]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/netmap/netmap_kern.h
netmap: fix lock order reversal related to kqueue usage
[FreeBSD/FreeBSD.git] / sys / dev / netmap / netmap_kern.h
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo
5  * Copyright (C) 2013-2016 Universita` di Pisa
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *   1. Redistributions of source code must retain the above copyright
12  *      notice, this list of conditions and the following disclaimer.
13  *   2. Redistributions in binary form must reproduce the above copyright
14  *      notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29
30 /*
31  * $FreeBSD$
32  *
33  * The header contains the definitions of constants and function
34  * prototypes used only in kernelspace.
35  */
36
37 #ifndef _NET_NETMAP_KERN_H_
38 #define _NET_NETMAP_KERN_H_
39
40 #if defined(linux)
41
42 #if defined(CONFIG_NETMAP_EXTMEM)
43 #define WITH_EXTMEM
44 #endif
45 #if  defined(CONFIG_NETMAP_VALE)
46 #define WITH_VALE
47 #endif
48 #if defined(CONFIG_NETMAP_PIPE)
49 #define WITH_PIPES
50 #endif
51 #if defined(CONFIG_NETMAP_MONITOR)
52 #define WITH_MONITOR
53 #endif
54 #if defined(CONFIG_NETMAP_GENERIC)
55 #define WITH_GENERIC
56 #endif
57 #if defined(CONFIG_NETMAP_PTNETMAP)
58 #define WITH_PTNETMAP
59 #endif
60 #if defined(CONFIG_NETMAP_SINK)
61 #define WITH_SINK
62 #endif
63 #if defined(CONFIG_NETMAP_NULL)
64 #define WITH_NMNULL
65 #endif
66
67 #elif defined (_WIN32)
68 #define WITH_VALE       // comment out to disable VALE support
69 #define WITH_PIPES
70 #define WITH_MONITOR
71 #define WITH_GENERIC
72 #define WITH_NMNULL
73
74 #else   /* neither linux nor windows */
75 #define WITH_VALE       // comment out to disable VALE support
76 #define WITH_PIPES
77 #define WITH_MONITOR
78 #define WITH_GENERIC
79 #define WITH_PTNETMAP   /* ptnetmap guest support */
80 #define WITH_EXTMEM
81 #define WITH_NMNULL
82 #endif
83
84 #if defined(__FreeBSD__)
85 #include <sys/selinfo.h>
86
87 #define likely(x)       __builtin_expect((long)!!(x), 1L)
88 #define unlikely(x)     __builtin_expect((long)!!(x), 0L)
89 #define __user
90
91 #define NM_LOCK_T       struct mtx      /* low level spinlock, used to protect queues */
92
93 #define NM_MTX_T        struct sx       /* OS-specific mutex (sleepable) */
94 #define NM_MTX_INIT(m)          sx_init(&(m), #m)
95 #define NM_MTX_DESTROY(m)       sx_destroy(&(m))
96 #define NM_MTX_LOCK(m)          sx_xlock(&(m))
97 #define NM_MTX_SPINLOCK(m)      while (!sx_try_xlock(&(m))) ;
98 #define NM_MTX_UNLOCK(m)        sx_xunlock(&(m))
99 #define NM_MTX_ASSERT(m)        sx_assert(&(m), SA_XLOCKED)
100
101 #define NM_SELINFO_T    struct nm_selinfo
102 #define NM_SELRECORD_T  struct thread
103 #define MBUF_LEN(m)     ((m)->m_pkthdr.len)
104 #define MBUF_TXQ(m)     ((m)->m_pkthdr.flowid)
105 #define MBUF_TRANSMIT(na, ifp, m)       ((na)->if_transmit(ifp, m))
106 #define GEN_TX_MBUF_IFP(m)      ((m)->m_pkthdr.rcvif)
107
108 #define NM_ATOMIC_T     volatile int /* required by atomic/bitops.h */
109 /* atomic operations */
110 #include <machine/atomic.h>
111 #define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
112 #define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
113
114 #if __FreeBSD_version >= 1100030
115 #define WNA(_ifp)       (_ifp)->if_netmap
116 #else /* older FreeBSD */
117 #define WNA(_ifp)       (_ifp)->if_pspare[0]
118 #endif /* older FreeBSD */
119
120 #if __FreeBSD_version >= 1100005
121 struct netmap_adapter *netmap_getna(if_t ifp);
122 #endif
123
124 #if __FreeBSD_version >= 1100027
125 #define MBUF_REFCNT(m)          ((m)->m_ext.ext_count)
126 #define SET_MBUF_REFCNT(m, x)   (m)->m_ext.ext_count = x
127 #else
128 #define MBUF_REFCNT(m)          ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
129 #define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ref_cnt) = x
130 #endif
131
132 #define MBUF_QUEUED(m)          1
133
134 struct nm_selinfo {
135         struct selinfo si;
136         struct taskqueue *ntfytq;
137         struct task ntfytask;
138         struct mtx m;
139         char mtxname[32];
140 };
141
142
143 struct hrtimer {
144     /* Not used in FreeBSD. */
145 };
146
147 #define NM_BNS_GET(b)
148 #define NM_BNS_PUT(b)
149
150 #elif defined (linux)
151
152 #define NM_LOCK_T       safe_spinlock_t // see bsd_glue.h
153 #define NM_SELINFO_T    wait_queue_head_t
154 #define MBUF_LEN(m)     ((m)->len)
155 #define MBUF_TRANSMIT(na, ifp, m)                                                       \
156         ({                                                                              \
157                 /* Avoid infinite recursion with generic. */                            \
158                 m->priority = NM_MAGIC_PRIORITY_TX;                                     \
159                 (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \
160                 0;                                                                      \
161         })
162
163 /* See explanation in nm_os_generic_xmit_frame. */
164 #define GEN_TX_MBUF_IFP(m)      ((struct ifnet *)skb_shinfo(m)->destructor_arg)
165
166 #define NM_ATOMIC_T     volatile long unsigned int
167
168 #define NM_MTX_T        struct mutex    /* OS-specific sleepable lock */
169 #define NM_MTX_INIT(m)  mutex_init(&(m))
170 #define NM_MTX_DESTROY(m)       do { (void)(m); } while (0)
171 #define NM_MTX_LOCK(m)          mutex_lock(&(m))
172 #define NM_MTX_UNLOCK(m)        mutex_unlock(&(m))
173 #define NM_MTX_ASSERT(m)        mutex_is_locked(&(m))
174
175 #ifndef DEV_NETMAP
176 #define DEV_NETMAP
177 #endif /* DEV_NETMAP */
178
179 #elif defined (__APPLE__)
180
181 #warning apple support is incomplete.
182 #define likely(x)       __builtin_expect(!!(x), 1)
183 #define unlikely(x)     __builtin_expect(!!(x), 0)
184 #define NM_LOCK_T       IOLock *
185 #define NM_SELINFO_T    struct selinfo
186 #define MBUF_LEN(m)     ((m)->m_pkthdr.len)
187
188 #elif defined (_WIN32)
189 #include "../../../WINDOWS/win_glue.h"
190
191 #define NM_SELRECORD_T          IO_STACK_LOCATION
192 #define NM_SELINFO_T            win_SELINFO             // see win_glue.h
193 #define NM_LOCK_T               win_spinlock_t  // see win_glue.h
194 #define NM_MTX_T                KGUARDED_MUTEX  /* OS-specific mutex (sleepable) */
195
196 #define NM_MTX_INIT(m)          KeInitializeGuardedMutex(&m);
197 #define NM_MTX_DESTROY(m)       do { (void)(m); } while (0)
198 #define NM_MTX_LOCK(m)          KeAcquireGuardedMutex(&(m))
199 #define NM_MTX_UNLOCK(m)        KeReleaseGuardedMutex(&(m))
200 #define NM_MTX_ASSERT(m)        assert(&m.Count>0)
201
202 //These linknames are for the NDIS driver
203 #define NETMAP_NDIS_LINKNAME_STRING             L"\\DosDevices\\NMAPNDIS"
204 #define NETMAP_NDIS_NTDEVICE_STRING             L"\\Device\\NMAPNDIS"
205
206 //Definition of internal driver-to-driver ioctl codes
207 #define NETMAP_KERNEL_XCHANGE_POINTERS          _IO('i', 180)
208 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL      _IO_direct('i', 195)
209
210 typedef struct hrtimer{
211         KTIMER timer;
212         BOOLEAN active;
213         KDPC deferred_proc;
214 };
215
216 /* MSVC does not have likely/unlikely support */
217 #ifdef _MSC_VER
218 #define likely(x)       (x)
219 #define unlikely(x)     (x)
220 #else
221 #define likely(x)       __builtin_expect((long)!!(x), 1L)
222 #define unlikely(x)     __builtin_expect((long)!!(x), 0L)
223 #endif //_MSC_VER
224
225 #else
226
227 #error unsupported platform
228
229 #endif /* end - platform-specific code */
230
231 #ifndef _WIN32 /* support for emulated sysctl */
232 #define SYSBEGIN(x)
233 #define SYSEND
234 #endif /* _WIN32 */
235
236 #define NM_ACCESS_ONCE(x)       (*(volatile __typeof__(x) *)&(x))
237
238 #define NMG_LOCK_T              NM_MTX_T
239 #define NMG_LOCK_INIT()         NM_MTX_INIT(netmap_global_lock)
240 #define NMG_LOCK_DESTROY()      NM_MTX_DESTROY(netmap_global_lock)
241 #define NMG_LOCK()              NM_MTX_LOCK(netmap_global_lock)
242 #define NMG_UNLOCK()            NM_MTX_UNLOCK(netmap_global_lock)
243 #define NMG_LOCK_ASSERT()       NM_MTX_ASSERT(netmap_global_lock)
244
245 #if defined(__FreeBSD__)
246 #define nm_prerr_int    printf
247 #define nm_prinf_int    printf
248 #elif defined (_WIN32)
249 #define nm_prerr_int    DbgPrint
250 #define nm_prinf_int    DbgPrint
251 #elif defined(linux)
252 #define nm_prerr_int(fmt, arg...)    printk(KERN_ERR fmt, ##arg)
253 #define nm_prinf_int(fmt, arg...)    printk(KERN_INFO fmt, ##arg)
254 #endif
255
256 #define nm_prinf(format, ...)                                   \
257         do {                                                    \
258                 struct timeval __xxts;                          \
259                 microtime(&__xxts);                             \
260                 nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\
261                 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \
262                 __LINE__, __FUNCTION__, ##__VA_ARGS__);         \
263         } while (0)
264
265 #define nm_prerr(format, ...)                                   \
266         do {                                                    \
267                 struct timeval __xxts;                          \
268                 microtime(&__xxts);                             \
269                 nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\
270                 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \
271                 __LINE__, __FUNCTION__, ##__VA_ARGS__);         \
272         } while (0)
273
274 /* Disabled printf (used to be ND). */
275 #define nm_prdis(format, ...)
276
277 /* Rate limited, lps indicates how many per second. */
278 #define nm_prlim(lps, format, ...)                              \
279         do {                                                    \
280                 static int t0, __cnt;                           \
281                 if (t0 != time_second) {                        \
282                         t0 = time_second;                       \
283                         __cnt = 0;                              \
284                 }                                               \
285                 if (__cnt++ < lps)                              \
286                         nm_prinf(format, ##__VA_ARGS__);        \
287         } while (0)
288
289 /* Old macros. */
290 #define ND      nm_prdis
291 #define D       nm_prerr
292 #define RD      nm_prlim
293
294 struct netmap_adapter;
295 struct nm_bdg_fwd;
296 struct nm_bridge;
297 struct netmap_priv_d;
298 struct nm_bdg_args;
299
300 /* os-specific NM_SELINFO_T initialzation/destruction functions */
301 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name);
302 void nm_os_selinfo_uninit(NM_SELINFO_T *);
303
304 const char *nm_dump_buf(char *p, int len, int lim, char *dst);
305
306 void nm_os_selwakeup(NM_SELINFO_T *si);
307 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si);
308
309 int nm_os_ifnet_init(void);
310 void nm_os_ifnet_fini(void);
311 void nm_os_ifnet_lock(void);
312 void nm_os_ifnet_unlock(void);
313
314 unsigned nm_os_ifnet_mtu(struct ifnet *ifp);
315
316 void nm_os_get_module(void);
317 void nm_os_put_module(void);
318
319 void netmap_make_zombie(struct ifnet *);
320 void netmap_undo_zombie(struct ifnet *);
321
322 /* os independent alloc/realloc/free */
323 void *nm_os_malloc(size_t);
324 void *nm_os_vmalloc(size_t);
325 void *nm_os_realloc(void *, size_t new_size, size_t old_size);
326 void nm_os_free(void *);
327 void nm_os_vfree(void *);
328
329 /* os specific attach/detach enter/exit-netmap-mode routines */
330 void nm_os_onattach(struct ifnet *);
331 void nm_os_ondetach(struct ifnet *);
332 void nm_os_onenter(struct ifnet *);
333 void nm_os_onexit(struct ifnet *);
334
335 /* passes a packet up to the host stack.
336  * If the packet is sent (or dropped) immediately it returns NULL,
337  * otherwise it links the packet to prev and returns m.
338  * In this case, a final call with m=NULL and prev != NULL will send up
339  * the entire chain to the host stack.
340  */
341 void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev);
342
343 int nm_os_mbuf_has_seg_offld(struct mbuf *m);
344 int nm_os_mbuf_has_csum_offld(struct mbuf *m);
345
346 #include "netmap_mbq.h"
347
348 extern NMG_LOCK_T       netmap_global_lock;
349
350 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
351
352 static __inline const char*
353 nm_txrx2str(enum txrx t)
354 {
355         return (t== NR_RX ? "RX" : "TX");
356 }
357
358 static __inline enum txrx
359 nm_txrx_swap(enum txrx t)
360 {
361         return (t== NR_RX ? NR_TX : NR_RX);
362 }
363
364 #define for_rx_tx(t)    for ((t) = 0; (t) < NR_TXRX; (t)++)
365
366 #ifdef WITH_MONITOR
367 struct netmap_zmon_list {
368         struct netmap_kring *next;
369         struct netmap_kring *prev;
370 };
371 #endif /* WITH_MONITOR */
372
373 /*
374  * private, kernel view of a ring. Keeps track of the status of
375  * a ring across system calls.
376  *
377  *      nr_hwcur        index of the next buffer to refill.
378  *                      It corresponds to ring->head
379  *                      at the time the system call returns.
380  *
381  *      nr_hwtail       index of the first buffer owned by the kernel.
382  *                      On RX, hwcur->hwtail are receive buffers
383  *                      not yet released. hwcur is advanced following
384  *                      ring->head, hwtail is advanced on incoming packets,
385  *                      and a wakeup is generated when hwtail passes ring->cur
386  *                          On TX, hwcur->rcur have been filled by the sender
387  *                      but not sent yet to the NIC; rcur->hwtail are available
388  *                      for new transmissions, and hwtail->hwcur-1 are pending
389  *                      transmissions not yet acknowledged.
390  *
391  * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
392  * This is so that, on a reset, buffers owned by userspace are not
393  * modified by the kernel. In particular:
394  * RX rings: the next empty buffer (hwtail + hwofs) coincides with
395  *      the next empty buffer as known by the hardware (next_to_check or so).
396  * TX rings: hwcur + hwofs coincides with next_to_send
397  *
398  * The following fields are used to implement lock-free copy of packets
399  * from input to output ports in VALE switch:
400  *      nkr_hwlease     buffer after the last one being copied.
401  *                      A writer in nm_bdg_flush reserves N buffers
402  *                      from nr_hwlease, advances it, then does the
403  *                      copy outside the lock.
404  *                      In RX rings (used for VALE ports),
405  *                      nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
406  *                      In TX rings (used for NIC or host stack ports)
407  *                      nkr_hwcur <= nkr_hwlease < nkr_hwtail
408  *      nkr_leases      array of nkr_num_slots where writers can report
409  *                      completion of their block. NR_NOSLOT (~0) indicates
410  *                      that the writer has not finished yet
411  *      nkr_lease_idx   index of next free slot in nr_leases, to be assigned
412  *
413  * The kring is manipulated by txsync/rxsync and generic netmap function.
414  *
415  * Concurrent rxsync or txsync on the same ring are prevented through
416  * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
417  * for NIC rings, and for TX rings attached to the host stack.
418  *
419  * RX rings attached to the host stack use an mbq (rx_queue) on both
420  * rxsync_from_host() and netmap_transmit(). The mbq is protected
421  * by its internal lock.
422  *
423  * RX rings attached to the VALE switch are accessed by both senders
424  * and receiver. They are protected through the q_lock on the RX ring.
425  */
426 struct netmap_kring {
427         struct netmap_ring      *ring;
428
429         uint32_t        nr_hwcur;  /* should be nr_hwhead */
430         uint32_t        nr_hwtail;
431
432         /*
433          * Copies of values in user rings, so we do not need to look
434          * at the ring (which could be modified). These are set in the
435          * *sync_prologue()/finalize() routines.
436          */
437         uint32_t        rhead;
438         uint32_t        rcur;
439         uint32_t        rtail;
440
441         uint32_t        nr_kflags;      /* private driver flags */
442 #define NKR_PENDINTR    0x1             // Pending interrupt.
443 #define NKR_EXCLUSIVE   0x2             /* exclusive binding */
444 #define NKR_FORWARD     0x4             /* (host ring only) there are
445                                            packets to forward
446                                          */
447 #define NKR_NEEDRING    0x8             /* ring needed even if users==0
448                                          * (used internally by pipes and
449                                          *  by ptnetmap host ports)
450                                          */
451 #define NKR_NOINTR      0x10            /* don't use interrupts on this ring */
452 #define NKR_FAKERING    0x20            /* don't allocate/free buffers */
453
454         uint32_t        nr_mode;
455         uint32_t        nr_pending_mode;
456 #define NKR_NETMAP_OFF  0x0
457 #define NKR_NETMAP_ON   0x1
458
459         uint32_t        nkr_num_slots;
460
461         /*
462          * On a NIC reset, the NIC ring indexes may be reset but the
463          * indexes in the netmap rings remain the same. nkr_hwofs
464          * keeps track of the offset between the two.
465          */
466         int32_t         nkr_hwofs;
467
468         /* last_reclaim is opaque marker to help reduce the frequency
469          * of operations such as reclaiming tx buffers. A possible use
470          * is set it to ticks and do the reclaim only once per tick.
471          */
472         uint64_t        last_reclaim;
473
474
475         NM_SELINFO_T    si;             /* poll/select wait queue */
476         NM_LOCK_T       q_lock;         /* protects kring and ring. */
477         NM_ATOMIC_T     nr_busy;        /* prevent concurrent syscalls */
478
479         /* the adapter the owns this kring */
480         struct netmap_adapter *na;
481
482         /* the adapter that wants to be notified when this kring has
483          * new slots avaialable. This is usually the same as the above,
484          * but wrappers may let it point to themselves
485          */
486         struct netmap_adapter *notify_na;
487
488         /* The following fields are for VALE switch support */
489         struct nm_bdg_fwd *nkr_ft;
490         uint32_t        *nkr_leases;
491 #define NR_NOSLOT       ((uint32_t)~0)  /* used in nkr_*lease* */
492         uint32_t        nkr_hwlease;
493         uint32_t        nkr_lease_idx;
494
495         /* while nkr_stopped is set, no new [tr]xsync operations can
496          * be started on this kring.
497          * This is used by netmap_disable_all_rings()
498          * to find a synchronization point where critical data
499          * structures pointed to by the kring can be added or removed
500          */
501         volatile int nkr_stopped;
502
503         /* Support for adapters without native netmap support.
504          * On tx rings we preallocate an array of tx buffers
505          * (same size as the netmap ring), on rx rings we
506          * store incoming mbufs in a queue that is drained by
507          * a rxsync.
508          */
509         struct mbuf     **tx_pool;
510         struct mbuf     *tx_event;      /* TX event used as a notification */
511         NM_LOCK_T       tx_event_lock;  /* protects the tx_event mbuf */
512         struct mbq      rx_queue;       /* intercepted rx mbufs. */
513
514         uint32_t        users;          /* existing bindings for this ring */
515
516         uint32_t        ring_id;        /* kring identifier */
517         enum txrx       tx;             /* kind of ring (tx or rx) */
518         char name[64];                  /* diagnostic */
519
520         /* [tx]sync callback for this kring.
521          * The default nm_kring_create callback (netmap_krings_create)
522          * sets the nm_sync callback of each hardware tx(rx) kring to
523          * the corresponding nm_txsync(nm_rxsync) taken from the
524          * netmap_adapter; moreover, it sets the sync callback
525          * of the host tx(rx) ring to netmap_txsync_to_host
526          * (netmap_rxsync_from_host).
527          *
528          * Overrides: the above configuration is not changed by
529          * any of the nm_krings_create callbacks.
530          */
531         int (*nm_sync)(struct netmap_kring *kring, int flags);
532         int (*nm_notify)(struct netmap_kring *kring, int flags);
533
534 #ifdef WITH_PIPES
535         struct netmap_kring *pipe;      /* if this is a pipe ring,
536                                          * pointer to the other end
537                                          */
538         uint32_t pipe_tail;             /* hwtail updated by the other end */
539 #endif /* WITH_PIPES */
540
541         int (*save_notify)(struct netmap_kring *kring, int flags);
542
543 #ifdef WITH_MONITOR
544         /* array of krings that are monitoring this kring */
545         struct netmap_kring **monitors;
546         uint32_t max_monitors; /* current size of the monitors array */
547         uint32_t n_monitors;    /* next unused entry in the monitor array */
548         uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */
549         uint32_t mon_tail;  /* last seen slot on rx */
550
551         /* circular list of zero-copy monitors */
552         struct netmap_zmon_list zmon_list[NR_TXRX];
553
554         /*
555          * Monitors work by intercepting the sync and notify callbacks of the
556          * monitored krings. This is implemented by replacing the pointers
557          * above and saving the previous ones in mon_* pointers below
558          */
559         int (*mon_sync)(struct netmap_kring *kring, int flags);
560         int (*mon_notify)(struct netmap_kring *kring, int flags);
561
562 #endif
563 }
564 #ifdef _WIN32
565 __declspec(align(64));
566 #else
567 __attribute__((__aligned__(64)));
568 #endif
569
570 /* return 1 iff the kring needs to be turned on */
571 static inline int
572 nm_kring_pending_on(struct netmap_kring *kring)
573 {
574         return kring->nr_pending_mode == NKR_NETMAP_ON &&
575                kring->nr_mode == NKR_NETMAP_OFF;
576 }
577
578 /* return 1 iff the kring needs to be turned off */
579 static inline int
580 nm_kring_pending_off(struct netmap_kring *kring)
581 {
582         return kring->nr_pending_mode == NKR_NETMAP_OFF &&
583                kring->nr_mode == NKR_NETMAP_ON;
584 }
585
586 /* return the next index, with wraparound */
587 static inline uint32_t
588 nm_next(uint32_t i, uint32_t lim)
589 {
590         return unlikely (i == lim) ? 0 : i + 1;
591 }
592
593
594 /* return the previous index, with wraparound */
595 static inline uint32_t
596 nm_prev(uint32_t i, uint32_t lim)
597 {
598         return unlikely (i == 0) ? lim : i - 1;
599 }
600
601
602 /*
603  *
604  * Here is the layout for the Rx and Tx rings.
605
606        RxRING                            TxRING
607
608       +-----------------+            +-----------------+
609       |                 |            |                 |
610       |      free       |            |      free       |
611       +-----------------+            +-----------------+
612 head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
613       |                 |            | yet             |
614       +-----------------+            |                 |
615  cur->| available to    |            |                 |
616       | user, not read  |            +-----------------+
617       | yet             |       cur->| (being          |
618       |                 |            |  prepared)      |
619       |                 |            |                 |
620       +-----------------+            +     ------      +
621 tail->|                 |<-hwtail    |                 |<-hwlease
622       | (being          | ...        |                 | ...
623       |  prepared)      | ...        |                 | ...
624       +-----------------+ ...        |                 | ...
625       |                 |<-hwlease   +-----------------+
626       |                 |      tail->|                 |<-hwtail
627       |                 |            |                 |
628       |                 |            |                 |
629       |                 |            |                 |
630       +-----------------+            +-----------------+
631
632  * The cur/tail (user view) and hwcur/hwtail (kernel view)
633  * are used in the normal operation of the card.
634  *
635  * When a ring is the output of a switch port (Rx ring for
636  * a VALE port, Tx ring for the host stack or NIC), slots
637  * are reserved in blocks through 'hwlease' which points
638  * to the next unused slot.
639  * On an Rx ring, hwlease is always after hwtail,
640  * and completions cause hwtail to advance.
641  * On a Tx ring, hwlease is always between cur and hwtail,
642  * and completions cause cur to advance.
643  *
644  * nm_kr_space() returns the maximum number of slots that
645  * can be assigned.
646  * nm_kr_lease() reserves the required number of buffers,
647  *    advances nkr_hwlease and also returns an entry in
648  *    a circular array where completions should be reported.
649  */
650
651 struct lut_entry;
652 #ifdef __FreeBSD__
653 #define plut_entry lut_entry
654 #endif
655
656 struct netmap_lut {
657         struct lut_entry *lut;
658         struct plut_entry *plut;
659         uint32_t objtotal;      /* max buffer index */
660         uint32_t objsize;       /* buffer size */
661 };
662
663 struct netmap_vp_adapter; // forward
664 struct nm_bridge;
665
666 /* Struct to be filled by nm_config callbacks. */
667 struct nm_config_info {
668         unsigned num_tx_rings;
669         unsigned num_rx_rings;
670         unsigned num_tx_descs;
671         unsigned num_rx_descs;
672         unsigned rx_buf_maxsize;
673 };
674
675 /*
676  * default type for the magic field.
677  * May be overriden in glue code.
678  */
679 #ifndef NM_OS_MAGIC
680 #define NM_OS_MAGIC uint32_t
681 #endif /* !NM_OS_MAGIC */
682
683 /*
684  * The "struct netmap_adapter" extends the "struct adapter"
685  * (or equivalent) device descriptor.
686  * It contains all base fields needed to support netmap operation.
687  * There are in fact different types of netmap adapters
688  * (native, generic, VALE switch...) so a netmap_adapter is
689  * just the first field in the derived type.
690  */
691 struct netmap_adapter {
692         /*
693          * On linux we do not have a good way to tell if an interface
694          * is netmap-capable. So we always use the following trick:
695          * NA(ifp) points here, and the first entry (which hopefully
696          * always exists and is at least 32 bits) contains a magic
697          * value which we can use to detect that the interface is good.
698          */
699         NM_OS_MAGIC magic;
700         uint32_t na_flags;      /* enabled, and other flags */
701 #define NAF_SKIP_INTR   1       /* use the regular interrupt handler.
702                                  * useful during initialization
703                                  */
704 #define NAF_SW_ONLY     2       /* forward packets only to sw adapter */
705 #define NAF_BDG_MAYSLEEP 4      /* the bridge is allowed to sleep when
706                                  * forwarding packets coming from this
707                                  * interface
708                                  */
709 #define NAF_MEM_OWNER   8       /* the adapter uses its own memory area
710                                  * that cannot be changed
711                                  */
712 #define NAF_NATIVE      16      /* the adapter is native.
713                                  * Virtual ports (non persistent vale ports,
714                                  * pipes, monitors...) should never use
715                                  * this flag.
716                                  */
717 #define NAF_NETMAP_ON   32      /* netmap is active (either native or
718                                  * emulated). Where possible (e.g. FreeBSD)
719                                  * IFCAP_NETMAP also mirrors this flag.
720                                  */
721 #define NAF_HOST_RINGS  64      /* the adapter supports the host rings */
722 #define NAF_FORCE_NATIVE 128    /* the adapter is always NATIVE */
723 /* free */
724 #define NAF_MOREFRAG    512     /* the adapter supports NS_MOREFRAG */
725 #define NAF_ZOMBIE      (1U<<30) /* the nic driver has been unloaded */
726 #define NAF_BUSY        (1U<<31) /* the adapter is used internally and
727                                   * cannot be registered from userspace
728                                   */
729         int active_fds; /* number of user-space descriptors using this
730                          interface, which is equal to the number of
731                          struct netmap_if objs in the mapped region. */
732
733         u_int num_rx_rings; /* number of adapter receive rings */
734         u_int num_tx_rings; /* number of adapter transmit rings */
735         u_int num_host_rx_rings; /* number of host receive rings */
736         u_int num_host_tx_rings; /* number of host transmit rings */
737
738         u_int num_tx_desc;  /* number of descriptor in each queue */
739         u_int num_rx_desc;
740
741         /* tx_rings and rx_rings are private but allocated as a
742          * contiguous chunk of memory. Each array has N+K entries,
743          * N for the hardware rings and K for the host rings.
744          */
745         struct netmap_kring **tx_rings; /* array of TX rings. */
746         struct netmap_kring **rx_rings; /* array of RX rings. */
747
748         void *tailroom;                /* space below the rings array */
749                                        /* (used for leases) */
750
751
752         NM_SELINFO_T si[NR_TXRX];       /* global wait queues */
753
754         /* count users of the global wait queues */
755         int si_users[NR_TXRX];
756
757         void *pdev; /* used to store pci device */
758
759         /* copy of if_qflush and if_transmit pointers, to intercept
760          * packets from the network stack when netmap is active.
761          */
762         int     (*if_transmit)(struct ifnet *, struct mbuf *);
763
764         /* copy of if_input for netmap_send_up() */
765         void     (*if_input)(struct ifnet *, struct mbuf *);
766
767         /* Back reference to the parent ifnet struct. Used for
768          * hardware ports (emulated netmap included). */
769         struct ifnet *ifp; /* adapter is ifp->if_softc */
770
771         /*---- callbacks for this netmap adapter -----*/
772         /*
773          * nm_dtor() is the cleanup routine called when destroying
774          *      the adapter.
775          *      Called with NMG_LOCK held.
776          *
777          * nm_register() is called on NIOCREGIF and close() to enter
778          *      or exit netmap mode on the NIC
779          *      Called with NNG_LOCK held.
780          *
781          * nm_txsync() pushes packets to the underlying hw/switch
782          *
783          * nm_rxsync() collects packets from the underlying hw/switch
784          *
785          * nm_config() returns configuration information from the OS
786          *      Called with NMG_LOCK held.
787          *
788          * nm_krings_create() create and init the tx_rings and
789          *      rx_rings arrays of kring structures. In particular,
790          *      set the nm_sync callbacks for each ring.
791          *      There is no need to also allocate the corresponding
792          *      netmap_rings, since netmap_mem_rings_create() will always
793          *      be called to provide the missing ones.
794          *      Called with NNG_LOCK held.
795          *
796          * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
797          *      arrays
798          *      Called with NMG_LOCK held.
799          *
800          * nm_notify() is used to act after data have become available
801          *      (or the stopped state of the ring has changed)
802          *      For hw devices this is typically a selwakeup(),
803          *      but for NIC/host ports attached to a switch (or vice-versa)
804          *      we also need to invoke the 'txsync' code downstream.
805          *      This callback pointer is actually used only to initialize
806          *      kring->nm_notify.
807          *      Return values are the same as for netmap_rx_irq().
808          */
809         void (*nm_dtor)(struct netmap_adapter *);
810
811         int (*nm_register)(struct netmap_adapter *, int onoff);
812         void (*nm_intr)(struct netmap_adapter *, int onoff);
813
814         int (*nm_txsync)(struct netmap_kring *kring, int flags);
815         int (*nm_rxsync)(struct netmap_kring *kring, int flags);
816         int (*nm_notify)(struct netmap_kring *kring, int flags);
817 #define NAF_FORCE_READ      1
818 #define NAF_FORCE_RECLAIM   2
819 #define NAF_CAN_FORWARD_DOWN 4
820         /* return configuration information */
821         int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info);
822         int (*nm_krings_create)(struct netmap_adapter *);
823         void (*nm_krings_delete)(struct netmap_adapter *);
824         /*
825          * nm_bdg_attach() initializes the na_vp field to point
826          *      to an adapter that can be attached to a VALE switch. If the
827          *      current adapter is already a VALE port, na_vp is simply a cast;
828          *      otherwise, na_vp points to a netmap_bwrap_adapter.
829          *      If applicable, this callback also initializes na_hostvp,
830          *      that can be used to connect the adapter host rings to the
831          *      switch.
832          *      Called with NMG_LOCK held.
833          *
834          * nm_bdg_ctl() is called on the actual attach/detach to/from
835          *      to/from the switch, to perform adapter-specific
836          *      initializations
837          *      Called with NMG_LOCK held.
838          */
839         int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *,
840                         struct nm_bridge *);
841         int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *);
842
843         /* adapter used to attach this adapter to a VALE switch (if any) */
844         struct netmap_vp_adapter *na_vp;
845         /* adapter used to attach the host rings of this adapter
846          * to a VALE switch (if any) */
847         struct netmap_vp_adapter *na_hostvp;
848
849         /* standard refcount to control the lifetime of the adapter
850          * (it should be equal to the lifetime of the corresponding ifp)
851          */
852         int na_refcount;
853
854         /* memory allocator (opaque)
855          * We also cache a pointer to the lut_entry for translating
856          * buffer addresses, the total number of buffers and the buffer size.
857          */
858         struct netmap_mem_d *nm_mem;
859         struct netmap_mem_d *nm_mem_prev;
860         struct netmap_lut na_lut;
861
862         /* additional information attached to this adapter
863          * by other netmap subsystems. Currently used by
864          * bwrap, LINUX/v1000 and ptnetmap
865          */
866         void *na_private;
867
868         /* array of pipes that have this adapter as a parent */
869         struct netmap_pipe_adapter **na_pipes;
870         int na_next_pipe;       /* next free slot in the array */
871         int na_max_pipes;       /* size of the array */
872
873         /* Offset of ethernet header for each packet. */
874         u_int virt_hdr_len;
875
876         /* Max number of bytes that the NIC can store in the buffer
877          * referenced by each RX descriptor. This translates to the maximum
878          * bytes that a single netmap slot can reference. Larger packets
879          * require NS_MOREFRAG support. */
880         unsigned rx_buf_maxsize;
881
882         char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */
883
884 #ifdef WITH_MONITOR
885         unsigned long   monitor_id;     /* debugging */
886 #endif
887 };
888
889 static __inline u_int
890 nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
891 {
892         return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
893 }
894
895 static __inline void
896 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
897 {
898         if (t == NR_TX)
899                 na->num_tx_desc = v;
900         else
901                 na->num_rx_desc = v;
902 }
903
904 static __inline u_int
905 nma_get_nrings(struct netmap_adapter *na, enum txrx t)
906 {
907         return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
908 }
909
910 static __inline u_int
911 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t)
912 {
913         return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings);
914 }
915
916 static __inline void
917 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
918 {
919         if (t == NR_TX)
920                 na->num_tx_rings = v;
921         else
922                 na->num_rx_rings = v;
923 }
924
925 static __inline void
926 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
927 {
928         if (t == NR_TX)
929                 na->num_host_tx_rings = v;
930         else
931                 na->num_host_rx_rings = v;
932 }
933
934 static __inline struct netmap_kring**
935 NMR(struct netmap_adapter *na, enum txrx t)
936 {
937         return (t == NR_TX ? na->tx_rings : na->rx_rings);
938 }
939
940 int nma_intr_enable(struct netmap_adapter *na, int onoff);
941
942 /*
943  * If the NIC is owned by the kernel
944  * (i.e., bridge), neither another bridge nor user can use it;
945  * if the NIC is owned by a user, only users can share it.
946  * Evaluation must be done under NMG_LOCK().
947  */
948 #define NETMAP_OWNED_BY_KERN(na)        ((na)->na_flags & NAF_BUSY)
949 #define NETMAP_OWNED_BY_ANY(na) \
950         (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
951
952 /*
953  * derived netmap adapters for various types of ports
954  */
955 struct netmap_vp_adapter {      /* VALE software port */
956         struct netmap_adapter up;
957
958         /*
959          * Bridge support:
960          *
961          * bdg_port is the port number used in the bridge;
962          * na_bdg points to the bridge this NA is attached to.
963          */
964         int bdg_port;
965         struct nm_bridge *na_bdg;
966         int retry;
967         int autodelete; /* remove the ifp on last reference */
968
969         /* Maximum Frame Size, used in bdg_mismatch_datapath() */
970         u_int mfs;
971         /* Last source MAC on this port */
972         uint64_t last_smac;
973 };
974
975
976 struct netmap_hw_adapter {      /* physical device */
977         struct netmap_adapter up;
978
979 #ifdef linux
980         struct net_device_ops nm_ndo;
981         struct ethtool_ops    nm_eto;
982 #endif
983         const struct ethtool_ops*   save_ethtool;
984
985         int (*nm_hw_register)(struct netmap_adapter *, int onoff);
986 };
987
988 #ifdef WITH_GENERIC
989 /* Mitigation support. */
990 struct nm_generic_mit {
991         struct hrtimer mit_timer;
992         int mit_pending;
993         int mit_ring_idx;  /* index of the ring being mitigated */
994         struct netmap_adapter *mit_na;  /* backpointer */
995 };
996
997 struct netmap_generic_adapter { /* emulated device */
998         struct netmap_hw_adapter up;
999
1000         /* Pointer to a previously used netmap adapter. */
1001         struct netmap_adapter *prev;
1002
1003         /* Emulated netmap adapters support:
1004          *  - save_if_input saves the if_input hook (FreeBSD);
1005          *  - mit implements rx interrupt mitigation;
1006          */
1007         void (*save_if_input)(struct ifnet *, struct mbuf *);
1008
1009         struct nm_generic_mit *mit;
1010 #ifdef linux
1011         netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
1012 #endif
1013         /* Is the adapter able to use multiple RX slots to scatter
1014          * each packet pushed up by the driver? */
1015         int rxsg;
1016
1017         /* Is the transmission path controlled by a netmap-aware
1018          * device queue (i.e. qdisc on linux)? */
1019         int txqdisc;
1020 };
1021 #endif  /* WITH_GENERIC */
1022
1023 static __inline u_int
1024 netmap_real_rings(struct netmap_adapter *na, enum txrx t)
1025 {
1026         return nma_get_nrings(na, t) +
1027                 !!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t);
1028 }
1029
1030 /* account for fake rings */
1031 static __inline u_int
1032 netmap_all_rings(struct netmap_adapter *na, enum txrx t)
1033 {
1034         return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t));
1035 }
1036
1037 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na,
1038                 struct nm_bridge *);
1039 struct nm_bdg_polling_state;
1040 /*
1041  * Bridge wrapper for non VALE ports attached to a VALE switch.
1042  *
1043  * The real device must already have its own netmap adapter (hwna).
1044  * The bridge wrapper and the hwna adapter share the same set of
1045  * netmap rings and buffers, but they have two separate sets of
1046  * krings descriptors, with tx/rx meanings swapped:
1047  *
1048  *                                  netmap
1049  *           bwrap     krings       rings      krings      hwna
1050  *         +------+   +------+     +-----+    +------+   +------+
1051  *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
1052  *         |      |   +------+ \ / +-----+    +------+   |      |
1053  *         |      |             X                        |      |
1054  *         |      |            / \                       |      |
1055  *         |      |   +------+/   \+-----+    +------+   |      |
1056  *         |rx_rings->|      |     |     |----|      |<-rx_rings|
1057  *         |      |   +------+     +-----+    +------+   |      |
1058  *         +------+                                      +------+
1059  *
1060  * - packets coming from the bridge go to the brwap rx rings,
1061  *   which are also the hwna tx rings.  The bwrap notify callback
1062  *   will then complete the hwna tx (see netmap_bwrap_notify).
1063  *
1064  * - packets coming from the outside go to the hwna rx rings,
1065  *   which are also the bwrap tx rings.  The (overwritten) hwna
1066  *   notify method will then complete the bridge tx
1067  *   (see netmap_bwrap_intr_notify).
1068  *
1069  *   The bridge wrapper may optionally connect the hwna 'host' rings
1070  *   to the bridge. This is done by using a second port in the
1071  *   bridge and connecting it to the 'host' netmap_vp_adapter
1072  *   contained in the netmap_bwrap_adapter. The brwap host adapter
1073  *   cross-links the hwna host rings in the same way as shown above.
1074  *
1075  * - packets coming from the bridge and directed to the host stack
1076  *   are handled by the bwrap host notify callback
1077  *   (see netmap_bwrap_host_notify)
1078  *
1079  * - packets coming from the host stack are still handled by the
1080  *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
1081  *   but are diverted to the host adapter depending on the ring number.
1082  *
1083  */
1084 struct netmap_bwrap_adapter {
1085         struct netmap_vp_adapter up;
1086         struct netmap_vp_adapter host;  /* for host rings */
1087         struct netmap_adapter *hwna;    /* the underlying device */
1088
1089         /*
1090          * When we attach a physical interface to the bridge, we
1091          * allow the controlling process to terminate, so we need
1092          * a place to store the n_detmap_priv_d data structure.
1093          * This is only done when physical interfaces
1094          * are attached to a bridge.
1095          */
1096         struct netmap_priv_d *na_kpriv;
1097         struct nm_bdg_polling_state *na_polling_state;
1098         /* we overwrite the hwna->na_vp pointer, so we save
1099          * here its original value, to be restored at detach
1100          */
1101         struct netmap_vp_adapter *saved_na_vp;
1102 };
1103 int nm_bdg_polling(struct nmreq_header *hdr);
1104
1105 #ifdef WITH_VALE
1106 int netmap_vale_attach(struct nmreq_header *hdr, void *auth_token);
1107 int netmap_vale_detach(struct nmreq_header *hdr, void *auth_token);
1108 int netmap_vale_list(struct nmreq_header *hdr);
1109 int netmap_vi_create(struct nmreq_header *hdr, int);
1110 int nm_vi_create(struct nmreq_header *);
1111 int nm_vi_destroy(const char *name);
1112 #else /* !WITH_VALE */
1113 #define netmap_vi_create(hdr, a) (EOPNOTSUPP)
1114 #endif /* WITH_VALE */
1115
1116 #ifdef WITH_PIPES
1117
1118 #define NM_MAXPIPES     64      /* max number of pipes per adapter */
1119
1120 struct netmap_pipe_adapter {
1121         /* pipe identifier is up.name */
1122         struct netmap_adapter up;
1123
1124 #define NM_PIPE_ROLE_MASTER     0x1
1125 #define NM_PIPE_ROLE_SLAVE      0x2
1126         int role;       /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */
1127
1128         struct netmap_adapter *parent; /* adapter that owns the memory */
1129         struct netmap_pipe_adapter *peer; /* the other end of the pipe */
1130         int peer_ref;           /* 1 iff we are holding a ref to the peer */
1131         struct ifnet *parent_ifp;       /* maybe null */
1132
1133         u_int parent_slot; /* index in the parent pipe array */
1134 };
1135
1136 #endif /* WITH_PIPES */
1137
1138 #ifdef WITH_NMNULL
1139 struct netmap_null_adapter {
1140         struct netmap_adapter up;
1141 };
1142 #endif /* WITH_NMNULL */
1143
1144
1145 /* return slots reserved to rx clients; used in drivers */
1146 static inline uint32_t
1147 nm_kr_rxspace(struct netmap_kring *k)
1148 {
1149         int space = k->nr_hwtail - k->nr_hwcur;
1150         if (space < 0)
1151                 space += k->nkr_num_slots;
1152         ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
1153
1154         return space;
1155 }
1156
1157 /* return slots reserved to tx clients */
1158 #define nm_kr_txspace(_k) nm_kr_rxspace(_k)
1159
1160
1161 /* True if no space in the tx ring, only valid after txsync_prologue */
1162 static inline int
1163 nm_kr_txempty(struct netmap_kring *kring)
1164 {
1165         return kring->rhead == kring->nr_hwtail;
1166 }
1167
1168 /* True if no more completed slots in the rx ring, only valid after
1169  * rxsync_prologue */
1170 #define nm_kr_rxempty(_k)       nm_kr_txempty(_k)
1171
1172 /*
1173  * protect against multiple threads using the same ring.
1174  * also check that the ring has not been stopped or locked
1175  */
1176 #define NM_KR_BUSY      1       /* some other thread is syncing the ring */
1177 #define NM_KR_STOPPED   2       /* unbounded stop (ifconfig down or driver unload) */
1178 #define NM_KR_LOCKED    3       /* bounded, brief stop for mutual exclusion */
1179
1180
1181 /* release the previously acquired right to use the *sync() methods of the ring */
1182 static __inline void nm_kr_put(struct netmap_kring *kr)
1183 {
1184         NM_ATOMIC_CLEAR(&kr->nr_busy);
1185 }
1186
1187
1188 /* true if the ifp that backed the adapter has disappeared (e.g., the
1189  * driver has been unloaded)
1190  */
1191 static inline int nm_iszombie(struct netmap_adapter *na);
1192
1193 /* try to obtain exclusive right to issue the *sync() operations on the ring.
1194  * The right is obtained and must be later relinquished via nm_kr_put() if and
1195  * only if nm_kr_tryget() returns 0.
1196  * If can_sleep is 1 there are only two other possible outcomes:
1197  * - the function returns NM_KR_BUSY
1198  * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr
1199  *   (if non-null)
1200  * In both cases the caller will typically skip the ring, possibly collecting
1201  * errors along the way.
1202  * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep.
1203  * In the latter case, the function may also return NM_KR_LOCKED and leave *perr
1204  * untouched: ideally, the caller should try again at a later time.
1205  */
1206 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr)
1207 {
1208         int busy = 1, stopped;
1209         /* check a first time without taking the lock
1210          * to avoid starvation for nm_kr_get()
1211          */
1212 retry:
1213         stopped = kr->nkr_stopped;
1214         if (unlikely(stopped)) {
1215                 goto stop;
1216         }
1217         busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy);
1218         /* we should not return NM_KR_BUSY if the ring was
1219          * actually stopped, so check another time after
1220          * the barrier provided by the atomic operation
1221          */
1222         stopped = kr->nkr_stopped;
1223         if (unlikely(stopped)) {
1224                 goto stop;
1225         }
1226
1227         if (unlikely(nm_iszombie(kr->na))) {
1228                 stopped = NM_KR_STOPPED;
1229                 goto stop;
1230         }
1231
1232         return unlikely(busy) ? NM_KR_BUSY : 0;
1233
1234 stop:
1235         if (!busy)
1236                 nm_kr_put(kr);
1237         if (stopped == NM_KR_STOPPED) {
1238 /* if POLLERR is defined we want to use it to simplify netmap_poll().
1239  * Otherwise, any non-zero value will do.
1240  */
1241 #ifdef POLLERR
1242 #define NM_POLLERR POLLERR
1243 #else
1244 #define NM_POLLERR 1
1245 #endif /* POLLERR */
1246                 if (perr)
1247                         *perr |= NM_POLLERR;
1248 #undef NM_POLLERR
1249         } else if (can_sleep) {
1250                 tsleep(kr, 0, "NM_KR_TRYGET", 4);
1251                 goto retry;
1252         }
1253         return stopped;
1254 }
1255
1256 /* put the ring in the 'stopped' state and wait for the current user (if any) to
1257  * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED
1258  */
1259 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped)
1260 {
1261         kr->nkr_stopped = stopped;
1262         while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
1263                 tsleep(kr, 0, "NM_KR_GET", 4);
1264 }
1265
1266 /* restart a ring after a stop */
1267 static __inline void nm_kr_start(struct netmap_kring *kr)
1268 {
1269         kr->nkr_stopped = 0;
1270         nm_kr_put(kr);
1271 }
1272
1273
1274 /*
1275  * The following functions are used by individual drivers to
1276  * support netmap operation.
1277  *
1278  * netmap_attach() initializes a struct netmap_adapter, allocating the
1279  *      struct netmap_ring's and the struct selinfo.
1280  *
1281  * netmap_detach() frees the memory allocated by netmap_attach().
1282  *
1283  * netmap_transmit() replaces the if_transmit routine of the interface,
1284  *      and is used to intercept packets coming from the stack.
1285  *
1286  * netmap_load_map/netmap_reload_map are helper routines to set/reset
1287  *      the dmamap for a packet buffer
1288  *
1289  * netmap_reset() is a helper routine to be called in the hw driver
1290  *      when reinitializing a ring. It should not be called by
1291  *      virtual ports (vale, pipes, monitor)
1292  */
1293 int netmap_attach(struct netmap_adapter *);
1294 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg);
1295 void netmap_detach(struct ifnet *);
1296 int netmap_transmit(struct ifnet *, struct mbuf *);
1297 struct netmap_slot *netmap_reset(struct netmap_adapter *na,
1298         enum txrx tx, u_int n, u_int new_cur);
1299 int netmap_ring_reinit(struct netmap_kring *);
1300 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *);
1301
1302 /* Return codes for netmap_*x_irq. */
1303 enum {
1304         /* Driver should do normal interrupt processing, e.g. because
1305          * the interface is not in netmap mode. */
1306         NM_IRQ_PASS = 0,
1307         /* Port is in netmap mode, and the interrupt work has been
1308          * completed. The driver does not have to notify netmap
1309          * again before the next interrupt. */
1310         NM_IRQ_COMPLETED = -1,
1311         /* Port is in netmap mode, but the interrupt work has not been
1312          * completed. The driver has to make sure netmap will be
1313          * notified again soon, even if no more interrupts come (e.g.
1314          * on Linux the driver should not call napi_complete()). */
1315         NM_IRQ_RESCHED = -2,
1316 };
1317
1318 /* default functions to handle rx/tx interrupts */
1319 int netmap_rx_irq(struct ifnet *, u_int, u_int *);
1320 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
1321 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done);
1322
1323
1324 #ifdef WITH_VALE
1325 /* functions used by external modules to interface with VALE */
1326 #define netmap_vp_to_ifp(_vp)   ((_vp)->up.ifp)
1327 #define netmap_ifp_to_vp(_ifp)  (NA(_ifp)->na_vp)
1328 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
1329 #define netmap_bdg_idx(_vp)     ((_vp)->bdg_port)
1330 const char *netmap_bdg_name(struct netmap_vp_adapter *);
1331 #else /* !WITH_VALE */
1332 #define netmap_vp_to_ifp(_vp)   NULL
1333 #define netmap_ifp_to_vp(_ifp)  NULL
1334 #define netmap_ifp_to_host_vp(_ifp) NULL
1335 #define netmap_bdg_idx(_vp)     -1
1336 #endif /* WITH_VALE */
1337
1338 static inline int
1339 nm_netmap_on(struct netmap_adapter *na)
1340 {
1341         return na && na->na_flags & NAF_NETMAP_ON;
1342 }
1343
1344 static inline int
1345 nm_native_on(struct netmap_adapter *na)
1346 {
1347         return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
1348 }
1349
1350 static inline int
1351 nm_iszombie(struct netmap_adapter *na)
1352 {
1353         return na == NULL || (na->na_flags & NAF_ZOMBIE);
1354 }
1355
1356 static inline void
1357 nm_update_hostrings_mode(struct netmap_adapter *na)
1358 {
1359         /* Process nr_mode and nr_pending_mode for host rings. */
1360         na->tx_rings[na->num_tx_rings]->nr_mode =
1361                 na->tx_rings[na->num_tx_rings]->nr_pending_mode;
1362         na->rx_rings[na->num_rx_rings]->nr_mode =
1363                 na->rx_rings[na->num_rx_rings]->nr_pending_mode;
1364 }
1365
1366 void nm_set_native_flags(struct netmap_adapter *);
1367 void nm_clear_native_flags(struct netmap_adapter *);
1368
1369 /*
1370  * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap
1371  * kthreads.
1372  * We need netmap_ring* parameter, because in ptnetmap it is decoupled
1373  * from host kring.
1374  * The user-space ring pointers (head/cur/tail) are shared through
1375  * CSB between host and guest.
1376  */
1377
1378 /*
1379  * validates parameters in the ring/kring, returns a value for head
1380  * If any error, returns ring_size to force a reinit.
1381  */
1382 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *);
1383
1384
1385 /*
1386  * validates parameters in the ring/kring, returns a value for head
1387  * If any error, returns ring_size lim to force a reinit.
1388  */
1389 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *);
1390
1391
1392 /* check/fix address and len in tx rings */
1393 #if 1 /* debug version */
1394 #define NM_CHECK_ADDR_LEN(_na, _a, _l)  do {                            \
1395         if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {  \
1396                 RD(5, "bad addr/len ring %d slot %d idx %d len %d",     \
1397                         kring->ring_id, nm_i, slot->buf_idx, len);      \
1398                 if (_l > NETMAP_BUF_SIZE(_na))                          \
1399                         _l = NETMAP_BUF_SIZE(_na);                      \
1400         } } while (0)
1401 #else /* no debug version */
1402 #define NM_CHECK_ADDR_LEN(_na, _a, _l)  do {                            \
1403                 if (_l > NETMAP_BUF_SIZE(_na))                          \
1404                         _l = NETMAP_BUF_SIZE(_na);                      \
1405         } while (0)
1406 #endif
1407
1408
1409 /*---------------------------------------------------------------*/
1410 /*
1411  * Support routines used by netmap subsystems
1412  * (native drivers, VALE, generic, pipes, monitors, ...)
1413  */
1414
1415
1416 /* common routine for all functions that create a netmap adapter. It performs
1417  * two main tasks:
1418  * - if the na points to an ifp, mark the ifp as netmap capable
1419  *   using na as its native adapter;
1420  * - provide defaults for the setup callbacks and the memory allocator
1421  */
1422 int netmap_attach_common(struct netmap_adapter *);
1423 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1424  * coming from a struct nmreq_register
1425  */
1426 int netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode,
1427                         uint16_t nr_ringid, uint64_t nr_flags);
1428 /* update the ring parameters (number and size of tx and rx rings).
1429  * It calls the nm_config callback, if available.
1430  */
1431 int netmap_update_config(struct netmap_adapter *na);
1432 /* create and initialize the common fields of the krings array.
1433  * using the information that must be already available in the na.
1434  * tailroom can be used to request the allocation of additional
1435  * tailroom bytes after the krings array. This is used by
1436  * netmap_vp_adapter's (i.e., VALE ports) to make room for
1437  * leasing-related data structures
1438  */
1439 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1440 /* deletes the kring array of the adapter. The array must have
1441  * been created using netmap_krings_create
1442  */
1443 void netmap_krings_delete(struct netmap_adapter *na);
1444
1445 int netmap_hw_krings_create(struct netmap_adapter *na);
1446 void netmap_hw_krings_delete(struct netmap_adapter *na);
1447
1448 /* set the stopped/enabled status of ring
1449  * When stopping, they also wait for all current activity on the ring to
1450  * terminate. The status change is then notified using the na nm_notify
1451  * callback.
1452  */
1453 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1454 /* set the stopped/enabled status of all rings of the adapter. */
1455 void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1456 /* convenience wrappers for netmap_set_all_rings */
1457 void netmap_disable_all_rings(struct ifnet *);
1458 void netmap_enable_all_rings(struct ifnet *);
1459
1460 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu);
1461 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1462                 uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags);
1463 void netmap_do_unregif(struct netmap_priv_d *priv);
1464
1465 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1466 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1467                 struct ifnet **ifp, struct netmap_mem_d *nmd, int create);
1468 void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp);
1469 int netmap_get_hw_na(struct ifnet *ifp,
1470                 struct netmap_mem_d *nmd, struct netmap_adapter **na);
1471
1472 #ifdef WITH_VALE
1473 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1474                 struct netmap_vp_adapter *, void *private_data);
1475
1476 /* these are redefined in case of no VALE support */
1477 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1478                 struct netmap_mem_d *nmd, int create);
1479 void *netmap_vale_create(const char *bdg_name, int *return_status);
1480 int netmap_vale_destroy(const char *bdg_name, void *auth_token);
1481
1482 #else /* !WITH_VALE */
1483 #define netmap_bdg_learning(_1, _2, _3, _4)     0
1484 #define netmap_get_vale_na(_1, _2, _3, _4)      0
1485 #define netmap_bdg_create(_1, _2)       NULL
1486 #define netmap_bdg_destroy(_1, _2)      0
1487 #endif /* !WITH_VALE */
1488
1489 #ifdef WITH_PIPES
1490 /* max number of pipes per device */
1491 #define NM_MAXPIPES     64      /* XXX this should probably be a sysctl */
1492 void netmap_pipe_dealloc(struct netmap_adapter *);
1493 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1494                         struct netmap_mem_d *nmd, int create);
1495 #else /* !WITH_PIPES */
1496 #define NM_MAXPIPES     0
1497 #define netmap_pipe_alloc(_1, _2)       0
1498 #define netmap_pipe_dealloc(_1)
1499 #define netmap_get_pipe_na(hdr, _2, _3, _4)     \
1500         ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0)
1501 #endif
1502
1503 #ifdef WITH_MONITOR
1504 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1505                 struct netmap_mem_d *nmd, int create);
1506 void netmap_monitor_stop(struct netmap_adapter *na);
1507 #else
1508 #define netmap_get_monitor_na(hdr, _2, _3, _4) \
1509         (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1510 #endif
1511
1512 #ifdef WITH_NMNULL
1513 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1514                 struct netmap_mem_d *nmd, int create);
1515 #else /* !WITH_NMNULL */
1516 #define netmap_get_null_na(hdr, _2, _3, _4) \
1517         (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1518 #endif /* WITH_NMNULL */
1519
1520 #ifdef CONFIG_NET_NS
1521 struct net *netmap_bns_get(void);
1522 void netmap_bns_put(struct net *);
1523 void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1524 #else
1525 extern struct nm_bridge *nm_bridges;
1526 #define netmap_bns_get()
1527 #define netmap_bns_put(_1)
1528 #define netmap_bns_getbridges(b, n) \
1529         do { *b = nm_bridges; *n = NM_BRIDGES; } while (0)
1530 #endif
1531
1532 /* Various prototypes */
1533 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td);
1534 int netmap_init(void);
1535 void netmap_fini(void);
1536 int netmap_get_memory(struct netmap_priv_d* p);
1537 void netmap_dtor(void *data);
1538
1539 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1540                 struct thread *, int nr_body_is_user);
1541 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1542                         struct thread *td);
1543 size_t nmreq_size_by_type(uint16_t nr_reqtype);
1544
1545 /* netmap_adapter creation/destruction */
1546
1547 // #define NM_DEBUG_PUTGET 1
1548
1549 #ifdef NM_DEBUG_PUTGET
1550
1551 #define NM_DBG(f) __##f
1552
1553 void __netmap_adapter_get(struct netmap_adapter *na);
1554
1555 #define netmap_adapter_get(na)                          \
1556         do {                                            \
1557                 struct netmap_adapter *__na = na;       \
1558                 D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);       \
1559                 __netmap_adapter_get(__na);             \
1560         } while (0)
1561
1562 int __netmap_adapter_put(struct netmap_adapter *na);
1563
1564 #define netmap_adapter_put(na)                          \
1565         ({                                              \
1566                 struct netmap_adapter *__na = na;       \
1567                 D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);       \
1568                 __netmap_adapter_put(__na);             \
1569         })
1570
1571 #else /* !NM_DEBUG_PUTGET */
1572
1573 #define NM_DBG(f) f
1574 void netmap_adapter_get(struct netmap_adapter *na);
1575 int netmap_adapter_put(struct netmap_adapter *na);
1576
1577 #endif /* !NM_DEBUG_PUTGET */
1578
1579
1580 /*
1581  * module variables
1582  */
1583 #define NETMAP_BUF_BASE(_na)    ((_na)->na_lut.lut[0].vaddr)
1584 #define NETMAP_BUF_SIZE(_na)    ((_na)->na_lut.objsize)
1585 extern int netmap_no_pendintr;
1586 extern int netmap_mitigate;
1587 extern int netmap_verbose;
1588 #ifdef CONFIG_NETMAP_DEBUG
1589 extern int netmap_debug;                /* for debugging */
1590 #else /* !CONFIG_NETMAP_DEBUG */
1591 #define netmap_debug (0)
1592 #endif /* !CONFIG_NETMAP_DEBUG */
1593 enum {                                  /* debug flags */
1594         NM_DEBUG_ON = 1,                /* generic debug messsages */
1595         NM_DEBUG_HOST = 0x2,            /* debug host stack */
1596         NM_DEBUG_RXSYNC = 0x10,         /* debug on rxsync/txsync */
1597         NM_DEBUG_TXSYNC = 0x20,
1598         NM_DEBUG_RXINTR = 0x100,        /* debug on rx/tx intr (driver) */
1599         NM_DEBUG_TXINTR = 0x200,
1600         NM_DEBUG_NIC_RXSYNC = 0x1000,   /* debug on rx/tx intr (driver) */
1601         NM_DEBUG_NIC_TXSYNC = 0x2000,
1602         NM_DEBUG_MEM = 0x4000,          /* verbose memory allocations/deallocations */
1603         NM_DEBUG_VALE = 0x8000,         /* debug messages from memory allocators */
1604         NM_DEBUG_BDG = NM_DEBUG_VALE,
1605 };
1606
1607 extern int netmap_txsync_retry;
1608 extern int netmap_flags;
1609 extern int netmap_generic_hwcsum;
1610 extern int netmap_generic_mit;
1611 extern int netmap_generic_ringsize;
1612 extern int netmap_generic_rings;
1613 #ifdef linux
1614 extern int netmap_generic_txqdisc;
1615 #endif
1616
1617 /*
1618  * NA returns a pointer to the struct netmap adapter from the ifp.
1619  * WNA is os-specific and must be defined in glue code.
1620  */
1621 #define NA(_ifp)        ((struct netmap_adapter *)WNA(_ifp))
1622
1623 /*
1624  * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA
1625  * based on the WNA field.
1626  * Glue code may override this by defining its own NM_ATTACH_NA
1627  */
1628 #ifndef NM_ATTACH_NA
1629 /*
1630  * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we
1631  * overload another pointer in the netdev.
1632  *
1633  * We check if NA(ifp) is set and its first element has a related
1634  * magic value. The capenable is within the struct netmap_adapter.
1635  */
1636 #define NETMAP_MAGIC    0x52697a7a
1637
1638 #define NM_NA_VALID(ifp)        (NA(ifp) &&             \
1639         ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1640
1641 #define NM_ATTACH_NA(ifp, na) do {                                      \
1642         WNA(ifp) = na;                                                  \
1643         if (NA(ifp))                                                    \
1644                 NA(ifp)->magic =                                        \
1645                         ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC;  \
1646 } while(0)
1647 #define NM_RESTORE_NA(ifp, na)  WNA(ifp) = na;
1648
1649 #define NM_DETACH_NA(ifp)       do { WNA(ifp) = NULL; } while (0)
1650 #define NM_NA_CLASH(ifp)        (NA(ifp) && !NM_NA_VALID(ifp))
1651 #endif /* !NM_ATTACH_NA */
1652
1653
1654 #define NM_IS_NATIVE(ifp)       (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor)
1655
1656 #if defined(__FreeBSD__)
1657
1658 /* Assigns the device IOMMU domain to an allocator.
1659  * Returns -ENOMEM in case the domain is different */
1660 #define nm_iommu_group_id(dev) (0)
1661
1662 /* Callback invoked by the dma machinery after a successful dmamap_load */
1663 static void netmap_dmamap_cb(__unused void *arg,
1664     __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1665 {
1666 }
1667
1668 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1669  * XXX can we do it without a callback ?
1670  */
1671 static inline int
1672 netmap_load_map(struct netmap_adapter *na,
1673         bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1674 {
1675         if (map)
1676                 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1677                     netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1678         return 0;
1679 }
1680
1681 static inline void
1682 netmap_unload_map(struct netmap_adapter *na,
1683         bus_dma_tag_t tag, bus_dmamap_t map)
1684 {
1685         if (map)
1686                 bus_dmamap_unload(tag, map);
1687 }
1688
1689 #define netmap_sync_map(na, tag, map, sz, t)
1690
1691 /* update the map when a buffer changes. */
1692 static inline void
1693 netmap_reload_map(struct netmap_adapter *na,
1694         bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1695 {
1696         if (map) {
1697                 bus_dmamap_unload(tag, map);
1698                 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1699                     netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1700         }
1701 }
1702
1703 #elif defined(_WIN32)
1704
1705 #else /* linux */
1706
1707 int nm_iommu_group_id(bus_dma_tag_t dev);
1708 #include <linux/dma-mapping.h>
1709
1710 /*
1711  * on linux we need
1712  *      dma_map_single(&pdev->dev, virt_addr, len, direction)
1713  *      dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction)
1714  */
1715 #if 0
1716         struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1717         /* set time_stamp *before* dma to help avoid a possible race */
1718         buffer_info->time_stamp = jiffies;
1719         buffer_info->mapped_as_page = false;
1720         buffer_info->length = len;
1721         //buffer_info->next_to_watch = l;
1722         /* reload dma map */
1723         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1724                         NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1725         buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1726                         addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1727
1728         if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1729                 D("dma mapping error");
1730                 /* goto dma_error; See e1000_put_txbuf() */
1731                 /* XXX reset */
1732         }
1733         tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1734
1735 #endif
1736
1737 static inline int
1738 netmap_load_map(struct netmap_adapter *na,
1739         bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size)
1740 {
1741         if (map) {
1742                 *map = dma_map_single(na->pdev, buf, size,
1743                                       DMA_BIDIRECTIONAL);
1744                 if (dma_mapping_error(na->pdev, *map)) {
1745                         *map = 0;
1746                         return ENOMEM;
1747                 }
1748         }
1749         return 0;
1750 }
1751
1752 static inline void
1753 netmap_unload_map(struct netmap_adapter *na,
1754         bus_dma_tag_t tag, bus_dmamap_t map, u_int sz)
1755 {
1756         if (*map) {
1757                 dma_unmap_single(na->pdev, *map, sz,
1758                                  DMA_BIDIRECTIONAL);
1759         }
1760 }
1761
1762 #ifdef NETMAP_LINUX_HAVE_DMASYNC
1763 static inline void
1764 netmap_sync_map_cpu(struct netmap_adapter *na,
1765         bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1766 {
1767         if (*map) {
1768                 dma_sync_single_for_cpu(na->pdev, *map, sz,
1769                         (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1770         }
1771 }
1772
1773 static inline void
1774 netmap_sync_map_dev(struct netmap_adapter *na,
1775         bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1776 {
1777         if (*map) {
1778                 dma_sync_single_for_device(na->pdev, *map, sz,
1779                         (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1780         }
1781 }
1782
1783 static inline void
1784 netmap_reload_map(struct netmap_adapter *na,
1785         bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1786 {
1787         u_int sz = NETMAP_BUF_SIZE(na);
1788
1789         if (*map) {
1790                 dma_unmap_single(na->pdev, *map, sz,
1791                                 DMA_BIDIRECTIONAL);
1792         }
1793
1794         *map = dma_map_single(na->pdev, buf, sz,
1795                                 DMA_BIDIRECTIONAL);
1796 }
1797 #else /* !NETMAP_LINUX_HAVE_DMASYNC */
1798 #define netmap_sync_map_cpu(na, tag, map, sz, t)
1799 #define netmap_sync_map_dev(na, tag, map, sz, t)
1800 #endif /* NETMAP_LINUX_HAVE_DMASYNC */
1801
1802 #endif /* linux */
1803
1804
1805 /*
1806  * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1807  */
1808 static inline int
1809 netmap_idx_n2k(struct netmap_kring *kr, int idx)
1810 {
1811         int n = kr->nkr_num_slots;
1812
1813         if (likely(kr->nkr_hwofs == 0)) {
1814                 return idx;
1815         }
1816
1817         idx += kr->nkr_hwofs;
1818         if (idx < 0)
1819                 return idx + n;
1820         else if (idx < n)
1821                 return idx;
1822         else
1823                 return idx - n;
1824 }
1825
1826
1827 static inline int
1828 netmap_idx_k2n(struct netmap_kring *kr, int idx)
1829 {
1830         int n = kr->nkr_num_slots;
1831
1832         if (likely(kr->nkr_hwofs == 0)) {
1833                 return idx;
1834         }
1835
1836         idx -= kr->nkr_hwofs;
1837         if (idx < 0)
1838                 return idx + n;
1839         else if (idx < n)
1840                 return idx;
1841         else
1842                 return idx - n;
1843 }
1844
1845
1846 /* Entries of the look-up table. */
1847 #ifdef __FreeBSD__
1848 struct lut_entry {
1849         void *vaddr;            /* virtual address. */
1850         vm_paddr_t paddr;       /* physical address. */
1851 };
1852 #else /* linux & _WIN32 */
1853 /* dma-mapping in linux can assign a buffer a different address
1854  * depending on the device, so we need to have a separate
1855  * physical-address look-up table for each na.
1856  * We can still share the vaddrs, though, therefore we split
1857  * the lut_entry structure.
1858  */
1859 struct lut_entry {
1860         void *vaddr;            /* virtual address. */
1861 };
1862
1863 struct plut_entry {
1864         vm_paddr_t paddr;       /* physical address. */
1865 };
1866 #endif /* linux & _WIN32 */
1867
1868 struct netmap_obj_pool;
1869
1870 /*
1871  * NMB return the virtual address of a buffer (buffer 0 on bad index)
1872  * PNMB also fills the physical address
1873  */
1874 static inline void *
1875 NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1876 {
1877         struct lut_entry *lut = na->na_lut.lut;
1878         uint32_t i = slot->buf_idx;
1879         return (unlikely(i >= na->na_lut.objtotal)) ?
1880                 lut[0].vaddr : lut[i].vaddr;
1881 }
1882
1883 static inline void *
1884 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1885 {
1886         uint32_t i = slot->buf_idx;
1887         struct lut_entry *lut = na->na_lut.lut;
1888         struct plut_entry *plut = na->na_lut.plut;
1889         void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1890
1891 #ifdef _WIN32
1892         *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart;
1893 #else
1894         *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr;
1895 #endif
1896         return ret;
1897 }
1898
1899
1900 /*
1901  * Structure associated to each netmap file descriptor.
1902  * It is created on open and left unbound (np_nifp == NULL).
1903  * A successful NIOCREGIF will set np_nifp and the first few fields;
1904  * this is protected by a global lock (NMG_LOCK) due to low contention.
1905  *
1906  * np_refs counts the number of references to the structure: one for the fd,
1907  * plus (on FreeBSD) one for each active mmap which we track ourselves
1908  * (linux automatically tracks them, but FreeBSD does not).
1909  * np_refs is protected by NMG_LOCK.
1910  *
1911  * Read access to the structure is lock free, because ni_nifp once set
1912  * can only go to 0 when nobody is using the entry anymore. Readers
1913  * must check that np_nifp != NULL before using the other fields.
1914  */
1915 struct netmap_priv_d {
1916         struct netmap_if * volatile np_nifp;    /* netmap if descriptor. */
1917
1918         struct netmap_adapter   *np_na;
1919         struct ifnet    *np_ifp;
1920         uint32_t        np_flags;       /* from the ioctl */
1921         u_int           np_qfirst[NR_TXRX],
1922                         np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
1923         uint16_t        np_txpoll;
1924         uint16_t        np_kloop_state; /* use with NMG_LOCK held */
1925 #define NM_SYNC_KLOOP_RUNNING   (1 << 0)
1926 #define NM_SYNC_KLOOP_STOPPING  (1 << 1)
1927         int             np_sync_flags; /* to be passed to nm_sync */
1928
1929         int             np_refs;        /* use with NMG_LOCK held */
1930
1931         /* pointers to the selinfo to be used for selrecord.
1932          * Either the local or the global one depending on the
1933          * number of rings.
1934          */
1935         NM_SELINFO_T *np_si[NR_TXRX];
1936
1937         /* In the optional CSB mode, the user must specify the start address
1938          * of two arrays of Communication Status Block (CSB) entries, for the
1939          * two directions (kernel read application write, and kernel write
1940          * application read).
1941          * The number of entries must agree with the number of rings bound to
1942          * the netmap file descriptor. The entries corresponding to the TX
1943          * rings are laid out before the ones corresponding to the RX rings.
1944          *
1945          * Array of CSB entries for application --> kernel communication
1946          * (N entries). */
1947         struct nm_csb_atok      *np_csb_atok_base;
1948         /* Array of CSB entries for kernel --> application communication
1949          * (N entries). */
1950         struct nm_csb_ktoa      *np_csb_ktoa_base;
1951
1952 #ifdef linux
1953         struct file     *np_filp;  /* used by sync kloop */
1954 #endif /* linux */
1955 };
1956
1957 struct netmap_priv_d *netmap_priv_new(void);
1958 void netmap_priv_delete(struct netmap_priv_d *);
1959
1960 static inline int nm_kring_pending(struct netmap_priv_d *np)
1961 {
1962         struct netmap_adapter *na = np->np_na;
1963         enum txrx t;
1964         int i;
1965
1966         for_rx_tx(t) {
1967                 for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) {
1968                         struct netmap_kring *kring = NMR(na, t)[i];
1969                         if (kring->nr_mode != kring->nr_pending_mode) {
1970                                 return 1;
1971                         }
1972                 }
1973         }
1974         return 0;
1975 }
1976
1977 /* call with NMG_LOCK held */
1978 static __inline int
1979 nm_si_user(struct netmap_priv_d *priv, enum txrx t)
1980 {
1981         return (priv->np_na != NULL &&
1982                 (priv->np_qlast[t] - priv->np_qfirst[t] > 1));
1983 }
1984
1985 #ifdef WITH_PIPES
1986 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags);
1987 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags);
1988 #endif /* WITH_PIPES */
1989
1990 #ifdef WITH_MONITOR
1991
1992 struct netmap_monitor_adapter {
1993         struct netmap_adapter up;
1994
1995         struct netmap_priv_d priv;
1996         uint32_t flags;
1997 };
1998
1999 #endif /* WITH_MONITOR */
2000
2001
2002 #ifdef WITH_GENERIC
2003 /*
2004  * generic netmap emulation for devices that do not have
2005  * native netmap support.
2006  */
2007 int generic_netmap_attach(struct ifnet *ifp);
2008 int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
2009
2010 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept);
2011 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept);
2012
2013 int na_is_generic(struct netmap_adapter *na);
2014
2015 /*
2016  * the generic transmit routine is passed a structure to optionally
2017  * build a queue of descriptors, in an OS-specific way.
2018  * The payload is at addr, if non-null, and the routine should send or queue
2019  * the packet, returning 0 if successful, 1 on failure.
2020  *
2021  * At the end, if head is non-null, there will be an additional call
2022  * to the function with addr = NULL; this should tell the OS-specific
2023  * routine to send the queue and free any resources. Failure is ignored.
2024  */
2025 struct nm_os_gen_arg {
2026         struct ifnet *ifp;
2027         void *m;        /* os-specific mbuf-like object */
2028         void *head, *tail; /* tailq, if the OS-specific routine needs to build one */
2029         void *addr;     /* payload of current packet */
2030         u_int len;      /* packet length */
2031         u_int ring_nr;  /* packet length */
2032         u_int qevent;   /* in txqdisc mode, place an event on this mbuf */
2033 };
2034
2035 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *);
2036 int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
2037 void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
2038 void nm_os_generic_set_features(struct netmap_generic_adapter *gna);
2039
2040 static inline struct ifnet*
2041 netmap_generic_getifp(struct netmap_generic_adapter *gna)
2042 {
2043         if (gna->prev)
2044             return gna->prev->ifp;
2045
2046         return gna->up.up.ifp;
2047 }
2048
2049 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done);
2050
2051 //#define RATE_GENERIC  /* Enables communication statistics for generic. */
2052 #ifdef RATE_GENERIC
2053 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
2054 #else
2055 #define generic_rate(txp, txs, txi, rxp, rxs, rxi)
2056 #endif
2057
2058 /*
2059  * netmap_mitigation API. This is used by the generic adapter
2060  * to reduce the number of interrupt requests/selwakeup
2061  * to clients on incoming packets.
2062  */
2063 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx,
2064                                 struct netmap_adapter *na);
2065 void nm_os_mitigation_start(struct nm_generic_mit *mit);
2066 void nm_os_mitigation_restart(struct nm_generic_mit *mit);
2067 int nm_os_mitigation_active(struct nm_generic_mit *mit);
2068 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit);
2069 #else /* !WITH_GENERIC */
2070 #define generic_netmap_attach(ifp)      (EOPNOTSUPP)
2071 #define na_is_generic(na)               (0)
2072 #endif /* WITH_GENERIC */
2073
2074 /* Shared declarations for the VALE switch. */
2075
2076 /*
2077  * Each transmit queue accumulates a batch of packets into
2078  * a structure before forwarding. Packets to the same
2079  * destination are put in a list using ft_next as a link field.
2080  * ft_frags and ft_next are valid only on the first fragment.
2081  */
2082 struct nm_bdg_fwd {     /* forwarding entry for a bridge */
2083         void *ft_buf;           /* netmap or indirect buffer */
2084         uint8_t ft_frags;       /* how many fragments (only on 1st frag) */
2085         uint16_t ft_offset;     /* dst port (unused) */
2086         uint16_t ft_flags;      /* flags, e.g. indirect */
2087         uint16_t ft_len;        /* src fragment len */
2088         uint16_t ft_next;       /* next packet to same destination */
2089 };
2090
2091 /* struct 'virtio_net_hdr' from linux. */
2092 struct nm_vnet_hdr {
2093 #define VIRTIO_NET_HDR_F_NEEDS_CSUM     1       /* Use csum_start, csum_offset */
2094 #define VIRTIO_NET_HDR_F_DATA_VALID    2        /* Csum is valid */
2095     uint8_t flags;
2096 #define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
2097 #define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
2098 #define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
2099 #define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
2100 #define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
2101     uint8_t gso_type;
2102     uint16_t hdr_len;
2103     uint16_t gso_size;
2104     uint16_t csum_start;
2105     uint16_t csum_offset;
2106 };
2107
2108 #define WORST_CASE_GSO_HEADER   (14+40+60)  /* IPv6 + TCP */
2109
2110 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */
2111
2112 struct nm_iphdr {
2113         uint8_t         version_ihl;
2114         uint8_t         tos;
2115         uint16_t        tot_len;
2116         uint16_t        id;
2117         uint16_t        frag_off;
2118         uint8_t         ttl;
2119         uint8_t         protocol;
2120         uint16_t        check;
2121         uint32_t        saddr;
2122         uint32_t        daddr;
2123         /*The options start here. */
2124 };
2125
2126 struct nm_tcphdr {
2127         uint16_t        source;
2128         uint16_t        dest;
2129         uint32_t        seq;
2130         uint32_t        ack_seq;
2131         uint8_t         doff;  /* Data offset + Reserved */
2132         uint8_t         flags;
2133         uint16_t        window;
2134         uint16_t        check;
2135         uint16_t        urg_ptr;
2136 };
2137
2138 struct nm_udphdr {
2139         uint16_t        source;
2140         uint16_t        dest;
2141         uint16_t        len;
2142         uint16_t        check;
2143 };
2144
2145 struct nm_ipv6hdr {
2146         uint8_t         priority_version;
2147         uint8_t         flow_lbl[3];
2148
2149         uint16_t        payload_len;
2150         uint8_t         nexthdr;
2151         uint8_t         hop_limit;
2152
2153         uint8_t         saddr[16];
2154         uint8_t         daddr[16];
2155 };
2156
2157 /* Type used to store a checksum (in host byte order) that hasn't been
2158  * folded yet.
2159  */
2160 #define rawsum_t uint32_t
2161
2162 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
2163 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph);
2164 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
2165                       size_t datalen, uint16_t *check);
2166 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
2167                       size_t datalen, uint16_t *check);
2168 uint16_t nm_os_csum_fold(rawsum_t cur_sum);
2169
2170 void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
2171                            struct netmap_vp_adapter *dst_na,
2172                            const struct nm_bdg_fwd *ft_p,
2173                            struct netmap_ring *dst_ring,
2174                            u_int *j, u_int lim, u_int *howmany);
2175
2176 /* persistent virtual port routines */
2177 int nm_os_vi_persist(const char *, struct ifnet **);
2178 void nm_os_vi_detach(struct ifnet *);
2179 void nm_os_vi_init_index(void);
2180
2181 /*
2182  * kernel thread routines
2183  */
2184 struct nm_kctx; /* OS-specific kernel context - opaque */
2185 typedef void (*nm_kctx_worker_fn_t)(void *data);
2186
2187 /* kthread configuration */
2188 struct nm_kctx_cfg {
2189         long                    type;           /* kthread type/identifier */
2190         nm_kctx_worker_fn_t     worker_fn;      /* worker function */
2191         void                    *worker_private;/* worker parameter */
2192         int                     attach_user;    /* attach kthread to user process */
2193 };
2194 /* kthread configuration */
2195 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg,
2196                                         void *opaque);
2197 int nm_os_kctx_worker_start(struct nm_kctx *);
2198 void nm_os_kctx_worker_stop(struct nm_kctx *);
2199 void nm_os_kctx_destroy(struct nm_kctx *);
2200 void nm_os_kctx_worker_setaff(struct nm_kctx *, int);
2201 u_int nm_os_ncpus(void);
2202
2203 int netmap_sync_kloop(struct netmap_priv_d *priv,
2204                       struct nmreq_header *hdr);
2205 int netmap_sync_kloop_stop(struct netmap_priv_d *priv);
2206
2207 #ifdef WITH_PTNETMAP
2208 /* ptnetmap guest routines */
2209
2210 /*
2211  * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver
2212  */
2213 struct ptnetmap_memdev;
2214 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **,
2215                           uint64_t *);
2216 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *);
2217 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int);
2218
2219 /*
2220  * netmap adapter for guest ptnetmap ports
2221  */
2222 struct netmap_pt_guest_adapter {
2223         /* The netmap adapter to be used by netmap applications.
2224          * This field must be the first, to allow upcast. */
2225         struct netmap_hw_adapter hwup;
2226
2227         /* The netmap adapter to be used by the driver. */
2228         struct netmap_hw_adapter dr;
2229
2230         /* Reference counter to track users of backend netmap port: the
2231          * network stack and netmap clients.
2232          * Used to decide when we need (de)allocate krings/rings and
2233          * start (stop) ptnetmap kthreads. */
2234         int backend_users;
2235
2236 };
2237
2238 int netmap_pt_guest_attach(struct netmap_adapter *na,
2239                         unsigned int nifp_offset,
2240                         unsigned int memid);
2241 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok,
2242                         struct nm_csb_ktoa *ktoa,
2243                         struct netmap_kring *kring, int flags);
2244 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok,
2245                         struct nm_csb_ktoa *ktoa,
2246                         struct netmap_kring *kring, int flags);
2247 int ptnet_nm_krings_create(struct netmap_adapter *na);
2248 void ptnet_nm_krings_delete(struct netmap_adapter *na);
2249 void ptnet_nm_dtor(struct netmap_adapter *na);
2250
2251 /* Helper function wrapping nm_sync_kloop_appl_read(). */
2252 static inline void
2253 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring)
2254 {
2255         struct netmap_ring *ring = kring->ring;
2256
2257         /* Update hwcur and hwtail as known by the host. */
2258         nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur);
2259
2260         /* nm_sync_finalize */
2261         ring->tail = kring->rtail = kring->nr_hwtail;
2262 }
2263 #endif /* WITH_PTNETMAP */
2264
2265 #ifdef __FreeBSD__
2266 /*
2267  * FreeBSD mbuf allocator/deallocator in emulation mode:
2268  */
2269 #if __FreeBSD_version < 1100000
2270
2271 /*
2272  * For older versions of FreeBSD:
2273  *
2274  * We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE
2275  * so that the destructor, if invoked, will not free the packet.
2276  * In principle we should set the destructor only on demand,
2277  * but since there might be a race we better do it on allocation.
2278  * As a consequence, we also need to set the destructor or we
2279  * would leak buffers.
2280  */
2281
2282 /* mbuf destructor, also need to change the type to EXT_EXTREF,
2283  * add an M_NOFREE flag, and then clear the flag and
2284  * chain into uma_zfree(zone_pack, mf)
2285  * (or reinstall the buffer ?)
2286  */
2287 #define SET_MBUF_DESTRUCTOR(m, fn)      do {            \
2288         (m)->m_ext.ext_free = (void *)fn;       \
2289         (m)->m_ext.ext_type = EXT_EXTREF;       \
2290 } while (0)
2291
2292 static int
2293 void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2)
2294 {
2295         /* restore original mbuf */
2296         m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1;
2297         m->m_ext.ext_arg1 = NULL;
2298         m->m_ext.ext_type = EXT_PACKET;
2299         m->m_ext.ext_free = NULL;
2300         if (MBUF_REFCNT(m) == 0)
2301                 SET_MBUF_REFCNT(m, 1);
2302         uma_zfree(zone_pack, m);
2303
2304         return 0;
2305 }
2306
2307 static inline struct mbuf *
2308 nm_os_get_mbuf(struct ifnet *ifp, int len)
2309 {
2310         struct mbuf *m;
2311
2312         (void)ifp;
2313         m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2314         if (m) {
2315                 /* m_getcl() (mb_ctor_mbuf) has an assert that checks that
2316                  * M_NOFREE flag is not specified as third argument,
2317                  * so we have to set M_NOFREE after m_getcl(). */
2318                 m->m_flags |= M_NOFREE;
2319                 m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save
2320                 m->m_ext.ext_free = (void *)void_mbuf_dtor;
2321                 m->m_ext.ext_type = EXT_EXTREF;
2322                 ND(5, "create m %p refcnt %d", m, MBUF_REFCNT(m));
2323         }
2324         return m;
2325 }
2326
2327 #else /* __FreeBSD_version >= 1100000 */
2328
2329 /*
2330  * Newer versions of FreeBSD, using a straightforward scheme.
2331  *
2332  * We allocate mbufs with m_gethdr(), since the mbuf header is needed
2333  * by the driver. We also attach a customly-provided external storage,
2334  * which in this case is a netmap buffer. When calling m_extadd(), however
2335  * we pass a NULL address, since the real address (and length) will be
2336  * filled in by nm_os_generic_xmit_frame() right before calling
2337  * if_transmit().
2338  *
2339  * The dtor function does nothing, however we need it since mb_free_ext()
2340  * has a KASSERT(), checking that the mbuf dtor function is not NULL.
2341  */
2342
2343 #if __FreeBSD_version <= 1200050
2344 static void void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { }
2345 #else  /* __FreeBSD_version >= 1200051 */
2346 /* The arg1 and arg2 pointers argument were removed by r324446, which
2347  * in included since version 1200051. */
2348 static void void_mbuf_dtor(struct mbuf *m) { }
2349 #endif /* __FreeBSD_version >= 1200051 */
2350
2351 #define SET_MBUF_DESTRUCTOR(m, fn)      do {            \
2352         (m)->m_ext.ext_free = (fn != NULL) ?            \
2353             (void *)fn : (void *)void_mbuf_dtor;        \
2354 } while (0)
2355
2356 static inline struct mbuf *
2357 nm_os_get_mbuf(struct ifnet *ifp, int len)
2358 {
2359         struct mbuf *m;
2360
2361         (void)ifp;
2362         (void)len;
2363
2364         m = m_gethdr(M_NOWAIT, MT_DATA);
2365         if (m == NULL) {
2366                 return m;
2367         }
2368
2369         m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor,
2370                  NULL, NULL, 0, EXT_NET_DRV);
2371
2372         return m;
2373 }
2374
2375 #endif /* __FreeBSD_version >= 1100000 */
2376 #endif /* __FreeBSD__ */
2377
2378 struct nmreq_option * nmreq_findoption(struct nmreq_option *, uint16_t);
2379 int nmreq_checkduplicate(struct nmreq_option *);
2380
2381 int netmap_init_bridges(void);
2382 void netmap_uninit_bridges(void);
2383
2384 /* Functions to read and write CSB fields from the kernel. */
2385 #if defined (linux)
2386 #define CSB_READ(csb, field, r) (get_user(r, &csb->field))
2387 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field))
2388 #else  /* ! linux */
2389 #define CSB_READ(csb, field, r) (r = fuword32(&csb->field))
2390 #define CSB_WRITE(csb, field, v) (suword32(&csb->field, v))
2391 #endif /* ! linux */
2392
2393 #endif /* _NET_NETMAP_KERN_H_ */