]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
This is the first of several commits which will add NVM Express (NVMe)
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * Copyright (C) 2012 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/bus.h>
32 #include <sys/conf.h>
33 #include <sys/ioccom.h>
34 #include <sys/smp.h>
35
36 #include <dev/pci/pcireg.h>
37 #include <dev/pci/pcivar.h>
38
39 #include "nvme_private.h"
40
41 static void
42 nvme_ctrlr_cb(void *arg, const struct nvme_completion *status)
43 {
44         struct nvme_completion  *cpl = arg;
45         struct mtx              *mtx;
46
47         /*
48          * Copy status into the argument passed by the caller, so that
49          *  the caller can check the status to determine if the
50          *  the request passed or failed.
51          */
52         memcpy(cpl, status, sizeof(*cpl));
53         mtx = mtx_pool_find(mtxpool_sleep, cpl);
54         mtx_lock(mtx);
55         wakeup(cpl);
56         mtx_unlock(mtx);
57 }
58
59 static int
60 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
61 {
62
63         /* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */
64         if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
65                 ctrlr->resource_id = PCIR_BAR(2);
66         else
67                 ctrlr->resource_id = PCIR_BAR(0);
68
69         ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
70             &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
71
72         if(ctrlr->resource == NULL) {
73                 device_printf(ctrlr->dev, "unable to allocate pci resource\n");
74                 return (ENOMEM);
75         }
76
77         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
78         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
79         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
80
81         return (0);
82 }
83
84 #ifdef CHATHAM2
85 static int
86 nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr)
87 {
88
89         ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR);
90         ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev,
91             SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1,
92             RF_ACTIVE);
93
94         if(ctrlr->chatham_resource == NULL) {
95                 device_printf(ctrlr->dev, "unable to alloc pci resource\n");
96                 return (ENOMEM);
97         }
98
99         ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource);
100         ctrlr->chatham_bus_handle =
101             rman_get_bushandle(ctrlr->chatham_resource);
102
103         return (0);
104 }
105
106 static void
107 nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr)
108 {
109         uint64_t reg1, reg2, reg3;
110         uint64_t temp1, temp2;
111         uint32_t temp3;
112         uint32_t use_flash_timings = 0;
113
114         DELAY(10000);
115
116         temp3 = chatham_read_4(ctrlr, 0x8080);
117
118         device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3);
119
120         ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110;
121         ctrlr->chatham_size = ctrlr->chatham_lbas * 512;
122
123         device_printf(ctrlr->dev, "Chatham size: %lld\n",
124             (long long)ctrlr->chatham_size);
125
126         reg1 = reg2 = reg3 = ctrlr->chatham_size - 1;
127
128         TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings);
129         if (use_flash_timings) {
130                 device_printf(ctrlr->dev, "Chatham: using flash timings\n");
131                 temp1 = 0x00001b58000007d0LL;
132                 temp2 = 0x000000cb00000131LL;
133         } else {
134                 device_printf(ctrlr->dev, "Chatham: using DDR timings\n");
135                 temp1 = temp2 = 0x0LL;
136         }
137
138         chatham_write_8(ctrlr, 0x8000, reg1);
139         chatham_write_8(ctrlr, 0x8008, reg2);
140         chatham_write_8(ctrlr, 0x8010, reg3);
141
142         chatham_write_8(ctrlr, 0x8020, temp1);
143         temp3 = chatham_read_4(ctrlr, 0x8020);
144
145         chatham_write_8(ctrlr, 0x8028, temp2);
146         temp3 = chatham_read_4(ctrlr, 0x8028);
147
148         chatham_write_8(ctrlr, 0x8030, temp1);
149         chatham_write_8(ctrlr, 0x8038, temp2);
150         chatham_write_8(ctrlr, 0x8040, temp1);
151         chatham_write_8(ctrlr, 0x8048, temp2);
152         chatham_write_8(ctrlr, 0x8050, temp1);
153         chatham_write_8(ctrlr, 0x8058, temp2);
154
155         DELAY(10000);
156 }
157
158 static void
159 nvme_chatham_populate_cdata(struct nvme_controller *ctrlr)
160 {
161         struct nvme_controller_data *cdata;
162
163         cdata = &ctrlr->cdata;
164
165         cdata->vid = 0x8086;
166         cdata->ssvid = 0x2011;
167
168         /*
169          * Chatham2 puts garbage data in these fields when we
170          *  invoke IDENTIFY_CONTROLLER, so we need to re-zero
171          *  the fields before calling bcopy().
172          */
173         memset(cdata->sn, 0, sizeof(cdata->sn));
174         memcpy(cdata->sn, "2012", strlen("2012"));
175         memset(cdata->mn, 0, sizeof(cdata->mn));
176         memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2"));
177         memset(cdata->fr, 0, sizeof(cdata->fr));
178         memcpy(cdata->fr, "0", strlen("0"));
179         cdata->rab = 8;
180         cdata->aerl = 3;
181         cdata->lpa.ns_smart = 1;
182         cdata->sqes.min = 6;
183         cdata->sqes.max = 6;
184         cdata->sqes.min = 4;
185         cdata->sqes.max = 4;
186         cdata->nn = 1;
187
188         /* Chatham2 doesn't support DSM command */
189         cdata->oncs.dsm = 0;
190
191         cdata->vwc.present = 1;
192 }
193 #endif /* CHATHAM2 */
194
195 static void
196 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
197 {
198         struct nvme_qpair       *qpair;
199         uint32_t                num_entries;
200
201         qpair = &ctrlr->adminq;
202
203         num_entries = NVME_ADMIN_ENTRIES;
204         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
205         /*
206          * If admin_entries was overridden to an invalid value, revert it
207          *  back to our default value.
208          */
209         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
210             num_entries > NVME_MAX_ADMIN_ENTRIES) {
211                 printf("nvme: invalid hw.nvme.admin_entries=%d specified\n",
212                     num_entries);
213                 num_entries = NVME_ADMIN_ENTRIES;
214         }
215
216         /*
217          * The admin queue's max xfer size is treated differently than the
218          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
219          */
220         nvme_qpair_construct(qpair, 0, 0, num_entries, 16*1024, ctrlr);
221 }
222
223 static int
224 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
225 {
226         struct nvme_qpair       *qpair;
227         union cap_lo_register   cap_lo;
228         int                     i, num_entries;
229
230         num_entries = NVME_IO_ENTRIES;
231         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
232
233         num_entries = max(num_entries, NVME_MIN_IO_ENTRIES);
234
235         /*
236          * NVMe spec sets a hard limit of 64K max entries, but
237          *  devices may specify a smaller limit, so we need to check
238          *  the MQES field in the capabilities register.
239          */
240         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
241         num_entries = min(num_entries, cap_lo.bits.mqes+1);
242
243         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
244         TUNABLE_INT_FETCH("hw.nvme.max_xfer_size", &ctrlr->max_xfer_size);
245         /*
246          * Check that tunable doesn't specify a size greater than what our
247          *  driver supports, and is an even PAGE_SIZE multiple.
248          */
249         if (ctrlr->max_xfer_size > NVME_MAX_XFER_SIZE ||
250             ctrlr->max_xfer_size % PAGE_SIZE)
251                 ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
252
253         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
254             M_NVME, M_ZERO | M_NOWAIT);
255
256         if (ctrlr->ioq == NULL)
257                 return (ENOMEM);
258
259         for (i = 0; i < ctrlr->num_io_queues; i++) {
260                 qpair = &ctrlr->ioq[i];
261
262                 /*
263                  * Admin queue has ID=0. IO queues start at ID=1 -
264                  *  hence the 'i+1' here.
265                  *
266                  * For I/O queues, use the controller-wide max_xfer_size
267                  *  calculated in nvme_attach().
268                  */
269                 nvme_qpair_construct(qpair,
270                                      i+1, /* qpair ID */
271                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
272                                      num_entries,
273                                      ctrlr->max_xfer_size,
274                                      ctrlr);
275
276                 if (ctrlr->per_cpu_io_queues)
277                         bus_bind_intr(ctrlr->dev, qpair->res, i);
278         }
279
280         return (0);
281 }
282
283 static int
284 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
285 {
286         int ms_waited;
287         union cc_register cc;
288         union csts_register csts;
289
290         cc.raw = nvme_mmio_read_4(ctrlr, cc);
291         csts.raw = nvme_mmio_read_4(ctrlr, csts);
292
293         if (!cc.bits.en) {
294                 device_printf(ctrlr->dev, "%s called with cc.en = 0\n",
295                     __func__);
296                 return (ENXIO);
297         }
298
299         ms_waited = 0;
300
301         while (!csts.bits.rdy) {
302                 DELAY(1000);
303                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
304                         device_printf(ctrlr->dev, "controller did not become "
305                             "ready within %d ms\n", ctrlr->ready_timeout_in_ms);
306                         return (ENXIO);
307                 }
308                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
309         }
310
311         return (0);
312 }
313
314 static void
315 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
316 {
317         union cc_register cc;
318         union csts_register csts;
319
320         cc.raw = nvme_mmio_read_4(ctrlr, cc);
321         csts.raw = nvme_mmio_read_4(ctrlr, csts);
322
323         if (cc.bits.en == 1 && csts.bits.rdy == 0)
324                 nvme_ctrlr_wait_for_ready(ctrlr);
325
326         cc.bits.en = 0;
327         nvme_mmio_write_4(ctrlr, cc, cc.raw);
328         DELAY(5000);
329 }
330
331 static int
332 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
333 {
334         union cc_register       cc;
335         union csts_register     csts;
336         union aqa_register      aqa;
337
338         cc.raw = nvme_mmio_read_4(ctrlr, cc);
339         csts.raw = nvme_mmio_read_4(ctrlr, csts);
340
341         if (cc.bits.en == 1) {
342                 if (csts.bits.rdy == 1)
343                         return (0);
344                 else
345                         return (nvme_ctrlr_wait_for_ready(ctrlr));
346         }
347
348         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
349         DELAY(5000);
350         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
351         DELAY(5000);
352
353         aqa.raw = 0;
354         /* acqs and asqs are 0-based. */
355         aqa.bits.acqs = ctrlr->adminq.num_entries-1;
356         aqa.bits.asqs = ctrlr->adminq.num_entries-1;
357         nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
358         DELAY(5000);
359
360         cc.bits.en = 1;
361         cc.bits.css = 0;
362         cc.bits.ams = 0;
363         cc.bits.shn = 0;
364         cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
365         cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
366
367         /* This evaluates to 0, which is according to spec. */
368         cc.bits.mps = (PAGE_SIZE >> 13);
369
370         nvme_mmio_write_4(ctrlr, cc, cc.raw);
371         DELAY(5000);
372
373         return (nvme_ctrlr_wait_for_ready(ctrlr));
374 }
375
376 int
377 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
378 {
379
380         nvme_ctrlr_disable(ctrlr);
381         return (nvme_ctrlr_enable(ctrlr));
382 }
383
384 static void
385 nvme_async_event_cb(void *arg, const struct nvme_completion *status)
386 {
387         struct nvme_controller *ctrlr = arg;
388
389         printf("Asynchronous event occurred.\n");
390
391         /* TODO: decode async event type based on status */
392         /* TODO: check status for any error bits */
393
394         /*
395          * Repost an asynchronous event request so that it can be
396          *  used again by the controller.
397          */
398         nvme_ctrlr_cmd_asynchronous_event_request(ctrlr, nvme_async_event_cb,
399             ctrlr);
400 }
401
402 static int
403 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
404 {
405         struct mtx              *mtx;
406         struct nvme_completion  cpl;
407         int                     status;
408
409         mtx = mtx_pool_find(mtxpool_sleep, &cpl);
410
411         mtx_lock(mtx);
412         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
413             nvme_ctrlr_cb, &cpl);
414         status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
415         mtx_unlock(mtx);
416         if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
417                 printf("nvme_identify_controller failed!\n");
418                 return (ENXIO);
419         }
420
421 #ifdef CHATHAM2
422         if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
423                 nvme_chatham_populate_cdata(ctrlr);
424 #endif
425
426         return (0);
427 }
428
429 static int
430 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
431 {
432         struct mtx              *mtx;
433         struct nvme_completion  cpl;
434         int                     cq_allocated, sq_allocated, status;
435
436         mtx = mtx_pool_find(mtxpool_sleep, &cpl);
437
438         mtx_lock(mtx);
439         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
440             nvme_ctrlr_cb, &cpl);
441         status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
442         mtx_unlock(mtx);
443         if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
444                 printf("nvme_set_num_queues failed!\n");
445                 return (ENXIO);
446         }
447
448         /*
449          * Data in cdw0 is 0-based.
450          * Lower 16-bits indicate number of submission queues allocated.
451          * Upper 16-bits indicate number of completion queues allocated.
452          */
453         sq_allocated = (cpl.cdw0 & 0xFFFF) + 1;
454         cq_allocated = (cpl.cdw0 >> 16) + 1;
455
456         /*
457          * Check that the controller was able to allocate the number of
458          *  queues we requested.  If not, revert to one IO queue.
459          */
460         if (sq_allocated < ctrlr->num_io_queues ||
461             cq_allocated < ctrlr->num_io_queues) {
462                 ctrlr->num_io_queues = 1;
463                 ctrlr->per_cpu_io_queues = 0;
464
465                 /* TODO: destroy extra queues that were created
466                  *  previously but now found to be not needed.
467                  */
468         }
469
470         return (0);
471 }
472
473 static int
474 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
475 {
476         struct mtx              *mtx;
477         struct nvme_qpair       *qpair;
478         struct nvme_completion  cpl;
479         int                     i, status;
480
481         mtx = mtx_pool_find(mtxpool_sleep, &cpl);
482
483         for (i = 0; i < ctrlr->num_io_queues; i++) {
484                 qpair = &ctrlr->ioq[i];
485
486                 mtx_lock(mtx);
487                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
488                     nvme_ctrlr_cb, &cpl);
489                 status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
490                 mtx_unlock(mtx);
491                 if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
492                         printf("nvme_create_io_cq failed!\n");
493                         return (ENXIO);
494                 }
495
496                 mtx_lock(mtx);
497                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
498                     nvme_ctrlr_cb, &cpl);
499                 status = msleep(&cpl, mtx, PRIBIO, "nvme_start", hz*5);
500                 mtx_unlock(mtx);
501                 if ((status != 0) || cpl.sf_sc || cpl.sf_sct) {
502                         printf("nvme_create_io_sq failed!\n");
503                         return (ENXIO);
504                 }
505         }
506
507         return (0);
508 }
509
510 static int
511 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
512 {
513         struct nvme_namespace   *ns;
514         int                     i, status;
515
516         for (i = 0; i < ctrlr->cdata.nn; i++) {
517                 ns = &ctrlr->ns[i];
518                 status = nvme_ns_construct(ns, i+1, ctrlr);
519                 if (status != 0)
520                         return (status);
521         }
522
523         return (0);
524 }
525
526 static void
527 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
528 {
529         union nvme_critical_warning_state       state;
530         uint8_t                                 num_async_events;
531
532         state.raw = 0xFF;
533         state.bits.reserved = 0;
534         nvme_ctrlr_cmd_set_asynchronous_event_config(ctrlr, state, NULL, NULL);
535
536         /* aerl is a zero-based value, so we need to add 1 here. */
537         num_async_events = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
538
539         /*
540          * Disable this code for now, since Chatham doesn't support
541          *  AERs so I have no good way to test them.
542          */
543 #if 0
544         for (int i = 0; i < num_async_events; i++)
545                 nvme_ctrlr_cmd_asynchronous_event_request(ctrlr,
546                     nvme_async_event_cb, ctrlr);
547 #endif
548 }
549
550 static void
551 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
552 {
553
554         ctrlr->int_coal_time = 0;
555         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
556             &ctrlr->int_coal_time);
557
558         ctrlr->int_coal_threshold = 0;
559         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
560             &ctrlr->int_coal_threshold);
561
562         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
563             ctrlr->int_coal_threshold, NULL, NULL);
564 }
565
566 void
567 nvme_ctrlr_start(void *ctrlr_arg)
568 {
569         struct nvme_controller *ctrlr = ctrlr_arg;
570
571         if (nvme_ctrlr_identify(ctrlr) != 0)
572                 goto err;
573
574         if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0)
575                 goto err;
576
577         if (nvme_ctrlr_create_qpairs(ctrlr) != 0)
578                 goto err;
579
580         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0)
581                 goto err;
582
583         nvme_ctrlr_configure_aer(ctrlr);
584         nvme_ctrlr_configure_int_coalescing(ctrlr);
585
586         ctrlr->is_started = TRUE;
587
588 err:
589
590         /*
591          * Initialize sysctls, even if controller failed to start, to
592          *  assist with debugging admin queue pair.
593          */
594         nvme_sysctl_initialize_ctrlr(ctrlr);
595         config_intrhook_disestablish(&ctrlr->config_hook);
596 }
597
598 static void
599 nvme_ctrlr_intx_task(void *arg, int pending)
600 {
601         struct nvme_controller *ctrlr = arg;
602
603         nvme_qpair_process_completions(&ctrlr->adminq);
604
605         if (ctrlr->ioq[0].cpl)
606                 nvme_qpair_process_completions(&ctrlr->ioq[0]);
607
608         nvme_mmio_write_4(ctrlr, intmc, 1);
609 }
610
611 static void
612 nvme_ctrlr_intx_handler(void *arg)
613 {
614         struct nvme_controller *ctrlr = arg;
615
616         nvme_mmio_write_4(ctrlr, intms, 1);
617         taskqueue_enqueue_fast(ctrlr->taskqueue, &ctrlr->task);
618 }
619
620 static int
621 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
622 {
623
624         ctrlr->num_io_queues = 1;
625         ctrlr->per_cpu_io_queues = 0;
626         ctrlr->rid = 0;
627         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
628             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
629
630         if (ctrlr->res == NULL) {
631                 device_printf(ctrlr->dev, "unable to allocate shared IRQ\n");
632                 return (ENOMEM);
633         }
634
635         bus_setup_intr(ctrlr->dev, ctrlr->res,
636             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
637             ctrlr, &ctrlr->tag);
638
639         if (ctrlr->tag == NULL) {
640                 device_printf(ctrlr->dev,
641                     "unable to setup legacy interrupt handler\n");
642                 return (ENOMEM);
643         }
644
645         TASK_INIT(&ctrlr->task, 0, nvme_ctrlr_intx_task, ctrlr);
646         ctrlr->taskqueue = taskqueue_create_fast("nvme_taskq", M_NOWAIT,
647             taskqueue_thread_enqueue, &ctrlr->taskqueue);
648         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_NET,
649             "%s intx taskq", device_get_nameunit(ctrlr->dev));
650
651         return (0);
652 }
653
654 static int
655 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
656     struct thread *td)
657 {
658         struct nvme_controller  *ctrlr;
659         struct nvme_completion  cpl;
660         struct mtx              *mtx;
661
662         ctrlr = cdev->si_drv1;
663
664         switch (cmd) {
665         case NVME_IDENTIFY_CONTROLLER:
666 #ifdef CHATHAM2
667                 /*
668                  * Don't refresh data on Chatham, since Chatham returns
669                  *  garbage on IDENTIFY anyways.
670                  */
671                 if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID) {
672                         memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
673                         break;
674                 }
675 #endif
676                 /* Refresh data before returning to user. */
677                 mtx = mtx_pool_find(mtxpool_sleep, &cpl);
678                 mtx_lock(mtx);
679                 nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
680                     nvme_ctrlr_cb, &cpl);
681                 msleep(&cpl, mtx, PRIBIO, "nvme_ioctl", 0);
682                 mtx_unlock(mtx);
683                 if (cpl.sf_sc || cpl.sf_sct)
684                         return (ENXIO);
685                 memcpy(arg, &ctrlr->cdata, sizeof(ctrlr->cdata));
686                 break;
687         default:
688                 return (ENOTTY);
689         }
690
691         return (0);
692 }
693
694 static struct cdevsw nvme_ctrlr_cdevsw = {
695         .d_version =    D_VERSION,
696         .d_flags =      0,
697         .d_ioctl =      nvme_ctrlr_ioctl
698 };
699
700 int
701 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
702 {
703         union cap_lo_register   cap_lo;
704         union cap_hi_register   cap_hi;
705         int                     num_vectors, per_cpu_io_queues, status = 0;
706
707         ctrlr->dev = dev;
708         ctrlr->is_started = FALSE;
709
710         status = nvme_ctrlr_allocate_bar(ctrlr);
711
712         if (status != 0)
713                 return (status);
714
715 #ifdef CHATHAM2
716         if (pci_get_devid(dev) == CHATHAM_PCI_ID) {
717                 status = nvme_ctrlr_allocate_chatham_bar(ctrlr);
718                 if (status != 0)
719                         return (status);
720                 nvme_ctrlr_setup_chatham(ctrlr);
721         }
722 #endif
723
724         /*
725          * Software emulators may set the doorbell stride to something
726          *  other than zero, but this driver is not set up to handle that.
727          */
728         cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
729         if (cap_hi.bits.dstrd != 0)
730                 return (ENXIO);
731
732         /* Get ready timeout value from controller, in units of 500ms. */
733         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
734         ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
735
736         per_cpu_io_queues = 1;
737         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
738         ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
739
740         if (ctrlr->per_cpu_io_queues)
741                 ctrlr->num_io_queues = mp_ncpus;
742         else
743                 ctrlr->num_io_queues = 1;
744
745         ctrlr->force_intx = 0;
746         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
747
748         ctrlr->msix_enabled = 1;
749
750         if (ctrlr->force_intx) {
751                 ctrlr->msix_enabled = 0;
752                 goto intx;
753         }
754
755         /* One vector per IO queue, plus one vector for admin queue. */
756         num_vectors = ctrlr->num_io_queues + 1;
757
758         if (pci_msix_count(dev) < num_vectors) {
759                 ctrlr->msix_enabled = 0;
760                 goto intx;
761         }
762
763         if (pci_alloc_msix(dev, &num_vectors) != 0)
764                 ctrlr->msix_enabled = 0;
765
766 intx:
767
768         if (!ctrlr->msix_enabled)
769                 nvme_ctrlr_configure_intx(ctrlr);
770
771         nvme_ctrlr_construct_admin_qpair(ctrlr);
772
773         status = nvme_ctrlr_construct_io_qpairs(ctrlr);
774
775         if (status != 0)
776                 return (status);
777
778         ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
779             "nvme%d", device_get_unit(dev));
780
781         if (ctrlr->cdev == NULL)
782                 return (ENXIO);
783
784         ctrlr->cdev->si_drv1 = (void *)ctrlr;
785
786         return (0);
787 }