]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
Upgrade to OpenSSH 7.6p1. This will be followed shortly by 7.7p1.
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_cam.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/buf.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/ioccom.h>
40 #include <sys/proc.h>
41 #include <sys/smp.h>
42 #include <sys/uio.h>
43 #include <sys/endian.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47
48 #include "nvme_private.h"
49
50 #define B4_CHK_RDY_DELAY_MS     2300            /* work around controller bug */
51
52 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
53                                                 struct nvme_async_event_request *aer);
54 static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);
55
56 static int
57 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
58 {
59
60         ctrlr->resource_id = PCIR_BAR(0);
61
62         ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
63             &ctrlr->resource_id, RF_ACTIVE);
64
65         if(ctrlr->resource == NULL) {
66                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
67                 return (ENOMEM);
68         }
69
70         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
71         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
72         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
73
74         /*
75          * The NVMe spec allows for the MSI-X table to be placed behind
76          *  BAR 4/5, separate from the control/doorbell registers.  Always
77          *  try to map this bar, because it must be mapped prior to calling
78          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
79          *  bus_alloc_resource() will just return NULL which is OK.
80          */
81         ctrlr->bar4_resource_id = PCIR_BAR(4);
82         ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
83             &ctrlr->bar4_resource_id, RF_ACTIVE);
84
85         return (0);
86 }
87
88 static int
89 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
90 {
91         struct nvme_qpair       *qpair;
92         uint32_t                num_entries;
93         int                     error;
94
95         qpair = &ctrlr->adminq;
96
97         num_entries = NVME_ADMIN_ENTRIES;
98         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
99         /*
100          * If admin_entries was overridden to an invalid value, revert it
101          *  back to our default value.
102          */
103         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
104             num_entries > NVME_MAX_ADMIN_ENTRIES) {
105                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
106                     "specified\n", num_entries);
107                 num_entries = NVME_ADMIN_ENTRIES;
108         }
109
110         /*
111          * The admin queue's max xfer size is treated differently than the
112          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
113          */
114         error = nvme_qpair_construct(qpair, 
115                                      0, /* qpair ID */
116                                      0, /* vector */
117                                      num_entries,
118                                      NVME_ADMIN_TRACKERS,
119                                      ctrlr);
120         return (error);
121 }
122
123 static int
124 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
125 {
126         struct nvme_qpair       *qpair;
127         uint32_t                cap_lo;
128         uint16_t                mqes;
129         int                     i, error, num_entries, num_trackers;
130
131         num_entries = NVME_IO_ENTRIES;
132         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
133
134         /*
135          * NVMe spec sets a hard limit of 64K max entries, but
136          *  devices may specify a smaller limit, so we need to check
137          *  the MQES field in the capabilities register.
138          */
139         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
140         mqes = (cap_lo >> NVME_CAP_LO_REG_MQES_SHIFT) & NVME_CAP_LO_REG_MQES_MASK;
141         num_entries = min(num_entries, mqes + 1);
142
143         num_trackers = NVME_IO_TRACKERS;
144         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
145
146         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
147         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
148         /*
149          * No need to have more trackers than entries in the submit queue.
150          *  Note also that for a queue size of N, we can only have (N-1)
151          *  commands outstanding, hence the "-1" here.
152          */
153         num_trackers = min(num_trackers, (num_entries-1));
154
155         /*
156          * Our best estimate for the maximum number of I/Os that we should
157          * noramlly have in flight at one time. This should be viewed as a hint,
158          * not a hard limit and will need to be revisitted when the upper layers
159          * of the storage system grows multi-queue support.
160          */
161         ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
162
163         /*
164          * This was calculated previously when setting up interrupts, but
165          *  a controller could theoretically support fewer I/O queues than
166          *  MSI-X vectors.  So calculate again here just to be safe.
167          */
168         ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues);
169
170         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
171             M_NVME, M_ZERO | M_WAITOK);
172
173         for (i = 0; i < ctrlr->num_io_queues; i++) {
174                 qpair = &ctrlr->ioq[i];
175
176                 /*
177                  * Admin queue has ID=0. IO queues start at ID=1 -
178                  *  hence the 'i+1' here.
179                  *
180                  * For I/O queues, use the controller-wide max_xfer_size
181                  *  calculated in nvme_attach().
182                  */
183                 error = nvme_qpair_construct(qpair,
184                                      i+1, /* qpair ID */
185                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
186                                      num_entries,
187                                      num_trackers,
188                                      ctrlr);
189                 if (error)
190                         return (error);
191
192                 /*
193                  * Do not bother binding interrupts if we only have one I/O
194                  *  interrupt thread for this controller.
195                  */
196                 if (ctrlr->num_io_queues > 1)
197                         bus_bind_intr(ctrlr->dev, qpair->res,
198                             i * ctrlr->num_cpus_per_ioq);
199         }
200
201         return (0);
202 }
203
204 static void
205 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
206 {
207         int i;
208
209         ctrlr->is_failed = TRUE;
210         nvme_qpair_fail(&ctrlr->adminq);
211         if (ctrlr->ioq != NULL) {
212                 for (i = 0; i < ctrlr->num_io_queues; i++)
213                         nvme_qpair_fail(&ctrlr->ioq[i]);
214         }
215         nvme_notify_fail_consumers(ctrlr);
216 }
217
218 void
219 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
220     struct nvme_request *req)
221 {
222
223         mtx_lock(&ctrlr->lock);
224         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
225         mtx_unlock(&ctrlr->lock);
226         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
227 }
228
229 static void
230 nvme_ctrlr_fail_req_task(void *arg, int pending)
231 {
232         struct nvme_controller  *ctrlr = arg;
233         struct nvme_request     *req;
234
235         mtx_lock(&ctrlr->lock);
236         while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
237                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
238                 mtx_unlock(&ctrlr->lock);
239                 nvme_qpair_manual_complete_request(req->qpair, req,
240                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
241                 mtx_lock(&ctrlr->lock);
242         }
243         mtx_unlock(&ctrlr->lock);
244 }
245
246 static int
247 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
248 {
249         int ms_waited;
250         uint32_t csts;
251
252         csts = nvme_mmio_read_4(ctrlr, csts);
253
254         ms_waited = 0;
255         while (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) != desired_val) {
256                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
257                         nvme_printf(ctrlr, "controller ready did not become %d "
258                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
259                         return (ENXIO);
260                 }
261                 DELAY(1000);
262                 csts = nvme_mmio_read_4(ctrlr, csts);
263         }
264
265         return (0);
266 }
267
268 static int
269 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
270 {
271         uint32_t cc;
272         uint32_t csts;
273         uint8_t  en, rdy;
274         int err;
275
276         cc = nvme_mmio_read_4(ctrlr, cc);
277         csts = nvme_mmio_read_4(ctrlr, csts);
278
279         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
280         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
281
282         /*
283          * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
284          * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
285          * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
286          * isn't the desired value. Short circuit if we're already disabled.
287          */
288         if (en == 1) {
289                 if (rdy == 0) {
290                         /* EN == 1, wait for  RDY == 1 or fail */
291                         err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
292                         if (err != 0)
293                                 return (err);
294                 }
295         } else {
296                 /* EN == 0 already wait for RDY == 0 */
297                 if (rdy == 0)
298                         return (0);
299                 else
300                         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
301         }
302
303         cc &= ~NVME_CC_REG_EN_MASK;
304         nvme_mmio_write_4(ctrlr, cc, cc);
305         /*
306          * Some drives have issues with accessing the mmio after we
307          * disable, so delay for a bit after we write the bit to
308          * cope with these issues.
309          */
310         if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
311                 pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000);
312         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
313 }
314
315 static int
316 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
317 {
318         uint32_t        cc;
319         uint32_t        csts;
320         uint32_t        aqa;
321         uint32_t        qsize;
322         uint8_t         en, rdy;
323         int             err;
324
325         cc = nvme_mmio_read_4(ctrlr, cc);
326         csts = nvme_mmio_read_4(ctrlr, csts);
327
328         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
329         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
330
331         /*
332          * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
333          */
334         if (en == 1) {
335                 if (rdy == 1)
336                         return (0);
337                 else
338                         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
339         } else {
340                 /* EN == 0 already wait for RDY == 0 or fail */
341                 err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
342                 if (err != 0)
343                         return (err);
344         }
345
346         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
347         DELAY(5000);
348         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
349         DELAY(5000);
350
351         /* acqs and asqs are 0-based. */
352         qsize = ctrlr->adminq.num_entries - 1;
353
354         aqa = 0;
355         aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
356         aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
357         nvme_mmio_write_4(ctrlr, aqa, aqa);
358         DELAY(5000);
359
360         /* Initialization values for CC */
361         cc = 0;
362         cc |= 1 << NVME_CC_REG_EN_SHIFT;
363         cc |= 0 << NVME_CC_REG_CSS_SHIFT;
364         cc |= 0 << NVME_CC_REG_AMS_SHIFT;
365         cc |= 0 << NVME_CC_REG_SHN_SHIFT;
366         cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
367         cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
368
369         /* This evaluates to 0, which is according to spec. */
370         cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT;
371
372         nvme_mmio_write_4(ctrlr, cc, cc);
373
374         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
375 }
376
377 int
378 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
379 {
380         int i, err;
381
382         nvme_admin_qpair_disable(&ctrlr->adminq);
383         /*
384          * I/O queues are not allocated before the initial HW
385          *  reset, so do not try to disable them.  Use is_initialized
386          *  to determine if this is the initial HW reset.
387          */
388         if (ctrlr->is_initialized) {
389                 for (i = 0; i < ctrlr->num_io_queues; i++)
390                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
391         }
392
393         DELAY(100*1000);
394
395         err = nvme_ctrlr_disable(ctrlr);
396         if (err != 0)
397                 return err;
398         return (nvme_ctrlr_enable(ctrlr));
399 }
400
401 void
402 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
403 {
404         int cmpset;
405
406         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
407
408         if (cmpset == 0 || ctrlr->is_failed)
409                 /*
410                  * Controller is already resetting or has failed.  Return
411                  *  immediately since there is no need to kick off another
412                  *  reset in these cases.
413                  */
414                 return;
415
416         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
417 }
418
419 static int
420 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
421 {
422         struct nvme_completion_poll_status      status;
423
424         status.done = 0;
425         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
426             nvme_completion_poll_cb, &status);
427         while (!atomic_load_acq_int(&status.done))
428                 pause("nvme", 1);
429         if (nvme_completion_is_error(&status.cpl)) {
430                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
431                 return (ENXIO);
432         }
433
434         /* Convert data to host endian */
435         nvme_controller_data_swapbytes(&ctrlr->cdata);
436
437         /*
438          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
439          *  controller supports.
440          */
441         if (ctrlr->cdata.mdts > 0)
442                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
443                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
444
445         return (0);
446 }
447
448 static int
449 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
450 {
451         struct nvme_completion_poll_status      status;
452         int                                     cq_allocated, sq_allocated;
453
454         status.done = 0;
455         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
456             nvme_completion_poll_cb, &status);
457         while (!atomic_load_acq_int(&status.done))
458                 pause("nvme", 1);
459         if (nvme_completion_is_error(&status.cpl)) {
460                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
461                 return (ENXIO);
462         }
463
464         /*
465          * Data in cdw0 is 0-based.
466          * Lower 16-bits indicate number of submission queues allocated.
467          * Upper 16-bits indicate number of completion queues allocated.
468          */
469         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
470         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
471
472         /*
473          * Controller may allocate more queues than we requested,
474          *  so use the minimum of the number requested and what was
475          *  actually allocated.
476          */
477         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
478         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
479
480         return (0);
481 }
482
483 static int
484 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
485 {
486         struct nvme_completion_poll_status      status;
487         struct nvme_qpair                       *qpair;
488         int                                     i;
489
490         for (i = 0; i < ctrlr->num_io_queues; i++) {
491                 qpair = &ctrlr->ioq[i];
492
493                 status.done = 0;
494                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
495                     nvme_completion_poll_cb, &status);
496                 while (!atomic_load_acq_int(&status.done))
497                         pause("nvme", 1);
498                 if (nvme_completion_is_error(&status.cpl)) {
499                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
500                         return (ENXIO);
501                 }
502
503                 status.done = 0;
504                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
505                     nvme_completion_poll_cb, &status);
506                 while (!atomic_load_acq_int(&status.done))
507                         pause("nvme", 1);
508                 if (nvme_completion_is_error(&status.cpl)) {
509                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
510                         return (ENXIO);
511                 }
512         }
513
514         return (0);
515 }
516
517 static int
518 nvme_ctrlr_destroy_qpair(struct nvme_controller *ctrlr, struct nvme_qpair *qpair)
519 {
520         struct nvme_completion_poll_status      status;
521
522         status.done = 0;
523         nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
524             nvme_completion_poll_cb, &status);
525         while (!atomic_load_acq_int(&status.done))
526                 pause("nvme", 1);
527         if (nvme_completion_is_error(&status.cpl)) {
528                 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
529                 return (ENXIO);
530         }
531
532         status.done = 0;
533         nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
534             nvme_completion_poll_cb, &status);
535         while (!atomic_load_acq_int(&status.done))
536                 pause("nvme", 1);
537         if (nvme_completion_is_error(&status.cpl)) {
538                 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
539                 return (ENXIO);
540         }
541
542         return (0);
543 }
544
545 static int
546 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
547 {
548         struct nvme_namespace   *ns;
549         uint32_t                i;
550
551         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
552                 ns = &ctrlr->ns[i];
553                 nvme_ns_construct(ns, i+1, ctrlr);
554         }
555
556         return (0);
557 }
558
559 static boolean_t
560 is_log_page_id_valid(uint8_t page_id)
561 {
562
563         switch (page_id) {
564         case NVME_LOG_ERROR:
565         case NVME_LOG_HEALTH_INFORMATION:
566         case NVME_LOG_FIRMWARE_SLOT:
567                 return (TRUE);
568         }
569
570         return (FALSE);
571 }
572
573 static uint32_t
574 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
575 {
576         uint32_t        log_page_size;
577
578         switch (page_id) {
579         case NVME_LOG_ERROR:
580                 log_page_size = min(
581                     sizeof(struct nvme_error_information_entry) *
582                     (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
583                 break;
584         case NVME_LOG_HEALTH_INFORMATION:
585                 log_page_size = sizeof(struct nvme_health_information_page);
586                 break;
587         case NVME_LOG_FIRMWARE_SLOT:
588                 log_page_size = sizeof(struct nvme_firmware_page);
589                 break;
590         default:
591                 log_page_size = 0;
592                 break;
593         }
594
595         return (log_page_size);
596 }
597
598 static void
599 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
600     uint8_t state)
601 {
602
603         if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
604                 nvme_printf(ctrlr, "available spare space below threshold\n");
605
606         if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
607                 nvme_printf(ctrlr, "temperature above threshold\n");
608
609         if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
610                 nvme_printf(ctrlr, "device reliability degraded\n");
611
612         if (state & NVME_CRIT_WARN_ST_READ_ONLY)
613                 nvme_printf(ctrlr, "media placed in read only mode\n");
614
615         if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
616                 nvme_printf(ctrlr, "volatile memory backup device failed\n");
617
618         if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
619                 nvme_printf(ctrlr,
620                     "unknown critical warning(s): state = 0x%02x\n", state);
621 }
622
623 static void
624 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
625 {
626         struct nvme_async_event_request         *aer = arg;
627         struct nvme_health_information_page     *health_info;
628         struct nvme_error_information_entry     *err;
629         int i;
630
631         /*
632          * If the log page fetch for some reason completed with an error,
633          *  don't pass log page data to the consumers.  In practice, this case
634          *  should never happen.
635          */
636         if (nvme_completion_is_error(cpl))
637                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
638                     aer->log_page_id, NULL, 0);
639         else {
640                 /* Convert data to host endian */
641                 switch (aer->log_page_id) {
642                 case NVME_LOG_ERROR:
643                         err = (struct nvme_error_information_entry *)aer->log_page_buffer;
644                         for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
645                                 nvme_error_information_entry_swapbytes(err++);
646                         break;
647                 case NVME_LOG_HEALTH_INFORMATION:
648                         nvme_health_information_page_swapbytes(
649                             (struct nvme_health_information_page *)aer->log_page_buffer);
650                         break;
651                 case NVME_LOG_FIRMWARE_SLOT:
652                         nvme_firmware_page_swapbytes(
653                             (struct nvme_firmware_page *)aer->log_page_buffer);
654                         break;
655                 case INTEL_LOG_TEMP_STATS:
656                         intel_log_temp_stats_swapbytes(
657                             (struct intel_log_temp_stats *)aer->log_page_buffer);
658                         break;
659                 default:
660                         break;
661                 }
662
663                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
664                         health_info = (struct nvme_health_information_page *)
665                             aer->log_page_buffer;
666                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
667                             health_info->critical_warning);
668                         /*
669                          * Critical warnings reported through the
670                          *  SMART/health log page are persistent, so
671                          *  clear the associated bits in the async event
672                          *  config so that we do not receive repeated
673                          *  notifications for the same event.
674                          */
675                         aer->ctrlr->async_event_config &=
676                             ~health_info->critical_warning;
677                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
678                             aer->ctrlr->async_event_config, NULL, NULL);
679                 }
680
681
682                 /*
683                  * Pass the cpl data from the original async event completion,
684                  *  not the log page fetch.
685                  */
686                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
687                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
688         }
689
690         /*
691          * Repost another asynchronous event request to replace the one
692          *  that just completed.
693          */
694         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
695 }
696
697 static void
698 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
699 {
700         struct nvme_async_event_request *aer = arg;
701
702         if (nvme_completion_is_error(cpl)) {
703                 /*
704                  *  Do not retry failed async event requests.  This avoids
705                  *  infinite loops where a new async event request is submitted
706                  *  to replace the one just failed, only to fail again and
707                  *  perpetuate the loop.
708                  */
709                 return;
710         }
711
712         /* Associated log page is in bits 23:16 of completion entry dw0. */
713         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
714
715         nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
716             aer->log_page_id);
717
718         if (is_log_page_id_valid(aer->log_page_id)) {
719                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
720                     aer->log_page_id);
721                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
722                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
723                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
724                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
725                     aer);
726                 /* Wait to notify consumers until after log page is fetched. */
727         } else {
728                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
729                     NULL, 0);
730
731                 /*
732                  * Repost another asynchronous event request to replace the one
733                  *  that just completed.
734                  */
735                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
736         }
737 }
738
739 static void
740 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
741     struct nvme_async_event_request *aer)
742 {
743         struct nvme_request *req;
744
745         aer->ctrlr = ctrlr;
746         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
747         aer->req = req;
748
749         /*
750          * Disable timeout here, since asynchronous event requests should by
751          *  nature never be timed out.
752          */
753         req->timeout = FALSE;
754         req->cmd.opc_fuse = NVME_CMD_SET_OPC(NVME_OPC_ASYNC_EVENT_REQUEST);
755         nvme_ctrlr_submit_admin_request(ctrlr, req);
756 }
757
758 static void
759 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
760 {
761         struct nvme_completion_poll_status      status;
762         struct nvme_async_event_request         *aer;
763         uint32_t                                i;
764
765         ctrlr->async_event_config = 0xFF;
766         ctrlr->async_event_config &= ~NVME_CRIT_WARN_ST_RESERVED_MASK;
767
768         status.done = 0;
769         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
770             0, NULL, 0, nvme_completion_poll_cb, &status);
771         while (!atomic_load_acq_int(&status.done))
772                 pause("nvme", 1);
773         if (nvme_completion_is_error(&status.cpl) ||
774             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
775             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
776                 nvme_printf(ctrlr, "temperature threshold not supported\n");
777                 ctrlr->async_event_config &= ~NVME_CRIT_WARN_ST_TEMPERATURE;
778         }
779
780         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
781             ctrlr->async_event_config, NULL, NULL);
782
783         /* aerl is a zero-based value, so we need to add 1 here. */
784         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
785
786         for (i = 0; i < ctrlr->num_aers; i++) {
787                 aer = &ctrlr->aer[i];
788                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
789         }
790 }
791
792 static void
793 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
794 {
795
796         ctrlr->int_coal_time = 0;
797         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
798             &ctrlr->int_coal_time);
799
800         ctrlr->int_coal_threshold = 0;
801         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
802             &ctrlr->int_coal_threshold);
803
804         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
805             ctrlr->int_coal_threshold, NULL, NULL);
806 }
807
808 static void
809 nvme_ctrlr_start(void *ctrlr_arg)
810 {
811         struct nvme_controller *ctrlr = ctrlr_arg;
812         uint32_t old_num_io_queues;
813         int i;
814
815         /*
816          * Only reset adminq here when we are restarting the
817          *  controller after a reset.  During initialization,
818          *  we have already submitted admin commands to get
819          *  the number of I/O queues supported, so cannot reset
820          *  the adminq again here.
821          */
822         if (ctrlr->is_resetting) {
823                 nvme_qpair_reset(&ctrlr->adminq);
824         }
825
826         for (i = 0; i < ctrlr->num_io_queues; i++)
827                 nvme_qpair_reset(&ctrlr->ioq[i]);
828
829         nvme_admin_qpair_enable(&ctrlr->adminq);
830
831         if (nvme_ctrlr_identify(ctrlr) != 0) {
832                 nvme_ctrlr_fail(ctrlr);
833                 return;
834         }
835
836         /*
837          * The number of qpairs are determined during controller initialization,
838          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
839          *  HW limit.  We call SET_FEATURES again here so that it gets called
840          *  after any reset for controllers that depend on the driver to
841          *  explicit specify how many queues it will use.  This value should
842          *  never change between resets, so panic if somehow that does happen.
843          */
844         if (ctrlr->is_resetting) {
845                 old_num_io_queues = ctrlr->num_io_queues;
846                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
847                         nvme_ctrlr_fail(ctrlr);
848                         return;
849                 }
850
851                 if (old_num_io_queues != ctrlr->num_io_queues) {
852                         panic("num_io_queues changed from %u to %u",
853                               old_num_io_queues, ctrlr->num_io_queues);
854                 }
855         }
856
857         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
858                 nvme_ctrlr_fail(ctrlr);
859                 return;
860         }
861
862         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
863                 nvme_ctrlr_fail(ctrlr);
864                 return;
865         }
866
867         nvme_ctrlr_configure_aer(ctrlr);
868         nvme_ctrlr_configure_int_coalescing(ctrlr);
869
870         for (i = 0; i < ctrlr->num_io_queues; i++)
871                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
872 }
873
874 void
875 nvme_ctrlr_start_config_hook(void *arg)
876 {
877         struct nvme_controller *ctrlr = arg;
878
879         nvme_qpair_reset(&ctrlr->adminq);
880         nvme_admin_qpair_enable(&ctrlr->adminq);
881
882         if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
883             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
884                 nvme_ctrlr_start(ctrlr);
885         else
886                 nvme_ctrlr_fail(ctrlr);
887
888         nvme_sysctl_initialize_ctrlr(ctrlr);
889         config_intrhook_disestablish(&ctrlr->config_hook);
890
891         ctrlr->is_initialized = 1;
892         nvme_notify_new_controller(ctrlr);
893 }
894
895 static void
896 nvme_ctrlr_reset_task(void *arg, int pending)
897 {
898         struct nvme_controller  *ctrlr = arg;
899         int                     status;
900
901         nvme_printf(ctrlr, "resetting controller\n");
902         status = nvme_ctrlr_hw_reset(ctrlr);
903         /*
904          * Use pause instead of DELAY, so that we yield to any nvme interrupt
905          *  handlers on this CPU that were blocked on a qpair lock. We want
906          *  all nvme interrupts completed before proceeding with restarting the
907          *  controller.
908          *
909          * XXX - any way to guarantee the interrupt handlers have quiesced?
910          */
911         pause("nvmereset", hz / 10);
912         if (status == 0)
913                 nvme_ctrlr_start(ctrlr);
914         else
915                 nvme_ctrlr_fail(ctrlr);
916
917         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
918 }
919
920 /*
921  * Poll all the queues enabled on the device for completion.
922  */
923 void
924 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
925 {
926         int i;
927
928         nvme_qpair_process_completions(&ctrlr->adminq);
929
930         for (i = 0; i < ctrlr->num_io_queues; i++)
931                 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
932                         nvme_qpair_process_completions(&ctrlr->ioq[i]);
933 }
934
935 /*
936  * Poll the single-vector intertrupt case: num_io_queues will be 1 and
937  * there's only a single vector. While we're polling, we mask further
938  * interrupts in the controller.
939  */
940 void
941 nvme_ctrlr_intx_handler(void *arg)
942 {
943         struct nvme_controller *ctrlr = arg;
944
945         nvme_mmio_write_4(ctrlr, intms, 1);
946         nvme_ctrlr_poll(ctrlr);
947         nvme_mmio_write_4(ctrlr, intmc, 1);
948 }
949
950 static int
951 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
952 {
953
954         ctrlr->msix_enabled = 0;
955         ctrlr->num_io_queues = 1;
956         ctrlr->num_cpus_per_ioq = mp_ncpus;
957         ctrlr->rid = 0;
958         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
959             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
960
961         if (ctrlr->res == NULL) {
962                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
963                 return (ENOMEM);
964         }
965
966         bus_setup_intr(ctrlr->dev, ctrlr->res,
967             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
968             ctrlr, &ctrlr->tag);
969
970         if (ctrlr->tag == NULL) {
971                 nvme_printf(ctrlr, "unable to setup intx handler\n");
972                 return (ENOMEM);
973         }
974
975         return (0);
976 }
977
978 static void
979 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
980 {
981         struct nvme_pt_command *pt = arg;
982         struct mtx *mtx = pt->driver_lock;
983         uint16_t status;
984
985         bzero(&pt->cpl, sizeof(pt->cpl));
986         pt->cpl.cdw0 = cpl->cdw0;
987
988         status = cpl->status;
989         status &= ~NVME_STATUS_P_MASK;
990         pt->cpl.status = status;
991
992         mtx_lock(mtx);
993         pt->driver_lock = NULL;
994         wakeup(pt);
995         mtx_unlock(mtx);
996 }
997
998 int
999 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1000     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1001     int is_admin_cmd)
1002 {
1003         struct nvme_request     *req;
1004         struct mtx              *mtx;
1005         struct buf              *buf = NULL;
1006         int                     ret = 0;
1007         vm_offset_t             addr, end;
1008
1009         if (pt->len > 0) {
1010                 /*
1011                  * vmapbuf calls vm_fault_quick_hold_pages which only maps full
1012                  * pages. Ensure this request has fewer than MAXPHYS bytes when
1013                  * extended to full pages.
1014                  */
1015                 addr = (vm_offset_t)pt->buf;
1016                 end = round_page(addr + pt->len);
1017                 addr = trunc_page(addr);
1018                 if (end - addr > MAXPHYS)
1019                         return EIO;
1020
1021                 if (pt->len > ctrlr->max_xfer_size) {
1022                         nvme_printf(ctrlr, "pt->len (%d) "
1023                             "exceeds max_xfer_size (%d)\n", pt->len,
1024                             ctrlr->max_xfer_size);
1025                         return EIO;
1026                 }
1027                 if (is_user_buffer) {
1028                         /*
1029                          * Ensure the user buffer is wired for the duration of
1030                          *  this passthrough command.
1031                          */
1032                         PHOLD(curproc);
1033                         buf = getpbuf(NULL);
1034                         buf->b_data = pt->buf;
1035                         buf->b_bufsize = pt->len;
1036                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1037 #ifdef NVME_UNMAPPED_BIO_SUPPORT
1038                         if (vmapbuf(buf, 1) < 0) {
1039 #else
1040                         if (vmapbuf(buf) < 0) {
1041 #endif
1042                                 ret = EFAULT;
1043                                 goto err;
1044                         }
1045                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
1046                             nvme_pt_done, pt);
1047                 } else
1048                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1049                             nvme_pt_done, pt);
1050         } else
1051                 req = nvme_allocate_request_null(nvme_pt_done, pt);
1052
1053         /* Assume userspace already converted to little-endian */
1054         req->cmd.opc_fuse = pt->cmd.opc_fuse;
1055         req->cmd.cdw10 = pt->cmd.cdw10;
1056         req->cmd.cdw11 = pt->cmd.cdw11;
1057         req->cmd.cdw12 = pt->cmd.cdw12;
1058         req->cmd.cdw13 = pt->cmd.cdw13;
1059         req->cmd.cdw14 = pt->cmd.cdw14;
1060         req->cmd.cdw15 = pt->cmd.cdw15;
1061
1062         req->cmd.nsid = htole32(nsid);
1063
1064         mtx = mtx_pool_find(mtxpool_sleep, pt);
1065         pt->driver_lock = mtx;
1066
1067         if (is_admin_cmd)
1068                 nvme_ctrlr_submit_admin_request(ctrlr, req);
1069         else
1070                 nvme_ctrlr_submit_io_request(ctrlr, req);
1071
1072         mtx_lock(mtx);
1073         while (pt->driver_lock != NULL)
1074                 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1075         mtx_unlock(mtx);
1076
1077 err:
1078         if (buf != NULL) {
1079                 relpbuf(buf, NULL);
1080                 PRELE(curproc);
1081         }
1082
1083         return (ret);
1084 }
1085
1086 static int
1087 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1088     struct thread *td)
1089 {
1090         struct nvme_controller                  *ctrlr;
1091         struct nvme_pt_command                  *pt;
1092
1093         ctrlr = cdev->si_drv1;
1094
1095         switch (cmd) {
1096         case NVME_RESET_CONTROLLER:
1097                 nvme_ctrlr_reset(ctrlr);
1098                 break;
1099         case NVME_PASSTHROUGH_CMD:
1100                 pt = (struct nvme_pt_command *)arg;
1101                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1102                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1103         default:
1104                 return (ENOTTY);
1105         }
1106
1107         return (0);
1108 }
1109
1110 static struct cdevsw nvme_ctrlr_cdevsw = {
1111         .d_version =    D_VERSION,
1112         .d_flags =      0,
1113         .d_ioctl =      nvme_ctrlr_ioctl
1114 };
1115
1116 static void
1117 nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
1118 {
1119         device_t        dev;
1120         int             per_cpu_io_queues;
1121         int             min_cpus_per_ioq;
1122         int             num_vectors_requested, num_vectors_allocated;
1123         int             num_vectors_available;
1124
1125         dev = ctrlr->dev;
1126         min_cpus_per_ioq = 1;
1127         TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq);
1128
1129         if (min_cpus_per_ioq < 1) {
1130                 min_cpus_per_ioq = 1;
1131         } else if (min_cpus_per_ioq > mp_ncpus) {
1132                 min_cpus_per_ioq = mp_ncpus;
1133         }
1134
1135         per_cpu_io_queues = 1;
1136         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1137
1138         if (per_cpu_io_queues == 0) {
1139                 min_cpus_per_ioq = mp_ncpus;
1140         }
1141
1142         ctrlr->force_intx = 0;
1143         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1144
1145         /*
1146          * FreeBSD currently cannot allocate more than about 190 vectors at
1147          *  boot, meaning that systems with high core count and many devices
1148          *  requesting per-CPU interrupt vectors will not get their full
1149          *  allotment.  So first, try to allocate as many as we may need to
1150          *  understand what is available, then immediately release them.
1151          *  Then figure out how many of those we will actually use, based on
1152          *  assigning an equal number of cores to each I/O queue.
1153          */
1154
1155         /* One vector for per core I/O queue, plus one vector for admin queue. */
1156         num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
1157         if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
1158                 num_vectors_available = 0;
1159         }
1160         pci_release_msi(dev);
1161
1162         if (ctrlr->force_intx || num_vectors_available < 2) {
1163                 nvme_ctrlr_configure_intx(ctrlr);
1164                 return;
1165         }
1166
1167         /*
1168          * Do not use all vectors for I/O queues - one must be saved for the
1169          *  admin queue.
1170          */
1171         ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq,
1172             howmany(mp_ncpus, num_vectors_available - 1));
1173
1174         ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq);
1175         num_vectors_requested = ctrlr->num_io_queues + 1;
1176         num_vectors_allocated = num_vectors_requested;
1177
1178         /*
1179          * Now just allocate the number of vectors we need.  This should
1180          *  succeed, since we previously called pci_alloc_msix()
1181          *  successfully returning at least this many vectors, but just to
1182          *  be safe, if something goes wrong just revert to INTx.
1183          */
1184         if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1185                 nvme_ctrlr_configure_intx(ctrlr);
1186                 return;
1187         }
1188
1189         if (num_vectors_allocated < num_vectors_requested) {
1190                 pci_release_msi(dev);
1191                 nvme_ctrlr_configure_intx(ctrlr);
1192                 return;
1193         }
1194
1195         ctrlr->msix_enabled = 1;
1196 }
1197
1198 int
1199 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1200 {
1201         struct make_dev_args    md_args;
1202         uint32_t        cap_lo;
1203         uint32_t        cap_hi;
1204         uint8_t         to;
1205         uint8_t         dstrd;
1206         uint8_t         mpsmin;
1207         int             status, timeout_period;
1208
1209         ctrlr->dev = dev;
1210
1211         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1212
1213         status = nvme_ctrlr_allocate_bar(ctrlr);
1214
1215         if (status != 0)
1216                 return (status);
1217
1218         /*
1219          * Software emulators may set the doorbell stride to something
1220          *  other than zero, but this driver is not set up to handle that.
1221          */
1222         cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1223         dstrd = (cap_hi >> NVME_CAP_HI_REG_DSTRD_SHIFT) & NVME_CAP_HI_REG_DSTRD_MASK;
1224         if (dstrd != 0)
1225                 return (ENXIO);
1226
1227         mpsmin = (cap_hi >> NVME_CAP_HI_REG_MPSMIN_SHIFT) & NVME_CAP_HI_REG_MPSMIN_MASK;
1228         ctrlr->min_page_size = 1 << (12 + mpsmin);
1229
1230         /* Get ready timeout value from controller, in units of 500ms. */
1231         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1232         to = (cap_lo >> NVME_CAP_LO_REG_TO_SHIFT) & NVME_CAP_LO_REG_TO_MASK;
1233         ctrlr->ready_timeout_in_ms = to * 500;
1234
1235         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1236         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1237         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1238         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1239         ctrlr->timeout_period = timeout_period;
1240
1241         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1242         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1243
1244         ctrlr->enable_aborts = 0;
1245         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1246
1247         nvme_ctrlr_setup_interrupts(ctrlr);
1248
1249         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1250         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1251                 return (ENXIO);
1252
1253         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1254             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1255         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1256
1257         ctrlr->is_resetting = 0;
1258         ctrlr->is_initialized = 0;
1259         ctrlr->notification_sent = 0;
1260         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1261         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1262         STAILQ_INIT(&ctrlr->fail_req);
1263         ctrlr->is_failed = FALSE;
1264
1265         make_dev_args_init(&md_args);
1266         md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1267         md_args.mda_uid = UID_ROOT;
1268         md_args.mda_gid = GID_WHEEL;
1269         md_args.mda_mode = 0600;
1270         md_args.mda_unit = device_get_unit(dev);
1271         md_args.mda_si_drv1 = (void *)ctrlr;
1272         status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1273             device_get_unit(dev));
1274         if (status != 0)
1275                 return (ENXIO);
1276
1277         return (0);
1278 }
1279
1280 void
1281 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1282 {
1283         int                             i;
1284
1285         if (ctrlr->resource == NULL)
1286                 goto nores;
1287
1288         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1289                 nvme_ns_destruct(&ctrlr->ns[i]);
1290
1291         if (ctrlr->cdev)
1292                 destroy_dev(ctrlr->cdev);
1293
1294         for (i = 0; i < ctrlr->num_io_queues; i++) {
1295                 nvme_ctrlr_destroy_qpair(ctrlr, &ctrlr->ioq[i]);
1296                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1297         }
1298         free(ctrlr->ioq, M_NVME);
1299
1300         nvme_admin_qpair_destroy(&ctrlr->adminq);
1301
1302         /*
1303          *  Notify the controller of a shutdown, even though this is due to
1304          *   a driver unload, not a system shutdown (this path is not invoked
1305          *   during shutdown).  This ensures the controller receives a
1306          *   shutdown notification in case the system is shutdown before
1307          *   reloading the driver.
1308          */
1309         nvme_ctrlr_shutdown(ctrlr);
1310
1311         nvme_ctrlr_disable(ctrlr);
1312
1313         if (ctrlr->taskqueue)
1314                 taskqueue_free(ctrlr->taskqueue);
1315
1316         if (ctrlr->tag)
1317                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1318
1319         if (ctrlr->res)
1320                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1321                     rman_get_rid(ctrlr->res), ctrlr->res);
1322
1323         if (ctrlr->msix_enabled)
1324                 pci_release_msi(dev);
1325
1326         if (ctrlr->bar4_resource != NULL) {
1327                 bus_release_resource(dev, SYS_RES_MEMORY,
1328                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1329         }
1330
1331         bus_release_resource(dev, SYS_RES_MEMORY,
1332             ctrlr->resource_id, ctrlr->resource);
1333
1334 nores:
1335         mtx_destroy(&ctrlr->lock);
1336 }
1337
1338 void
1339 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1340 {
1341         uint32_t        cc;
1342         uint32_t        csts;
1343         int             ticks = 0;
1344
1345         cc = nvme_mmio_read_4(ctrlr, cc);
1346         cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1347         cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1348         nvme_mmio_write_4(ctrlr, cc, cc);
1349
1350         csts = nvme_mmio_read_4(ctrlr, csts);
1351         while ((NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1352                 pause("nvme shn", 1);
1353                 csts = nvme_mmio_read_4(ctrlr, csts);
1354         }
1355         if (NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE)
1356                 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1357                     "of notification\n");
1358 }
1359
1360 void
1361 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1362     struct nvme_request *req)
1363 {
1364
1365         nvme_qpair_submit_request(&ctrlr->adminq, req);
1366 }
1367
1368 void
1369 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1370     struct nvme_request *req)
1371 {
1372         struct nvme_qpair       *qpair;
1373
1374         qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
1375         nvme_qpair_submit_request(qpair, req);
1376 }
1377
1378 device_t
1379 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1380 {
1381
1382         return (ctrlr->dev);
1383 }
1384
1385 const struct nvme_controller_data *
1386 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1387 {
1388
1389         return (&ctrlr->cdata);
1390 }