1213                 /*
1214                  * check if the parent process dies
1215                  * (when kthread is attached to user process)
1216                  */
1217                 if (ctx->user_td) {
1218                         PROC_LOCK(curproc);
1219                         thread_suspend_check(0);
1220                         PROC_UNLOCK(curproc);
1221                 } else {
1222                         kthread_suspend_check();
1223                 }
1224
1225                 /* Continuously execute worker process. */
1226                 ctx->worker_fn(ctx->worker_private); /* worker body */
1227         }
1228
1229         kthread_exit();
1230 }
1231
1232 void
1233 nm_os_kctx_worker_setaff(struct nm_kctx *nmk, int affinity)
1234 {
1235         nmk->affinity = affinity;
1236 }
1237
1238 struct nm_kctx *
1239 nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque)
1240 {
1241         struct nm_kctx *nmk = NULL;
1242
1243         nmk = malloc(sizeof(*nmk),  M_DEVBUF, M_NOWAIT | M_ZERO);
1244         if (!nmk)
1245                 return NULL;
1246
1247         mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_DEF);
1248         nmk->worker_ctx.worker_fn = cfg->worker_fn;
1249         nmk->worker_ctx.worker_private = cfg->worker_private;
1250         nmk->worker_ctx.type = cfg->type;
1251         nmk->affinity = -1;
1252
1253         /* attach kthread to user process (ptnetmap) */
1254         nmk->attach_user = cfg->attach_user;
1255
1256         return nmk;
1257 }
1258
1259 int
1260 nm_os_kctx_worker_start(struct nm_kctx *nmk)
1261 {
1262         struct proc *p = NULL;
1263         int error = 0;
1264
1265         /* Temporarily disable this function as it is currently broken
1266          * and causes kernel crashes. The failure can be triggered by
1267          * the "vale_polling_enable_disable" test in ctrl-api-test.c. */
1268         return EOPNOTSUPP;
1269
1270         if (nmk->worker)
1271                 return EBUSY;
1272
1273         /* check if we want to attach kthread to user process */
1274         if (nmk->attach_user) {
1275                 nmk->worker_ctx.user_td = curthread;
1276                 p = curthread->td_proc;
1277         }
1278
1279         /* enable kthread main loop */
1280         nmk->run = 1;
1281         /* create kthread */
1282         if((error = kthread_add(nm_kctx_worker, nmk, p,
1283                         &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld",
1284                         nmk->worker_ctx.type))) {
1285                 goto err;
1286         }
1287
1288         nm_prinf("nm_kthread started td %p", nmk->worker);
1289
1290         return 0;
1291 err:
1292         nm_prerr("nm_kthread start failed err %d", error);
1293         nmk->worker = NULL;
1294         return error;
1295 }
1296
1297 void
1298 nm_os_kctx_worker_stop(struct nm_kctx *nmk)
1299 {
1300         if (!nmk->worker)
1301                 return;
1302
1303         /* tell to kthread to exit from main loop */
1304         nmk->run = 0;
1305
1306         /* wake up kthread if it sleeps */
1307         kthread_resume(nmk->worker);
1308
1309         nmk->worker = NULL;
1310 }
1311
1312 void
1313 nm_os_kctx_destroy(struct nm_kctx *nmk)
1314 {
1315         if (!nmk)
1316                 return;
1317
1318         if (nmk->worker)
1319                 nm_os_kctx_worker_stop(nmk);
1320
1321         free(nmk, M_DEVBUF);
1322 }
1323
1324 /******************** kqueue support ****************/
1325
1326 /*
1327  * In addition to calling selwakeuppri(), nm_os_selwakeup() also
1328  * needs to call knote() to wake up kqueue listeners.
1329  * This operation is deferred to a taskqueue in order to avoid possible
1330  * lock order reversals; these may happen because knote() grabs a
1331  * private lock associated to the 'si' (see struct selinfo,
1332  * struct nm_selinfo, and nm_os_selinfo_init), and nm_os_selwakeup()
1333  * can be called while holding the lock associated to a different
1334  * 'si'.
1335  * When calling knote() we use a non-zero 'hint' argument to inform
1336  * the netmap_knrw() function that it is being called from
1337  * 'nm_os_selwakeup'; this is necessary because when netmap_knrw() is
1338  * called by the kevent subsystem (i.e. kevent_scan()) we also need to
1339  * call netmap_poll().
1340  *
1341  * The netmap_kqfilter() function registers one or another f_event
1342  * depending on read or write mode. A pointer to the struct
1343  * 'netmap_priv_d' is stored into kn->kn_hook, so that it can later
1344  * be passed to netmap_poll(). We pass NULL as a third argument to
1345  * netmap_poll(), so that the latter only runs the txsync/rxsync
1346  * (if necessary), and skips the nm_os_selrecord() calls.
1347  */
1348
1349
1350 void
1351 nm_os_selwakeup(struct nm_selinfo *si)
1352 {
1353         selwakeuppri(&si->si, PI_NET);
1354         if (si->kqueue_users > 0) {
1355                 taskqueue_enqueue(si->ntfytq, &si->ntfytask);
1356         }
1357 }
1358
1359 void
1360 nm_os_selrecord(struct thread *td, struct nm_selinfo *si)
1361 {
1362         selrecord(td, &si->si);
1363 }
1364
1365 static void
1366 netmap_knrdetach(struct knote *kn)
1367 {
1368         struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1369         struct nm_selinfo *si = priv->np_si[NR_RX];
1370
1371         knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1372         NMG_LOCK();
1373         KASSERT(si->kqueue_users > 0, ("kqueue_user underflow on %s",
1374             si->mtxname));
1375         si->kqueue_users--;
1376         nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1377         NMG_UNLOCK();
1378 }
1379
1380 static void
1381 netmap_knwdetach(struct knote *kn)
1382 {
1383         struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook;
1384         struct nm_selinfo *si = priv->np_si[NR_TX];
1385
1386         knlist_remove(&si->si.si_note, kn, /*islocked=*/0);
1387         NMG_LOCK();
1388         si->kqueue_users--;
1389         nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1390         NMG_UNLOCK();
1391 }
1392
1393 /*
1394  * Callback triggered by netmap notifications (see netmap_notify()),
1395  * and by the application calling kevent(). In the former case we
1396  * just return 1 (events ready), since we are not able to do better.
1397  * In the latter case we use netmap_poll() to see which events are
1398  * ready.
1399  */
1400 static int
1401 netmap_knrw(struct knote *kn, long hint, int events)
1402 {
1403         struct netmap_priv_d *priv;
1404         int revents;
1405
1406         if (hint != 0) {
1407                 /* Called from netmap_notify(), typically from a
1408                  * thread different from the one issuing kevent().
1409                  * Assume we are ready. */
1410                 return 1;
1411         }
1412
1413         /* Called from kevent(). */
1414         priv = kn->kn_hook;
1415         revents = netmap_poll(priv, events, /*thread=*/NULL);
1416
1417         return (events & revents) ? 1 : 0;
1418 }
1419
1420 static int
1421 netmap_knread(struct knote *kn, long hint)
1422 {
1423         return netmap_knrw(kn, hint, POLLIN);
1424 }
1425
1426 static int
1427 netmap_knwrite(struct knote *kn, long hint)
1428 {
1429         return netmap_knrw(kn, hint, POLLOUT);
1430 }
1431
1432 static struct filterops netmap_rfiltops = {
1433         .f_isfd = 1,
1434         .f_detach = netmap_knrdetach,
1435         .f_event = netmap_knread,
1436 };
1437
1438 static struct filterops netmap_wfiltops = {
1439         .f_isfd = 1,
1440         .f_detach = netmap_knwdetach,
1441         .f_event = netmap_knwrite,
1442 };
1443
1444
1445 /*
1446  * This is called when a thread invokes kevent() to record
1447  * a change in the configuration of the kqueue().
1448  * The 'priv' is the one associated to the open netmap device.
1449  */
1450 static int
1451 netmap_kqfilter(struct cdev *dev, struct knote *kn)
1452 {
1453         struct netmap_priv_d *priv;
1454         int error;
1455         struct netmap_adapter *na;
1456         struct nm_selinfo *si;
1457         int ev = kn->kn_filter;
1458
1459         if (ev != EVFILT_READ && ev != EVFILT_WRITE) {
1460                 nm_prerr("bad filter request %d", ev);
1461                 return 1;
1462         }
1463         error = devfs_get_cdevpriv((void**)&priv);
1464         if (error) {
1465                 nm_prerr("device not yet setup");
1466                 return 1;
1467         }
1468         na = priv->np_na;
1469         if (na == NULL) {
1470                 nm_prerr("no netmap adapter for this file descriptor");
1471                 return 1;
1472         }
1473         /* the si is indicated in the priv */
1474         si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX];
1475         kn->kn_fop = (ev == EVFILT_WRITE) ?
1476                 &netmap_wfiltops : &netmap_rfiltops;
1477         kn->kn_hook = priv;
1478         NMG_LOCK();
1479         si->kqueue_users++;
1480         nm_prinf("kqueue users for %s: %d", si->mtxname, si->kqueue_users);
1481         NMG_UNLOCK();
1482         knlist_add(&si->si.si_note, kn, /*islocked=*/0);
1483
1484         return 0;
1485 }
1486
1487 static int
1488 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td)
1489 {
1490         struct netmap_priv_d *priv;
1491         if (devfs_get_cdevpriv((void **)&priv)) {
1492                 return POLLERR;
1493         }
1494         return netmap_poll(priv, events, td);
1495 }
1496
1497 static int
1498 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data,
1499                 int ffla __unused, struct thread *td)
1500 {
1501         int error;
1502         struct netmap_priv_d *priv;
1503
1504         CURVNET_SET(TD_TO_VNET(td));
1505         error = devfs_get_cdevpriv((void **)&priv);
1506         if (error) {
1507                 /* XXX ENOENT should be impossible, since the priv
1508                  * is now created in the open */
1509                 if (error == ENOENT)
1510                         error = ENXIO;
1511                 goto out;
1512         }
1513         error = netmap_ioctl(priv, cmd, data, td, /*nr_body_is_user=*/1);
1514 out:
1515         CURVNET_RESTORE();
1516
1517         return error;
1518 }
1519
1520 void
1521 nm_os_onattach(struct ifnet *ifp)
1522 {
1523         ifp->if_capabilities |= IFCAP_NETMAP;
1524 }
1525
1526 void
1527 nm_os_onenter(struct ifnet *ifp)
1528 {
1529         struct netmap_adapter *na = NA(ifp);
1530
1531         na->if_transmit = ifp->if_transmit;
1532         ifp->if_transmit = netmap_transmit;
1533         ifp->if_capenable |= IFCAP_NETMAP;
1534 }
1535
1536 void
1537 nm_os_onexit(struct ifnet *ifp)
1538 {
1539         struct netmap_adapter *na = NA(ifp);
1540
1541         ifp->if_transmit = na->if_transmit;
1542         ifp->if_capenable &= ~IFCAP_NETMAP;
1543 }
1544
1545 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */
1546 struct cdevsw netmap_cdevsw = {
1547         .d_version = D_VERSION,
1548         .d_name = "netmap",
1549         .d_open = netmap_open,
1550         .d_mmap_single = netmap_mmap_single,
1551         .d_ioctl = freebsd_netmap_ioctl,
1552         .d_poll = freebsd_netmap_poll,
1553         .d_kqfilter = netmap_kqfilter,
1554         .d_close = netmap_close,
1555 };
1556 /*--- end of kqueue support ----*/
1557
1558 /*
1559  * Kernel entry point.
1560  *
1561  * Initialize/finalize the module and return.
1562  *
1563  * Return 0 on success, errno on failure.
1564  */
1565 static int
1566 netmap_loader(__unused struct module *module, int event, __unused void *arg)
1567 {
1568         int error = 0;
1569
1570         switch (event) {
1571         case MOD_LOAD:
1572                 error = netmap_init();
1573                 break;
1574
1575         case MOD_UNLOAD:
1576                 /*
1577                  * if some one is still using netmap,
1578                  * then the module can not be unloaded.
1579                  */
1580                 if (netmap_use_count) {
1581                         nm_prerr("netmap module can not be unloaded - netmap_use_count: %d",
1582                                         netmap_use_count);
1583                         error = EBUSY;
1584                         break;
1585                 }
1586                 netmap_fini();
1587                 break;
1588
1589         default:
1590                 error = EOPNOTSUPP;
1591                 break;
1592         }
1593
1594         return (error);
1595 }
1596
1597 #ifdef DEV_MODULE_ORDERED
1598 /*
1599  * The netmap module contains three drivers: (i) the netmap character device
1600  * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI
1601  * device driver. The attach() routines of both (ii) and (iii) need the
1602  * lock of the global allocator, and such lock is initialized in netmap_init(),
1603  * which is part of (i).
1604  * Therefore, we make sure that (i) is loaded before (ii) and (iii), using
1605  * the 'order' parameter of driver declaration macros. For (i), we specify
1606  * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED
1607  * macros for (ii) and (iii).
1608  */
1609 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE);
1610 #else /* !DEV_MODULE_ORDERED */
1611 DEV_MODULE(netmap, netmap_loader, NULL);
1612 #endif /* DEV_MODULE_ORDERED  */
1613 MODULE_DEPEND(netmap, pci, 1, 1, 1);
1614 MODULE_VERSION(netmap, 1);
1615 /* reduce conditional code */
1616 // linux API, use for the knlist in FreeBSD
1617 /* use a private mutex for the knlist */