]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
zfs: merge openzfs/zfs@07a4c76e9 (master) into main
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_cam.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/buf.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/ioccom.h>
40 #include <sys/proc.h>
41 #include <sys/smp.h>
42 #include <sys/uio.h>
43 #include <sys/sbuf.h>
44 #include <sys/endian.h>
45 #include <machine/stdarg.h>
46 #include <vm/vm.h>
47
48 #include "nvme_private.h"
49
50 #define B4_CHK_RDY_DELAY_MS     2300            /* work around controller bug */
51
52 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
53                                                 struct nvme_async_event_request *aer);
54
55 static void
56 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
57 {
58         struct sbuf sb;
59         va_list ap;
60         int error;
61
62         if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
63                 return;
64         sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
65         va_start(ap, msg);
66         sbuf_vprintf(&sb, msg, ap);
67         va_end(ap);
68         error = sbuf_finish(&sb);
69         if (error == 0)
70                 printf("%s\n", sbuf_data(&sb));
71
72         sbuf_clear(&sb);
73         sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev));
74         va_start(ap, msg);
75         sbuf_vprintf(&sb, msg, ap);
76         va_end(ap);
77         sbuf_printf(&sb, "\"");
78         error = sbuf_finish(&sb);
79         if (error == 0)
80                 devctl_notify("nvme", "controller", type, sbuf_data(&sb));
81         sbuf_delete(&sb);
82 }
83
84 static int
85 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
86 {
87         struct nvme_qpair       *qpair;
88         uint32_t                num_entries;
89         int                     error;
90
91         qpair = &ctrlr->adminq;
92         qpair->id = 0;
93         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
94         qpair->domain = ctrlr->domain;
95
96         num_entries = NVME_ADMIN_ENTRIES;
97         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
98         /*
99          * If admin_entries was overridden to an invalid value, revert it
100          *  back to our default value.
101          */
102         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
103             num_entries > NVME_MAX_ADMIN_ENTRIES) {
104                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
105                     "specified\n", num_entries);
106                 num_entries = NVME_ADMIN_ENTRIES;
107         }
108
109         /*
110          * The admin queue's max xfer size is treated differently than the
111          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
112          */
113         error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
114              ctrlr);
115         return (error);
116 }
117
118 #define QP(ctrlr, c)    ((c) * (ctrlr)->num_io_queues / mp_ncpus)
119
120 static int
121 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
122 {
123         struct nvme_qpair       *qpair;
124         uint32_t                cap_lo;
125         uint16_t                mqes;
126         int                     c, error, i, n;
127         int                     num_entries, num_trackers, max_entries;
128
129         /*
130          * NVMe spec sets a hard limit of 64K max entries, but devices may
131          * specify a smaller limit, so we need to check the MQES field in the
132          * capabilities register. We have to cap the number of entries to the
133          * current stride allows for in BAR 0/1, otherwise the remainder entries
134          * are inaccessable. MQES should reflect this, and this is just a
135          * fail-safe.
136          */
137         max_entries =
138             (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
139             (1 << (ctrlr->dstrd + 1));
140         num_entries = NVME_IO_ENTRIES;
141         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
142         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
143         mqes = NVME_CAP_LO_MQES(cap_lo);
144         num_entries = min(num_entries, mqes + 1);
145         num_entries = min(num_entries, max_entries);
146
147         num_trackers = NVME_IO_TRACKERS;
148         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
149
150         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
151         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
152         /*
153          * No need to have more trackers than entries in the submit queue.  Note
154          * also that for a queue size of N, we can only have (N-1) commands
155          * outstanding, hence the "-1" here.
156          */
157         num_trackers = min(num_trackers, (num_entries-1));
158
159         /*
160          * Our best estimate for the maximum number of I/Os that we should
161          * normally have in flight at one time. This should be viewed as a hint,
162          * not a hard limit and will need to be revisited when the upper layers
163          * of the storage system grows multi-queue support.
164          */
165         ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
166
167         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
168             M_NVME, M_ZERO | M_WAITOK);
169
170         for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
171                 qpair = &ctrlr->ioq[i];
172
173                 /*
174                  * Admin queue has ID=0. IO queues start at ID=1 -
175                  *  hence the 'i+1' here.
176                  */
177                 qpair->id = i + 1;
178                 if (ctrlr->num_io_queues > 1) {
179                         /* Find number of CPUs served by this queue. */
180                         for (n = 1; QP(ctrlr, c + n) == i; n++)
181                                 ;
182                         /* Shuffle multiple NVMe devices between CPUs. */
183                         qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
184                         qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
185                 } else {
186                         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
187                         qpair->domain = ctrlr->domain;
188                 }
189
190                 /*
191                  * For I/O queues, use the controller-wide max_xfer_size
192                  *  calculated in nvme_attach().
193                  */
194                 error = nvme_qpair_construct(qpair, num_entries, num_trackers,
195                     ctrlr);
196                 if (error)
197                         return (error);
198
199                 /*
200                  * Do not bother binding interrupts if we only have one I/O
201                  *  interrupt thread for this controller.
202                  */
203                 if (ctrlr->num_io_queues > 1)
204                         bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
205         }
206
207         return (0);
208 }
209
210 static void
211 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
212 {
213         int i;
214
215         ctrlr->is_failed = true;
216         nvme_admin_qpair_disable(&ctrlr->adminq);
217         nvme_qpair_fail(&ctrlr->adminq);
218         if (ctrlr->ioq != NULL) {
219                 for (i = 0; i < ctrlr->num_io_queues; i++) {
220                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
221                         nvme_qpair_fail(&ctrlr->ioq[i]);
222                 }
223         }
224         nvme_notify_fail_consumers(ctrlr);
225 }
226
227 void
228 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
229     struct nvme_request *req)
230 {
231
232         mtx_lock(&ctrlr->lock);
233         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
234         mtx_unlock(&ctrlr->lock);
235         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
236 }
237
238 static void
239 nvme_ctrlr_fail_req_task(void *arg, int pending)
240 {
241         struct nvme_controller  *ctrlr = arg;
242         struct nvme_request     *req;
243
244         mtx_lock(&ctrlr->lock);
245         while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
246                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
247                 mtx_unlock(&ctrlr->lock);
248                 nvme_qpair_manual_complete_request(req->qpair, req,
249                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
250                 mtx_lock(&ctrlr->lock);
251         }
252         mtx_unlock(&ctrlr->lock);
253 }
254
255 static int
256 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
257 {
258         int timeout = ticks + (uint64_t)ctrlr->ready_timeout_in_ms * hz / 1000;
259         uint32_t csts;
260
261         while (1) {
262                 csts = nvme_mmio_read_4(ctrlr, csts);
263                 if (csts == NVME_GONE)          /* Hot unplug. */
264                         return (ENXIO);
265                 if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK)
266                     == desired_val)
267                         break;
268                 if (timeout - ticks < 0) {
269                         nvme_printf(ctrlr, "controller ready did not become %d "
270                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
271                         return (ENXIO);
272                 }
273                 pause("nvmerdy", 1);
274         }
275
276         return (0);
277 }
278
279 static int
280 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
281 {
282         uint32_t cc;
283         uint32_t csts;
284         uint8_t  en, rdy;
285         int err;
286
287         cc = nvme_mmio_read_4(ctrlr, cc);
288         csts = nvme_mmio_read_4(ctrlr, csts);
289
290         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
291         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
292
293         /*
294          * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
295          * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
296          * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
297          * isn't the desired value. Short circuit if we're already disabled.
298          */
299         if (en == 1) {
300                 if (rdy == 0) {
301                         /* EN == 1, wait for  RDY == 1 or fail */
302                         err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
303                         if (err != 0)
304                                 return (err);
305                 }
306         } else {
307                 /* EN == 0 already wait for RDY == 0 */
308                 if (rdy == 0)
309                         return (0);
310                 else
311                         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
312         }
313
314         cc &= ~NVME_CC_REG_EN_MASK;
315         nvme_mmio_write_4(ctrlr, cc, cc);
316         /*
317          * Some drives have issues with accessing the mmio after we
318          * disable, so delay for a bit after we write the bit to
319          * cope with these issues.
320          */
321         if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
322                 pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000);
323         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
324 }
325
326 static int
327 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
328 {
329         uint32_t        cc;
330         uint32_t        csts;
331         uint32_t        aqa;
332         uint32_t        qsize;
333         uint8_t         en, rdy;
334         int             err;
335
336         cc = nvme_mmio_read_4(ctrlr, cc);
337         csts = nvme_mmio_read_4(ctrlr, csts);
338
339         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
340         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
341
342         /*
343          * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
344          */
345         if (en == 1) {
346                 if (rdy == 1)
347                         return (0);
348                 else
349                         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
350         } else {
351                 /* EN == 0 already wait for RDY == 0 or fail */
352                 err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
353                 if (err != 0)
354                         return (err);
355         }
356
357         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
358         DELAY(5000);
359         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
360         DELAY(5000);
361
362         /* acqs and asqs are 0-based. */
363         qsize = ctrlr->adminq.num_entries - 1;
364
365         aqa = 0;
366         aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
367         aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
368         nvme_mmio_write_4(ctrlr, aqa, aqa);
369         DELAY(5000);
370
371         /* Initialization values for CC */
372         cc = 0;
373         cc |= 1 << NVME_CC_REG_EN_SHIFT;
374         cc |= 0 << NVME_CC_REG_CSS_SHIFT;
375         cc |= 0 << NVME_CC_REG_AMS_SHIFT;
376         cc |= 0 << NVME_CC_REG_SHN_SHIFT;
377         cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
378         cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
379
380         /* This evaluates to 0, which is according to spec. */
381         cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT;
382
383         nvme_mmio_write_4(ctrlr, cc, cc);
384
385         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
386 }
387
388 static void
389 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
390 {
391         int i;
392
393         nvme_admin_qpair_disable(&ctrlr->adminq);
394         /*
395          * I/O queues are not allocated before the initial HW
396          *  reset, so do not try to disable them.  Use is_initialized
397          *  to determine if this is the initial HW reset.
398          */
399         if (ctrlr->is_initialized) {
400                 for (i = 0; i < ctrlr->num_io_queues; i++)
401                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
402         }
403 }
404
405 static int
406 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
407 {
408         int err;
409
410         nvme_ctrlr_disable_qpairs(ctrlr);
411
412         pause("nvmehwreset", hz / 10);
413
414         err = nvme_ctrlr_disable(ctrlr);
415         if (err != 0)
416                 return err;
417         return (nvme_ctrlr_enable(ctrlr));
418 }
419
420 void
421 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
422 {
423         int cmpset;
424
425         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
426
427         if (cmpset == 0 || ctrlr->is_failed)
428                 /*
429                  * Controller is already resetting or has failed.  Return
430                  *  immediately since there is no need to kick off another
431                  *  reset in these cases.
432                  */
433                 return;
434
435         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
436 }
437
438 static int
439 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
440 {
441         struct nvme_completion_poll_status      status;
442
443         status.done = 0;
444         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
445             nvme_completion_poll_cb, &status);
446         nvme_completion_poll(&status);
447         if (nvme_completion_is_error(&status.cpl)) {
448                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
449                 return (ENXIO);
450         }
451
452         /* Convert data to host endian */
453         nvme_controller_data_swapbytes(&ctrlr->cdata);
454
455         /*
456          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
457          *  controller supports.
458          */
459         if (ctrlr->cdata.mdts > 0)
460                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
461                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
462
463         return (0);
464 }
465
466 static int
467 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
468 {
469         struct nvme_completion_poll_status      status;
470         int                                     cq_allocated, sq_allocated;
471
472         status.done = 0;
473         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
474             nvme_completion_poll_cb, &status);
475         nvme_completion_poll(&status);
476         if (nvme_completion_is_error(&status.cpl)) {
477                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
478                 return (ENXIO);
479         }
480
481         /*
482          * Data in cdw0 is 0-based.
483          * Lower 16-bits indicate number of submission queues allocated.
484          * Upper 16-bits indicate number of completion queues allocated.
485          */
486         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
487         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
488
489         /*
490          * Controller may allocate more queues than we requested,
491          *  so use the minimum of the number requested and what was
492          *  actually allocated.
493          */
494         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
495         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
496         if (ctrlr->num_io_queues > vm_ndomains)
497                 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
498
499         return (0);
500 }
501
502 static int
503 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
504 {
505         struct nvme_completion_poll_status      status;
506         struct nvme_qpair                       *qpair;
507         int                                     i;
508
509         for (i = 0; i < ctrlr->num_io_queues; i++) {
510                 qpair = &ctrlr->ioq[i];
511
512                 status.done = 0;
513                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
514                     nvme_completion_poll_cb, &status);
515                 nvme_completion_poll(&status);
516                 if (nvme_completion_is_error(&status.cpl)) {
517                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
518                         return (ENXIO);
519                 }
520
521                 status.done = 0;
522                 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
523                     nvme_completion_poll_cb, &status);
524                 nvme_completion_poll(&status);
525                 if (nvme_completion_is_error(&status.cpl)) {
526                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
527                         return (ENXIO);
528                 }
529         }
530
531         return (0);
532 }
533
534 static int
535 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
536 {
537         struct nvme_completion_poll_status      status;
538         struct nvme_qpair                       *qpair;
539
540         for (int i = 0; i < ctrlr->num_io_queues; i++) {
541                 qpair = &ctrlr->ioq[i];
542
543                 status.done = 0;
544                 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
545                     nvme_completion_poll_cb, &status);
546                 nvme_completion_poll(&status);
547                 if (nvme_completion_is_error(&status.cpl)) {
548                         nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
549                         return (ENXIO);
550                 }
551
552                 status.done = 0;
553                 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
554                     nvme_completion_poll_cb, &status);
555                 nvme_completion_poll(&status);
556                 if (nvme_completion_is_error(&status.cpl)) {
557                         nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
558                         return (ENXIO);
559                 }
560         }
561
562         return (0);
563 }
564
565 static int
566 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
567 {
568         struct nvme_namespace   *ns;
569         uint32_t                i;
570
571         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
572                 ns = &ctrlr->ns[i];
573                 nvme_ns_construct(ns, i+1, ctrlr);
574         }
575
576         return (0);
577 }
578
579 static bool
580 is_log_page_id_valid(uint8_t page_id)
581 {
582
583         switch (page_id) {
584         case NVME_LOG_ERROR:
585         case NVME_LOG_HEALTH_INFORMATION:
586         case NVME_LOG_FIRMWARE_SLOT:
587         case NVME_LOG_CHANGED_NAMESPACE:
588         case NVME_LOG_COMMAND_EFFECT:
589         case NVME_LOG_RES_NOTIFICATION:
590         case NVME_LOG_SANITIZE_STATUS:
591                 return (true);
592         }
593
594         return (false);
595 }
596
597 static uint32_t
598 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
599 {
600         uint32_t        log_page_size;
601
602         switch (page_id) {
603         case NVME_LOG_ERROR:
604                 log_page_size = min(
605                     sizeof(struct nvme_error_information_entry) *
606                     (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
607                 break;
608         case NVME_LOG_HEALTH_INFORMATION:
609                 log_page_size = sizeof(struct nvme_health_information_page);
610                 break;
611         case NVME_LOG_FIRMWARE_SLOT:
612                 log_page_size = sizeof(struct nvme_firmware_page);
613                 break;
614         case NVME_LOG_CHANGED_NAMESPACE:
615                 log_page_size = sizeof(struct nvme_ns_list);
616                 break;
617         case NVME_LOG_COMMAND_EFFECT:
618                 log_page_size = sizeof(struct nvme_command_effects_page);
619                 break;
620         case NVME_LOG_RES_NOTIFICATION:
621                 log_page_size = sizeof(struct nvme_res_notification_page);
622                 break;
623         case NVME_LOG_SANITIZE_STATUS:
624                 log_page_size = sizeof(struct nvme_sanitize_status_page);
625                 break;
626         default:
627                 log_page_size = 0;
628                 break;
629         }
630
631         return (log_page_size);
632 }
633
634 static void
635 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
636     uint8_t state)
637 {
638
639         if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
640                 nvme_ctrlr_devctl_log(ctrlr, "critical",
641                     "available spare space below threshold");
642
643         if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
644                 nvme_ctrlr_devctl_log(ctrlr, "critical",
645                     "temperature above threshold");
646
647         if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
648                 nvme_ctrlr_devctl_log(ctrlr, "critical",
649                     "device reliability degraded");
650
651         if (state & NVME_CRIT_WARN_ST_READ_ONLY)
652                 nvme_ctrlr_devctl_log(ctrlr, "critical",
653                     "media placed in read only mode");
654
655         if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
656                 nvme_ctrlr_devctl_log(ctrlr, "critical",
657                     "volatile memory backup device failed");
658
659         if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
660                 nvme_ctrlr_devctl_log(ctrlr, "critical",
661                     "unknown critical warning(s): state = 0x%02x", state);
662 }
663
664 static void
665 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
666 {
667         struct nvme_async_event_request         *aer = arg;
668         struct nvme_health_information_page     *health_info;
669         struct nvme_ns_list                     *nsl;
670         struct nvme_error_information_entry     *err;
671         int i;
672
673         /*
674          * If the log page fetch for some reason completed with an error,
675          *  don't pass log page data to the consumers.  In practice, this case
676          *  should never happen.
677          */
678         if (nvme_completion_is_error(cpl))
679                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
680                     aer->log_page_id, NULL, 0);
681         else {
682                 /* Convert data to host endian */
683                 switch (aer->log_page_id) {
684                 case NVME_LOG_ERROR:
685                         err = (struct nvme_error_information_entry *)aer->log_page_buffer;
686                         for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
687                                 nvme_error_information_entry_swapbytes(err++);
688                         break;
689                 case NVME_LOG_HEALTH_INFORMATION:
690                         nvme_health_information_page_swapbytes(
691                             (struct nvme_health_information_page *)aer->log_page_buffer);
692                         break;
693                 case NVME_LOG_FIRMWARE_SLOT:
694                         nvme_firmware_page_swapbytes(
695                             (struct nvme_firmware_page *)aer->log_page_buffer);
696                         break;
697                 case NVME_LOG_CHANGED_NAMESPACE:
698                         nvme_ns_list_swapbytes(
699                             (struct nvme_ns_list *)aer->log_page_buffer);
700                         break;
701                 case NVME_LOG_COMMAND_EFFECT:
702                         nvme_command_effects_page_swapbytes(
703                             (struct nvme_command_effects_page *)aer->log_page_buffer);
704                         break;
705                 case NVME_LOG_RES_NOTIFICATION:
706                         nvme_res_notification_page_swapbytes(
707                             (struct nvme_res_notification_page *)aer->log_page_buffer);
708                         break;
709                 case NVME_LOG_SANITIZE_STATUS:
710                         nvme_sanitize_status_page_swapbytes(
711                             (struct nvme_sanitize_status_page *)aer->log_page_buffer);
712                         break;
713                 case INTEL_LOG_TEMP_STATS:
714                         intel_log_temp_stats_swapbytes(
715                             (struct intel_log_temp_stats *)aer->log_page_buffer);
716                         break;
717                 default:
718                         break;
719                 }
720
721                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
722                         health_info = (struct nvme_health_information_page *)
723                             aer->log_page_buffer;
724                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
725                             health_info->critical_warning);
726                         /*
727                          * Critical warnings reported through the
728                          *  SMART/health log page are persistent, so
729                          *  clear the associated bits in the async event
730                          *  config so that we do not receive repeated
731                          *  notifications for the same event.
732                          */
733                         aer->ctrlr->async_event_config &=
734                             ~health_info->critical_warning;
735                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
736                             aer->ctrlr->async_event_config, NULL, NULL);
737                 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
738                     !nvme_use_nvd) {
739                         nsl = (struct nvme_ns_list *)aer->log_page_buffer;
740                         for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
741                                 if (nsl->ns[i] > NVME_MAX_NAMESPACES)
742                                         break;
743                                 nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
744                         }
745                 }
746
747                 /*
748                  * Pass the cpl data from the original async event completion,
749                  *  not the log page fetch.
750                  */
751                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
752                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
753         }
754
755         /*
756          * Repost another asynchronous event request to replace the one
757          *  that just completed.
758          */
759         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
760 }
761
762 static void
763 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
764 {
765         struct nvme_async_event_request *aer = arg;
766
767         if (nvme_completion_is_error(cpl)) {
768                 /*
769                  *  Do not retry failed async event requests.  This avoids
770                  *  infinite loops where a new async event request is submitted
771                  *  to replace the one just failed, only to fail again and
772                  *  perpetuate the loop.
773                  */
774                 return;
775         }
776
777         /* Associated log page is in bits 23:16 of completion entry dw0. */
778         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
779
780         nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
781             " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8,
782             aer->log_page_id);
783
784         if (is_log_page_id_valid(aer->log_page_id)) {
785                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
786                     aer->log_page_id);
787                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
788                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
789                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
790                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
791                     aer);
792                 /* Wait to notify consumers until after log page is fetched. */
793         } else {
794                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
795                     NULL, 0);
796
797                 /*
798                  * Repost another asynchronous event request to replace the one
799                  *  that just completed.
800                  */
801                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
802         }
803 }
804
805 static void
806 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
807     struct nvme_async_event_request *aer)
808 {
809         struct nvme_request *req;
810
811         aer->ctrlr = ctrlr;
812         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
813         aer->req = req;
814
815         /*
816          * Disable timeout here, since asynchronous event requests should by
817          *  nature never be timed out.
818          */
819         req->timeout = false;
820         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
821         nvme_ctrlr_submit_admin_request(ctrlr, req);
822 }
823
824 static void
825 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
826 {
827         struct nvme_completion_poll_status      status;
828         struct nvme_async_event_request         *aer;
829         uint32_t                                i;
830
831         ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
832             NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
833             NVME_CRIT_WARN_ST_READ_ONLY |
834             NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
835         if (ctrlr->cdata.ver >= NVME_REV(1, 2))
836                 ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE |
837                     NVME_ASYNC_EVENT_FW_ACTIVATE;
838
839         status.done = 0;
840         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
841             0, NULL, 0, nvme_completion_poll_cb, &status);
842         nvme_completion_poll(&status);
843         if (nvme_completion_is_error(&status.cpl) ||
844             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
845             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
846                 nvme_printf(ctrlr, "temperature threshold not supported\n");
847         } else
848                 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
849
850         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
851             ctrlr->async_event_config, NULL, NULL);
852
853         /* aerl is a zero-based value, so we need to add 1 here. */
854         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
855
856         for (i = 0; i < ctrlr->num_aers; i++) {
857                 aer = &ctrlr->aer[i];
858                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
859         }
860 }
861
862 static void
863 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
864 {
865
866         ctrlr->int_coal_time = 0;
867         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
868             &ctrlr->int_coal_time);
869
870         ctrlr->int_coal_threshold = 0;
871         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
872             &ctrlr->int_coal_threshold);
873
874         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
875             ctrlr->int_coal_threshold, NULL, NULL);
876 }
877
878 static void
879 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
880 {
881         struct nvme_hmb_chunk *hmbc;
882         int i;
883
884         if (ctrlr->hmb_desc_paddr) {
885                 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
886                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
887                     ctrlr->hmb_desc_map);
888                 ctrlr->hmb_desc_paddr = 0;
889         }
890         if (ctrlr->hmb_desc_tag) {
891                 bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
892                 ctrlr->hmb_desc_tag = NULL;
893         }
894         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
895                 hmbc = &ctrlr->hmb_chunks[i];
896                 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
897                 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
898                     hmbc->hmbc_map);
899         }
900         ctrlr->hmb_nchunks = 0;
901         if (ctrlr->hmb_tag) {
902                 bus_dma_tag_destroy(ctrlr->hmb_tag);
903                 ctrlr->hmb_tag = NULL;
904         }
905         if (ctrlr->hmb_chunks) {
906                 free(ctrlr->hmb_chunks, M_NVME);
907                 ctrlr->hmb_chunks = NULL;
908         }
909 }
910
911 static void
912 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
913 {
914         struct nvme_hmb_chunk *hmbc;
915         size_t pref, min, minc, size;
916         int err, i;
917         uint64_t max;
918
919         /* Limit HMB to 5% of RAM size per device by default. */
920         max = (uint64_t)physmem * PAGE_SIZE / 20;
921         TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
922
923         min = (long long unsigned)ctrlr->cdata.hmmin * 4096;
924         if (max == 0 || max < min)
925                 return;
926         pref = MIN((long long unsigned)ctrlr->cdata.hmpre * 4096, max);
927         minc = MAX(ctrlr->cdata.hmminds * 4096, PAGE_SIZE);
928         if (min > 0 && ctrlr->cdata.hmmaxd > 0)
929                 minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
930         ctrlr->hmb_chunk = pref;
931
932 again:
933         ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, PAGE_SIZE);
934         ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
935         if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
936                 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
937         ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
938             ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
939         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
940             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
941             ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
942         if (err != 0) {
943                 nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
944                 nvme_ctrlr_hmb_free(ctrlr);
945                 return;
946         }
947
948         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
949                 hmbc = &ctrlr->hmb_chunks[i];
950                 if (bus_dmamem_alloc(ctrlr->hmb_tag,
951                     (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
952                     &hmbc->hmbc_map)) {
953                         nvme_printf(ctrlr, "failed to alloc HMB\n");
954                         break;
955                 }
956                 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
957                     hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
958                     &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
959                         bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
960                             hmbc->hmbc_map);
961                         nvme_printf(ctrlr, "failed to load HMB\n");
962                         break;
963                 }
964                 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
965                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
966         }
967
968         if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
969             ctrlr->hmb_chunk / 2 >= minc) {
970                 ctrlr->hmb_nchunks = i;
971                 nvme_ctrlr_hmb_free(ctrlr);
972                 ctrlr->hmb_chunk /= 2;
973                 goto again;
974         }
975         ctrlr->hmb_nchunks = i;
976         if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
977                 nvme_ctrlr_hmb_free(ctrlr);
978                 return;
979         }
980
981         size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
982         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
983             16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
984             size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
985         if (err != 0) {
986                 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
987                 nvme_ctrlr_hmb_free(ctrlr);
988                 return;
989         }
990         if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
991             (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
992             &ctrlr->hmb_desc_map)) {
993                 nvme_printf(ctrlr, "failed to alloc HMB desc\n");
994                 nvme_ctrlr_hmb_free(ctrlr);
995                 return;
996         }
997         if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
998             ctrlr->hmb_desc_vaddr, size, nvme_single_map,
999             &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1000                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1001                     ctrlr->hmb_desc_map);
1002                 nvme_printf(ctrlr, "failed to load HMB desc\n");
1003                 nvme_ctrlr_hmb_free(ctrlr);
1004                 return;
1005         }
1006
1007         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1008                 ctrlr->hmb_desc_vaddr[i].addr =
1009                     htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1010                 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / 4096);
1011         }
1012         bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1013             BUS_DMASYNC_PREWRITE);
1014
1015         nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1016             (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1017             / 1024 / 1024);
1018 }
1019
1020 static void
1021 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1022 {
1023         struct nvme_completion_poll_status      status;
1024         uint32_t cdw11;
1025
1026         cdw11 = 0;
1027         if (enable)
1028                 cdw11 |= 1;
1029         if (memret)
1030                 cdw11 |= 2;
1031         status.done = 0;
1032         nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1033             ctrlr->hmb_nchunks * ctrlr->hmb_chunk / 4096, ctrlr->hmb_desc_paddr,
1034             ctrlr->hmb_desc_paddr >> 32, ctrlr->hmb_nchunks, NULL, 0,
1035             nvme_completion_poll_cb, &status);
1036         nvme_completion_poll(&status);
1037         if (nvme_completion_is_error(&status.cpl))
1038                 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1039 }
1040
1041 static void
1042 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1043 {
1044         struct nvme_controller *ctrlr = ctrlr_arg;
1045         uint32_t old_num_io_queues;
1046         int i;
1047
1048         /*
1049          * Only reset adminq here when we are restarting the
1050          *  controller after a reset.  During initialization,
1051          *  we have already submitted admin commands to get
1052          *  the number of I/O queues supported, so cannot reset
1053          *  the adminq again here.
1054          */
1055         if (resetting) {
1056                 nvme_qpair_reset(&ctrlr->adminq);
1057                 nvme_admin_qpair_enable(&ctrlr->adminq);
1058         }
1059
1060         if (ctrlr->ioq != NULL) {
1061                 for (i = 0; i < ctrlr->num_io_queues; i++)
1062                         nvme_qpair_reset(&ctrlr->ioq[i]);
1063         }
1064
1065         /*
1066          * If it was a reset on initialization command timeout, just
1067          * return here, letting initialization code fail gracefully.
1068          */
1069         if (resetting && !ctrlr->is_initialized)
1070                 return;
1071
1072         if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1073                 nvme_ctrlr_fail(ctrlr);
1074                 return;
1075         }
1076
1077         /*
1078          * The number of qpairs are determined during controller initialization,
1079          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1080          *  HW limit.  We call SET_FEATURES again here so that it gets called
1081          *  after any reset for controllers that depend on the driver to
1082          *  explicit specify how many queues it will use.  This value should
1083          *  never change between resets, so panic if somehow that does happen.
1084          */
1085         if (resetting) {
1086                 old_num_io_queues = ctrlr->num_io_queues;
1087                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1088                         nvme_ctrlr_fail(ctrlr);
1089                         return;
1090                 }
1091
1092                 if (old_num_io_queues != ctrlr->num_io_queues) {
1093                         panic("num_io_queues changed from %u to %u",
1094                               old_num_io_queues, ctrlr->num_io_queues);
1095                 }
1096         }
1097
1098         if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1099                 nvme_ctrlr_hmb_alloc(ctrlr);
1100                 if (ctrlr->hmb_nchunks > 0)
1101                         nvme_ctrlr_hmb_enable(ctrlr, true, false);
1102         } else if (ctrlr->hmb_nchunks > 0)
1103                 nvme_ctrlr_hmb_enable(ctrlr, true, true);
1104
1105         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1106                 nvme_ctrlr_fail(ctrlr);
1107                 return;
1108         }
1109
1110         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1111                 nvme_ctrlr_fail(ctrlr);
1112                 return;
1113         }
1114
1115         nvme_ctrlr_configure_aer(ctrlr);
1116         nvme_ctrlr_configure_int_coalescing(ctrlr);
1117
1118         for (i = 0; i < ctrlr->num_io_queues; i++)
1119                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
1120 }
1121
1122 void
1123 nvme_ctrlr_start_config_hook(void *arg)
1124 {
1125         struct nvme_controller *ctrlr = arg;
1126
1127         /*
1128          * Reset controller twice to ensure we do a transition from cc.en==1 to
1129          * cc.en==0.  This is because we don't really know what status the
1130          * controller was left in when boot handed off to OS.  Linux doesn't do
1131          * this, however. If we adopt that policy, see also nvme_ctrlr_resume().
1132          */
1133         if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
1134 fail:
1135                 nvme_ctrlr_fail(ctrlr);
1136                 config_intrhook_disestablish(&ctrlr->config_hook);
1137                 return;
1138         }
1139
1140         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1141                 goto fail;
1142
1143         nvme_qpair_reset(&ctrlr->adminq);
1144         nvme_admin_qpair_enable(&ctrlr->adminq);
1145
1146         if (nvme_ctrlr_identify(ctrlr) == 0 &&
1147             nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1148             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1149                 nvme_ctrlr_start(ctrlr, false);
1150         else
1151                 goto fail;
1152
1153         nvme_sysctl_initialize_ctrlr(ctrlr);
1154         config_intrhook_disestablish(&ctrlr->config_hook);
1155
1156         ctrlr->is_initialized = 1;
1157         nvme_notify_new_controller(ctrlr);
1158 }
1159
1160 static void
1161 nvme_ctrlr_reset_task(void *arg, int pending)
1162 {
1163         struct nvme_controller  *ctrlr = arg;
1164         int                     status;
1165
1166         nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller");
1167         status = nvme_ctrlr_hw_reset(ctrlr);
1168         /*
1169          * Use pause instead of DELAY, so that we yield to any nvme interrupt
1170          *  handlers on this CPU that were blocked on a qpair lock. We want
1171          *  all nvme interrupts completed before proceeding with restarting the
1172          *  controller.
1173          *
1174          * XXX - any way to guarantee the interrupt handlers have quiesced?
1175          */
1176         pause("nvmereset", hz / 10);
1177         if (status == 0)
1178                 nvme_ctrlr_start(ctrlr, true);
1179         else
1180                 nvme_ctrlr_fail(ctrlr);
1181
1182         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1183 }
1184
1185 /*
1186  * Poll all the queues enabled on the device for completion.
1187  */
1188 void
1189 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1190 {
1191         int i;
1192
1193         nvme_qpair_process_completions(&ctrlr->adminq);
1194
1195         for (i = 0; i < ctrlr->num_io_queues; i++)
1196                 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1197                         nvme_qpair_process_completions(&ctrlr->ioq[i]);
1198 }
1199
1200 /*
1201  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1202  * there's only a single vector. While we're polling, we mask further
1203  * interrupts in the controller.
1204  */
1205 void
1206 nvme_ctrlr_intx_handler(void *arg)
1207 {
1208         struct nvme_controller *ctrlr = arg;
1209
1210         nvme_mmio_write_4(ctrlr, intms, 1);
1211         nvme_ctrlr_poll(ctrlr);
1212         nvme_mmio_write_4(ctrlr, intmc, 1);
1213 }
1214
1215 static void
1216 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1217 {
1218         struct nvme_pt_command *pt = arg;
1219         struct mtx *mtx = pt->driver_lock;
1220         uint16_t status;
1221
1222         bzero(&pt->cpl, sizeof(pt->cpl));
1223         pt->cpl.cdw0 = cpl->cdw0;
1224
1225         status = cpl->status;
1226         status &= ~NVME_STATUS_P_MASK;
1227         pt->cpl.status = status;
1228
1229         mtx_lock(mtx);
1230         pt->driver_lock = NULL;
1231         wakeup(pt);
1232         mtx_unlock(mtx);
1233 }
1234
1235 int
1236 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1237     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1238     int is_admin_cmd)
1239 {
1240         struct nvme_request     *req;
1241         struct mtx              *mtx;
1242         struct buf              *buf = NULL;
1243         int                     ret = 0;
1244
1245         if (pt->len > 0) {
1246                 if (pt->len > ctrlr->max_xfer_size) {
1247                         nvme_printf(ctrlr, "pt->len (%d) "
1248                             "exceeds max_xfer_size (%d)\n", pt->len,
1249                             ctrlr->max_xfer_size);
1250                         return EIO;
1251                 }
1252                 if (is_user_buffer) {
1253                         /*
1254                          * Ensure the user buffer is wired for the duration of
1255                          *  this pass-through command.
1256                          */
1257                         PHOLD(curproc);
1258                         buf = uma_zalloc(pbuf_zone, M_WAITOK);
1259                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1260                         if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1261                                 ret = EFAULT;
1262                                 goto err;
1263                         }
1264                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
1265                             nvme_pt_done, pt);
1266                 } else
1267                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1268                             nvme_pt_done, pt);
1269         } else
1270                 req = nvme_allocate_request_null(nvme_pt_done, pt);
1271
1272         /* Assume user space already converted to little-endian */
1273         req->cmd.opc = pt->cmd.opc;
1274         req->cmd.fuse = pt->cmd.fuse;
1275         req->cmd.rsvd2 = pt->cmd.rsvd2;
1276         req->cmd.rsvd3 = pt->cmd.rsvd3;
1277         req->cmd.cdw10 = pt->cmd.cdw10;
1278         req->cmd.cdw11 = pt->cmd.cdw11;
1279         req->cmd.cdw12 = pt->cmd.cdw12;
1280         req->cmd.cdw13 = pt->cmd.cdw13;
1281         req->cmd.cdw14 = pt->cmd.cdw14;
1282         req->cmd.cdw15 = pt->cmd.cdw15;
1283
1284         req->cmd.nsid = htole32(nsid);
1285
1286         mtx = mtx_pool_find(mtxpool_sleep, pt);
1287         pt->driver_lock = mtx;
1288
1289         if (is_admin_cmd)
1290                 nvme_ctrlr_submit_admin_request(ctrlr, req);
1291         else
1292                 nvme_ctrlr_submit_io_request(ctrlr, req);
1293
1294         mtx_lock(mtx);
1295         while (pt->driver_lock != NULL)
1296                 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1297         mtx_unlock(mtx);
1298
1299 err:
1300         if (buf != NULL) {
1301                 uma_zfree(pbuf_zone, buf);
1302                 PRELE(curproc);
1303         }
1304
1305         return (ret);
1306 }
1307
1308 static int
1309 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1310     struct thread *td)
1311 {
1312         struct nvme_controller                  *ctrlr;
1313         struct nvme_pt_command                  *pt;
1314
1315         ctrlr = cdev->si_drv1;
1316
1317         switch (cmd) {
1318         case NVME_RESET_CONTROLLER:
1319                 nvme_ctrlr_reset(ctrlr);
1320                 break;
1321         case NVME_PASSTHROUGH_CMD:
1322                 pt = (struct nvme_pt_command *)arg;
1323                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1324                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1325         case NVME_GET_NSID:
1326         {
1327                 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1328                 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1329                     sizeof(gnsid->cdev));
1330                 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
1331                 gnsid->nsid = 0;
1332                 break;
1333         }
1334         case NVME_GET_MAX_XFER_SIZE:
1335                 *(uint64_t *)arg = ctrlr->max_xfer_size;
1336                 break;
1337         default:
1338                 return (ENOTTY);
1339         }
1340
1341         return (0);
1342 }
1343
1344 static struct cdevsw nvme_ctrlr_cdevsw = {
1345         .d_version =    D_VERSION,
1346         .d_flags =      0,
1347         .d_ioctl =      nvme_ctrlr_ioctl
1348 };
1349
1350 int
1351 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1352 {
1353         struct make_dev_args    md_args;
1354         uint32_t        cap_lo;
1355         uint32_t        cap_hi;
1356         uint32_t        to, vs, pmrcap;
1357         uint8_t         mpsmin;
1358         int             status, timeout_period;
1359
1360         ctrlr->dev = dev;
1361
1362         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1363         if (bus_get_domain(dev, &ctrlr->domain) != 0)
1364                 ctrlr->domain = 0;
1365
1366         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1367         if (bootverbose) {
1368                 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1369                     cap_lo, NVME_CAP_LO_MQES(cap_lo),
1370                     NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1371                     NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1372                     (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1373                     (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1374                     NVME_CAP_LO_TO(cap_lo));
1375         }
1376         cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1377         if (bootverbose) {
1378                 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1379                     "MPSMIN %u, MPSMAX %u%s%s\n", cap_hi,
1380                     NVME_CAP_HI_DSTRD(cap_hi),
1381                     NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1382                     NVME_CAP_HI_CSS(cap_hi),
1383                     NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1384                     NVME_CAP_HI_MPSMIN(cap_hi),
1385                     NVME_CAP_HI_MPSMAX(cap_hi),
1386                     NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1387                     NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "");
1388         }
1389         if (bootverbose) {
1390                 vs = nvme_mmio_read_4(ctrlr, vs);
1391                 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1392                     NVME_MAJOR(vs), NVME_MINOR(vs));
1393         }
1394         if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1395                 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1396                 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1397                     "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1398                     NVME_PMRCAP_BIR(pmrcap),
1399                     NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1400                     NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1401                     NVME_PMRCAP_PMRTU(pmrcap),
1402                     NVME_PMRCAP_PMRWBM(pmrcap),
1403                     NVME_PMRCAP_PMRTO(pmrcap),
1404                     NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1405         }
1406
1407         ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1408
1409         mpsmin = NVME_CAP_HI_MPSMIN(cap_hi);
1410         ctrlr->min_page_size = 1 << (12 + mpsmin);
1411
1412         /* Get ready timeout value from controller, in units of 500ms. */
1413         to = NVME_CAP_LO_TO(cap_lo) + 1;
1414         ctrlr->ready_timeout_in_ms = to * 500;
1415
1416         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1417         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1418         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1419         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1420         ctrlr->timeout_period = timeout_period;
1421
1422         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1423         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1424
1425         ctrlr->enable_aborts = 0;
1426         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1427
1428         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1429         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1430                 return (ENXIO);
1431
1432         /*
1433          * Create 2 threads for the taskqueue. The reset thread will block when
1434          * it detects that the controller has failed until all I/O has been
1435          * failed up the stack. The fail_req task needs to be able to run in
1436          * this case to finish the request failure for some cases.
1437          *
1438          * We could partially solve this race by draining the failed requeust
1439          * queue before proceding to free the sim, though nothing would stop
1440          * new I/O from coming in after we do that drain, but before we reach
1441          * cam_sim_free, so this big hammer is used instead.
1442          */
1443         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1444             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1445         taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1446
1447         ctrlr->is_resetting = 0;
1448         ctrlr->is_initialized = 0;
1449         ctrlr->notification_sent = 0;
1450         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1451         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1452         STAILQ_INIT(&ctrlr->fail_req);
1453         ctrlr->is_failed = false;
1454
1455         make_dev_args_init(&md_args);
1456         md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1457         md_args.mda_uid = UID_ROOT;
1458         md_args.mda_gid = GID_WHEEL;
1459         md_args.mda_mode = 0600;
1460         md_args.mda_unit = device_get_unit(dev);
1461         md_args.mda_si_drv1 = (void *)ctrlr;
1462         status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1463             device_get_unit(dev));
1464         if (status != 0)
1465                 return (ENXIO);
1466
1467         return (0);
1468 }
1469
1470 void
1471 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1472 {
1473         int     gone, i;
1474
1475         if (ctrlr->resource == NULL)
1476                 goto nores;
1477
1478         /*
1479          * Check whether it is a hot unplug or a clean driver detach.
1480          * If device is not there any more, skip any shutdown commands.
1481          */
1482         gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1483         if (gone)
1484                 nvme_ctrlr_fail(ctrlr);
1485         else
1486                 nvme_notify_fail_consumers(ctrlr);
1487
1488         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1489                 nvme_ns_destruct(&ctrlr->ns[i]);
1490
1491         if (ctrlr->cdev)
1492                 destroy_dev(ctrlr->cdev);
1493
1494         if (ctrlr->is_initialized) {
1495                 if (!gone) {
1496                         if (ctrlr->hmb_nchunks > 0)
1497                                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1498                         nvme_ctrlr_delete_qpairs(ctrlr);
1499                 }
1500                 nvme_ctrlr_hmb_free(ctrlr);
1501         }
1502         if (ctrlr->ioq != NULL) {
1503                 for (i = 0; i < ctrlr->num_io_queues; i++)
1504                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1505                 free(ctrlr->ioq, M_NVME);
1506         }
1507         nvme_admin_qpair_destroy(&ctrlr->adminq);
1508
1509         /*
1510          *  Notify the controller of a shutdown, even though this is due to
1511          *   a driver unload, not a system shutdown (this path is not invoked
1512          *   during shutdown).  This ensures the controller receives a
1513          *   shutdown notification in case the system is shutdown before
1514          *   reloading the driver.
1515          */
1516         if (!gone)
1517                 nvme_ctrlr_shutdown(ctrlr);
1518
1519         if (!gone)
1520                 nvme_ctrlr_disable(ctrlr);
1521
1522         if (ctrlr->taskqueue)
1523                 taskqueue_free(ctrlr->taskqueue);
1524
1525         if (ctrlr->tag)
1526                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1527
1528         if (ctrlr->res)
1529                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1530                     rman_get_rid(ctrlr->res), ctrlr->res);
1531
1532         if (ctrlr->bar4_resource != NULL) {
1533                 bus_release_resource(dev, SYS_RES_MEMORY,
1534                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1535         }
1536
1537         bus_release_resource(dev, SYS_RES_MEMORY,
1538             ctrlr->resource_id, ctrlr->resource);
1539
1540 nores:
1541         mtx_destroy(&ctrlr->lock);
1542 }
1543
1544 void
1545 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1546 {
1547         uint32_t        cc;
1548         uint32_t        csts;
1549         int             timeout;
1550
1551         cc = nvme_mmio_read_4(ctrlr, cc);
1552         cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1553         cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1554         nvme_mmio_write_4(ctrlr, cc, cc);
1555
1556         timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1557             ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1558         while (1) {
1559                 csts = nvme_mmio_read_4(ctrlr, csts);
1560                 if (csts == NVME_GONE)          /* Hot unplug. */
1561                         break;
1562                 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1563                         break;
1564                 if (timeout - ticks < 0) {
1565                         nvme_printf(ctrlr, "shutdown timeout\n");
1566                         break;
1567                 }
1568                 pause("nvmeshut", 1);
1569         }
1570 }
1571
1572 void
1573 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1574     struct nvme_request *req)
1575 {
1576
1577         nvme_qpair_submit_request(&ctrlr->adminq, req);
1578 }
1579
1580 void
1581 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1582     struct nvme_request *req)
1583 {
1584         struct nvme_qpair       *qpair;
1585
1586         qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1587         nvme_qpair_submit_request(qpair, req);
1588 }
1589
1590 device_t
1591 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1592 {
1593
1594         return (ctrlr->dev);
1595 }
1596
1597 const struct nvme_controller_data *
1598 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1599 {
1600
1601         return (&ctrlr->cdata);
1602 }
1603
1604 int
1605 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1606 {
1607         int to = hz;
1608
1609         /*
1610          * Can't touch failed controllers, so it's already suspended.
1611          */
1612         if (ctrlr->is_failed)
1613                 return (0);
1614
1615         /*
1616          * We don't want the reset taskqueue running, since it does similar
1617          * things, so prevent it from running after we start. Wait for any reset
1618          * that may have been started to complete. The reset process we follow
1619          * will ensure that any new I/O will queue and be given to the hardware
1620          * after we resume (though there should be none).
1621          */
1622         while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1623                 pause("nvmesusp", 1);
1624         if (to <= 0) {
1625                 nvme_printf(ctrlr,
1626                     "Competing reset task didn't finish. Try again later.\n");
1627                 return (EWOULDBLOCK);
1628         }
1629
1630         if (ctrlr->hmb_nchunks > 0)
1631                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1632
1633         /*
1634          * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1635          * delete the hardware I/O queues, and then shutdown. This properly
1636          * flushes any metadata the drive may have stored so it can survive
1637          * having its power removed and prevents the unsafe shutdown count from
1638          * incriminating. Once we delete the qpairs, we have to disable them
1639          * before shutting down. The delay is out of paranoia in
1640          * nvme_ctrlr_hw_reset, and is repeated here (though we should have no
1641          * pending I/O that the delay copes with).
1642          */
1643         nvme_ctrlr_delete_qpairs(ctrlr);
1644         nvme_ctrlr_disable_qpairs(ctrlr);
1645         pause("nvmesusp", hz / 10);
1646         nvme_ctrlr_shutdown(ctrlr);
1647
1648         return (0);
1649 }
1650
1651 int
1652 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1653 {
1654
1655         /*
1656          * Can't touch failed controllers, so nothing to do to resume.
1657          */
1658         if (ctrlr->is_failed)
1659                 return (0);
1660
1661         /*
1662          * Have to reset the hardware twice, just like we do on attach. See
1663          * nmve_attach() for why.
1664          */
1665         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1666                 goto fail;
1667         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1668                 goto fail;
1669
1670         /*
1671          * Now that we've reset the hardware, we can restart the controller. Any
1672          * I/O that was pending is requeued. Any admin commands are aborted with
1673          * an error. Once we've restarted, take the controller out of reset.
1674          */
1675         nvme_ctrlr_start(ctrlr, true);
1676         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1677
1678         return (0);
1679 fail:
1680         /*
1681          * Since we can't bring the controller out of reset, announce and fail
1682          * the controller. However, we have to return success for the resume
1683          * itself, due to questionable APIs.
1684          */
1685         nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1686         nvme_ctrlr_fail(ctrlr);
1687         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1688         return (0);
1689 }