]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
run(4): Support the D-Link DWA-125 rev A3
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_cam.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/buf.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/ioccom.h>
40 #include <sys/proc.h>
41 #include <sys/smp.h>
42 #include <sys/uio.h>
43 #include <sys/endian.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47
48 #include "nvme_private.h"
49
50 #define B4_CHK_RDY_DELAY_MS     2300            /* work around controller bug */
51
52 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
53                                                 struct nvme_async_event_request *aer);
54 static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);
55
56 static int
57 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
58 {
59
60         ctrlr->resource_id = PCIR_BAR(0);
61
62         ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
63             &ctrlr->resource_id, RF_ACTIVE);
64
65         if(ctrlr->resource == NULL) {
66                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
67                 return (ENOMEM);
68         }
69
70         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
71         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
72         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
73
74         /*
75          * The NVMe spec allows for the MSI-X table to be placed behind
76          *  BAR 4/5, separate from the control/doorbell registers.  Always
77          *  try to map this bar, because it must be mapped prior to calling
78          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
79          *  bus_alloc_resource() will just return NULL which is OK.
80          */
81         ctrlr->bar4_resource_id = PCIR_BAR(4);
82         ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
83             &ctrlr->bar4_resource_id, RF_ACTIVE);
84
85         return (0);
86 }
87
88 static int
89 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
90 {
91         struct nvme_qpair       *qpair;
92         uint32_t                num_entries;
93         int                     error;
94
95         qpair = &ctrlr->adminq;
96
97         num_entries = NVME_ADMIN_ENTRIES;
98         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
99         /*
100          * If admin_entries was overridden to an invalid value, revert it
101          *  back to our default value.
102          */
103         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
104             num_entries > NVME_MAX_ADMIN_ENTRIES) {
105                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
106                     "specified\n", num_entries);
107                 num_entries = NVME_ADMIN_ENTRIES;
108         }
109
110         /*
111          * The admin queue's max xfer size is treated differently than the
112          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
113          */
114         error = nvme_qpair_construct(qpair, 
115                                      0, /* qpair ID */
116                                      0, /* vector */
117                                      num_entries,
118                                      NVME_ADMIN_TRACKERS,
119                                      ctrlr);
120         return (error);
121 }
122
123 static int
124 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
125 {
126         struct nvme_qpair       *qpair;
127         uint32_t                cap_lo;
128         uint16_t                mqes;
129         int                     i, error, num_entries, num_trackers;
130
131         num_entries = NVME_IO_ENTRIES;
132         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
133
134         /*
135          * NVMe spec sets a hard limit of 64K max entries, but
136          *  devices may specify a smaller limit, so we need to check
137          *  the MQES field in the capabilities register.
138          */
139         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
140         mqes = (cap_lo >> NVME_CAP_LO_REG_MQES_SHIFT) & NVME_CAP_LO_REG_MQES_MASK;
141         num_entries = min(num_entries, mqes + 1);
142
143         num_trackers = NVME_IO_TRACKERS;
144         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
145
146         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
147         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
148         /*
149          * No need to have more trackers than entries in the submit queue.
150          *  Note also that for a queue size of N, we can only have (N-1)
151          *  commands outstanding, hence the "-1" here.
152          */
153         num_trackers = min(num_trackers, (num_entries-1));
154
155         /*
156          * Our best estimate for the maximum number of I/Os that we should
157          * noramlly have in flight at one time. This should be viewed as a hint,
158          * not a hard limit and will need to be revisitted when the upper layers
159          * of the storage system grows multi-queue support.
160          */
161         ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
162
163         /*
164          * This was calculated previously when setting up interrupts, but
165          *  a controller could theoretically support fewer I/O queues than
166          *  MSI-X vectors.  So calculate again here just to be safe.
167          */
168         ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues);
169
170         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
171             M_NVME, M_ZERO | M_WAITOK);
172
173         for (i = 0; i < ctrlr->num_io_queues; i++) {
174                 qpair = &ctrlr->ioq[i];
175
176                 /*
177                  * Admin queue has ID=0. IO queues start at ID=1 -
178                  *  hence the 'i+1' here.
179                  *
180                  * For I/O queues, use the controller-wide max_xfer_size
181                  *  calculated in nvme_attach().
182                  */
183                 error = nvme_qpair_construct(qpair,
184                                      i+1, /* qpair ID */
185                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
186                                      num_entries,
187                                      num_trackers,
188                                      ctrlr);
189                 if (error)
190                         return (error);
191
192                 /*
193                  * Do not bother binding interrupts if we only have one I/O
194                  *  interrupt thread for this controller.
195                  */
196                 if (ctrlr->num_io_queues > 1)
197                         bus_bind_intr(ctrlr->dev, qpair->res,
198                             i * ctrlr->num_cpus_per_ioq);
199         }
200
201         return (0);
202 }
203
204 static void
205 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
206 {
207         int i;
208
209         ctrlr->is_failed = TRUE;
210         nvme_qpair_fail(&ctrlr->adminq);
211         if (ctrlr->ioq != NULL) {
212                 for (i = 0; i < ctrlr->num_io_queues; i++)
213                         nvme_qpair_fail(&ctrlr->ioq[i]);
214         }
215         nvme_notify_fail_consumers(ctrlr);
216 }
217
218 void
219 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
220     struct nvme_request *req)
221 {
222
223         mtx_lock(&ctrlr->lock);
224         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
225         mtx_unlock(&ctrlr->lock);
226         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
227 }
228
229 static void
230 nvme_ctrlr_fail_req_task(void *arg, int pending)
231 {
232         struct nvme_controller  *ctrlr = arg;
233         struct nvme_request     *req;
234
235         mtx_lock(&ctrlr->lock);
236         while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
237                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
238                 mtx_unlock(&ctrlr->lock);
239                 nvme_qpair_manual_complete_request(req->qpair, req,
240                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
241                 mtx_lock(&ctrlr->lock);
242         }
243         mtx_unlock(&ctrlr->lock);
244 }
245
246 static int
247 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
248 {
249         int ms_waited;
250         uint32_t csts;
251
252         csts = nvme_mmio_read_4(ctrlr, csts);
253
254         ms_waited = 0;
255         while (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) != desired_val) {
256                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
257                         nvme_printf(ctrlr, "controller ready did not become %d "
258                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
259                         return (ENXIO);
260                 }
261                 DELAY(1000);
262                 csts = nvme_mmio_read_4(ctrlr, csts);
263         }
264
265         return (0);
266 }
267
268 static int
269 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
270 {
271         uint32_t cc;
272         uint32_t csts;
273         uint8_t  en, rdy;
274         int err;
275
276         cc = nvme_mmio_read_4(ctrlr, cc);
277         csts = nvme_mmio_read_4(ctrlr, csts);
278
279         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
280         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
281
282         /*
283          * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
284          * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
285          * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
286          * isn't the desired value. Short circuit if we're already disabled.
287          */
288         if (en == 1) {
289                 if (rdy == 0) {
290                         /* EN == 1, wait for  RDY == 1 or fail */
291                         err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
292                         if (err != 0)
293                                 return (err);
294                 }
295         } else {
296                 /* EN == 0 already wait for RDY == 0 */
297                 if (rdy == 0)
298                         return (0);
299                 else
300                         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
301         }
302
303         cc &= ~NVME_CC_REG_EN_MASK;
304         nvme_mmio_write_4(ctrlr, cc, cc);
305         /*
306          * Some drives have issues with accessing the mmio after we
307          * disable, so delay for a bit after we write the bit to
308          * cope with these issues.
309          */
310         if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
311                 pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000);
312         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
313 }
314
315 static int
316 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
317 {
318         uint32_t        cc;
319         uint32_t        csts;
320         uint32_t        aqa;
321         uint32_t        qsize;
322         uint8_t         en, rdy;
323         int             err;
324
325         cc = nvme_mmio_read_4(ctrlr, cc);
326         csts = nvme_mmio_read_4(ctrlr, csts);
327
328         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
329         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
330
331         /*
332          * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
333          */
334         if (en == 1) {
335                 if (rdy == 1)
336                         return (0);
337                 else
338                         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
339         } else {
340                 /* EN == 0 already wait for RDY == 0 or fail */
341                 err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
342                 if (err != 0)
343                         return (err);
344         }
345
346         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
347         DELAY(5000);
348         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
349         DELAY(5000);
350
351         /* acqs and asqs are 0-based. */
352         qsize = ctrlr->adminq.num_entries - 1;
353
354         aqa = 0;
355         aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
356         aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
357         nvme_mmio_write_4(ctrlr, aqa, aqa);
358         DELAY(5000);
359
360         /* Initialization values for CC */
361         cc = 0;
362         cc |= 1 << NVME_CC_REG_EN_SHIFT;
363         cc |= 0 << NVME_CC_REG_CSS_SHIFT;
364         cc |= 0 << NVME_CC_REG_AMS_SHIFT;
365         cc |= 0 << NVME_CC_REG_SHN_SHIFT;
366         cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
367         cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
368
369         /* This evaluates to 0, which is according to spec. */
370         cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT;
371
372         nvme_mmio_write_4(ctrlr, cc, cc);
373
374         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
375 }
376
377 int
378 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
379 {
380         int i, err;
381
382         nvme_admin_qpair_disable(&ctrlr->adminq);
383         /*
384          * I/O queues are not allocated before the initial HW
385          *  reset, so do not try to disable them.  Use is_initialized
386          *  to determine if this is the initial HW reset.
387          */
388         if (ctrlr->is_initialized) {
389                 for (i = 0; i < ctrlr->num_io_queues; i++)
390                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
391         }
392
393         DELAY(100*1000);
394
395         err = nvme_ctrlr_disable(ctrlr);
396         if (err != 0)
397                 return err;
398         return (nvme_ctrlr_enable(ctrlr));
399 }
400
401 void
402 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
403 {
404         int cmpset;
405
406         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
407
408         if (cmpset == 0 || ctrlr->is_failed)
409                 /*
410                  * Controller is already resetting or has failed.  Return
411                  *  immediately since there is no need to kick off another
412                  *  reset in these cases.
413                  */
414                 return;
415
416         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
417 }
418
419 static int
420 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
421 {
422         struct nvme_completion_poll_status      status;
423
424         status.done = 0;
425         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
426             nvme_completion_poll_cb, &status);
427         while (!atomic_load_acq_int(&status.done))
428                 pause("nvme", 1);
429         if (nvme_completion_is_error(&status.cpl)) {
430                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
431                 return (ENXIO);
432         }
433
434         /* Convert data to host endian */
435         nvme_controller_data_swapbytes(&ctrlr->cdata);
436
437         /*
438          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
439          *  controller supports.
440          */
441         if (ctrlr->cdata.mdts > 0)
442                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
443                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
444
445         return (0);
446 }
447
448 static int
449 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
450 {
451         struct nvme_completion_poll_status      status;
452         int                                     cq_allocated, sq_allocated;
453
454         status.done = 0;
455         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
456             nvme_completion_poll_cb, &status);
457         while (!atomic_load_acq_int(&status.done))
458                 pause("nvme", 1);
459         if (nvme_completion_is_error(&status.cpl)) {
460                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
461                 return (ENXIO);
462         }
463
464         /*
465          * Data in cdw0 is 0-based.
466          * Lower 16-bits indicate number of submission queues allocated.
467          * Upper 16-bits indicate number of completion queues allocated.
468          */
469         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
470         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
471
472         /*
473          * Controller may allocate more queues than we requested,
474          *  so use the minimum of the number requested and what was
475          *  actually allocated.
476          */
477         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
478         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
479
480         return (0);
481 }
482
483 static int
484 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
485 {
486         struct nvme_completion_poll_status      status;
487         struct nvme_qpair                       *qpair;
488         int                                     i;
489
490         for (i = 0; i < ctrlr->num_io_queues; i++) {
491                 qpair = &ctrlr->ioq[i];
492
493                 status.done = 0;
494                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
495                     nvme_completion_poll_cb, &status);
496                 while (!atomic_load_acq_int(&status.done))
497                         pause("nvme", 1);
498                 if (nvme_completion_is_error(&status.cpl)) {
499                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
500                         return (ENXIO);
501                 }
502
503                 status.done = 0;
504                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
505                     nvme_completion_poll_cb, &status);
506                 while (!atomic_load_acq_int(&status.done))
507                         pause("nvme", 1);
508                 if (nvme_completion_is_error(&status.cpl)) {
509                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
510                         return (ENXIO);
511                 }
512         }
513
514         return (0);
515 }
516
517 static int
518 nvme_ctrlr_destroy_qpair(struct nvme_controller *ctrlr, struct nvme_qpair *qpair)
519 {
520         struct nvme_completion_poll_status      status;
521
522         status.done = 0;
523         nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
524             nvme_completion_poll_cb, &status);
525         while (!atomic_load_acq_int(&status.done))
526                 pause("nvme", 1);
527         if (nvme_completion_is_error(&status.cpl)) {
528                 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
529                 return (ENXIO);
530         }
531
532         status.done = 0;
533         nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
534             nvme_completion_poll_cb, &status);
535         while (!atomic_load_acq_int(&status.done))
536                 pause("nvme", 1);
537         if (nvme_completion_is_error(&status.cpl)) {
538                 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
539                 return (ENXIO);
540         }
541
542         return (0);
543 }
544
545 static int
546 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
547 {
548         struct nvme_namespace   *ns;
549         uint32_t                i;
550
551         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
552                 ns = &ctrlr->ns[i];
553                 nvme_ns_construct(ns, i+1, ctrlr);
554         }
555
556         return (0);
557 }
558
559 static boolean_t
560 is_log_page_id_valid(uint8_t page_id)
561 {
562
563         switch (page_id) {
564         case NVME_LOG_ERROR:
565         case NVME_LOG_HEALTH_INFORMATION:
566         case NVME_LOG_FIRMWARE_SLOT:
567         case NVME_LOG_CHANGED_NAMESPACE:
568                 return (TRUE);
569         }
570
571         return (FALSE);
572 }
573
574 static uint32_t
575 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
576 {
577         uint32_t        log_page_size;
578
579         switch (page_id) {
580         case NVME_LOG_ERROR:
581                 log_page_size = min(
582                     sizeof(struct nvme_error_information_entry) *
583                     (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
584                 break;
585         case NVME_LOG_HEALTH_INFORMATION:
586                 log_page_size = sizeof(struct nvme_health_information_page);
587                 break;
588         case NVME_LOG_FIRMWARE_SLOT:
589                 log_page_size = sizeof(struct nvme_firmware_page);
590                 break;
591         case NVME_LOG_CHANGED_NAMESPACE:
592                 log_page_size = sizeof(struct nvme_ns_list);
593                 break;
594         default:
595                 log_page_size = 0;
596                 break;
597         }
598
599         return (log_page_size);
600 }
601
602 static void
603 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
604     uint8_t state)
605 {
606
607         if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
608                 nvme_printf(ctrlr, "available spare space below threshold\n");
609
610         if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
611                 nvme_printf(ctrlr, "temperature above threshold\n");
612
613         if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
614                 nvme_printf(ctrlr, "device reliability degraded\n");
615
616         if (state & NVME_CRIT_WARN_ST_READ_ONLY)
617                 nvme_printf(ctrlr, "media placed in read only mode\n");
618
619         if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
620                 nvme_printf(ctrlr, "volatile memory backup device failed\n");
621
622         if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
623                 nvme_printf(ctrlr,
624                     "unknown critical warning(s): state = 0x%02x\n", state);
625 }
626
627 static void
628 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
629 {
630         struct nvme_async_event_request         *aer = arg;
631         struct nvme_health_information_page     *health_info;
632         struct nvme_ns_list                     *nsl;
633         struct nvme_error_information_entry     *err;
634         int i;
635
636         /*
637          * If the log page fetch for some reason completed with an error,
638          *  don't pass log page data to the consumers.  In practice, this case
639          *  should never happen.
640          */
641         if (nvme_completion_is_error(cpl))
642                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
643                     aer->log_page_id, NULL, 0);
644         else {
645                 /* Convert data to host endian */
646                 switch (aer->log_page_id) {
647                 case NVME_LOG_ERROR:
648                         err = (struct nvme_error_information_entry *)aer->log_page_buffer;
649                         for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
650                                 nvme_error_information_entry_swapbytes(err++);
651                         break;
652                 case NVME_LOG_HEALTH_INFORMATION:
653                         nvme_health_information_page_swapbytes(
654                             (struct nvme_health_information_page *)aer->log_page_buffer);
655                         break;
656                 case NVME_LOG_FIRMWARE_SLOT:
657                         nvme_firmware_page_swapbytes(
658                             (struct nvme_firmware_page *)aer->log_page_buffer);
659                         break;
660                 case NVME_LOG_CHANGED_NAMESPACE:
661                         nvme_ns_list_swapbytes(
662                             (struct nvme_ns_list *)aer->log_page_buffer);
663                         break;
664                 case INTEL_LOG_TEMP_STATS:
665                         intel_log_temp_stats_swapbytes(
666                             (struct intel_log_temp_stats *)aer->log_page_buffer);
667                         break;
668                 default:
669                         break;
670                 }
671
672                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
673                         health_info = (struct nvme_health_information_page *)
674                             aer->log_page_buffer;
675                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
676                             health_info->critical_warning);
677                         /*
678                          * Critical warnings reported through the
679                          *  SMART/health log page are persistent, so
680                          *  clear the associated bits in the async event
681                          *  config so that we do not receive repeated
682                          *  notifications for the same event.
683                          */
684                         aer->ctrlr->async_event_config &=
685                             ~health_info->critical_warning;
686                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
687                             aer->ctrlr->async_event_config, NULL, NULL);
688                 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
689                     !nvme_use_nvd) {
690                         nsl = (struct nvme_ns_list *)aer->log_page_buffer;
691                         for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
692                                 if (nsl->ns[i] > NVME_MAX_NAMESPACES)
693                                         break;
694                                 nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
695                         }
696                 }
697
698
699                 /*
700                  * Pass the cpl data from the original async event completion,
701                  *  not the log page fetch.
702                  */
703                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
704                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
705         }
706
707         /*
708          * Repost another asynchronous event request to replace the one
709          *  that just completed.
710          */
711         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
712 }
713
714 static void
715 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
716 {
717         struct nvme_async_event_request *aer = arg;
718
719         if (nvme_completion_is_error(cpl)) {
720                 /*
721                  *  Do not retry failed async event requests.  This avoids
722                  *  infinite loops where a new async event request is submitted
723                  *  to replace the one just failed, only to fail again and
724                  *  perpetuate the loop.
725                  */
726                 return;
727         }
728
729         /* Associated log page is in bits 23:16 of completion entry dw0. */
730         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
731
732         nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
733             " page 0x%02x)\n", (cpl->cdw0 & 0x03), (cpl->cdw0 & 0xFF00) >> 8,
734             aer->log_page_id);
735
736         if (is_log_page_id_valid(aer->log_page_id)) {
737                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
738                     aer->log_page_id);
739                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
740                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
741                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
742                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
743                     aer);
744                 /* Wait to notify consumers until after log page is fetched. */
745         } else {
746                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
747                     NULL, 0);
748
749                 /*
750                  * Repost another asynchronous event request to replace the one
751                  *  that just completed.
752                  */
753                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
754         }
755 }
756
757 static void
758 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
759     struct nvme_async_event_request *aer)
760 {
761         struct nvme_request *req;
762
763         aer->ctrlr = ctrlr;
764         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
765         aer->req = req;
766
767         /*
768          * Disable timeout here, since asynchronous event requests should by
769          *  nature never be timed out.
770          */
771         req->timeout = FALSE;
772         req->cmd.opc_fuse = NVME_CMD_SET_OPC(NVME_OPC_ASYNC_EVENT_REQUEST);
773         nvme_ctrlr_submit_admin_request(ctrlr, req);
774 }
775
776 static void
777 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
778 {
779         struct nvme_completion_poll_status      status;
780         struct nvme_async_event_request         *aer;
781         uint32_t                                i;
782
783         ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
784             NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
785             NVME_CRIT_WARN_ST_READ_ONLY |
786             NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
787         if (ctrlr->cdata.ver >= NVME_REV(1, 2))
788                 ctrlr->async_event_config |= 0x300;
789
790         status.done = 0;
791         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
792             0, NULL, 0, nvme_completion_poll_cb, &status);
793         while (!atomic_load_acq_int(&status.done))
794                 pause("nvme", 1);
795         if (nvme_completion_is_error(&status.cpl) ||
796             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
797             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
798                 nvme_printf(ctrlr, "temperature threshold not supported\n");
799         } else
800                 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
801
802         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
803             ctrlr->async_event_config, NULL, NULL);
804
805         /* aerl is a zero-based value, so we need to add 1 here. */
806         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
807
808         for (i = 0; i < ctrlr->num_aers; i++) {
809                 aer = &ctrlr->aer[i];
810                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
811         }
812 }
813
814 static void
815 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
816 {
817
818         ctrlr->int_coal_time = 0;
819         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
820             &ctrlr->int_coal_time);
821
822         ctrlr->int_coal_threshold = 0;
823         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
824             &ctrlr->int_coal_threshold);
825
826         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
827             ctrlr->int_coal_threshold, NULL, NULL);
828 }
829
830 static void
831 nvme_ctrlr_start(void *ctrlr_arg)
832 {
833         struct nvme_controller *ctrlr = ctrlr_arg;
834         uint32_t old_num_io_queues;
835         int i;
836
837         /*
838          * Only reset adminq here when we are restarting the
839          *  controller after a reset.  During initialization,
840          *  we have already submitted admin commands to get
841          *  the number of I/O queues supported, so cannot reset
842          *  the adminq again here.
843          */
844         if (ctrlr->is_resetting) {
845                 nvme_qpair_reset(&ctrlr->adminq);
846         }
847
848         for (i = 0; i < ctrlr->num_io_queues; i++)
849                 nvme_qpair_reset(&ctrlr->ioq[i]);
850
851         nvme_admin_qpair_enable(&ctrlr->adminq);
852
853         if (nvme_ctrlr_identify(ctrlr) != 0) {
854                 nvme_ctrlr_fail(ctrlr);
855                 return;
856         }
857
858         /*
859          * The number of qpairs are determined during controller initialization,
860          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
861          *  HW limit.  We call SET_FEATURES again here so that it gets called
862          *  after any reset for controllers that depend on the driver to
863          *  explicit specify how many queues it will use.  This value should
864          *  never change between resets, so panic if somehow that does happen.
865          */
866         if (ctrlr->is_resetting) {
867                 old_num_io_queues = ctrlr->num_io_queues;
868                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
869                         nvme_ctrlr_fail(ctrlr);
870                         return;
871                 }
872
873                 if (old_num_io_queues != ctrlr->num_io_queues) {
874                         panic("num_io_queues changed from %u to %u",
875                               old_num_io_queues, ctrlr->num_io_queues);
876                 }
877         }
878
879         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
880                 nvme_ctrlr_fail(ctrlr);
881                 return;
882         }
883
884         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
885                 nvme_ctrlr_fail(ctrlr);
886                 return;
887         }
888
889         nvme_ctrlr_configure_aer(ctrlr);
890         nvme_ctrlr_configure_int_coalescing(ctrlr);
891
892         for (i = 0; i < ctrlr->num_io_queues; i++)
893                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
894 }
895
896 void
897 nvme_ctrlr_start_config_hook(void *arg)
898 {
899         struct nvme_controller *ctrlr = arg;
900
901         nvme_qpair_reset(&ctrlr->adminq);
902         nvme_admin_qpair_enable(&ctrlr->adminq);
903
904         if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
905             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
906                 nvme_ctrlr_start(ctrlr);
907         else
908                 nvme_ctrlr_fail(ctrlr);
909
910         nvme_sysctl_initialize_ctrlr(ctrlr);
911         config_intrhook_disestablish(&ctrlr->config_hook);
912
913         ctrlr->is_initialized = 1;
914         nvme_notify_new_controller(ctrlr);
915 }
916
917 static void
918 nvme_ctrlr_reset_task(void *arg, int pending)
919 {
920         struct nvme_controller  *ctrlr = arg;
921         int                     status;
922
923         nvme_printf(ctrlr, "resetting controller\n");
924         status = nvme_ctrlr_hw_reset(ctrlr);
925         /*
926          * Use pause instead of DELAY, so that we yield to any nvme interrupt
927          *  handlers on this CPU that were blocked on a qpair lock. We want
928          *  all nvme interrupts completed before proceeding with restarting the
929          *  controller.
930          *
931          * XXX - any way to guarantee the interrupt handlers have quiesced?
932          */
933         pause("nvmereset", hz / 10);
934         if (status == 0)
935                 nvme_ctrlr_start(ctrlr);
936         else
937                 nvme_ctrlr_fail(ctrlr);
938
939         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
940 }
941
942 /*
943  * Poll all the queues enabled on the device for completion.
944  */
945 void
946 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
947 {
948         int i;
949
950         nvme_qpair_process_completions(&ctrlr->adminq);
951
952         for (i = 0; i < ctrlr->num_io_queues; i++)
953                 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
954                         nvme_qpair_process_completions(&ctrlr->ioq[i]);
955 }
956
957 /*
958  * Poll the single-vector intertrupt case: num_io_queues will be 1 and
959  * there's only a single vector. While we're polling, we mask further
960  * interrupts in the controller.
961  */
962 void
963 nvme_ctrlr_intx_handler(void *arg)
964 {
965         struct nvme_controller *ctrlr = arg;
966
967         nvme_mmio_write_4(ctrlr, intms, 1);
968         nvme_ctrlr_poll(ctrlr);
969         nvme_mmio_write_4(ctrlr, intmc, 1);
970 }
971
972 static int
973 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
974 {
975
976         ctrlr->msix_enabled = 0;
977         ctrlr->num_io_queues = 1;
978         ctrlr->num_cpus_per_ioq = mp_ncpus;
979         ctrlr->rid = 0;
980         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
981             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
982
983         if (ctrlr->res == NULL) {
984                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
985                 return (ENOMEM);
986         }
987
988         bus_setup_intr(ctrlr->dev, ctrlr->res,
989             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
990             ctrlr, &ctrlr->tag);
991
992         if (ctrlr->tag == NULL) {
993                 nvme_printf(ctrlr, "unable to setup intx handler\n");
994                 return (ENOMEM);
995         }
996
997         return (0);
998 }
999
1000 static void
1001 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1002 {
1003         struct nvme_pt_command *pt = arg;
1004         struct mtx *mtx = pt->driver_lock;
1005         uint16_t status;
1006
1007         bzero(&pt->cpl, sizeof(pt->cpl));
1008         pt->cpl.cdw0 = cpl->cdw0;
1009
1010         status = cpl->status;
1011         status &= ~NVME_STATUS_P_MASK;
1012         pt->cpl.status = status;
1013
1014         mtx_lock(mtx);
1015         pt->driver_lock = NULL;
1016         wakeup(pt);
1017         mtx_unlock(mtx);
1018 }
1019
1020 int
1021 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1022     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1023     int is_admin_cmd)
1024 {
1025         struct nvme_request     *req;
1026         struct mtx              *mtx;
1027         struct buf              *buf = NULL;
1028         int                     ret = 0;
1029         vm_offset_t             addr, end;
1030
1031         if (pt->len > 0) {
1032                 /*
1033                  * vmapbuf calls vm_fault_quick_hold_pages which only maps full
1034                  * pages. Ensure this request has fewer than MAXPHYS bytes when
1035                  * extended to full pages.
1036                  */
1037                 addr = (vm_offset_t)pt->buf;
1038                 end = round_page(addr + pt->len);
1039                 addr = trunc_page(addr);
1040                 if (end - addr > MAXPHYS)
1041                         return EIO;
1042
1043                 if (pt->len > ctrlr->max_xfer_size) {
1044                         nvme_printf(ctrlr, "pt->len (%d) "
1045                             "exceeds max_xfer_size (%d)\n", pt->len,
1046                             ctrlr->max_xfer_size);
1047                         return EIO;
1048                 }
1049                 if (is_user_buffer) {
1050                         /*
1051                          * Ensure the user buffer is wired for the duration of
1052                          *  this passthrough command.
1053                          */
1054                         PHOLD(curproc);
1055                         buf = getpbuf(NULL);
1056                         buf->b_data = pt->buf;
1057                         buf->b_bufsize = pt->len;
1058                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1059 #ifdef NVME_UNMAPPED_BIO_SUPPORT
1060                         if (vmapbuf(buf, 1) < 0) {
1061 #else
1062                         if (vmapbuf(buf) < 0) {
1063 #endif
1064                                 ret = EFAULT;
1065                                 goto err;
1066                         }
1067                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
1068                             nvme_pt_done, pt);
1069                 } else
1070                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1071                             nvme_pt_done, pt);
1072         } else
1073                 req = nvme_allocate_request_null(nvme_pt_done, pt);
1074
1075         /* Assume userspace already converted to little-endian */
1076         req->cmd.opc_fuse = pt->cmd.opc_fuse;
1077         req->cmd.cdw10 = pt->cmd.cdw10;
1078         req->cmd.cdw11 = pt->cmd.cdw11;
1079         req->cmd.cdw12 = pt->cmd.cdw12;
1080         req->cmd.cdw13 = pt->cmd.cdw13;
1081         req->cmd.cdw14 = pt->cmd.cdw14;
1082         req->cmd.cdw15 = pt->cmd.cdw15;
1083
1084         req->cmd.nsid = htole32(nsid);
1085
1086         mtx = mtx_pool_find(mtxpool_sleep, pt);
1087         pt->driver_lock = mtx;
1088
1089         if (is_admin_cmd)
1090                 nvme_ctrlr_submit_admin_request(ctrlr, req);
1091         else
1092                 nvme_ctrlr_submit_io_request(ctrlr, req);
1093
1094         mtx_lock(mtx);
1095         while (pt->driver_lock != NULL)
1096                 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1097         mtx_unlock(mtx);
1098
1099 err:
1100         if (buf != NULL) {
1101                 relpbuf(buf, NULL);
1102                 PRELE(curproc);
1103         }
1104
1105         return (ret);
1106 }
1107
1108 static int
1109 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1110     struct thread *td)
1111 {
1112         struct nvme_controller                  *ctrlr;
1113         struct nvme_pt_command                  *pt;
1114
1115         ctrlr = cdev->si_drv1;
1116
1117         switch (cmd) {
1118         case NVME_RESET_CONTROLLER:
1119                 nvme_ctrlr_reset(ctrlr);
1120                 break;
1121         case NVME_PASSTHROUGH_CMD:
1122                 pt = (struct nvme_pt_command *)arg;
1123                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1124                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1125         default:
1126                 return (ENOTTY);
1127         }
1128
1129         return (0);
1130 }
1131
1132 static struct cdevsw nvme_ctrlr_cdevsw = {
1133         .d_version =    D_VERSION,
1134         .d_flags =      0,
1135         .d_ioctl =      nvme_ctrlr_ioctl
1136 };
1137
1138 static void
1139 nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
1140 {
1141         device_t        dev;
1142         int             per_cpu_io_queues;
1143         int             min_cpus_per_ioq;
1144         int             num_vectors_requested, num_vectors_allocated;
1145         int             num_vectors_available;
1146
1147         dev = ctrlr->dev;
1148         min_cpus_per_ioq = 1;
1149         TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq);
1150
1151         if (min_cpus_per_ioq < 1) {
1152                 min_cpus_per_ioq = 1;
1153         } else if (min_cpus_per_ioq > mp_ncpus) {
1154                 min_cpus_per_ioq = mp_ncpus;
1155         }
1156
1157         per_cpu_io_queues = 1;
1158         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1159
1160         if (per_cpu_io_queues == 0) {
1161                 min_cpus_per_ioq = mp_ncpus;
1162         }
1163
1164         ctrlr->force_intx = 0;
1165         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1166
1167         /*
1168          * FreeBSD currently cannot allocate more than about 190 vectors at
1169          *  boot, meaning that systems with high core count and many devices
1170          *  requesting per-CPU interrupt vectors will not get their full
1171          *  allotment.  So first, try to allocate as many as we may need to
1172          *  understand what is available, then immediately release them.
1173          *  Then figure out how many of those we will actually use, based on
1174          *  assigning an equal number of cores to each I/O queue.
1175          */
1176
1177         /* One vector for per core I/O queue, plus one vector for admin queue. */
1178         num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
1179         if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
1180                 num_vectors_available = 0;
1181         }
1182         pci_release_msi(dev);
1183
1184         if (ctrlr->force_intx || num_vectors_available < 2) {
1185                 nvme_ctrlr_configure_intx(ctrlr);
1186                 return;
1187         }
1188
1189         /*
1190          * Do not use all vectors for I/O queues - one must be saved for the
1191          *  admin queue.
1192          */
1193         ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq,
1194             howmany(mp_ncpus, num_vectors_available - 1));
1195
1196         ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq);
1197         num_vectors_requested = ctrlr->num_io_queues + 1;
1198         num_vectors_allocated = num_vectors_requested;
1199
1200         /*
1201          * Now just allocate the number of vectors we need.  This should
1202          *  succeed, since we previously called pci_alloc_msix()
1203          *  successfully returning at least this many vectors, but just to
1204          *  be safe, if something goes wrong just revert to INTx.
1205          */
1206         if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1207                 nvme_ctrlr_configure_intx(ctrlr);
1208                 return;
1209         }
1210
1211         if (num_vectors_allocated < num_vectors_requested) {
1212                 pci_release_msi(dev);
1213                 nvme_ctrlr_configure_intx(ctrlr);
1214                 return;
1215         }
1216
1217         ctrlr->msix_enabled = 1;
1218 }
1219
1220 int
1221 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1222 {
1223         struct make_dev_args    md_args;
1224         uint32_t        cap_lo;
1225         uint32_t        cap_hi;
1226         uint8_t         to;
1227         uint8_t         dstrd;
1228         uint8_t         mpsmin;
1229         int             status, timeout_period;
1230
1231         ctrlr->dev = dev;
1232
1233         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1234
1235         status = nvme_ctrlr_allocate_bar(ctrlr);
1236
1237         if (status != 0)
1238                 return (status);
1239
1240         /*
1241          * Software emulators may set the doorbell stride to something
1242          *  other than zero, but this driver is not set up to handle that.
1243          */
1244         cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1245         dstrd = (cap_hi >> NVME_CAP_HI_REG_DSTRD_SHIFT) & NVME_CAP_HI_REG_DSTRD_MASK;
1246         if (dstrd != 0)
1247                 return (ENXIO);
1248
1249         mpsmin = (cap_hi >> NVME_CAP_HI_REG_MPSMIN_SHIFT) & NVME_CAP_HI_REG_MPSMIN_MASK;
1250         ctrlr->min_page_size = 1 << (12 + mpsmin);
1251
1252         /* Get ready timeout value from controller, in units of 500ms. */
1253         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1254         to = (cap_lo >> NVME_CAP_LO_REG_TO_SHIFT) & NVME_CAP_LO_REG_TO_MASK;
1255         ctrlr->ready_timeout_in_ms = to * 500;
1256
1257         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1258         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1259         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1260         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1261         ctrlr->timeout_period = timeout_period;
1262
1263         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1264         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1265
1266         ctrlr->enable_aborts = 0;
1267         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1268
1269         nvme_ctrlr_setup_interrupts(ctrlr);
1270
1271         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1272         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1273                 return (ENXIO);
1274
1275         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1276             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1277         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1278
1279         ctrlr->is_resetting = 0;
1280         ctrlr->is_initialized = 0;
1281         ctrlr->notification_sent = 0;
1282         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1283         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1284         STAILQ_INIT(&ctrlr->fail_req);
1285         ctrlr->is_failed = FALSE;
1286
1287         make_dev_args_init(&md_args);
1288         md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1289         md_args.mda_uid = UID_ROOT;
1290         md_args.mda_gid = GID_WHEEL;
1291         md_args.mda_mode = 0600;
1292         md_args.mda_unit = device_get_unit(dev);
1293         md_args.mda_si_drv1 = (void *)ctrlr;
1294         status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1295             device_get_unit(dev));
1296         if (status != 0)
1297                 return (ENXIO);
1298
1299         return (0);
1300 }
1301
1302 void
1303 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1304 {
1305         int                             i;
1306
1307         if (ctrlr->resource == NULL)
1308                 goto nores;
1309
1310         nvme_notify_fail_consumers(ctrlr);
1311
1312         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1313                 nvme_ns_destruct(&ctrlr->ns[i]);
1314
1315         if (ctrlr->cdev)
1316                 destroy_dev(ctrlr->cdev);
1317
1318         for (i = 0; i < ctrlr->num_io_queues; i++) {
1319                 nvme_ctrlr_destroy_qpair(ctrlr, &ctrlr->ioq[i]);
1320                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1321         }
1322         free(ctrlr->ioq, M_NVME);
1323
1324         nvme_admin_qpair_destroy(&ctrlr->adminq);
1325
1326         /*
1327          *  Notify the controller of a shutdown, even though this is due to
1328          *   a driver unload, not a system shutdown (this path is not invoked
1329          *   during shutdown).  This ensures the controller receives a
1330          *   shutdown notification in case the system is shutdown before
1331          *   reloading the driver.
1332          */
1333         nvme_ctrlr_shutdown(ctrlr);
1334
1335         nvme_ctrlr_disable(ctrlr);
1336
1337         if (ctrlr->taskqueue)
1338                 taskqueue_free(ctrlr->taskqueue);
1339
1340         if (ctrlr->tag)
1341                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1342
1343         if (ctrlr->res)
1344                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1345                     rman_get_rid(ctrlr->res), ctrlr->res);
1346
1347         if (ctrlr->msix_enabled)
1348                 pci_release_msi(dev);
1349
1350         if (ctrlr->bar4_resource != NULL) {
1351                 bus_release_resource(dev, SYS_RES_MEMORY,
1352                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1353         }
1354
1355         bus_release_resource(dev, SYS_RES_MEMORY,
1356             ctrlr->resource_id, ctrlr->resource);
1357
1358 nores:
1359         mtx_destroy(&ctrlr->lock);
1360 }
1361
1362 void
1363 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1364 {
1365         uint32_t        cc;
1366         uint32_t        csts;
1367         int             ticks = 0;
1368
1369         cc = nvme_mmio_read_4(ctrlr, cc);
1370         cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1371         cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1372         nvme_mmio_write_4(ctrlr, cc, cc);
1373
1374         csts = nvme_mmio_read_4(ctrlr, csts);
1375         while ((NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1376                 pause("nvme shn", 1);
1377                 csts = nvme_mmio_read_4(ctrlr, csts);
1378         }
1379         if (NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE)
1380                 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1381                     "of notification\n");
1382 }
1383
1384 void
1385 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1386     struct nvme_request *req)
1387 {
1388
1389         nvme_qpair_submit_request(&ctrlr->adminq, req);
1390 }
1391
1392 void
1393 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1394     struct nvme_request *req)
1395 {
1396         struct nvme_qpair       *qpair;
1397
1398         qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
1399         nvme_qpair_submit_request(qpair, req);
1400 }
1401
1402 device_t
1403 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1404 {
1405
1406         return (ctrlr->dev);
1407 }
1408
1409 const struct nvme_controller_data *
1410 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1411 {
1412
1413         return (&ctrlr->cdata);
1414 }