]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
nvme: Introduce longer timeouts for admin queue
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 #include "opt_cam.h"
31 #include "opt_nvme.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/ioccom.h>
39 #include <sys/proc.h>
40 #include <sys/smp.h>
41 #include <sys/uio.h>
42 #include <sys/sbuf.h>
43 #include <sys/endian.h>
44 #include <machine/stdarg.h>
45 #include <vm/vm.h>
46
47 #include "nvme_private.h"
48
49 #define B4_CHK_RDY_DELAY_MS     2300            /* work around controller bug */
50
51 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
52                                                 struct nvme_async_event_request *aer);
53
54 static void
55 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags)
56 {
57         bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags);
58 }
59
60 static void
61 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
62 {
63         struct sbuf sb;
64         va_list ap;
65         int error;
66
67         if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
68                 return;
69         sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
70         va_start(ap, msg);
71         sbuf_vprintf(&sb, msg, ap);
72         va_end(ap);
73         error = sbuf_finish(&sb);
74         if (error == 0)
75                 printf("%s\n", sbuf_data(&sb));
76
77         sbuf_clear(&sb);
78         sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev));
79         va_start(ap, msg);
80         sbuf_vprintf(&sb, msg, ap);
81         va_end(ap);
82         sbuf_printf(&sb, "\"");
83         error = sbuf_finish(&sb);
84         if (error == 0)
85                 devctl_notify("nvme", "controller", type, sbuf_data(&sb));
86         sbuf_delete(&sb);
87 }
88
89 static int
90 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
91 {
92         struct nvme_qpair       *qpair;
93         uint32_t                num_entries;
94         int                     error;
95
96         qpair = &ctrlr->adminq;
97         qpair->id = 0;
98         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
99         qpair->domain = ctrlr->domain;
100
101         num_entries = NVME_ADMIN_ENTRIES;
102         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
103         /*
104          * If admin_entries was overridden to an invalid value, revert it
105          *  back to our default value.
106          */
107         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
108             num_entries > NVME_MAX_ADMIN_ENTRIES) {
109                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
110                     "specified\n", num_entries);
111                 num_entries = NVME_ADMIN_ENTRIES;
112         }
113
114         /*
115          * The admin queue's max xfer size is treated differently than the
116          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
117          */
118         error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
119              ctrlr);
120         return (error);
121 }
122
123 #define QP(ctrlr, c)    ((c) * (ctrlr)->num_io_queues / mp_ncpus)
124
125 static int
126 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
127 {
128         struct nvme_qpair       *qpair;
129         uint32_t                cap_lo;
130         uint16_t                mqes;
131         int                     c, error, i, n;
132         int                     num_entries, num_trackers, max_entries;
133
134         /*
135          * NVMe spec sets a hard limit of 64K max entries, but devices may
136          * specify a smaller limit, so we need to check the MQES field in the
137          * capabilities register. We have to cap the number of entries to the
138          * current stride allows for in BAR 0/1, otherwise the remainder entries
139          * are inaccessible. MQES should reflect this, and this is just a
140          * fail-safe.
141          */
142         max_entries =
143             (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
144             (1 << (ctrlr->dstrd + 1));
145         num_entries = NVME_IO_ENTRIES;
146         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
147         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
148         mqes = NVME_CAP_LO_MQES(cap_lo);
149         num_entries = min(num_entries, mqes + 1);
150         num_entries = min(num_entries, max_entries);
151
152         num_trackers = NVME_IO_TRACKERS;
153         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
154
155         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
156         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
157         /*
158          * No need to have more trackers than entries in the submit queue.  Note
159          * also that for a queue size of N, we can only have (N-1) commands
160          * outstanding, hence the "-1" here.
161          */
162         num_trackers = min(num_trackers, (num_entries-1));
163
164         /*
165          * Our best estimate for the maximum number of I/Os that we should
166          * normally have in flight at one time. This should be viewed as a hint,
167          * not a hard limit and will need to be revisited when the upper layers
168          * of the storage system grows multi-queue support.
169          */
170         ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
171
172         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
173             M_NVME, M_ZERO | M_WAITOK);
174
175         for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
176                 qpair = &ctrlr->ioq[i];
177
178                 /*
179                  * Admin queue has ID=0. IO queues start at ID=1 -
180                  *  hence the 'i+1' here.
181                  */
182                 qpair->id = i + 1;
183                 if (ctrlr->num_io_queues > 1) {
184                         /* Find number of CPUs served by this queue. */
185                         for (n = 1; QP(ctrlr, c + n) == i; n++)
186                                 ;
187                         /* Shuffle multiple NVMe devices between CPUs. */
188                         qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
189                         qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
190                 } else {
191                         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
192                         qpair->domain = ctrlr->domain;
193                 }
194
195                 /*
196                  * For I/O queues, use the controller-wide max_xfer_size
197                  *  calculated in nvme_attach().
198                  */
199                 error = nvme_qpair_construct(qpair, num_entries, num_trackers,
200                     ctrlr);
201                 if (error)
202                         return (error);
203
204                 /*
205                  * Do not bother binding interrupts if we only have one I/O
206                  *  interrupt thread for this controller.
207                  */
208                 if (ctrlr->num_io_queues > 1)
209                         bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
210         }
211
212         return (0);
213 }
214
215 static void
216 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
217 {
218         int i;
219
220         /*
221          * No need to disable queues before failing them. Failing is a superet
222          * of disabling (though pedantically we'd abort the AERs silently with
223          * a different error, though when we fail, that hardly matters).
224          */
225         ctrlr->is_failed = true;
226         nvme_qpair_fail(&ctrlr->adminq);
227         if (ctrlr->ioq != NULL) {
228                 for (i = 0; i < ctrlr->num_io_queues; i++) {
229                         nvme_qpair_fail(&ctrlr->ioq[i]);
230                 }
231         }
232         nvme_notify_fail_consumers(ctrlr);
233 }
234
235 /*
236  * Wait for RDY to change.
237  *
238  * Starts sleeping for 1us and geometrically increases it the longer we wait,
239  * capped at 1ms.
240  */
241 static int
242 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
243 {
244         int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms);
245         sbintime_t delta_t = SBT_1US;
246         uint32_t csts;
247
248         while (1) {
249                 csts = nvme_mmio_read_4(ctrlr, csts);
250                 if (csts == NVME_GONE)          /* Hot unplug. */
251                         return (ENXIO);
252                 if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK)
253                     == desired_val)
254                         break;
255                 if (timeout - ticks < 0) {
256                         nvme_printf(ctrlr, "controller ready did not become %d "
257                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
258                         return (ENXIO);
259                 }
260
261                 pause_sbt("nvmerdy", delta_t, 0, C_PREL(1));
262                 delta_t = min(SBT_1MS, delta_t * 3 / 2);
263         }
264
265         return (0);
266 }
267
268 static int
269 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
270 {
271         uint32_t cc;
272         uint32_t csts;
273         uint8_t  en, rdy;
274         int err;
275
276         cc = nvme_mmio_read_4(ctrlr, cc);
277         csts = nvme_mmio_read_4(ctrlr, csts);
278
279         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
280         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
281
282         /*
283          * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
284          * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
285          * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
286          * isn't the desired value. Short circuit if we're already disabled.
287          */
288         if (en == 0) {
289                 /* Wait for RDY == 0 or timeout & fail */
290                 if (rdy == 0)
291                         return (0);
292                 return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
293         }
294         if (rdy == 0) {
295                 /* EN == 1, wait for  RDY == 1 or timeout & fail */
296                 err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
297                 if (err != 0)
298                         return (err);
299         }
300
301         cc &= ~NVME_CC_REG_EN_MASK;
302         nvme_mmio_write_4(ctrlr, cc, cc);
303
304         /*
305          * A few drives have firmware bugs that freeze the drive if we access
306          * the mmio too soon after we disable.
307          */
308         if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
309                 pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS));
310         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
311 }
312
313 static int
314 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
315 {
316         uint32_t        cc;
317         uint32_t        csts;
318         uint32_t        aqa;
319         uint32_t        qsize;
320         uint8_t         en, rdy;
321         int             err;
322
323         cc = nvme_mmio_read_4(ctrlr, cc);
324         csts = nvme_mmio_read_4(ctrlr, csts);
325
326         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
327         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
328
329         /*
330          * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
331          */
332         if (en == 1) {
333                 if (rdy == 1)
334                         return (0);
335                 return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
336         }
337
338         /* EN == 0 already wait for RDY == 0 or timeout & fail */
339         err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
340         if (err != 0)
341                 return (err);
342
343         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
344         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
345
346         /* acqs and asqs are 0-based. */
347         qsize = ctrlr->adminq.num_entries - 1;
348
349         aqa = 0;
350         aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
351         aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
352         nvme_mmio_write_4(ctrlr, aqa, aqa);
353
354         /* Initialization values for CC */
355         cc = 0;
356         cc |= 1 << NVME_CC_REG_EN_SHIFT;
357         cc |= 0 << NVME_CC_REG_CSS_SHIFT;
358         cc |= 0 << NVME_CC_REG_AMS_SHIFT;
359         cc |= 0 << NVME_CC_REG_SHN_SHIFT;
360         cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
361         cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
362
363         /*
364          * Use the Memory Page Size selected during device initialization.  Note
365          * that value stored in mps is suitable to use here without adjusting by
366          * NVME_MPS_SHIFT.
367          */
368         cc |= ctrlr->mps << NVME_CC_REG_MPS_SHIFT;
369
370         nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE);
371         nvme_mmio_write_4(ctrlr, cc, cc);
372
373         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
374 }
375
376 static void
377 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
378 {
379         int i;
380
381         nvme_admin_qpair_disable(&ctrlr->adminq);
382         /*
383          * I/O queues are not allocated before the initial HW
384          *  reset, so do not try to disable them.  Use is_initialized
385          *  to determine if this is the initial HW reset.
386          */
387         if (ctrlr->is_initialized) {
388                 for (i = 0; i < ctrlr->num_io_queues; i++)
389                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
390         }
391 }
392
393 static int
394 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
395 {
396         int err;
397
398         TSENTER();
399
400         nvme_ctrlr_disable_qpairs(ctrlr);
401
402         err = nvme_ctrlr_disable(ctrlr);
403         if (err != 0)
404                 goto out;
405
406         err = nvme_ctrlr_enable(ctrlr);
407 out:
408
409         TSEXIT();
410         return (err);
411 }
412
413 void
414 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
415 {
416         int cmpset;
417
418         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
419
420         if (cmpset == 0 || ctrlr->is_failed)
421                 /*
422                  * Controller is already resetting or has failed.  Return
423                  *  immediately since there is no need to kick off another
424                  *  reset in these cases.
425                  */
426                 return;
427
428         if (!ctrlr->is_dying)
429                 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
430 }
431
432 static int
433 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
434 {
435         struct nvme_completion_poll_status      status;
436
437         status.done = 0;
438         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
439             nvme_completion_poll_cb, &status);
440         nvme_completion_poll(&status);
441         if (nvme_completion_is_error(&status.cpl)) {
442                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
443                 return (ENXIO);
444         }
445
446         /* Convert data to host endian */
447         nvme_controller_data_swapbytes(&ctrlr->cdata);
448
449         /*
450          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
451          *  controller supports.
452          */
453         if (ctrlr->cdata.mdts > 0)
454                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
455                     1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT +
456                         NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)));
457
458         return (0);
459 }
460
461 static int
462 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
463 {
464         struct nvme_completion_poll_status      status;
465         int                                     cq_allocated, sq_allocated;
466
467         status.done = 0;
468         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
469             nvme_completion_poll_cb, &status);
470         nvme_completion_poll(&status);
471         if (nvme_completion_is_error(&status.cpl)) {
472                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
473                 return (ENXIO);
474         }
475
476         /*
477          * Data in cdw0 is 0-based.
478          * Lower 16-bits indicate number of submission queues allocated.
479          * Upper 16-bits indicate number of completion queues allocated.
480          */
481         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
482         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
483
484         /*
485          * Controller may allocate more queues than we requested,
486          *  so use the minimum of the number requested and what was
487          *  actually allocated.
488          */
489         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
490         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
491         if (ctrlr->num_io_queues > vm_ndomains)
492                 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
493
494         return (0);
495 }
496
497 static int
498 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
499 {
500         struct nvme_completion_poll_status      status;
501         struct nvme_qpair                       *qpair;
502         int                                     i;
503
504         for (i = 0; i < ctrlr->num_io_queues; i++) {
505                 qpair = &ctrlr->ioq[i];
506
507                 status.done = 0;
508                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
509                     nvme_completion_poll_cb, &status);
510                 nvme_completion_poll(&status);
511                 if (nvme_completion_is_error(&status.cpl)) {
512                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
513                         return (ENXIO);
514                 }
515
516                 status.done = 0;
517                 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
518                     nvme_completion_poll_cb, &status);
519                 nvme_completion_poll(&status);
520                 if (nvme_completion_is_error(&status.cpl)) {
521                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
522                         return (ENXIO);
523                 }
524         }
525
526         return (0);
527 }
528
529 static int
530 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
531 {
532         struct nvme_completion_poll_status      status;
533         struct nvme_qpair                       *qpair;
534
535         for (int i = 0; i < ctrlr->num_io_queues; i++) {
536                 qpair = &ctrlr->ioq[i];
537
538                 status.done = 0;
539                 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
540                     nvme_completion_poll_cb, &status);
541                 nvme_completion_poll(&status);
542                 if (nvme_completion_is_error(&status.cpl)) {
543                         nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
544                         return (ENXIO);
545                 }
546
547                 status.done = 0;
548                 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
549                     nvme_completion_poll_cb, &status);
550                 nvme_completion_poll(&status);
551                 if (nvme_completion_is_error(&status.cpl)) {
552                         nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
553                         return (ENXIO);
554                 }
555         }
556
557         return (0);
558 }
559
560 static int
561 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
562 {
563         struct nvme_namespace   *ns;
564         uint32_t                i;
565
566         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
567                 ns = &ctrlr->ns[i];
568                 nvme_ns_construct(ns, i+1, ctrlr);
569         }
570
571         return (0);
572 }
573
574 static bool
575 is_log_page_id_valid(uint8_t page_id)
576 {
577
578         switch (page_id) {
579         case NVME_LOG_ERROR:
580         case NVME_LOG_HEALTH_INFORMATION:
581         case NVME_LOG_FIRMWARE_SLOT:
582         case NVME_LOG_CHANGED_NAMESPACE:
583         case NVME_LOG_COMMAND_EFFECT:
584         case NVME_LOG_RES_NOTIFICATION:
585         case NVME_LOG_SANITIZE_STATUS:
586                 return (true);
587         }
588
589         return (false);
590 }
591
592 static uint32_t
593 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
594 {
595         uint32_t        log_page_size;
596
597         switch (page_id) {
598         case NVME_LOG_ERROR:
599                 log_page_size = min(
600                     sizeof(struct nvme_error_information_entry) *
601                     (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
602                 break;
603         case NVME_LOG_HEALTH_INFORMATION:
604                 log_page_size = sizeof(struct nvme_health_information_page);
605                 break;
606         case NVME_LOG_FIRMWARE_SLOT:
607                 log_page_size = sizeof(struct nvme_firmware_page);
608                 break;
609         case NVME_LOG_CHANGED_NAMESPACE:
610                 log_page_size = sizeof(struct nvme_ns_list);
611                 break;
612         case NVME_LOG_COMMAND_EFFECT:
613                 log_page_size = sizeof(struct nvme_command_effects_page);
614                 break;
615         case NVME_LOG_RES_NOTIFICATION:
616                 log_page_size = sizeof(struct nvme_res_notification_page);
617                 break;
618         case NVME_LOG_SANITIZE_STATUS:
619                 log_page_size = sizeof(struct nvme_sanitize_status_page);
620                 break;
621         default:
622                 log_page_size = 0;
623                 break;
624         }
625
626         return (log_page_size);
627 }
628
629 static void
630 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
631     uint8_t state)
632 {
633
634         if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
635                 nvme_ctrlr_devctl_log(ctrlr, "critical",
636                     "available spare space below threshold");
637
638         if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
639                 nvme_ctrlr_devctl_log(ctrlr, "critical",
640                     "temperature above threshold");
641
642         if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
643                 nvme_ctrlr_devctl_log(ctrlr, "critical",
644                     "device reliability degraded");
645
646         if (state & NVME_CRIT_WARN_ST_READ_ONLY)
647                 nvme_ctrlr_devctl_log(ctrlr, "critical",
648                     "media placed in read only mode");
649
650         if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
651                 nvme_ctrlr_devctl_log(ctrlr, "critical",
652                     "volatile memory backup device failed");
653
654         if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
655                 nvme_ctrlr_devctl_log(ctrlr, "critical",
656                     "unknown critical warning(s): state = 0x%02x", state);
657 }
658
659 static void
660 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
661 {
662         struct nvme_async_event_request         *aer = arg;
663         struct nvme_health_information_page     *health_info;
664         struct nvme_ns_list                     *nsl;
665         struct nvme_error_information_entry     *err;
666         int i;
667
668         /*
669          * If the log page fetch for some reason completed with an error,
670          *  don't pass log page data to the consumers.  In practice, this case
671          *  should never happen.
672          */
673         if (nvme_completion_is_error(cpl))
674                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
675                     aer->log_page_id, NULL, 0);
676         else {
677                 /* Convert data to host endian */
678                 switch (aer->log_page_id) {
679                 case NVME_LOG_ERROR:
680                         err = (struct nvme_error_information_entry *)aer->log_page_buffer;
681                         for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
682                                 nvme_error_information_entry_swapbytes(err++);
683                         break;
684                 case NVME_LOG_HEALTH_INFORMATION:
685                         nvme_health_information_page_swapbytes(
686                             (struct nvme_health_information_page *)aer->log_page_buffer);
687                         break;
688                 case NVME_LOG_FIRMWARE_SLOT:
689                         nvme_firmware_page_swapbytes(
690                             (struct nvme_firmware_page *)aer->log_page_buffer);
691                         break;
692                 case NVME_LOG_CHANGED_NAMESPACE:
693                         nvme_ns_list_swapbytes(
694                             (struct nvme_ns_list *)aer->log_page_buffer);
695                         break;
696                 case NVME_LOG_COMMAND_EFFECT:
697                         nvme_command_effects_page_swapbytes(
698                             (struct nvme_command_effects_page *)aer->log_page_buffer);
699                         break;
700                 case NVME_LOG_RES_NOTIFICATION:
701                         nvme_res_notification_page_swapbytes(
702                             (struct nvme_res_notification_page *)aer->log_page_buffer);
703                         break;
704                 case NVME_LOG_SANITIZE_STATUS:
705                         nvme_sanitize_status_page_swapbytes(
706                             (struct nvme_sanitize_status_page *)aer->log_page_buffer);
707                         break;
708                 case INTEL_LOG_TEMP_STATS:
709                         intel_log_temp_stats_swapbytes(
710                             (struct intel_log_temp_stats *)aer->log_page_buffer);
711                         break;
712                 default:
713                         break;
714                 }
715
716                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
717                         health_info = (struct nvme_health_information_page *)
718                             aer->log_page_buffer;
719                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
720                             health_info->critical_warning);
721                         /*
722                          * Critical warnings reported through the
723                          *  SMART/health log page are persistent, so
724                          *  clear the associated bits in the async event
725                          *  config so that we do not receive repeated
726                          *  notifications for the same event.
727                          */
728                         aer->ctrlr->async_event_config &=
729                             ~health_info->critical_warning;
730                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
731                             aer->ctrlr->async_event_config, NULL, NULL);
732                 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
733                     !nvme_use_nvd) {
734                         nsl = (struct nvme_ns_list *)aer->log_page_buffer;
735                         for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
736                                 if (nsl->ns[i] > NVME_MAX_NAMESPACES)
737                                         break;
738                                 nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
739                         }
740                 }
741
742                 /*
743                  * Pass the cpl data from the original async event completion,
744                  *  not the log page fetch.
745                  */
746                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
747                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
748         }
749
750         /*
751          * Repost another asynchronous event request to replace the one
752          *  that just completed.
753          */
754         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
755 }
756
757 static void
758 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
759 {
760         struct nvme_async_event_request *aer = arg;
761
762         if (nvme_completion_is_error(cpl)) {
763                 /*
764                  *  Do not retry failed async event requests.  This avoids
765                  *  infinite loops where a new async event request is submitted
766                  *  to replace the one just failed, only to fail again and
767                  *  perpetuate the loop.
768                  */
769                 return;
770         }
771
772         /* Associated log page is in bits 23:16 of completion entry dw0. */
773         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
774
775         nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
776             " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8,
777             aer->log_page_id);
778
779         if (is_log_page_id_valid(aer->log_page_id)) {
780                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
781                     aer->log_page_id);
782                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
783                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
784                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
785                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
786                     aer);
787                 /* Wait to notify consumers until after log page is fetched. */
788         } else {
789                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
790                     NULL, 0);
791
792                 /*
793                  * Repost another asynchronous event request to replace the one
794                  *  that just completed.
795                  */
796                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
797         }
798 }
799
800 static void
801 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
802     struct nvme_async_event_request *aer)
803 {
804         struct nvme_request *req;
805
806         aer->ctrlr = ctrlr;
807         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
808         aer->req = req;
809
810         /*
811          * Disable timeout here, since asynchronous event requests should by
812          *  nature never be timed out.
813          */
814         req->timeout = false;
815         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
816         nvme_ctrlr_submit_admin_request(ctrlr, req);
817 }
818
819 static void
820 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
821 {
822         struct nvme_completion_poll_status      status;
823         struct nvme_async_event_request         *aer;
824         uint32_t                                i;
825
826         ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
827             NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
828             NVME_CRIT_WARN_ST_READ_ONLY |
829             NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
830         if (ctrlr->cdata.ver >= NVME_REV(1, 2))
831                 ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE |
832                     NVME_ASYNC_EVENT_FW_ACTIVATE;
833
834         status.done = 0;
835         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
836             0, NULL, 0, nvme_completion_poll_cb, &status);
837         nvme_completion_poll(&status);
838         if (nvme_completion_is_error(&status.cpl) ||
839             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
840             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
841                 nvme_printf(ctrlr, "temperature threshold not supported\n");
842         } else
843                 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
844
845         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
846             ctrlr->async_event_config, NULL, NULL);
847
848         /* aerl is a zero-based value, so we need to add 1 here. */
849         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
850
851         for (i = 0; i < ctrlr->num_aers; i++) {
852                 aer = &ctrlr->aer[i];
853                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
854         }
855 }
856
857 static void
858 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
859 {
860
861         ctrlr->int_coal_time = 0;
862         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
863             &ctrlr->int_coal_time);
864
865         ctrlr->int_coal_threshold = 0;
866         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
867             &ctrlr->int_coal_threshold);
868
869         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
870             ctrlr->int_coal_threshold, NULL, NULL);
871 }
872
873 static void
874 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
875 {
876         struct nvme_hmb_chunk *hmbc;
877         int i;
878
879         if (ctrlr->hmb_desc_paddr) {
880                 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
881                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
882                     ctrlr->hmb_desc_map);
883                 ctrlr->hmb_desc_paddr = 0;
884         }
885         if (ctrlr->hmb_desc_tag) {
886                 bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
887                 ctrlr->hmb_desc_tag = NULL;
888         }
889         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
890                 hmbc = &ctrlr->hmb_chunks[i];
891                 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
892                 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
893                     hmbc->hmbc_map);
894         }
895         ctrlr->hmb_nchunks = 0;
896         if (ctrlr->hmb_tag) {
897                 bus_dma_tag_destroy(ctrlr->hmb_tag);
898                 ctrlr->hmb_tag = NULL;
899         }
900         if (ctrlr->hmb_chunks) {
901                 free(ctrlr->hmb_chunks, M_NVME);
902                 ctrlr->hmb_chunks = NULL;
903         }
904 }
905
906 static void
907 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
908 {
909         struct nvme_hmb_chunk *hmbc;
910         size_t pref, min, minc, size;
911         int err, i;
912         uint64_t max;
913
914         /* Limit HMB to 5% of RAM size per device by default. */
915         max = (uint64_t)physmem * PAGE_SIZE / 20;
916         TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
917
918         /*
919          * Units of Host Memory Buffer in the Identify info are always in terms
920          * of 4k units.
921          */
922         min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS;
923         if (max == 0 || max < min)
924                 return;
925         pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max);
926         minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size);
927         if (min > 0 && ctrlr->cdata.hmmaxd > 0)
928                 minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
929         ctrlr->hmb_chunk = pref;
930
931 again:
932         /*
933          * However, the chunk sizes, number of chunks, and alignment of chunks
934          * are all based on the current MPS (ctrlr->page_size).
935          */
936         ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size);
937         ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
938         if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
939                 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
940         ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
941             ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
942         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
943             ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
944             ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
945         if (err != 0) {
946                 nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
947                 nvme_ctrlr_hmb_free(ctrlr);
948                 return;
949         }
950
951         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
952                 hmbc = &ctrlr->hmb_chunks[i];
953                 if (bus_dmamem_alloc(ctrlr->hmb_tag,
954                     (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
955                     &hmbc->hmbc_map)) {
956                         nvme_printf(ctrlr, "failed to alloc HMB\n");
957                         break;
958                 }
959                 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
960                     hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
961                     &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
962                         bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
963                             hmbc->hmbc_map);
964                         nvme_printf(ctrlr, "failed to load HMB\n");
965                         break;
966                 }
967                 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
968                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
969         }
970
971         if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
972             ctrlr->hmb_chunk / 2 >= minc) {
973                 ctrlr->hmb_nchunks = i;
974                 nvme_ctrlr_hmb_free(ctrlr);
975                 ctrlr->hmb_chunk /= 2;
976                 goto again;
977         }
978         ctrlr->hmb_nchunks = i;
979         if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
980                 nvme_ctrlr_hmb_free(ctrlr);
981                 return;
982         }
983
984         size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
985         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
986             16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
987             size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
988         if (err != 0) {
989                 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
990                 nvme_ctrlr_hmb_free(ctrlr);
991                 return;
992         }
993         if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
994             (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
995             &ctrlr->hmb_desc_map)) {
996                 nvme_printf(ctrlr, "failed to alloc HMB desc\n");
997                 nvme_ctrlr_hmb_free(ctrlr);
998                 return;
999         }
1000         if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1001             ctrlr->hmb_desc_vaddr, size, nvme_single_map,
1002             &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1003                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1004                     ctrlr->hmb_desc_map);
1005                 nvme_printf(ctrlr, "failed to load HMB desc\n");
1006                 nvme_ctrlr_hmb_free(ctrlr);
1007                 return;
1008         }
1009
1010         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1011                 ctrlr->hmb_desc_vaddr[i].addr =
1012                     htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1013                 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size);
1014         }
1015         bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1016             BUS_DMASYNC_PREWRITE);
1017
1018         nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1019             (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1020             / 1024 / 1024);
1021 }
1022
1023 static void
1024 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1025 {
1026         struct nvme_completion_poll_status      status;
1027         uint32_t cdw11;
1028
1029         cdw11 = 0;
1030         if (enable)
1031                 cdw11 |= 1;
1032         if (memret)
1033                 cdw11 |= 2;
1034         status.done = 0;
1035         nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1036             ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size,
1037             ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32,
1038             ctrlr->hmb_nchunks, NULL, 0,
1039             nvme_completion_poll_cb, &status);
1040         nvme_completion_poll(&status);
1041         if (nvme_completion_is_error(&status.cpl))
1042                 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1043 }
1044
1045 static void
1046 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1047 {
1048         struct nvme_controller *ctrlr = ctrlr_arg;
1049         uint32_t old_num_io_queues;
1050         int i;
1051
1052         TSENTER();
1053
1054         /*
1055          * Only reset adminq here when we are restarting the
1056          *  controller after a reset.  During initialization,
1057          *  we have already submitted admin commands to get
1058          *  the number of I/O queues supported, so cannot reset
1059          *  the adminq again here.
1060          */
1061         if (resetting) {
1062                 nvme_qpair_reset(&ctrlr->adminq);
1063                 nvme_admin_qpair_enable(&ctrlr->adminq);
1064         }
1065
1066         if (ctrlr->ioq != NULL) {
1067                 for (i = 0; i < ctrlr->num_io_queues; i++)
1068                         nvme_qpair_reset(&ctrlr->ioq[i]);
1069         }
1070
1071         /*
1072          * If it was a reset on initialization command timeout, just
1073          * return here, letting initialization code fail gracefully.
1074          */
1075         if (resetting && !ctrlr->is_initialized)
1076                 return;
1077
1078         if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1079                 nvme_ctrlr_fail(ctrlr);
1080                 return;
1081         }
1082
1083         /*
1084          * The number of qpairs are determined during controller initialization,
1085          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1086          *  HW limit.  We call SET_FEATURES again here so that it gets called
1087          *  after any reset for controllers that depend on the driver to
1088          *  explicit specify how many queues it will use.  This value should
1089          *  never change between resets, so panic if somehow that does happen.
1090          */
1091         if (resetting) {
1092                 old_num_io_queues = ctrlr->num_io_queues;
1093                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1094                         nvme_ctrlr_fail(ctrlr);
1095                         return;
1096                 }
1097
1098                 if (old_num_io_queues != ctrlr->num_io_queues) {
1099                         panic("num_io_queues changed from %u to %u",
1100                               old_num_io_queues, ctrlr->num_io_queues);
1101                 }
1102         }
1103
1104         if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1105                 nvme_ctrlr_hmb_alloc(ctrlr);
1106                 if (ctrlr->hmb_nchunks > 0)
1107                         nvme_ctrlr_hmb_enable(ctrlr, true, false);
1108         } else if (ctrlr->hmb_nchunks > 0)
1109                 nvme_ctrlr_hmb_enable(ctrlr, true, true);
1110
1111         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1112                 nvme_ctrlr_fail(ctrlr);
1113                 return;
1114         }
1115
1116         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1117                 nvme_ctrlr_fail(ctrlr);
1118                 return;
1119         }
1120
1121         nvme_ctrlr_configure_aer(ctrlr);
1122         nvme_ctrlr_configure_int_coalescing(ctrlr);
1123
1124         for (i = 0; i < ctrlr->num_io_queues; i++)
1125                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
1126         TSEXIT();
1127 }
1128
1129 void
1130 nvme_ctrlr_start_config_hook(void *arg)
1131 {
1132         struct nvme_controller *ctrlr = arg;
1133
1134         TSENTER();
1135
1136         if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
1137 fail:
1138                 nvme_ctrlr_fail(ctrlr);
1139                 config_intrhook_disestablish(&ctrlr->config_hook);
1140                 return;
1141         }
1142
1143         nvme_qpair_reset(&ctrlr->adminq);
1144         nvme_admin_qpair_enable(&ctrlr->adminq);
1145
1146         if (nvme_ctrlr_identify(ctrlr) == 0 &&
1147             nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1148             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1149                 nvme_ctrlr_start(ctrlr, false);
1150         else
1151                 goto fail;
1152
1153         nvme_sysctl_initialize_ctrlr(ctrlr);
1154         config_intrhook_disestablish(&ctrlr->config_hook);
1155
1156         ctrlr->is_initialized = 1;
1157         nvme_notify_new_controller(ctrlr);
1158         TSEXIT();
1159 }
1160
1161 static void
1162 nvme_ctrlr_reset_task(void *arg, int pending)
1163 {
1164         struct nvme_controller  *ctrlr = arg;
1165         int                     status;
1166
1167         nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller");
1168         status = nvme_ctrlr_hw_reset(ctrlr);
1169         if (status == 0)
1170                 nvme_ctrlr_start(ctrlr, true);
1171         else
1172                 nvme_ctrlr_fail(ctrlr);
1173
1174         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1175 }
1176
1177 /*
1178  * Poll all the queues enabled on the device for completion.
1179  */
1180 void
1181 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1182 {
1183         int i;
1184
1185         nvme_qpair_process_completions(&ctrlr->adminq);
1186
1187         for (i = 0; i < ctrlr->num_io_queues; i++)
1188                 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1189                         nvme_qpair_process_completions(&ctrlr->ioq[i]);
1190 }
1191
1192 /*
1193  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1194  * there's only a single vector. While we're polling, we mask further
1195  * interrupts in the controller.
1196  */
1197 void
1198 nvme_ctrlr_shared_handler(void *arg)
1199 {
1200         struct nvme_controller *ctrlr = arg;
1201
1202         nvme_mmio_write_4(ctrlr, intms, 1);
1203         nvme_ctrlr_poll(ctrlr);
1204         nvme_mmio_write_4(ctrlr, intmc, 1);
1205 }
1206
1207 static void
1208 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1209 {
1210         struct nvme_pt_command *pt = arg;
1211         struct mtx *mtx = pt->driver_lock;
1212         uint16_t status;
1213
1214         bzero(&pt->cpl, sizeof(pt->cpl));
1215         pt->cpl.cdw0 = cpl->cdw0;
1216
1217         status = cpl->status;
1218         status &= ~NVME_STATUS_P_MASK;
1219         pt->cpl.status = status;
1220
1221         mtx_lock(mtx);
1222         pt->driver_lock = NULL;
1223         wakeup(pt);
1224         mtx_unlock(mtx);
1225 }
1226
1227 int
1228 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1229     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1230     int is_admin_cmd)
1231 {
1232         struct nvme_request     *req;
1233         struct mtx              *mtx;
1234         struct buf              *buf = NULL;
1235         int                     ret = 0;
1236
1237         if (pt->len > 0) {
1238                 if (pt->len > ctrlr->max_xfer_size) {
1239                         nvme_printf(ctrlr, "pt->len (%d) "
1240                             "exceeds max_xfer_size (%d)\n", pt->len,
1241                             ctrlr->max_xfer_size);
1242                         return EIO;
1243                 }
1244                 if (is_user_buffer) {
1245                         /*
1246                          * Ensure the user buffer is wired for the duration of
1247                          *  this pass-through command.
1248                          */
1249                         PHOLD(curproc);
1250                         buf = uma_zalloc(pbuf_zone, M_WAITOK);
1251                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1252                         if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1253                                 ret = EFAULT;
1254                                 goto err;
1255                         }
1256                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
1257                             nvme_pt_done, pt);
1258                 } else
1259                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1260                             nvme_pt_done, pt);
1261         } else
1262                 req = nvme_allocate_request_null(nvme_pt_done, pt);
1263
1264         /* Assume user space already converted to little-endian */
1265         req->cmd.opc = pt->cmd.opc;
1266         req->cmd.fuse = pt->cmd.fuse;
1267         req->cmd.rsvd2 = pt->cmd.rsvd2;
1268         req->cmd.rsvd3 = pt->cmd.rsvd3;
1269         req->cmd.cdw10 = pt->cmd.cdw10;
1270         req->cmd.cdw11 = pt->cmd.cdw11;
1271         req->cmd.cdw12 = pt->cmd.cdw12;
1272         req->cmd.cdw13 = pt->cmd.cdw13;
1273         req->cmd.cdw14 = pt->cmd.cdw14;
1274         req->cmd.cdw15 = pt->cmd.cdw15;
1275
1276         req->cmd.nsid = htole32(nsid);
1277
1278         mtx = mtx_pool_find(mtxpool_sleep, pt);
1279         pt->driver_lock = mtx;
1280
1281         if (is_admin_cmd)
1282                 nvme_ctrlr_submit_admin_request(ctrlr, req);
1283         else
1284                 nvme_ctrlr_submit_io_request(ctrlr, req);
1285
1286         mtx_lock(mtx);
1287         while (pt->driver_lock != NULL)
1288                 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1289         mtx_unlock(mtx);
1290
1291         if (buf != NULL) {
1292                 vunmapbuf(buf);
1293 err:
1294                 uma_zfree(pbuf_zone, buf);
1295                 PRELE(curproc);
1296         }
1297
1298         return (ret);
1299 }
1300
1301 static int
1302 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1303     struct thread *td)
1304 {
1305         struct nvme_controller                  *ctrlr;
1306         struct nvme_pt_command                  *pt;
1307
1308         ctrlr = cdev->si_drv1;
1309
1310         switch (cmd) {
1311         case NVME_RESET_CONTROLLER:
1312                 nvme_ctrlr_reset(ctrlr);
1313                 break;
1314         case NVME_PASSTHROUGH_CMD:
1315                 pt = (struct nvme_pt_command *)arg;
1316                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1317                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1318         case NVME_GET_NSID:
1319         {
1320                 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1321                 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1322                     sizeof(gnsid->cdev));
1323                 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
1324                 gnsid->nsid = 0;
1325                 break;
1326         }
1327         case NVME_GET_MAX_XFER_SIZE:
1328                 *(uint64_t *)arg = ctrlr->max_xfer_size;
1329                 break;
1330         default:
1331                 return (ENOTTY);
1332         }
1333
1334         return (0);
1335 }
1336
1337 static struct cdevsw nvme_ctrlr_cdevsw = {
1338         .d_version =    D_VERSION,
1339         .d_flags =      0,
1340         .d_ioctl =      nvme_ctrlr_ioctl
1341 };
1342
1343 int
1344 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1345 {
1346         struct make_dev_args    md_args;
1347         uint32_t        cap_lo;
1348         uint32_t        cap_hi;
1349         uint32_t        to, vs, pmrcap;
1350         int             status, timeout_period;
1351
1352         ctrlr->dev = dev;
1353
1354         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1355         if (bus_get_domain(dev, &ctrlr->domain) != 0)
1356                 ctrlr->domain = 0;
1357
1358         ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1359         if (bootverbose) {
1360                 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1361                     cap_lo, NVME_CAP_LO_MQES(cap_lo),
1362                     NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1363                     NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1364                     (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1365                     (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1366                     NVME_CAP_LO_TO(cap_lo));
1367         }
1368         ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1369         if (bootverbose) {
1370                 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1371                     "MPSMIN %u, MPSMAX %u%s%s\n", cap_hi,
1372                     NVME_CAP_HI_DSTRD(cap_hi),
1373                     NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1374                     NVME_CAP_HI_CSS(cap_hi),
1375                     NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1376                     NVME_CAP_HI_MPSMIN(cap_hi),
1377                     NVME_CAP_HI_MPSMAX(cap_hi),
1378                     NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1379                     NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "");
1380         }
1381         if (bootverbose) {
1382                 vs = nvme_mmio_read_4(ctrlr, vs);
1383                 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1384                     NVME_MAJOR(vs), NVME_MINOR(vs));
1385         }
1386         if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1387                 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1388                 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1389                     "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1390                     NVME_PMRCAP_BIR(pmrcap),
1391                     NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1392                     NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1393                     NVME_PMRCAP_PMRTU(pmrcap),
1394                     NVME_PMRCAP_PMRWBM(pmrcap),
1395                     NVME_PMRCAP_PMRTO(pmrcap),
1396                     NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1397         }
1398
1399         ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1400
1401         ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi);
1402         ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps);
1403
1404         /* Get ready timeout value from controller, in units of 500ms. */
1405         to = NVME_CAP_LO_TO(cap_lo) + 1;
1406         ctrlr->ready_timeout_in_ms = to * 500;
1407
1408         timeout_period = NVME_ADMIN_TIMEOUT_PERIOD;
1409         TUNABLE_INT_FETCH("hw.nvme.admin_timeout_period", &timeout_period);
1410         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1411         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1412         ctrlr->admin_timeout_period = timeout_period;
1413
1414         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1415         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1416         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1417         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1418         ctrlr->timeout_period = timeout_period;
1419
1420         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1421         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1422
1423         ctrlr->enable_aborts = 0;
1424         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1425
1426         /* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */
1427         ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size));
1428         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1429                 return (ENXIO);
1430
1431         /*
1432          * Create 2 threads for the taskqueue. The reset thread will block when
1433          * it detects that the controller has failed until all I/O has been
1434          * failed up the stack. The fail_req task needs to be able to run in
1435          * this case to finish the request failure for some cases.
1436          *
1437          * We could partially solve this race by draining the failed requeust
1438          * queue before proceding to free the sim, though nothing would stop
1439          * new I/O from coming in after we do that drain, but before we reach
1440          * cam_sim_free, so this big hammer is used instead.
1441          */
1442         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1443             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1444         taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1445
1446         ctrlr->is_resetting = 0;
1447         ctrlr->is_initialized = 0;
1448         ctrlr->notification_sent = 0;
1449         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1450         STAILQ_INIT(&ctrlr->fail_req);
1451         ctrlr->is_failed = false;
1452
1453         make_dev_args_init(&md_args);
1454         md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1455         md_args.mda_uid = UID_ROOT;
1456         md_args.mda_gid = GID_WHEEL;
1457         md_args.mda_mode = 0600;
1458         md_args.mda_unit = device_get_unit(dev);
1459         md_args.mda_si_drv1 = (void *)ctrlr;
1460         status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1461             device_get_unit(dev));
1462         if (status != 0)
1463                 return (ENXIO);
1464
1465         return (0);
1466 }
1467
1468 void
1469 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1470 {
1471         int     gone, i;
1472
1473         ctrlr->is_dying = true;
1474
1475         if (ctrlr->resource == NULL)
1476                 goto nores;
1477         if (!mtx_initialized(&ctrlr->adminq.lock))
1478                 goto noadminq;
1479
1480         /*
1481          * Check whether it is a hot unplug or a clean driver detach.
1482          * If device is not there any more, skip any shutdown commands.
1483          */
1484         gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1485         if (gone)
1486                 nvme_ctrlr_fail(ctrlr);
1487         else
1488                 nvme_notify_fail_consumers(ctrlr);
1489
1490         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1491                 nvme_ns_destruct(&ctrlr->ns[i]);
1492
1493         if (ctrlr->cdev)
1494                 destroy_dev(ctrlr->cdev);
1495
1496         if (ctrlr->is_initialized) {
1497                 if (!gone) {
1498                         if (ctrlr->hmb_nchunks > 0)
1499                                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1500                         nvme_ctrlr_delete_qpairs(ctrlr);
1501                 }
1502                 nvme_ctrlr_hmb_free(ctrlr);
1503         }
1504         if (ctrlr->ioq != NULL) {
1505                 for (i = 0; i < ctrlr->num_io_queues; i++)
1506                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1507                 free(ctrlr->ioq, M_NVME);
1508         }
1509         nvme_admin_qpair_destroy(&ctrlr->adminq);
1510
1511         /*
1512          *  Notify the controller of a shutdown, even though this is due to
1513          *   a driver unload, not a system shutdown (this path is not invoked
1514          *   during shutdown).  This ensures the controller receives a
1515          *   shutdown notification in case the system is shutdown before
1516          *   reloading the driver.
1517          */
1518         if (!gone)
1519                 nvme_ctrlr_shutdown(ctrlr);
1520
1521         if (!gone)
1522                 nvme_ctrlr_disable(ctrlr);
1523
1524 noadminq:
1525         if (ctrlr->taskqueue)
1526                 taskqueue_free(ctrlr->taskqueue);
1527
1528         if (ctrlr->tag)
1529                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1530
1531         if (ctrlr->res)
1532                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1533                     rman_get_rid(ctrlr->res), ctrlr->res);
1534
1535         if (ctrlr->bar4_resource != NULL) {
1536                 bus_release_resource(dev, SYS_RES_MEMORY,
1537                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1538         }
1539
1540         bus_release_resource(dev, SYS_RES_MEMORY,
1541             ctrlr->resource_id, ctrlr->resource);
1542
1543 nores:
1544         mtx_destroy(&ctrlr->lock);
1545 }
1546
1547 void
1548 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1549 {
1550         uint32_t        cc;
1551         uint32_t        csts;
1552         int             timeout;
1553
1554         cc = nvme_mmio_read_4(ctrlr, cc);
1555         cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1556         cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1557         nvme_mmio_write_4(ctrlr, cc, cc);
1558
1559         timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1560             ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1561         while (1) {
1562                 csts = nvme_mmio_read_4(ctrlr, csts);
1563                 if (csts == NVME_GONE)          /* Hot unplug. */
1564                         break;
1565                 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1566                         break;
1567                 if (timeout - ticks < 0) {
1568                         nvme_printf(ctrlr, "shutdown timeout\n");
1569                         break;
1570                 }
1571                 pause("nvmeshut", 1);
1572         }
1573 }
1574
1575 void
1576 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1577     struct nvme_request *req)
1578 {
1579
1580         nvme_qpair_submit_request(&ctrlr->adminq, req);
1581 }
1582
1583 void
1584 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1585     struct nvme_request *req)
1586 {
1587         struct nvme_qpair       *qpair;
1588
1589         qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1590         nvme_qpair_submit_request(qpair, req);
1591 }
1592
1593 device_t
1594 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1595 {
1596
1597         return (ctrlr->dev);
1598 }
1599
1600 const struct nvme_controller_data *
1601 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1602 {
1603
1604         return (&ctrlr->cdata);
1605 }
1606
1607 int
1608 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1609 {
1610         int to = hz;
1611
1612         /*
1613          * Can't touch failed controllers, so it's already suspended.
1614          */
1615         if (ctrlr->is_failed)
1616                 return (0);
1617
1618         /*
1619          * We don't want the reset taskqueue running, since it does similar
1620          * things, so prevent it from running after we start. Wait for any reset
1621          * that may have been started to complete. The reset process we follow
1622          * will ensure that any new I/O will queue and be given to the hardware
1623          * after we resume (though there should be none).
1624          */
1625         while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1626                 pause("nvmesusp", 1);
1627         if (to <= 0) {
1628                 nvme_printf(ctrlr,
1629                     "Competing reset task didn't finish. Try again later.\n");
1630                 return (EWOULDBLOCK);
1631         }
1632
1633         if (ctrlr->hmb_nchunks > 0)
1634                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1635
1636         /*
1637          * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1638          * delete the hardware I/O queues, and then shutdown. This properly
1639          * flushes any metadata the drive may have stored so it can survive
1640          * having its power removed and prevents the unsafe shutdown count from
1641          * incriminating. Once we delete the qpairs, we have to disable them
1642          * before shutting down.
1643          */
1644         nvme_ctrlr_delete_qpairs(ctrlr);
1645         nvme_ctrlr_disable_qpairs(ctrlr);
1646         nvme_ctrlr_shutdown(ctrlr);
1647
1648         return (0);
1649 }
1650
1651 int
1652 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1653 {
1654
1655         /*
1656          * Can't touch failed controllers, so nothing to do to resume.
1657          */
1658         if (ctrlr->is_failed)
1659                 return (0);
1660
1661         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1662                 goto fail;
1663
1664         /*
1665          * Now that we've reset the hardware, we can restart the controller. Any
1666          * I/O that was pending is requeued. Any admin commands are aborted with
1667          * an error. Once we've restarted, take the controller out of reset.
1668          */
1669         nvme_ctrlr_start(ctrlr, true);
1670         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1671
1672         return (0);
1673 fail:
1674         /*
1675          * Since we can't bring the controller out of reset, announce and fail
1676          * the controller. However, we have to return success for the resume
1677          * itself, due to questionable APIs.
1678          */
1679         nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1680         nvme_ctrlr_fail(ctrlr);
1681         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1682         return (0);
1683 }