]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
Start to split out the really x86 specific NOTES from the global notes file.
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_cam.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/buf.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/ioccom.h>
40 #include <sys/proc.h>
41 #include <sys/smp.h>
42 #include <sys/uio.h>
43 #include <sys/endian.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47
48 #include "nvme_private.h"
49
50 #define B4_CHK_RDY_DELAY_MS     2300            /* work around controller bug */
51
52 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
53                                                 struct nvme_async_event_request *aer);
54 static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);
55
56 static int
57 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
58 {
59
60         ctrlr->resource_id = PCIR_BAR(0);
61
62         ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
63             &ctrlr->resource_id, RF_ACTIVE);
64
65         if(ctrlr->resource == NULL) {
66                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
67                 return (ENOMEM);
68         }
69
70         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
71         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
72         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
73
74         /*
75          * The NVMe spec allows for the MSI-X table to be placed behind
76          *  BAR 4/5, separate from the control/doorbell registers.  Always
77          *  try to map this bar, because it must be mapped prior to calling
78          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
79          *  bus_alloc_resource() will just return NULL which is OK.
80          */
81         ctrlr->bar4_resource_id = PCIR_BAR(4);
82         ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
83             &ctrlr->bar4_resource_id, RF_ACTIVE);
84
85         return (0);
86 }
87
88 static int
89 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
90 {
91         struct nvme_qpair       *qpair;
92         uint32_t                num_entries;
93         int                     error;
94
95         qpair = &ctrlr->adminq;
96
97         num_entries = NVME_ADMIN_ENTRIES;
98         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
99         /*
100          * If admin_entries was overridden to an invalid value, revert it
101          *  back to our default value.
102          */
103         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
104             num_entries > NVME_MAX_ADMIN_ENTRIES) {
105                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
106                     "specified\n", num_entries);
107                 num_entries = NVME_ADMIN_ENTRIES;
108         }
109
110         /*
111          * The admin queue's max xfer size is treated differently than the
112          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
113          */
114         error = nvme_qpair_construct(qpair, 
115                                      0, /* qpair ID */
116                                      0, /* vector */
117                                      num_entries,
118                                      NVME_ADMIN_TRACKERS,
119                                      ctrlr);
120         return (error);
121 }
122
123 static int
124 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
125 {
126         struct nvme_qpair       *qpair;
127         uint32_t                cap_lo;
128         uint16_t                mqes;
129         int                     i, error, num_entries, num_trackers;
130
131         num_entries = NVME_IO_ENTRIES;
132         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
133
134         /*
135          * NVMe spec sets a hard limit of 64K max entries, but
136          *  devices may specify a smaller limit, so we need to check
137          *  the MQES field in the capabilities register.
138          */
139         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
140         mqes = NVME_CAP_LO_MQES(cap_lo);
141         num_entries = min(num_entries, mqes + 1);
142
143         num_trackers = NVME_IO_TRACKERS;
144         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
145
146         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
147         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
148         /*
149          * No need to have more trackers than entries in the submit queue.
150          *  Note also that for a queue size of N, we can only have (N-1)
151          *  commands outstanding, hence the "-1" here.
152          */
153         num_trackers = min(num_trackers, (num_entries-1));
154
155         /*
156          * Our best estimate for the maximum number of I/Os that we should
157          * noramlly have in flight at one time. This should be viewed as a hint,
158          * not a hard limit and will need to be revisitted when the upper layers
159          * of the storage system grows multi-queue support.
160          */
161         ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
162
163         /*
164          * This was calculated previously when setting up interrupts, but
165          *  a controller could theoretically support fewer I/O queues than
166          *  MSI-X vectors.  So calculate again here just to be safe.
167          */
168         ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues);
169
170         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
171             M_NVME, M_ZERO | M_WAITOK);
172
173         for (i = 0; i < ctrlr->num_io_queues; i++) {
174                 qpair = &ctrlr->ioq[i];
175
176                 /*
177                  * Admin queue has ID=0. IO queues start at ID=1 -
178                  *  hence the 'i+1' here.
179                  *
180                  * For I/O queues, use the controller-wide max_xfer_size
181                  *  calculated in nvme_attach().
182                  */
183                 error = nvme_qpair_construct(qpair,
184                                      i+1, /* qpair ID */
185                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
186                                      num_entries,
187                                      num_trackers,
188                                      ctrlr);
189                 if (error)
190                         return (error);
191
192                 /*
193                  * Do not bother binding interrupts if we only have one I/O
194                  *  interrupt thread for this controller.
195                  */
196                 if (ctrlr->num_io_queues > 1)
197                         bus_bind_intr(ctrlr->dev, qpair->res,
198                             i * ctrlr->num_cpus_per_ioq);
199         }
200
201         return (0);
202 }
203
204 static void
205 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
206 {
207         int i;
208
209         ctrlr->is_failed = TRUE;
210         nvme_qpair_fail(&ctrlr->adminq);
211         if (ctrlr->ioq != NULL) {
212                 for (i = 0; i < ctrlr->num_io_queues; i++)
213                         nvme_qpair_fail(&ctrlr->ioq[i]);
214         }
215         nvme_notify_fail_consumers(ctrlr);
216 }
217
218 void
219 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
220     struct nvme_request *req)
221 {
222
223         mtx_lock(&ctrlr->lock);
224         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
225         mtx_unlock(&ctrlr->lock);
226         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
227 }
228
229 static void
230 nvme_ctrlr_fail_req_task(void *arg, int pending)
231 {
232         struct nvme_controller  *ctrlr = arg;
233         struct nvme_request     *req;
234
235         mtx_lock(&ctrlr->lock);
236         while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
237                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
238                 mtx_unlock(&ctrlr->lock);
239                 nvme_qpair_manual_complete_request(req->qpair, req,
240                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
241                 mtx_lock(&ctrlr->lock);
242         }
243         mtx_unlock(&ctrlr->lock);
244 }
245
246 static int
247 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
248 {
249         int ms_waited;
250         uint32_t csts;
251
252         csts = nvme_mmio_read_4(ctrlr, csts);
253
254         ms_waited = 0;
255         while (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) != desired_val) {
256                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
257                         nvme_printf(ctrlr, "controller ready did not become %d "
258                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
259                         return (ENXIO);
260                 }
261                 DELAY(1000);
262                 csts = nvme_mmio_read_4(ctrlr, csts);
263         }
264
265         return (0);
266 }
267
268 static int
269 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
270 {
271         uint32_t cc;
272         uint32_t csts;
273         uint8_t  en, rdy;
274         int err;
275
276         cc = nvme_mmio_read_4(ctrlr, cc);
277         csts = nvme_mmio_read_4(ctrlr, csts);
278
279         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
280         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
281
282         /*
283          * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
284          * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
285          * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
286          * isn't the desired value. Short circuit if we're already disabled.
287          */
288         if (en == 1) {
289                 if (rdy == 0) {
290                         /* EN == 1, wait for  RDY == 1 or fail */
291                         err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
292                         if (err != 0)
293                                 return (err);
294                 }
295         } else {
296                 /* EN == 0 already wait for RDY == 0 */
297                 if (rdy == 0)
298                         return (0);
299                 else
300                         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
301         }
302
303         cc &= ~NVME_CC_REG_EN_MASK;
304         nvme_mmio_write_4(ctrlr, cc, cc);
305         /*
306          * Some drives have issues with accessing the mmio after we
307          * disable, so delay for a bit after we write the bit to
308          * cope with these issues.
309          */
310         if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
311                 pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000);
312         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
313 }
314
315 static int
316 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
317 {
318         uint32_t        cc;
319         uint32_t        csts;
320         uint32_t        aqa;
321         uint32_t        qsize;
322         uint8_t         en, rdy;
323         int             err;
324
325         cc = nvme_mmio_read_4(ctrlr, cc);
326         csts = nvme_mmio_read_4(ctrlr, csts);
327
328         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
329         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
330
331         /*
332          * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
333          */
334         if (en == 1) {
335                 if (rdy == 1)
336                         return (0);
337                 else
338                         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
339         } else {
340                 /* EN == 0 already wait for RDY == 0 or fail */
341                 err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
342                 if (err != 0)
343                         return (err);
344         }
345
346         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
347         DELAY(5000);
348         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
349         DELAY(5000);
350
351         /* acqs and asqs are 0-based. */
352         qsize = ctrlr->adminq.num_entries - 1;
353
354         aqa = 0;
355         aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
356         aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
357         nvme_mmio_write_4(ctrlr, aqa, aqa);
358         DELAY(5000);
359
360         /* Initialization values for CC */
361         cc = 0;
362         cc |= 1 << NVME_CC_REG_EN_SHIFT;
363         cc |= 0 << NVME_CC_REG_CSS_SHIFT;
364         cc |= 0 << NVME_CC_REG_AMS_SHIFT;
365         cc |= 0 << NVME_CC_REG_SHN_SHIFT;
366         cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
367         cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
368
369         /* This evaluates to 0, which is according to spec. */
370         cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT;
371
372         nvme_mmio_write_4(ctrlr, cc, cc);
373
374         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
375 }
376
377 int
378 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
379 {
380         int i, err;
381
382         nvme_admin_qpair_disable(&ctrlr->adminq);
383         /*
384          * I/O queues are not allocated before the initial HW
385          *  reset, so do not try to disable them.  Use is_initialized
386          *  to determine if this is the initial HW reset.
387          */
388         if (ctrlr->is_initialized) {
389                 for (i = 0; i < ctrlr->num_io_queues; i++)
390                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
391         }
392
393         DELAY(100*1000);
394
395         err = nvme_ctrlr_disable(ctrlr);
396         if (err != 0)
397                 return err;
398         return (nvme_ctrlr_enable(ctrlr));
399 }
400
401 void
402 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
403 {
404         int cmpset;
405
406         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
407
408         if (cmpset == 0 || ctrlr->is_failed)
409                 /*
410                  * Controller is already resetting or has failed.  Return
411                  *  immediately since there is no need to kick off another
412                  *  reset in these cases.
413                  */
414                 return;
415
416         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
417 }
418
419 static int
420 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
421 {
422         struct nvme_completion_poll_status      status;
423
424         status.done = 0;
425         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
426             nvme_completion_poll_cb, &status);
427         while (!atomic_load_acq_int(&status.done))
428                 pause("nvme", 1);
429         if (nvme_completion_is_error(&status.cpl)) {
430                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
431                 return (ENXIO);
432         }
433
434         /* Convert data to host endian */
435         nvme_controller_data_swapbytes(&ctrlr->cdata);
436
437         /*
438          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
439          *  controller supports.
440          */
441         if (ctrlr->cdata.mdts > 0)
442                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
443                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
444
445         return (0);
446 }
447
448 static int
449 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
450 {
451         struct nvme_completion_poll_status      status;
452         int                                     cq_allocated, sq_allocated;
453
454         status.done = 0;
455         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
456             nvme_completion_poll_cb, &status);
457         while (!atomic_load_acq_int(&status.done))
458                 pause("nvme", 1);
459         if (nvme_completion_is_error(&status.cpl)) {
460                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
461                 return (ENXIO);
462         }
463
464         /*
465          * Data in cdw0 is 0-based.
466          * Lower 16-bits indicate number of submission queues allocated.
467          * Upper 16-bits indicate number of completion queues allocated.
468          */
469         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
470         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
471
472         /*
473          * Controller may allocate more queues than we requested,
474          *  so use the minimum of the number requested and what was
475          *  actually allocated.
476          */
477         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
478         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
479
480         return (0);
481 }
482
483 static int
484 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
485 {
486         struct nvme_completion_poll_status      status;
487         struct nvme_qpair                       *qpair;
488         int                                     i;
489
490         for (i = 0; i < ctrlr->num_io_queues; i++) {
491                 qpair = &ctrlr->ioq[i];
492
493                 status.done = 0;
494                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
495                     nvme_completion_poll_cb, &status);
496                 while (!atomic_load_acq_int(&status.done))
497                         pause("nvme", 1);
498                 if (nvme_completion_is_error(&status.cpl)) {
499                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
500                         return (ENXIO);
501                 }
502
503                 status.done = 0;
504                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
505                     nvme_completion_poll_cb, &status);
506                 while (!atomic_load_acq_int(&status.done))
507                         pause("nvme", 1);
508                 if (nvme_completion_is_error(&status.cpl)) {
509                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
510                         return (ENXIO);
511                 }
512         }
513
514         return (0);
515 }
516
517 static int
518 nvme_ctrlr_destroy_qpairs(struct nvme_controller *ctrlr)
519 {
520         struct nvme_completion_poll_status      status;
521         struct nvme_qpair                       *qpair;
522
523         for (int i = 0; i < ctrlr->num_io_queues; i++) {
524                 qpair = &ctrlr->ioq[i];
525
526                 status.done = 0;
527                 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
528                     nvme_completion_poll_cb, &status);
529                 while (!atomic_load_acq_int(&status.done))
530                         pause("nvme", 1);
531                 if (nvme_completion_is_error(&status.cpl)) {
532                         nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
533                         return (ENXIO);
534                 }
535
536                 status.done = 0;
537                 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
538                     nvme_completion_poll_cb, &status);
539                 while (!atomic_load_acq_int(&status.done))
540                         pause("nvme", 1);
541                 if (nvme_completion_is_error(&status.cpl)) {
542                         nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
543                         return (ENXIO);
544                 }
545         }
546
547         return (0);
548 }
549
550 static int
551 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
552 {
553         struct nvme_namespace   *ns;
554         uint32_t                i;
555
556         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
557                 ns = &ctrlr->ns[i];
558                 nvme_ns_construct(ns, i+1, ctrlr);
559         }
560
561         return (0);
562 }
563
564 static boolean_t
565 is_log_page_id_valid(uint8_t page_id)
566 {
567
568         switch (page_id) {
569         case NVME_LOG_ERROR:
570         case NVME_LOG_HEALTH_INFORMATION:
571         case NVME_LOG_FIRMWARE_SLOT:
572         case NVME_LOG_CHANGED_NAMESPACE:
573         case NVME_LOG_COMMAND_EFFECT:
574         case NVME_LOG_RES_NOTIFICATION:
575         case NVME_LOG_SANITIZE_STATUS:
576                 return (TRUE);
577         }
578
579         return (FALSE);
580 }
581
582 static uint32_t
583 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
584 {
585         uint32_t        log_page_size;
586
587         switch (page_id) {
588         case NVME_LOG_ERROR:
589                 log_page_size = min(
590                     sizeof(struct nvme_error_information_entry) *
591                     (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
592                 break;
593         case NVME_LOG_HEALTH_INFORMATION:
594                 log_page_size = sizeof(struct nvme_health_information_page);
595                 break;
596         case NVME_LOG_FIRMWARE_SLOT:
597                 log_page_size = sizeof(struct nvme_firmware_page);
598                 break;
599         case NVME_LOG_CHANGED_NAMESPACE:
600                 log_page_size = sizeof(struct nvme_ns_list);
601                 break;
602         case NVME_LOG_COMMAND_EFFECT:
603                 log_page_size = sizeof(struct nvme_command_effects_page);
604                 break;
605         case NVME_LOG_RES_NOTIFICATION:
606                 log_page_size = sizeof(struct nvme_res_notification_page);
607                 break;
608         case NVME_LOG_SANITIZE_STATUS:
609                 log_page_size = sizeof(struct nvme_sanitize_status_page);
610                 break;
611         default:
612                 log_page_size = 0;
613                 break;
614         }
615
616         return (log_page_size);
617 }
618
619 static void
620 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
621     uint8_t state)
622 {
623
624         if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
625                 nvme_printf(ctrlr, "available spare space below threshold\n");
626
627         if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
628                 nvme_printf(ctrlr, "temperature above threshold\n");
629
630         if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
631                 nvme_printf(ctrlr, "device reliability degraded\n");
632
633         if (state & NVME_CRIT_WARN_ST_READ_ONLY)
634                 nvme_printf(ctrlr, "media placed in read only mode\n");
635
636         if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
637                 nvme_printf(ctrlr, "volatile memory backup device failed\n");
638
639         if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
640                 nvme_printf(ctrlr,
641                     "unknown critical warning(s): state = 0x%02x\n", state);
642 }
643
644 static void
645 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
646 {
647         struct nvme_async_event_request         *aer = arg;
648         struct nvme_health_information_page     *health_info;
649         struct nvme_ns_list                     *nsl;
650         struct nvme_error_information_entry     *err;
651         int i;
652
653         /*
654          * If the log page fetch for some reason completed with an error,
655          *  don't pass log page data to the consumers.  In practice, this case
656          *  should never happen.
657          */
658         if (nvme_completion_is_error(cpl))
659                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
660                     aer->log_page_id, NULL, 0);
661         else {
662                 /* Convert data to host endian */
663                 switch (aer->log_page_id) {
664                 case NVME_LOG_ERROR:
665                         err = (struct nvme_error_information_entry *)aer->log_page_buffer;
666                         for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
667                                 nvme_error_information_entry_swapbytes(err++);
668                         break;
669                 case NVME_LOG_HEALTH_INFORMATION:
670                         nvme_health_information_page_swapbytes(
671                             (struct nvme_health_information_page *)aer->log_page_buffer);
672                         break;
673                 case NVME_LOG_FIRMWARE_SLOT:
674                         nvme_firmware_page_swapbytes(
675                             (struct nvme_firmware_page *)aer->log_page_buffer);
676                         break;
677                 case NVME_LOG_CHANGED_NAMESPACE:
678                         nvme_ns_list_swapbytes(
679                             (struct nvme_ns_list *)aer->log_page_buffer);
680                         break;
681                 case NVME_LOG_COMMAND_EFFECT:
682                         nvme_command_effects_page_swapbytes(
683                             (struct nvme_command_effects_page *)aer->log_page_buffer);
684                         break;
685                 case NVME_LOG_RES_NOTIFICATION:
686                         nvme_res_notification_page_swapbytes(
687                             (struct nvme_res_notification_page *)aer->log_page_buffer);
688                         break;
689                 case NVME_LOG_SANITIZE_STATUS:
690                         nvme_sanitize_status_page_swapbytes(
691                             (struct nvme_sanitize_status_page *)aer->log_page_buffer);
692                         break;
693                 case INTEL_LOG_TEMP_STATS:
694                         intel_log_temp_stats_swapbytes(
695                             (struct intel_log_temp_stats *)aer->log_page_buffer);
696                         break;
697                 default:
698                         break;
699                 }
700
701                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
702                         health_info = (struct nvme_health_information_page *)
703                             aer->log_page_buffer;
704                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
705                             health_info->critical_warning);
706                         /*
707                          * Critical warnings reported through the
708                          *  SMART/health log page are persistent, so
709                          *  clear the associated bits in the async event
710                          *  config so that we do not receive repeated
711                          *  notifications for the same event.
712                          */
713                         aer->ctrlr->async_event_config &=
714                             ~health_info->critical_warning;
715                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
716                             aer->ctrlr->async_event_config, NULL, NULL);
717                 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
718                     !nvme_use_nvd) {
719                         nsl = (struct nvme_ns_list *)aer->log_page_buffer;
720                         for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
721                                 if (nsl->ns[i] > NVME_MAX_NAMESPACES)
722                                         break;
723                                 nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
724                         }
725                 }
726
727
728                 /*
729                  * Pass the cpl data from the original async event completion,
730                  *  not the log page fetch.
731                  */
732                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
733                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
734         }
735
736         /*
737          * Repost another asynchronous event request to replace the one
738          *  that just completed.
739          */
740         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
741 }
742
743 static void
744 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
745 {
746         struct nvme_async_event_request *aer = arg;
747
748         if (nvme_completion_is_error(cpl)) {
749                 /*
750                  *  Do not retry failed async event requests.  This avoids
751                  *  infinite loops where a new async event request is submitted
752                  *  to replace the one just failed, only to fail again and
753                  *  perpetuate the loop.
754                  */
755                 return;
756         }
757
758         /* Associated log page is in bits 23:16 of completion entry dw0. */
759         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
760
761         nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
762             " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8,
763             aer->log_page_id);
764
765         if (is_log_page_id_valid(aer->log_page_id)) {
766                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
767                     aer->log_page_id);
768                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
769                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
770                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
771                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
772                     aer);
773                 /* Wait to notify consumers until after log page is fetched. */
774         } else {
775                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
776                     NULL, 0);
777
778                 /*
779                  * Repost another asynchronous event request to replace the one
780                  *  that just completed.
781                  */
782                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
783         }
784 }
785
786 static void
787 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
788     struct nvme_async_event_request *aer)
789 {
790         struct nvme_request *req;
791
792         aer->ctrlr = ctrlr;
793         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
794         aer->req = req;
795
796         /*
797          * Disable timeout here, since asynchronous event requests should by
798          *  nature never be timed out.
799          */
800         req->timeout = FALSE;
801         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
802         nvme_ctrlr_submit_admin_request(ctrlr, req);
803 }
804
805 static void
806 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
807 {
808         struct nvme_completion_poll_status      status;
809         struct nvme_async_event_request         *aer;
810         uint32_t                                i;
811
812         ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
813             NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
814             NVME_CRIT_WARN_ST_READ_ONLY |
815             NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
816         if (ctrlr->cdata.ver >= NVME_REV(1, 2))
817                 ctrlr->async_event_config |= 0x300;
818
819         status.done = 0;
820         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
821             0, NULL, 0, nvme_completion_poll_cb, &status);
822         while (!atomic_load_acq_int(&status.done))
823                 pause("nvme", 1);
824         if (nvme_completion_is_error(&status.cpl) ||
825             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
826             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
827                 nvme_printf(ctrlr, "temperature threshold not supported\n");
828         } else
829                 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
830
831         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
832             ctrlr->async_event_config, NULL, NULL);
833
834         /* aerl is a zero-based value, so we need to add 1 here. */
835         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
836
837         for (i = 0; i < ctrlr->num_aers; i++) {
838                 aer = &ctrlr->aer[i];
839                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
840         }
841 }
842
843 static void
844 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
845 {
846
847         ctrlr->int_coal_time = 0;
848         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
849             &ctrlr->int_coal_time);
850
851         ctrlr->int_coal_threshold = 0;
852         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
853             &ctrlr->int_coal_threshold);
854
855         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
856             ctrlr->int_coal_threshold, NULL, NULL);
857 }
858
859 static void
860 nvme_ctrlr_start(void *ctrlr_arg)
861 {
862         struct nvme_controller *ctrlr = ctrlr_arg;
863         uint32_t old_num_io_queues;
864         int i;
865
866         /*
867          * Only reset adminq here when we are restarting the
868          *  controller after a reset.  During initialization,
869          *  we have already submitted admin commands to get
870          *  the number of I/O queues supported, so cannot reset
871          *  the adminq again here.
872          */
873         if (ctrlr->is_resetting) {
874                 nvme_qpair_reset(&ctrlr->adminq);
875         }
876
877         for (i = 0; i < ctrlr->num_io_queues; i++)
878                 nvme_qpair_reset(&ctrlr->ioq[i]);
879
880         nvme_admin_qpair_enable(&ctrlr->adminq);
881
882         if (nvme_ctrlr_identify(ctrlr) != 0) {
883                 nvme_ctrlr_fail(ctrlr);
884                 return;
885         }
886
887         /*
888          * The number of qpairs are determined during controller initialization,
889          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
890          *  HW limit.  We call SET_FEATURES again here so that it gets called
891          *  after any reset for controllers that depend on the driver to
892          *  explicit specify how many queues it will use.  This value should
893          *  never change between resets, so panic if somehow that does happen.
894          */
895         if (ctrlr->is_resetting) {
896                 old_num_io_queues = ctrlr->num_io_queues;
897                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
898                         nvme_ctrlr_fail(ctrlr);
899                         return;
900                 }
901
902                 if (old_num_io_queues != ctrlr->num_io_queues) {
903                         panic("num_io_queues changed from %u to %u",
904                               old_num_io_queues, ctrlr->num_io_queues);
905                 }
906         }
907
908         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
909                 nvme_ctrlr_fail(ctrlr);
910                 return;
911         }
912
913         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
914                 nvme_ctrlr_fail(ctrlr);
915                 return;
916         }
917
918         nvme_ctrlr_configure_aer(ctrlr);
919         nvme_ctrlr_configure_int_coalescing(ctrlr);
920
921         for (i = 0; i < ctrlr->num_io_queues; i++)
922                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
923 }
924
925 void
926 nvme_ctrlr_start_config_hook(void *arg)
927 {
928         struct nvme_controller *ctrlr = arg;
929
930         nvme_qpair_reset(&ctrlr->adminq);
931         nvme_admin_qpair_enable(&ctrlr->adminq);
932
933         if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
934             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
935                 nvme_ctrlr_start(ctrlr);
936         else
937                 nvme_ctrlr_fail(ctrlr);
938
939         nvme_sysctl_initialize_ctrlr(ctrlr);
940         config_intrhook_disestablish(&ctrlr->config_hook);
941
942         ctrlr->is_initialized = 1;
943         nvme_notify_new_controller(ctrlr);
944 }
945
946 static void
947 nvme_ctrlr_reset_task(void *arg, int pending)
948 {
949         struct nvme_controller  *ctrlr = arg;
950         int                     status;
951
952         nvme_printf(ctrlr, "resetting controller\n");
953         status = nvme_ctrlr_hw_reset(ctrlr);
954         /*
955          * Use pause instead of DELAY, so that we yield to any nvme interrupt
956          *  handlers on this CPU that were blocked on a qpair lock. We want
957          *  all nvme interrupts completed before proceeding with restarting the
958          *  controller.
959          *
960          * XXX - any way to guarantee the interrupt handlers have quiesced?
961          */
962         pause("nvmereset", hz / 10);
963         if (status == 0)
964                 nvme_ctrlr_start(ctrlr);
965         else
966                 nvme_ctrlr_fail(ctrlr);
967
968         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
969 }
970
971 /*
972  * Poll all the queues enabled on the device for completion.
973  */
974 void
975 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
976 {
977         int i;
978
979         nvme_qpair_process_completions(&ctrlr->adminq);
980
981         for (i = 0; i < ctrlr->num_io_queues; i++)
982                 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
983                         nvme_qpair_process_completions(&ctrlr->ioq[i]);
984 }
985
986 /*
987  * Poll the single-vector intertrupt case: num_io_queues will be 1 and
988  * there's only a single vector. While we're polling, we mask further
989  * interrupts in the controller.
990  */
991 void
992 nvme_ctrlr_intx_handler(void *arg)
993 {
994         struct nvme_controller *ctrlr = arg;
995
996         nvme_mmio_write_4(ctrlr, intms, 1);
997         nvme_ctrlr_poll(ctrlr);
998         nvme_mmio_write_4(ctrlr, intmc, 1);
999 }
1000
1001 static int
1002 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
1003 {
1004
1005         ctrlr->msix_enabled = 0;
1006         ctrlr->num_io_queues = 1;
1007         ctrlr->num_cpus_per_ioq = mp_ncpus;
1008         ctrlr->rid = 0;
1009         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
1010             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
1011
1012         if (ctrlr->res == NULL) {
1013                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
1014                 return (ENOMEM);
1015         }
1016
1017         bus_setup_intr(ctrlr->dev, ctrlr->res,
1018             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
1019             ctrlr, &ctrlr->tag);
1020
1021         if (ctrlr->tag == NULL) {
1022                 nvme_printf(ctrlr, "unable to setup intx handler\n");
1023                 return (ENOMEM);
1024         }
1025
1026         return (0);
1027 }
1028
1029 static void
1030 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1031 {
1032         struct nvme_pt_command *pt = arg;
1033         struct mtx *mtx = pt->driver_lock;
1034         uint16_t status;
1035
1036         bzero(&pt->cpl, sizeof(pt->cpl));
1037         pt->cpl.cdw0 = cpl->cdw0;
1038
1039         status = cpl->status;
1040         status &= ~NVME_STATUS_P_MASK;
1041         pt->cpl.status = status;
1042
1043         mtx_lock(mtx);
1044         pt->driver_lock = NULL;
1045         wakeup(pt);
1046         mtx_unlock(mtx);
1047 }
1048
1049 int
1050 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1051     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1052     int is_admin_cmd)
1053 {
1054         struct nvme_request     *req;
1055         struct mtx              *mtx;
1056         struct buf              *buf = NULL;
1057         int                     ret = 0;
1058         vm_offset_t             addr, end;
1059
1060         if (pt->len > 0) {
1061                 /*
1062                  * vmapbuf calls vm_fault_quick_hold_pages which only maps full
1063                  * pages. Ensure this request has fewer than MAXPHYS bytes when
1064                  * extended to full pages.
1065                  */
1066                 addr = (vm_offset_t)pt->buf;
1067                 end = round_page(addr + pt->len);
1068                 addr = trunc_page(addr);
1069                 if (end - addr > MAXPHYS)
1070                         return EIO;
1071
1072                 if (pt->len > ctrlr->max_xfer_size) {
1073                         nvme_printf(ctrlr, "pt->len (%d) "
1074                             "exceeds max_xfer_size (%d)\n", pt->len,
1075                             ctrlr->max_xfer_size);
1076                         return EIO;
1077                 }
1078                 if (is_user_buffer) {
1079                         /*
1080                          * Ensure the user buffer is wired for the duration of
1081                          *  this passthrough command.
1082                          */
1083                         PHOLD(curproc);
1084                         buf = uma_zalloc(pbuf_zone, M_WAITOK);
1085                         buf->b_data = pt->buf;
1086                         buf->b_bufsize = pt->len;
1087                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1088                         if (vmapbuf(buf, 1) < 0) {
1089                                 ret = EFAULT;
1090                                 goto err;
1091                         }
1092                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
1093                             nvme_pt_done, pt);
1094                 } else
1095                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1096                             nvme_pt_done, pt);
1097         } else
1098                 req = nvme_allocate_request_null(nvme_pt_done, pt);
1099
1100         /* Assume userspace already converted to little-endian */
1101         req->cmd.opc = pt->cmd.opc;
1102         req->cmd.fuse = pt->cmd.fuse;
1103         req->cmd.rsvd2 = pt->cmd.rsvd2;
1104         req->cmd.rsvd3 = pt->cmd.rsvd3;
1105         req->cmd.cdw10 = pt->cmd.cdw10;
1106         req->cmd.cdw11 = pt->cmd.cdw11;
1107         req->cmd.cdw12 = pt->cmd.cdw12;
1108         req->cmd.cdw13 = pt->cmd.cdw13;
1109         req->cmd.cdw14 = pt->cmd.cdw14;
1110         req->cmd.cdw15 = pt->cmd.cdw15;
1111
1112         req->cmd.nsid = htole32(nsid);
1113
1114         mtx = mtx_pool_find(mtxpool_sleep, pt);
1115         pt->driver_lock = mtx;
1116
1117         if (is_admin_cmd)
1118                 nvme_ctrlr_submit_admin_request(ctrlr, req);
1119         else
1120                 nvme_ctrlr_submit_io_request(ctrlr, req);
1121
1122         mtx_lock(mtx);
1123         while (pt->driver_lock != NULL)
1124                 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1125         mtx_unlock(mtx);
1126
1127 err:
1128         if (buf != NULL) {
1129                 uma_zfree(pbuf_zone, buf);
1130                 PRELE(curproc);
1131         }
1132
1133         return (ret);
1134 }
1135
1136 static int
1137 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1138     struct thread *td)
1139 {
1140         struct nvme_controller                  *ctrlr;
1141         struct nvme_pt_command                  *pt;
1142
1143         ctrlr = cdev->si_drv1;
1144
1145         switch (cmd) {
1146         case NVME_RESET_CONTROLLER:
1147                 nvme_ctrlr_reset(ctrlr);
1148                 break;
1149         case NVME_PASSTHROUGH_CMD:
1150                 pt = (struct nvme_pt_command *)arg;
1151                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1152                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1153         case NVME_GET_NSID:
1154         {
1155                 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1156                 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1157                     sizeof(gnsid->cdev));
1158                 gnsid->nsid = 0;
1159                 break;
1160         }
1161         default:
1162                 return (ENOTTY);
1163         }
1164
1165         return (0);
1166 }
1167
1168 static struct cdevsw nvme_ctrlr_cdevsw = {
1169         .d_version =    D_VERSION,
1170         .d_flags =      0,
1171         .d_ioctl =      nvme_ctrlr_ioctl
1172 };
1173
1174 static void
1175 nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
1176 {
1177         device_t        dev;
1178         int             per_cpu_io_queues;
1179         int             min_cpus_per_ioq;
1180         int             num_vectors_requested, num_vectors_allocated;
1181         int             num_vectors_available;
1182
1183         dev = ctrlr->dev;
1184         min_cpus_per_ioq = 1;
1185         TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq);
1186
1187         if (min_cpus_per_ioq < 1) {
1188                 min_cpus_per_ioq = 1;
1189         } else if (min_cpus_per_ioq > mp_ncpus) {
1190                 min_cpus_per_ioq = mp_ncpus;
1191         }
1192
1193         per_cpu_io_queues = 1;
1194         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1195
1196         if (per_cpu_io_queues == 0) {
1197                 min_cpus_per_ioq = mp_ncpus;
1198         }
1199
1200         ctrlr->force_intx = 0;
1201         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1202
1203         /*
1204          * FreeBSD currently cannot allocate more than about 190 vectors at
1205          *  boot, meaning that systems with high core count and many devices
1206          *  requesting per-CPU interrupt vectors will not get their full
1207          *  allotment.  So first, try to allocate as many as we may need to
1208          *  understand what is available, then immediately release them.
1209          *  Then figure out how many of those we will actually use, based on
1210          *  assigning an equal number of cores to each I/O queue.
1211          */
1212
1213         /* One vector for per core I/O queue, plus one vector for admin queue. */
1214         num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
1215         if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
1216                 num_vectors_available = 0;
1217         }
1218         pci_release_msi(dev);
1219
1220         if (ctrlr->force_intx || num_vectors_available < 2) {
1221                 nvme_ctrlr_configure_intx(ctrlr);
1222                 return;
1223         }
1224
1225         /*
1226          * Do not use all vectors for I/O queues - one must be saved for the
1227          *  admin queue.
1228          */
1229         ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq,
1230             howmany(mp_ncpus, num_vectors_available - 1));
1231
1232         ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq);
1233         num_vectors_requested = ctrlr->num_io_queues + 1;
1234         num_vectors_allocated = num_vectors_requested;
1235
1236         /*
1237          * Now just allocate the number of vectors we need.  This should
1238          *  succeed, since we previously called pci_alloc_msix()
1239          *  successfully returning at least this many vectors, but just to
1240          *  be safe, if something goes wrong just revert to INTx.
1241          */
1242         if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1243                 nvme_ctrlr_configure_intx(ctrlr);
1244                 return;
1245         }
1246
1247         if (num_vectors_allocated < num_vectors_requested) {
1248                 pci_release_msi(dev);
1249                 nvme_ctrlr_configure_intx(ctrlr);
1250                 return;
1251         }
1252
1253         ctrlr->msix_enabled = 1;
1254 }
1255
1256 int
1257 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1258 {
1259         struct make_dev_args    md_args;
1260         uint32_t        cap_lo;
1261         uint32_t        cap_hi;
1262         uint32_t        to;
1263         uint8_t         dstrd;
1264         uint8_t         mpsmin;
1265         int             status, timeout_period;
1266
1267         ctrlr->dev = dev;
1268
1269         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1270
1271         status = nvme_ctrlr_allocate_bar(ctrlr);
1272
1273         if (status != 0)
1274                 return (status);
1275
1276         /*
1277          * Software emulators may set the doorbell stride to something
1278          *  other than zero, but this driver is not set up to handle that.
1279          */
1280         cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1281         dstrd = NVME_CAP_HI_DSTRD(cap_hi);
1282         if (dstrd != 0)
1283                 return (ENXIO);
1284
1285         mpsmin = NVME_CAP_HI_MPSMIN(cap_hi);
1286         ctrlr->min_page_size = 1 << (12 + mpsmin);
1287
1288         /* Get ready timeout value from controller, in units of 500ms. */
1289         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1290         to = NVME_CAP_LO_TO(cap_lo) + 1;
1291         ctrlr->ready_timeout_in_ms = to * 500;
1292
1293         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1294         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1295         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1296         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1297         ctrlr->timeout_period = timeout_period;
1298
1299         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1300         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1301
1302         ctrlr->enable_aborts = 0;
1303         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1304
1305         nvme_ctrlr_setup_interrupts(ctrlr);
1306
1307         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1308         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1309                 return (ENXIO);
1310
1311         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1312             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1313         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1314
1315         ctrlr->is_resetting = 0;
1316         ctrlr->is_initialized = 0;
1317         ctrlr->notification_sent = 0;
1318         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1319         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1320         STAILQ_INIT(&ctrlr->fail_req);
1321         ctrlr->is_failed = FALSE;
1322
1323         make_dev_args_init(&md_args);
1324         md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1325         md_args.mda_uid = UID_ROOT;
1326         md_args.mda_gid = GID_WHEEL;
1327         md_args.mda_mode = 0600;
1328         md_args.mda_unit = device_get_unit(dev);
1329         md_args.mda_si_drv1 = (void *)ctrlr;
1330         status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1331             device_get_unit(dev));
1332         if (status != 0)
1333                 return (ENXIO);
1334
1335         return (0);
1336 }
1337
1338 void
1339 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1340 {
1341         int                             i;
1342
1343         if (ctrlr->resource == NULL)
1344                 goto nores;
1345
1346         nvme_notify_fail_consumers(ctrlr);
1347
1348         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1349                 nvme_ns_destruct(&ctrlr->ns[i]);
1350
1351         if (ctrlr->cdev)
1352                 destroy_dev(ctrlr->cdev);
1353
1354         nvme_ctrlr_destroy_qpairs(ctrlr);
1355         for (i = 0; i < ctrlr->num_io_queues; i++) {
1356                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1357         }
1358         free(ctrlr->ioq, M_NVME);
1359
1360         nvme_admin_qpair_destroy(&ctrlr->adminq);
1361
1362         /*
1363          *  Notify the controller of a shutdown, even though this is due to
1364          *   a driver unload, not a system shutdown (this path is not invoked
1365          *   during shutdown).  This ensures the controller receives a
1366          *   shutdown notification in case the system is shutdown before
1367          *   reloading the driver.
1368          */
1369         nvme_ctrlr_shutdown(ctrlr);
1370
1371         nvme_ctrlr_disable(ctrlr);
1372
1373         if (ctrlr->taskqueue)
1374                 taskqueue_free(ctrlr->taskqueue);
1375
1376         if (ctrlr->tag)
1377                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1378
1379         if (ctrlr->res)
1380                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1381                     rman_get_rid(ctrlr->res), ctrlr->res);
1382
1383         if (ctrlr->msix_enabled)
1384                 pci_release_msi(dev);
1385
1386         if (ctrlr->bar4_resource != NULL) {
1387                 bus_release_resource(dev, SYS_RES_MEMORY,
1388                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1389         }
1390
1391         bus_release_resource(dev, SYS_RES_MEMORY,
1392             ctrlr->resource_id, ctrlr->resource);
1393
1394 nores:
1395         mtx_destroy(&ctrlr->lock);
1396 }
1397
1398 void
1399 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1400 {
1401         uint32_t        cc;
1402         uint32_t        csts;
1403         int             ticks = 0;
1404
1405         cc = nvme_mmio_read_4(ctrlr, cc);
1406         cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1407         cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1408         nvme_mmio_write_4(ctrlr, cc, cc);
1409
1410         csts = nvme_mmio_read_4(ctrlr, csts);
1411         while ((NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1412                 pause("nvme shn", 1);
1413                 csts = nvme_mmio_read_4(ctrlr, csts);
1414         }
1415         if (NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE)
1416                 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1417                     "of notification\n");
1418 }
1419
1420 void
1421 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1422     struct nvme_request *req)
1423 {
1424
1425         nvme_qpair_submit_request(&ctrlr->adminq, req);
1426 }
1427
1428 void
1429 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1430     struct nvme_request *req)
1431 {
1432         struct nvme_qpair       *qpair;
1433
1434         qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
1435         nvme_qpair_submit_request(qpair, req);
1436 }
1437
1438 device_t
1439 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1440 {
1441
1442         return (ctrlr->dev);
1443 }
1444
1445 const struct nvme_controller_data *
1446 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1447 {
1448
1449         return (&ctrlr->cdata);
1450 }