]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
Update clang to release_39 branch r276489, and resolve conflicts.
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * Copyright (C) 2012-2016 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include "opt_cam.h"
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/buf.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/ioccom.h>
38 #include <sys/proc.h>
39 #include <sys/smp.h>
40 #include <sys/uio.h>
41
42 #include <dev/pci/pcireg.h>
43 #include <dev/pci/pcivar.h>
44
45 #include "nvme_private.h"
46
47 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
48                                                 struct nvme_async_event_request *aer);
49 static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);
50
51 static int
52 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
53 {
54
55         ctrlr->resource_id = PCIR_BAR(0);
56
57         ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
58             &ctrlr->resource_id, RF_ACTIVE);
59
60         if(ctrlr->resource == NULL) {
61                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
62                 return (ENOMEM);
63         }
64
65         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
66         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
67         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
68
69         /*
70          * The NVMe spec allows for the MSI-X table to be placed behind
71          *  BAR 4/5, separate from the control/doorbell registers.  Always
72          *  try to map this bar, because it must be mapped prior to calling
73          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
74          *  bus_alloc_resource() will just return NULL which is OK.
75          */
76         ctrlr->bar4_resource_id = PCIR_BAR(4);
77         ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
78             &ctrlr->bar4_resource_id, RF_ACTIVE);
79
80         return (0);
81 }
82
83 static void
84 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
85 {
86         struct nvme_qpair       *qpair;
87         uint32_t                num_entries;
88
89         qpair = &ctrlr->adminq;
90
91         num_entries = NVME_ADMIN_ENTRIES;
92         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
93         /*
94          * If admin_entries was overridden to an invalid value, revert it
95          *  back to our default value.
96          */
97         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
98             num_entries > NVME_MAX_ADMIN_ENTRIES) {
99                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
100                     "specified\n", num_entries);
101                 num_entries = NVME_ADMIN_ENTRIES;
102         }
103
104         /*
105          * The admin queue's max xfer size is treated differently than the
106          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
107          */
108         nvme_qpair_construct(qpair, 
109                              0, /* qpair ID */
110                              0, /* vector */
111                              num_entries,
112                              NVME_ADMIN_TRACKERS,
113                              ctrlr);
114 }
115
116 static int
117 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
118 {
119         struct nvme_qpair       *qpair;
120         union cap_lo_register   cap_lo;
121         int                     i, num_entries, num_trackers;
122
123         num_entries = NVME_IO_ENTRIES;
124         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
125
126         /*
127          * NVMe spec sets a hard limit of 64K max entries, but
128          *  devices may specify a smaller limit, so we need to check
129          *  the MQES field in the capabilities register.
130          */
131         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
132         num_entries = min(num_entries, cap_lo.bits.mqes+1);
133
134         num_trackers = NVME_IO_TRACKERS;
135         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
136
137         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
138         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
139         /*
140          * No need to have more trackers than entries in the submit queue.
141          *  Note also that for a queue size of N, we can only have (N-1)
142          *  commands outstanding, hence the "-1" here.
143          */
144         num_trackers = min(num_trackers, (num_entries-1));
145
146         /*
147          * This was calculated previously when setting up interrupts, but
148          *  a controller could theoretically support fewer I/O queues than
149          *  MSI-X vectors.  So calculate again here just to be safe.
150          */
151         ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues);
152
153         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
154             M_NVME, M_ZERO | M_WAITOK);
155
156         for (i = 0; i < ctrlr->num_io_queues; i++) {
157                 qpair = &ctrlr->ioq[i];
158
159                 /*
160                  * Admin queue has ID=0. IO queues start at ID=1 -
161                  *  hence the 'i+1' here.
162                  *
163                  * For I/O queues, use the controller-wide max_xfer_size
164                  *  calculated in nvme_attach().
165                  */
166                 nvme_qpair_construct(qpair,
167                                      i+1, /* qpair ID */
168                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
169                                      num_entries,
170                                      num_trackers,
171                                      ctrlr);
172
173                 /*
174                  * Do not bother binding interrupts if we only have one I/O
175                  *  interrupt thread for this controller.
176                  */
177                 if (ctrlr->num_io_queues > 1)
178                         bus_bind_intr(ctrlr->dev, qpair->res,
179                             i * ctrlr->num_cpus_per_ioq);
180         }
181
182         return (0);
183 }
184
185 static void
186 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
187 {
188         int i;
189
190         ctrlr->is_failed = TRUE;
191         nvme_qpair_fail(&ctrlr->adminq);
192         for (i = 0; i < ctrlr->num_io_queues; i++)
193                 nvme_qpair_fail(&ctrlr->ioq[i]);
194         nvme_notify_fail_consumers(ctrlr);
195 }
196
197 void
198 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
199     struct nvme_request *req)
200 {
201
202         mtx_lock(&ctrlr->lock);
203         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
204         mtx_unlock(&ctrlr->lock);
205         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
206 }
207
208 static void
209 nvme_ctrlr_fail_req_task(void *arg, int pending)
210 {
211         struct nvme_controller  *ctrlr = arg;
212         struct nvme_request     *req;
213
214         mtx_lock(&ctrlr->lock);
215         while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
216                 req = STAILQ_FIRST(&ctrlr->fail_req);
217                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
218                 nvme_qpair_manual_complete_request(req->qpair, req,
219                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
220         }
221         mtx_unlock(&ctrlr->lock);
222 }
223
224 static int
225 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
226 {
227         int ms_waited;
228         union cc_register cc;
229         union csts_register csts;
230
231         cc.raw = nvme_mmio_read_4(ctrlr, cc);
232         csts.raw = nvme_mmio_read_4(ctrlr, csts);
233
234         if (cc.bits.en != desired_val) {
235                 nvme_printf(ctrlr, "%s called with desired_val = %d "
236                     "but cc.en = %d\n", __func__, desired_val, cc.bits.en);
237                 return (ENXIO);
238         }
239
240         ms_waited = 0;
241
242         while (csts.bits.rdy != desired_val) {
243                 DELAY(1000);
244                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
245                         nvme_printf(ctrlr, "controller ready did not become %d "
246                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
247                         return (ENXIO);
248                 }
249                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
250         }
251
252         return (0);
253 }
254
255 static void
256 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
257 {
258         union cc_register cc;
259         union csts_register csts;
260
261         cc.raw = nvme_mmio_read_4(ctrlr, cc);
262         csts.raw = nvme_mmio_read_4(ctrlr, csts);
263
264         if (cc.bits.en == 1 && csts.bits.rdy == 0)
265                 nvme_ctrlr_wait_for_ready(ctrlr, 1);
266
267         cc.bits.en = 0;
268         nvme_mmio_write_4(ctrlr, cc, cc.raw);
269         DELAY(5000);
270         nvme_ctrlr_wait_for_ready(ctrlr, 0);
271 }
272
273 static int
274 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
275 {
276         union cc_register       cc;
277         union csts_register     csts;
278         union aqa_register      aqa;
279
280         cc.raw = nvme_mmio_read_4(ctrlr, cc);
281         csts.raw = nvme_mmio_read_4(ctrlr, csts);
282
283         if (cc.bits.en == 1) {
284                 if (csts.bits.rdy == 1)
285                         return (0);
286                 else
287                         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
288         }
289
290         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
291         DELAY(5000);
292         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
293         DELAY(5000);
294
295         aqa.raw = 0;
296         /* acqs and asqs are 0-based. */
297         aqa.bits.acqs = ctrlr->adminq.num_entries-1;
298         aqa.bits.asqs = ctrlr->adminq.num_entries-1;
299         nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
300         DELAY(5000);
301
302         cc.bits.en = 1;
303         cc.bits.css = 0;
304         cc.bits.ams = 0;
305         cc.bits.shn = 0;
306         cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
307         cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
308
309         /* This evaluates to 0, which is according to spec. */
310         cc.bits.mps = (PAGE_SIZE >> 13);
311
312         nvme_mmio_write_4(ctrlr, cc, cc.raw);
313         DELAY(5000);
314
315         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
316 }
317
318 int
319 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
320 {
321         int i;
322
323         nvme_admin_qpair_disable(&ctrlr->adminq);
324         /*
325          * I/O queues are not allocated before the initial HW
326          *  reset, so do not try to disable them.  Use is_initialized
327          *  to determine if this is the initial HW reset.
328          */
329         if (ctrlr->is_initialized) {
330                 for (i = 0; i < ctrlr->num_io_queues; i++)
331                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
332         }
333
334         DELAY(100*1000);
335
336         nvme_ctrlr_disable(ctrlr);
337         return (nvme_ctrlr_enable(ctrlr));
338 }
339
340 void
341 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
342 {
343         int cmpset;
344
345         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
346
347         if (cmpset == 0 || ctrlr->is_failed)
348                 /*
349                  * Controller is already resetting or has failed.  Return
350                  *  immediately since there is no need to kick off another
351                  *  reset in these cases.
352                  */
353                 return;
354
355         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
356 }
357
358 static int
359 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
360 {
361         struct nvme_completion_poll_status      status;
362
363         status.done = FALSE;
364         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
365             nvme_completion_poll_cb, &status);
366         while (status.done == FALSE)
367                 pause("nvme", 1);
368         if (nvme_completion_is_error(&status.cpl)) {
369                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
370                 return (ENXIO);
371         }
372
373         /*
374          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
375          *  controller supports.
376          */
377         if (ctrlr->cdata.mdts > 0)
378                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
379                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
380
381         return (0);
382 }
383
384 static int
385 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
386 {
387         struct nvme_completion_poll_status      status;
388         int                                     cq_allocated, sq_allocated;
389
390         status.done = FALSE;
391         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
392             nvme_completion_poll_cb, &status);
393         while (status.done == FALSE)
394                 pause("nvme", 1);
395         if (nvme_completion_is_error(&status.cpl)) {
396                 nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
397                 return (ENXIO);
398         }
399
400         /*
401          * Data in cdw0 is 0-based.
402          * Lower 16-bits indicate number of submission queues allocated.
403          * Upper 16-bits indicate number of completion queues allocated.
404          */
405         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
406         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
407
408         /*
409          * Controller may allocate more queues than we requested,
410          *  so use the minimum of the number requested and what was
411          *  actually allocated.
412          */
413         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
414         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
415
416         return (0);
417 }
418
419 static int
420 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
421 {
422         struct nvme_completion_poll_status      status;
423         struct nvme_qpair                       *qpair;
424         int                                     i;
425
426         for (i = 0; i < ctrlr->num_io_queues; i++) {
427                 qpair = &ctrlr->ioq[i];
428
429                 status.done = FALSE;
430                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
431                     nvme_completion_poll_cb, &status);
432                 while (status.done == FALSE)
433                         pause("nvme", 1);
434                 if (nvme_completion_is_error(&status.cpl)) {
435                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
436                         return (ENXIO);
437                 }
438
439                 status.done = FALSE;
440                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
441                     nvme_completion_poll_cb, &status);
442                 while (status.done == FALSE)
443                         pause("nvme", 1);
444                 if (nvme_completion_is_error(&status.cpl)) {
445                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
446                         return (ENXIO);
447                 }
448         }
449
450         return (0);
451 }
452
453 static int
454 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
455 {
456         struct nvme_namespace   *ns;
457         int                     i, status;
458
459         for (i = 0; i < ctrlr->cdata.nn; i++) {
460                 ns = &ctrlr->ns[i];
461                 status = nvme_ns_construct(ns, i+1, ctrlr);
462                 if (status != 0)
463                         return (status);
464         }
465
466         return (0);
467 }
468
469 static boolean_t
470 is_log_page_id_valid(uint8_t page_id)
471 {
472
473         switch (page_id) {
474         case NVME_LOG_ERROR:
475         case NVME_LOG_HEALTH_INFORMATION:
476         case NVME_LOG_FIRMWARE_SLOT:
477                 return (TRUE);
478         }
479
480         return (FALSE);
481 }
482
483 static uint32_t
484 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
485 {
486         uint32_t        log_page_size;
487
488         switch (page_id) {
489         case NVME_LOG_ERROR:
490                 log_page_size = min(
491                     sizeof(struct nvme_error_information_entry) *
492                     ctrlr->cdata.elpe,
493                     NVME_MAX_AER_LOG_SIZE);
494                 break;
495         case NVME_LOG_HEALTH_INFORMATION:
496                 log_page_size = sizeof(struct nvme_health_information_page);
497                 break;
498         case NVME_LOG_FIRMWARE_SLOT:
499                 log_page_size = sizeof(struct nvme_firmware_page);
500                 break;
501         default:
502                 log_page_size = 0;
503                 break;
504         }
505
506         return (log_page_size);
507 }
508
509 static void
510 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
511     union nvme_critical_warning_state state)
512 {
513
514         if (state.bits.available_spare == 1)
515                 nvme_printf(ctrlr, "available spare space below threshold\n");
516
517         if (state.bits.temperature == 1)
518                 nvme_printf(ctrlr, "temperature above threshold\n");
519
520         if (state.bits.device_reliability == 1)
521                 nvme_printf(ctrlr, "device reliability degraded\n");
522
523         if (state.bits.read_only == 1)
524                 nvme_printf(ctrlr, "media placed in read only mode\n");
525
526         if (state.bits.volatile_memory_backup == 1)
527                 nvme_printf(ctrlr, "volatile memory backup device failed\n");
528
529         if (state.bits.reserved != 0)
530                 nvme_printf(ctrlr,
531                     "unknown critical warning(s): state = 0x%02x\n", state.raw);
532 }
533
534 static void
535 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
536 {
537         struct nvme_async_event_request         *aer = arg;
538         struct nvme_health_information_page     *health_info;
539
540         /*
541          * If the log page fetch for some reason completed with an error,
542          *  don't pass log page data to the consumers.  In practice, this case
543          *  should never happen.
544          */
545         if (nvme_completion_is_error(cpl))
546                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
547                     aer->log_page_id, NULL, 0);
548         else {
549                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
550                         health_info = (struct nvme_health_information_page *)
551                             aer->log_page_buffer;
552                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
553                             health_info->critical_warning);
554                         /*
555                          * Critical warnings reported through the
556                          *  SMART/health log page are persistent, so
557                          *  clear the associated bits in the async event
558                          *  config so that we do not receive repeated
559                          *  notifications for the same event.
560                          */
561                         aer->ctrlr->async_event_config.raw &=
562                             ~health_info->critical_warning.raw;
563                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
564                             aer->ctrlr->async_event_config, NULL, NULL);
565                 }
566
567
568                 /*
569                  * Pass the cpl data from the original async event completion,
570                  *  not the log page fetch.
571                  */
572                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
573                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
574         }
575
576         /*
577          * Repost another asynchronous event request to replace the one
578          *  that just completed.
579          */
580         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
581 }
582
583 static void
584 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
585 {
586         struct nvme_async_event_request *aer = arg;
587
588         if (nvme_completion_is_error(cpl)) {
589                 /*
590                  *  Do not retry failed async event requests.  This avoids
591                  *  infinite loops where a new async event request is submitted
592                  *  to replace the one just failed, only to fail again and
593                  *  perpetuate the loop.
594                  */
595                 return;
596         }
597
598         /* Associated log page is in bits 23:16 of completion entry dw0. */
599         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
600
601         nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
602             aer->log_page_id);
603
604         if (is_log_page_id_valid(aer->log_page_id)) {
605                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
606                     aer->log_page_id);
607                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
608                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
609                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
610                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
611                     aer);
612                 /* Wait to notify consumers until after log page is fetched. */
613         } else {
614                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
615                     NULL, 0);
616
617                 /*
618                  * Repost another asynchronous event request to replace the one
619                  *  that just completed.
620                  */
621                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
622         }
623 }
624
625 static void
626 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
627     struct nvme_async_event_request *aer)
628 {
629         struct nvme_request *req;
630
631         aer->ctrlr = ctrlr;
632         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
633         aer->req = req;
634
635         /*
636          * Disable timeout here, since asynchronous event requests should by
637          *  nature never be timed out.
638          */
639         req->timeout = FALSE;
640         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
641         nvme_ctrlr_submit_admin_request(ctrlr, req);
642 }
643
644 static void
645 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
646 {
647         struct nvme_completion_poll_status      status;
648         struct nvme_async_event_request         *aer;
649         uint32_t                                i;
650
651         ctrlr->async_event_config.raw = 0xFF;
652         ctrlr->async_event_config.bits.reserved = 0;
653
654         status.done = FALSE;
655         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
656             0, NULL, 0, nvme_completion_poll_cb, &status);
657         while (status.done == FALSE)
658                 pause("nvme", 1);
659         if (nvme_completion_is_error(&status.cpl) ||
660             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
661             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
662                 nvme_printf(ctrlr, "temperature threshold not supported\n");
663                 ctrlr->async_event_config.bits.temperature = 0;
664         }
665
666         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
667             ctrlr->async_event_config, NULL, NULL);
668
669         /* aerl is a zero-based value, so we need to add 1 here. */
670         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
671
672         for (i = 0; i < ctrlr->num_aers; i++) {
673                 aer = &ctrlr->aer[i];
674                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
675         }
676 }
677
678 static void
679 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
680 {
681
682         ctrlr->int_coal_time = 0;
683         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
684             &ctrlr->int_coal_time);
685
686         ctrlr->int_coal_threshold = 0;
687         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
688             &ctrlr->int_coal_threshold);
689
690         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
691             ctrlr->int_coal_threshold, NULL, NULL);
692 }
693
694 static void
695 nvme_ctrlr_start(void *ctrlr_arg)
696 {
697         struct nvme_controller *ctrlr = ctrlr_arg;
698         uint32_t old_num_io_queues;
699         int i;
700
701         /*
702          * Only reset adminq here when we are restarting the
703          *  controller after a reset.  During initialization,
704          *  we have already submitted admin commands to get
705          *  the number of I/O queues supported, so cannot reset
706          *  the adminq again here.
707          */
708         if (ctrlr->is_resetting) {
709                 nvme_qpair_reset(&ctrlr->adminq);
710         }
711
712         for (i = 0; i < ctrlr->num_io_queues; i++)
713                 nvme_qpair_reset(&ctrlr->ioq[i]);
714
715         nvme_admin_qpair_enable(&ctrlr->adminq);
716
717         if (nvme_ctrlr_identify(ctrlr) != 0) {
718                 nvme_ctrlr_fail(ctrlr);
719                 return;
720         }
721
722         /*
723          * The number of qpairs are determined during controller initialization,
724          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
725          *  HW limit.  We call SET_FEATURES again here so that it gets called
726          *  after any reset for controllers that depend on the driver to
727          *  explicit specify how many queues it will use.  This value should
728          *  never change between resets, so panic if somehow that does happen.
729          */
730         if (ctrlr->is_resetting) {
731                 old_num_io_queues = ctrlr->num_io_queues;
732                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
733                         nvme_ctrlr_fail(ctrlr);
734                         return;
735                 }
736
737                 if (old_num_io_queues != ctrlr->num_io_queues) {
738                         panic("num_io_queues changed from %u to %u",
739                               old_num_io_queues, ctrlr->num_io_queues);
740                 }
741         }
742
743         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
744                 nvme_ctrlr_fail(ctrlr);
745                 return;
746         }
747
748         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
749                 nvme_ctrlr_fail(ctrlr);
750                 return;
751         }
752
753         nvme_ctrlr_configure_aer(ctrlr);
754         nvme_ctrlr_configure_int_coalescing(ctrlr);
755
756         for (i = 0; i < ctrlr->num_io_queues; i++)
757                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
758 }
759
760 void
761 nvme_ctrlr_start_config_hook(void *arg)
762 {
763         struct nvme_controller *ctrlr = arg;
764
765         nvme_qpair_reset(&ctrlr->adminq);
766         nvme_admin_qpair_enable(&ctrlr->adminq);
767
768         if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
769             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
770                 nvme_ctrlr_start(ctrlr);
771         else
772                 nvme_ctrlr_fail(ctrlr);
773
774         nvme_sysctl_initialize_ctrlr(ctrlr);
775         config_intrhook_disestablish(&ctrlr->config_hook);
776
777         ctrlr->is_initialized = 1;
778         nvme_notify_new_controller(ctrlr);
779 }
780
781 static void
782 nvme_ctrlr_reset_task(void *arg, int pending)
783 {
784         struct nvme_controller  *ctrlr = arg;
785         int                     status;
786
787         nvme_printf(ctrlr, "resetting controller\n");
788         status = nvme_ctrlr_hw_reset(ctrlr);
789         /*
790          * Use pause instead of DELAY, so that we yield to any nvme interrupt
791          *  handlers on this CPU that were blocked on a qpair lock. We want
792          *  all nvme interrupts completed before proceeding with restarting the
793          *  controller.
794          *
795          * XXX - any way to guarantee the interrupt handlers have quiesced?
796          */
797         pause("nvmereset", hz / 10);
798         if (status == 0)
799                 nvme_ctrlr_start(ctrlr);
800         else
801                 nvme_ctrlr_fail(ctrlr);
802
803         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
804 }
805
806 void
807 nvme_ctrlr_intx_handler(void *arg)
808 {
809         struct nvme_controller *ctrlr = arg;
810
811         nvme_mmio_write_4(ctrlr, intms, 1);
812
813         nvme_qpair_process_completions(&ctrlr->adminq);
814
815         if (ctrlr->ioq && ctrlr->ioq[0].cpl)
816                 nvme_qpair_process_completions(&ctrlr->ioq[0]);
817
818         nvme_mmio_write_4(ctrlr, intmc, 1);
819 }
820
821 static int
822 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
823 {
824
825         ctrlr->msix_enabled = 0;
826         ctrlr->num_io_queues = 1;
827         ctrlr->num_cpus_per_ioq = mp_ncpus;
828         ctrlr->rid = 0;
829         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
830             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
831
832         if (ctrlr->res == NULL) {
833                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
834                 return (ENOMEM);
835         }
836
837         bus_setup_intr(ctrlr->dev, ctrlr->res,
838             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
839             ctrlr, &ctrlr->tag);
840
841         if (ctrlr->tag == NULL) {
842                 nvme_printf(ctrlr, "unable to setup intx handler\n");
843                 return (ENOMEM);
844         }
845
846         return (0);
847 }
848
849 static void
850 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
851 {
852         struct nvme_pt_command *pt = arg;
853
854         bzero(&pt->cpl, sizeof(pt->cpl));
855         pt->cpl.cdw0 = cpl->cdw0;
856         pt->cpl.status = cpl->status;
857         pt->cpl.status.p = 0;
858
859         mtx_lock(pt->driver_lock);
860         wakeup(pt);
861         mtx_unlock(pt->driver_lock);
862 }
863
864 int
865 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
866     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
867     int is_admin_cmd)
868 {
869         struct nvme_request     *req;
870         struct mtx              *mtx;
871         struct buf              *buf = NULL;
872         int                     ret = 0;
873
874         if (pt->len > 0) {
875                 if (pt->len > ctrlr->max_xfer_size) {
876                         nvme_printf(ctrlr, "pt->len (%d) "
877                             "exceeds max_xfer_size (%d)\n", pt->len,
878                             ctrlr->max_xfer_size);
879                         return EIO;
880                 }
881                 if (is_user_buffer) {
882                         /*
883                          * Ensure the user buffer is wired for the duration of
884                          *  this passthrough command.
885                          */
886                         PHOLD(curproc);
887                         buf = getpbuf(NULL);
888                         buf->b_data = pt->buf;
889                         buf->b_bufsize = pt->len;
890                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
891 #ifdef NVME_UNMAPPED_BIO_SUPPORT
892                         if (vmapbuf(buf, 1) < 0) {
893 #else
894                         if (vmapbuf(buf) < 0) {
895 #endif
896                                 ret = EFAULT;
897                                 goto err;
898                         }
899                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
900                             nvme_pt_done, pt);
901                 } else
902                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
903                             nvme_pt_done, pt);
904         } else
905                 req = nvme_allocate_request_null(nvme_pt_done, pt);
906
907         req->cmd.opc    = pt->cmd.opc;
908         req->cmd.cdw10  = pt->cmd.cdw10;
909         req->cmd.cdw11  = pt->cmd.cdw11;
910         req->cmd.cdw12  = pt->cmd.cdw12;
911         req->cmd.cdw13  = pt->cmd.cdw13;
912         req->cmd.cdw14  = pt->cmd.cdw14;
913         req->cmd.cdw15  = pt->cmd.cdw15;
914
915         req->cmd.nsid = nsid;
916
917         if (is_admin_cmd)
918                 mtx = &ctrlr->lock;
919         else
920                 mtx = &ctrlr->ns[nsid-1].lock;
921
922         mtx_lock(mtx);
923         pt->driver_lock = mtx;
924
925         if (is_admin_cmd)
926                 nvme_ctrlr_submit_admin_request(ctrlr, req);
927         else
928                 nvme_ctrlr_submit_io_request(ctrlr, req);
929
930         mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
931         mtx_unlock(mtx);
932
933         pt->driver_lock = NULL;
934
935 err:
936         if (buf != NULL) {
937                 relpbuf(buf, NULL);
938                 PRELE(curproc);
939         }
940
941         return (ret);
942 }
943
944 static int
945 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
946     struct thread *td)
947 {
948         struct nvme_controller                  *ctrlr;
949         struct nvme_pt_command                  *pt;
950
951         ctrlr = cdev->si_drv1;
952
953         switch (cmd) {
954         case NVME_RESET_CONTROLLER:
955                 nvme_ctrlr_reset(ctrlr);
956                 break;
957         case NVME_PASSTHROUGH_CMD:
958                 pt = (struct nvme_pt_command *)arg;
959                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
960                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
961         default:
962                 return (ENOTTY);
963         }
964
965         return (0);
966 }
967
968 static struct cdevsw nvme_ctrlr_cdevsw = {
969         .d_version =    D_VERSION,
970         .d_flags =      0,
971         .d_ioctl =      nvme_ctrlr_ioctl
972 };
973
974 static void
975 nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
976 {
977         device_t        dev;
978         int             per_cpu_io_queues;
979         int             min_cpus_per_ioq;
980         int             num_vectors_requested, num_vectors_allocated;
981         int             num_vectors_available;
982
983         dev = ctrlr->dev;
984         min_cpus_per_ioq = 1;
985         TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq);
986
987         if (min_cpus_per_ioq < 1) {
988                 min_cpus_per_ioq = 1;
989         } else if (min_cpus_per_ioq > mp_ncpus) {
990                 min_cpus_per_ioq = mp_ncpus;
991         }
992
993         per_cpu_io_queues = 1;
994         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
995
996         if (per_cpu_io_queues == 0) {
997                 min_cpus_per_ioq = mp_ncpus;
998         }
999
1000         ctrlr->force_intx = 0;
1001         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1002
1003         /*
1004          * FreeBSD currently cannot allocate more than about 190 vectors at
1005          *  boot, meaning that systems with high core count and many devices
1006          *  requesting per-CPU interrupt vectors will not get their full
1007          *  allotment.  So first, try to allocate as many as we may need to
1008          *  understand what is available, then immediately release them.
1009          *  Then figure out how many of those we will actually use, based on
1010          *  assigning an equal number of cores to each I/O queue.
1011          */
1012
1013         /* One vector for per core I/O queue, plus one vector for admin queue. */
1014         num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
1015         if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
1016                 num_vectors_available = 0;
1017         }
1018         pci_release_msi(dev);
1019
1020         if (ctrlr->force_intx || num_vectors_available < 2) {
1021                 nvme_ctrlr_configure_intx(ctrlr);
1022                 return;
1023         }
1024
1025         /*
1026          * Do not use all vectors for I/O queues - one must be saved for the
1027          *  admin queue.
1028          */
1029         ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq,
1030             howmany(mp_ncpus, num_vectors_available - 1));
1031
1032         ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq);
1033         num_vectors_requested = ctrlr->num_io_queues + 1;
1034         num_vectors_allocated = num_vectors_requested;
1035
1036         /*
1037          * Now just allocate the number of vectors we need.  This should
1038          *  succeed, since we previously called pci_alloc_msix()
1039          *  successfully returning at least this many vectors, but just to
1040          *  be safe, if something goes wrong just revert to INTx.
1041          */
1042         if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1043                 nvme_ctrlr_configure_intx(ctrlr);
1044                 return;
1045         }
1046
1047         if (num_vectors_allocated < num_vectors_requested) {
1048                 pci_release_msi(dev);
1049                 nvme_ctrlr_configure_intx(ctrlr);
1050                 return;
1051         }
1052
1053         ctrlr->msix_enabled = 1;
1054 }
1055
1056 int
1057 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1058 {
1059         union cap_lo_register   cap_lo;
1060         union cap_hi_register   cap_hi;
1061         int                     status, timeout_period;
1062
1063         ctrlr->dev = dev;
1064
1065         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1066
1067         status = nvme_ctrlr_allocate_bar(ctrlr);
1068
1069         if (status != 0)
1070                 return (status);
1071
1072         /*
1073          * Software emulators may set the doorbell stride to something
1074          *  other than zero, but this driver is not set up to handle that.
1075          */
1076         cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1077         if (cap_hi.bits.dstrd != 0)
1078                 return (ENXIO);
1079
1080         ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1081
1082         /* Get ready timeout value from controller, in units of 500ms. */
1083         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1084         ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1085
1086         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1087         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1088         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1089         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1090         ctrlr->timeout_period = timeout_period;
1091
1092         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1093         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1094
1095         ctrlr->enable_aborts = 0;
1096         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1097
1098         nvme_ctrlr_setup_interrupts(ctrlr);
1099
1100         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1101         nvme_ctrlr_construct_admin_qpair(ctrlr);
1102
1103         ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1104             UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1105
1106         if (ctrlr->cdev == NULL)
1107                 return (ENXIO);
1108
1109         ctrlr->cdev->si_drv1 = (void *)ctrlr;
1110
1111         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1112             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1113         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1114
1115         ctrlr->is_resetting = 0;
1116         ctrlr->is_initialized = 0;
1117         ctrlr->notification_sent = 0;
1118         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1119
1120         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1121         STAILQ_INIT(&ctrlr->fail_req);
1122         ctrlr->is_failed = FALSE;
1123
1124         return (0);
1125 }
1126
1127 void
1128 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1129 {
1130         int                             i;
1131
1132         /*
1133          *  Notify the controller of a shutdown, even though this is due to
1134          *   a driver unload, not a system shutdown (this path is not invoked
1135          *   during shutdown).  This ensures the controller receives a
1136          *   shutdown notification in case the system is shutdown before
1137          *   reloading the driver.
1138          */
1139         nvme_ctrlr_shutdown(ctrlr);
1140
1141         nvme_ctrlr_disable(ctrlr);
1142         taskqueue_free(ctrlr->taskqueue);
1143
1144         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1145                 nvme_ns_destruct(&ctrlr->ns[i]);
1146
1147         if (ctrlr->cdev)
1148                 destroy_dev(ctrlr->cdev);
1149
1150         for (i = 0; i < ctrlr->num_io_queues; i++) {
1151                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1152         }
1153
1154         free(ctrlr->ioq, M_NVME);
1155
1156         nvme_admin_qpair_destroy(&ctrlr->adminq);
1157
1158         if (ctrlr->resource != NULL) {
1159                 bus_release_resource(dev, SYS_RES_MEMORY,
1160                     ctrlr->resource_id, ctrlr->resource);
1161         }
1162
1163         if (ctrlr->bar4_resource != NULL) {
1164                 bus_release_resource(dev, SYS_RES_MEMORY,
1165                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1166         }
1167
1168         if (ctrlr->tag)
1169                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1170
1171         if (ctrlr->res)
1172                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1173                     rman_get_rid(ctrlr->res), ctrlr->res);
1174
1175         if (ctrlr->msix_enabled)
1176                 pci_release_msi(dev);
1177 }
1178
1179 void
1180 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1181 {
1182         union cc_register       cc;
1183         union csts_register     csts;
1184         int                     ticks = 0;
1185
1186         cc.raw = nvme_mmio_read_4(ctrlr, cc);
1187         cc.bits.shn = NVME_SHN_NORMAL;
1188         nvme_mmio_write_4(ctrlr, cc, cc.raw);
1189         csts.raw = nvme_mmio_read_4(ctrlr, csts);
1190         while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1191                 pause("nvme shn", 1);
1192                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
1193         }
1194         if (csts.bits.shst != NVME_SHST_COMPLETE)
1195                 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1196                     "of notification\n");
1197 }
1198
1199 void
1200 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1201     struct nvme_request *req)
1202 {
1203
1204         nvme_qpair_submit_request(&ctrlr->adminq, req);
1205 }
1206
1207 void
1208 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1209     struct nvme_request *req)
1210 {
1211         struct nvme_qpair       *qpair;
1212
1213         qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
1214         nvme_qpair_submit_request(qpair, req);
1215 }
1216
1217 device_t
1218 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1219 {
1220
1221         return (ctrlr->dev);
1222 }
1223
1224 const struct nvme_controller_data *
1225 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1226 {
1227
1228         return (&ctrlr->cdata);
1229 }