]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
nvme: start qpair in state RECOVERY_WAITING
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_cam.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/buf.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/ioccom.h>
40 #include <sys/proc.h>
41 #include <sys/smp.h>
42 #include <sys/uio.h>
43 #include <sys/sbuf.h>
44 #include <sys/endian.h>
45 #include <machine/stdarg.h>
46 #include <vm/vm.h>
47
48 #include "nvme_private.h"
49
50 #define B4_CHK_RDY_DELAY_MS     2300            /* work around controller bug */
51
52 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
53                                                 struct nvme_async_event_request *aer);
54
55 static void
56 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
57 {
58         struct sbuf sb;
59         va_list ap;
60         int error;
61
62         if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
63                 return;
64         sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
65         va_start(ap, msg);
66         sbuf_vprintf(&sb, msg, ap);
67         va_end(ap);
68         error = sbuf_finish(&sb);
69         if (error == 0)
70                 printf("%s\n", sbuf_data(&sb));
71
72         sbuf_clear(&sb);
73         sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev));
74         va_start(ap, msg);
75         sbuf_vprintf(&sb, msg, ap);
76         va_end(ap);
77         sbuf_printf(&sb, "\"");
78         error = sbuf_finish(&sb);
79         if (error == 0)
80                 devctl_notify("nvme", "controller", type, sbuf_data(&sb));
81         sbuf_delete(&sb);
82 }
83
84 static int
85 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
86 {
87         struct nvme_qpair       *qpair;
88         uint32_t                num_entries;
89         int                     error;
90
91         qpair = &ctrlr->adminq;
92         qpair->id = 0;
93         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
94         qpair->domain = ctrlr->domain;
95
96         num_entries = NVME_ADMIN_ENTRIES;
97         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
98         /*
99          * If admin_entries was overridden to an invalid value, revert it
100          *  back to our default value.
101          */
102         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
103             num_entries > NVME_MAX_ADMIN_ENTRIES) {
104                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
105                     "specified\n", num_entries);
106                 num_entries = NVME_ADMIN_ENTRIES;
107         }
108
109         /*
110          * The admin queue's max xfer size is treated differently than the
111          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
112          */
113         error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
114              ctrlr);
115         return (error);
116 }
117
118 #define QP(ctrlr, c)    ((c) * (ctrlr)->num_io_queues / mp_ncpus)
119
120 static int
121 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
122 {
123         struct nvme_qpair       *qpair;
124         uint32_t                cap_lo;
125         uint16_t                mqes;
126         int                     c, error, i, n;
127         int                     num_entries, num_trackers, max_entries;
128
129         /*
130          * NVMe spec sets a hard limit of 64K max entries, but devices may
131          * specify a smaller limit, so we need to check the MQES field in the
132          * capabilities register. We have to cap the number of entries to the
133          * current stride allows for in BAR 0/1, otherwise the remainder entries
134          * are inaccessable. MQES should reflect this, and this is just a
135          * fail-safe.
136          */
137         max_entries =
138             (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
139             (1 << (ctrlr->dstrd + 1));
140         num_entries = NVME_IO_ENTRIES;
141         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
142         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
143         mqes = NVME_CAP_LO_MQES(cap_lo);
144         num_entries = min(num_entries, mqes + 1);
145         num_entries = min(num_entries, max_entries);
146
147         num_trackers = NVME_IO_TRACKERS;
148         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
149
150         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
151         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
152         /*
153          * No need to have more trackers than entries in the submit queue.  Note
154          * also that for a queue size of N, we can only have (N-1) commands
155          * outstanding, hence the "-1" here.
156          */
157         num_trackers = min(num_trackers, (num_entries-1));
158
159         /*
160          * Our best estimate for the maximum number of I/Os that we should
161          * normally have in flight at one time. This should be viewed as a hint,
162          * not a hard limit and will need to be revisited when the upper layers
163          * of the storage system grows multi-queue support.
164          */
165         ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
166
167         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
168             M_NVME, M_ZERO | M_WAITOK);
169
170         for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
171                 qpair = &ctrlr->ioq[i];
172
173                 /*
174                  * Admin queue has ID=0. IO queues start at ID=1 -
175                  *  hence the 'i+1' here.
176                  */
177                 qpair->id = i + 1;
178                 if (ctrlr->num_io_queues > 1) {
179                         /* Find number of CPUs served by this queue. */
180                         for (n = 1; QP(ctrlr, c + n) == i; n++)
181                                 ;
182                         /* Shuffle multiple NVMe devices between CPUs. */
183                         qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
184                         qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
185                 } else {
186                         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
187                         qpair->domain = ctrlr->domain;
188                 }
189
190                 /*
191                  * For I/O queues, use the controller-wide max_xfer_size
192                  *  calculated in nvme_attach().
193                  */
194                 error = nvme_qpair_construct(qpair, num_entries, num_trackers,
195                     ctrlr);
196                 if (error)
197                         return (error);
198
199                 /*
200                  * Do not bother binding interrupts if we only have one I/O
201                  *  interrupt thread for this controller.
202                  */
203                 if (ctrlr->num_io_queues > 1)
204                         bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
205         }
206
207         return (0);
208 }
209
210 static void
211 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
212 {
213         int i;
214
215         ctrlr->is_failed = true;
216         nvme_admin_qpair_disable(&ctrlr->adminq);
217         nvme_qpair_fail(&ctrlr->adminq);
218         if (ctrlr->ioq != NULL) {
219                 for (i = 0; i < ctrlr->num_io_queues; i++) {
220                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
221                         nvme_qpair_fail(&ctrlr->ioq[i]);
222                 }
223         }
224         nvme_notify_fail_consumers(ctrlr);
225 }
226
227 void
228 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
229     struct nvme_request *req)
230 {
231
232         mtx_lock(&ctrlr->lock);
233         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
234         mtx_unlock(&ctrlr->lock);
235         if (!ctrlr->is_dying)
236                 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
237 }
238
239 static void
240 nvme_ctrlr_fail_req_task(void *arg, int pending)
241 {
242         struct nvme_controller  *ctrlr = arg;
243         struct nvme_request     *req;
244
245         mtx_lock(&ctrlr->lock);
246         while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
247                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
248                 mtx_unlock(&ctrlr->lock);
249                 nvme_qpair_manual_complete_request(req->qpair, req,
250                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
251                 mtx_lock(&ctrlr->lock);
252         }
253         mtx_unlock(&ctrlr->lock);
254 }
255
256 static int
257 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
258 {
259         int timeout = ticks + (uint64_t)ctrlr->ready_timeout_in_ms * hz / 1000;
260         uint32_t csts;
261
262         while (1) {
263                 csts = nvme_mmio_read_4(ctrlr, csts);
264                 if (csts == NVME_GONE)          /* Hot unplug. */
265                         return (ENXIO);
266                 if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK)
267                     == desired_val)
268                         break;
269                 if (timeout - ticks < 0) {
270                         nvme_printf(ctrlr, "controller ready did not become %d "
271                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
272                         return (ENXIO);
273                 }
274                 pause("nvmerdy", 1);
275         }
276
277         return (0);
278 }
279
280 static int
281 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
282 {
283         uint32_t cc;
284         uint32_t csts;
285         uint8_t  en, rdy;
286         int err;
287
288         cc = nvme_mmio_read_4(ctrlr, cc);
289         csts = nvme_mmio_read_4(ctrlr, csts);
290
291         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
292         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
293
294         /*
295          * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
296          * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
297          * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
298          * isn't the desired value. Short circuit if we're already disabled.
299          */
300         if (en == 1) {
301                 if (rdy == 0) {
302                         /* EN == 1, wait for  RDY == 1 or fail */
303                         err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
304                         if (err != 0)
305                                 return (err);
306                 }
307         } else {
308                 /* EN == 0 already wait for RDY == 0 */
309                 if (rdy == 0)
310                         return (0);
311                 else
312                         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
313         }
314
315         cc &= ~NVME_CC_REG_EN_MASK;
316         nvme_mmio_write_4(ctrlr, cc, cc);
317         /*
318          * Some drives have issues with accessing the mmio after we
319          * disable, so delay for a bit after we write the bit to
320          * cope with these issues.
321          */
322         if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
323                 pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000);
324         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
325 }
326
327 static int
328 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
329 {
330         uint32_t        cc;
331         uint32_t        csts;
332         uint32_t        aqa;
333         uint32_t        qsize;
334         uint8_t         en, rdy;
335         int             err;
336
337         cc = nvme_mmio_read_4(ctrlr, cc);
338         csts = nvme_mmio_read_4(ctrlr, csts);
339
340         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
341         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
342
343         /*
344          * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
345          */
346         if (en == 1) {
347                 if (rdy == 1)
348                         return (0);
349                 else
350                         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
351         } else {
352                 /* EN == 0 already wait for RDY == 0 or fail */
353                 err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
354                 if (err != 0)
355                         return (err);
356         }
357
358         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
359         DELAY(5000);
360         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
361         DELAY(5000);
362
363         /* acqs and asqs are 0-based. */
364         qsize = ctrlr->adminq.num_entries - 1;
365
366         aqa = 0;
367         aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
368         aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
369         nvme_mmio_write_4(ctrlr, aqa, aqa);
370         DELAY(5000);
371
372         /* Initialization values for CC */
373         cc = 0;
374         cc |= 1 << NVME_CC_REG_EN_SHIFT;
375         cc |= 0 << NVME_CC_REG_CSS_SHIFT;
376         cc |= 0 << NVME_CC_REG_AMS_SHIFT;
377         cc |= 0 << NVME_CC_REG_SHN_SHIFT;
378         cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
379         cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
380
381         /* This evaluates to 0, which is according to spec. */
382         cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT;
383
384         nvme_mmio_write_4(ctrlr, cc, cc);
385
386         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
387 }
388
389 static void
390 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
391 {
392         int i;
393
394         nvme_admin_qpair_disable(&ctrlr->adminq);
395         /*
396          * I/O queues are not allocated before the initial HW
397          *  reset, so do not try to disable them.  Use is_initialized
398          *  to determine if this is the initial HW reset.
399          */
400         if (ctrlr->is_initialized) {
401                 for (i = 0; i < ctrlr->num_io_queues; i++)
402                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
403         }
404 }
405
406 static int
407 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
408 {
409         int err;
410
411         TSENTER();
412         nvme_ctrlr_disable_qpairs(ctrlr);
413
414         pause("nvmehwreset", hz / 10);
415
416         err = nvme_ctrlr_disable(ctrlr);
417         if (err != 0)
418                 return err;
419         err = nvme_ctrlr_enable(ctrlr);
420         TSEXIT();
421         return (err);
422 }
423
424 void
425 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
426 {
427         int cmpset;
428
429         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
430
431         if (cmpset == 0 || ctrlr->is_failed)
432                 /*
433                  * Controller is already resetting or has failed.  Return
434                  *  immediately since there is no need to kick off another
435                  *  reset in these cases.
436                  */
437                 return;
438
439         if (!ctrlr->is_dying)
440                 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
441 }
442
443 static int
444 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
445 {
446         struct nvme_completion_poll_status      status;
447
448         status.done = 0;
449         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
450             nvme_completion_poll_cb, &status);
451         nvme_completion_poll(&status);
452         if (nvme_completion_is_error(&status.cpl)) {
453                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
454                 return (ENXIO);
455         }
456
457         /* Convert data to host endian */
458         nvme_controller_data_swapbytes(&ctrlr->cdata);
459
460         /*
461          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
462          *  controller supports.
463          */
464         if (ctrlr->cdata.mdts > 0)
465                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
466                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
467
468         return (0);
469 }
470
471 static int
472 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
473 {
474         struct nvme_completion_poll_status      status;
475         int                                     cq_allocated, sq_allocated;
476
477         status.done = 0;
478         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
479             nvme_completion_poll_cb, &status);
480         nvme_completion_poll(&status);
481         if (nvme_completion_is_error(&status.cpl)) {
482                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
483                 return (ENXIO);
484         }
485
486         /*
487          * Data in cdw0 is 0-based.
488          * Lower 16-bits indicate number of submission queues allocated.
489          * Upper 16-bits indicate number of completion queues allocated.
490          */
491         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
492         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
493
494         /*
495          * Controller may allocate more queues than we requested,
496          *  so use the minimum of the number requested and what was
497          *  actually allocated.
498          */
499         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
500         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
501         if (ctrlr->num_io_queues > vm_ndomains)
502                 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
503
504         return (0);
505 }
506
507 static int
508 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
509 {
510         struct nvme_completion_poll_status      status;
511         struct nvme_qpair                       *qpair;
512         int                                     i;
513
514         for (i = 0; i < ctrlr->num_io_queues; i++) {
515                 qpair = &ctrlr->ioq[i];
516
517                 status.done = 0;
518                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
519                     nvme_completion_poll_cb, &status);
520                 nvme_completion_poll(&status);
521                 if (nvme_completion_is_error(&status.cpl)) {
522                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
523                         return (ENXIO);
524                 }
525
526                 status.done = 0;
527                 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
528                     nvme_completion_poll_cb, &status);
529                 nvme_completion_poll(&status);
530                 if (nvme_completion_is_error(&status.cpl)) {
531                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
532                         return (ENXIO);
533                 }
534         }
535
536         return (0);
537 }
538
539 static int
540 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
541 {
542         struct nvme_completion_poll_status      status;
543         struct nvme_qpair                       *qpair;
544
545         for (int i = 0; i < ctrlr->num_io_queues; i++) {
546                 qpair = &ctrlr->ioq[i];
547
548                 status.done = 0;
549                 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
550                     nvme_completion_poll_cb, &status);
551                 nvme_completion_poll(&status);
552                 if (nvme_completion_is_error(&status.cpl)) {
553                         nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
554                         return (ENXIO);
555                 }
556
557                 status.done = 0;
558                 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
559                     nvme_completion_poll_cb, &status);
560                 nvme_completion_poll(&status);
561                 if (nvme_completion_is_error(&status.cpl)) {
562                         nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
563                         return (ENXIO);
564                 }
565         }
566
567         return (0);
568 }
569
570 static int
571 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
572 {
573         struct nvme_namespace   *ns;
574         uint32_t                i;
575
576         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
577                 ns = &ctrlr->ns[i];
578                 nvme_ns_construct(ns, i+1, ctrlr);
579         }
580
581         return (0);
582 }
583
584 static bool
585 is_log_page_id_valid(uint8_t page_id)
586 {
587
588         switch (page_id) {
589         case NVME_LOG_ERROR:
590         case NVME_LOG_HEALTH_INFORMATION:
591         case NVME_LOG_FIRMWARE_SLOT:
592         case NVME_LOG_CHANGED_NAMESPACE:
593         case NVME_LOG_COMMAND_EFFECT:
594         case NVME_LOG_RES_NOTIFICATION:
595         case NVME_LOG_SANITIZE_STATUS:
596                 return (true);
597         }
598
599         return (false);
600 }
601
602 static uint32_t
603 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
604 {
605         uint32_t        log_page_size;
606
607         switch (page_id) {
608         case NVME_LOG_ERROR:
609                 log_page_size = min(
610                     sizeof(struct nvme_error_information_entry) *
611                     (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
612                 break;
613         case NVME_LOG_HEALTH_INFORMATION:
614                 log_page_size = sizeof(struct nvme_health_information_page);
615                 break;
616         case NVME_LOG_FIRMWARE_SLOT:
617                 log_page_size = sizeof(struct nvme_firmware_page);
618                 break;
619         case NVME_LOG_CHANGED_NAMESPACE:
620                 log_page_size = sizeof(struct nvme_ns_list);
621                 break;
622         case NVME_LOG_COMMAND_EFFECT:
623                 log_page_size = sizeof(struct nvme_command_effects_page);
624                 break;
625         case NVME_LOG_RES_NOTIFICATION:
626                 log_page_size = sizeof(struct nvme_res_notification_page);
627                 break;
628         case NVME_LOG_SANITIZE_STATUS:
629                 log_page_size = sizeof(struct nvme_sanitize_status_page);
630                 break;
631         default:
632                 log_page_size = 0;
633                 break;
634         }
635
636         return (log_page_size);
637 }
638
639 static void
640 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
641     uint8_t state)
642 {
643
644         if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
645                 nvme_ctrlr_devctl_log(ctrlr, "critical",
646                     "available spare space below threshold");
647
648         if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
649                 nvme_ctrlr_devctl_log(ctrlr, "critical",
650                     "temperature above threshold");
651
652         if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
653                 nvme_ctrlr_devctl_log(ctrlr, "critical",
654                     "device reliability degraded");
655
656         if (state & NVME_CRIT_WARN_ST_READ_ONLY)
657                 nvme_ctrlr_devctl_log(ctrlr, "critical",
658                     "media placed in read only mode");
659
660         if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
661                 nvme_ctrlr_devctl_log(ctrlr, "critical",
662                     "volatile memory backup device failed");
663
664         if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
665                 nvme_ctrlr_devctl_log(ctrlr, "critical",
666                     "unknown critical warning(s): state = 0x%02x", state);
667 }
668
669 static void
670 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
671 {
672         struct nvme_async_event_request         *aer = arg;
673         struct nvme_health_information_page     *health_info;
674         struct nvme_ns_list                     *nsl;
675         struct nvme_error_information_entry     *err;
676         int i;
677
678         /*
679          * If the log page fetch for some reason completed with an error,
680          *  don't pass log page data to the consumers.  In practice, this case
681          *  should never happen.
682          */
683         if (nvme_completion_is_error(cpl))
684                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
685                     aer->log_page_id, NULL, 0);
686         else {
687                 /* Convert data to host endian */
688                 switch (aer->log_page_id) {
689                 case NVME_LOG_ERROR:
690                         err = (struct nvme_error_information_entry *)aer->log_page_buffer;
691                         for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
692                                 nvme_error_information_entry_swapbytes(err++);
693                         break;
694                 case NVME_LOG_HEALTH_INFORMATION:
695                         nvme_health_information_page_swapbytes(
696                             (struct nvme_health_information_page *)aer->log_page_buffer);
697                         break;
698                 case NVME_LOG_FIRMWARE_SLOT:
699                         nvme_firmware_page_swapbytes(
700                             (struct nvme_firmware_page *)aer->log_page_buffer);
701                         break;
702                 case NVME_LOG_CHANGED_NAMESPACE:
703                         nvme_ns_list_swapbytes(
704                             (struct nvme_ns_list *)aer->log_page_buffer);
705                         break;
706                 case NVME_LOG_COMMAND_EFFECT:
707                         nvme_command_effects_page_swapbytes(
708                             (struct nvme_command_effects_page *)aer->log_page_buffer);
709                         break;
710                 case NVME_LOG_RES_NOTIFICATION:
711                         nvme_res_notification_page_swapbytes(
712                             (struct nvme_res_notification_page *)aer->log_page_buffer);
713                         break;
714                 case NVME_LOG_SANITIZE_STATUS:
715                         nvme_sanitize_status_page_swapbytes(
716                             (struct nvme_sanitize_status_page *)aer->log_page_buffer);
717                         break;
718                 case INTEL_LOG_TEMP_STATS:
719                         intel_log_temp_stats_swapbytes(
720                             (struct intel_log_temp_stats *)aer->log_page_buffer);
721                         break;
722                 default:
723                         break;
724                 }
725
726                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
727                         health_info = (struct nvme_health_information_page *)
728                             aer->log_page_buffer;
729                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
730                             health_info->critical_warning);
731                         /*
732                          * Critical warnings reported through the
733                          *  SMART/health log page are persistent, so
734                          *  clear the associated bits in the async event
735                          *  config so that we do not receive repeated
736                          *  notifications for the same event.
737                          */
738                         aer->ctrlr->async_event_config &=
739                             ~health_info->critical_warning;
740                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
741                             aer->ctrlr->async_event_config, NULL, NULL);
742                 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
743                     !nvme_use_nvd) {
744                         nsl = (struct nvme_ns_list *)aer->log_page_buffer;
745                         for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
746                                 if (nsl->ns[i] > NVME_MAX_NAMESPACES)
747                                         break;
748                                 nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
749                         }
750                 }
751
752                 /*
753                  * Pass the cpl data from the original async event completion,
754                  *  not the log page fetch.
755                  */
756                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
757                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
758         }
759
760         /*
761          * Repost another asynchronous event request to replace the one
762          *  that just completed.
763          */
764         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
765 }
766
767 static void
768 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
769 {
770         struct nvme_async_event_request *aer = arg;
771
772         if (nvme_completion_is_error(cpl)) {
773                 /*
774                  *  Do not retry failed async event requests.  This avoids
775                  *  infinite loops where a new async event request is submitted
776                  *  to replace the one just failed, only to fail again and
777                  *  perpetuate the loop.
778                  */
779                 return;
780         }
781
782         /* Associated log page is in bits 23:16 of completion entry dw0. */
783         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
784
785         nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
786             " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8,
787             aer->log_page_id);
788
789         if (is_log_page_id_valid(aer->log_page_id)) {
790                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
791                     aer->log_page_id);
792                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
793                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
794                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
795                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
796                     aer);
797                 /* Wait to notify consumers until after log page is fetched. */
798         } else {
799                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
800                     NULL, 0);
801
802                 /*
803                  * Repost another asynchronous event request to replace the one
804                  *  that just completed.
805                  */
806                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
807         }
808 }
809
810 static void
811 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
812     struct nvme_async_event_request *aer)
813 {
814         struct nvme_request *req;
815
816         aer->ctrlr = ctrlr;
817         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
818         aer->req = req;
819
820         /*
821          * Disable timeout here, since asynchronous event requests should by
822          *  nature never be timed out.
823          */
824         req->timeout = false;
825         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
826         nvme_ctrlr_submit_admin_request(ctrlr, req);
827 }
828
829 static void
830 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
831 {
832         struct nvme_completion_poll_status      status;
833         struct nvme_async_event_request         *aer;
834         uint32_t                                i;
835
836         ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
837             NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
838             NVME_CRIT_WARN_ST_READ_ONLY |
839             NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
840         if (ctrlr->cdata.ver >= NVME_REV(1, 2))
841                 ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE |
842                     NVME_ASYNC_EVENT_FW_ACTIVATE;
843
844         status.done = 0;
845         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
846             0, NULL, 0, nvme_completion_poll_cb, &status);
847         nvme_completion_poll(&status);
848         if (nvme_completion_is_error(&status.cpl) ||
849             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
850             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
851                 nvme_printf(ctrlr, "temperature threshold not supported\n");
852         } else
853                 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
854
855         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
856             ctrlr->async_event_config, NULL, NULL);
857
858         /* aerl is a zero-based value, so we need to add 1 here. */
859         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
860
861         for (i = 0; i < ctrlr->num_aers; i++) {
862                 aer = &ctrlr->aer[i];
863                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
864         }
865 }
866
867 static void
868 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
869 {
870
871         ctrlr->int_coal_time = 0;
872         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
873             &ctrlr->int_coal_time);
874
875         ctrlr->int_coal_threshold = 0;
876         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
877             &ctrlr->int_coal_threshold);
878
879         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
880             ctrlr->int_coal_threshold, NULL, NULL);
881 }
882
883 static void
884 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
885 {
886         struct nvme_hmb_chunk *hmbc;
887         int i;
888
889         if (ctrlr->hmb_desc_paddr) {
890                 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
891                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
892                     ctrlr->hmb_desc_map);
893                 ctrlr->hmb_desc_paddr = 0;
894         }
895         if (ctrlr->hmb_desc_tag) {
896                 bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
897                 ctrlr->hmb_desc_tag = NULL;
898         }
899         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
900                 hmbc = &ctrlr->hmb_chunks[i];
901                 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
902                 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
903                     hmbc->hmbc_map);
904         }
905         ctrlr->hmb_nchunks = 0;
906         if (ctrlr->hmb_tag) {
907                 bus_dma_tag_destroy(ctrlr->hmb_tag);
908                 ctrlr->hmb_tag = NULL;
909         }
910         if (ctrlr->hmb_chunks) {
911                 free(ctrlr->hmb_chunks, M_NVME);
912                 ctrlr->hmb_chunks = NULL;
913         }
914 }
915
916 static void
917 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
918 {
919         struct nvme_hmb_chunk *hmbc;
920         size_t pref, min, minc, size;
921         int err, i;
922         uint64_t max;
923
924         /* Limit HMB to 5% of RAM size per device by default. */
925         max = (uint64_t)physmem * PAGE_SIZE / 20;
926         TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
927
928         min = (long long unsigned)ctrlr->cdata.hmmin * 4096;
929         if (max == 0 || max < min)
930                 return;
931         pref = MIN((long long unsigned)ctrlr->cdata.hmpre * 4096, max);
932         minc = MAX(ctrlr->cdata.hmminds * 4096, PAGE_SIZE);
933         if (min > 0 && ctrlr->cdata.hmmaxd > 0)
934                 minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
935         ctrlr->hmb_chunk = pref;
936
937 again:
938         ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, PAGE_SIZE);
939         ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
940         if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
941                 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
942         ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
943             ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
944         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
945             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
946             ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
947         if (err != 0) {
948                 nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
949                 nvme_ctrlr_hmb_free(ctrlr);
950                 return;
951         }
952
953         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
954                 hmbc = &ctrlr->hmb_chunks[i];
955                 if (bus_dmamem_alloc(ctrlr->hmb_tag,
956                     (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
957                     &hmbc->hmbc_map)) {
958                         nvme_printf(ctrlr, "failed to alloc HMB\n");
959                         break;
960                 }
961                 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
962                     hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
963                     &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
964                         bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
965                             hmbc->hmbc_map);
966                         nvme_printf(ctrlr, "failed to load HMB\n");
967                         break;
968                 }
969                 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
970                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
971         }
972
973         if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
974             ctrlr->hmb_chunk / 2 >= minc) {
975                 ctrlr->hmb_nchunks = i;
976                 nvme_ctrlr_hmb_free(ctrlr);
977                 ctrlr->hmb_chunk /= 2;
978                 goto again;
979         }
980         ctrlr->hmb_nchunks = i;
981         if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
982                 nvme_ctrlr_hmb_free(ctrlr);
983                 return;
984         }
985
986         size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
987         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
988             16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
989             size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
990         if (err != 0) {
991                 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
992                 nvme_ctrlr_hmb_free(ctrlr);
993                 return;
994         }
995         if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
996             (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
997             &ctrlr->hmb_desc_map)) {
998                 nvme_printf(ctrlr, "failed to alloc HMB desc\n");
999                 nvme_ctrlr_hmb_free(ctrlr);
1000                 return;
1001         }
1002         if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1003             ctrlr->hmb_desc_vaddr, size, nvme_single_map,
1004             &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1005                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1006                     ctrlr->hmb_desc_map);
1007                 nvme_printf(ctrlr, "failed to load HMB desc\n");
1008                 nvme_ctrlr_hmb_free(ctrlr);
1009                 return;
1010         }
1011
1012         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1013                 ctrlr->hmb_desc_vaddr[i].addr =
1014                     htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1015                 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / 4096);
1016         }
1017         bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1018             BUS_DMASYNC_PREWRITE);
1019
1020         nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1021             (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1022             / 1024 / 1024);
1023 }
1024
1025 static void
1026 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1027 {
1028         struct nvme_completion_poll_status      status;
1029         uint32_t cdw11;
1030
1031         cdw11 = 0;
1032         if (enable)
1033                 cdw11 |= 1;
1034         if (memret)
1035                 cdw11 |= 2;
1036         status.done = 0;
1037         nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1038             ctrlr->hmb_nchunks * ctrlr->hmb_chunk / 4096, ctrlr->hmb_desc_paddr,
1039             ctrlr->hmb_desc_paddr >> 32, ctrlr->hmb_nchunks, NULL, 0,
1040             nvme_completion_poll_cb, &status);
1041         nvme_completion_poll(&status);
1042         if (nvme_completion_is_error(&status.cpl))
1043                 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1044 }
1045
1046 static void
1047 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1048 {
1049         struct nvme_controller *ctrlr = ctrlr_arg;
1050         uint32_t old_num_io_queues;
1051         int i;
1052
1053         TSENTER();
1054
1055         /*
1056          * Only reset adminq here when we are restarting the
1057          *  controller after a reset.  During initialization,
1058          *  we have already submitted admin commands to get
1059          *  the number of I/O queues supported, so cannot reset
1060          *  the adminq again here.
1061          */
1062         if (resetting) {
1063                 nvme_qpair_reset(&ctrlr->adminq);
1064                 nvme_admin_qpair_enable(&ctrlr->adminq);
1065         }
1066
1067         if (ctrlr->ioq != NULL) {
1068                 for (i = 0; i < ctrlr->num_io_queues; i++)
1069                         nvme_qpair_reset(&ctrlr->ioq[i]);
1070         }
1071
1072         /*
1073          * If it was a reset on initialization command timeout, just
1074          * return here, letting initialization code fail gracefully.
1075          */
1076         if (resetting && !ctrlr->is_initialized)
1077                 return;
1078
1079         if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1080                 nvme_ctrlr_fail(ctrlr);
1081                 return;
1082         }
1083
1084         /*
1085          * The number of qpairs are determined during controller initialization,
1086          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1087          *  HW limit.  We call SET_FEATURES again here so that it gets called
1088          *  after any reset for controllers that depend on the driver to
1089          *  explicit specify how many queues it will use.  This value should
1090          *  never change between resets, so panic if somehow that does happen.
1091          */
1092         if (resetting) {
1093                 old_num_io_queues = ctrlr->num_io_queues;
1094                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1095                         nvme_ctrlr_fail(ctrlr);
1096                         return;
1097                 }
1098
1099                 if (old_num_io_queues != ctrlr->num_io_queues) {
1100                         panic("num_io_queues changed from %u to %u",
1101                               old_num_io_queues, ctrlr->num_io_queues);
1102                 }
1103         }
1104
1105         if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1106                 nvme_ctrlr_hmb_alloc(ctrlr);
1107                 if (ctrlr->hmb_nchunks > 0)
1108                         nvme_ctrlr_hmb_enable(ctrlr, true, false);
1109         } else if (ctrlr->hmb_nchunks > 0)
1110                 nvme_ctrlr_hmb_enable(ctrlr, true, true);
1111
1112         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1113                 nvme_ctrlr_fail(ctrlr);
1114                 return;
1115         }
1116
1117         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1118                 nvme_ctrlr_fail(ctrlr);
1119                 return;
1120         }
1121
1122         nvme_ctrlr_configure_aer(ctrlr);
1123         nvme_ctrlr_configure_int_coalescing(ctrlr);
1124
1125         for (i = 0; i < ctrlr->num_io_queues; i++)
1126                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
1127         TSEXIT();
1128 }
1129
1130 void
1131 nvme_ctrlr_start_config_hook(void *arg)
1132 {
1133         struct nvme_controller *ctrlr = arg;
1134
1135         TSENTER();
1136
1137         /*
1138          * Reset controller twice to ensure we do a transition from cc.en==1 to
1139          * cc.en==0.  This is because we don't really know what status the
1140          * controller was left in when boot handed off to OS.  Linux doesn't do
1141          * this, however. If we adopt that policy, see also nvme_ctrlr_resume().
1142          */
1143         if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
1144 fail:
1145                 nvme_ctrlr_fail(ctrlr);
1146                 config_intrhook_disestablish(&ctrlr->config_hook);
1147                 return;
1148         }
1149
1150         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1151                 goto fail;
1152
1153         nvme_qpair_reset(&ctrlr->adminq);
1154         nvme_admin_qpair_enable(&ctrlr->adminq);
1155
1156         if (nvme_ctrlr_identify(ctrlr) == 0 &&
1157             nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1158             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1159                 nvme_ctrlr_start(ctrlr, false);
1160         else
1161                 goto fail;
1162
1163         nvme_sysctl_initialize_ctrlr(ctrlr);
1164         config_intrhook_disestablish(&ctrlr->config_hook);
1165
1166         ctrlr->is_initialized = 1;
1167         nvme_notify_new_controller(ctrlr);
1168         TSEXIT();
1169 }
1170
1171 static void
1172 nvme_ctrlr_reset_task(void *arg, int pending)
1173 {
1174         struct nvme_controller  *ctrlr = arg;
1175         int                     status;
1176
1177         nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller");
1178         status = nvme_ctrlr_hw_reset(ctrlr);
1179         /*
1180          * Use pause instead of DELAY, so that we yield to any nvme interrupt
1181          *  handlers on this CPU that were blocked on a qpair lock. We want
1182          *  all nvme interrupts completed before proceeding with restarting the
1183          *  controller.
1184          *
1185          * XXX - any way to guarantee the interrupt handlers have quiesced?
1186          */
1187         pause("nvmereset", hz / 10);
1188         if (status == 0)
1189                 nvme_ctrlr_start(ctrlr, true);
1190         else
1191                 nvme_ctrlr_fail(ctrlr);
1192
1193         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1194 }
1195
1196 /*
1197  * Poll all the queues enabled on the device for completion.
1198  */
1199 void
1200 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1201 {
1202         int i;
1203
1204         nvme_qpair_process_completions(&ctrlr->adminq);
1205
1206         for (i = 0; i < ctrlr->num_io_queues; i++)
1207                 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1208                         nvme_qpair_process_completions(&ctrlr->ioq[i]);
1209 }
1210
1211 /*
1212  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1213  * there's only a single vector. While we're polling, we mask further
1214  * interrupts in the controller.
1215  */
1216 void
1217 nvme_ctrlr_shared_handler(void *arg)
1218 {
1219         struct nvme_controller *ctrlr = arg;
1220
1221         nvme_mmio_write_4(ctrlr, intms, 1);
1222         nvme_ctrlr_poll(ctrlr);
1223         nvme_mmio_write_4(ctrlr, intmc, 1);
1224 }
1225
1226 static void
1227 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1228 {
1229         struct nvme_pt_command *pt = arg;
1230         struct mtx *mtx = pt->driver_lock;
1231         uint16_t status;
1232
1233         bzero(&pt->cpl, sizeof(pt->cpl));
1234         pt->cpl.cdw0 = cpl->cdw0;
1235
1236         status = cpl->status;
1237         status &= ~NVME_STATUS_P_MASK;
1238         pt->cpl.status = status;
1239
1240         mtx_lock(mtx);
1241         pt->driver_lock = NULL;
1242         wakeup(pt);
1243         mtx_unlock(mtx);
1244 }
1245
1246 int
1247 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1248     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1249     int is_admin_cmd)
1250 {
1251         struct nvme_request     *req;
1252         struct mtx              *mtx;
1253         struct buf              *buf = NULL;
1254         int                     ret = 0;
1255
1256         if (pt->len > 0) {
1257                 if (pt->len > ctrlr->max_xfer_size) {
1258                         nvme_printf(ctrlr, "pt->len (%d) "
1259                             "exceeds max_xfer_size (%d)\n", pt->len,
1260                             ctrlr->max_xfer_size);
1261                         return EIO;
1262                 }
1263                 if (is_user_buffer) {
1264                         /*
1265                          * Ensure the user buffer is wired for the duration of
1266                          *  this pass-through command.
1267                          */
1268                         PHOLD(curproc);
1269                         buf = uma_zalloc(pbuf_zone, M_WAITOK);
1270                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1271                         if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1272                                 ret = EFAULT;
1273                                 goto err;
1274                         }
1275                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
1276                             nvme_pt_done, pt);
1277                 } else
1278                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1279                             nvme_pt_done, pt);
1280         } else
1281                 req = nvme_allocate_request_null(nvme_pt_done, pt);
1282
1283         /* Assume user space already converted to little-endian */
1284         req->cmd.opc = pt->cmd.opc;
1285         req->cmd.fuse = pt->cmd.fuse;
1286         req->cmd.rsvd2 = pt->cmd.rsvd2;
1287         req->cmd.rsvd3 = pt->cmd.rsvd3;
1288         req->cmd.cdw10 = pt->cmd.cdw10;
1289         req->cmd.cdw11 = pt->cmd.cdw11;
1290         req->cmd.cdw12 = pt->cmd.cdw12;
1291         req->cmd.cdw13 = pt->cmd.cdw13;
1292         req->cmd.cdw14 = pt->cmd.cdw14;
1293         req->cmd.cdw15 = pt->cmd.cdw15;
1294
1295         req->cmd.nsid = htole32(nsid);
1296
1297         mtx = mtx_pool_find(mtxpool_sleep, pt);
1298         pt->driver_lock = mtx;
1299
1300         if (is_admin_cmd)
1301                 nvme_ctrlr_submit_admin_request(ctrlr, req);
1302         else
1303                 nvme_ctrlr_submit_io_request(ctrlr, req);
1304
1305         mtx_lock(mtx);
1306         while (pt->driver_lock != NULL)
1307                 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1308         mtx_unlock(mtx);
1309
1310 err:
1311         if (buf != NULL) {
1312                 uma_zfree(pbuf_zone, buf);
1313                 PRELE(curproc);
1314         }
1315
1316         return (ret);
1317 }
1318
1319 static int
1320 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1321     struct thread *td)
1322 {
1323         struct nvme_controller                  *ctrlr;
1324         struct nvme_pt_command                  *pt;
1325
1326         ctrlr = cdev->si_drv1;
1327
1328         switch (cmd) {
1329         case NVME_RESET_CONTROLLER:
1330                 nvme_ctrlr_reset(ctrlr);
1331                 break;
1332         case NVME_PASSTHROUGH_CMD:
1333                 pt = (struct nvme_pt_command *)arg;
1334                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1335                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1336         case NVME_GET_NSID:
1337         {
1338                 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1339                 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1340                     sizeof(gnsid->cdev));
1341                 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
1342                 gnsid->nsid = 0;
1343                 break;
1344         }
1345         case NVME_GET_MAX_XFER_SIZE:
1346                 *(uint64_t *)arg = ctrlr->max_xfer_size;
1347                 break;
1348         default:
1349                 return (ENOTTY);
1350         }
1351
1352         return (0);
1353 }
1354
1355 static struct cdevsw nvme_ctrlr_cdevsw = {
1356         .d_version =    D_VERSION,
1357         .d_flags =      0,
1358         .d_ioctl =      nvme_ctrlr_ioctl
1359 };
1360
1361 int
1362 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1363 {
1364         struct make_dev_args    md_args;
1365         uint32_t        cap_lo;
1366         uint32_t        cap_hi;
1367         uint32_t        to, vs, pmrcap;
1368         uint8_t         mpsmin;
1369         int             status, timeout_period;
1370
1371         ctrlr->dev = dev;
1372
1373         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1374         if (bus_get_domain(dev, &ctrlr->domain) != 0)
1375                 ctrlr->domain = 0;
1376
1377         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1378         if (bootverbose) {
1379                 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1380                     cap_lo, NVME_CAP_LO_MQES(cap_lo),
1381                     NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1382                     NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1383                     (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1384                     (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1385                     NVME_CAP_LO_TO(cap_lo));
1386         }
1387         cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1388         if (bootverbose) {
1389                 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1390                     "MPSMIN %u, MPSMAX %u%s%s\n", cap_hi,
1391                     NVME_CAP_HI_DSTRD(cap_hi),
1392                     NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1393                     NVME_CAP_HI_CSS(cap_hi),
1394                     NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1395                     NVME_CAP_HI_MPSMIN(cap_hi),
1396                     NVME_CAP_HI_MPSMAX(cap_hi),
1397                     NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1398                     NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "");
1399         }
1400         if (bootverbose) {
1401                 vs = nvme_mmio_read_4(ctrlr, vs);
1402                 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1403                     NVME_MAJOR(vs), NVME_MINOR(vs));
1404         }
1405         if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1406                 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1407                 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1408                     "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1409                     NVME_PMRCAP_BIR(pmrcap),
1410                     NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1411                     NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1412                     NVME_PMRCAP_PMRTU(pmrcap),
1413                     NVME_PMRCAP_PMRWBM(pmrcap),
1414                     NVME_PMRCAP_PMRTO(pmrcap),
1415                     NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1416         }
1417
1418         ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1419
1420         mpsmin = NVME_CAP_HI_MPSMIN(cap_hi);
1421         ctrlr->min_page_size = 1 << (12 + mpsmin);
1422
1423         /* Get ready timeout value from controller, in units of 500ms. */
1424         to = NVME_CAP_LO_TO(cap_lo) + 1;
1425         ctrlr->ready_timeout_in_ms = to * 500;
1426
1427         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1428         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1429         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1430         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1431         ctrlr->timeout_period = timeout_period;
1432
1433         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1434         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1435
1436         ctrlr->enable_aborts = 0;
1437         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1438
1439         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1440         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1441                 return (ENXIO);
1442
1443         /*
1444          * Create 2 threads for the taskqueue. The reset thread will block when
1445          * it detects that the controller has failed until all I/O has been
1446          * failed up the stack. The fail_req task needs to be able to run in
1447          * this case to finish the request failure for some cases.
1448          *
1449          * We could partially solve this race by draining the failed requeust
1450          * queue before proceding to free the sim, though nothing would stop
1451          * new I/O from coming in after we do that drain, but before we reach
1452          * cam_sim_free, so this big hammer is used instead.
1453          */
1454         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1455             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1456         taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1457
1458         ctrlr->is_resetting = 0;
1459         ctrlr->is_initialized = 0;
1460         ctrlr->notification_sent = 0;
1461         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1462         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1463         STAILQ_INIT(&ctrlr->fail_req);
1464         ctrlr->is_failed = false;
1465
1466         make_dev_args_init(&md_args);
1467         md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1468         md_args.mda_uid = UID_ROOT;
1469         md_args.mda_gid = GID_WHEEL;
1470         md_args.mda_mode = 0600;
1471         md_args.mda_unit = device_get_unit(dev);
1472         md_args.mda_si_drv1 = (void *)ctrlr;
1473         status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1474             device_get_unit(dev));
1475         if (status != 0)
1476                 return (ENXIO);
1477
1478         return (0);
1479 }
1480
1481 void
1482 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1483 {
1484         int     gone, i;
1485
1486         ctrlr->is_dying = true;
1487
1488         if (ctrlr->resource == NULL)
1489                 goto nores;
1490         if (!mtx_initialized(&ctrlr->adminq.lock))
1491                 goto noadminq;
1492
1493         /*
1494          * Check whether it is a hot unplug or a clean driver detach.
1495          * If device is not there any more, skip any shutdown commands.
1496          */
1497         gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1498         if (gone)
1499                 nvme_ctrlr_fail(ctrlr);
1500         else
1501                 nvme_notify_fail_consumers(ctrlr);
1502
1503         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1504                 nvme_ns_destruct(&ctrlr->ns[i]);
1505
1506         if (ctrlr->cdev)
1507                 destroy_dev(ctrlr->cdev);
1508
1509         if (ctrlr->is_initialized) {
1510                 if (!gone) {
1511                         if (ctrlr->hmb_nchunks > 0)
1512                                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1513                         nvme_ctrlr_delete_qpairs(ctrlr);
1514                 }
1515                 nvme_ctrlr_hmb_free(ctrlr);
1516         }
1517         if (ctrlr->ioq != NULL) {
1518                 for (i = 0; i < ctrlr->num_io_queues; i++)
1519                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1520                 free(ctrlr->ioq, M_NVME);
1521         }
1522         nvme_admin_qpair_destroy(&ctrlr->adminq);
1523
1524         /*
1525          *  Notify the controller of a shutdown, even though this is due to
1526          *   a driver unload, not a system shutdown (this path is not invoked
1527          *   during shutdown).  This ensures the controller receives a
1528          *   shutdown notification in case the system is shutdown before
1529          *   reloading the driver.
1530          */
1531         if (!gone)
1532                 nvme_ctrlr_shutdown(ctrlr);
1533
1534         if (!gone)
1535                 nvme_ctrlr_disable(ctrlr);
1536
1537 noadminq:
1538         if (ctrlr->taskqueue)
1539                 taskqueue_free(ctrlr->taskqueue);
1540
1541         if (ctrlr->tag)
1542                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1543
1544         if (ctrlr->res)
1545                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1546                     rman_get_rid(ctrlr->res), ctrlr->res);
1547
1548         if (ctrlr->bar4_resource != NULL) {
1549                 bus_release_resource(dev, SYS_RES_MEMORY,
1550                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1551         }
1552
1553         bus_release_resource(dev, SYS_RES_MEMORY,
1554             ctrlr->resource_id, ctrlr->resource);
1555
1556 nores:
1557         mtx_destroy(&ctrlr->lock);
1558 }
1559
1560 void
1561 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1562 {
1563         uint32_t        cc;
1564         uint32_t        csts;
1565         int             timeout;
1566
1567         cc = nvme_mmio_read_4(ctrlr, cc);
1568         cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1569         cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1570         nvme_mmio_write_4(ctrlr, cc, cc);
1571
1572         timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1573             ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1574         while (1) {
1575                 csts = nvme_mmio_read_4(ctrlr, csts);
1576                 if (csts == NVME_GONE)          /* Hot unplug. */
1577                         break;
1578                 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1579                         break;
1580                 if (timeout - ticks < 0) {
1581                         nvme_printf(ctrlr, "shutdown timeout\n");
1582                         break;
1583                 }
1584                 pause("nvmeshut", 1);
1585         }
1586 }
1587
1588 void
1589 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1590     struct nvme_request *req)
1591 {
1592
1593         nvme_qpair_submit_request(&ctrlr->adminq, req);
1594 }
1595
1596 void
1597 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1598     struct nvme_request *req)
1599 {
1600         struct nvme_qpair       *qpair;
1601
1602         qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1603         nvme_qpair_submit_request(qpair, req);
1604 }
1605
1606 device_t
1607 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1608 {
1609
1610         return (ctrlr->dev);
1611 }
1612
1613 const struct nvme_controller_data *
1614 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1615 {
1616
1617         return (&ctrlr->cdata);
1618 }
1619
1620 int
1621 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1622 {
1623         int to = hz;
1624
1625         /*
1626          * Can't touch failed controllers, so it's already suspended.
1627          */
1628         if (ctrlr->is_failed)
1629                 return (0);
1630
1631         /*
1632          * We don't want the reset taskqueue running, since it does similar
1633          * things, so prevent it from running after we start. Wait for any reset
1634          * that may have been started to complete. The reset process we follow
1635          * will ensure that any new I/O will queue and be given to the hardware
1636          * after we resume (though there should be none).
1637          */
1638         while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1639                 pause("nvmesusp", 1);
1640         if (to <= 0) {
1641                 nvme_printf(ctrlr,
1642                     "Competing reset task didn't finish. Try again later.\n");
1643                 return (EWOULDBLOCK);
1644         }
1645
1646         if (ctrlr->hmb_nchunks > 0)
1647                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1648
1649         /*
1650          * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1651          * delete the hardware I/O queues, and then shutdown. This properly
1652          * flushes any metadata the drive may have stored so it can survive
1653          * having its power removed and prevents the unsafe shutdown count from
1654          * incriminating. Once we delete the qpairs, we have to disable them
1655          * before shutting down. The delay is out of paranoia in
1656          * nvme_ctrlr_hw_reset, and is repeated here (though we should have no
1657          * pending I/O that the delay copes with).
1658          */
1659         nvme_ctrlr_delete_qpairs(ctrlr);
1660         nvme_ctrlr_disable_qpairs(ctrlr);
1661         pause("nvmesusp", hz / 10);
1662         nvme_ctrlr_shutdown(ctrlr);
1663
1664         return (0);
1665 }
1666
1667 int
1668 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1669 {
1670
1671         /*
1672          * Can't touch failed controllers, so nothing to do to resume.
1673          */
1674         if (ctrlr->is_failed)
1675                 return (0);
1676
1677         /*
1678          * Have to reset the hardware twice, just like we do on attach. See
1679          * nmve_attach() for why.
1680          */
1681         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1682                 goto fail;
1683         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1684                 goto fail;
1685
1686         /*
1687          * Now that we've reset the hardware, we can restart the controller. Any
1688          * I/O that was pending is requeued. Any admin commands are aborted with
1689          * an error. Once we've restarted, take the controller out of reset.
1690          */
1691         nvme_ctrlr_start(ctrlr, true);
1692         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1693
1694         return (0);
1695 fail:
1696         /*
1697          * Since we can't bring the controller out of reset, announce and fail
1698          * the controller. However, we have to return success for the resume
1699          * itself, due to questionable APIs.
1700          */
1701         nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1702         nvme_ctrlr_fail(ctrlr);
1703         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1704         return (0);
1705 }