]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
MFV r318946: 8021 ARC buf data scatter-ization
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * Copyright (C) 2012-2016 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include "opt_cam.h"
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/buf.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/ioccom.h>
38 #include <sys/proc.h>
39 #include <sys/smp.h>
40 #include <sys/uio.h>
41
42 #include <dev/pci/pcireg.h>
43 #include <dev/pci/pcivar.h>
44
45 #include "nvme_private.h"
46
47 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
48                                                 struct nvme_async_event_request *aer);
49 static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);
50
51 static int
52 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
53 {
54
55         ctrlr->resource_id = PCIR_BAR(0);
56
57         ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
58             &ctrlr->resource_id, RF_ACTIVE);
59
60         if(ctrlr->resource == NULL) {
61                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
62                 return (ENOMEM);
63         }
64
65         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
66         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
67         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
68
69         /*
70          * The NVMe spec allows for the MSI-X table to be placed behind
71          *  BAR 4/5, separate from the control/doorbell registers.  Always
72          *  try to map this bar, because it must be mapped prior to calling
73          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
74          *  bus_alloc_resource() will just return NULL which is OK.
75          */
76         ctrlr->bar4_resource_id = PCIR_BAR(4);
77         ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
78             &ctrlr->bar4_resource_id, RF_ACTIVE);
79
80         return (0);
81 }
82
83 static int
84 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
85 {
86         struct nvme_qpair       *qpair;
87         uint32_t                num_entries;
88         int                     error;
89
90         qpair = &ctrlr->adminq;
91
92         num_entries = NVME_ADMIN_ENTRIES;
93         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
94         /*
95          * If admin_entries was overridden to an invalid value, revert it
96          *  back to our default value.
97          */
98         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
99             num_entries > NVME_MAX_ADMIN_ENTRIES) {
100                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
101                     "specified\n", num_entries);
102                 num_entries = NVME_ADMIN_ENTRIES;
103         }
104
105         /*
106          * The admin queue's max xfer size is treated differently than the
107          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
108          */
109         error = nvme_qpair_construct(qpair, 
110                                      0, /* qpair ID */
111                                      0, /* vector */
112                                      num_entries,
113                                      NVME_ADMIN_TRACKERS,
114                                      ctrlr);
115         return (error);
116 }
117
118 static int
119 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
120 {
121         struct nvme_qpair       *qpair;
122         union cap_lo_register   cap_lo;
123         int                     i, error, num_entries, num_trackers;
124
125         num_entries = NVME_IO_ENTRIES;
126         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
127
128         /*
129          * NVMe spec sets a hard limit of 64K max entries, but
130          *  devices may specify a smaller limit, so we need to check
131          *  the MQES field in the capabilities register.
132          */
133         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
134         num_entries = min(num_entries, cap_lo.bits.mqes+1);
135
136         num_trackers = NVME_IO_TRACKERS;
137         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
138
139         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
140         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
141         /*
142          * No need to have more trackers than entries in the submit queue.
143          *  Note also that for a queue size of N, we can only have (N-1)
144          *  commands outstanding, hence the "-1" here.
145          */
146         num_trackers = min(num_trackers, (num_entries-1));
147
148         /*
149          * This was calculated previously when setting up interrupts, but
150          *  a controller could theoretically support fewer I/O queues than
151          *  MSI-X vectors.  So calculate again here just to be safe.
152          */
153         ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues);
154
155         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
156             M_NVME, M_ZERO | M_WAITOK);
157
158         for (i = 0; i < ctrlr->num_io_queues; i++) {
159                 qpair = &ctrlr->ioq[i];
160
161                 /*
162                  * Admin queue has ID=0. IO queues start at ID=1 -
163                  *  hence the 'i+1' here.
164                  *
165                  * For I/O queues, use the controller-wide max_xfer_size
166                  *  calculated in nvme_attach().
167                  */
168                 error = nvme_qpair_construct(qpair,
169                                      i+1, /* qpair ID */
170                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
171                                      num_entries,
172                                      num_trackers,
173                                      ctrlr);
174                 if (error)
175                         return (error);
176
177                 /*
178                  * Do not bother binding interrupts if we only have one I/O
179                  *  interrupt thread for this controller.
180                  */
181                 if (ctrlr->num_io_queues > 1)
182                         bus_bind_intr(ctrlr->dev, qpair->res,
183                             i * ctrlr->num_cpus_per_ioq);
184         }
185
186         return (0);
187 }
188
189 static void
190 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
191 {
192         int i;
193
194         ctrlr->is_failed = TRUE;
195         nvme_qpair_fail(&ctrlr->adminq);
196         if (ctrlr->ioq != NULL) {
197                 for (i = 0; i < ctrlr->num_io_queues; i++)
198                         nvme_qpair_fail(&ctrlr->ioq[i]);
199         }
200         nvme_notify_fail_consumers(ctrlr);
201 }
202
203 void
204 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
205     struct nvme_request *req)
206 {
207
208         mtx_lock(&ctrlr->lock);
209         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
210         mtx_unlock(&ctrlr->lock);
211         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
212 }
213
214 static void
215 nvme_ctrlr_fail_req_task(void *arg, int pending)
216 {
217         struct nvme_controller  *ctrlr = arg;
218         struct nvme_request     *req;
219
220         mtx_lock(&ctrlr->lock);
221         while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
222                 req = STAILQ_FIRST(&ctrlr->fail_req);
223                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
224                 nvme_qpair_manual_complete_request(req->qpair, req,
225                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
226         }
227         mtx_unlock(&ctrlr->lock);
228 }
229
230 static int
231 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
232 {
233         int ms_waited;
234         union cc_register cc;
235         union csts_register csts;
236
237         cc.raw = nvme_mmio_read_4(ctrlr, cc);
238         csts.raw = nvme_mmio_read_4(ctrlr, csts);
239
240         if (cc.bits.en != desired_val) {
241                 nvme_printf(ctrlr, "%s called with desired_val = %d "
242                     "but cc.en = %d\n", __func__, desired_val, cc.bits.en);
243                 return (ENXIO);
244         }
245
246         ms_waited = 0;
247
248         while (csts.bits.rdy != desired_val) {
249                 DELAY(1000);
250                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
251                         nvme_printf(ctrlr, "controller ready did not become %d "
252                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
253                         return (ENXIO);
254                 }
255                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
256         }
257
258         return (0);
259 }
260
261 static void
262 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
263 {
264         union cc_register cc;
265         union csts_register csts;
266
267         cc.raw = nvme_mmio_read_4(ctrlr, cc);
268         csts.raw = nvme_mmio_read_4(ctrlr, csts);
269
270         if (cc.bits.en == 1 && csts.bits.rdy == 0)
271                 nvme_ctrlr_wait_for_ready(ctrlr, 1);
272
273         cc.bits.en = 0;
274         nvme_mmio_write_4(ctrlr, cc, cc.raw);
275         DELAY(5000);
276         nvme_ctrlr_wait_for_ready(ctrlr, 0);
277 }
278
279 static int
280 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
281 {
282         union cc_register       cc;
283         union csts_register     csts;
284         union aqa_register      aqa;
285
286         cc.raw = nvme_mmio_read_4(ctrlr, cc);
287         csts.raw = nvme_mmio_read_4(ctrlr, csts);
288
289         if (cc.bits.en == 1) {
290                 if (csts.bits.rdy == 1)
291                         return (0);
292                 else
293                         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
294         }
295
296         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
297         DELAY(5000);
298         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
299         DELAY(5000);
300
301         aqa.raw = 0;
302         /* acqs and asqs are 0-based. */
303         aqa.bits.acqs = ctrlr->adminq.num_entries-1;
304         aqa.bits.asqs = ctrlr->adminq.num_entries-1;
305         nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
306         DELAY(5000);
307
308         cc.bits.en = 1;
309         cc.bits.css = 0;
310         cc.bits.ams = 0;
311         cc.bits.shn = 0;
312         cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
313         cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
314
315         /* This evaluates to 0, which is according to spec. */
316         cc.bits.mps = (PAGE_SIZE >> 13);
317
318         nvme_mmio_write_4(ctrlr, cc, cc.raw);
319         DELAY(5000);
320
321         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
322 }
323
324 int
325 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
326 {
327         int i;
328
329         nvme_admin_qpair_disable(&ctrlr->adminq);
330         /*
331          * I/O queues are not allocated before the initial HW
332          *  reset, so do not try to disable them.  Use is_initialized
333          *  to determine if this is the initial HW reset.
334          */
335         if (ctrlr->is_initialized) {
336                 for (i = 0; i < ctrlr->num_io_queues; i++)
337                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
338         }
339
340         DELAY(100*1000);
341
342         nvme_ctrlr_disable(ctrlr);
343         return (nvme_ctrlr_enable(ctrlr));
344 }
345
346 void
347 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
348 {
349         int cmpset;
350
351         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
352
353         if (cmpset == 0 || ctrlr->is_failed)
354                 /*
355                  * Controller is already resetting or has failed.  Return
356                  *  immediately since there is no need to kick off another
357                  *  reset in these cases.
358                  */
359                 return;
360
361         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
362 }
363
364 static int
365 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
366 {
367         struct nvme_completion_poll_status      status;
368
369         status.done = FALSE;
370         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
371             nvme_completion_poll_cb, &status);
372         while (status.done == FALSE)
373                 pause("nvme", 1);
374         if (nvme_completion_is_error(&status.cpl)) {
375                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
376                 return (ENXIO);
377         }
378
379         /*
380          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
381          *  controller supports.
382          */
383         if (ctrlr->cdata.mdts > 0)
384                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
385                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
386
387         return (0);
388 }
389
390 static int
391 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
392 {
393         struct nvme_completion_poll_status      status;
394         int                                     cq_allocated, sq_allocated;
395
396         status.done = FALSE;
397         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
398             nvme_completion_poll_cb, &status);
399         while (status.done == FALSE)
400                 pause("nvme", 1);
401         if (nvme_completion_is_error(&status.cpl)) {
402                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
403                 return (ENXIO);
404         }
405
406         /*
407          * Data in cdw0 is 0-based.
408          * Lower 16-bits indicate number of submission queues allocated.
409          * Upper 16-bits indicate number of completion queues allocated.
410          */
411         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
412         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
413
414         /*
415          * Controller may allocate more queues than we requested,
416          *  so use the minimum of the number requested and what was
417          *  actually allocated.
418          */
419         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
420         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
421
422         return (0);
423 }
424
425 static int
426 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
427 {
428         struct nvme_completion_poll_status      status;
429         struct nvme_qpair                       *qpair;
430         int                                     i;
431
432         for (i = 0; i < ctrlr->num_io_queues; i++) {
433                 qpair = &ctrlr->ioq[i];
434
435                 status.done = FALSE;
436                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
437                     nvme_completion_poll_cb, &status);
438                 while (status.done == FALSE)
439                         pause("nvme", 1);
440                 if (nvme_completion_is_error(&status.cpl)) {
441                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
442                         return (ENXIO);
443                 }
444
445                 status.done = FALSE;
446                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
447                     nvme_completion_poll_cb, &status);
448                 while (status.done == FALSE)
449                         pause("nvme", 1);
450                 if (nvme_completion_is_error(&status.cpl)) {
451                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
452                         return (ENXIO);
453                 }
454         }
455
456         return (0);
457 }
458
459 static int
460 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
461 {
462         struct nvme_namespace   *ns;
463         int                     i;
464
465         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
466                 ns = &ctrlr->ns[i];
467                 nvme_ns_construct(ns, i+1, ctrlr);
468         }
469
470         return (0);
471 }
472
473 static boolean_t
474 is_log_page_id_valid(uint8_t page_id)
475 {
476
477         switch (page_id) {
478         case NVME_LOG_ERROR:
479         case NVME_LOG_HEALTH_INFORMATION:
480         case NVME_LOG_FIRMWARE_SLOT:
481                 return (TRUE);
482         }
483
484         return (FALSE);
485 }
486
487 static uint32_t
488 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
489 {
490         uint32_t        log_page_size;
491
492         switch (page_id) {
493         case NVME_LOG_ERROR:
494                 log_page_size = min(
495                     sizeof(struct nvme_error_information_entry) *
496                     ctrlr->cdata.elpe,
497                     NVME_MAX_AER_LOG_SIZE);
498                 break;
499         case NVME_LOG_HEALTH_INFORMATION:
500                 log_page_size = sizeof(struct nvme_health_information_page);
501                 break;
502         case NVME_LOG_FIRMWARE_SLOT:
503                 log_page_size = sizeof(struct nvme_firmware_page);
504                 break;
505         default:
506                 log_page_size = 0;
507                 break;
508         }
509
510         return (log_page_size);
511 }
512
513 static void
514 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
515     union nvme_critical_warning_state state)
516 {
517
518         if (state.bits.available_spare == 1)
519                 nvme_printf(ctrlr, "available spare space below threshold\n");
520
521         if (state.bits.temperature == 1)
522                 nvme_printf(ctrlr, "temperature above threshold\n");
523
524         if (state.bits.device_reliability == 1)
525                 nvme_printf(ctrlr, "device reliability degraded\n");
526
527         if (state.bits.read_only == 1)
528                 nvme_printf(ctrlr, "media placed in read only mode\n");
529
530         if (state.bits.volatile_memory_backup == 1)
531                 nvme_printf(ctrlr, "volatile memory backup device failed\n");
532
533         if (state.bits.reserved != 0)
534                 nvme_printf(ctrlr,
535                     "unknown critical warning(s): state = 0x%02x\n", state.raw);
536 }
537
538 static void
539 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
540 {
541         struct nvme_async_event_request         *aer = arg;
542         struct nvme_health_information_page     *health_info;
543
544         /*
545          * If the log page fetch for some reason completed with an error,
546          *  don't pass log page data to the consumers.  In practice, this case
547          *  should never happen.
548          */
549         if (nvme_completion_is_error(cpl))
550                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
551                     aer->log_page_id, NULL, 0);
552         else {
553                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
554                         health_info = (struct nvme_health_information_page *)
555                             aer->log_page_buffer;
556                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
557                             health_info->critical_warning);
558                         /*
559                          * Critical warnings reported through the
560                          *  SMART/health log page are persistent, so
561                          *  clear the associated bits in the async event
562                          *  config so that we do not receive repeated
563                          *  notifications for the same event.
564                          */
565                         aer->ctrlr->async_event_config.raw &=
566                             ~health_info->critical_warning.raw;
567                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
568                             aer->ctrlr->async_event_config, NULL, NULL);
569                 }
570
571
572                 /*
573                  * Pass the cpl data from the original async event completion,
574                  *  not the log page fetch.
575                  */
576                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
577                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
578         }
579
580         /*
581          * Repost another asynchronous event request to replace the one
582          *  that just completed.
583          */
584         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
585 }
586
587 static void
588 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
589 {
590         struct nvme_async_event_request *aer = arg;
591
592         if (nvme_completion_is_error(cpl)) {
593                 /*
594                  *  Do not retry failed async event requests.  This avoids
595                  *  infinite loops where a new async event request is submitted
596                  *  to replace the one just failed, only to fail again and
597                  *  perpetuate the loop.
598                  */
599                 return;
600         }
601
602         /* Associated log page is in bits 23:16 of completion entry dw0. */
603         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
604
605         nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
606             aer->log_page_id);
607
608         if (is_log_page_id_valid(aer->log_page_id)) {
609                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
610                     aer->log_page_id);
611                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
612                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
613                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
614                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
615                     aer);
616                 /* Wait to notify consumers until after log page is fetched. */
617         } else {
618                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
619                     NULL, 0);
620
621                 /*
622                  * Repost another asynchronous event request to replace the one
623                  *  that just completed.
624                  */
625                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
626         }
627 }
628
629 static void
630 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
631     struct nvme_async_event_request *aer)
632 {
633         struct nvme_request *req;
634
635         aer->ctrlr = ctrlr;
636         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
637         aer->req = req;
638
639         /*
640          * Disable timeout here, since asynchronous event requests should by
641          *  nature never be timed out.
642          */
643         req->timeout = FALSE;
644         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
645         nvme_ctrlr_submit_admin_request(ctrlr, req);
646 }
647
648 static void
649 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
650 {
651         struct nvme_completion_poll_status      status;
652         struct nvme_async_event_request         *aer;
653         uint32_t                                i;
654
655         ctrlr->async_event_config.raw = 0xFF;
656         ctrlr->async_event_config.bits.reserved = 0;
657
658         status.done = FALSE;
659         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
660             0, NULL, 0, nvme_completion_poll_cb, &status);
661         while (status.done == FALSE)
662                 pause("nvme", 1);
663         if (nvme_completion_is_error(&status.cpl) ||
664             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
665             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
666                 nvme_printf(ctrlr, "temperature threshold not supported\n");
667                 ctrlr->async_event_config.bits.temperature = 0;
668         }
669
670         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
671             ctrlr->async_event_config, NULL, NULL);
672
673         /* aerl is a zero-based value, so we need to add 1 here. */
674         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
675
676         for (i = 0; i < ctrlr->num_aers; i++) {
677                 aer = &ctrlr->aer[i];
678                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
679         }
680 }
681
682 static void
683 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
684 {
685
686         ctrlr->int_coal_time = 0;
687         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
688             &ctrlr->int_coal_time);
689
690         ctrlr->int_coal_threshold = 0;
691         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
692             &ctrlr->int_coal_threshold);
693
694         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
695             ctrlr->int_coal_threshold, NULL, NULL);
696 }
697
698 static void
699 nvme_ctrlr_start(void *ctrlr_arg)
700 {
701         struct nvme_controller *ctrlr = ctrlr_arg;
702         uint32_t old_num_io_queues;
703         int i;
704
705         /*
706          * Only reset adminq here when we are restarting the
707          *  controller after a reset.  During initialization,
708          *  we have already submitted admin commands to get
709          *  the number of I/O queues supported, so cannot reset
710          *  the adminq again here.
711          */
712         if (ctrlr->is_resetting) {
713                 nvme_qpair_reset(&ctrlr->adminq);
714         }
715
716         for (i = 0; i < ctrlr->num_io_queues; i++)
717                 nvme_qpair_reset(&ctrlr->ioq[i]);
718
719         nvme_admin_qpair_enable(&ctrlr->adminq);
720
721         if (nvme_ctrlr_identify(ctrlr) != 0) {
722                 nvme_ctrlr_fail(ctrlr);
723                 return;
724         }
725
726         /*
727          * The number of qpairs are determined during controller initialization,
728          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
729          *  HW limit.  We call SET_FEATURES again here so that it gets called
730          *  after any reset for controllers that depend on the driver to
731          *  explicit specify how many queues it will use.  This value should
732          *  never change between resets, so panic if somehow that does happen.
733          */
734         if (ctrlr->is_resetting) {
735                 old_num_io_queues = ctrlr->num_io_queues;
736                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
737                         nvme_ctrlr_fail(ctrlr);
738                         return;
739                 }
740
741                 if (old_num_io_queues != ctrlr->num_io_queues) {
742                         panic("num_io_queues changed from %u to %u",
743                               old_num_io_queues, ctrlr->num_io_queues);
744                 }
745         }
746
747         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
748                 nvme_ctrlr_fail(ctrlr);
749                 return;
750         }
751
752         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
753                 nvme_ctrlr_fail(ctrlr);
754                 return;
755         }
756
757         nvme_ctrlr_configure_aer(ctrlr);
758         nvme_ctrlr_configure_int_coalescing(ctrlr);
759
760         for (i = 0; i < ctrlr->num_io_queues; i++)
761                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
762 }
763
764 void
765 nvme_ctrlr_start_config_hook(void *arg)
766 {
767         struct nvme_controller *ctrlr = arg;
768
769         nvme_qpair_reset(&ctrlr->adminq);
770         nvme_admin_qpair_enable(&ctrlr->adminq);
771
772         if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
773             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
774                 nvme_ctrlr_start(ctrlr);
775         else
776                 nvme_ctrlr_fail(ctrlr);
777
778         nvme_sysctl_initialize_ctrlr(ctrlr);
779         config_intrhook_disestablish(&ctrlr->config_hook);
780
781         ctrlr->is_initialized = 1;
782         nvme_notify_new_controller(ctrlr);
783 }
784
785 static void
786 nvme_ctrlr_reset_task(void *arg, int pending)
787 {
788         struct nvme_controller  *ctrlr = arg;
789         int                     status;
790
791         nvme_printf(ctrlr, "resetting controller\n");
792         status = nvme_ctrlr_hw_reset(ctrlr);
793         /*
794          * Use pause instead of DELAY, so that we yield to any nvme interrupt
795          *  handlers on this CPU that were blocked on a qpair lock. We want
796          *  all nvme interrupts completed before proceeding with restarting the
797          *  controller.
798          *
799          * XXX - any way to guarantee the interrupt handlers have quiesced?
800          */
801         pause("nvmereset", hz / 10);
802         if (status == 0)
803                 nvme_ctrlr_start(ctrlr);
804         else
805                 nvme_ctrlr_fail(ctrlr);
806
807         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
808 }
809
810 void
811 nvme_ctrlr_intx_handler(void *arg)
812 {
813         struct nvme_controller *ctrlr = arg;
814
815         nvme_mmio_write_4(ctrlr, intms, 1);
816
817         nvme_qpair_process_completions(&ctrlr->adminq);
818
819         if (ctrlr->ioq && ctrlr->ioq[0].cpl)
820                 nvme_qpair_process_completions(&ctrlr->ioq[0]);
821
822         nvme_mmio_write_4(ctrlr, intmc, 1);
823 }
824
825 static int
826 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
827 {
828
829         ctrlr->msix_enabled = 0;
830         ctrlr->num_io_queues = 1;
831         ctrlr->num_cpus_per_ioq = mp_ncpus;
832         ctrlr->rid = 0;
833         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
834             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
835
836         if (ctrlr->res == NULL) {
837                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
838                 return (ENOMEM);
839         }
840
841         bus_setup_intr(ctrlr->dev, ctrlr->res,
842             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
843             ctrlr, &ctrlr->tag);
844
845         if (ctrlr->tag == NULL) {
846                 nvme_printf(ctrlr, "unable to setup intx handler\n");
847                 return (ENOMEM);
848         }
849
850         return (0);
851 }
852
853 static void
854 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
855 {
856         struct nvme_pt_command *pt = arg;
857
858         bzero(&pt->cpl, sizeof(pt->cpl));
859         pt->cpl.cdw0 = cpl->cdw0;
860         pt->cpl.status = cpl->status;
861         pt->cpl.status.p = 0;
862
863         mtx_lock(pt->driver_lock);
864         wakeup(pt);
865         mtx_unlock(pt->driver_lock);
866 }
867
868 int
869 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
870     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
871     int is_admin_cmd)
872 {
873         struct nvme_request     *req;
874         struct mtx              *mtx;
875         struct buf              *buf = NULL;
876         int                     ret = 0;
877         vm_offset_t             addr, end;
878
879         if (pt->len > 0) {
880                 /*
881                  * vmapbuf calls vm_fault_quick_hold_pages which only maps full
882                  * pages. Ensure this request has fewer than MAXPHYS bytes when
883                  * extended to full pages.
884                  */
885                 addr = (vm_offset_t)pt->buf;
886                 end = round_page(addr + pt->len);
887                 addr = trunc_page(addr);
888                 if (end - addr > MAXPHYS)
889                         return EIO;
890
891                 if (pt->len > ctrlr->max_xfer_size) {
892                         nvme_printf(ctrlr, "pt->len (%d) "
893                             "exceeds max_xfer_size (%d)\n", pt->len,
894                             ctrlr->max_xfer_size);
895                         return EIO;
896                 }
897                 if (is_user_buffer) {
898                         /*
899                          * Ensure the user buffer is wired for the duration of
900                          *  this passthrough command.
901                          */
902                         PHOLD(curproc);
903                         buf = getpbuf(NULL);
904                         buf->b_data = pt->buf;
905                         buf->b_bufsize = pt->len;
906                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
907 #ifdef NVME_UNMAPPED_BIO_SUPPORT
908                         if (vmapbuf(buf, 1) < 0) {
909 #else
910                         if (vmapbuf(buf) < 0) {
911 #endif
912                                 ret = EFAULT;
913                                 goto err;
914                         }
915                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
916                             nvme_pt_done, pt);
917                 } else
918                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
919                             nvme_pt_done, pt);
920         } else
921                 req = nvme_allocate_request_null(nvme_pt_done, pt);
922
923         req->cmd.opc    = pt->cmd.opc;
924         req->cmd.cdw10  = pt->cmd.cdw10;
925         req->cmd.cdw11  = pt->cmd.cdw11;
926         req->cmd.cdw12  = pt->cmd.cdw12;
927         req->cmd.cdw13  = pt->cmd.cdw13;
928         req->cmd.cdw14  = pt->cmd.cdw14;
929         req->cmd.cdw15  = pt->cmd.cdw15;
930
931         req->cmd.nsid = nsid;
932
933         if (is_admin_cmd)
934                 mtx = &ctrlr->lock;
935         else
936                 mtx = &ctrlr->ns[nsid-1].lock;
937
938         mtx_lock(mtx);
939         pt->driver_lock = mtx;
940
941         if (is_admin_cmd)
942                 nvme_ctrlr_submit_admin_request(ctrlr, req);
943         else
944                 nvme_ctrlr_submit_io_request(ctrlr, req);
945
946         mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
947         mtx_unlock(mtx);
948
949         pt->driver_lock = NULL;
950
951 err:
952         if (buf != NULL) {
953                 relpbuf(buf, NULL);
954                 PRELE(curproc);
955         }
956
957         return (ret);
958 }
959
960 static int
961 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
962     struct thread *td)
963 {
964         struct nvme_controller                  *ctrlr;
965         struct nvme_pt_command                  *pt;
966
967         ctrlr = cdev->si_drv1;
968
969         switch (cmd) {
970         case NVME_RESET_CONTROLLER:
971                 nvme_ctrlr_reset(ctrlr);
972                 break;
973         case NVME_PASSTHROUGH_CMD:
974                 pt = (struct nvme_pt_command *)arg;
975                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
976                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
977         default:
978                 return (ENOTTY);
979         }
980
981         return (0);
982 }
983
984 static struct cdevsw nvme_ctrlr_cdevsw = {
985         .d_version =    D_VERSION,
986         .d_flags =      0,
987         .d_ioctl =      nvme_ctrlr_ioctl
988 };
989
990 static void
991 nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
992 {
993         device_t        dev;
994         int             per_cpu_io_queues;
995         int             min_cpus_per_ioq;
996         int             num_vectors_requested, num_vectors_allocated;
997         int             num_vectors_available;
998
999         dev = ctrlr->dev;
1000         min_cpus_per_ioq = 1;
1001         TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq);
1002
1003         if (min_cpus_per_ioq < 1) {
1004                 min_cpus_per_ioq = 1;
1005         } else if (min_cpus_per_ioq > mp_ncpus) {
1006                 min_cpus_per_ioq = mp_ncpus;
1007         }
1008
1009         per_cpu_io_queues = 1;
1010         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1011
1012         if (per_cpu_io_queues == 0) {
1013                 min_cpus_per_ioq = mp_ncpus;
1014         }
1015
1016         ctrlr->force_intx = 0;
1017         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1018
1019         /*
1020          * FreeBSD currently cannot allocate more than about 190 vectors at
1021          *  boot, meaning that systems with high core count and many devices
1022          *  requesting per-CPU interrupt vectors will not get their full
1023          *  allotment.  So first, try to allocate as many as we may need to
1024          *  understand what is available, then immediately release them.
1025          *  Then figure out how many of those we will actually use, based on
1026          *  assigning an equal number of cores to each I/O queue.
1027          */
1028
1029         /* One vector for per core I/O queue, plus one vector for admin queue. */
1030         num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
1031         if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
1032                 num_vectors_available = 0;
1033         }
1034         pci_release_msi(dev);
1035
1036         if (ctrlr->force_intx || num_vectors_available < 2) {
1037                 nvme_ctrlr_configure_intx(ctrlr);
1038                 return;
1039         }
1040
1041         /*
1042          * Do not use all vectors for I/O queues - one must be saved for the
1043          *  admin queue.
1044          */
1045         ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq,
1046             howmany(mp_ncpus, num_vectors_available - 1));
1047
1048         ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq);
1049         num_vectors_requested = ctrlr->num_io_queues + 1;
1050         num_vectors_allocated = num_vectors_requested;
1051
1052         /*
1053          * Now just allocate the number of vectors we need.  This should
1054          *  succeed, since we previously called pci_alloc_msix()
1055          *  successfully returning at least this many vectors, but just to
1056          *  be safe, if something goes wrong just revert to INTx.
1057          */
1058         if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1059                 nvme_ctrlr_configure_intx(ctrlr);
1060                 return;
1061         }
1062
1063         if (num_vectors_allocated < num_vectors_requested) {
1064                 pci_release_msi(dev);
1065                 nvme_ctrlr_configure_intx(ctrlr);
1066                 return;
1067         }
1068
1069         ctrlr->msix_enabled = 1;
1070 }
1071
1072 int
1073 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1074 {
1075         union cap_lo_register   cap_lo;
1076         union cap_hi_register   cap_hi;
1077         int                     status, timeout_period;
1078
1079         ctrlr->dev = dev;
1080
1081         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1082
1083         status = nvme_ctrlr_allocate_bar(ctrlr);
1084
1085         if (status != 0)
1086                 return (status);
1087
1088         /*
1089          * Software emulators may set the doorbell stride to something
1090          *  other than zero, but this driver is not set up to handle that.
1091          */
1092         cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1093         if (cap_hi.bits.dstrd != 0)
1094                 return (ENXIO);
1095
1096         ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1097
1098         /* Get ready timeout value from controller, in units of 500ms. */
1099         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1100         ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1101
1102         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1103         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1104         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1105         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1106         ctrlr->timeout_period = timeout_period;
1107
1108         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1109         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1110
1111         ctrlr->enable_aborts = 0;
1112         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1113
1114         nvme_ctrlr_setup_interrupts(ctrlr);
1115
1116         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1117         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1118                 return (ENXIO);
1119
1120         ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1121             UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1122
1123         if (ctrlr->cdev == NULL)
1124                 return (ENXIO);
1125
1126         ctrlr->cdev->si_drv1 = (void *)ctrlr;
1127
1128         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1129             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1130         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1131
1132         ctrlr->is_resetting = 0;
1133         ctrlr->is_initialized = 0;
1134         ctrlr->notification_sent = 0;
1135         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1136
1137         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1138         STAILQ_INIT(&ctrlr->fail_req);
1139         ctrlr->is_failed = FALSE;
1140
1141         return (0);
1142 }
1143
1144 void
1145 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1146 {
1147         int                             i;
1148
1149         /*
1150          *  Notify the controller of a shutdown, even though this is due to
1151          *   a driver unload, not a system shutdown (this path is not invoked
1152          *   during shutdown).  This ensures the controller receives a
1153          *   shutdown notification in case the system is shutdown before
1154          *   reloading the driver.
1155          */
1156         nvme_ctrlr_shutdown(ctrlr);
1157
1158         nvme_ctrlr_disable(ctrlr);
1159         taskqueue_free(ctrlr->taskqueue);
1160
1161         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1162                 nvme_ns_destruct(&ctrlr->ns[i]);
1163
1164         if (ctrlr->cdev)
1165                 destroy_dev(ctrlr->cdev);
1166
1167         for (i = 0; i < ctrlr->num_io_queues; i++) {
1168                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1169         }
1170
1171         free(ctrlr->ioq, M_NVME);
1172
1173         nvme_admin_qpair_destroy(&ctrlr->adminq);
1174
1175         if (ctrlr->resource != NULL) {
1176                 bus_release_resource(dev, SYS_RES_MEMORY,
1177                     ctrlr->resource_id, ctrlr->resource);
1178         }
1179
1180         if (ctrlr->bar4_resource != NULL) {
1181                 bus_release_resource(dev, SYS_RES_MEMORY,
1182                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1183         }
1184
1185         if (ctrlr->tag)
1186                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1187
1188         if (ctrlr->res)
1189                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1190                     rman_get_rid(ctrlr->res), ctrlr->res);
1191
1192         if (ctrlr->msix_enabled)
1193                 pci_release_msi(dev);
1194 }
1195
1196 void
1197 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1198 {
1199         union cc_register       cc;
1200         union csts_register     csts;
1201         int                     ticks = 0;
1202
1203         cc.raw = nvme_mmio_read_4(ctrlr, cc);
1204         cc.bits.shn = NVME_SHN_NORMAL;
1205         nvme_mmio_write_4(ctrlr, cc, cc.raw);
1206         csts.raw = nvme_mmio_read_4(ctrlr, csts);
1207         while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1208                 pause("nvme shn", 1);
1209                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
1210         }
1211         if (csts.bits.shst != NVME_SHST_COMPLETE)
1212                 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1213                     "of notification\n");
1214 }
1215
1216 void
1217 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1218     struct nvme_request *req)
1219 {
1220
1221         nvme_qpair_submit_request(&ctrlr->adminq, req);
1222 }
1223
1224 void
1225 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1226     struct nvme_request *req)
1227 {
1228         struct nvme_qpair       *qpair;
1229
1230         qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
1231         nvme_qpair_submit_request(qpair, req);
1232 }
1233
1234 device_t
1235 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1236 {
1237
1238         return (ctrlr->dev);
1239 }
1240
1241 const struct nvme_controller_data *
1242 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1243 {
1244
1245         return (&ctrlr->cdata);
1246 }