]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
Import mandoc cvs snapshot 20170121 (pre 1.14)
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * Copyright (C) 2012-2016 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include "opt_cam.h"
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/buf.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/ioccom.h>
38 #include <sys/proc.h>
39 #include <sys/smp.h>
40 #include <sys/uio.h>
41
42 #include <dev/pci/pcireg.h>
43 #include <dev/pci/pcivar.h>
44
45 #include "nvme_private.h"
46
47 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
48                                                 struct nvme_async_event_request *aer);
49 static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);
50
51 static int
52 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
53 {
54
55         ctrlr->resource_id = PCIR_BAR(0);
56
57         ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
58             &ctrlr->resource_id, RF_ACTIVE);
59
60         if(ctrlr->resource == NULL) {
61                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
62                 return (ENOMEM);
63         }
64
65         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
66         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
67         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
68
69         /*
70          * The NVMe spec allows for the MSI-X table to be placed behind
71          *  BAR 4/5, separate from the control/doorbell registers.  Always
72          *  try to map this bar, because it must be mapped prior to calling
73          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
74          *  bus_alloc_resource() will just return NULL which is OK.
75          */
76         ctrlr->bar4_resource_id = PCIR_BAR(4);
77         ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
78             &ctrlr->bar4_resource_id, RF_ACTIVE);
79
80         return (0);
81 }
82
83 static int
84 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
85 {
86         struct nvme_qpair       *qpair;
87         uint32_t                num_entries;
88         int                     error;
89
90         qpair = &ctrlr->adminq;
91
92         num_entries = NVME_ADMIN_ENTRIES;
93         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
94         /*
95          * If admin_entries was overridden to an invalid value, revert it
96          *  back to our default value.
97          */
98         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
99             num_entries > NVME_MAX_ADMIN_ENTRIES) {
100                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
101                     "specified\n", num_entries);
102                 num_entries = NVME_ADMIN_ENTRIES;
103         }
104
105         /*
106          * The admin queue's max xfer size is treated differently than the
107          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
108          */
109         error = nvme_qpair_construct(qpair, 
110                                      0, /* qpair ID */
111                                      0, /* vector */
112                                      num_entries,
113                                      NVME_ADMIN_TRACKERS,
114                                      ctrlr);
115         return (error);
116 }
117
118 static int
119 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
120 {
121         struct nvme_qpair       *qpair;
122         union cap_lo_register   cap_lo;
123         int                     i, error, num_entries, num_trackers;
124
125         num_entries = NVME_IO_ENTRIES;
126         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
127
128         /*
129          * NVMe spec sets a hard limit of 64K max entries, but
130          *  devices may specify a smaller limit, so we need to check
131          *  the MQES field in the capabilities register.
132          */
133         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
134         num_entries = min(num_entries, cap_lo.bits.mqes+1);
135
136         num_trackers = NVME_IO_TRACKERS;
137         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
138
139         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
140         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
141         /*
142          * No need to have more trackers than entries in the submit queue.
143          *  Note also that for a queue size of N, we can only have (N-1)
144          *  commands outstanding, hence the "-1" here.
145          */
146         num_trackers = min(num_trackers, (num_entries-1));
147
148         /*
149          * This was calculated previously when setting up interrupts, but
150          *  a controller could theoretically support fewer I/O queues than
151          *  MSI-X vectors.  So calculate again here just to be safe.
152          */
153         ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues);
154
155         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
156             M_NVME, M_ZERO | M_WAITOK);
157
158         for (i = 0; i < ctrlr->num_io_queues; i++) {
159                 qpair = &ctrlr->ioq[i];
160
161                 /*
162                  * Admin queue has ID=0. IO queues start at ID=1 -
163                  *  hence the 'i+1' here.
164                  *
165                  * For I/O queues, use the controller-wide max_xfer_size
166                  *  calculated in nvme_attach().
167                  */
168                 error = nvme_qpair_construct(qpair,
169                                      i+1, /* qpair ID */
170                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
171                                      num_entries,
172                                      num_trackers,
173                                      ctrlr);
174                 if (error)
175                         return (error);
176
177                 /*
178                  * Do not bother binding interrupts if we only have one I/O
179                  *  interrupt thread for this controller.
180                  */
181                 if (ctrlr->num_io_queues > 1)
182                         bus_bind_intr(ctrlr->dev, qpair->res,
183                             i * ctrlr->num_cpus_per_ioq);
184         }
185
186         return (0);
187 }
188
189 static void
190 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
191 {
192         int i;
193
194         ctrlr->is_failed = TRUE;
195         nvme_qpair_fail(&ctrlr->adminq);
196         for (i = 0; i < ctrlr->num_io_queues; i++)
197                 nvme_qpair_fail(&ctrlr->ioq[i]);
198         nvme_notify_fail_consumers(ctrlr);
199 }
200
201 void
202 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
203     struct nvme_request *req)
204 {
205
206         mtx_lock(&ctrlr->lock);
207         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
208         mtx_unlock(&ctrlr->lock);
209         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
210 }
211
212 static void
213 nvme_ctrlr_fail_req_task(void *arg, int pending)
214 {
215         struct nvme_controller  *ctrlr = arg;
216         struct nvme_request     *req;
217
218         mtx_lock(&ctrlr->lock);
219         while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
220                 req = STAILQ_FIRST(&ctrlr->fail_req);
221                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
222                 nvme_qpair_manual_complete_request(req->qpair, req,
223                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
224         }
225         mtx_unlock(&ctrlr->lock);
226 }
227
228 static int
229 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
230 {
231         int ms_waited;
232         union cc_register cc;
233         union csts_register csts;
234
235         cc.raw = nvme_mmio_read_4(ctrlr, cc);
236         csts.raw = nvme_mmio_read_4(ctrlr, csts);
237
238         if (cc.bits.en != desired_val) {
239                 nvme_printf(ctrlr, "%s called with desired_val = %d "
240                     "but cc.en = %d\n", __func__, desired_val, cc.bits.en);
241                 return (ENXIO);
242         }
243
244         ms_waited = 0;
245
246         while (csts.bits.rdy != desired_val) {
247                 DELAY(1000);
248                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
249                         nvme_printf(ctrlr, "controller ready did not become %d "
250                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
251                         return (ENXIO);
252                 }
253                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
254         }
255
256         return (0);
257 }
258
259 static void
260 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
261 {
262         union cc_register cc;
263         union csts_register csts;
264
265         cc.raw = nvme_mmio_read_4(ctrlr, cc);
266         csts.raw = nvme_mmio_read_4(ctrlr, csts);
267
268         if (cc.bits.en == 1 && csts.bits.rdy == 0)
269                 nvme_ctrlr_wait_for_ready(ctrlr, 1);
270
271         cc.bits.en = 0;
272         nvme_mmio_write_4(ctrlr, cc, cc.raw);
273         DELAY(5000);
274         nvme_ctrlr_wait_for_ready(ctrlr, 0);
275 }
276
277 static int
278 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
279 {
280         union cc_register       cc;
281         union csts_register     csts;
282         union aqa_register      aqa;
283
284         cc.raw = nvme_mmio_read_4(ctrlr, cc);
285         csts.raw = nvme_mmio_read_4(ctrlr, csts);
286
287         if (cc.bits.en == 1) {
288                 if (csts.bits.rdy == 1)
289                         return (0);
290                 else
291                         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
292         }
293
294         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
295         DELAY(5000);
296         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
297         DELAY(5000);
298
299         aqa.raw = 0;
300         /* acqs and asqs are 0-based. */
301         aqa.bits.acqs = ctrlr->adminq.num_entries-1;
302         aqa.bits.asqs = ctrlr->adminq.num_entries-1;
303         nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
304         DELAY(5000);
305
306         cc.bits.en = 1;
307         cc.bits.css = 0;
308         cc.bits.ams = 0;
309         cc.bits.shn = 0;
310         cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
311         cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
312
313         /* This evaluates to 0, which is according to spec. */
314         cc.bits.mps = (PAGE_SIZE >> 13);
315
316         nvme_mmio_write_4(ctrlr, cc, cc.raw);
317         DELAY(5000);
318
319         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
320 }
321
322 int
323 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
324 {
325         int i;
326
327         nvme_admin_qpair_disable(&ctrlr->adminq);
328         /*
329          * I/O queues are not allocated before the initial HW
330          *  reset, so do not try to disable them.  Use is_initialized
331          *  to determine if this is the initial HW reset.
332          */
333         if (ctrlr->is_initialized) {
334                 for (i = 0; i < ctrlr->num_io_queues; i++)
335                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
336         }
337
338         DELAY(100*1000);
339
340         nvme_ctrlr_disable(ctrlr);
341         return (nvme_ctrlr_enable(ctrlr));
342 }
343
344 void
345 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
346 {
347         int cmpset;
348
349         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
350
351         if (cmpset == 0 || ctrlr->is_failed)
352                 /*
353                  * Controller is already resetting or has failed.  Return
354                  *  immediately since there is no need to kick off another
355                  *  reset in these cases.
356                  */
357                 return;
358
359         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
360 }
361
362 static int
363 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
364 {
365         struct nvme_completion_poll_status      status;
366
367         status.done = FALSE;
368         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
369             nvme_completion_poll_cb, &status);
370         while (status.done == FALSE)
371                 pause("nvme", 1);
372         if (nvme_completion_is_error(&status.cpl)) {
373                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
374                 return (ENXIO);
375         }
376
377         /*
378          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
379          *  controller supports.
380          */
381         if (ctrlr->cdata.mdts > 0)
382                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
383                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
384
385         return (0);
386 }
387
388 static int
389 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
390 {
391         struct nvme_completion_poll_status      status;
392         int                                     cq_allocated, sq_allocated;
393
394         status.done = FALSE;
395         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
396             nvme_completion_poll_cb, &status);
397         while (status.done == FALSE)
398                 pause("nvme", 1);
399         if (nvme_completion_is_error(&status.cpl)) {
400                 nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
401                 return (ENXIO);
402         }
403
404         /*
405          * Data in cdw0 is 0-based.
406          * Lower 16-bits indicate number of submission queues allocated.
407          * Upper 16-bits indicate number of completion queues allocated.
408          */
409         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
410         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
411
412         /*
413          * Controller may allocate more queues than we requested,
414          *  so use the minimum of the number requested and what was
415          *  actually allocated.
416          */
417         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
418         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
419
420         return (0);
421 }
422
423 static int
424 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
425 {
426         struct nvme_completion_poll_status      status;
427         struct nvme_qpair                       *qpair;
428         int                                     i;
429
430         for (i = 0; i < ctrlr->num_io_queues; i++) {
431                 qpair = &ctrlr->ioq[i];
432
433                 status.done = FALSE;
434                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
435                     nvme_completion_poll_cb, &status);
436                 while (status.done == FALSE)
437                         pause("nvme", 1);
438                 if (nvme_completion_is_error(&status.cpl)) {
439                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
440                         return (ENXIO);
441                 }
442
443                 status.done = FALSE;
444                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
445                     nvme_completion_poll_cb, &status);
446                 while (status.done == FALSE)
447                         pause("nvme", 1);
448                 if (nvme_completion_is_error(&status.cpl)) {
449                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
450                         return (ENXIO);
451                 }
452         }
453
454         return (0);
455 }
456
457 static int
458 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
459 {
460         struct nvme_namespace   *ns;
461         int                     i, status;
462
463         for (i = 0; i < ctrlr->cdata.nn; i++) {
464                 ns = &ctrlr->ns[i];
465                 status = nvme_ns_construct(ns, i+1, ctrlr);
466                 if (status != 0)
467                         return (status);
468         }
469
470         return (0);
471 }
472
473 static boolean_t
474 is_log_page_id_valid(uint8_t page_id)
475 {
476
477         switch (page_id) {
478         case NVME_LOG_ERROR:
479         case NVME_LOG_HEALTH_INFORMATION:
480         case NVME_LOG_FIRMWARE_SLOT:
481                 return (TRUE);
482         }
483
484         return (FALSE);
485 }
486
487 static uint32_t
488 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
489 {
490         uint32_t        log_page_size;
491
492         switch (page_id) {
493         case NVME_LOG_ERROR:
494                 log_page_size = min(
495                     sizeof(struct nvme_error_information_entry) *
496                     ctrlr->cdata.elpe,
497                     NVME_MAX_AER_LOG_SIZE);
498                 break;
499         case NVME_LOG_HEALTH_INFORMATION:
500                 log_page_size = sizeof(struct nvme_health_information_page);
501                 break;
502         case NVME_LOG_FIRMWARE_SLOT:
503                 log_page_size = sizeof(struct nvme_firmware_page);
504                 break;
505         default:
506                 log_page_size = 0;
507                 break;
508         }
509
510         return (log_page_size);
511 }
512
513 static void
514 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
515     union nvme_critical_warning_state state)
516 {
517
518         if (state.bits.available_spare == 1)
519                 nvme_printf(ctrlr, "available spare space below threshold\n");
520
521         if (state.bits.temperature == 1)
522                 nvme_printf(ctrlr, "temperature above threshold\n");
523
524         if (state.bits.device_reliability == 1)
525                 nvme_printf(ctrlr, "device reliability degraded\n");
526
527         if (state.bits.read_only == 1)
528                 nvme_printf(ctrlr, "media placed in read only mode\n");
529
530         if (state.bits.volatile_memory_backup == 1)
531                 nvme_printf(ctrlr, "volatile memory backup device failed\n");
532
533         if (state.bits.reserved != 0)
534                 nvme_printf(ctrlr,
535                     "unknown critical warning(s): state = 0x%02x\n", state.raw);
536 }
537
538 static void
539 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
540 {
541         struct nvme_async_event_request         *aer = arg;
542         struct nvme_health_information_page     *health_info;
543
544         /*
545          * If the log page fetch for some reason completed with an error,
546          *  don't pass log page data to the consumers.  In practice, this case
547          *  should never happen.
548          */
549         if (nvme_completion_is_error(cpl))
550                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
551                     aer->log_page_id, NULL, 0);
552         else {
553                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
554                         health_info = (struct nvme_health_information_page *)
555                             aer->log_page_buffer;
556                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
557                             health_info->critical_warning);
558                         /*
559                          * Critical warnings reported through the
560                          *  SMART/health log page are persistent, so
561                          *  clear the associated bits in the async event
562                          *  config so that we do not receive repeated
563                          *  notifications for the same event.
564                          */
565                         aer->ctrlr->async_event_config.raw &=
566                             ~health_info->critical_warning.raw;
567                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
568                             aer->ctrlr->async_event_config, NULL, NULL);
569                 }
570
571
572                 /*
573                  * Pass the cpl data from the original async event completion,
574                  *  not the log page fetch.
575                  */
576                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
577                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
578         }
579
580         /*
581          * Repost another asynchronous event request to replace the one
582          *  that just completed.
583          */
584         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
585 }
586
587 static void
588 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
589 {
590         struct nvme_async_event_request *aer = arg;
591
592         if (nvme_completion_is_error(cpl)) {
593                 /*
594                  *  Do not retry failed async event requests.  This avoids
595                  *  infinite loops where a new async event request is submitted
596                  *  to replace the one just failed, only to fail again and
597                  *  perpetuate the loop.
598                  */
599                 return;
600         }
601
602         /* Associated log page is in bits 23:16 of completion entry dw0. */
603         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
604
605         nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
606             aer->log_page_id);
607
608         if (is_log_page_id_valid(aer->log_page_id)) {
609                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
610                     aer->log_page_id);
611                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
612                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
613                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
614                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
615                     aer);
616                 /* Wait to notify consumers until after log page is fetched. */
617         } else {
618                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
619                     NULL, 0);
620
621                 /*
622                  * Repost another asynchronous event request to replace the one
623                  *  that just completed.
624                  */
625                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
626         }
627 }
628
629 static void
630 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
631     struct nvme_async_event_request *aer)
632 {
633         struct nvme_request *req;
634
635         aer->ctrlr = ctrlr;
636         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
637         aer->req = req;
638
639         /*
640          * Disable timeout here, since asynchronous event requests should by
641          *  nature never be timed out.
642          */
643         req->timeout = FALSE;
644         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
645         nvme_ctrlr_submit_admin_request(ctrlr, req);
646 }
647
648 static void
649 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
650 {
651         struct nvme_completion_poll_status      status;
652         struct nvme_async_event_request         *aer;
653         uint32_t                                i;
654
655         ctrlr->async_event_config.raw = 0xFF;
656         ctrlr->async_event_config.bits.reserved = 0;
657
658         status.done = FALSE;
659         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
660             0, NULL, 0, nvme_completion_poll_cb, &status);
661         while (status.done == FALSE)
662                 pause("nvme", 1);
663         if (nvme_completion_is_error(&status.cpl) ||
664             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
665             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
666                 nvme_printf(ctrlr, "temperature threshold not supported\n");
667                 ctrlr->async_event_config.bits.temperature = 0;
668         }
669
670         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
671             ctrlr->async_event_config, NULL, NULL);
672
673         /* aerl is a zero-based value, so we need to add 1 here. */
674         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
675
676         for (i = 0; i < ctrlr->num_aers; i++) {
677                 aer = &ctrlr->aer[i];
678                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
679         }
680 }
681
682 static void
683 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
684 {
685
686         ctrlr->int_coal_time = 0;
687         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
688             &ctrlr->int_coal_time);
689
690         ctrlr->int_coal_threshold = 0;
691         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
692             &ctrlr->int_coal_threshold);
693
694         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
695             ctrlr->int_coal_threshold, NULL, NULL);
696 }
697
698 static void
699 nvme_ctrlr_start(void *ctrlr_arg)
700 {
701         struct nvme_controller *ctrlr = ctrlr_arg;
702         uint32_t old_num_io_queues;
703         int i;
704
705         /*
706          * Only reset adminq here when we are restarting the
707          *  controller after a reset.  During initialization,
708          *  we have already submitted admin commands to get
709          *  the number of I/O queues supported, so cannot reset
710          *  the adminq again here.
711          */
712         if (ctrlr->is_resetting) {
713                 nvme_qpair_reset(&ctrlr->adminq);
714         }
715
716         for (i = 0; i < ctrlr->num_io_queues; i++)
717                 nvme_qpair_reset(&ctrlr->ioq[i]);
718
719         nvme_admin_qpair_enable(&ctrlr->adminq);
720
721         if (nvme_ctrlr_identify(ctrlr) != 0) {
722                 nvme_ctrlr_fail(ctrlr);
723                 return;
724         }
725
726         /*
727          * The number of qpairs are determined during controller initialization,
728          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
729          *  HW limit.  We call SET_FEATURES again here so that it gets called
730          *  after any reset for controllers that depend on the driver to
731          *  explicit specify how many queues it will use.  This value should
732          *  never change between resets, so panic if somehow that does happen.
733          */
734         if (ctrlr->is_resetting) {
735                 old_num_io_queues = ctrlr->num_io_queues;
736                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
737                         nvme_ctrlr_fail(ctrlr);
738                         return;
739                 }
740
741                 if (old_num_io_queues != ctrlr->num_io_queues) {
742                         panic("num_io_queues changed from %u to %u",
743                               old_num_io_queues, ctrlr->num_io_queues);
744                 }
745         }
746
747         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
748                 nvme_ctrlr_fail(ctrlr);
749                 return;
750         }
751
752         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
753                 nvme_ctrlr_fail(ctrlr);
754                 return;
755         }
756
757         nvme_ctrlr_configure_aer(ctrlr);
758         nvme_ctrlr_configure_int_coalescing(ctrlr);
759
760         for (i = 0; i < ctrlr->num_io_queues; i++)
761                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
762 }
763
764 void
765 nvme_ctrlr_start_config_hook(void *arg)
766 {
767         struct nvme_controller *ctrlr = arg;
768
769         nvme_qpair_reset(&ctrlr->adminq);
770         nvme_admin_qpair_enable(&ctrlr->adminq);
771
772         if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
773             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
774                 nvme_ctrlr_start(ctrlr);
775         else
776                 nvme_ctrlr_fail(ctrlr);
777
778         nvme_sysctl_initialize_ctrlr(ctrlr);
779         config_intrhook_disestablish(&ctrlr->config_hook);
780
781         ctrlr->is_initialized = 1;
782         nvme_notify_new_controller(ctrlr);
783 }
784
785 static void
786 nvme_ctrlr_reset_task(void *arg, int pending)
787 {
788         struct nvme_controller  *ctrlr = arg;
789         int                     status;
790
791         nvme_printf(ctrlr, "resetting controller\n");
792         status = nvme_ctrlr_hw_reset(ctrlr);
793         /*
794          * Use pause instead of DELAY, so that we yield to any nvme interrupt
795          *  handlers on this CPU that were blocked on a qpair lock. We want
796          *  all nvme interrupts completed before proceeding with restarting the
797          *  controller.
798          *
799          * XXX - any way to guarantee the interrupt handlers have quiesced?
800          */
801         pause("nvmereset", hz / 10);
802         if (status == 0)
803                 nvme_ctrlr_start(ctrlr);
804         else
805                 nvme_ctrlr_fail(ctrlr);
806
807         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
808 }
809
810 void
811 nvme_ctrlr_intx_handler(void *arg)
812 {
813         struct nvme_controller *ctrlr = arg;
814
815         nvme_mmio_write_4(ctrlr, intms, 1);
816
817         nvme_qpair_process_completions(&ctrlr->adminq);
818
819         if (ctrlr->ioq && ctrlr->ioq[0].cpl)
820                 nvme_qpair_process_completions(&ctrlr->ioq[0]);
821
822         nvme_mmio_write_4(ctrlr, intmc, 1);
823 }
824
825 static int
826 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
827 {
828
829         ctrlr->msix_enabled = 0;
830         ctrlr->num_io_queues = 1;
831         ctrlr->num_cpus_per_ioq = mp_ncpus;
832         ctrlr->rid = 0;
833         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
834             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
835
836         if (ctrlr->res == NULL) {
837                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
838                 return (ENOMEM);
839         }
840
841         bus_setup_intr(ctrlr->dev, ctrlr->res,
842             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
843             ctrlr, &ctrlr->tag);
844
845         if (ctrlr->tag == NULL) {
846                 nvme_printf(ctrlr, "unable to setup intx handler\n");
847                 return (ENOMEM);
848         }
849
850         return (0);
851 }
852
853 static void
854 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
855 {
856         struct nvme_pt_command *pt = arg;
857
858         bzero(&pt->cpl, sizeof(pt->cpl));
859         pt->cpl.cdw0 = cpl->cdw0;
860         pt->cpl.status = cpl->status;
861         pt->cpl.status.p = 0;
862
863         mtx_lock(pt->driver_lock);
864         wakeup(pt);
865         mtx_unlock(pt->driver_lock);
866 }
867
868 int
869 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
870     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
871     int is_admin_cmd)
872 {
873         struct nvme_request     *req;
874         struct mtx              *mtx;
875         struct buf              *buf = NULL;
876         int                     ret = 0;
877
878         if (pt->len > 0) {
879                 if (pt->len > ctrlr->max_xfer_size) {
880                         nvme_printf(ctrlr, "pt->len (%d) "
881                             "exceeds max_xfer_size (%d)\n", pt->len,
882                             ctrlr->max_xfer_size);
883                         return EIO;
884                 }
885                 if (is_user_buffer) {
886                         /*
887                          * Ensure the user buffer is wired for the duration of
888                          *  this passthrough command.
889                          */
890                         PHOLD(curproc);
891                         buf = getpbuf(NULL);
892                         buf->b_data = pt->buf;
893                         buf->b_bufsize = pt->len;
894                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
895 #ifdef NVME_UNMAPPED_BIO_SUPPORT
896                         if (vmapbuf(buf, 1) < 0) {
897 #else
898                         if (vmapbuf(buf) < 0) {
899 #endif
900                                 ret = EFAULT;
901                                 goto err;
902                         }
903                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
904                             nvme_pt_done, pt);
905                 } else
906                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
907                             nvme_pt_done, pt);
908         } else
909                 req = nvme_allocate_request_null(nvme_pt_done, pt);
910
911         req->cmd.opc    = pt->cmd.opc;
912         req->cmd.cdw10  = pt->cmd.cdw10;
913         req->cmd.cdw11  = pt->cmd.cdw11;
914         req->cmd.cdw12  = pt->cmd.cdw12;
915         req->cmd.cdw13  = pt->cmd.cdw13;
916         req->cmd.cdw14  = pt->cmd.cdw14;
917         req->cmd.cdw15  = pt->cmd.cdw15;
918
919         req->cmd.nsid = nsid;
920
921         if (is_admin_cmd)
922                 mtx = &ctrlr->lock;
923         else
924                 mtx = &ctrlr->ns[nsid-1].lock;
925
926         mtx_lock(mtx);
927         pt->driver_lock = mtx;
928
929         if (is_admin_cmd)
930                 nvme_ctrlr_submit_admin_request(ctrlr, req);
931         else
932                 nvme_ctrlr_submit_io_request(ctrlr, req);
933
934         mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
935         mtx_unlock(mtx);
936
937         pt->driver_lock = NULL;
938
939 err:
940         if (buf != NULL) {
941                 relpbuf(buf, NULL);
942                 PRELE(curproc);
943         }
944
945         return (ret);
946 }
947
948 static int
949 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
950     struct thread *td)
951 {
952         struct nvme_controller                  *ctrlr;
953         struct nvme_pt_command                  *pt;
954
955         ctrlr = cdev->si_drv1;
956
957         switch (cmd) {
958         case NVME_RESET_CONTROLLER:
959                 nvme_ctrlr_reset(ctrlr);
960                 break;
961         case NVME_PASSTHROUGH_CMD:
962                 pt = (struct nvme_pt_command *)arg;
963                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
964                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
965         default:
966                 return (ENOTTY);
967         }
968
969         return (0);
970 }
971
972 static struct cdevsw nvme_ctrlr_cdevsw = {
973         .d_version =    D_VERSION,
974         .d_flags =      0,
975         .d_ioctl =      nvme_ctrlr_ioctl
976 };
977
978 static void
979 nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
980 {
981         device_t        dev;
982         int             per_cpu_io_queues;
983         int             min_cpus_per_ioq;
984         int             num_vectors_requested, num_vectors_allocated;
985         int             num_vectors_available;
986
987         dev = ctrlr->dev;
988         min_cpus_per_ioq = 1;
989         TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq);
990
991         if (min_cpus_per_ioq < 1) {
992                 min_cpus_per_ioq = 1;
993         } else if (min_cpus_per_ioq > mp_ncpus) {
994                 min_cpus_per_ioq = mp_ncpus;
995         }
996
997         per_cpu_io_queues = 1;
998         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
999
1000         if (per_cpu_io_queues == 0) {
1001                 min_cpus_per_ioq = mp_ncpus;
1002         }
1003
1004         ctrlr->force_intx = 0;
1005         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1006
1007         /*
1008          * FreeBSD currently cannot allocate more than about 190 vectors at
1009          *  boot, meaning that systems with high core count and many devices
1010          *  requesting per-CPU interrupt vectors will not get their full
1011          *  allotment.  So first, try to allocate as many as we may need to
1012          *  understand what is available, then immediately release them.
1013          *  Then figure out how many of those we will actually use, based on
1014          *  assigning an equal number of cores to each I/O queue.
1015          */
1016
1017         /* One vector for per core I/O queue, plus one vector for admin queue. */
1018         num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
1019         if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
1020                 num_vectors_available = 0;
1021         }
1022         pci_release_msi(dev);
1023
1024         if (ctrlr->force_intx || num_vectors_available < 2) {
1025                 nvme_ctrlr_configure_intx(ctrlr);
1026                 return;
1027         }
1028
1029         /*
1030          * Do not use all vectors for I/O queues - one must be saved for the
1031          *  admin queue.
1032          */
1033         ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq,
1034             howmany(mp_ncpus, num_vectors_available - 1));
1035
1036         ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq);
1037         num_vectors_requested = ctrlr->num_io_queues + 1;
1038         num_vectors_allocated = num_vectors_requested;
1039
1040         /*
1041          * Now just allocate the number of vectors we need.  This should
1042          *  succeed, since we previously called pci_alloc_msix()
1043          *  successfully returning at least this many vectors, but just to
1044          *  be safe, if something goes wrong just revert to INTx.
1045          */
1046         if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1047                 nvme_ctrlr_configure_intx(ctrlr);
1048                 return;
1049         }
1050
1051         if (num_vectors_allocated < num_vectors_requested) {
1052                 pci_release_msi(dev);
1053                 nvme_ctrlr_configure_intx(ctrlr);
1054                 return;
1055         }
1056
1057         ctrlr->msix_enabled = 1;
1058 }
1059
1060 int
1061 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1062 {
1063         union cap_lo_register   cap_lo;
1064         union cap_hi_register   cap_hi;
1065         int                     status, timeout_period;
1066
1067         ctrlr->dev = dev;
1068
1069         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1070
1071         status = nvme_ctrlr_allocate_bar(ctrlr);
1072
1073         if (status != 0)
1074                 return (status);
1075
1076         /*
1077          * Software emulators may set the doorbell stride to something
1078          *  other than zero, but this driver is not set up to handle that.
1079          */
1080         cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1081         if (cap_hi.bits.dstrd != 0)
1082                 return (ENXIO);
1083
1084         ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1085
1086         /* Get ready timeout value from controller, in units of 500ms. */
1087         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1088         ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1089
1090         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1091         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1092         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1093         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1094         ctrlr->timeout_period = timeout_period;
1095
1096         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1097         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1098
1099         ctrlr->enable_aborts = 0;
1100         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1101
1102         nvme_ctrlr_setup_interrupts(ctrlr);
1103
1104         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1105         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1106                 return (ENXIO);
1107
1108         ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1109             UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1110
1111         if (ctrlr->cdev == NULL)
1112                 return (ENXIO);
1113
1114         ctrlr->cdev->si_drv1 = (void *)ctrlr;
1115
1116         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1117             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1118         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1119
1120         ctrlr->is_resetting = 0;
1121         ctrlr->is_initialized = 0;
1122         ctrlr->notification_sent = 0;
1123         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1124
1125         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1126         STAILQ_INIT(&ctrlr->fail_req);
1127         ctrlr->is_failed = FALSE;
1128
1129         return (0);
1130 }
1131
1132 void
1133 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1134 {
1135         int                             i;
1136
1137         /*
1138          *  Notify the controller of a shutdown, even though this is due to
1139          *   a driver unload, not a system shutdown (this path is not invoked
1140          *   during shutdown).  This ensures the controller receives a
1141          *   shutdown notification in case the system is shutdown before
1142          *   reloading the driver.
1143          */
1144         nvme_ctrlr_shutdown(ctrlr);
1145
1146         nvme_ctrlr_disable(ctrlr);
1147         taskqueue_free(ctrlr->taskqueue);
1148
1149         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1150                 nvme_ns_destruct(&ctrlr->ns[i]);
1151
1152         if (ctrlr->cdev)
1153                 destroy_dev(ctrlr->cdev);
1154
1155         for (i = 0; i < ctrlr->num_io_queues; i++) {
1156                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1157         }
1158
1159         free(ctrlr->ioq, M_NVME);
1160
1161         nvme_admin_qpair_destroy(&ctrlr->adminq);
1162
1163         if (ctrlr->resource != NULL) {
1164                 bus_release_resource(dev, SYS_RES_MEMORY,
1165                     ctrlr->resource_id, ctrlr->resource);
1166         }
1167
1168         if (ctrlr->bar4_resource != NULL) {
1169                 bus_release_resource(dev, SYS_RES_MEMORY,
1170                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1171         }
1172
1173         if (ctrlr->tag)
1174                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1175
1176         if (ctrlr->res)
1177                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1178                     rman_get_rid(ctrlr->res), ctrlr->res);
1179
1180         if (ctrlr->msix_enabled)
1181                 pci_release_msi(dev);
1182 }
1183
1184 void
1185 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1186 {
1187         union cc_register       cc;
1188         union csts_register     csts;
1189         int                     ticks = 0;
1190
1191         cc.raw = nvme_mmio_read_4(ctrlr, cc);
1192         cc.bits.shn = NVME_SHN_NORMAL;
1193         nvme_mmio_write_4(ctrlr, cc, cc.raw);
1194         csts.raw = nvme_mmio_read_4(ctrlr, csts);
1195         while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1196                 pause("nvme shn", 1);
1197                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
1198         }
1199         if (csts.bits.shst != NVME_SHST_COMPLETE)
1200                 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1201                     "of notification\n");
1202 }
1203
1204 void
1205 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1206     struct nvme_request *req)
1207 {
1208
1209         nvme_qpair_submit_request(&ctrlr->adminq, req);
1210 }
1211
1212 void
1213 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1214     struct nvme_request *req)
1215 {
1216         struct nvme_qpair       *qpair;
1217
1218         qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
1219         nvme_qpair_submit_request(qpair, req);
1220 }
1221
1222 device_t
1223 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1224 {
1225
1226         return (ctrlr->dev);
1227 }
1228
1229 const struct nvme_controller_data *
1230 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1231 {
1232
1233         return (&ctrlr->cdata);
1234 }