]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
libfdt: Update to 1.4.6, switch to using libfdt for overlay support
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_cam.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/buf.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/ioccom.h>
40 #include <sys/proc.h>
41 #include <sys/smp.h>
42 #include <sys/uio.h>
43
44 #include <dev/pci/pcireg.h>
45 #include <dev/pci/pcivar.h>
46
47 #include "nvme_private.h"
48
49 #define B4_CHK_RDY_DELAY_MS     2300            /* work arond controller bug */
50
51 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
52                                                 struct nvme_async_event_request *aer);
53 static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);
54
55 static int
56 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
57 {
58
59         ctrlr->resource_id = PCIR_BAR(0);
60
61         ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
62             &ctrlr->resource_id, RF_ACTIVE);
63
64         if(ctrlr->resource == NULL) {
65                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
66                 return (ENOMEM);
67         }
68
69         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
70         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
71         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
72
73         /*
74          * The NVMe spec allows for the MSI-X table to be placed behind
75          *  BAR 4/5, separate from the control/doorbell registers.  Always
76          *  try to map this bar, because it must be mapped prior to calling
77          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
78          *  bus_alloc_resource() will just return NULL which is OK.
79          */
80         ctrlr->bar4_resource_id = PCIR_BAR(4);
81         ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
82             &ctrlr->bar4_resource_id, RF_ACTIVE);
83
84         return (0);
85 }
86
87 static int
88 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
89 {
90         struct nvme_qpair       *qpair;
91         uint32_t                num_entries;
92         int                     error;
93
94         qpair = &ctrlr->adminq;
95
96         num_entries = NVME_ADMIN_ENTRIES;
97         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
98         /*
99          * If admin_entries was overridden to an invalid value, revert it
100          *  back to our default value.
101          */
102         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
103             num_entries > NVME_MAX_ADMIN_ENTRIES) {
104                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
105                     "specified\n", num_entries);
106                 num_entries = NVME_ADMIN_ENTRIES;
107         }
108
109         /*
110          * The admin queue's max xfer size is treated differently than the
111          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
112          */
113         error = nvme_qpair_construct(qpair, 
114                                      0, /* qpair ID */
115                                      0, /* vector */
116                                      num_entries,
117                                      NVME_ADMIN_TRACKERS,
118                                      ctrlr);
119         return (error);
120 }
121
122 static int
123 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
124 {
125         struct nvme_qpair       *qpair;
126         union cap_lo_register   cap_lo;
127         int                     i, error, num_entries, num_trackers;
128
129         num_entries = NVME_IO_ENTRIES;
130         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
131
132         /*
133          * NVMe spec sets a hard limit of 64K max entries, but
134          *  devices may specify a smaller limit, so we need to check
135          *  the MQES field in the capabilities register.
136          */
137         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
138         num_entries = min(num_entries, cap_lo.bits.mqes+1);
139
140         num_trackers = NVME_IO_TRACKERS;
141         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
142
143         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
144         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
145         /*
146          * No need to have more trackers than entries in the submit queue.
147          *  Note also that for a queue size of N, we can only have (N-1)
148          *  commands outstanding, hence the "-1" here.
149          */
150         num_trackers = min(num_trackers, (num_entries-1));
151
152         /*
153          * Our best estimate for the maximum number of I/Os that we should
154          * noramlly have in flight at one time. This should be viewed as a hint,
155          * not a hard limit and will need to be revisitted when the upper layers
156          * of the storage system grows multi-queue support.
157          */
158         ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
159
160         /*
161          * This was calculated previously when setting up interrupts, but
162          *  a controller could theoretically support fewer I/O queues than
163          *  MSI-X vectors.  So calculate again here just to be safe.
164          */
165         ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues);
166
167         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
168             M_NVME, M_ZERO | M_WAITOK);
169
170         for (i = 0; i < ctrlr->num_io_queues; i++) {
171                 qpair = &ctrlr->ioq[i];
172
173                 /*
174                  * Admin queue has ID=0. IO queues start at ID=1 -
175                  *  hence the 'i+1' here.
176                  *
177                  * For I/O queues, use the controller-wide max_xfer_size
178                  *  calculated in nvme_attach().
179                  */
180                 error = nvme_qpair_construct(qpair,
181                                      i+1, /* qpair ID */
182                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
183                                      num_entries,
184                                      num_trackers,
185                                      ctrlr);
186                 if (error)
187                         return (error);
188
189                 /*
190                  * Do not bother binding interrupts if we only have one I/O
191                  *  interrupt thread for this controller.
192                  */
193                 if (ctrlr->num_io_queues > 1)
194                         bus_bind_intr(ctrlr->dev, qpair->res,
195                             i * ctrlr->num_cpus_per_ioq);
196         }
197
198         return (0);
199 }
200
201 static void
202 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
203 {
204         int i;
205
206         ctrlr->is_failed = TRUE;
207         nvme_qpair_fail(&ctrlr->adminq);
208         if (ctrlr->ioq != NULL) {
209                 for (i = 0; i < ctrlr->num_io_queues; i++)
210                         nvme_qpair_fail(&ctrlr->ioq[i]);
211         }
212         nvme_notify_fail_consumers(ctrlr);
213 }
214
215 void
216 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
217     struct nvme_request *req)
218 {
219
220         mtx_lock(&ctrlr->lock);
221         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
222         mtx_unlock(&ctrlr->lock);
223         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
224 }
225
226 static void
227 nvme_ctrlr_fail_req_task(void *arg, int pending)
228 {
229         struct nvme_controller  *ctrlr = arg;
230         struct nvme_request     *req;
231
232         mtx_lock(&ctrlr->lock);
233         while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
234                 req = STAILQ_FIRST(&ctrlr->fail_req);
235                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
236                 nvme_qpair_manual_complete_request(req->qpair, req,
237                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
238         }
239         mtx_unlock(&ctrlr->lock);
240 }
241
242 static int
243 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
244 {
245         int ms_waited;
246         union csts_register csts;
247
248         csts.raw = nvme_mmio_read_4(ctrlr, csts);
249
250         ms_waited = 0;
251         while (csts.bits.rdy != desired_val) {
252                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
253                         nvme_printf(ctrlr, "controller ready did not become %d "
254                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
255                         return (ENXIO);
256                 }
257                 DELAY(1000);
258                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
259         }
260
261         return (0);
262 }
263
264 static int
265 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
266 {
267         union cc_register cc;
268         union csts_register csts;
269         int err;
270
271         cc.raw = nvme_mmio_read_4(ctrlr, cc);
272         csts.raw = nvme_mmio_read_4(ctrlr, csts);
273
274         /*
275          * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
276          * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
277          * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
278          * isn't the desired value. Short circuit if we're already disabled.
279          */
280         if (cc.bits.en == 1) {
281                 if (csts.bits.rdy == 0) {
282                         /* EN == 1, wait for  RDY == 1 or fail */
283                         err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
284                         if (err != 0)
285                                 return (err);
286                 }
287         } else {
288                 /* EN == 0 already wait for RDY == 0 */
289                 if (csts.bits.rdy == 0)
290                         return (0);
291                 else
292                         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
293         }
294
295         cc.bits.en = 0;
296         nvme_mmio_write_4(ctrlr, cc, cc.raw);
297         /*
298          * Some drives have issues with accessing the mmio after we
299          * disable, so delay for a bit after we write the bit to
300          * cope with these issues.
301          */
302         if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
303                 pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000);
304         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
305 }
306
307 static int
308 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
309 {
310         union cc_register       cc;
311         union csts_register     csts;
312         union aqa_register      aqa;
313         int                     err;
314
315         cc.raw = nvme_mmio_read_4(ctrlr, cc);
316         csts.raw = nvme_mmio_read_4(ctrlr, csts);
317
318         /*
319          * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
320          */
321         if (cc.bits.en == 1) {
322                 if (csts.bits.rdy == 1)
323                         return (0);
324                 else
325                         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
326         } else {
327                 /* EN == 0 already wait for RDY == 0 or fail */
328                 err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
329                 if (err != 0)
330                         return (err);
331         }
332
333         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
334         DELAY(5000);
335         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
336         DELAY(5000);
337
338         aqa.raw = 0;
339         /* acqs and asqs are 0-based. */
340         aqa.bits.acqs = ctrlr->adminq.num_entries-1;
341         aqa.bits.asqs = ctrlr->adminq.num_entries-1;
342         nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
343         DELAY(5000);
344
345         cc.bits.en = 1;
346         cc.bits.css = 0;
347         cc.bits.ams = 0;
348         cc.bits.shn = 0;
349         cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
350         cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
351
352         /* This evaluates to 0, which is according to spec. */
353         cc.bits.mps = (PAGE_SIZE >> 13);
354
355         nvme_mmio_write_4(ctrlr, cc, cc.raw);
356
357         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
358 }
359
360 int
361 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
362 {
363         int i, err;
364
365         nvme_admin_qpair_disable(&ctrlr->adminq);
366         /*
367          * I/O queues are not allocated before the initial HW
368          *  reset, so do not try to disable them.  Use is_initialized
369          *  to determine if this is the initial HW reset.
370          */
371         if (ctrlr->is_initialized) {
372                 for (i = 0; i < ctrlr->num_io_queues; i++)
373                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
374         }
375
376         DELAY(100*1000);
377
378         err = nvme_ctrlr_disable(ctrlr);
379         if (err != 0)
380                 return err;
381         return (nvme_ctrlr_enable(ctrlr));
382 }
383
384 void
385 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
386 {
387         int cmpset;
388
389         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
390
391         if (cmpset == 0 || ctrlr->is_failed)
392                 /*
393                  * Controller is already resetting or has failed.  Return
394                  *  immediately since there is no need to kick off another
395                  *  reset in these cases.
396                  */
397                 return;
398
399         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
400 }
401
402 static int
403 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
404 {
405         struct nvme_completion_poll_status      status;
406
407         status.done = FALSE;
408         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
409             nvme_completion_poll_cb, &status);
410         while (status.done == FALSE)
411                 pause("nvme", 1);
412         if (nvme_completion_is_error(&status.cpl)) {
413                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
414                 return (ENXIO);
415         }
416
417         /*
418          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
419          *  controller supports.
420          */
421         if (ctrlr->cdata.mdts > 0)
422                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
423                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
424
425         return (0);
426 }
427
428 static int
429 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
430 {
431         struct nvme_completion_poll_status      status;
432         int                                     cq_allocated, sq_allocated;
433
434         status.done = FALSE;
435         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
436             nvme_completion_poll_cb, &status);
437         while (status.done == FALSE)
438                 pause("nvme", 1);
439         if (nvme_completion_is_error(&status.cpl)) {
440                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
441                 return (ENXIO);
442         }
443
444         /*
445          * Data in cdw0 is 0-based.
446          * Lower 16-bits indicate number of submission queues allocated.
447          * Upper 16-bits indicate number of completion queues allocated.
448          */
449         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
450         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
451
452         /*
453          * Controller may allocate more queues than we requested,
454          *  so use the minimum of the number requested and what was
455          *  actually allocated.
456          */
457         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
458         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
459
460         return (0);
461 }
462
463 static int
464 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
465 {
466         struct nvme_completion_poll_status      status;
467         struct nvme_qpair                       *qpair;
468         int                                     i;
469
470         for (i = 0; i < ctrlr->num_io_queues; i++) {
471                 qpair = &ctrlr->ioq[i];
472
473                 status.done = FALSE;
474                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
475                     nvme_completion_poll_cb, &status);
476                 while (status.done == FALSE)
477                         pause("nvme", 1);
478                 if (nvme_completion_is_error(&status.cpl)) {
479                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
480                         return (ENXIO);
481                 }
482
483                 status.done = FALSE;
484                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
485                     nvme_completion_poll_cb, &status);
486                 while (status.done == FALSE)
487                         pause("nvme", 1);
488                 if (nvme_completion_is_error(&status.cpl)) {
489                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
490                         return (ENXIO);
491                 }
492         }
493
494         return (0);
495 }
496
497 static int
498 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
499 {
500         struct nvme_namespace   *ns;
501         uint32_t                i;
502
503         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
504                 ns = &ctrlr->ns[i];
505                 nvme_ns_construct(ns, i+1, ctrlr);
506         }
507
508         return (0);
509 }
510
511 static boolean_t
512 is_log_page_id_valid(uint8_t page_id)
513 {
514
515         switch (page_id) {
516         case NVME_LOG_ERROR:
517         case NVME_LOG_HEALTH_INFORMATION:
518         case NVME_LOG_FIRMWARE_SLOT:
519                 return (TRUE);
520         }
521
522         return (FALSE);
523 }
524
525 static uint32_t
526 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
527 {
528         uint32_t        log_page_size;
529
530         switch (page_id) {
531         case NVME_LOG_ERROR:
532                 log_page_size = min(
533                     sizeof(struct nvme_error_information_entry) *
534                     ctrlr->cdata.elpe,
535                     NVME_MAX_AER_LOG_SIZE);
536                 break;
537         case NVME_LOG_HEALTH_INFORMATION:
538                 log_page_size = sizeof(struct nvme_health_information_page);
539                 break;
540         case NVME_LOG_FIRMWARE_SLOT:
541                 log_page_size = sizeof(struct nvme_firmware_page);
542                 break;
543         default:
544                 log_page_size = 0;
545                 break;
546         }
547
548         return (log_page_size);
549 }
550
551 static void
552 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
553     union nvme_critical_warning_state state)
554 {
555
556         if (state.bits.available_spare == 1)
557                 nvme_printf(ctrlr, "available spare space below threshold\n");
558
559         if (state.bits.temperature == 1)
560                 nvme_printf(ctrlr, "temperature above threshold\n");
561
562         if (state.bits.device_reliability == 1)
563                 nvme_printf(ctrlr, "device reliability degraded\n");
564
565         if (state.bits.read_only == 1)
566                 nvme_printf(ctrlr, "media placed in read only mode\n");
567
568         if (state.bits.volatile_memory_backup == 1)
569                 nvme_printf(ctrlr, "volatile memory backup device failed\n");
570
571         if (state.bits.reserved != 0)
572                 nvme_printf(ctrlr,
573                     "unknown critical warning(s): state = 0x%02x\n", state.raw);
574 }
575
576 static void
577 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
578 {
579         struct nvme_async_event_request         *aer = arg;
580         struct nvme_health_information_page     *health_info;
581
582         /*
583          * If the log page fetch for some reason completed with an error,
584          *  don't pass log page data to the consumers.  In practice, this case
585          *  should never happen.
586          */
587         if (nvme_completion_is_error(cpl))
588                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
589                     aer->log_page_id, NULL, 0);
590         else {
591                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
592                         health_info = (struct nvme_health_information_page *)
593                             aer->log_page_buffer;
594                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
595                             health_info->critical_warning);
596                         /*
597                          * Critical warnings reported through the
598                          *  SMART/health log page are persistent, so
599                          *  clear the associated bits in the async event
600                          *  config so that we do not receive repeated
601                          *  notifications for the same event.
602                          */
603                         aer->ctrlr->async_event_config.raw &=
604                             ~health_info->critical_warning.raw;
605                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
606                             aer->ctrlr->async_event_config, NULL, NULL);
607                 }
608
609
610                 /*
611                  * Pass the cpl data from the original async event completion,
612                  *  not the log page fetch.
613                  */
614                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
615                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
616         }
617
618         /*
619          * Repost another asynchronous event request to replace the one
620          *  that just completed.
621          */
622         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
623 }
624
625 static void
626 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
627 {
628         struct nvme_async_event_request *aer = arg;
629
630         if (nvme_completion_is_error(cpl)) {
631                 /*
632                  *  Do not retry failed async event requests.  This avoids
633                  *  infinite loops where a new async event request is submitted
634                  *  to replace the one just failed, only to fail again and
635                  *  perpetuate the loop.
636                  */
637                 return;
638         }
639
640         /* Associated log page is in bits 23:16 of completion entry dw0. */
641         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
642
643         nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
644             aer->log_page_id);
645
646         if (is_log_page_id_valid(aer->log_page_id)) {
647                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
648                     aer->log_page_id);
649                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
650                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
651                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
652                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
653                     aer);
654                 /* Wait to notify consumers until after log page is fetched. */
655         } else {
656                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
657                     NULL, 0);
658
659                 /*
660                  * Repost another asynchronous event request to replace the one
661                  *  that just completed.
662                  */
663                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
664         }
665 }
666
667 static void
668 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
669     struct nvme_async_event_request *aer)
670 {
671         struct nvme_request *req;
672
673         aer->ctrlr = ctrlr;
674         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
675         aer->req = req;
676
677         /*
678          * Disable timeout here, since asynchronous event requests should by
679          *  nature never be timed out.
680          */
681         req->timeout = FALSE;
682         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
683         nvme_ctrlr_submit_admin_request(ctrlr, req);
684 }
685
686 static void
687 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
688 {
689         struct nvme_completion_poll_status      status;
690         struct nvme_async_event_request         *aer;
691         uint32_t                                i;
692
693         ctrlr->async_event_config.raw = 0xFF;
694         ctrlr->async_event_config.bits.reserved = 0;
695
696         status.done = FALSE;
697         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
698             0, NULL, 0, nvme_completion_poll_cb, &status);
699         while (status.done == FALSE)
700                 pause("nvme", 1);
701         if (nvme_completion_is_error(&status.cpl) ||
702             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
703             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
704                 nvme_printf(ctrlr, "temperature threshold not supported\n");
705                 ctrlr->async_event_config.bits.temperature = 0;
706         }
707
708         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
709             ctrlr->async_event_config, NULL, NULL);
710
711         /* aerl is a zero-based value, so we need to add 1 here. */
712         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
713
714         for (i = 0; i < ctrlr->num_aers; i++) {
715                 aer = &ctrlr->aer[i];
716                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
717         }
718 }
719
720 static void
721 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
722 {
723
724         ctrlr->int_coal_time = 0;
725         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
726             &ctrlr->int_coal_time);
727
728         ctrlr->int_coal_threshold = 0;
729         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
730             &ctrlr->int_coal_threshold);
731
732         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
733             ctrlr->int_coal_threshold, NULL, NULL);
734 }
735
736 static void
737 nvme_ctrlr_start(void *ctrlr_arg)
738 {
739         struct nvme_controller *ctrlr = ctrlr_arg;
740         uint32_t old_num_io_queues;
741         int i;
742
743         /*
744          * Only reset adminq here when we are restarting the
745          *  controller after a reset.  During initialization,
746          *  we have already submitted admin commands to get
747          *  the number of I/O queues supported, so cannot reset
748          *  the adminq again here.
749          */
750         if (ctrlr->is_resetting) {
751                 nvme_qpair_reset(&ctrlr->adminq);
752         }
753
754         for (i = 0; i < ctrlr->num_io_queues; i++)
755                 nvme_qpair_reset(&ctrlr->ioq[i]);
756
757         nvme_admin_qpair_enable(&ctrlr->adminq);
758
759         if (nvme_ctrlr_identify(ctrlr) != 0) {
760                 nvme_ctrlr_fail(ctrlr);
761                 return;
762         }
763
764         /*
765          * The number of qpairs are determined during controller initialization,
766          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
767          *  HW limit.  We call SET_FEATURES again here so that it gets called
768          *  after any reset for controllers that depend on the driver to
769          *  explicit specify how many queues it will use.  This value should
770          *  never change between resets, so panic if somehow that does happen.
771          */
772         if (ctrlr->is_resetting) {
773                 old_num_io_queues = ctrlr->num_io_queues;
774                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
775                         nvme_ctrlr_fail(ctrlr);
776                         return;
777                 }
778
779                 if (old_num_io_queues != ctrlr->num_io_queues) {
780                         panic("num_io_queues changed from %u to %u",
781                               old_num_io_queues, ctrlr->num_io_queues);
782                 }
783         }
784
785         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
786                 nvme_ctrlr_fail(ctrlr);
787                 return;
788         }
789
790         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
791                 nvme_ctrlr_fail(ctrlr);
792                 return;
793         }
794
795         nvme_ctrlr_configure_aer(ctrlr);
796         nvme_ctrlr_configure_int_coalescing(ctrlr);
797
798         for (i = 0; i < ctrlr->num_io_queues; i++)
799                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
800 }
801
802 void
803 nvme_ctrlr_start_config_hook(void *arg)
804 {
805         struct nvme_controller *ctrlr = arg;
806
807         nvme_qpair_reset(&ctrlr->adminq);
808         nvme_admin_qpair_enable(&ctrlr->adminq);
809
810         if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
811             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
812                 nvme_ctrlr_start(ctrlr);
813         else
814                 nvme_ctrlr_fail(ctrlr);
815
816         nvme_sysctl_initialize_ctrlr(ctrlr);
817         config_intrhook_disestablish(&ctrlr->config_hook);
818
819         ctrlr->is_initialized = 1;
820         nvme_notify_new_controller(ctrlr);
821 }
822
823 static void
824 nvme_ctrlr_reset_task(void *arg, int pending)
825 {
826         struct nvme_controller  *ctrlr = arg;
827         int                     status;
828
829         nvme_printf(ctrlr, "resetting controller\n");
830         status = nvme_ctrlr_hw_reset(ctrlr);
831         /*
832          * Use pause instead of DELAY, so that we yield to any nvme interrupt
833          *  handlers on this CPU that were blocked on a qpair lock. We want
834          *  all nvme interrupts completed before proceeding with restarting the
835          *  controller.
836          *
837          * XXX - any way to guarantee the interrupt handlers have quiesced?
838          */
839         pause("nvmereset", hz / 10);
840         if (status == 0)
841                 nvme_ctrlr_start(ctrlr);
842         else
843                 nvme_ctrlr_fail(ctrlr);
844
845         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
846 }
847
848 /*
849  * Poll all the queues enabled on the device for completion.
850  */
851 void
852 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
853 {
854         int i;
855
856         nvme_qpair_process_completions(&ctrlr->adminq);
857
858         for (i = 0; i < ctrlr->num_io_queues; i++)
859                 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
860                         nvme_qpair_process_completions(&ctrlr->ioq[i]);
861 }
862
863 /*
864  * Poll the single-vector intertrupt case: num_io_queues will be 1 and
865  * there's only a single vector. While we're polling, we mask further
866  * interrupts in the controller.
867  */
868 void
869 nvme_ctrlr_intx_handler(void *arg)
870 {
871         struct nvme_controller *ctrlr = arg;
872
873         nvme_mmio_write_4(ctrlr, intms, 1);
874         nvme_ctrlr_poll(ctrlr);
875         nvme_mmio_write_4(ctrlr, intmc, 1);
876 }
877
878 static int
879 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
880 {
881
882         ctrlr->msix_enabled = 0;
883         ctrlr->num_io_queues = 1;
884         ctrlr->num_cpus_per_ioq = mp_ncpus;
885         ctrlr->rid = 0;
886         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
887             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
888
889         if (ctrlr->res == NULL) {
890                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
891                 return (ENOMEM);
892         }
893
894         bus_setup_intr(ctrlr->dev, ctrlr->res,
895             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
896             ctrlr, &ctrlr->tag);
897
898         if (ctrlr->tag == NULL) {
899                 nvme_printf(ctrlr, "unable to setup intx handler\n");
900                 return (ENOMEM);
901         }
902
903         return (0);
904 }
905
906 static void
907 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
908 {
909         struct nvme_pt_command *pt = arg;
910
911         bzero(&pt->cpl, sizeof(pt->cpl));
912         pt->cpl.cdw0 = cpl->cdw0;
913         pt->cpl.status = cpl->status;
914         pt->cpl.status.p = 0;
915
916         mtx_lock(pt->driver_lock);
917         wakeup(pt);
918         mtx_unlock(pt->driver_lock);
919 }
920
921 int
922 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
923     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
924     int is_admin_cmd)
925 {
926         struct nvme_request     *req;
927         struct mtx              *mtx;
928         struct buf              *buf = NULL;
929         int                     ret = 0;
930         vm_offset_t             addr, end;
931
932         if (pt->len > 0) {
933                 /*
934                  * vmapbuf calls vm_fault_quick_hold_pages which only maps full
935                  * pages. Ensure this request has fewer than MAXPHYS bytes when
936                  * extended to full pages.
937                  */
938                 addr = (vm_offset_t)pt->buf;
939                 end = round_page(addr + pt->len);
940                 addr = trunc_page(addr);
941                 if (end - addr > MAXPHYS)
942                         return EIO;
943
944                 if (pt->len > ctrlr->max_xfer_size) {
945                         nvme_printf(ctrlr, "pt->len (%d) "
946                             "exceeds max_xfer_size (%d)\n", pt->len,
947                             ctrlr->max_xfer_size);
948                         return EIO;
949                 }
950                 if (is_user_buffer) {
951                         /*
952                          * Ensure the user buffer is wired for the duration of
953                          *  this passthrough command.
954                          */
955                         PHOLD(curproc);
956                         buf = getpbuf(NULL);
957                         buf->b_data = pt->buf;
958                         buf->b_bufsize = pt->len;
959                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
960 #ifdef NVME_UNMAPPED_BIO_SUPPORT
961                         if (vmapbuf(buf, 1) < 0) {
962 #else
963                         if (vmapbuf(buf) < 0) {
964 #endif
965                                 ret = EFAULT;
966                                 goto err;
967                         }
968                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
969                             nvme_pt_done, pt);
970                 } else
971                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
972                             nvme_pt_done, pt);
973         } else
974                 req = nvme_allocate_request_null(nvme_pt_done, pt);
975
976         req->cmd.opc    = pt->cmd.opc;
977         req->cmd.cdw10  = pt->cmd.cdw10;
978         req->cmd.cdw11  = pt->cmd.cdw11;
979         req->cmd.cdw12  = pt->cmd.cdw12;
980         req->cmd.cdw13  = pt->cmd.cdw13;
981         req->cmd.cdw14  = pt->cmd.cdw14;
982         req->cmd.cdw15  = pt->cmd.cdw15;
983
984         req->cmd.nsid = nsid;
985
986         if (is_admin_cmd)
987                 mtx = &ctrlr->lock;
988         else
989                 mtx = &ctrlr->ns[nsid-1].lock;
990
991         mtx_lock(mtx);
992         pt->driver_lock = mtx;
993
994         if (is_admin_cmd)
995                 nvme_ctrlr_submit_admin_request(ctrlr, req);
996         else
997                 nvme_ctrlr_submit_io_request(ctrlr, req);
998
999         mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1000         mtx_unlock(mtx);
1001
1002         pt->driver_lock = NULL;
1003
1004 err:
1005         if (buf != NULL) {
1006                 relpbuf(buf, NULL);
1007                 PRELE(curproc);
1008         }
1009
1010         return (ret);
1011 }
1012
1013 static int
1014 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1015     struct thread *td)
1016 {
1017         struct nvme_controller                  *ctrlr;
1018         struct nvme_pt_command                  *pt;
1019
1020         ctrlr = cdev->si_drv1;
1021
1022         switch (cmd) {
1023         case NVME_RESET_CONTROLLER:
1024                 nvme_ctrlr_reset(ctrlr);
1025                 break;
1026         case NVME_PASSTHROUGH_CMD:
1027                 pt = (struct nvme_pt_command *)arg;
1028                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
1029                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1030         default:
1031                 return (ENOTTY);
1032         }
1033
1034         return (0);
1035 }
1036
1037 static struct cdevsw nvme_ctrlr_cdevsw = {
1038         .d_version =    D_VERSION,
1039         .d_flags =      0,
1040         .d_ioctl =      nvme_ctrlr_ioctl
1041 };
1042
1043 static void
1044 nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
1045 {
1046         device_t        dev;
1047         int             per_cpu_io_queues;
1048         int             min_cpus_per_ioq;
1049         int             num_vectors_requested, num_vectors_allocated;
1050         int             num_vectors_available;
1051
1052         dev = ctrlr->dev;
1053         min_cpus_per_ioq = 1;
1054         TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq);
1055
1056         if (min_cpus_per_ioq < 1) {
1057                 min_cpus_per_ioq = 1;
1058         } else if (min_cpus_per_ioq > mp_ncpus) {
1059                 min_cpus_per_ioq = mp_ncpus;
1060         }
1061
1062         per_cpu_io_queues = 1;
1063         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1064
1065         if (per_cpu_io_queues == 0) {
1066                 min_cpus_per_ioq = mp_ncpus;
1067         }
1068
1069         ctrlr->force_intx = 0;
1070         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1071
1072         /*
1073          * FreeBSD currently cannot allocate more than about 190 vectors at
1074          *  boot, meaning that systems with high core count and many devices
1075          *  requesting per-CPU interrupt vectors will not get their full
1076          *  allotment.  So first, try to allocate as many as we may need to
1077          *  understand what is available, then immediately release them.
1078          *  Then figure out how many of those we will actually use, based on
1079          *  assigning an equal number of cores to each I/O queue.
1080          */
1081
1082         /* One vector for per core I/O queue, plus one vector for admin queue. */
1083         num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
1084         if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
1085                 num_vectors_available = 0;
1086         }
1087         pci_release_msi(dev);
1088
1089         if (ctrlr->force_intx || num_vectors_available < 2) {
1090                 nvme_ctrlr_configure_intx(ctrlr);
1091                 return;
1092         }
1093
1094         /*
1095          * Do not use all vectors for I/O queues - one must be saved for the
1096          *  admin queue.
1097          */
1098         ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq,
1099             howmany(mp_ncpus, num_vectors_available - 1));
1100
1101         ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq);
1102         num_vectors_requested = ctrlr->num_io_queues + 1;
1103         num_vectors_allocated = num_vectors_requested;
1104
1105         /*
1106          * Now just allocate the number of vectors we need.  This should
1107          *  succeed, since we previously called pci_alloc_msix()
1108          *  successfully returning at least this many vectors, but just to
1109          *  be safe, if something goes wrong just revert to INTx.
1110          */
1111         if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1112                 nvme_ctrlr_configure_intx(ctrlr);
1113                 return;
1114         }
1115
1116         if (num_vectors_allocated < num_vectors_requested) {
1117                 pci_release_msi(dev);
1118                 nvme_ctrlr_configure_intx(ctrlr);
1119                 return;
1120         }
1121
1122         ctrlr->msix_enabled = 1;
1123 }
1124
1125 int
1126 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1127 {
1128         union cap_lo_register   cap_lo;
1129         union cap_hi_register   cap_hi;
1130         int                     status, timeout_period;
1131
1132         ctrlr->dev = dev;
1133
1134         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1135
1136         status = nvme_ctrlr_allocate_bar(ctrlr);
1137
1138         if (status != 0)
1139                 return (status);
1140
1141         /*
1142          * Software emulators may set the doorbell stride to something
1143          *  other than zero, but this driver is not set up to handle that.
1144          */
1145         cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1146         if (cap_hi.bits.dstrd != 0)
1147                 return (ENXIO);
1148
1149         ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1150
1151         /* Get ready timeout value from controller, in units of 500ms. */
1152         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1153         ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1154
1155         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1156         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1157         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1158         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1159         ctrlr->timeout_period = timeout_period;
1160
1161         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1162         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1163
1164         ctrlr->enable_aborts = 0;
1165         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1166
1167         nvme_ctrlr_setup_interrupts(ctrlr);
1168
1169         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1170         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1171                 return (ENXIO);
1172
1173         ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1174             UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1175
1176         if (ctrlr->cdev == NULL)
1177                 return (ENXIO);
1178
1179         ctrlr->cdev->si_drv1 = (void *)ctrlr;
1180
1181         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1182             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1183         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1184
1185         ctrlr->is_resetting = 0;
1186         ctrlr->is_initialized = 0;
1187         ctrlr->notification_sent = 0;
1188         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1189
1190         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1191         STAILQ_INIT(&ctrlr->fail_req);
1192         ctrlr->is_failed = FALSE;
1193
1194         return (0);
1195 }
1196
1197 void
1198 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1199 {
1200         int                             i;
1201
1202         /*
1203          *  Notify the controller of a shutdown, even though this is due to
1204          *   a driver unload, not a system shutdown (this path is not invoked
1205          *   during shutdown).  This ensures the controller receives a
1206          *   shutdown notification in case the system is shutdown before
1207          *   reloading the driver.
1208          */
1209         nvme_ctrlr_shutdown(ctrlr);
1210
1211         nvme_ctrlr_disable(ctrlr);
1212         taskqueue_free(ctrlr->taskqueue);
1213
1214         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1215                 nvme_ns_destruct(&ctrlr->ns[i]);
1216
1217         if (ctrlr->cdev)
1218                 destroy_dev(ctrlr->cdev);
1219
1220         for (i = 0; i < ctrlr->num_io_queues; i++) {
1221                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1222         }
1223
1224         free(ctrlr->ioq, M_NVME);
1225
1226         nvme_admin_qpair_destroy(&ctrlr->adminq);
1227
1228         if (ctrlr->resource != NULL) {
1229                 bus_release_resource(dev, SYS_RES_MEMORY,
1230                     ctrlr->resource_id, ctrlr->resource);
1231         }
1232
1233         if (ctrlr->bar4_resource != NULL) {
1234                 bus_release_resource(dev, SYS_RES_MEMORY,
1235                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1236         }
1237
1238         if (ctrlr->tag)
1239                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1240
1241         if (ctrlr->res)
1242                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1243                     rman_get_rid(ctrlr->res), ctrlr->res);
1244
1245         if (ctrlr->msix_enabled)
1246                 pci_release_msi(dev);
1247 }
1248
1249 void
1250 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1251 {
1252         union cc_register       cc;
1253         union csts_register     csts;
1254         int                     ticks = 0;
1255
1256         cc.raw = nvme_mmio_read_4(ctrlr, cc);
1257         cc.bits.shn = NVME_SHN_NORMAL;
1258         nvme_mmio_write_4(ctrlr, cc, cc.raw);
1259         csts.raw = nvme_mmio_read_4(ctrlr, csts);
1260         while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1261                 pause("nvme shn", 1);
1262                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
1263         }
1264         if (csts.bits.shst != NVME_SHST_COMPLETE)
1265                 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1266                     "of notification\n");
1267 }
1268
1269 void
1270 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1271     struct nvme_request *req)
1272 {
1273
1274         nvme_qpair_submit_request(&ctrlr->adminq, req);
1275 }
1276
1277 void
1278 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1279     struct nvme_request *req)
1280 {
1281         struct nvme_qpair       *qpair;
1282
1283         qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
1284         nvme_qpair_submit_request(qpair, req);
1285 }
1286
1287 device_t
1288 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1289 {
1290
1291         return (ctrlr->dev);
1292 }
1293
1294 const struct nvme_controller_data *
1295 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1296 {
1297
1298         return (&ctrlr->cdata);
1299 }