]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/netmap/netmap_kern.h
Merge from head
[FreeBSD/FreeBSD.git] / sys / dev / netmap / netmap_kern.h
1 /*
2  * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved.
3  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *   1. Redistributions of source code must retain the above copyright
9  *      notice, this list of conditions and the following disclaimer.
10  *   2. Redistributions in binary form must reproduce the above copyright
11  *      notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 /*
28  * $FreeBSD$
29  *
30  * The header contains the definitions of constants and function
31  * prototypes used only in kernelspace.
32  */
33
34 #ifndef _NET_NETMAP_KERN_H_
35 #define _NET_NETMAP_KERN_H_
36
37 #if defined(linux)
38
39 #if  defined(CONFIG_NETMAP_VALE)
40 #define WITH_VALE
41 #endif
42 #if defined(CONFIG_NETMAP_PIPE)
43 #define WITH_PIPES
44 #endif
45 #if defined(CONFIG_NETMAP_MONITOR)
46 #define WITH_MONITOR
47 #endif
48 #if defined(CONFIG_NETMAP_GENERIC)
49 #define WITH_GENERIC
50 #endif
51 #if defined(CONFIG_NETMAP_V1000)
52 #define WITH_V1000
53 #endif
54
55 #else /* not linux */
56
57 #define WITH_VALE       // comment out to disable VALE support
58 #define WITH_PIPES
59 #define WITH_MONITOR
60 #define WITH_GENERIC
61
62 #endif
63
64 #if defined(__FreeBSD__)
65
66 #define likely(x)       __builtin_expect((long)!!(x), 1L)
67 #define unlikely(x)     __builtin_expect((long)!!(x), 0L)
68
69 #define NM_LOCK_T       struct mtx      /* low level spinlock, used to protect queues */
70
71 #define NM_MTX_T        struct sx       /* OS-specific mutex (sleepable) */
72 #define NM_MTX_INIT(m)          sx_init(&(m), #m)
73 #define NM_MTX_DESTROY(m)       sx_destroy(&(m))
74 #define NM_MTX_LOCK(m)          sx_xlock(&(m))
75 #define NM_MTX_UNLOCK(m)        sx_xunlock(&(m))
76 #define NM_MTX_ASSERT(m)        sx_assert(&(m), SA_XLOCKED)
77
78 #define NM_SELINFO_T    struct nm_selinfo
79 #define MBUF_LEN(m)     ((m)->m_pkthdr.len)
80 #define MBUF_IFP(m)     ((m)->m_pkthdr.rcvif)
81 #define NM_SEND_UP(ifp, m)      ((NA(ifp))->if_input)(ifp, m)
82
83 #define NM_ATOMIC_T     volatile int    // XXX ?
84 /* atomic operations */
85 #include <machine/atomic.h>
86 #define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
87 #define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
88
89 #if __FreeBSD_version >= 1100030
90 #define WNA(_ifp)       (_ifp)->if_netmap
91 #else /* older FreeBSD */
92 #define WNA(_ifp)       (_ifp)->if_pspare[0]
93 #endif /* older FreeBSD */
94
95 #if __FreeBSD_version >= 1100005
96 struct netmap_adapter *netmap_getna(if_t ifp);
97 #endif
98
99 #if __FreeBSD_version >= 1100027
100 #define GET_MBUF_REFCNT(m)      ((m)->m_ext.ext_cnt ? *((m)->m_ext.ext_cnt) : -1)
101 #define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ext_cnt) = x
102 #define PNT_MBUF_REFCNT(m)      ((m)->m_ext.ext_cnt)
103 #else
104 #define GET_MBUF_REFCNT(m)      ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
105 #define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ref_cnt) = x
106 #define PNT_MBUF_REFCNT(m)      ((m)->m_ext.ref_cnt)
107 #endif
108
109 MALLOC_DECLARE(M_NETMAP);
110
111 struct nm_selinfo {
112         struct selinfo si;
113         struct mtx m;
114 };
115
116 void freebsd_selwakeup(struct nm_selinfo *si, int pri);
117
118 // XXX linux struct, not used in FreeBSD
119 struct net_device_ops {
120 };
121 struct ethtool_ops {
122 };
123 struct hrtimer {
124 };
125 #define NM_BNS_GET(b)
126 #define NM_BNS_PUT(b)
127
128 #elif defined (linux)
129
130 #define NM_LOCK_T       safe_spinlock_t // see bsd_glue.h
131 #define NM_SELINFO_T    wait_queue_head_t
132 #define MBUF_LEN(m)     ((m)->len)
133 #define MBUF_IFP(m)     ((m)->dev)
134 #define NM_SEND_UP(ifp, m)  \
135                         do { \
136                             m->priority = NM_MAGIC_PRIORITY_RX; \
137                             netif_rx(m); \
138                         } while (0)
139
140 #define NM_ATOMIC_T     volatile long unsigned int
141
142 #define NM_MTX_T        struct mutex    /* OS-specific sleepable lock */
143 #define NM_MTX_INIT(m)  mutex_init(&(m))
144 #define NM_MTX_DESTROY(m)       do { (void)(m); } while (0)
145 #define NM_MTX_LOCK(m)          mutex_lock(&(m))
146 #define NM_MTX_UNLOCK(m)        mutex_unlock(&(m))
147 #define NM_MTX_ASSERT(m)        mutex_is_locked(&(m))
148
149 #ifndef DEV_NETMAP
150 #define DEV_NETMAP
151 #endif /* DEV_NETMAP */
152
153 #elif defined (__APPLE__)
154
155 #warning apple support is incomplete.
156 #define likely(x)       __builtin_expect(!!(x), 1)
157 #define unlikely(x)     __builtin_expect(!!(x), 0)
158 #define NM_LOCK_T       IOLock *
159 #define NM_SELINFO_T    struct selinfo
160 #define MBUF_LEN(m)     ((m)->m_pkthdr.len)
161 #define NM_SEND_UP(ifp, m)      ((ifp)->if_input)(ifp, m)
162
163 #else
164
165 #error unsupported platform
166
167 #endif /* end - platform-specific code */
168
169 #define NMG_LOCK_T              NM_MTX_T
170 #define NMG_LOCK_INIT()         NM_MTX_INIT(netmap_global_lock)
171 #define NMG_LOCK_DESTROY()      NM_MTX_DESTROY(netmap_global_lock)
172 #define NMG_LOCK()              NM_MTX_LOCK(netmap_global_lock)
173 #define NMG_UNLOCK()            NM_MTX_UNLOCK(netmap_global_lock)
174 #define NMG_LOCK_ASSERT()       NM_MTX_ASSERT(netmap_global_lock)
175
176 #define ND(format, ...)
177 #define D(format, ...)                                          \
178         do {                                                    \
179                 struct timeval __xxts;                          \
180                 microtime(&__xxts);                             \
181                 printf("%03d.%06d [%4d] %-25s " format "\n",    \
182                 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \
183                 __LINE__, __FUNCTION__, ##__VA_ARGS__);         \
184         } while (0)
185
186 /* rate limited, lps indicates how many per second */
187 #define RD(lps, format, ...)                                    \
188         do {                                                    \
189                 static int t0, __cnt;                           \
190                 if (t0 != time_second) {                        \
191                         t0 = time_second;                       \
192                         __cnt = 0;                              \
193                 }                                               \
194                 if (__cnt++ < lps)                              \
195                         D(format, ##__VA_ARGS__);               \
196         } while (0)
197
198 struct netmap_adapter;
199 struct nm_bdg_fwd;
200 struct nm_bridge;
201 struct netmap_priv_d;
202
203 const char *nm_dump_buf(char *p, int len, int lim, char *dst);
204
205 #include "netmap_mbq.h"
206
207 extern NMG_LOCK_T       netmap_global_lock;
208
209 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
210
211 static __inline const char*
212 nm_txrx2str(enum txrx t)
213 {
214         return (t== NR_RX ? "RX" : "TX");
215 }
216
217 static __inline enum txrx
218 nm_txrx_swap(enum txrx t)
219 {
220         return (t== NR_RX ? NR_TX : NR_RX);
221 }
222
223 #define for_rx_tx(t)    for ((t) = 0; (t) < NR_TXRX; (t)++)
224
225
226 /*
227  * private, kernel view of a ring. Keeps track of the status of
228  * a ring across system calls.
229  *
230  *      nr_hwcur        index of the next buffer to refill.
231  *                      It corresponds to ring->head
232  *                      at the time the system call returns.
233  *
234  *      nr_hwtail       index of the first buffer owned by the kernel.
235  *                      On RX, hwcur->hwtail are receive buffers
236  *                      not yet released. hwcur is advanced following
237  *                      ring->head, hwtail is advanced on incoming packets,
238  *                      and a wakeup is generated when hwtail passes ring->cur
239  *                          On TX, hwcur->rcur have been filled by the sender
240  *                      but not sent yet to the NIC; rcur->hwtail are available
241  *                      for new transmissions, and hwtail->hwcur-1 are pending
242  *                      transmissions not yet acknowledged.
243  *
244  * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
245  * This is so that, on a reset, buffers owned by userspace are not
246  * modified by the kernel. In particular:
247  * RX rings: the next empty buffer (hwtail + hwofs) coincides with
248  *      the next empty buffer as known by the hardware (next_to_check or so).
249  * TX rings: hwcur + hwofs coincides with next_to_send
250  *
251  * For received packets, slot->flags is set to nkr_slot_flags
252  * so we can provide a proper initial value (e.g. set NS_FORWARD
253  * when operating in 'transparent' mode).
254  *
255  * The following fields are used to implement lock-free copy of packets
256  * from input to output ports in VALE switch:
257  *      nkr_hwlease     buffer after the last one being copied.
258  *                      A writer in nm_bdg_flush reserves N buffers
259  *                      from nr_hwlease, advances it, then does the
260  *                      copy outside the lock.
261  *                      In RX rings (used for VALE ports),
262  *                      nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
263  *                      In TX rings (used for NIC or host stack ports)
264  *                      nkr_hwcur <= nkr_hwlease < nkr_hwtail
265  *      nkr_leases      array of nkr_num_slots where writers can report
266  *                      completion of their block. NR_NOSLOT (~0) indicates
267  *                      that the writer has not finished yet
268  *      nkr_lease_idx   index of next free slot in nr_leases, to be assigned
269  *
270  * The kring is manipulated by txsync/rxsync and generic netmap function.
271  *
272  * Concurrent rxsync or txsync on the same ring are prevented through
273  * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
274  * for NIC rings, and for TX rings attached to the host stack.
275  *
276  * RX rings attached to the host stack use an mbq (rx_queue) on both
277  * rxsync_from_host() and netmap_transmit(). The mbq is protected
278  * by its internal lock.
279  *
280  * RX rings attached to the VALE switch are accessed by both senders
281  * and receiver. They are protected through the q_lock on the RX ring.
282  */
283 struct netmap_kring {
284         struct netmap_ring      *ring;
285
286         uint32_t        nr_hwcur;
287         uint32_t        nr_hwtail;
288
289         /*
290          * Copies of values in user rings, so we do not need to look
291          * at the ring (which could be modified). These are set in the
292          * *sync_prologue()/finalize() routines.
293          */
294         uint32_t        rhead;
295         uint32_t        rcur;
296         uint32_t        rtail;
297
298         uint32_t        nr_kflags;      /* private driver flags */
299 #define NKR_PENDINTR    0x1             // Pending interrupt.
300 #define NKR_EXCLUSIVE   0x2             /* exclusive binding */
301         uint32_t        nkr_num_slots;
302
303         /*
304          * On a NIC reset, the NIC ring indexes may be reset but the
305          * indexes in the netmap rings remain the same. nkr_hwofs
306          * keeps track of the offset between the two.
307          */
308         int32_t         nkr_hwofs;
309
310         uint16_t        nkr_slot_flags; /* initial value for flags */
311
312         /* last_reclaim is opaque marker to help reduce the frequency
313          * of operations such as reclaiming tx buffers. A possible use
314          * is set it to ticks and do the reclaim only once per tick.
315          */
316         uint64_t        last_reclaim;
317
318
319         NM_SELINFO_T    si;             /* poll/select wait queue */
320         NM_LOCK_T       q_lock;         /* protects kring and ring. */
321         NM_ATOMIC_T     nr_busy;        /* prevent concurrent syscalls */
322
323         struct netmap_adapter *na;
324
325         /* The following fields are for VALE switch support */
326         struct nm_bdg_fwd *nkr_ft;
327         uint32_t        *nkr_leases;
328 #define NR_NOSLOT       ((uint32_t)~0)  /* used in nkr_*lease* */
329         uint32_t        nkr_hwlease;
330         uint32_t        nkr_lease_idx;
331
332         /* while nkr_stopped is set, no new [tr]xsync operations can
333          * be started on this kring.
334          * This is used by netmap_disable_all_rings()
335          * to find a synchronization point where critical data
336          * structures pointed to by the kring can be added or removed
337          */
338         volatile int nkr_stopped;
339
340         /* Support for adapters without native netmap support.
341          * On tx rings we preallocate an array of tx buffers
342          * (same size as the netmap ring), on rx rings we
343          * store incoming mbufs in a queue that is drained by
344          * a rxsync.
345          */
346         struct mbuf **tx_pool;
347         // u_int nr_ntc;                /* Emulation of a next-to-clean RX ring pointer. */
348         struct mbq rx_queue;            /* intercepted rx mbufs. */
349
350         uint32_t        users;          /* existing bindings for this ring */
351
352         uint32_t        ring_id;        /* debugging */
353         enum txrx       tx;             /* kind of ring (tx or rx) */
354         char name[64];                  /* diagnostic */
355
356         /* [tx]sync callback for this kring.
357          * The default nm_kring_create callback (netmap_krings_create)
358          * sets the nm_sync callback of each hardware tx(rx) kring to
359          * the corresponding nm_txsync(nm_rxsync) taken from the
360          * netmap_adapter; moreover, it sets the sync callback
361          * of the host tx(rx) ring to netmap_txsync_to_host
362          * (netmap_rxsync_from_host).
363          *
364          * Overrides: the above configuration is not changed by
365          * any of the nm_krings_create callbacks.
366          */
367         int (*nm_sync)(struct netmap_kring *kring, int flags);
368         int (*nm_notify)(struct netmap_kring *kring, int flags);
369
370 #ifdef WITH_PIPES
371         struct netmap_kring *pipe;      /* if this is a pipe ring,
372                                          * pointer to the other end
373                                          */
374         struct netmap_ring *save_ring;  /* pointer to hidden rings
375                                          * (see netmap_pipe.c for details)
376                                          */
377 #endif /* WITH_PIPES */
378
379 #ifdef WITH_VALE
380         int (*save_notify)(struct netmap_kring *kring, int flags);
381 #endif
382
383 #ifdef WITH_MONITOR
384         /* array of krings that are monitoring this kring */
385         struct netmap_kring **monitors;
386         uint32_t max_monitors; /* current size of the monitors array */
387         uint32_t n_monitors;    /* next unused entry in the monitor array */
388         /*
389          * Monitors work by intercepting the sync and notify callbacks of the
390          * monitored krings. This is implemented by replacing the pointers
391          * above and saving the previous ones in mon_* pointers below
392          */
393         int (*mon_sync)(struct netmap_kring *kring, int flags);
394         int (*mon_notify)(struct netmap_kring *kring, int flags);
395
396         uint32_t mon_tail;  /* last seen slot on rx */
397         uint32_t mon_pos;   /* index of this ring in the monitored ring array */
398 #endif
399 } __attribute__((__aligned__(64)));
400
401
402 /* return the next index, with wraparound */
403 static inline uint32_t
404 nm_next(uint32_t i, uint32_t lim)
405 {
406         return unlikely (i == lim) ? 0 : i + 1;
407 }
408
409
410 /* return the previous index, with wraparound */
411 static inline uint32_t
412 nm_prev(uint32_t i, uint32_t lim)
413 {
414         return unlikely (i == 0) ? lim : i - 1;
415 }
416
417
418 /*
419  *
420  * Here is the layout for the Rx and Tx rings.
421
422        RxRING                            TxRING
423
424       +-----------------+            +-----------------+
425       |                 |            |                 |
426       |XXX free slot XXX|            |XXX free slot XXX|
427       +-----------------+            +-----------------+
428 head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
429       |                 |            | yet             |
430       +-----------------+            |                 |
431  cur->| available to    |            |                 |
432       | user, not read  |            +-----------------+
433       | yet             |       cur->| (being          |
434       |                 |            |  prepared)      |
435       |                 |            |                 |
436       +-----------------+            +     ------      +
437 tail->|                 |<-hwtail    |                 |<-hwlease
438       | (being          | ...        |                 | ...
439       |  prepared)      | ...        |                 | ...
440       +-----------------+ ...        |                 | ...
441       |                 |<-hwlease   +-----------------+
442       |                 |      tail->|                 |<-hwtail
443       |                 |            |                 |
444       |                 |            |                 |
445       |                 |            |                 |
446       +-----------------+            +-----------------+
447
448  * The cur/tail (user view) and hwcur/hwtail (kernel view)
449  * are used in the normal operation of the card.
450  *
451  * When a ring is the output of a switch port (Rx ring for
452  * a VALE port, Tx ring for the host stack or NIC), slots
453  * are reserved in blocks through 'hwlease' which points
454  * to the next unused slot.
455  * On an Rx ring, hwlease is always after hwtail,
456  * and completions cause hwtail to advance.
457  * On a Tx ring, hwlease is always between cur and hwtail,
458  * and completions cause cur to advance.
459  *
460  * nm_kr_space() returns the maximum number of slots that
461  * can be assigned.
462  * nm_kr_lease() reserves the required number of buffers,
463  *    advances nkr_hwlease and also returns an entry in
464  *    a circular array where completions should be reported.
465  */
466
467
468 struct netmap_lut {
469         struct lut_entry *lut;
470         uint32_t objtotal;      /* max buffer index */
471         uint32_t objsize;       /* buffer size */
472 };
473
474 struct netmap_vp_adapter; // forward
475
476 /*
477  * The "struct netmap_adapter" extends the "struct adapter"
478  * (or equivalent) device descriptor.
479  * It contains all base fields needed to support netmap operation.
480  * There are in fact different types of netmap adapters
481  * (native, generic, VALE switch...) so a netmap_adapter is
482  * just the first field in the derived type.
483  */
484 struct netmap_adapter {
485         /*
486          * On linux we do not have a good way to tell if an interface
487          * is netmap-capable. So we always use the following trick:
488          * NA(ifp) points here, and the first entry (which hopefully
489          * always exists and is at least 32 bits) contains a magic
490          * value which we can use to detect that the interface is good.
491          */
492         uint32_t magic;
493         uint32_t na_flags;      /* enabled, and other flags */
494 #define NAF_SKIP_INTR   1       /* use the regular interrupt handler.
495                                  * useful during initialization
496                                  */
497 #define NAF_SW_ONLY     2       /* forward packets only to sw adapter */
498 #define NAF_BDG_MAYSLEEP 4      /* the bridge is allowed to sleep when
499                                  * forwarding packets coming from this
500                                  * interface
501                                  */
502 #define NAF_MEM_OWNER   8       /* the adapter uses its own memory area
503                                  * that cannot be changed
504                                  */
505 #define NAF_NATIVE      16      /* the adapter is native.
506                                  * Virtual ports (non persistent vale ports,
507                                  * pipes, monitors...) should never use
508                                  * this flag.
509                                  */
510 #define NAF_NETMAP_ON   32      /* netmap is active (either native or
511                                  * emulated). Where possible (e.g. FreeBSD)
512                                  * IFCAP_NETMAP also mirrors this flag.
513                                  */
514 #define NAF_HOST_RINGS  64      /* the adapter supports the host rings */
515 #define NAF_FORCE_NATIVE 128    /* the adapter is always NATIVE */
516 #define NAF_BUSY        (1U<<31) /* the adapter is used internally and
517                                   * cannot be registered from userspace
518                                   */
519         int active_fds; /* number of user-space descriptors using this
520                          interface, which is equal to the number of
521                          struct netmap_if objs in the mapped region. */
522
523         u_int num_rx_rings; /* number of adapter receive rings */
524         u_int num_tx_rings; /* number of adapter transmit rings */
525
526         u_int num_tx_desc;  /* number of descriptor in each queue */
527         u_int num_rx_desc;
528
529         /* tx_rings and rx_rings are private but allocated
530          * as a contiguous chunk of memory. Each array has
531          * N+1 entries, for the adapter queues and for the host queue.
532          */
533         struct netmap_kring *tx_rings; /* array of TX rings. */
534         struct netmap_kring *rx_rings; /* array of RX rings. */
535
536         void *tailroom;                /* space below the rings array */
537                                        /* (used for leases) */
538
539
540         NM_SELINFO_T si[NR_TXRX];       /* global wait queues */
541
542         /* count users of the global wait queues */
543         int si_users[NR_TXRX];
544
545         void *pdev; /* used to store pci device */
546
547         /* copy of if_qflush and if_transmit pointers, to intercept
548          * packets from the network stack when netmap is active.
549          */
550         int     (*if_transmit)(struct ifnet *, struct mbuf *);
551
552         /* copy of if_input for netmap_send_up() */
553         void     (*if_input)(struct ifnet *, struct mbuf *);
554
555         /* references to the ifnet and device routines, used by
556          * the generic netmap functions.
557          */
558         struct ifnet *ifp; /* adapter is ifp->if_softc */
559
560         /*---- callbacks for this netmap adapter -----*/
561         /*
562          * nm_dtor() is the cleanup routine called when destroying
563          *      the adapter.
564          *      Called with NMG_LOCK held.
565          *
566          * nm_register() is called on NIOCREGIF and close() to enter
567          *      or exit netmap mode on the NIC
568          *      Called with NNG_LOCK held.
569          *
570          * nm_txsync() pushes packets to the underlying hw/switch
571          *
572          * nm_rxsync() collects packets from the underlying hw/switch
573          *
574          * nm_config() returns configuration information from the OS
575          *      Called with NMG_LOCK held.
576          *
577          * nm_krings_create() create and init the tx_rings and
578          *      rx_rings arrays of kring structures. In particular,
579          *      set the nm_sync callbacks for each ring.
580          *      There is no need to also allocate the corresponding
581          *      netmap_rings, since netmap_mem_rings_create() will always
582          *      be called to provide the missing ones.
583          *      Called with NNG_LOCK held.
584          *
585          * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
586          *      arrays
587          *      Called with NMG_LOCK held.
588          *
589          * nm_notify() is used to act after data have become available
590          *      (or the stopped state of the ring has changed)
591          *      For hw devices this is typically a selwakeup(),
592          *      but for NIC/host ports attached to a switch (or vice-versa)
593          *      we also need to invoke the 'txsync' code downstream.
594          */
595         void (*nm_dtor)(struct netmap_adapter *);
596
597         int (*nm_register)(struct netmap_adapter *, int onoff);
598
599         int (*nm_txsync)(struct netmap_kring *kring, int flags);
600         int (*nm_rxsync)(struct netmap_kring *kring, int flags);
601         int (*nm_notify)(struct netmap_kring *kring, int flags);
602 #define NAF_FORCE_READ    1
603 #define NAF_FORCE_RECLAIM 2
604         /* return configuration information */
605         int (*nm_config)(struct netmap_adapter *,
606                 u_int *txr, u_int *txd, u_int *rxr, u_int *rxd);
607         int (*nm_krings_create)(struct netmap_adapter *);
608         void (*nm_krings_delete)(struct netmap_adapter *);
609 #ifdef WITH_VALE
610         /*
611          * nm_bdg_attach() initializes the na_vp field to point
612          *      to an adapter that can be attached to a VALE switch. If the
613          *      current adapter is already a VALE port, na_vp is simply a cast;
614          *      otherwise, na_vp points to a netmap_bwrap_adapter.
615          *      If applicable, this callback also initializes na_hostvp,
616          *      that can be used to connect the adapter host rings to the
617          *      switch.
618          *      Called with NMG_LOCK held.
619          *
620          * nm_bdg_ctl() is called on the actual attach/detach to/from
621          *      to/from the switch, to perform adapter-specific
622          *      initializations
623          *      Called with NMG_LOCK held.
624          */
625         int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *);
626         int (*nm_bdg_ctl)(struct netmap_adapter *, struct nmreq *, int);
627
628         /* adapter used to attach this adapter to a VALE switch (if any) */
629         struct netmap_vp_adapter *na_vp;
630         /* adapter used to attach the host rings of this adapter
631          * to a VALE switch (if any) */
632         struct netmap_vp_adapter *na_hostvp;
633 #endif
634
635         /* standard refcount to control the lifetime of the adapter
636          * (it should be equal to the lifetime of the corresponding ifp)
637          */
638         int na_refcount;
639
640         /* memory allocator (opaque)
641          * We also cache a pointer to the lut_entry for translating
642          * buffer addresses, and the total number of buffers.
643          */
644         struct netmap_mem_d *nm_mem;
645         struct netmap_lut na_lut;
646
647         /* additional information attached to this adapter
648          * by other netmap subsystems. Currently used by
649          * bwrap and LINUX/v1000.
650          */
651         void *na_private;
652
653         /* array of pipes that have this adapter as a parent */
654         struct netmap_pipe_adapter **na_pipes;
655         int na_next_pipe;       /* next free slot in the array */
656         int na_max_pipes;       /* size of the array */
657
658         char name[64];
659 };
660
661 static __inline u_int
662 nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
663 {
664         return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
665 }
666
667 static __inline void
668 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
669 {
670         if (t == NR_TX)
671                 na->num_tx_desc = v;
672         else
673                 na->num_rx_desc = v;
674 }
675
676 static __inline u_int
677 nma_get_nrings(struct netmap_adapter *na, enum txrx t)
678 {
679         return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
680 }
681
682 static __inline void
683 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
684 {
685         if (t == NR_TX)
686                 na->num_tx_rings = v;
687         else
688                 na->num_rx_rings = v;
689 }
690
691 static __inline struct netmap_kring*
692 NMR(struct netmap_adapter *na, enum txrx t)
693 {
694         return (t == NR_TX ? na->tx_rings : na->rx_rings);
695 }
696
697 /*
698  * If the NIC is owned by the kernel
699  * (i.e., bridge), neither another bridge nor user can use it;
700  * if the NIC is owned by a user, only users can share it.
701  * Evaluation must be done under NMG_LOCK().
702  */
703 #define NETMAP_OWNED_BY_KERN(na)        ((na)->na_flags & NAF_BUSY)
704 #define NETMAP_OWNED_BY_ANY(na) \
705         (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
706
707 /*
708  * derived netmap adapters for various types of ports
709  */
710 struct netmap_vp_adapter {      /* VALE software port */
711         struct netmap_adapter up;
712
713         /*
714          * Bridge support:
715          *
716          * bdg_port is the port number used in the bridge;
717          * na_bdg points to the bridge this NA is attached to.
718          */
719         int bdg_port;
720         struct nm_bridge *na_bdg;
721         int retry;
722
723         /* Offset of ethernet header for each packet. */
724         u_int virt_hdr_len;
725         /* Maximum Frame Size, used in bdg_mismatch_datapath() */
726         u_int mfs;
727         /* Last source MAC on this port */
728         uint64_t last_smac;
729 };
730
731
732 struct netmap_hw_adapter {      /* physical device */
733         struct netmap_adapter up;
734
735         struct net_device_ops nm_ndo;   // XXX linux only
736         struct ethtool_ops    nm_eto;   // XXX linux only
737         const struct ethtool_ops*   save_ethtool;
738
739         int (*nm_hw_register)(struct netmap_adapter *, int onoff);
740 };
741
742 #ifdef WITH_GENERIC
743 /* Mitigation support. */
744 struct nm_generic_mit {
745         struct hrtimer mit_timer;
746         int mit_pending;
747         int mit_ring_idx;  /* index of the ring being mitigated */
748         struct netmap_adapter *mit_na;  /* backpointer */
749 };
750
751 struct netmap_generic_adapter { /* emulated device */
752         struct netmap_hw_adapter up;
753
754         /* Pointer to a previously used netmap adapter. */
755         struct netmap_adapter *prev;
756
757         /* generic netmap adapters support:
758          * a net_device_ops struct overrides ndo_select_queue(),
759          * save_if_input saves the if_input hook (FreeBSD),
760          * mit implements rx interrupt mitigation,
761          */
762         struct net_device_ops generic_ndo;
763         void (*save_if_input)(struct ifnet *, struct mbuf *);
764
765         struct nm_generic_mit *mit;
766 #ifdef linux
767         netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
768 #endif
769 };
770 #endif  /* WITH_GENERIC */
771
772 static __inline int
773 netmap_real_rings(struct netmap_adapter *na, enum txrx t)
774 {
775         return nma_get_nrings(na, t) + !!(na->na_flags & NAF_HOST_RINGS);
776 }
777
778 #ifdef WITH_VALE
779
780 /*
781  * Bridge wrapper for non VALE ports attached to a VALE switch.
782  *
783  * The real device must already have its own netmap adapter (hwna).
784  * The bridge wrapper and the hwna adapter share the same set of
785  * netmap rings and buffers, but they have two separate sets of
786  * krings descriptors, with tx/rx meanings swapped:
787  *
788  *                                  netmap
789  *           bwrap     krings       rings      krings      hwna
790  *         +------+   +------+     +-----+    +------+   +------+
791  *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
792  *         |      |   +------+ \ / +-----+    +------+   |      |
793  *         |      |             X                        |      |
794  *         |      |            / \                       |      |
795  *         |      |   +------+/   \+-----+    +------+   |      |
796  *         |rx_rings->|      |     |     |----|      |<-rx_rings|
797  *         |      |   +------+     +-----+    +------+   |      |
798  *         +------+                                      +------+
799  *
800  * - packets coming from the bridge go to the brwap rx rings,
801  *   which are also the hwna tx rings.  The bwrap notify callback
802  *   will then complete the hwna tx (see netmap_bwrap_notify).
803  *
804  * - packets coming from the outside go to the hwna rx rings,
805  *   which are also the bwrap tx rings.  The (overwritten) hwna
806  *   notify method will then complete the bridge tx
807  *   (see netmap_bwrap_intr_notify).
808  *
809  *   The bridge wrapper may optionally connect the hwna 'host' rings
810  *   to the bridge. This is done by using a second port in the
811  *   bridge and connecting it to the 'host' netmap_vp_adapter
812  *   contained in the netmap_bwrap_adapter. The brwap host adapter
813  *   cross-links the hwna host rings in the same way as shown above.
814  *
815  * - packets coming from the bridge and directed to the host stack
816  *   are handled by the bwrap host notify callback
817  *   (see netmap_bwrap_host_notify)
818  *
819  * - packets coming from the host stack are still handled by the
820  *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
821  *   but are diverted to the host adapter depending on the ring number.
822  *
823  */
824 struct netmap_bwrap_adapter {
825         struct netmap_vp_adapter up;
826         struct netmap_vp_adapter host;  /* for host rings */
827         struct netmap_adapter *hwna;    /* the underlying device */
828
829         /* backup of the hwna memory allocator */
830         struct netmap_mem_d *save_nmd;
831
832         /*
833          * When we attach a physical interface to the bridge, we
834          * allow the controlling process to terminate, so we need
835          * a place to store the n_detmap_priv_d data structure.
836          * This is only done when physical interfaces
837          * are attached to a bridge.
838          */
839         struct netmap_priv_d *na_kpriv;
840 };
841 int netmap_bwrap_attach(const char *name, struct netmap_adapter *);
842
843
844 #endif /* WITH_VALE */
845
846 #ifdef WITH_PIPES
847
848 #define NM_MAXPIPES     64      /* max number of pipes per adapter */
849
850 struct netmap_pipe_adapter {
851         struct netmap_adapter up;
852
853         u_int id;       /* pipe identifier */
854         int role;       /* either NR_REG_PIPE_MASTER or NR_REG_PIPE_SLAVE */
855
856         struct netmap_adapter *parent; /* adapter that owns the memory */
857         struct netmap_pipe_adapter *peer; /* the other end of the pipe */
858         int peer_ref;           /* 1 iff we are holding a ref to the peer */
859
860         u_int parent_slot; /* index in the parent pipe array */
861 };
862
863 #endif /* WITH_PIPES */
864
865
866 /* return slots reserved to rx clients; used in drivers */
867 static inline uint32_t
868 nm_kr_rxspace(struct netmap_kring *k)
869 {
870         int space = k->nr_hwtail - k->nr_hwcur;
871         if (space < 0)
872                 space += k->nkr_num_slots;
873         ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
874
875         return space;
876 }
877
878
879 /* True if no space in the tx ring. only valid after txsync_prologue */
880 static inline int
881 nm_kr_txempty(struct netmap_kring *kring)
882 {
883         return kring->rcur == kring->nr_hwtail;
884 }
885
886
887 /*
888  * protect against multiple threads using the same ring.
889  * also check that the ring has not been stopped.
890  * We only care for 0 or !=0 as a return code.
891  */
892 #define NM_KR_BUSY      1
893 #define NM_KR_STOPPED   2
894
895
896 static __inline void nm_kr_put(struct netmap_kring *kr)
897 {
898         NM_ATOMIC_CLEAR(&kr->nr_busy);
899 }
900
901
902 static __inline int nm_kr_tryget(struct netmap_kring *kr)
903 {
904         /* check a first time without taking the lock
905          * to avoid starvation for nm_kr_get()
906          */
907         if (unlikely(kr->nkr_stopped)) {
908                 ND("ring %p stopped (%d)", kr, kr->nkr_stopped);
909                 return NM_KR_STOPPED;
910         }
911         if (unlikely(NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)))
912                 return NM_KR_BUSY;
913         /* check a second time with lock held */
914         if (unlikely(kr->nkr_stopped)) {
915                 ND("ring %p stopped (%d)", kr, kr->nkr_stopped);
916                 nm_kr_put(kr);
917                 return NM_KR_STOPPED;
918         }
919         return 0;
920 }
921
922 static __inline void nm_kr_get(struct netmap_kring *kr)
923 {
924         while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
925                 tsleep(kr, 0, "NM_KR_GET", 4);
926 }
927
928
929 /*
930  * The following functions are used by individual drivers to
931  * support netmap operation.
932  *
933  * netmap_attach() initializes a struct netmap_adapter, allocating the
934  *      struct netmap_ring's and the struct selinfo.
935  *
936  * netmap_detach() frees the memory allocated by netmap_attach().
937  *
938  * netmap_transmit() replaces the if_transmit routine of the interface,
939  *      and is used to intercept packets coming from the stack.
940  *
941  * netmap_load_map/netmap_reload_map are helper routines to set/reset
942  *      the dmamap for a packet buffer
943  *
944  * netmap_reset() is a helper routine to be called in the hw driver
945  *      when reinitializing a ring. It should not be called by
946  *      virtual ports (vale, pipes, monitor)
947  */
948 int netmap_attach(struct netmap_adapter *);
949 void netmap_detach(struct ifnet *);
950 int netmap_transmit(struct ifnet *, struct mbuf *);
951 struct netmap_slot *netmap_reset(struct netmap_adapter *na,
952         enum txrx tx, u_int n, u_int new_cur);
953 int netmap_ring_reinit(struct netmap_kring *);
954
955 /* default functions to handle rx/tx interrupts */
956 int netmap_rx_irq(struct ifnet *, u_int, u_int *);
957 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
958 void netmap_common_irq(struct ifnet *, u_int, u_int *work_done);
959
960
961 #ifdef WITH_VALE
962 /* functions used by external modules to interface with VALE */
963 #define netmap_vp_to_ifp(_vp)   ((_vp)->up.ifp)
964 #define netmap_ifp_to_vp(_ifp)  (NA(_ifp)->na_vp)
965 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
966 #define netmap_bdg_idx(_vp)     ((_vp)->bdg_port)
967 const char *netmap_bdg_name(struct netmap_vp_adapter *);
968 #else /* !WITH_VALE */
969 #define netmap_vp_to_ifp(_vp)   NULL
970 #define netmap_ifp_to_vp(_ifp)  NULL
971 #define netmap_ifp_to_host_vp(_ifp) NULL
972 #define netmap_bdg_idx(_vp)     -1
973 #define netmap_bdg_name(_vp)    NULL
974 #endif /* WITH_VALE */
975
976 static inline int
977 nm_netmap_on(struct netmap_adapter *na)
978 {
979         return na && na->na_flags & NAF_NETMAP_ON;
980 }
981
982 static inline int
983 nm_native_on(struct netmap_adapter *na)
984 {
985         return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
986 }
987
988 /* set/clear native flags and if_transmit/netdev_ops */
989 static inline void
990 nm_set_native_flags(struct netmap_adapter *na)
991 {
992         struct ifnet *ifp = na->ifp;
993
994         na->na_flags |= NAF_NETMAP_ON;
995 #ifdef IFCAP_NETMAP /* or FreeBSD ? */
996         ifp->if_capenable |= IFCAP_NETMAP;
997 #endif
998 #ifdef __FreeBSD__
999         na->if_transmit = ifp->if_transmit;
1000         ifp->if_transmit = netmap_transmit;
1001 #else
1002         na->if_transmit = (void *)ifp->netdev_ops;
1003         ifp->netdev_ops = &((struct netmap_hw_adapter *)na)->nm_ndo;
1004         ((struct netmap_hw_adapter *)na)->save_ethtool = ifp->ethtool_ops;
1005         ifp->ethtool_ops = &((struct netmap_hw_adapter*)na)->nm_eto;
1006 #endif
1007 }
1008
1009
1010 static inline void
1011 nm_clear_native_flags(struct netmap_adapter *na)
1012 {
1013         struct ifnet *ifp = na->ifp;
1014
1015 #ifdef __FreeBSD__
1016         ifp->if_transmit = na->if_transmit;
1017 #else
1018         ifp->netdev_ops = (void *)na->if_transmit;
1019         ifp->ethtool_ops = ((struct netmap_hw_adapter*)na)->save_ethtool;
1020 #endif
1021         na->na_flags &= ~NAF_NETMAP_ON;
1022 #ifdef IFCAP_NETMAP /* or FreeBSD ? */
1023         ifp->if_capenable &= ~IFCAP_NETMAP;
1024 #endif
1025 }
1026
1027
1028 /* check/fix address and len in tx rings */
1029 #if 1 /* debug version */
1030 #define NM_CHECK_ADDR_LEN(_na, _a, _l)  do {                            \
1031         if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {  \
1032                 RD(5, "bad addr/len ring %d slot %d idx %d len %d",     \
1033                         kring->ring_id, nm_i, slot->buf_idx, len);      \
1034                 if (_l > NETMAP_BUF_SIZE(_na))                          \
1035                         _l = NETMAP_BUF_SIZE(_na);                      \
1036         } } while (0)
1037 #else /* no debug version */
1038 #define NM_CHECK_ADDR_LEN(_na, _a, _l)  do {                            \
1039                 if (_l > NETMAP_BUF_SIZE(_na))                          \
1040                         _l = NETMAP_BUF_SIZE(_na);                      \
1041         } while (0)
1042 #endif
1043
1044
1045 /*---------------------------------------------------------------*/
1046 /*
1047  * Support routines used by netmap subsystems
1048  * (native drivers, VALE, generic, pipes, monitors, ...)
1049  */
1050
1051
1052 /* common routine for all functions that create a netmap adapter. It performs
1053  * two main tasks:
1054  * - if the na points to an ifp, mark the ifp as netmap capable
1055  *   using na as its native adapter;
1056  * - provide defaults for the setup callbacks and the memory allocator
1057  */
1058 int netmap_attach_common(struct netmap_adapter *);
1059 /* common actions to be performed on netmap adapter destruction */
1060 void netmap_detach_common(struct netmap_adapter *);
1061 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1062  * coming from a struct nmreq
1063  */
1064 int netmap_interp_ringid(struct netmap_priv_d *priv, uint16_t ringid, uint32_t flags);
1065 /* update the ring parameters (number and size of tx and rx rings).
1066  * It calls the nm_config callback, if available.
1067  */
1068 int netmap_update_config(struct netmap_adapter *na);
1069 /* create and initialize the common fields of the krings array.
1070  * using the information that must be already available in the na.
1071  * tailroom can be used to request the allocation of additional
1072  * tailroom bytes after the krings array. This is used by
1073  * netmap_vp_adapter's (i.e., VALE ports) to make room for
1074  * leasing-related data structures
1075  */
1076 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1077 /* deletes the kring array of the adapter. The array must have
1078  * been created using netmap_krings_create
1079  */
1080 void netmap_krings_delete(struct netmap_adapter *na);
1081
1082 /* set the stopped/enabled status of ring
1083  * When stopping, they also wait for all current activity on the ring to
1084  * terminate. The status change is then notified using the na nm_notify
1085  * callback.
1086  */
1087 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1088 /* set the stopped/enabled status of all rings of the adapter. */
1089 void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1090 /* convenience wrappers for netmap_set_all_rings, used in drivers */
1091 void netmap_disable_all_rings(struct ifnet *);
1092 void netmap_enable_all_rings(struct ifnet *);
1093
1094 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1095         uint16_t ringid, uint32_t flags);
1096
1097
1098 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1099 int netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1100 int netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na);
1101
1102
1103 #ifdef WITH_VALE
1104 /*
1105  * The following bridge-related functions are used by other
1106  * kernel modules.
1107  *
1108  * VALE only supports unicast or broadcast. The lookup
1109  * function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports,
1110  * NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 for unknown.
1111  * XXX in practice "unknown" might be handled same as broadcast.
1112  */
1113 typedef u_int (*bdg_lookup_fn_t)(struct nm_bdg_fwd *ft, uint8_t *ring_nr,
1114                 struct netmap_vp_adapter *);
1115 typedef int (*bdg_config_fn_t)(struct nm_ifreq *);
1116 typedef void (*bdg_dtor_fn_t)(const struct netmap_vp_adapter *);
1117 struct netmap_bdg_ops {
1118         bdg_lookup_fn_t lookup;
1119         bdg_config_fn_t config;
1120         bdg_dtor_fn_t   dtor;
1121 };
1122
1123 u_int netmap_bdg_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1124                 struct netmap_vp_adapter *);
1125
1126 #define NM_BDG_MAXPORTS         254     /* up to 254 */
1127 #define NM_BDG_BROADCAST        NM_BDG_MAXPORTS
1128 #define NM_BDG_NOPORT           (NM_BDG_MAXPORTS+1)
1129
1130 #define NM_NAME                 "vale"  /* prefix for bridge port name */
1131
1132 /* these are redefined in case of no VALE support */
1133 int netmap_get_bdg_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1134 struct nm_bridge *netmap_init_bridges2(u_int);
1135 void netmap_uninit_bridges2(struct nm_bridge *, u_int);
1136 int netmap_init_bridges(void);
1137 void netmap_uninit_bridges(void);
1138 int netmap_bdg_ctl(struct nmreq *nmr, struct netmap_bdg_ops *bdg_ops);
1139 int netmap_bdg_config(struct nmreq *nmr);
1140
1141 #else /* !WITH_VALE */
1142 #define netmap_get_bdg_na(_1, _2, _3)   0
1143 #define netmap_init_bridges(_1) 0
1144 #define netmap_uninit_bridges()
1145 #define netmap_bdg_ctl(_1, _2)  EINVAL
1146 #endif /* !WITH_VALE */
1147
1148 #ifdef WITH_PIPES
1149 /* max number of pipes per device */
1150 #define NM_MAXPIPES     64      /* XXX how many? */
1151 void netmap_pipe_dealloc(struct netmap_adapter *);
1152 int netmap_get_pipe_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1153 #else /* !WITH_PIPES */
1154 #define NM_MAXPIPES     0
1155 #define netmap_pipe_alloc(_1, _2)       0
1156 #define netmap_pipe_dealloc(_1)
1157 #define netmap_get_pipe_na(nmr, _2, _3) \
1158         ({ int role__ = (nmr)->nr_flags & NR_REG_MASK; \
1159            (role__ == NR_REG_PIPE_MASTER ||            \
1160             role__ == NR_REG_PIPE_SLAVE) ? EOPNOTSUPP : 0; })
1161 #endif
1162
1163 #ifdef WITH_MONITOR
1164 int netmap_get_monitor_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1165 void netmap_monitor_stop(struct netmap_adapter *na);
1166 #else
1167 #define netmap_get_monitor_na(nmr, _2, _3) \
1168         ((nmr)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1169 #endif
1170
1171 #ifdef CONFIG_NET_NS
1172 struct net *netmap_bns_get(void);
1173 void netmap_bns_put(struct net *);
1174 void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1175 #else
1176 #define netmap_bns_get()
1177 #define netmap_bns_put(_1)
1178 #define netmap_bns_getbridges(b, n) \
1179         do { *b = nm_bridges; *n = NM_BRIDGES; } while (0)
1180 #endif
1181
1182 /* Various prototypes */
1183 int netmap_poll(struct cdev *dev, int events, struct thread *td);
1184 int netmap_init(void);
1185 void netmap_fini(void);
1186 int netmap_get_memory(struct netmap_priv_d* p);
1187 void netmap_dtor(void *data);
1188 int netmap_dtor_locked(struct netmap_priv_d *priv);
1189
1190 int netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td);
1191
1192 /* netmap_adapter creation/destruction */
1193
1194 // #define NM_DEBUG_PUTGET 1
1195
1196 #ifdef NM_DEBUG_PUTGET
1197
1198 #define NM_DBG(f) __##f
1199
1200 void __netmap_adapter_get(struct netmap_adapter *na);
1201
1202 #define netmap_adapter_get(na)                          \
1203         do {                                            \
1204                 struct netmap_adapter *__na = na;       \
1205                 D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);       \
1206                 __netmap_adapter_get(__na);             \
1207         } while (0)
1208
1209 int __netmap_adapter_put(struct netmap_adapter *na);
1210
1211 #define netmap_adapter_put(na)                          \
1212         ({                                              \
1213                 struct netmap_adapter *__na = na;       \
1214                 D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);       \
1215                 __netmap_adapter_put(__na);             \
1216         })
1217
1218 #else /* !NM_DEBUG_PUTGET */
1219
1220 #define NM_DBG(f) f
1221 void netmap_adapter_get(struct netmap_adapter *na);
1222 int netmap_adapter_put(struct netmap_adapter *na);
1223
1224 #endif /* !NM_DEBUG_PUTGET */
1225
1226
1227 /*
1228  * module variables
1229  */
1230 #define NETMAP_BUF_BASE(na)     ((na)->na_lut.lut[0].vaddr)
1231 #define NETMAP_BUF_SIZE(na)     ((na)->na_lut.objsize)
1232 extern int netmap_mitigate;     // XXX not really used
1233 extern int netmap_no_pendintr;
1234 extern int netmap_verbose;      // XXX debugging
1235 enum {                                  /* verbose flags */
1236         NM_VERB_ON = 1,                 /* generic verbose */
1237         NM_VERB_HOST = 0x2,             /* verbose host stack */
1238         NM_VERB_RXSYNC = 0x10,          /* verbose on rxsync/txsync */
1239         NM_VERB_TXSYNC = 0x20,
1240         NM_VERB_RXINTR = 0x100,         /* verbose on rx/tx intr (driver) */
1241         NM_VERB_TXINTR = 0x200,
1242         NM_VERB_NIC_RXSYNC = 0x1000,    /* verbose on rx/tx intr (driver) */
1243         NM_VERB_NIC_TXSYNC = 0x2000,
1244 };
1245
1246 extern int netmap_txsync_retry;
1247 extern int netmap_generic_mit;
1248 extern int netmap_generic_ringsize;
1249 extern int netmap_generic_rings;
1250 extern int netmap_use_count;
1251
1252 /*
1253  * NA returns a pointer to the struct netmap adapter from the ifp,
1254  * WNA is used to write it.
1255  */
1256 #define NA(_ifp)        ((struct netmap_adapter *)WNA(_ifp))
1257
1258 /*
1259  * Macros to determine if an interface is netmap capable or netmap enabled.
1260  * See the magic field in struct netmap_adapter.
1261  */
1262 #ifdef __FreeBSD__
1263 /*
1264  * on FreeBSD just use if_capabilities and if_capenable.
1265  */
1266 #define NETMAP_CAPABLE(ifp)     (NA(ifp) &&             \
1267         (ifp)->if_capabilities & IFCAP_NETMAP )
1268
1269 #define NETMAP_SET_CAPABLE(ifp)                         \
1270         (ifp)->if_capabilities |= IFCAP_NETMAP
1271
1272 #else   /* linux */
1273
1274 /*
1275  * on linux:
1276  * we check if NA(ifp) is set and its first element has a related
1277  * magic value. The capenable is within the struct netmap_adapter.
1278  */
1279 #define NETMAP_MAGIC    0x52697a7a
1280
1281 #define NETMAP_CAPABLE(ifp)     (NA(ifp) &&             \
1282         ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1283
1284 #define NETMAP_SET_CAPABLE(ifp)                         \
1285         NA(ifp)->magic = ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC
1286
1287 #endif  /* linux */
1288
1289 #ifdef __FreeBSD__
1290
1291 /* Assigns the device IOMMU domain to an allocator.
1292  * Returns -ENOMEM in case the domain is different */
1293 #define nm_iommu_group_id(dev) (0)
1294
1295 /* Callback invoked by the dma machinery after a successful dmamap_load */
1296 static void netmap_dmamap_cb(__unused void *arg,
1297     __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1298 {
1299 }
1300
1301 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1302  * XXX can we do it without a callback ?
1303  */
1304 static inline void
1305 netmap_load_map(struct netmap_adapter *na,
1306         bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1307 {
1308         if (map)
1309                 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1310                     netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1311 }
1312
1313 static inline void
1314 netmap_unload_map(struct netmap_adapter *na,
1315         bus_dma_tag_t tag, bus_dmamap_t map)
1316 {
1317         if (map)
1318                 bus_dmamap_unload(tag, map);
1319 }
1320
1321 /* update the map when a buffer changes. */
1322 static inline void
1323 netmap_reload_map(struct netmap_adapter *na,
1324         bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1325 {
1326         if (map) {
1327                 bus_dmamap_unload(tag, map);
1328                 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1329                     netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1330         }
1331 }
1332
1333 #else /* linux */
1334
1335 int nm_iommu_group_id(bus_dma_tag_t dev);
1336 #include <linux/dma-mapping.h>
1337
1338 static inline void
1339 netmap_load_map(struct netmap_adapter *na,
1340         bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1341 {
1342         if (0 && map) {
1343                 *map = dma_map_single(na->pdev, buf, na->na_lut.objsize,
1344                                 DMA_BIDIRECTIONAL);
1345         }
1346 }
1347
1348 static inline void
1349 netmap_unload_map(struct netmap_adapter *na,
1350         bus_dma_tag_t tag, bus_dmamap_t map)
1351 {
1352         u_int sz = na->na_lut.objsize;
1353
1354         if (*map) {
1355                 dma_unmap_single(na->pdev, *map, sz,
1356                                 DMA_BIDIRECTIONAL);
1357         }
1358 }
1359
1360 static inline void
1361 netmap_reload_map(struct netmap_adapter *na,
1362         bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1363 {
1364         u_int sz = na->na_lut.objsize;
1365
1366         if (*map) {
1367                 dma_unmap_single(na->pdev, *map, sz,
1368                                 DMA_BIDIRECTIONAL);
1369         }
1370
1371         *map = dma_map_single(na->pdev, buf, sz,
1372                                 DMA_BIDIRECTIONAL);
1373 }
1374
1375 /*
1376  * XXX How do we redefine these functions:
1377  *
1378  * on linux we need
1379  *      dma_map_single(&pdev->dev, virt_addr, len, direction)
1380  *      dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction
1381  * The len can be implicit (on netmap it is NETMAP_BUF_SIZE)
1382  * unfortunately the direction is not, so we need to change
1383  * something to have a cross API
1384  */
1385
1386 #if 0
1387         struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1388         /* set time_stamp *before* dma to help avoid a possible race */
1389         buffer_info->time_stamp = jiffies;
1390         buffer_info->mapped_as_page = false;
1391         buffer_info->length = len;
1392         //buffer_info->next_to_watch = l;
1393         /* reload dma map */
1394         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1395                         NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1396         buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1397                         addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1398
1399         if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1400                 D("dma mapping error");
1401                 /* goto dma_error; See e1000_put_txbuf() */
1402                 /* XXX reset */
1403         }
1404         tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1405
1406 #endif
1407
1408 /*
1409  * The bus_dmamap_sync() can be one of wmb() or rmb() depending on direction.
1410  */
1411 #define bus_dmamap_sync(_a, _b, _c)
1412
1413 #endif /* linux */
1414
1415
1416 /*
1417  * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1418  */
1419 static inline int
1420 netmap_idx_n2k(struct netmap_kring *kr, int idx)
1421 {
1422         int n = kr->nkr_num_slots;
1423         idx += kr->nkr_hwofs;
1424         if (idx < 0)
1425                 return idx + n;
1426         else if (idx < n)
1427                 return idx;
1428         else
1429                 return idx - n;
1430 }
1431
1432
1433 static inline int
1434 netmap_idx_k2n(struct netmap_kring *kr, int idx)
1435 {
1436         int n = kr->nkr_num_slots;
1437         idx -= kr->nkr_hwofs;
1438         if (idx < 0)
1439                 return idx + n;
1440         else if (idx < n)
1441                 return idx;
1442         else
1443                 return idx - n;
1444 }
1445
1446
1447 /* Entries of the look-up table. */
1448 struct lut_entry {
1449         void *vaddr;            /* virtual address. */
1450         vm_paddr_t paddr;       /* physical address. */
1451 };
1452
1453 struct netmap_obj_pool;
1454
1455 /*
1456  * NMB return the virtual address of a buffer (buffer 0 on bad index)
1457  * PNMB also fills the physical address
1458  */
1459 static inline void *
1460 NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1461 {
1462         struct lut_entry *lut = na->na_lut.lut;
1463         uint32_t i = slot->buf_idx;
1464         return (unlikely(i >= na->na_lut.objtotal)) ?
1465                 lut[0].vaddr : lut[i].vaddr;
1466 }
1467
1468 static inline void *
1469 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1470 {
1471         uint32_t i = slot->buf_idx;
1472         struct lut_entry *lut = na->na_lut.lut;
1473         void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1474
1475         *pp = (i >= na->na_lut.objtotal) ? lut[0].paddr : lut[i].paddr;
1476         return ret;
1477 }
1478
1479
1480 /*
1481  * Structure associated to each netmap file descriptor.
1482  * It is created on open and left unbound (np_nifp == NULL).
1483  * A successful NIOCREGIF will set np_nifp and the first few fields;
1484  * this is protected by a global lock (NMG_LOCK) due to low contention.
1485  *
1486  * np_refs counts the number of references to the structure: one for the fd,
1487  * plus (on FreeBSD) one for each active mmap which we track ourselves
1488  * (linux automatically tracks them, but FreeBSD does not).
1489  * np_refs is protected by NMG_LOCK.
1490  *
1491  * Read access to the structure is lock free, because ni_nifp once set
1492  * can only go to 0 when nobody is using the entry anymore. Readers
1493  * must check that np_nifp != NULL before using the other fields.
1494  */
1495 struct netmap_priv_d {
1496         struct netmap_if * volatile np_nifp;    /* netmap if descriptor. */
1497
1498         struct netmap_adapter   *np_na;
1499         uint32_t        np_flags;       /* from the ioctl */
1500         u_int           np_qfirst[NR_TXRX], 
1501                         np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
1502         uint16_t        np_txpoll;      /* XXX and also np_rxpoll ? */
1503
1504         int             np_refs;        /* use with NMG_LOCK held */
1505
1506         /* pointers to the selinfo to be used for selrecord.
1507          * Either the local or the global one depending on the
1508          * number of rings.
1509          */
1510         NM_SELINFO_T *np_si[NR_TXRX];
1511         struct thread   *np_td;         /* kqueue, just debugging */
1512 };
1513
1514 #ifdef WITH_MONITOR
1515
1516 struct netmap_monitor_adapter {
1517         struct netmap_adapter up;
1518
1519         struct netmap_priv_d priv;
1520         uint32_t flags;
1521 };
1522
1523 #endif /* WITH_MONITOR */
1524
1525
1526 #ifdef WITH_GENERIC
1527 /*
1528  * generic netmap emulation for devices that do not have
1529  * native netmap support.
1530  */
1531 int generic_netmap_attach(struct ifnet *ifp);
1532
1533 int netmap_catch_rx(struct netmap_generic_adapter *na, int intercept);
1534 void generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
1535 void netmap_catch_tx(struct netmap_generic_adapter *na, int enable);
1536 int generic_xmit_frame(struct ifnet *ifp, struct mbuf *m, void *addr, u_int len, u_int ring_nr);
1537 int generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
1538 void generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
1539 static inline struct ifnet*
1540 netmap_generic_getifp(struct netmap_generic_adapter *gna)
1541 {
1542         if (gna->prev)
1543             return gna->prev->ifp;
1544
1545         return gna->up.up.ifp;
1546 }
1547
1548 //#define RATE_GENERIC  /* Enables communication statistics for generic. */
1549 #ifdef RATE_GENERIC
1550 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
1551 #else
1552 #define generic_rate(txp, txs, txi, rxp, rxs, rxi)
1553 #endif
1554
1555 /*
1556  * netmap_mitigation API. This is used by the generic adapter
1557  * to reduce the number of interrupt requests/selwakeup
1558  * to clients on incoming packets.
1559  */
1560 void netmap_mitigation_init(struct nm_generic_mit *mit, int idx,
1561                                 struct netmap_adapter *na);
1562 void netmap_mitigation_start(struct nm_generic_mit *mit);
1563 void netmap_mitigation_restart(struct nm_generic_mit *mit);
1564 int netmap_mitigation_active(struct nm_generic_mit *mit);
1565 void netmap_mitigation_cleanup(struct nm_generic_mit *mit);
1566 #endif /* WITH_GENERIC */
1567
1568
1569
1570 /* Shared declarations for the VALE switch. */
1571
1572 /*
1573  * Each transmit queue accumulates a batch of packets into
1574  * a structure before forwarding. Packets to the same
1575  * destination are put in a list using ft_next as a link field.
1576  * ft_frags and ft_next are valid only on the first fragment.
1577  */
1578 struct nm_bdg_fwd {     /* forwarding entry for a bridge */
1579         void *ft_buf;           /* netmap or indirect buffer */
1580         uint8_t ft_frags;       /* how many fragments (only on 1st frag) */
1581         uint8_t _ft_port;       /* dst port (unused) */
1582         uint16_t ft_flags;      /* flags, e.g. indirect */
1583         uint16_t ft_len;        /* src fragment len */
1584         uint16_t ft_next;       /* next packet to same destination */
1585 };
1586
1587 /* struct 'virtio_net_hdr' from linux. */
1588 struct nm_vnet_hdr {
1589 #define VIRTIO_NET_HDR_F_NEEDS_CSUM     1       /* Use csum_start, csum_offset */
1590 #define VIRTIO_NET_HDR_F_DATA_VALID    2        /* Csum is valid */
1591     uint8_t flags;
1592 #define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
1593 #define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
1594 #define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
1595 #define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
1596 #define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
1597     uint8_t gso_type;
1598     uint16_t hdr_len;
1599     uint16_t gso_size;
1600     uint16_t csum_start;
1601     uint16_t csum_offset;
1602 };
1603
1604 #define WORST_CASE_GSO_HEADER   (14+40+60)  /* IPv6 + TCP */
1605
1606 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */
1607
1608 struct nm_iphdr {
1609         uint8_t         version_ihl;
1610         uint8_t         tos;
1611         uint16_t        tot_len;
1612         uint16_t        id;
1613         uint16_t        frag_off;
1614         uint8_t         ttl;
1615         uint8_t         protocol;
1616         uint16_t        check;
1617         uint32_t        saddr;
1618         uint32_t        daddr;
1619         /*The options start here. */
1620 };
1621
1622 struct nm_tcphdr {
1623         uint16_t        source;
1624         uint16_t        dest;
1625         uint32_t        seq;
1626         uint32_t        ack_seq;
1627         uint8_t         doff;  /* Data offset + Reserved */
1628         uint8_t         flags;
1629         uint16_t        window;
1630         uint16_t        check;
1631         uint16_t        urg_ptr;
1632 };
1633
1634 struct nm_udphdr {
1635         uint16_t        source;
1636         uint16_t        dest;
1637         uint16_t        len;
1638         uint16_t        check;
1639 };
1640
1641 struct nm_ipv6hdr {
1642         uint8_t         priority_version;
1643         uint8_t         flow_lbl[3];
1644
1645         uint16_t        payload_len;
1646         uint8_t         nexthdr;
1647         uint8_t         hop_limit;
1648
1649         uint8_t         saddr[16];
1650         uint8_t         daddr[16];
1651 };
1652
1653 /* Type used to store a checksum (in host byte order) that hasn't been
1654  * folded yet.
1655  */
1656 #define rawsum_t uint32_t
1657
1658 rawsum_t nm_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
1659 uint16_t nm_csum_ipv4(struct nm_iphdr *iph);
1660 void nm_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
1661                       size_t datalen, uint16_t *check);
1662 void nm_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
1663                       size_t datalen, uint16_t *check);
1664 uint16_t nm_csum_fold(rawsum_t cur_sum);
1665
1666 void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
1667                            struct netmap_vp_adapter *dst_na,
1668                            struct nm_bdg_fwd *ft_p, struct netmap_ring *ring,
1669                            u_int *j, u_int lim, u_int *howmany);
1670
1671 /* persistent virtual port routines */
1672 int nm_vi_persist(const char *, struct ifnet **);
1673 void nm_vi_detach(struct ifnet *);
1674 void nm_vi_init_index(void);
1675
1676 #endif /* _NET_NETMAP_KERN_H_ */