]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
Fix panic if NVMe is detached before the intrhook call.
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_cam.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/buf.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/ioccom.h>
40 #include <sys/proc.h>
41 #include <sys/smp.h>
42 #include <sys/uio.h>
43 #include <sys/sbuf.h>
44 #include <sys/endian.h>
45 #include <machine/stdarg.h>
46 #include <vm/vm.h>
47
48 #include "nvme_private.h"
49
50 #define B4_CHK_RDY_DELAY_MS     2300            /* work around controller bug */
51
52 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
53                                                 struct nvme_async_event_request *aer);
54
55 static void
56 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
57 {
58         struct sbuf sb;
59         va_list ap;
60         int error;
61
62         if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
63                 return;
64         sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
65         va_start(ap, msg);
66         sbuf_vprintf(&sb, msg, ap);
67         va_end(ap);
68         error = sbuf_finish(&sb);
69         if (error == 0)
70                 printf("%s\n", sbuf_data(&sb));
71
72         sbuf_clear(&sb);
73         sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev));
74         va_start(ap, msg);
75         sbuf_vprintf(&sb, msg, ap);
76         va_end(ap);
77         sbuf_printf(&sb, "\"");
78         error = sbuf_finish(&sb);
79         if (error == 0)
80                 devctl_notify("nvme", "controller", type, sbuf_data(&sb));
81         sbuf_delete(&sb);
82 }
83
84 static int
85 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
86 {
87         struct nvme_qpair       *qpair;
88         uint32_t                num_entries;
89         int                     error;
90
91         qpair = &ctrlr->adminq;
92         qpair->id = 0;
93         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
94         qpair->domain = ctrlr->domain;
95
96         num_entries = NVME_ADMIN_ENTRIES;
97         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
98         /*
99          * If admin_entries was overridden to an invalid value, revert it
100          *  back to our default value.
101          */
102         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
103             num_entries > NVME_MAX_ADMIN_ENTRIES) {
104                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
105                     "specified\n", num_entries);
106                 num_entries = NVME_ADMIN_ENTRIES;
107         }
108
109         /*
110          * The admin queue's max xfer size is treated differently than the
111          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
112          */
113         error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
114              ctrlr);
115         return (error);
116 }
117
118 #define QP(ctrlr, c)    ((c) * (ctrlr)->num_io_queues / mp_ncpus)
119
120 static int
121 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
122 {
123         struct nvme_qpair       *qpair;
124         uint32_t                cap_lo;
125         uint16_t                mqes;
126         int                     c, error, i, n;
127         int                     num_entries, num_trackers, max_entries;
128
129         /*
130          * NVMe spec sets a hard limit of 64K max entries, but devices may
131          * specify a smaller limit, so we need to check the MQES field in the
132          * capabilities register. We have to cap the number of entries to the
133          * current stride allows for in BAR 0/1, otherwise the remainder entries
134          * are inaccessable. MQES should reflect this, and this is just a
135          * fail-safe.
136          */
137         max_entries =
138             (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
139             (1 << (ctrlr->dstrd + 1));
140         num_entries = NVME_IO_ENTRIES;
141         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
142         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
143         mqes = NVME_CAP_LO_MQES(cap_lo);
144         num_entries = min(num_entries, mqes + 1);
145         num_entries = min(num_entries, max_entries);
146
147         num_trackers = NVME_IO_TRACKERS;
148         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
149
150         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
151         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
152         /*
153          * No need to have more trackers than entries in the submit queue.  Note
154          * also that for a queue size of N, we can only have (N-1) commands
155          * outstanding, hence the "-1" here.
156          */
157         num_trackers = min(num_trackers, (num_entries-1));
158
159         /*
160          * Our best estimate for the maximum number of I/Os that we should
161          * normally have in flight at one time. This should be viewed as a hint,
162          * not a hard limit and will need to be revisited when the upper layers
163          * of the storage system grows multi-queue support.
164          */
165         ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
166
167         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
168             M_NVME, M_ZERO | M_WAITOK);
169
170         for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
171                 qpair = &ctrlr->ioq[i];
172
173                 /*
174                  * Admin queue has ID=0. IO queues start at ID=1 -
175                  *  hence the 'i+1' here.
176                  */
177                 qpair->id = i + 1;
178                 if (ctrlr->num_io_queues > 1) {
179                         /* Find number of CPUs served by this queue. */
180                         for (n = 1; QP(ctrlr, c + n) == i; n++)
181                                 ;
182                         /* Shuffle multiple NVMe devices between CPUs. */
183                         qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
184                         qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
185                 } else {
186                         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
187                         qpair->domain = ctrlr->domain;
188                 }
189
190                 /*
191                  * For I/O queues, use the controller-wide max_xfer_size
192                  *  calculated in nvme_attach().
193                  */
194                 error = nvme_qpair_construct(qpair, num_entries, num_trackers,
195                     ctrlr);
196                 if (error)
197                         return (error);
198
199                 /*
200                  * Do not bother binding interrupts if we only have one I/O
201                  *  interrupt thread for this controller.
202                  */
203                 if (ctrlr->num_io_queues > 1)
204                         bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
205         }
206
207         return (0);
208 }
209
210 static void
211 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
212 {
213         int i;
214
215         ctrlr->is_failed = true;
216         nvme_admin_qpair_disable(&ctrlr->adminq);
217         nvme_qpair_fail(&ctrlr->adminq);
218         if (ctrlr->ioq != NULL) {
219                 for (i = 0; i < ctrlr->num_io_queues; i++) {
220                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
221                         nvme_qpair_fail(&ctrlr->ioq[i]);
222                 }
223         }
224         nvme_notify_fail_consumers(ctrlr);
225 }
226
227 void
228 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
229     struct nvme_request *req)
230 {
231
232         mtx_lock(&ctrlr->lock);
233         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
234         mtx_unlock(&ctrlr->lock);
235         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
236 }
237
238 static void
239 nvme_ctrlr_fail_req_task(void *arg, int pending)
240 {
241         struct nvme_controller  *ctrlr = arg;
242         struct nvme_request     *req;
243
244         mtx_lock(&ctrlr->lock);
245         while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
246                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
247                 mtx_unlock(&ctrlr->lock);
248                 nvme_qpair_manual_complete_request(req->qpair, req,
249                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
250                 mtx_lock(&ctrlr->lock);
251         }
252         mtx_unlock(&ctrlr->lock);
253 }
254
255 static int
256 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
257 {
258         int ms_waited;
259         uint32_t csts;
260
261         ms_waited = 0;
262         while (1) {
263                 csts = nvme_mmio_read_4(ctrlr, csts);
264                 if (csts == 0xffffffff)         /* Hot unplug. */
265                         return (ENXIO);
266                 if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK)
267                     == desired_val)
268                         break;
269                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
270                         nvme_printf(ctrlr, "controller ready did not become %d "
271                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
272                         return (ENXIO);
273                 }
274                 DELAY(1000);
275         }
276
277         return (0);
278 }
279
280 static int
281 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
282 {
283         uint32_t cc;
284         uint32_t csts;
285         uint8_t  en, rdy;
286         int err;
287
288         cc = nvme_mmio_read_4(ctrlr, cc);
289         csts = nvme_mmio_read_4(ctrlr, csts);
290
291         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
292         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
293
294         /*
295          * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
296          * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
297          * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
298          * isn't the desired value. Short circuit if we're already disabled.
299          */
300         if (en == 1) {
301                 if (rdy == 0) {
302                         /* EN == 1, wait for  RDY == 1 or fail */
303                         err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
304                         if (err != 0)
305                                 return (err);
306                 }
307         } else {
308                 /* EN == 0 already wait for RDY == 0 */
309                 if (rdy == 0)
310                         return (0);
311                 else
312                         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
313         }
314
315         cc &= ~NVME_CC_REG_EN_MASK;
316         nvme_mmio_write_4(ctrlr, cc, cc);
317         /*
318          * Some drives have issues with accessing the mmio after we
319          * disable, so delay for a bit after we write the bit to
320          * cope with these issues.
321          */
322         if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
323                 pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000);
324         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
325 }
326
327 static int
328 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
329 {
330         uint32_t        cc;
331         uint32_t        csts;
332         uint32_t        aqa;
333         uint32_t        qsize;
334         uint8_t         en, rdy;
335         int             err;
336
337         cc = nvme_mmio_read_4(ctrlr, cc);
338         csts = nvme_mmio_read_4(ctrlr, csts);
339
340         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
341         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
342
343         /*
344          * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
345          */
346         if (en == 1) {
347                 if (rdy == 1)
348                         return (0);
349                 else
350                         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
351         } else {
352                 /* EN == 0 already wait for RDY == 0 or fail */
353                 err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
354                 if (err != 0)
355                         return (err);
356         }
357
358         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
359         DELAY(5000);
360         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
361         DELAY(5000);
362
363         /* acqs and asqs are 0-based. */
364         qsize = ctrlr->adminq.num_entries - 1;
365
366         aqa = 0;
367         aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
368         aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
369         nvme_mmio_write_4(ctrlr, aqa, aqa);
370         DELAY(5000);
371
372         /* Initialization values for CC */
373         cc = 0;
374         cc |= 1 << NVME_CC_REG_EN_SHIFT;
375         cc |= 0 << NVME_CC_REG_CSS_SHIFT;
376         cc |= 0 << NVME_CC_REG_AMS_SHIFT;
377         cc |= 0 << NVME_CC_REG_SHN_SHIFT;
378         cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
379         cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
380
381         /* This evaluates to 0, which is according to spec. */
382         cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT;
383
384         nvme_mmio_write_4(ctrlr, cc, cc);
385
386         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
387 }
388
389 static void
390 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
391 {
392         int i;
393
394         nvme_admin_qpair_disable(&ctrlr->adminq);
395         /*
396          * I/O queues are not allocated before the initial HW
397          *  reset, so do not try to disable them.  Use is_initialized
398          *  to determine if this is the initial HW reset.
399          */
400         if (ctrlr->is_initialized) {
401                 for (i = 0; i < ctrlr->num_io_queues; i++)
402                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
403         }
404 }
405
406 int
407 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
408 {
409         int err;
410
411         nvme_ctrlr_disable_qpairs(ctrlr);
412
413         DELAY(100*1000);
414
415         err = nvme_ctrlr_disable(ctrlr);
416         if (err != 0)
417                 return err;
418         return (nvme_ctrlr_enable(ctrlr));
419 }
420
421 void
422 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
423 {
424         int cmpset;
425
426         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
427
428         if (cmpset == 0 || ctrlr->is_failed)
429                 /*
430                  * Controller is already resetting or has failed.  Return
431                  *  immediately since there is no need to kick off another
432                  *  reset in these cases.
433                  */
434                 return;
435
436         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
437 }
438
439 static int
440 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
441 {
442         struct nvme_completion_poll_status      status;
443
444         status.done = 0;
445         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
446             nvme_completion_poll_cb, &status);
447         nvme_completion_poll(&status);
448         if (nvme_completion_is_error(&status.cpl)) {
449                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
450                 return (ENXIO);
451         }
452
453         /* Convert data to host endian */
454         nvme_controller_data_swapbytes(&ctrlr->cdata);
455
456         /*
457          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
458          *  controller supports.
459          */
460         if (ctrlr->cdata.mdts > 0)
461                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
462                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
463
464         return (0);
465 }
466
467 static int
468 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
469 {
470         struct nvme_completion_poll_status      status;
471         int                                     cq_allocated, sq_allocated;
472
473         status.done = 0;
474         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
475             nvme_completion_poll_cb, &status);
476         nvme_completion_poll(&status);
477         if (nvme_completion_is_error(&status.cpl)) {
478                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
479                 return (ENXIO);
480         }
481
482         /*
483          * Data in cdw0 is 0-based.
484          * Lower 16-bits indicate number of submission queues allocated.
485          * Upper 16-bits indicate number of completion queues allocated.
486          */
487         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
488         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
489
490         /*
491          * Controller may allocate more queues than we requested,
492          *  so use the minimum of the number requested and what was
493          *  actually allocated.
494          */
495         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
496         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
497         if (ctrlr->num_io_queues > vm_ndomains)
498                 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
499
500         return (0);
501 }
502
503 static int
504 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
505 {
506         struct nvme_completion_poll_status      status;
507         struct nvme_qpair                       *qpair;
508         int                                     i;
509
510         for (i = 0; i < ctrlr->num_io_queues; i++) {
511                 qpair = &ctrlr->ioq[i];
512
513                 status.done = 0;
514                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
515                     nvme_completion_poll_cb, &status);
516                 nvme_completion_poll(&status);
517                 if (nvme_completion_is_error(&status.cpl)) {
518                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
519                         return (ENXIO);
520                 }
521
522                 status.done = 0;
523                 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
524                     nvme_completion_poll_cb, &status);
525                 nvme_completion_poll(&status);
526                 if (nvme_completion_is_error(&status.cpl)) {
527                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
528                         return (ENXIO);
529                 }
530         }
531
532         return (0);
533 }
534
535 static int
536 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
537 {
538         struct nvme_completion_poll_status      status;
539         struct nvme_qpair                       *qpair;
540
541         for (int i = 0; i < ctrlr->num_io_queues; i++) {
542                 qpair = &ctrlr->ioq[i];
543
544                 status.done = 0;
545                 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
546                     nvme_completion_poll_cb, &status);
547                 nvme_completion_poll(&status);
548                 if (nvme_completion_is_error(&status.cpl)) {
549                         nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
550                         return (ENXIO);
551                 }
552
553                 status.done = 0;
554                 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
555                     nvme_completion_poll_cb, &status);
556                 nvme_completion_poll(&status);
557                 if (nvme_completion_is_error(&status.cpl)) {
558                         nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
559                         return (ENXIO);
560                 }
561         }
562
563         return (0);
564 }
565
566 static int
567 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
568 {
569         struct nvme_namespace   *ns;
570         uint32_t                i;
571
572         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
573                 ns = &ctrlr->ns[i];
574                 nvme_ns_construct(ns, i+1, ctrlr);
575         }
576
577         return (0);
578 }
579
580 static bool
581 is_log_page_id_valid(uint8_t page_id)
582 {
583
584         switch (page_id) {
585         case NVME_LOG_ERROR:
586         case NVME_LOG_HEALTH_INFORMATION:
587         case NVME_LOG_FIRMWARE_SLOT:
588         case NVME_LOG_CHANGED_NAMESPACE:
589         case NVME_LOG_COMMAND_EFFECT:
590         case NVME_LOG_RES_NOTIFICATION:
591         case NVME_LOG_SANITIZE_STATUS:
592                 return (true);
593         }
594
595         return (false);
596 }
597
598 static uint32_t
599 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
600 {
601         uint32_t        log_page_size;
602
603         switch (page_id) {
604         case NVME_LOG_ERROR:
605                 log_page_size = min(
606                     sizeof(struct nvme_error_information_entry) *
607                     (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
608                 break;
609         case NVME_LOG_HEALTH_INFORMATION:
610                 log_page_size = sizeof(struct nvme_health_information_page);
611                 break;
612         case NVME_LOG_FIRMWARE_SLOT:
613                 log_page_size = sizeof(struct nvme_firmware_page);
614                 break;
615         case NVME_LOG_CHANGED_NAMESPACE:
616                 log_page_size = sizeof(struct nvme_ns_list);
617                 break;
618         case NVME_LOG_COMMAND_EFFECT:
619                 log_page_size = sizeof(struct nvme_command_effects_page);
620                 break;
621         case NVME_LOG_RES_NOTIFICATION:
622                 log_page_size = sizeof(struct nvme_res_notification_page);
623                 break;
624         case NVME_LOG_SANITIZE_STATUS:
625                 log_page_size = sizeof(struct nvme_sanitize_status_page);
626                 break;
627         default:
628                 log_page_size = 0;
629                 break;
630         }
631
632         return (log_page_size);
633 }
634
635 static void
636 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
637     uint8_t state)
638 {
639
640         if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
641                 nvme_ctrlr_devctl_log(ctrlr, "critical",
642                     "available spare space below threshold");
643
644         if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
645                 nvme_ctrlr_devctl_log(ctrlr, "critical",
646                     "temperature above threshold");
647
648         if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
649                 nvme_ctrlr_devctl_log(ctrlr, "critical",
650                     "device reliability degraded");
651
652         if (state & NVME_CRIT_WARN_ST_READ_ONLY)
653                 nvme_ctrlr_devctl_log(ctrlr, "critical",
654                     "media placed in read only mode");
655
656         if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
657                 nvme_ctrlr_devctl_log(ctrlr, "critical",
658                     "volatile memory backup device failed");
659
660         if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
661                 nvme_ctrlr_devctl_log(ctrlr, "critical",
662                     "unknown critical warning(s): state = 0x%02x", state);
663 }
664
665 static void
666 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
667 {
668         struct nvme_async_event_request         *aer = arg;
669         struct nvme_health_information_page     *health_info;
670         struct nvme_ns_list                     *nsl;
671         struct nvme_error_information_entry     *err;
672         int i;
673
674         /*
675          * If the log page fetch for some reason completed with an error,
676          *  don't pass log page data to the consumers.  In practice, this case
677          *  should never happen.
678          */
679         if (nvme_completion_is_error(cpl))
680                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
681                     aer->log_page_id, NULL, 0);
682         else {
683                 /* Convert data to host endian */
684                 switch (aer->log_page_id) {
685                 case NVME_LOG_ERROR:
686                         err = (struct nvme_error_information_entry *)aer->log_page_buffer;
687                         for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
688                                 nvme_error_information_entry_swapbytes(err++);
689                         break;
690                 case NVME_LOG_HEALTH_INFORMATION:
691                         nvme_health_information_page_swapbytes(
692                             (struct nvme_health_information_page *)aer->log_page_buffer);
693                         break;
694                 case NVME_LOG_FIRMWARE_SLOT:
695                         nvme_firmware_page_swapbytes(
696                             (struct nvme_firmware_page *)aer->log_page_buffer);
697                         break;
698                 case NVME_LOG_CHANGED_NAMESPACE:
699                         nvme_ns_list_swapbytes(
700                             (struct nvme_ns_list *)aer->log_page_buffer);
701                         break;
702                 case NVME_LOG_COMMAND_EFFECT:
703                         nvme_command_effects_page_swapbytes(
704                             (struct nvme_command_effects_page *)aer->log_page_buffer);
705                         break;
706                 case NVME_LOG_RES_NOTIFICATION:
707                         nvme_res_notification_page_swapbytes(
708                             (struct nvme_res_notification_page *)aer->log_page_buffer);
709                         break;
710                 case NVME_LOG_SANITIZE_STATUS:
711                         nvme_sanitize_status_page_swapbytes(
712                             (struct nvme_sanitize_status_page *)aer->log_page_buffer);
713                         break;
714                 case INTEL_LOG_TEMP_STATS:
715                         intel_log_temp_stats_swapbytes(
716                             (struct intel_log_temp_stats *)aer->log_page_buffer);
717                         break;
718                 default:
719                         break;
720                 }
721
722                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
723                         health_info = (struct nvme_health_information_page *)
724                             aer->log_page_buffer;
725                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
726                             health_info->critical_warning);
727                         /*
728                          * Critical warnings reported through the
729                          *  SMART/health log page are persistent, so
730                          *  clear the associated bits in the async event
731                          *  config so that we do not receive repeated
732                          *  notifications for the same event.
733                          */
734                         aer->ctrlr->async_event_config &=
735                             ~health_info->critical_warning;
736                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
737                             aer->ctrlr->async_event_config, NULL, NULL);
738                 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
739                     !nvme_use_nvd) {
740                         nsl = (struct nvme_ns_list *)aer->log_page_buffer;
741                         for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
742                                 if (nsl->ns[i] > NVME_MAX_NAMESPACES)
743                                         break;
744                                 nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
745                         }
746                 }
747
748                 /*
749                  * Pass the cpl data from the original async event completion,
750                  *  not the log page fetch.
751                  */
752                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
753                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
754         }
755
756         /*
757          * Repost another asynchronous event request to replace the one
758          *  that just completed.
759          */
760         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
761 }
762
763 static void
764 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
765 {
766         struct nvme_async_event_request *aer = arg;
767
768         if (nvme_completion_is_error(cpl)) {
769                 /*
770                  *  Do not retry failed async event requests.  This avoids
771                  *  infinite loops where a new async event request is submitted
772                  *  to replace the one just failed, only to fail again and
773                  *  perpetuate the loop.
774                  */
775                 return;
776         }
777
778         /* Associated log page is in bits 23:16 of completion entry dw0. */
779         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
780
781         nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
782             " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8,
783             aer->log_page_id);
784
785         if (is_log_page_id_valid(aer->log_page_id)) {
786                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
787                     aer->log_page_id);
788                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
789                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
790                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
791                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
792                     aer);
793                 /* Wait to notify consumers until after log page is fetched. */
794         } else {
795                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
796                     NULL, 0);
797
798                 /*
799                  * Repost another asynchronous event request to replace the one
800                  *  that just completed.
801                  */
802                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
803         }
804 }
805
806 static void
807 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
808     struct nvme_async_event_request *aer)
809 {
810         struct nvme_request *req;
811
812         aer->ctrlr = ctrlr;
813         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
814         aer->req = req;
815
816         /*
817          * Disable timeout here, since asynchronous event requests should by
818          *  nature never be timed out.
819          */
820         req->timeout = false;
821         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
822         nvme_ctrlr_submit_admin_request(ctrlr, req);
823 }
824
825 static void
826 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
827 {
828         struct nvme_completion_poll_status      status;
829         struct nvme_async_event_request         *aer;
830         uint32_t                                i;
831
832         ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
833             NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
834             NVME_CRIT_WARN_ST_READ_ONLY |
835             NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
836         if (ctrlr->cdata.ver >= NVME_REV(1, 2))
837                 ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE |
838                     NVME_ASYNC_EVENT_FW_ACTIVATE;
839
840         status.done = 0;
841         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
842             0, NULL, 0, nvme_completion_poll_cb, &status);
843         nvme_completion_poll(&status);
844         if (nvme_completion_is_error(&status.cpl) ||
845             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
846             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
847                 nvme_printf(ctrlr, "temperature threshold not supported\n");
848         } else
849                 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
850
851         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
852             ctrlr->async_event_config, NULL, NULL);
853
854         /* aerl is a zero-based value, so we need to add 1 here. */
855         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
856
857         for (i = 0; i < ctrlr->num_aers; i++) {
858                 aer = &ctrlr->aer[i];
859                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
860         }
861 }
862
863 static void
864 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
865 {
866
867         ctrlr->int_coal_time = 0;
868         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
869             &ctrlr->int_coal_time);
870
871         ctrlr->int_coal_threshold = 0;
872         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
873             &ctrlr->int_coal_threshold);
874
875         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
876             ctrlr->int_coal_threshold, NULL, NULL);
877 }
878
879 static void
880 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
881 {
882         struct nvme_hmb_chunk *hmbc;
883         int i;
884
885         if (ctrlr->hmb_desc_paddr) {
886                 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
887                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
888                     ctrlr->hmb_desc_map);
889                 ctrlr->hmb_desc_paddr = 0;
890         }
891         if (ctrlr->hmb_desc_tag) {
892                 bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
893                 ctrlr->hmb_desc_tag = NULL;
894         }
895         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
896                 hmbc = &ctrlr->hmb_chunks[i];
897                 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
898                 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
899                     hmbc->hmbc_map);
900         }
901         ctrlr->hmb_nchunks = 0;
902         if (ctrlr->hmb_tag) {
903                 bus_dma_tag_destroy(ctrlr->hmb_tag);
904                 ctrlr->hmb_tag = NULL;
905         }
906         if (ctrlr->hmb_chunks) {
907                 free(ctrlr->hmb_chunks, M_NVME);
908                 ctrlr->hmb_chunks = NULL;
909         }
910 }
911
912 static void
913 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
914 {
915         struct nvme_hmb_chunk *hmbc;
916         size_t pref, min, minc, size;
917         int err, i;
918         uint64_t max;
919
920         /* Limit HMB to 5% of RAM size per device by default. */
921         max = (uint64_t)physmem * PAGE_SIZE / 20;
922         TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
923
924         min = (long long unsigned)ctrlr->cdata.hmmin * 4096;
925         if (max == 0 || max < min)
926                 return;
927         pref = MIN((long long unsigned)ctrlr->cdata.hmpre * 4096, max);
928         minc = MAX(ctrlr->cdata.hmminds * 4096, PAGE_SIZE);
929         if (min > 0 && ctrlr->cdata.hmmaxd > 0)
930                 minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
931         ctrlr->hmb_chunk = pref;
932
933 again:
934         ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, PAGE_SIZE);
935         ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
936         if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
937                 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
938         ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
939             ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
940         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
941             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
942             ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
943         if (err != 0) {
944                 nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
945                 nvme_ctrlr_hmb_free(ctrlr);
946                 return;
947         }
948
949         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
950                 hmbc = &ctrlr->hmb_chunks[i];
951                 if (bus_dmamem_alloc(ctrlr->hmb_tag,
952                     (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
953                     &hmbc->hmbc_map)) {
954                         nvme_printf(ctrlr, "failed to alloc HMB\n");
955                         break;
956                 }
957                 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
958                     hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
959                     &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
960                         bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
961                             hmbc->hmbc_map);
962                         nvme_printf(ctrlr, "failed to load HMB\n");
963                         break;
964                 }
965                 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
966                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
967         }
968
969         if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
970             ctrlr->hmb_chunk / 2 >= minc) {
971                 ctrlr->hmb_nchunks = i;
972                 nvme_ctrlr_hmb_free(ctrlr);
973                 ctrlr->hmb_chunk /= 2;
974                 goto again;
975         }
976         ctrlr->hmb_nchunks = i;
977         if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
978                 nvme_ctrlr_hmb_free(ctrlr);
979                 return;
980         }
981
982         size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
983         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
984             16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
985             size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
986         if (err != 0) {
987                 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
988                 nvme_ctrlr_hmb_free(ctrlr);
989                 return;
990         }
991         if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
992             (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
993             &ctrlr->hmb_desc_map)) {
994                 nvme_printf(ctrlr, "failed to alloc HMB desc\n");
995                 nvme_ctrlr_hmb_free(ctrlr);
996                 return;
997         }
998         if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
999             ctrlr->hmb_desc_vaddr, size, nvme_single_map,
1000             &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1001                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1002                     ctrlr->hmb_desc_map);
1003                 nvme_printf(ctrlr, "failed to load HMB desc\n");
1004                 nvme_ctrlr_hmb_free(ctrlr);
1005                 return;
1006         }
1007
1008         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1009                 ctrlr->hmb_desc_vaddr[i].addr =
1010                     htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1011                 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / 4096);
1012         }
1013         bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1014             BUS_DMASYNC_PREWRITE);
1015
1016         nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1017             (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1018             / 1024 / 1024);
1019 }
1020
1021 static void
1022 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1023 {
1024         struct nvme_completion_poll_status      status;
1025         uint32_t cdw11;
1026
1027         cdw11 = 0;
1028         if (enable)
1029                 cdw11 |= 1;
1030         if (memret)
1031                 cdw11 |= 2;
1032         status.done = 0;
1033         nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1034             ctrlr->hmb_nchunks * ctrlr->hmb_chunk / 4096, ctrlr->hmb_desc_paddr,
1035             ctrlr->hmb_desc_paddr >> 32, ctrlr->hmb_nchunks, NULL, 0,
1036             nvme_completion_poll_cb, &status);
1037         nvme_completion_poll(&status);
1038         if (nvme_completion_is_error(&status.cpl))
1039                 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1040 }
1041
1042 static void
1043 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1044 {
1045         struct nvme_controller *ctrlr = ctrlr_arg;
1046         uint32_t old_num_io_queues;
1047         int i;
1048
1049         /*
1050          * Only reset adminq here when we are restarting the
1051          *  controller after a reset.  During initialization,
1052          *  we have already submitted admin commands to get
1053          *  the number of I/O queues supported, so cannot reset
1054          *  the adminq again here.
1055          */
1056         if (resetting)
1057                 nvme_qpair_reset(&ctrlr->adminq);
1058
1059         if (ctrlr->ioq != NULL) {
1060                 for (i = 0; i < ctrlr->num_io_queues; i++)
1061                         nvme_qpair_reset(&ctrlr->ioq[i]);
1062         }
1063
1064         nvme_admin_qpair_enable(&ctrlr->adminq);
1065
1066         /*
1067          * If it was a reset on initialization command timeout, just
1068          * return here, letting initialization code fail gracefully.
1069          */
1070         if (resetting && !ctrlr->is_initialized)
1071                 return;
1072
1073         if (nvme_ctrlr_identify(ctrlr) != 0) {
1074                 nvme_ctrlr_fail(ctrlr);
1075                 return;
1076         }
1077
1078         /*
1079          * The number of qpairs are determined during controller initialization,
1080          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1081          *  HW limit.  We call SET_FEATURES again here so that it gets called
1082          *  after any reset for controllers that depend on the driver to
1083          *  explicit specify how many queues it will use.  This value should
1084          *  never change between resets, so panic if somehow that does happen.
1085          */
1086         if (resetting) {
1087                 old_num_io_queues = ctrlr->num_io_queues;
1088                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1089                         nvme_ctrlr_fail(ctrlr);
1090                         return;
1091                 }
1092
1093                 if (old_num_io_queues != ctrlr->num_io_queues) {
1094                         panic("num_io_queues changed from %u to %u",
1095                               old_num_io_queues, ctrlr->num_io_queues);
1096                 }
1097         }
1098
1099         if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1100                 nvme_ctrlr_hmb_alloc(ctrlr);
1101                 if (ctrlr->hmb_nchunks > 0)
1102                         nvme_ctrlr_hmb_enable(ctrlr, true, false);
1103         } else if (ctrlr->hmb_nchunks > 0)
1104                 nvme_ctrlr_hmb_enable(ctrlr, true, true);
1105
1106         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1107                 nvme_ctrlr_fail(ctrlr);
1108                 return;
1109         }
1110
1111         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1112                 nvme_ctrlr_fail(ctrlr);
1113                 return;
1114         }
1115
1116         nvme_ctrlr_configure_aer(ctrlr);
1117         nvme_ctrlr_configure_int_coalescing(ctrlr);
1118
1119         for (i = 0; i < ctrlr->num_io_queues; i++)
1120                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
1121 }
1122
1123 void
1124 nvme_ctrlr_start_config_hook(void *arg)
1125 {
1126         struct nvme_controller *ctrlr = arg;
1127
1128         /*
1129          * Reset controller twice to ensure we do a transition from cc.en==1 to
1130          * cc.en==0.  This is because we don't really know what status the
1131          * controller was left in when boot handed off to OS.  Linux doesn't do
1132          * this, however. If we adopt that policy, see also nvme_ctrlr_resume().
1133          */
1134         if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
1135 fail:
1136                 nvme_ctrlr_fail(ctrlr);
1137                 config_intrhook_disestablish(&ctrlr->config_hook);
1138                 ctrlr->config_hook.ich_arg = NULL;
1139                 return;
1140         }
1141
1142         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1143                 goto fail;
1144
1145         nvme_qpair_reset(&ctrlr->adminq);
1146         nvme_admin_qpair_enable(&ctrlr->adminq);
1147
1148         if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1149             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1150                 nvme_ctrlr_start(ctrlr, false);
1151         else
1152                 goto fail;
1153
1154         nvme_sysctl_initialize_ctrlr(ctrlr);
1155         config_intrhook_disestablish(&ctrlr->config_hook);
1156         ctrlr->config_hook.ich_arg = NULL;
1157
1158         ctrlr->is_initialized = 1;
1159         nvme_notify_new_controller(ctrlr);
1160 }
1161
1162 static void
1163 nvme_ctrlr_reset_task(void *arg, int pending)
1164 {
1165         struct nvme_controller  *ctrlr = arg;
1166         int                     status;
1167
1168         nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller");
1169         status = nvme_ctrlr_hw_reset(ctrlr);
1170         /*
1171          * Use pause instead of DELAY, so that we yield to any nvme interrupt
1172          *  handlers on this CPU that were blocked on a qpair lock. We want
1173          *  all nvme interrupts completed before proceeding with restarting the
1174          *  controller.
1175          *
1176          * XXX - any way to guarantee the interrupt handlers have quiesced?
1177          */
1178         pause("nvmereset", hz / 10);
1179         if (status == 0)
1180                 nvme_ctrlr_start(ctrlr, true);
1181         else
1182                 nvme_ctrlr_fail(ctrlr);
1183
1184         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1185 }
1186
1187 /*
1188  * Poll all the queues enabled on the device for completion.
1189  */
1190 void
1191 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1192 {
1193         int i;
1194
1195         nvme_qpair_process_completions(&ctrlr->adminq);
1196
1197         for (i = 0; i < ctrlr->num_io_queues; i++)
1198                 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1199                         nvme_qpair_process_completions(&ctrlr->ioq[i]);
1200 }
1201
1202 /*
1203  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1204  * there's only a single vector. While we're polling, we mask further
1205  * interrupts in the controller.
1206  */
1207 void
1208 nvme_ctrlr_intx_handler(void *arg)
1209 {
1210         struct nvme_controller *ctrlr = arg;
1211
1212         nvme_mmio_write_4(ctrlr, intms, 1);
1213         nvme_ctrlr_poll(ctrlr);
1214         nvme_mmio_write_4(ctrlr, intmc, 1);
1215 }
1216
1217 static void
1218 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1219 {
1220         struct nvme_pt_command *pt = arg;
1221         struct mtx *mtx = pt->driver_lock;
1222         uint16_t status;
1223
1224         bzero(&pt->cpl, sizeof(pt->cpl));
1225         pt->cpl.cdw0 = cpl->cdw0;
1226
1227         status = cpl->status;
1228         status &= ~NVME_STATUS_P_MASK;
1229         pt->cpl.status = status;
1230
1231         mtx_lock(mtx);
1232         pt->driver_lock = NULL;
1233         wakeup(pt);
1234         mtx_unlock(mtx);
1235 }
1236
1237 int
1238 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1239     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1240     int is_admin_cmd)
1241 {
1242         struct nvme_request     *req;
1243         struct mtx              *mtx;
1244         struct buf              *buf = NULL;
1245         int                     ret = 0;
1246         vm_offset_t             addr, end;
1247
1248         if (pt->len > 0) {
1249                 /*
1250                  * vmapbuf calls vm_fault_quick_hold_pages which only maps full
1251                  * pages. Ensure this request has fewer than MAXPHYS bytes when
1252                  * extended to full pages.
1253                  */
1254                 addr = (vm_offset_t)pt->buf;
1255                 end = round_page(addr + pt->len);
1256                 addr = trunc_page(addr);
1257                 if (end - addr > MAXPHYS)
1258                         return EIO;
1259
1260                 if (pt->len > ctrlr->max_xfer_size) {
1261                         nvme_printf(ctrlr, "pt->len (%d) "
1262                             "exceeds max_xfer_size (%d)\n", pt->len,
1263                             ctrlr->max_xfer_size);
1264                         return EIO;
1265                 }
1266                 if (is_user_buffer) {
1267                         /*
1268                          * Ensure the user buffer is wired for the duration of
1269                          *  this pass-through command.
1270                          */
1271                         PHOLD(curproc);
1272                         buf = uma_zalloc(pbuf_zone, M_WAITOK);
1273                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1274                         if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1275                                 ret = EFAULT;
1276                                 goto err;
1277                         }
1278                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
1279                             nvme_pt_done, pt);
1280                 } else
1281                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1282                             nvme_pt_done, pt);
1283         } else
1284                 req = nvme_allocate_request_null(nvme_pt_done, pt);
1285
1286         /* Assume user space already converted to little-endian */
1287         req->cmd.opc = pt->cmd.opc;
1288         req->cmd.fuse = pt->cmd.fuse;
1289         req->cmd.rsvd2 = pt->cmd.rsvd2;
1290         req->cmd.rsvd3 = pt->cmd.rsvd3;
1291         req->cmd.cdw10 = pt->cmd.cdw10;
1292         req->cmd.cdw11 = pt->cmd.cdw11;
1293         req->cmd.cdw12 = pt->cmd.cdw12;
1294         req->cmd.cdw13 = pt->cmd.cdw13;
1295         req->cmd.cdw14 = pt->cmd.cdw14;
1296         req->cmd.cdw15 = pt->cmd.cdw15;
1297
1298         req->cmd.nsid = htole32(nsid);
1299
1300         mtx = mtx_pool_find(mtxpool_sleep, pt);
1301         pt->driver_lock = mtx;
1302
1303         if (is_admin_cmd)
1304                 nvme_ctrlr_submit_admin_request(ctrlr, req);
1305         else
1306                 nvme_ctrlr_submit_io_request(ctrlr, req);
1307
1308         mtx_lock(mtx);
1309         while (pt->driver_lock != NULL)
1310                 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1311         mtx_unlock(mtx);
1312
1313 err:
1314         if (buf != NULL) {
1315                 uma_zfree(pbuf_zone, buf);
1316                 PRELE(curproc);
1317         }
1318
1319         return (ret);
1320 }
1321
1322 static int
1323 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1324     struct thread *td)
1325 {
1326         struct nvme_controller                  *ctrlr;
1327         struct nvme_pt_command                  *pt;
1328
1329         ctrlr = cdev->si_drv1;
1330
1331         switch (cmd) {
1332         case NVME_RESET_CONTROLLER:
1333                 nvme_ctrlr_reset(ctrlr);
1334                 break;
1335         case NVME_PASSTHROUGH_CMD:
1336                 pt = (struct nvme_pt_command *)arg;
1337                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1338                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1339         case NVME_GET_NSID:
1340         {
1341                 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1342                 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1343                     sizeof(gnsid->cdev));
1344                 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
1345                 gnsid->nsid = 0;
1346                 break;
1347         }
1348         case NVME_GET_MAX_XFER_SIZE:
1349                 *(uint64_t *)arg = ctrlr->max_xfer_size;
1350                 break;
1351         default:
1352                 return (ENOTTY);
1353         }
1354
1355         return (0);
1356 }
1357
1358 static struct cdevsw nvme_ctrlr_cdevsw = {
1359         .d_version =    D_VERSION,
1360         .d_flags =      0,
1361         .d_ioctl =      nvme_ctrlr_ioctl
1362 };
1363
1364 int
1365 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1366 {
1367         struct make_dev_args    md_args;
1368         uint32_t        cap_lo;
1369         uint32_t        cap_hi;
1370         uint32_t        to, vs;
1371         uint8_t         mpsmin;
1372         int             status, timeout_period;
1373
1374         ctrlr->dev = dev;
1375
1376         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1377         if (bus_get_domain(dev, &ctrlr->domain) != 0)
1378                 ctrlr->domain = 0;
1379
1380         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1381         if (bootverbose) {
1382                 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1383                     cap_lo, NVME_CAP_LO_MQES(cap_lo),
1384                     NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1385                     NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1386                     (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1387                     (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1388                     NVME_CAP_LO_TO(cap_lo));
1389         }
1390         cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1391         if (bootverbose) {
1392                 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1393                     "MPSMIN %u, MPSMAX %u %s%s\n", cap_hi,
1394                     NVME_CAP_HI_DSTRD(cap_hi),
1395                     NVME_CAP_HI_NSSRS(cap_lo) ? ", NSSRS" : "",
1396                     NVME_CAP_HI_CSS(cap_hi),
1397                     NVME_CAP_HI_BPS(cap_lo) ? ", BPS" : "",
1398                     NVME_CAP_HI_MPSMIN(cap_hi),
1399                     NVME_CAP_HI_MPSMAX(cap_hi),
1400                     NVME_CAP_HI_PMRS(cap_lo) ? ", PMRS" : "",
1401                     NVME_CAP_HI_CMBS(cap_lo) ? ", CMBS" : "");
1402         }
1403         if (bootverbose) {
1404                 vs = nvme_mmio_read_4(ctrlr, vs);
1405                 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1406                     NVME_MAJOR(vs), NVME_MINOR(vs));
1407         }
1408
1409         ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1410
1411         mpsmin = NVME_CAP_HI_MPSMIN(cap_hi);
1412         ctrlr->min_page_size = 1 << (12 + mpsmin);
1413
1414         /* Get ready timeout value from controller, in units of 500ms. */
1415         to = NVME_CAP_LO_TO(cap_lo) + 1;
1416         ctrlr->ready_timeout_in_ms = to * 500;
1417
1418         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1419         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1420         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1421         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1422         ctrlr->timeout_period = timeout_period;
1423
1424         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1425         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1426
1427         ctrlr->enable_aborts = 0;
1428         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1429
1430         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1431         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1432                 return (ENXIO);
1433
1434         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1435             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1436         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1437
1438         ctrlr->is_resetting = 0;
1439         ctrlr->is_initialized = 0;
1440         ctrlr->notification_sent = 0;
1441         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1442         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1443         STAILQ_INIT(&ctrlr->fail_req);
1444         ctrlr->is_failed = false;
1445
1446         make_dev_args_init(&md_args);
1447         md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1448         md_args.mda_uid = UID_ROOT;
1449         md_args.mda_gid = GID_WHEEL;
1450         md_args.mda_mode = 0600;
1451         md_args.mda_unit = device_get_unit(dev);
1452         md_args.mda_si_drv1 = (void *)ctrlr;
1453         status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1454             device_get_unit(dev));
1455         if (status != 0)
1456                 return (ENXIO);
1457
1458         return (0);
1459 }
1460
1461 void
1462 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1463 {
1464         int     gone, i;
1465
1466         if (ctrlr->resource == NULL)
1467                 goto nores;
1468
1469         /*
1470          * Check whether it is a hot unplug or a clean driver detach.
1471          * If device is not there any more, skip any shutdown commands.
1472          */
1473         gone = (nvme_mmio_read_4(ctrlr, csts) == 0xffffffff);
1474         if (gone)
1475                 nvme_ctrlr_fail(ctrlr);
1476         else
1477                 nvme_notify_fail_consumers(ctrlr);
1478
1479         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1480                 nvme_ns_destruct(&ctrlr->ns[i]);
1481
1482         if (ctrlr->cdev)
1483                 destroy_dev(ctrlr->cdev);
1484
1485         if (ctrlr->is_initialized) {
1486                 if (!gone) {
1487                         if (ctrlr->hmb_nchunks > 0)
1488                                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1489                         nvme_ctrlr_delete_qpairs(ctrlr);
1490                 }
1491                 nvme_ctrlr_hmb_free(ctrlr);
1492         }
1493         if (ctrlr->ioq != NULL) {
1494                 for (i = 0; i < ctrlr->num_io_queues; i++)
1495                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1496                 free(ctrlr->ioq, M_NVME);
1497         }
1498         nvme_admin_qpair_destroy(&ctrlr->adminq);
1499
1500         /*
1501          *  Notify the controller of a shutdown, even though this is due to
1502          *   a driver unload, not a system shutdown (this path is not invoked
1503          *   during shutdown).  This ensures the controller receives a
1504          *   shutdown notification in case the system is shutdown before
1505          *   reloading the driver.
1506          */
1507         if (!gone)
1508                 nvme_ctrlr_shutdown(ctrlr);
1509
1510         if (!gone)
1511                 nvme_ctrlr_disable(ctrlr);
1512
1513         if (ctrlr->taskqueue)
1514                 taskqueue_free(ctrlr->taskqueue);
1515
1516         if (ctrlr->tag)
1517                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1518
1519         if (ctrlr->res)
1520                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1521                     rman_get_rid(ctrlr->res), ctrlr->res);
1522
1523         if (ctrlr->bar4_resource != NULL) {
1524                 bus_release_resource(dev, SYS_RES_MEMORY,
1525                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1526         }
1527
1528         bus_release_resource(dev, SYS_RES_MEMORY,
1529             ctrlr->resource_id, ctrlr->resource);
1530
1531 nores:
1532         mtx_destroy(&ctrlr->lock);
1533 }
1534
1535 void
1536 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1537 {
1538         uint32_t        cc;
1539         uint32_t        csts;
1540         int             ticks = 0, timeout;
1541
1542         cc = nvme_mmio_read_4(ctrlr, cc);
1543         cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1544         cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1545         nvme_mmio_write_4(ctrlr, cc, cc);
1546
1547         timeout = ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1548             ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000;
1549         while (1) {
1550                 csts = nvme_mmio_read_4(ctrlr, csts);
1551                 if (csts == 0xffffffff)         /* Hot unplug. */
1552                         break;
1553                 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1554                         break;
1555                 if (ticks++ > timeout) {
1556                         nvme_printf(ctrlr, "did not complete shutdown within"
1557                             " %d ticks of notification\n", timeout);
1558                         break;
1559                 }
1560                 pause("nvme shn", 1);
1561         }
1562 }
1563
1564 void
1565 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1566     struct nvme_request *req)
1567 {
1568
1569         nvme_qpair_submit_request(&ctrlr->adminq, req);
1570 }
1571
1572 void
1573 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1574     struct nvme_request *req)
1575 {
1576         struct nvme_qpair       *qpair;
1577
1578         qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1579         nvme_qpair_submit_request(qpair, req);
1580 }
1581
1582 device_t
1583 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1584 {
1585
1586         return (ctrlr->dev);
1587 }
1588
1589 const struct nvme_controller_data *
1590 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1591 {
1592
1593         return (&ctrlr->cdata);
1594 }
1595
1596 int
1597 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1598 {
1599         int to = hz;
1600
1601         /*
1602          * Can't touch failed controllers, so it's already suspended.
1603          */
1604         if (ctrlr->is_failed)
1605                 return (0);
1606
1607         /*
1608          * We don't want the reset taskqueue running, since it does similar
1609          * things, so prevent it from running after we start. Wait for any reset
1610          * that may have been started to complete. The reset process we follow
1611          * will ensure that any new I/O will queue and be given to the hardware
1612          * after we resume (though there should be none).
1613          */
1614         while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1615                 pause("nvmesusp", 1);
1616         if (to <= 0) {
1617                 nvme_printf(ctrlr,
1618                     "Competing reset task didn't finish. Try again later.\n");
1619                 return (EWOULDBLOCK);
1620         }
1621
1622         if (ctrlr->hmb_nchunks > 0)
1623                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1624
1625         /*
1626          * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1627          * delete the hardware I/O queues, and then shutdown. This properly
1628          * flushes any metadata the drive may have stored so it can survive
1629          * having its power removed and prevents the unsafe shutdown count from
1630          * incriminating. Once we delete the qpairs, we have to disable them
1631          * before shutting down. The delay is out of paranoia in
1632          * nvme_ctrlr_hw_reset, and is repeated here (though we should have no
1633          * pending I/O that the delay copes with).
1634          */
1635         nvme_ctrlr_delete_qpairs(ctrlr);
1636         nvme_ctrlr_disable_qpairs(ctrlr);
1637         DELAY(100*1000);
1638         nvme_ctrlr_shutdown(ctrlr);
1639
1640         return (0);
1641 }
1642
1643 int
1644 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1645 {
1646
1647         /*
1648          * Can't touch failed controllers, so nothing to do to resume.
1649          */
1650         if (ctrlr->is_failed)
1651                 return (0);
1652
1653         /*
1654          * Have to reset the hardware twice, just like we do on attach. See
1655          * nmve_attach() for why.
1656          */
1657         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1658                 goto fail;
1659         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1660                 goto fail;
1661
1662         /*
1663          * Now that we've reset the hardware, we can restart the controller. Any
1664          * I/O that was pending is requeued. Any admin commands are aborted with
1665          * an error. Once we've restarted, take the controller out of reset.
1666          */
1667         nvme_ctrlr_start(ctrlr, true);
1668         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1669
1670         return (0);
1671 fail:
1672         /*
1673          * Since we can't bring the controller out of reset, announce and fail
1674          * the controller. However, we have to return success for the resume
1675          * itself, due to questionable APIs.
1676          */
1677         nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1678         nvme_ctrlr_fail(ctrlr);
1679         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1680         return (0);
1681 }