]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
MFV r331695, 331700: 9166 zfs storage pool checkpoint
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_cam.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/buf.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/ioccom.h>
40 #include <sys/proc.h>
41 #include <sys/smp.h>
42 #include <sys/uio.h>
43 #include <sys/endian.h>
44
45 #include <dev/pci/pcireg.h>
46 #include <dev/pci/pcivar.h>
47
48 #include "nvme_private.h"
49
50 #define B4_CHK_RDY_DELAY_MS     2300            /* work around controller bug */
51
52 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
53                                                 struct nvme_async_event_request *aer);
54 static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr);
55
56 static int
57 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
58 {
59
60         ctrlr->resource_id = PCIR_BAR(0);
61
62         ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
63             &ctrlr->resource_id, RF_ACTIVE);
64
65         if(ctrlr->resource == NULL) {
66                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
67                 return (ENOMEM);
68         }
69
70         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
71         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
72         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
73
74         /*
75          * The NVMe spec allows for the MSI-X table to be placed behind
76          *  BAR 4/5, separate from the control/doorbell registers.  Always
77          *  try to map this bar, because it must be mapped prior to calling
78          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
79          *  bus_alloc_resource() will just return NULL which is OK.
80          */
81         ctrlr->bar4_resource_id = PCIR_BAR(4);
82         ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY,
83             &ctrlr->bar4_resource_id, RF_ACTIVE);
84
85         return (0);
86 }
87
88 static int
89 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
90 {
91         struct nvme_qpair       *qpair;
92         uint32_t                num_entries;
93         int                     error;
94
95         qpair = &ctrlr->adminq;
96
97         num_entries = NVME_ADMIN_ENTRIES;
98         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
99         /*
100          * If admin_entries was overridden to an invalid value, revert it
101          *  back to our default value.
102          */
103         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
104             num_entries > NVME_MAX_ADMIN_ENTRIES) {
105                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
106                     "specified\n", num_entries);
107                 num_entries = NVME_ADMIN_ENTRIES;
108         }
109
110         /*
111          * The admin queue's max xfer size is treated differently than the
112          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
113          */
114         error = nvme_qpair_construct(qpair, 
115                                      0, /* qpair ID */
116                                      0, /* vector */
117                                      num_entries,
118                                      NVME_ADMIN_TRACKERS,
119                                      ctrlr);
120         return (error);
121 }
122
123 static int
124 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
125 {
126         struct nvme_qpair       *qpair;
127         uint32_t                cap_lo;
128         uint16_t                mqes;
129         int                     i, error, num_entries, num_trackers;
130
131         num_entries = NVME_IO_ENTRIES;
132         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
133
134         /*
135          * NVMe spec sets a hard limit of 64K max entries, but
136          *  devices may specify a smaller limit, so we need to check
137          *  the MQES field in the capabilities register.
138          */
139         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
140         mqes = (cap_lo >> NVME_CAP_LO_REG_MQES_SHIFT) & NVME_CAP_LO_REG_MQES_MASK;
141         num_entries = min(num_entries, mqes + 1);
142
143         num_trackers = NVME_IO_TRACKERS;
144         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
145
146         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
147         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
148         /*
149          * No need to have more trackers than entries in the submit queue.
150          *  Note also that for a queue size of N, we can only have (N-1)
151          *  commands outstanding, hence the "-1" here.
152          */
153         num_trackers = min(num_trackers, (num_entries-1));
154
155         /*
156          * Our best estimate for the maximum number of I/Os that we should
157          * noramlly have in flight at one time. This should be viewed as a hint,
158          * not a hard limit and will need to be revisitted when the upper layers
159          * of the storage system grows multi-queue support.
160          */
161         ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
162
163         /*
164          * This was calculated previously when setting up interrupts, but
165          *  a controller could theoretically support fewer I/O queues than
166          *  MSI-X vectors.  So calculate again here just to be safe.
167          */
168         ctrlr->num_cpus_per_ioq = howmany(mp_ncpus, ctrlr->num_io_queues);
169
170         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
171             M_NVME, M_ZERO | M_WAITOK);
172
173         for (i = 0; i < ctrlr->num_io_queues; i++) {
174                 qpair = &ctrlr->ioq[i];
175
176                 /*
177                  * Admin queue has ID=0. IO queues start at ID=1 -
178                  *  hence the 'i+1' here.
179                  *
180                  * For I/O queues, use the controller-wide max_xfer_size
181                  *  calculated in nvme_attach().
182                  */
183                 error = nvme_qpair_construct(qpair,
184                                      i+1, /* qpair ID */
185                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
186                                      num_entries,
187                                      num_trackers,
188                                      ctrlr);
189                 if (error)
190                         return (error);
191
192                 /*
193                  * Do not bother binding interrupts if we only have one I/O
194                  *  interrupt thread for this controller.
195                  */
196                 if (ctrlr->num_io_queues > 1)
197                         bus_bind_intr(ctrlr->dev, qpair->res,
198                             i * ctrlr->num_cpus_per_ioq);
199         }
200
201         return (0);
202 }
203
204 static void
205 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
206 {
207         int i;
208
209         ctrlr->is_failed = TRUE;
210         nvme_qpair_fail(&ctrlr->adminq);
211         if (ctrlr->ioq != NULL) {
212                 for (i = 0; i < ctrlr->num_io_queues; i++)
213                         nvme_qpair_fail(&ctrlr->ioq[i]);
214         }
215         nvme_notify_fail_consumers(ctrlr);
216 }
217
218 void
219 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
220     struct nvme_request *req)
221 {
222
223         mtx_lock(&ctrlr->lock);
224         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
225         mtx_unlock(&ctrlr->lock);
226         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
227 }
228
229 static void
230 nvme_ctrlr_fail_req_task(void *arg, int pending)
231 {
232         struct nvme_controller  *ctrlr = arg;
233         struct nvme_request     *req;
234
235         mtx_lock(&ctrlr->lock);
236         while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
237                 req = STAILQ_FIRST(&ctrlr->fail_req);
238                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
239                 nvme_qpair_manual_complete_request(req->qpair, req,
240                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
241         }
242         mtx_unlock(&ctrlr->lock);
243 }
244
245 static int
246 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
247 {
248         int ms_waited;
249         uint32_t csts;
250
251         csts = nvme_mmio_read_4(ctrlr, csts);
252
253         ms_waited = 0;
254         while (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK) != desired_val) {
255                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
256                         nvme_printf(ctrlr, "controller ready did not become %d "
257                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
258                         return (ENXIO);
259                 }
260                 DELAY(1000);
261                 csts = nvme_mmio_read_4(ctrlr, csts);
262         }
263
264         return (0);
265 }
266
267 static int
268 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
269 {
270         uint32_t cc;
271         uint32_t csts;
272         uint8_t  en, rdy;
273         int err;
274
275         cc = nvme_mmio_read_4(ctrlr, cc);
276         csts = nvme_mmio_read_4(ctrlr, csts);
277
278         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
279         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
280
281         /*
282          * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
283          * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
284          * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
285          * isn't the desired value. Short circuit if we're already disabled.
286          */
287         if (en == 1) {
288                 if (rdy == 0) {
289                         /* EN == 1, wait for  RDY == 1 or fail */
290                         err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
291                         if (err != 0)
292                                 return (err);
293                 }
294         } else {
295                 /* EN == 0 already wait for RDY == 0 */
296                 if (rdy == 0)
297                         return (0);
298                 else
299                         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
300         }
301
302         cc &= ~NVME_CC_REG_EN_MASK;
303         nvme_mmio_write_4(ctrlr, cc, cc);
304         /*
305          * Some drives have issues with accessing the mmio after we
306          * disable, so delay for a bit after we write the bit to
307          * cope with these issues.
308          */
309         if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
310                 pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000);
311         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
312 }
313
314 static int
315 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
316 {
317         uint32_t        cc;
318         uint32_t        csts;
319         uint32_t        aqa;
320         uint32_t        qsize;
321         uint8_t         en, rdy;
322         int             err;
323
324         cc = nvme_mmio_read_4(ctrlr, cc);
325         csts = nvme_mmio_read_4(ctrlr, csts);
326
327         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
328         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
329
330         /*
331          * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
332          */
333         if (en == 1) {
334                 if (rdy == 1)
335                         return (0);
336                 else
337                         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
338         } else {
339                 /* EN == 0 already wait for RDY == 0 or fail */
340                 err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
341                 if (err != 0)
342                         return (err);
343         }
344
345         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
346         DELAY(5000);
347         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
348         DELAY(5000);
349
350         /* acqs and asqs are 0-based. */
351         qsize = ctrlr->adminq.num_entries - 1;
352
353         aqa = 0;
354         aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
355         aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
356         nvme_mmio_write_4(ctrlr, aqa, aqa);
357         DELAY(5000);
358
359         /* Initialization values for CC */
360         cc = 0;
361         cc |= 1 << NVME_CC_REG_EN_SHIFT;
362         cc |= 0 << NVME_CC_REG_CSS_SHIFT;
363         cc |= 0 << NVME_CC_REG_AMS_SHIFT;
364         cc |= 0 << NVME_CC_REG_SHN_SHIFT;
365         cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
366         cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
367
368         /* This evaluates to 0, which is according to spec. */
369         cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT;
370
371         nvme_mmio_write_4(ctrlr, cc, cc);
372
373         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
374 }
375
376 int
377 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
378 {
379         int i, err;
380
381         nvme_admin_qpair_disable(&ctrlr->adminq);
382         /*
383          * I/O queues are not allocated before the initial HW
384          *  reset, so do not try to disable them.  Use is_initialized
385          *  to determine if this is the initial HW reset.
386          */
387         if (ctrlr->is_initialized) {
388                 for (i = 0; i < ctrlr->num_io_queues; i++)
389                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
390         }
391
392         DELAY(100*1000);
393
394         err = nvme_ctrlr_disable(ctrlr);
395         if (err != 0)
396                 return err;
397         return (nvme_ctrlr_enable(ctrlr));
398 }
399
400 void
401 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
402 {
403         int cmpset;
404
405         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
406
407         if (cmpset == 0 || ctrlr->is_failed)
408                 /*
409                  * Controller is already resetting or has failed.  Return
410                  *  immediately since there is no need to kick off another
411                  *  reset in these cases.
412                  */
413                 return;
414
415         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
416 }
417
418 static int
419 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
420 {
421         struct nvme_completion_poll_status      status;
422
423         status.done = 0;
424         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
425             nvme_completion_poll_cb, &status);
426         while (!atomic_load_acq_int(&status.done))
427                 pause("nvme", 1);
428         if (nvme_completion_is_error(&status.cpl)) {
429                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
430                 return (ENXIO);
431         }
432
433         /* Convert data to host endian */
434         nvme_controller_data_swapbytes(&ctrlr->cdata);
435
436         /*
437          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
438          *  controller supports.
439          */
440         if (ctrlr->cdata.mdts > 0)
441                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
442                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
443
444         return (0);
445 }
446
447 static int
448 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
449 {
450         struct nvme_completion_poll_status      status;
451         int                                     cq_allocated, sq_allocated;
452
453         status.done = 0;
454         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
455             nvme_completion_poll_cb, &status);
456         while (!atomic_load_acq_int(&status.done))
457                 pause("nvme", 1);
458         if (nvme_completion_is_error(&status.cpl)) {
459                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
460                 return (ENXIO);
461         }
462
463         /*
464          * Data in cdw0 is 0-based.
465          * Lower 16-bits indicate number of submission queues allocated.
466          * Upper 16-bits indicate number of completion queues allocated.
467          */
468         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
469         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
470
471         /*
472          * Controller may allocate more queues than we requested,
473          *  so use the minimum of the number requested and what was
474          *  actually allocated.
475          */
476         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
477         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
478
479         return (0);
480 }
481
482 static int
483 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
484 {
485         struct nvme_completion_poll_status      status;
486         struct nvme_qpair                       *qpair;
487         int                                     i;
488
489         for (i = 0; i < ctrlr->num_io_queues; i++) {
490                 qpair = &ctrlr->ioq[i];
491
492                 status.done = 0;
493                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
494                     nvme_completion_poll_cb, &status);
495                 while (!atomic_load_acq_int(&status.done))
496                         pause("nvme", 1);
497                 if (nvme_completion_is_error(&status.cpl)) {
498                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
499                         return (ENXIO);
500                 }
501
502                 status.done = 0;
503                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
504                     nvme_completion_poll_cb, &status);
505                 while (!atomic_load_acq_int(&status.done))
506                         pause("nvme", 1);
507                 if (nvme_completion_is_error(&status.cpl)) {
508                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
509                         return (ENXIO);
510                 }
511         }
512
513         return (0);
514 }
515
516 static int
517 nvme_ctrlr_destroy_qpair(struct nvme_controller *ctrlr, struct nvme_qpair *qpair)
518 {
519         struct nvme_completion_poll_status      status;
520
521         status.done = 0;
522         nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
523             nvme_completion_poll_cb, &status);
524         while (!atomic_load_acq_int(&status.done))
525                 pause("nvme", 1);
526         if (nvme_completion_is_error(&status.cpl)) {
527                 nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
528                 return (ENXIO);
529         }
530
531         status.done = 0;
532         nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
533             nvme_completion_poll_cb, &status);
534         while (!atomic_load_acq_int(&status.done))
535                 pause("nvme", 1);
536         if (nvme_completion_is_error(&status.cpl)) {
537                 nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
538                 return (ENXIO);
539         }
540
541         return (0);
542 }
543
544 static int
545 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
546 {
547         struct nvme_namespace   *ns;
548         uint32_t                i;
549
550         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
551                 ns = &ctrlr->ns[i];
552                 nvme_ns_construct(ns, i+1, ctrlr);
553         }
554
555         return (0);
556 }
557
558 static boolean_t
559 is_log_page_id_valid(uint8_t page_id)
560 {
561
562         switch (page_id) {
563         case NVME_LOG_ERROR:
564         case NVME_LOG_HEALTH_INFORMATION:
565         case NVME_LOG_FIRMWARE_SLOT:
566                 return (TRUE);
567         }
568
569         return (FALSE);
570 }
571
572 static uint32_t
573 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
574 {
575         uint32_t        log_page_size;
576
577         switch (page_id) {
578         case NVME_LOG_ERROR:
579                 log_page_size = min(
580                     sizeof(struct nvme_error_information_entry) *
581                     (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
582                 break;
583         case NVME_LOG_HEALTH_INFORMATION:
584                 log_page_size = sizeof(struct nvme_health_information_page);
585                 break;
586         case NVME_LOG_FIRMWARE_SLOT:
587                 log_page_size = sizeof(struct nvme_firmware_page);
588                 break;
589         default:
590                 log_page_size = 0;
591                 break;
592         }
593
594         return (log_page_size);
595 }
596
597 static void
598 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
599     uint8_t state)
600 {
601
602         if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
603                 nvme_printf(ctrlr, "available spare space below threshold\n");
604
605         if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
606                 nvme_printf(ctrlr, "temperature above threshold\n");
607
608         if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
609                 nvme_printf(ctrlr, "device reliability degraded\n");
610
611         if (state & NVME_CRIT_WARN_ST_READ_ONLY)
612                 nvme_printf(ctrlr, "media placed in read only mode\n");
613
614         if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
615                 nvme_printf(ctrlr, "volatile memory backup device failed\n");
616
617         if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
618                 nvme_printf(ctrlr,
619                     "unknown critical warning(s): state = 0x%02x\n", state);
620 }
621
622 static void
623 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
624 {
625         struct nvme_async_event_request         *aer = arg;
626         struct nvme_health_information_page     *health_info;
627         struct nvme_error_information_entry     *err;
628         int i;
629
630         /*
631          * If the log page fetch for some reason completed with an error,
632          *  don't pass log page data to the consumers.  In practice, this case
633          *  should never happen.
634          */
635         if (nvme_completion_is_error(cpl))
636                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
637                     aer->log_page_id, NULL, 0);
638         else {
639                 /* Convert data to host endian */
640                 switch (aer->log_page_id) {
641                 case NVME_LOG_ERROR:
642                         err = (struct nvme_error_information_entry *)aer->log_page_buffer;
643                         for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
644                                 nvme_error_information_entry_swapbytes(err++);
645                         break;
646                 case NVME_LOG_HEALTH_INFORMATION:
647                         nvme_health_information_page_swapbytes(
648                             (struct nvme_health_information_page *)aer->log_page_buffer);
649                         break;
650                 case NVME_LOG_FIRMWARE_SLOT:
651                         nvme_firmware_page_swapbytes(
652                             (struct nvme_firmware_page *)aer->log_page_buffer);
653                         break;
654                 case INTEL_LOG_TEMP_STATS:
655                         intel_log_temp_stats_swapbytes(
656                             (struct intel_log_temp_stats *)aer->log_page_buffer);
657                         break;
658                 default:
659                         break;
660                 }
661
662                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
663                         health_info = (struct nvme_health_information_page *)
664                             aer->log_page_buffer;
665                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
666                             health_info->critical_warning);
667                         /*
668                          * Critical warnings reported through the
669                          *  SMART/health log page are persistent, so
670                          *  clear the associated bits in the async event
671                          *  config so that we do not receive repeated
672                          *  notifications for the same event.
673                          */
674                         aer->ctrlr->async_event_config &=
675                             ~health_info->critical_warning;
676                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
677                             aer->ctrlr->async_event_config, NULL, NULL);
678                 }
679
680
681                 /*
682                  * Pass the cpl data from the original async event completion,
683                  *  not the log page fetch.
684                  */
685                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
686                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
687         }
688
689         /*
690          * Repost another asynchronous event request to replace the one
691          *  that just completed.
692          */
693         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
694 }
695
696 static void
697 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
698 {
699         struct nvme_async_event_request *aer = arg;
700
701         if (nvme_completion_is_error(cpl)) {
702                 /*
703                  *  Do not retry failed async event requests.  This avoids
704                  *  infinite loops where a new async event request is submitted
705                  *  to replace the one just failed, only to fail again and
706                  *  perpetuate the loop.
707                  */
708                 return;
709         }
710
711         /* Associated log page is in bits 23:16 of completion entry dw0. */
712         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
713
714         nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
715             aer->log_page_id);
716
717         if (is_log_page_id_valid(aer->log_page_id)) {
718                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
719                     aer->log_page_id);
720                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
721                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
722                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
723                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
724                     aer);
725                 /* Wait to notify consumers until after log page is fetched. */
726         } else {
727                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
728                     NULL, 0);
729
730                 /*
731                  * Repost another asynchronous event request to replace the one
732                  *  that just completed.
733                  */
734                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
735         }
736 }
737
738 static void
739 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
740     struct nvme_async_event_request *aer)
741 {
742         struct nvme_request *req;
743
744         aer->ctrlr = ctrlr;
745         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
746         aer->req = req;
747
748         /*
749          * Disable timeout here, since asynchronous event requests should by
750          *  nature never be timed out.
751          */
752         req->timeout = FALSE;
753         req->cmd.opc_fuse = NVME_CMD_SET_OPC(NVME_OPC_ASYNC_EVENT_REQUEST);
754         nvme_ctrlr_submit_admin_request(ctrlr, req);
755 }
756
757 static void
758 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
759 {
760         struct nvme_completion_poll_status      status;
761         struct nvme_async_event_request         *aer;
762         uint32_t                                i;
763
764         ctrlr->async_event_config = 0xFF;
765         ctrlr->async_event_config &= ~NVME_CRIT_WARN_ST_RESERVED_MASK;
766
767         status.done = 0;
768         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
769             0, NULL, 0, nvme_completion_poll_cb, &status);
770         while (!atomic_load_acq_int(&status.done))
771                 pause("nvme", 1);
772         if (nvme_completion_is_error(&status.cpl) ||
773             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
774             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
775                 nvme_printf(ctrlr, "temperature threshold not supported\n");
776                 ctrlr->async_event_config &= ~NVME_CRIT_WARN_ST_TEMPERATURE;
777         }
778
779         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
780             ctrlr->async_event_config, NULL, NULL);
781
782         /* aerl is a zero-based value, so we need to add 1 here. */
783         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
784
785         for (i = 0; i < ctrlr->num_aers; i++) {
786                 aer = &ctrlr->aer[i];
787                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
788         }
789 }
790
791 static void
792 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
793 {
794
795         ctrlr->int_coal_time = 0;
796         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
797             &ctrlr->int_coal_time);
798
799         ctrlr->int_coal_threshold = 0;
800         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
801             &ctrlr->int_coal_threshold);
802
803         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
804             ctrlr->int_coal_threshold, NULL, NULL);
805 }
806
807 static void
808 nvme_ctrlr_start(void *ctrlr_arg)
809 {
810         struct nvme_controller *ctrlr = ctrlr_arg;
811         uint32_t old_num_io_queues;
812         int i;
813
814         /*
815          * Only reset adminq here when we are restarting the
816          *  controller after a reset.  During initialization,
817          *  we have already submitted admin commands to get
818          *  the number of I/O queues supported, so cannot reset
819          *  the adminq again here.
820          */
821         if (ctrlr->is_resetting) {
822                 nvme_qpair_reset(&ctrlr->adminq);
823         }
824
825         for (i = 0; i < ctrlr->num_io_queues; i++)
826                 nvme_qpair_reset(&ctrlr->ioq[i]);
827
828         nvme_admin_qpair_enable(&ctrlr->adminq);
829
830         if (nvme_ctrlr_identify(ctrlr) != 0) {
831                 nvme_ctrlr_fail(ctrlr);
832                 return;
833         }
834
835         /*
836          * The number of qpairs are determined during controller initialization,
837          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
838          *  HW limit.  We call SET_FEATURES again here so that it gets called
839          *  after any reset for controllers that depend on the driver to
840          *  explicit specify how many queues it will use.  This value should
841          *  never change between resets, so panic if somehow that does happen.
842          */
843         if (ctrlr->is_resetting) {
844                 old_num_io_queues = ctrlr->num_io_queues;
845                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
846                         nvme_ctrlr_fail(ctrlr);
847                         return;
848                 }
849
850                 if (old_num_io_queues != ctrlr->num_io_queues) {
851                         panic("num_io_queues changed from %u to %u",
852                               old_num_io_queues, ctrlr->num_io_queues);
853                 }
854         }
855
856         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
857                 nvme_ctrlr_fail(ctrlr);
858                 return;
859         }
860
861         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
862                 nvme_ctrlr_fail(ctrlr);
863                 return;
864         }
865
866         nvme_ctrlr_configure_aer(ctrlr);
867         nvme_ctrlr_configure_int_coalescing(ctrlr);
868
869         for (i = 0; i < ctrlr->num_io_queues; i++)
870                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
871 }
872
873 void
874 nvme_ctrlr_start_config_hook(void *arg)
875 {
876         struct nvme_controller *ctrlr = arg;
877
878         nvme_qpair_reset(&ctrlr->adminq);
879         nvme_admin_qpair_enable(&ctrlr->adminq);
880
881         if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
882             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
883                 nvme_ctrlr_start(ctrlr);
884         else
885                 nvme_ctrlr_fail(ctrlr);
886
887         nvme_sysctl_initialize_ctrlr(ctrlr);
888         config_intrhook_disestablish(&ctrlr->config_hook);
889
890         ctrlr->is_initialized = 1;
891         nvme_notify_new_controller(ctrlr);
892 }
893
894 static void
895 nvme_ctrlr_reset_task(void *arg, int pending)
896 {
897         struct nvme_controller  *ctrlr = arg;
898         int                     status;
899
900         nvme_printf(ctrlr, "resetting controller\n");
901         status = nvme_ctrlr_hw_reset(ctrlr);
902         /*
903          * Use pause instead of DELAY, so that we yield to any nvme interrupt
904          *  handlers on this CPU that were blocked on a qpair lock. We want
905          *  all nvme interrupts completed before proceeding with restarting the
906          *  controller.
907          *
908          * XXX - any way to guarantee the interrupt handlers have quiesced?
909          */
910         pause("nvmereset", hz / 10);
911         if (status == 0)
912                 nvme_ctrlr_start(ctrlr);
913         else
914                 nvme_ctrlr_fail(ctrlr);
915
916         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
917 }
918
919 /*
920  * Poll all the queues enabled on the device for completion.
921  */
922 void
923 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
924 {
925         int i;
926
927         nvme_qpair_process_completions(&ctrlr->adminq);
928
929         for (i = 0; i < ctrlr->num_io_queues; i++)
930                 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
931                         nvme_qpair_process_completions(&ctrlr->ioq[i]);
932 }
933
934 /*
935  * Poll the single-vector intertrupt case: num_io_queues will be 1 and
936  * there's only a single vector. While we're polling, we mask further
937  * interrupts in the controller.
938  */
939 void
940 nvme_ctrlr_intx_handler(void *arg)
941 {
942         struct nvme_controller *ctrlr = arg;
943
944         nvme_mmio_write_4(ctrlr, intms, 1);
945         nvme_ctrlr_poll(ctrlr);
946         nvme_mmio_write_4(ctrlr, intmc, 1);
947 }
948
949 static int
950 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
951 {
952
953         ctrlr->msix_enabled = 0;
954         ctrlr->num_io_queues = 1;
955         ctrlr->num_cpus_per_ioq = mp_ncpus;
956         ctrlr->rid = 0;
957         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
958             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
959
960         if (ctrlr->res == NULL) {
961                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
962                 return (ENOMEM);
963         }
964
965         bus_setup_intr(ctrlr->dev, ctrlr->res,
966             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
967             ctrlr, &ctrlr->tag);
968
969         if (ctrlr->tag == NULL) {
970                 nvme_printf(ctrlr, "unable to setup intx handler\n");
971                 return (ENOMEM);
972         }
973
974         return (0);
975 }
976
977 static void
978 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
979 {
980         struct nvme_pt_command *pt = arg;
981         uint16_t status;
982
983         bzero(&pt->cpl, sizeof(pt->cpl));
984         pt->cpl.cdw0 = cpl->cdw0;
985
986         status = cpl->status;
987         status &= ~NVME_STATUS_P_MASK;
988         pt->cpl.status = status;
989
990         mtx_lock(pt->driver_lock);
991         wakeup(pt);
992         mtx_unlock(pt->driver_lock);
993 }
994
995 int
996 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
997     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
998     int is_admin_cmd)
999 {
1000         struct nvme_request     *req;
1001         struct mtx              *mtx;
1002         struct buf              *buf = NULL;
1003         int                     ret = 0;
1004         vm_offset_t             addr, end;
1005
1006         if (pt->len > 0) {
1007                 /*
1008                  * vmapbuf calls vm_fault_quick_hold_pages which only maps full
1009                  * pages. Ensure this request has fewer than MAXPHYS bytes when
1010                  * extended to full pages.
1011                  */
1012                 addr = (vm_offset_t)pt->buf;
1013                 end = round_page(addr + pt->len);
1014                 addr = trunc_page(addr);
1015                 if (end - addr > MAXPHYS)
1016                         return EIO;
1017
1018                 if (pt->len > ctrlr->max_xfer_size) {
1019                         nvme_printf(ctrlr, "pt->len (%d) "
1020                             "exceeds max_xfer_size (%d)\n", pt->len,
1021                             ctrlr->max_xfer_size);
1022                         return EIO;
1023                 }
1024                 if (is_user_buffer) {
1025                         /*
1026                          * Ensure the user buffer is wired for the duration of
1027                          *  this passthrough command.
1028                          */
1029                         PHOLD(curproc);
1030                         buf = getpbuf(NULL);
1031                         buf->b_data = pt->buf;
1032                         buf->b_bufsize = pt->len;
1033                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1034 #ifdef NVME_UNMAPPED_BIO_SUPPORT
1035                         if (vmapbuf(buf, 1) < 0) {
1036 #else
1037                         if (vmapbuf(buf) < 0) {
1038 #endif
1039                                 ret = EFAULT;
1040                                 goto err;
1041                         }
1042                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
1043                             nvme_pt_done, pt);
1044                 } else
1045                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1046                             nvme_pt_done, pt);
1047         } else
1048                 req = nvme_allocate_request_null(nvme_pt_done, pt);
1049
1050         /* Assume userspace already converted to little-endian */
1051         req->cmd.opc_fuse = pt->cmd.opc_fuse;
1052         req->cmd.cdw10 = pt->cmd.cdw10;
1053         req->cmd.cdw11 = pt->cmd.cdw11;
1054         req->cmd.cdw12 = pt->cmd.cdw12;
1055         req->cmd.cdw13 = pt->cmd.cdw13;
1056         req->cmd.cdw14 = pt->cmd.cdw14;
1057         req->cmd.cdw15 = pt->cmd.cdw15;
1058
1059         req->cmd.nsid = htole32(nsid);
1060
1061         if (is_admin_cmd)
1062                 mtx = &ctrlr->lock;
1063         else {
1064                 KASSERT((nsid-1) >= 0 && (nsid-1) < NVME_MAX_NAMESPACES,
1065                     ("%s: invalid namespace ID %d\n", __func__, nsid));
1066                 mtx = &ctrlr->ns[nsid-1].lock;
1067         }
1068
1069         mtx_lock(mtx);
1070         pt->driver_lock = mtx;
1071
1072         if (is_admin_cmd)
1073                 nvme_ctrlr_submit_admin_request(ctrlr, req);
1074         else
1075                 nvme_ctrlr_submit_io_request(ctrlr, req);
1076
1077         mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1078         mtx_unlock(mtx);
1079
1080         pt->driver_lock = NULL;
1081
1082 err:
1083         if (buf != NULL) {
1084                 relpbuf(buf, NULL);
1085                 PRELE(curproc);
1086         }
1087
1088         return (ret);
1089 }
1090
1091 static int
1092 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1093     struct thread *td)
1094 {
1095         struct nvme_controller                  *ctrlr;
1096         struct nvme_pt_command                  *pt;
1097
1098         ctrlr = cdev->si_drv1;
1099
1100         switch (cmd) {
1101         case NVME_RESET_CONTROLLER:
1102                 nvme_ctrlr_reset(ctrlr);
1103                 break;
1104         case NVME_PASSTHROUGH_CMD:
1105                 pt = (struct nvme_pt_command *)arg;
1106                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1107                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1108         default:
1109                 return (ENOTTY);
1110         }
1111
1112         return (0);
1113 }
1114
1115 static struct cdevsw nvme_ctrlr_cdevsw = {
1116         .d_version =    D_VERSION,
1117         .d_flags =      0,
1118         .d_ioctl =      nvme_ctrlr_ioctl
1119 };
1120
1121 static void
1122 nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr)
1123 {
1124         device_t        dev;
1125         int             per_cpu_io_queues;
1126         int             min_cpus_per_ioq;
1127         int             num_vectors_requested, num_vectors_allocated;
1128         int             num_vectors_available;
1129
1130         dev = ctrlr->dev;
1131         min_cpus_per_ioq = 1;
1132         TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq);
1133
1134         if (min_cpus_per_ioq < 1) {
1135                 min_cpus_per_ioq = 1;
1136         } else if (min_cpus_per_ioq > mp_ncpus) {
1137                 min_cpus_per_ioq = mp_ncpus;
1138         }
1139
1140         per_cpu_io_queues = 1;
1141         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1142
1143         if (per_cpu_io_queues == 0) {
1144                 min_cpus_per_ioq = mp_ncpus;
1145         }
1146
1147         ctrlr->force_intx = 0;
1148         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1149
1150         /*
1151          * FreeBSD currently cannot allocate more than about 190 vectors at
1152          *  boot, meaning that systems with high core count and many devices
1153          *  requesting per-CPU interrupt vectors will not get their full
1154          *  allotment.  So first, try to allocate as many as we may need to
1155          *  understand what is available, then immediately release them.
1156          *  Then figure out how many of those we will actually use, based on
1157          *  assigning an equal number of cores to each I/O queue.
1158          */
1159
1160         /* One vector for per core I/O queue, plus one vector for admin queue. */
1161         num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1);
1162         if (pci_alloc_msix(dev, &num_vectors_available) != 0) {
1163                 num_vectors_available = 0;
1164         }
1165         pci_release_msi(dev);
1166
1167         if (ctrlr->force_intx || num_vectors_available < 2) {
1168                 nvme_ctrlr_configure_intx(ctrlr);
1169                 return;
1170         }
1171
1172         /*
1173          * Do not use all vectors for I/O queues - one must be saved for the
1174          *  admin queue.
1175          */
1176         ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq,
1177             howmany(mp_ncpus, num_vectors_available - 1));
1178
1179         ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq);
1180         num_vectors_requested = ctrlr->num_io_queues + 1;
1181         num_vectors_allocated = num_vectors_requested;
1182
1183         /*
1184          * Now just allocate the number of vectors we need.  This should
1185          *  succeed, since we previously called pci_alloc_msix()
1186          *  successfully returning at least this many vectors, but just to
1187          *  be safe, if something goes wrong just revert to INTx.
1188          */
1189         if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
1190                 nvme_ctrlr_configure_intx(ctrlr);
1191                 return;
1192         }
1193
1194         if (num_vectors_allocated < num_vectors_requested) {
1195                 pci_release_msi(dev);
1196                 nvme_ctrlr_configure_intx(ctrlr);
1197                 return;
1198         }
1199
1200         ctrlr->msix_enabled = 1;
1201 }
1202
1203 int
1204 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1205 {
1206         uint32_t        cap_lo;
1207         uint32_t        cap_hi;
1208         uint8_t         to;
1209         uint8_t         dstrd;
1210         uint8_t         mpsmin;
1211         int             status, timeout_period;
1212
1213         ctrlr->dev = dev;
1214
1215         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1216
1217         status = nvme_ctrlr_allocate_bar(ctrlr);
1218
1219         if (status != 0)
1220                 return (status);
1221
1222         /*
1223          * Software emulators may set the doorbell stride to something
1224          *  other than zero, but this driver is not set up to handle that.
1225          */
1226         cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1227         dstrd = (cap_hi >> NVME_CAP_HI_REG_DSTRD_SHIFT) & NVME_CAP_HI_REG_DSTRD_MASK;
1228         if (dstrd != 0)
1229                 return (ENXIO);
1230
1231         mpsmin = (cap_hi >> NVME_CAP_HI_REG_MPSMIN_SHIFT) & NVME_CAP_HI_REG_MPSMIN_MASK;
1232         ctrlr->min_page_size = 1 << (12 + mpsmin);
1233
1234         /* Get ready timeout value from controller, in units of 500ms. */
1235         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1236         to = (cap_lo >> NVME_CAP_LO_REG_TO_SHIFT) & NVME_CAP_LO_REG_TO_MASK;
1237         ctrlr->ready_timeout_in_ms = to * 500;
1238
1239         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1240         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1241         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1242         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1243         ctrlr->timeout_period = timeout_period;
1244
1245         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1246         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1247
1248         ctrlr->enable_aborts = 0;
1249         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1250
1251         nvme_ctrlr_setup_interrupts(ctrlr);
1252
1253         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1254         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1255                 return (ENXIO);
1256
1257         ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1258             UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1259
1260         if (ctrlr->cdev == NULL)
1261                 return (ENXIO);
1262
1263         ctrlr->cdev->si_drv1 = (void *)ctrlr;
1264
1265         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1266             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1267         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1268
1269         ctrlr->is_resetting = 0;
1270         ctrlr->is_initialized = 0;
1271         ctrlr->notification_sent = 0;
1272         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1273
1274         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1275         STAILQ_INIT(&ctrlr->fail_req);
1276         ctrlr->is_failed = FALSE;
1277
1278         return (0);
1279 }
1280
1281 void
1282 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1283 {
1284         int                             i;
1285
1286         /*
1287          *  Notify the controller of a shutdown, even though this is due to
1288          *   a driver unload, not a system shutdown (this path is not invoked
1289          *   during shutdown).  This ensures the controller receives a
1290          *   shutdown notification in case the system is shutdown before
1291          *   reloading the driver.
1292          */
1293         nvme_ctrlr_shutdown(ctrlr);
1294
1295         nvme_ctrlr_disable(ctrlr);
1296         taskqueue_free(ctrlr->taskqueue);
1297
1298         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1299                 nvme_ns_destruct(&ctrlr->ns[i]);
1300
1301         if (ctrlr->cdev)
1302                 destroy_dev(ctrlr->cdev);
1303
1304         for (i = 0; i < ctrlr->num_io_queues; i++) {
1305                 nvme_ctrlr_destroy_qpair(ctrlr, &ctrlr->ioq[i]);
1306                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1307         }
1308
1309         free(ctrlr->ioq, M_NVME);
1310
1311         nvme_admin_qpair_destroy(&ctrlr->adminq);
1312
1313         if (ctrlr->resource != NULL) {
1314                 bus_release_resource(dev, SYS_RES_MEMORY,
1315                     ctrlr->resource_id, ctrlr->resource);
1316         }
1317
1318         if (ctrlr->bar4_resource != NULL) {
1319                 bus_release_resource(dev, SYS_RES_MEMORY,
1320                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1321         }
1322
1323         if (ctrlr->tag)
1324                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1325
1326         if (ctrlr->res)
1327                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1328                     rman_get_rid(ctrlr->res), ctrlr->res);
1329
1330         if (ctrlr->msix_enabled)
1331                 pci_release_msi(dev);
1332 }
1333
1334 void
1335 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1336 {
1337         uint32_t        cc;
1338         uint32_t        csts;
1339         int             ticks = 0;
1340
1341         cc = nvme_mmio_read_4(ctrlr, cc);
1342         cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1343         cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1344         nvme_mmio_write_4(ctrlr, cc, cc);
1345
1346         csts = nvme_mmio_read_4(ctrlr, csts);
1347         while ((NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1348                 pause("nvme shn", 1);
1349                 csts = nvme_mmio_read_4(ctrlr, csts);
1350         }
1351         if (NVME_CSTS_GET_SHST(csts) != NVME_SHST_COMPLETE)
1352                 nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1353                     "of notification\n");
1354 }
1355
1356 void
1357 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1358     struct nvme_request *req)
1359 {
1360
1361         nvme_qpair_submit_request(&ctrlr->adminq, req);
1362 }
1363
1364 void
1365 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1366     struct nvme_request *req)
1367 {
1368         struct nvme_qpair       *qpair;
1369
1370         qpair = &ctrlr->ioq[curcpu / ctrlr->num_cpus_per_ioq];
1371         nvme_qpair_submit_request(qpair, req);
1372 }
1373
1374 device_t
1375 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1376 {
1377
1378         return (ctrlr->dev);
1379 }
1380
1381 const struct nvme_controller_data *
1382 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1383 {
1384
1385         return (&ctrlr->cdata);
1386 }