]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
Merge ^/vendor/llvm-libunwind/dist up to its last change, and resolve conflicts.
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_cam.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/buf.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/ioccom.h>
40 #include <sys/proc.h>
41 #include <sys/smp.h>
42 #include <sys/uio.h>
43 #include <sys/endian.h>
44 #include <vm/vm.h>
45
46 #include "nvme_private.h"
47
48 #define B4_CHK_RDY_DELAY_MS     2300            /* work around controller bug */
49
50 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
51                                                 struct nvme_async_event_request *aer);
52
53 static int
54 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
55 {
56         struct nvme_qpair       *qpair;
57         uint32_t                num_entries;
58         int                     error;
59
60         qpair = &ctrlr->adminq;
61         qpair->id = 0;
62         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
63         qpair->domain = ctrlr->domain;
64
65         num_entries = NVME_ADMIN_ENTRIES;
66         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
67         /*
68          * If admin_entries was overridden to an invalid value, revert it
69          *  back to our default value.
70          */
71         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
72             num_entries > NVME_MAX_ADMIN_ENTRIES) {
73                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
74                     "specified\n", num_entries);
75                 num_entries = NVME_ADMIN_ENTRIES;
76         }
77
78         /*
79          * The admin queue's max xfer size is treated differently than the
80          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
81          */
82         error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
83              ctrlr);
84         return (error);
85 }
86
87 #define QP(ctrlr, c)    ((c) * (ctrlr)->num_io_queues / mp_ncpus)
88
89 static int
90 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
91 {
92         struct nvme_qpair       *qpair;
93         uint32_t                cap_lo;
94         uint16_t                mqes;
95         int                     c, error, i, n;
96         int                     num_entries, num_trackers, max_entries;
97
98         /*
99          * NVMe spec sets a hard limit of 64K max entries, but devices may
100          * specify a smaller limit, so we need to check the MQES field in the
101          * capabilities register. We have to cap the number of entries to the
102          * current stride allows for in BAR 0/1, otherwise the remainder entries
103          * are inaccessable. MQES should reflect this, and this is just a
104          * fail-safe.
105          */
106         max_entries =
107             (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
108             (1 << (ctrlr->dstrd + 1));
109         num_entries = NVME_IO_ENTRIES;
110         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
111         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
112         mqes = NVME_CAP_LO_MQES(cap_lo);
113         num_entries = min(num_entries, mqes + 1);
114         num_entries = min(num_entries, max_entries);
115
116         num_trackers = NVME_IO_TRACKERS;
117         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
118
119         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
120         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
121         /*
122          * No need to have more trackers than entries in the submit queue.  Note
123          * also that for a queue size of N, we can only have (N-1) commands
124          * outstanding, hence the "-1" here.
125          */
126         num_trackers = min(num_trackers, (num_entries-1));
127
128         /*
129          * Our best estimate for the maximum number of I/Os that we should
130          * normally have in flight at one time. This should be viewed as a hint,
131          * not a hard limit and will need to be revisited when the upper layers
132          * of the storage system grows multi-queue support.
133          */
134         ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
135
136         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
137             M_NVME, M_ZERO | M_WAITOK);
138
139         for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
140                 qpair = &ctrlr->ioq[i];
141
142                 /*
143                  * Admin queue has ID=0. IO queues start at ID=1 -
144                  *  hence the 'i+1' here.
145                  */
146                 qpair->id = i + 1;
147                 if (ctrlr->num_io_queues > 1) {
148                         /* Find number of CPUs served by this queue. */
149                         for (n = 1; QP(ctrlr, c + n) == i; n++)
150                                 ;
151                         /* Shuffle multiple NVMe devices between CPUs. */
152                         qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
153                         qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
154                 } else {
155                         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
156                         qpair->domain = ctrlr->domain;
157                 }
158
159                 /*
160                  * For I/O queues, use the controller-wide max_xfer_size
161                  *  calculated in nvme_attach().
162                  */
163                 error = nvme_qpair_construct(qpair, num_entries, num_trackers,
164                     ctrlr);
165                 if (error)
166                         return (error);
167
168                 /*
169                  * Do not bother binding interrupts if we only have one I/O
170                  *  interrupt thread for this controller.
171                  */
172                 if (ctrlr->num_io_queues > 1)
173                         bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
174         }
175
176         return (0);
177 }
178
179 static void
180 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
181 {
182         int i;
183
184         ctrlr->is_failed = true;
185         nvme_admin_qpair_disable(&ctrlr->adminq);
186         nvme_qpair_fail(&ctrlr->adminq);
187         if (ctrlr->ioq != NULL) {
188                 for (i = 0; i < ctrlr->num_io_queues; i++) {
189                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
190                         nvme_qpair_fail(&ctrlr->ioq[i]);
191                 }
192         }
193         nvme_notify_fail_consumers(ctrlr);
194 }
195
196 void
197 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
198     struct nvme_request *req)
199 {
200
201         mtx_lock(&ctrlr->lock);
202         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
203         mtx_unlock(&ctrlr->lock);
204         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
205 }
206
207 static void
208 nvme_ctrlr_fail_req_task(void *arg, int pending)
209 {
210         struct nvme_controller  *ctrlr = arg;
211         struct nvme_request     *req;
212
213         mtx_lock(&ctrlr->lock);
214         while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
215                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
216                 mtx_unlock(&ctrlr->lock);
217                 nvme_qpair_manual_complete_request(req->qpair, req,
218                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
219                 mtx_lock(&ctrlr->lock);
220         }
221         mtx_unlock(&ctrlr->lock);
222 }
223
224 static int
225 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
226 {
227         int ms_waited;
228         uint32_t csts;
229
230         ms_waited = 0;
231         while (1) {
232                 csts = nvme_mmio_read_4(ctrlr, csts);
233                 if (csts == 0xffffffff)         /* Hot unplug. */
234                         return (ENXIO);
235                 if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK)
236                     == desired_val)
237                         break;
238                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
239                         nvme_printf(ctrlr, "controller ready did not become %d "
240                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
241                         return (ENXIO);
242                 }
243                 DELAY(1000);
244         }
245
246         return (0);
247 }
248
249 static int
250 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
251 {
252         uint32_t cc;
253         uint32_t csts;
254         uint8_t  en, rdy;
255         int err;
256
257         cc = nvme_mmio_read_4(ctrlr, cc);
258         csts = nvme_mmio_read_4(ctrlr, csts);
259
260         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
261         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
262
263         /*
264          * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
265          * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
266          * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
267          * isn't the desired value. Short circuit if we're already disabled.
268          */
269         if (en == 1) {
270                 if (rdy == 0) {
271                         /* EN == 1, wait for  RDY == 1 or fail */
272                         err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
273                         if (err != 0)
274                                 return (err);
275                 }
276         } else {
277                 /* EN == 0 already wait for RDY == 0 */
278                 if (rdy == 0)
279                         return (0);
280                 else
281                         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
282         }
283
284         cc &= ~NVME_CC_REG_EN_MASK;
285         nvme_mmio_write_4(ctrlr, cc, cc);
286         /*
287          * Some drives have issues with accessing the mmio after we
288          * disable, so delay for a bit after we write the bit to
289          * cope with these issues.
290          */
291         if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
292                 pause("nvmeR", B4_CHK_RDY_DELAY_MS * hz / 1000);
293         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
294 }
295
296 static int
297 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
298 {
299         uint32_t        cc;
300         uint32_t        csts;
301         uint32_t        aqa;
302         uint32_t        qsize;
303         uint8_t         en, rdy;
304         int             err;
305
306         cc = nvme_mmio_read_4(ctrlr, cc);
307         csts = nvme_mmio_read_4(ctrlr, csts);
308
309         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
310         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
311
312         /*
313          * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
314          */
315         if (en == 1) {
316                 if (rdy == 1)
317                         return (0);
318                 else
319                         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
320         } else {
321                 /* EN == 0 already wait for RDY == 0 or fail */
322                 err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
323                 if (err != 0)
324                         return (err);
325         }
326
327         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
328         DELAY(5000);
329         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
330         DELAY(5000);
331
332         /* acqs and asqs are 0-based. */
333         qsize = ctrlr->adminq.num_entries - 1;
334
335         aqa = 0;
336         aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
337         aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
338         nvme_mmio_write_4(ctrlr, aqa, aqa);
339         DELAY(5000);
340
341         /* Initialization values for CC */
342         cc = 0;
343         cc |= 1 << NVME_CC_REG_EN_SHIFT;
344         cc |= 0 << NVME_CC_REG_CSS_SHIFT;
345         cc |= 0 << NVME_CC_REG_AMS_SHIFT;
346         cc |= 0 << NVME_CC_REG_SHN_SHIFT;
347         cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
348         cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
349
350         /* This evaluates to 0, which is according to spec. */
351         cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT;
352
353         nvme_mmio_write_4(ctrlr, cc, cc);
354
355         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
356 }
357
358 static void
359 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
360 {
361         int i;
362
363         nvme_admin_qpair_disable(&ctrlr->adminq);
364         /*
365          * I/O queues are not allocated before the initial HW
366          *  reset, so do not try to disable them.  Use is_initialized
367          *  to determine if this is the initial HW reset.
368          */
369         if (ctrlr->is_initialized) {
370                 for (i = 0; i < ctrlr->num_io_queues; i++)
371                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
372         }
373 }
374
375 int
376 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
377 {
378         int err;
379
380         nvme_ctrlr_disable_qpairs(ctrlr);
381
382         DELAY(100*1000);
383
384         err = nvme_ctrlr_disable(ctrlr);
385         if (err != 0)
386                 return err;
387         return (nvme_ctrlr_enable(ctrlr));
388 }
389
390 void
391 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
392 {
393         int cmpset;
394
395         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
396
397         if (cmpset == 0 || ctrlr->is_failed)
398                 /*
399                  * Controller is already resetting or has failed.  Return
400                  *  immediately since there is no need to kick off another
401                  *  reset in these cases.
402                  */
403                 return;
404
405         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
406 }
407
408 static int
409 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
410 {
411         struct nvme_completion_poll_status      status;
412
413         status.done = 0;
414         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
415             nvme_completion_poll_cb, &status);
416         nvme_completion_poll(&status);
417         if (nvme_completion_is_error(&status.cpl)) {
418                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
419                 return (ENXIO);
420         }
421
422         /* Convert data to host endian */
423         nvme_controller_data_swapbytes(&ctrlr->cdata);
424
425         /*
426          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
427          *  controller supports.
428          */
429         if (ctrlr->cdata.mdts > 0)
430                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
431                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
432
433         return (0);
434 }
435
436 static int
437 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
438 {
439         struct nvme_completion_poll_status      status;
440         int                                     cq_allocated, sq_allocated;
441
442         status.done = 0;
443         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
444             nvme_completion_poll_cb, &status);
445         nvme_completion_poll(&status);
446         if (nvme_completion_is_error(&status.cpl)) {
447                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
448                 return (ENXIO);
449         }
450
451         /*
452          * Data in cdw0 is 0-based.
453          * Lower 16-bits indicate number of submission queues allocated.
454          * Upper 16-bits indicate number of completion queues allocated.
455          */
456         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
457         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
458
459         /*
460          * Controller may allocate more queues than we requested,
461          *  so use the minimum of the number requested and what was
462          *  actually allocated.
463          */
464         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
465         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
466         if (ctrlr->num_io_queues > vm_ndomains)
467                 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
468
469         return (0);
470 }
471
472 static int
473 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
474 {
475         struct nvme_completion_poll_status      status;
476         struct nvme_qpair                       *qpair;
477         int                                     i;
478
479         for (i = 0; i < ctrlr->num_io_queues; i++) {
480                 qpair = &ctrlr->ioq[i];
481
482                 status.done = 0;
483                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
484                     nvme_completion_poll_cb, &status);
485                 nvme_completion_poll(&status);
486                 if (nvme_completion_is_error(&status.cpl)) {
487                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
488                         return (ENXIO);
489                 }
490
491                 status.done = 0;
492                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
493                     nvme_completion_poll_cb, &status);
494                 nvme_completion_poll(&status);
495                 if (nvme_completion_is_error(&status.cpl)) {
496                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
497                         return (ENXIO);
498                 }
499         }
500
501         return (0);
502 }
503
504 static int
505 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
506 {
507         struct nvme_completion_poll_status      status;
508         struct nvme_qpair                       *qpair;
509
510         for (int i = 0; i < ctrlr->num_io_queues; i++) {
511                 qpair = &ctrlr->ioq[i];
512
513                 status.done = 0;
514                 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
515                     nvme_completion_poll_cb, &status);
516                 nvme_completion_poll(&status);
517                 if (nvme_completion_is_error(&status.cpl)) {
518                         nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
519                         return (ENXIO);
520                 }
521
522                 status.done = 0;
523                 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
524                     nvme_completion_poll_cb, &status);
525                 nvme_completion_poll(&status);
526                 if (nvme_completion_is_error(&status.cpl)) {
527                         nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
528                         return (ENXIO);
529                 }
530         }
531
532         return (0);
533 }
534
535 static int
536 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
537 {
538         struct nvme_namespace   *ns;
539         uint32_t                i;
540
541         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
542                 ns = &ctrlr->ns[i];
543                 nvme_ns_construct(ns, i+1, ctrlr);
544         }
545
546         return (0);
547 }
548
549 static bool
550 is_log_page_id_valid(uint8_t page_id)
551 {
552
553         switch (page_id) {
554         case NVME_LOG_ERROR:
555         case NVME_LOG_HEALTH_INFORMATION:
556         case NVME_LOG_FIRMWARE_SLOT:
557         case NVME_LOG_CHANGED_NAMESPACE:
558         case NVME_LOG_COMMAND_EFFECT:
559         case NVME_LOG_RES_NOTIFICATION:
560         case NVME_LOG_SANITIZE_STATUS:
561                 return (true);
562         }
563
564         return (false);
565 }
566
567 static uint32_t
568 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
569 {
570         uint32_t        log_page_size;
571
572         switch (page_id) {
573         case NVME_LOG_ERROR:
574                 log_page_size = min(
575                     sizeof(struct nvme_error_information_entry) *
576                     (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
577                 break;
578         case NVME_LOG_HEALTH_INFORMATION:
579                 log_page_size = sizeof(struct nvme_health_information_page);
580                 break;
581         case NVME_LOG_FIRMWARE_SLOT:
582                 log_page_size = sizeof(struct nvme_firmware_page);
583                 break;
584         case NVME_LOG_CHANGED_NAMESPACE:
585                 log_page_size = sizeof(struct nvme_ns_list);
586                 break;
587         case NVME_LOG_COMMAND_EFFECT:
588                 log_page_size = sizeof(struct nvme_command_effects_page);
589                 break;
590         case NVME_LOG_RES_NOTIFICATION:
591                 log_page_size = sizeof(struct nvme_res_notification_page);
592                 break;
593         case NVME_LOG_SANITIZE_STATUS:
594                 log_page_size = sizeof(struct nvme_sanitize_status_page);
595                 break;
596         default:
597                 log_page_size = 0;
598                 break;
599         }
600
601         return (log_page_size);
602 }
603
604 static void
605 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
606     uint8_t state)
607 {
608
609         if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
610                 nvme_printf(ctrlr, "available spare space below threshold\n");
611
612         if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
613                 nvme_printf(ctrlr, "temperature above threshold\n");
614
615         if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
616                 nvme_printf(ctrlr, "device reliability degraded\n");
617
618         if (state & NVME_CRIT_WARN_ST_READ_ONLY)
619                 nvme_printf(ctrlr, "media placed in read only mode\n");
620
621         if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
622                 nvme_printf(ctrlr, "volatile memory backup device failed\n");
623
624         if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
625                 nvme_printf(ctrlr,
626                     "unknown critical warning(s): state = 0x%02x\n", state);
627 }
628
629 static void
630 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
631 {
632         struct nvme_async_event_request         *aer = arg;
633         struct nvme_health_information_page     *health_info;
634         struct nvme_ns_list                     *nsl;
635         struct nvme_error_information_entry     *err;
636         int i;
637
638         /*
639          * If the log page fetch for some reason completed with an error,
640          *  don't pass log page data to the consumers.  In practice, this case
641          *  should never happen.
642          */
643         if (nvme_completion_is_error(cpl))
644                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
645                     aer->log_page_id, NULL, 0);
646         else {
647                 /* Convert data to host endian */
648                 switch (aer->log_page_id) {
649                 case NVME_LOG_ERROR:
650                         err = (struct nvme_error_information_entry *)aer->log_page_buffer;
651                         for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
652                                 nvme_error_information_entry_swapbytes(err++);
653                         break;
654                 case NVME_LOG_HEALTH_INFORMATION:
655                         nvme_health_information_page_swapbytes(
656                             (struct nvme_health_information_page *)aer->log_page_buffer);
657                         break;
658                 case NVME_LOG_FIRMWARE_SLOT:
659                         nvme_firmware_page_swapbytes(
660                             (struct nvme_firmware_page *)aer->log_page_buffer);
661                         break;
662                 case NVME_LOG_CHANGED_NAMESPACE:
663                         nvme_ns_list_swapbytes(
664                             (struct nvme_ns_list *)aer->log_page_buffer);
665                         break;
666                 case NVME_LOG_COMMAND_EFFECT:
667                         nvme_command_effects_page_swapbytes(
668                             (struct nvme_command_effects_page *)aer->log_page_buffer);
669                         break;
670                 case NVME_LOG_RES_NOTIFICATION:
671                         nvme_res_notification_page_swapbytes(
672                             (struct nvme_res_notification_page *)aer->log_page_buffer);
673                         break;
674                 case NVME_LOG_SANITIZE_STATUS:
675                         nvme_sanitize_status_page_swapbytes(
676                             (struct nvme_sanitize_status_page *)aer->log_page_buffer);
677                         break;
678                 case INTEL_LOG_TEMP_STATS:
679                         intel_log_temp_stats_swapbytes(
680                             (struct intel_log_temp_stats *)aer->log_page_buffer);
681                         break;
682                 default:
683                         break;
684                 }
685
686                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
687                         health_info = (struct nvme_health_information_page *)
688                             aer->log_page_buffer;
689                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
690                             health_info->critical_warning);
691                         /*
692                          * Critical warnings reported through the
693                          *  SMART/health log page are persistent, so
694                          *  clear the associated bits in the async event
695                          *  config so that we do not receive repeated
696                          *  notifications for the same event.
697                          */
698                         aer->ctrlr->async_event_config &=
699                             ~health_info->critical_warning;
700                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
701                             aer->ctrlr->async_event_config, NULL, NULL);
702                 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
703                     !nvme_use_nvd) {
704                         nsl = (struct nvme_ns_list *)aer->log_page_buffer;
705                         for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
706                                 if (nsl->ns[i] > NVME_MAX_NAMESPACES)
707                                         break;
708                                 nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
709                         }
710                 }
711
712
713                 /*
714                  * Pass the cpl data from the original async event completion,
715                  *  not the log page fetch.
716                  */
717                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
718                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
719         }
720
721         /*
722          * Repost another asynchronous event request to replace the one
723          *  that just completed.
724          */
725         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
726 }
727
728 static void
729 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
730 {
731         struct nvme_async_event_request *aer = arg;
732
733         if (nvme_completion_is_error(cpl)) {
734                 /*
735                  *  Do not retry failed async event requests.  This avoids
736                  *  infinite loops where a new async event request is submitted
737                  *  to replace the one just failed, only to fail again and
738                  *  perpetuate the loop.
739                  */
740                 return;
741         }
742
743         /* Associated log page is in bits 23:16 of completion entry dw0. */
744         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
745
746         nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
747             " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8,
748             aer->log_page_id);
749
750         if (is_log_page_id_valid(aer->log_page_id)) {
751                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
752                     aer->log_page_id);
753                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
754                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
755                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
756                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
757                     aer);
758                 /* Wait to notify consumers until after log page is fetched. */
759         } else {
760                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
761                     NULL, 0);
762
763                 /*
764                  * Repost another asynchronous event request to replace the one
765                  *  that just completed.
766                  */
767                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
768         }
769 }
770
771 static void
772 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
773     struct nvme_async_event_request *aer)
774 {
775         struct nvme_request *req;
776
777         aer->ctrlr = ctrlr;
778         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
779         aer->req = req;
780
781         /*
782          * Disable timeout here, since asynchronous event requests should by
783          *  nature never be timed out.
784          */
785         req->timeout = false;
786         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
787         nvme_ctrlr_submit_admin_request(ctrlr, req);
788 }
789
790 static void
791 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
792 {
793         struct nvme_completion_poll_status      status;
794         struct nvme_async_event_request         *aer;
795         uint32_t                                i;
796
797         ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
798             NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
799             NVME_CRIT_WARN_ST_READ_ONLY |
800             NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
801         if (ctrlr->cdata.ver >= NVME_REV(1, 2))
802                 ctrlr->async_event_config |= 0x300;
803
804         status.done = 0;
805         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
806             0, NULL, 0, nvme_completion_poll_cb, &status);
807         nvme_completion_poll(&status);
808         if (nvme_completion_is_error(&status.cpl) ||
809             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
810             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
811                 nvme_printf(ctrlr, "temperature threshold not supported\n");
812         } else
813                 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
814
815         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
816             ctrlr->async_event_config, NULL, NULL);
817
818         /* aerl is a zero-based value, so we need to add 1 here. */
819         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
820
821         for (i = 0; i < ctrlr->num_aers; i++) {
822                 aer = &ctrlr->aer[i];
823                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
824         }
825 }
826
827 static void
828 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
829 {
830
831         ctrlr->int_coal_time = 0;
832         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
833             &ctrlr->int_coal_time);
834
835         ctrlr->int_coal_threshold = 0;
836         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
837             &ctrlr->int_coal_threshold);
838
839         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
840             ctrlr->int_coal_threshold, NULL, NULL);
841 }
842
843 static void
844 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
845 {
846         struct nvme_hmb_chunk *hmbc;
847         int i;
848
849         if (ctrlr->hmb_desc_paddr) {
850                 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
851                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
852                     ctrlr->hmb_desc_map);
853                 ctrlr->hmb_desc_paddr = 0;
854         }
855         if (ctrlr->hmb_desc_tag) {
856                 bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
857                 ctrlr->hmb_desc_tag = NULL;
858         }
859         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
860                 hmbc = &ctrlr->hmb_chunks[i];
861                 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
862                 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
863                     hmbc->hmbc_map);
864         }
865         ctrlr->hmb_nchunks = 0;
866         if (ctrlr->hmb_tag) {
867                 bus_dma_tag_destroy(ctrlr->hmb_tag);
868                 ctrlr->hmb_tag = NULL;
869         }
870         if (ctrlr->hmb_chunks) {
871                 free(ctrlr->hmb_chunks, M_NVME);
872                 ctrlr->hmb_chunks = NULL;
873         }
874 }
875
876 static void
877 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
878 {
879         struct nvme_hmb_chunk *hmbc;
880         size_t pref, min, minc, size;
881         int err, i;
882         uint64_t max;
883
884         /* Limit HMB to 5% of RAM size per device by default. */
885         max = (uint64_t)physmem * PAGE_SIZE / 20;
886         TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
887
888         min = (long long unsigned)ctrlr->cdata.hmmin * 4096;
889         if (max == 0 || max < min)
890                 return;
891         pref = MIN((long long unsigned)ctrlr->cdata.hmpre * 4096, max);
892         minc = MAX(ctrlr->cdata.hmminds * 4096, PAGE_SIZE);
893         if (min > 0 && ctrlr->cdata.hmmaxd > 0)
894                 minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
895         ctrlr->hmb_chunk = pref;
896
897 again:
898         ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, PAGE_SIZE);
899         ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
900         if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
901                 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
902         ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
903             ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
904         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
905             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
906             ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
907         if (err != 0) {
908                 nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
909                 nvme_ctrlr_hmb_free(ctrlr);
910                 return;
911         }
912
913         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
914                 hmbc = &ctrlr->hmb_chunks[i];
915                 if (bus_dmamem_alloc(ctrlr->hmb_tag,
916                     (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
917                     &hmbc->hmbc_map)) {
918                         nvme_printf(ctrlr, "failed to alloc HMB\n");
919                         break;
920                 }
921                 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
922                     hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
923                     &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
924                         bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
925                             hmbc->hmbc_map);
926                         nvme_printf(ctrlr, "failed to load HMB\n");
927                         break;
928                 }
929                 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
930                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
931         }
932
933         if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
934             ctrlr->hmb_chunk / 2 >= minc) {
935                 ctrlr->hmb_nchunks = i;
936                 nvme_ctrlr_hmb_free(ctrlr);
937                 ctrlr->hmb_chunk /= 2;
938                 goto again;
939         }
940         ctrlr->hmb_nchunks = i;
941         if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
942                 nvme_ctrlr_hmb_free(ctrlr);
943                 return;
944         }
945
946         size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
947         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
948             16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
949             size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
950         if (err != 0) {
951                 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
952                 nvme_ctrlr_hmb_free(ctrlr);
953                 return;
954         }
955         if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
956             (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
957             &ctrlr->hmb_desc_map)) {
958                 nvme_printf(ctrlr, "failed to alloc HMB desc\n");
959                 nvme_ctrlr_hmb_free(ctrlr);
960                 return;
961         }
962         if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
963             ctrlr->hmb_desc_vaddr, size, nvme_single_map,
964             &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
965                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
966                     ctrlr->hmb_desc_map);
967                 nvme_printf(ctrlr, "failed to load HMB desc\n");
968                 nvme_ctrlr_hmb_free(ctrlr);
969                 return;
970         }
971
972         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
973                 ctrlr->hmb_desc_vaddr[i].addr =
974                     htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
975                 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / 4096);
976         }
977         bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
978             BUS_DMASYNC_PREWRITE);
979
980         nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
981             (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
982             / 1024 / 1024);
983 }
984
985 static void
986 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
987 {
988         struct nvme_completion_poll_status      status;
989         uint32_t cdw11;
990
991         cdw11 = 0;
992         if (enable)
993                 cdw11 |= 1;
994         if (memret)
995                 cdw11 |= 2;
996         status.done = 0;
997         nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
998             ctrlr->hmb_nchunks * ctrlr->hmb_chunk / 4096, ctrlr->hmb_desc_paddr,
999             ctrlr->hmb_desc_paddr >> 32, ctrlr->hmb_nchunks, NULL, 0,
1000             nvme_completion_poll_cb, &status);
1001         nvme_completion_poll(&status);
1002         if (nvme_completion_is_error(&status.cpl))
1003                 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1004 }
1005
1006 static void
1007 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1008 {
1009         struct nvme_controller *ctrlr = ctrlr_arg;
1010         uint32_t old_num_io_queues;
1011         int i;
1012
1013         /*
1014          * Only reset adminq here when we are restarting the
1015          *  controller after a reset.  During initialization,
1016          *  we have already submitted admin commands to get
1017          *  the number of I/O queues supported, so cannot reset
1018          *  the adminq again here.
1019          */
1020         if (resetting)
1021                 nvme_qpair_reset(&ctrlr->adminq);
1022
1023         for (i = 0; i < ctrlr->num_io_queues; i++)
1024                 nvme_qpair_reset(&ctrlr->ioq[i]);
1025
1026         nvme_admin_qpair_enable(&ctrlr->adminq);
1027
1028         if (nvme_ctrlr_identify(ctrlr) != 0) {
1029                 nvme_ctrlr_fail(ctrlr);
1030                 return;
1031         }
1032
1033         /*
1034          * The number of qpairs are determined during controller initialization,
1035          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1036          *  HW limit.  We call SET_FEATURES again here so that it gets called
1037          *  after any reset for controllers that depend on the driver to
1038          *  explicit specify how many queues it will use.  This value should
1039          *  never change between resets, so panic if somehow that does happen.
1040          */
1041         if (resetting) {
1042                 old_num_io_queues = ctrlr->num_io_queues;
1043                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1044                         nvme_ctrlr_fail(ctrlr);
1045                         return;
1046                 }
1047
1048                 if (old_num_io_queues != ctrlr->num_io_queues) {
1049                         panic("num_io_queues changed from %u to %u",
1050                               old_num_io_queues, ctrlr->num_io_queues);
1051                 }
1052         }
1053
1054         if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1055                 nvme_ctrlr_hmb_alloc(ctrlr);
1056                 if (ctrlr->hmb_nchunks > 0)
1057                         nvme_ctrlr_hmb_enable(ctrlr, true, false);
1058         } else if (ctrlr->hmb_nchunks > 0)
1059                 nvme_ctrlr_hmb_enable(ctrlr, true, true);
1060
1061         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1062                 nvme_ctrlr_fail(ctrlr);
1063                 return;
1064         }
1065
1066         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1067                 nvme_ctrlr_fail(ctrlr);
1068                 return;
1069         }
1070
1071         nvme_ctrlr_configure_aer(ctrlr);
1072         nvme_ctrlr_configure_int_coalescing(ctrlr);
1073
1074         for (i = 0; i < ctrlr->num_io_queues; i++)
1075                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
1076 }
1077
1078 void
1079 nvme_ctrlr_start_config_hook(void *arg)
1080 {
1081         struct nvme_controller *ctrlr = arg;
1082         int status;
1083
1084         /*
1085          * Reset controller twice to ensure we do a transition from cc.en==1 to
1086          * cc.en==0.  This is because we don't really know what status the
1087          * controller was left in when boot handed off to OS.  Linux doesn't do
1088          * this, however. If we adopt that policy, see also nvme_ctrlr_resume().
1089          */
1090         status = nvme_ctrlr_hw_reset(ctrlr);
1091         if (status != 0) {
1092                 nvme_ctrlr_fail(ctrlr);
1093                 return;
1094         }
1095
1096         status = nvme_ctrlr_hw_reset(ctrlr);
1097         if (status != 0) {
1098                 nvme_ctrlr_fail(ctrlr);
1099                 return;
1100         }
1101
1102         nvme_qpair_reset(&ctrlr->adminq);
1103         nvme_admin_qpair_enable(&ctrlr->adminq);
1104
1105         if (nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1106             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1107                 nvme_ctrlr_start(ctrlr, false);
1108         else
1109                 nvme_ctrlr_fail(ctrlr);
1110
1111         nvme_sysctl_initialize_ctrlr(ctrlr);
1112         config_intrhook_disestablish(&ctrlr->config_hook);
1113
1114         ctrlr->is_initialized = 1;
1115         nvme_notify_new_controller(ctrlr);
1116 }
1117
1118 static void
1119 nvme_ctrlr_reset_task(void *arg, int pending)
1120 {
1121         struct nvme_controller  *ctrlr = arg;
1122         int                     status;
1123
1124         nvme_printf(ctrlr, "resetting controller\n");
1125         status = nvme_ctrlr_hw_reset(ctrlr);
1126         /*
1127          * Use pause instead of DELAY, so that we yield to any nvme interrupt
1128          *  handlers on this CPU that were blocked on a qpair lock. We want
1129          *  all nvme interrupts completed before proceeding with restarting the
1130          *  controller.
1131          *
1132          * XXX - any way to guarantee the interrupt handlers have quiesced?
1133          */
1134         pause("nvmereset", hz / 10);
1135         if (status == 0)
1136                 nvme_ctrlr_start(ctrlr, true);
1137         else
1138                 nvme_ctrlr_fail(ctrlr);
1139
1140         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1141 }
1142
1143 /*
1144  * Poll all the queues enabled on the device for completion.
1145  */
1146 void
1147 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1148 {
1149         int i;
1150
1151         nvme_qpair_process_completions(&ctrlr->adminq);
1152
1153         for (i = 0; i < ctrlr->num_io_queues; i++)
1154                 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1155                         nvme_qpair_process_completions(&ctrlr->ioq[i]);
1156 }
1157
1158 /*
1159  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1160  * there's only a single vector. While we're polling, we mask further
1161  * interrupts in the controller.
1162  */
1163 void
1164 nvme_ctrlr_intx_handler(void *arg)
1165 {
1166         struct nvme_controller *ctrlr = arg;
1167
1168         nvme_mmio_write_4(ctrlr, intms, 1);
1169         nvme_ctrlr_poll(ctrlr);
1170         nvme_mmio_write_4(ctrlr, intmc, 1);
1171 }
1172
1173 static void
1174 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1175 {
1176         struct nvme_pt_command *pt = arg;
1177         struct mtx *mtx = pt->driver_lock;
1178         uint16_t status;
1179
1180         bzero(&pt->cpl, sizeof(pt->cpl));
1181         pt->cpl.cdw0 = cpl->cdw0;
1182
1183         status = cpl->status;
1184         status &= ~NVME_STATUS_P_MASK;
1185         pt->cpl.status = status;
1186
1187         mtx_lock(mtx);
1188         pt->driver_lock = NULL;
1189         wakeup(pt);
1190         mtx_unlock(mtx);
1191 }
1192
1193 int
1194 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1195     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1196     int is_admin_cmd)
1197 {
1198         struct nvme_request     *req;
1199         struct mtx              *mtx;
1200         struct buf              *buf = NULL;
1201         int                     ret = 0;
1202         vm_offset_t             addr, end;
1203
1204         if (pt->len > 0) {
1205                 /*
1206                  * vmapbuf calls vm_fault_quick_hold_pages which only maps full
1207                  * pages. Ensure this request has fewer than MAXPHYS bytes when
1208                  * extended to full pages.
1209                  */
1210                 addr = (vm_offset_t)pt->buf;
1211                 end = round_page(addr + pt->len);
1212                 addr = trunc_page(addr);
1213                 if (end - addr > MAXPHYS)
1214                         return EIO;
1215
1216                 if (pt->len > ctrlr->max_xfer_size) {
1217                         nvme_printf(ctrlr, "pt->len (%d) "
1218                             "exceeds max_xfer_size (%d)\n", pt->len,
1219                             ctrlr->max_xfer_size);
1220                         return EIO;
1221                 }
1222                 if (is_user_buffer) {
1223                         /*
1224                          * Ensure the user buffer is wired for the duration of
1225                          *  this pass-through command.
1226                          */
1227                         PHOLD(curproc);
1228                         buf = uma_zalloc(pbuf_zone, M_WAITOK);
1229                         buf->b_data = pt->buf;
1230                         buf->b_bufsize = pt->len;
1231                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1232                         if (vmapbuf(buf, 1) < 0) {
1233                                 ret = EFAULT;
1234                                 goto err;
1235                         }
1236                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
1237                             nvme_pt_done, pt);
1238                 } else
1239                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1240                             nvme_pt_done, pt);
1241         } else
1242                 req = nvme_allocate_request_null(nvme_pt_done, pt);
1243
1244         /* Assume user space already converted to little-endian */
1245         req->cmd.opc = pt->cmd.opc;
1246         req->cmd.fuse = pt->cmd.fuse;
1247         req->cmd.rsvd2 = pt->cmd.rsvd2;
1248         req->cmd.rsvd3 = pt->cmd.rsvd3;
1249         req->cmd.cdw10 = pt->cmd.cdw10;
1250         req->cmd.cdw11 = pt->cmd.cdw11;
1251         req->cmd.cdw12 = pt->cmd.cdw12;
1252         req->cmd.cdw13 = pt->cmd.cdw13;
1253         req->cmd.cdw14 = pt->cmd.cdw14;
1254         req->cmd.cdw15 = pt->cmd.cdw15;
1255
1256         req->cmd.nsid = htole32(nsid);
1257
1258         mtx = mtx_pool_find(mtxpool_sleep, pt);
1259         pt->driver_lock = mtx;
1260
1261         if (is_admin_cmd)
1262                 nvme_ctrlr_submit_admin_request(ctrlr, req);
1263         else
1264                 nvme_ctrlr_submit_io_request(ctrlr, req);
1265
1266         mtx_lock(mtx);
1267         while (pt->driver_lock != NULL)
1268                 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1269         mtx_unlock(mtx);
1270
1271 err:
1272         if (buf != NULL) {
1273                 uma_zfree(pbuf_zone, buf);
1274                 PRELE(curproc);
1275         }
1276
1277         return (ret);
1278 }
1279
1280 static int
1281 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1282     struct thread *td)
1283 {
1284         struct nvme_controller                  *ctrlr;
1285         struct nvme_pt_command                  *pt;
1286
1287         ctrlr = cdev->si_drv1;
1288
1289         switch (cmd) {
1290         case NVME_RESET_CONTROLLER:
1291                 nvme_ctrlr_reset(ctrlr);
1292                 break;
1293         case NVME_PASSTHROUGH_CMD:
1294                 pt = (struct nvme_pt_command *)arg;
1295                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1296                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1297         case NVME_GET_NSID:
1298         {
1299                 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1300                 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1301                     sizeof(gnsid->cdev));
1302                 gnsid->nsid = 0;
1303                 break;
1304         }
1305         default:
1306                 return (ENOTTY);
1307         }
1308
1309         return (0);
1310 }
1311
1312 static struct cdevsw nvme_ctrlr_cdevsw = {
1313         .d_version =    D_VERSION,
1314         .d_flags =      0,
1315         .d_ioctl =      nvme_ctrlr_ioctl
1316 };
1317
1318 int
1319 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1320 {
1321         struct make_dev_args    md_args;
1322         uint32_t        cap_lo;
1323         uint32_t        cap_hi;
1324         uint32_t        to;
1325         uint8_t         mpsmin;
1326         int             status, timeout_period;
1327
1328         ctrlr->dev = dev;
1329
1330         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1331         if (bus_get_domain(dev, &ctrlr->domain) != 0)
1332                 ctrlr->domain = 0;
1333
1334         cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1335         ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1336
1337         mpsmin = NVME_CAP_HI_MPSMIN(cap_hi);
1338         ctrlr->min_page_size = 1 << (12 + mpsmin);
1339
1340         /* Get ready timeout value from controller, in units of 500ms. */
1341         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1342         to = NVME_CAP_LO_TO(cap_lo) + 1;
1343         ctrlr->ready_timeout_in_ms = to * 500;
1344
1345         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1346         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1347         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1348         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1349         ctrlr->timeout_period = timeout_period;
1350
1351         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1352         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1353
1354         ctrlr->enable_aborts = 0;
1355         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1356
1357         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1358         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1359                 return (ENXIO);
1360
1361         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1362             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1363         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1364
1365         ctrlr->is_resetting = 0;
1366         ctrlr->is_initialized = 0;
1367         ctrlr->notification_sent = 0;
1368         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1369         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1370         STAILQ_INIT(&ctrlr->fail_req);
1371         ctrlr->is_failed = false;
1372
1373         make_dev_args_init(&md_args);
1374         md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1375         md_args.mda_uid = UID_ROOT;
1376         md_args.mda_gid = GID_WHEEL;
1377         md_args.mda_mode = 0600;
1378         md_args.mda_unit = device_get_unit(dev);
1379         md_args.mda_si_drv1 = (void *)ctrlr;
1380         status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1381             device_get_unit(dev));
1382         if (status != 0)
1383                 return (ENXIO);
1384
1385         return (0);
1386 }
1387
1388 void
1389 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1390 {
1391         int     gone, i;
1392
1393         if (ctrlr->resource == NULL)
1394                 goto nores;
1395
1396         /*
1397          * Check whether it is a hot unplug or a clean driver detach.
1398          * If device is not there any more, skip any shutdown commands.
1399          */
1400         gone = (nvme_mmio_read_4(ctrlr, csts) == 0xffffffff);
1401         if (gone)
1402                 nvme_ctrlr_fail(ctrlr);
1403         else
1404                 nvme_notify_fail_consumers(ctrlr);
1405
1406         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1407                 nvme_ns_destruct(&ctrlr->ns[i]);
1408
1409         if (ctrlr->cdev)
1410                 destroy_dev(ctrlr->cdev);
1411
1412         if (ctrlr->is_initialized) {
1413                 if (!gone) {
1414                         if (ctrlr->hmb_nchunks > 0)
1415                                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1416                         nvme_ctrlr_delete_qpairs(ctrlr);
1417                 }
1418                 for (i = 0; i < ctrlr->num_io_queues; i++)
1419                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1420                 free(ctrlr->ioq, M_NVME);
1421                 nvme_ctrlr_hmb_free(ctrlr);
1422                 nvme_admin_qpair_destroy(&ctrlr->adminq);
1423         }
1424
1425         /*
1426          *  Notify the controller of a shutdown, even though this is due to
1427          *   a driver unload, not a system shutdown (this path is not invoked
1428          *   during shutdown).  This ensures the controller receives a
1429          *   shutdown notification in case the system is shutdown before
1430          *   reloading the driver.
1431          */
1432         if (!gone)
1433                 nvme_ctrlr_shutdown(ctrlr);
1434
1435         if (!gone)
1436                 nvme_ctrlr_disable(ctrlr);
1437
1438         if (ctrlr->taskqueue)
1439                 taskqueue_free(ctrlr->taskqueue);
1440
1441         if (ctrlr->tag)
1442                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1443
1444         if (ctrlr->res)
1445                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1446                     rman_get_rid(ctrlr->res), ctrlr->res);
1447
1448         if (ctrlr->bar4_resource != NULL) {
1449                 bus_release_resource(dev, SYS_RES_MEMORY,
1450                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1451         }
1452
1453         bus_release_resource(dev, SYS_RES_MEMORY,
1454             ctrlr->resource_id, ctrlr->resource);
1455
1456 nores:
1457         mtx_destroy(&ctrlr->lock);
1458 }
1459
1460 void
1461 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1462 {
1463         uint32_t        cc;
1464         uint32_t        csts;
1465         int             ticks = 0;
1466
1467         cc = nvme_mmio_read_4(ctrlr, cc);
1468         cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1469         cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1470         nvme_mmio_write_4(ctrlr, cc, cc);
1471
1472         while (1) {
1473                 csts = nvme_mmio_read_4(ctrlr, csts);
1474                 if (csts == 0xffffffff)         /* Hot unplug. */
1475                         break;
1476                 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1477                         break;
1478                 if (ticks++ > 5*hz) {
1479                         nvme_printf(ctrlr, "did not complete shutdown within"
1480                             " 5 seconds of notification\n");
1481                         break;
1482                 }
1483                 pause("nvme shn", 1);
1484         }
1485 }
1486
1487 void
1488 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1489     struct nvme_request *req)
1490 {
1491
1492         nvme_qpair_submit_request(&ctrlr->adminq, req);
1493 }
1494
1495 void
1496 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1497     struct nvme_request *req)
1498 {
1499         struct nvme_qpair       *qpair;
1500
1501         qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1502         nvme_qpair_submit_request(qpair, req);
1503 }
1504
1505 device_t
1506 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1507 {
1508
1509         return (ctrlr->dev);
1510 }
1511
1512 const struct nvme_controller_data *
1513 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1514 {
1515
1516         return (&ctrlr->cdata);
1517 }
1518
1519 int
1520 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1521 {
1522         int to = hz;
1523
1524         /*
1525          * Can't touch failed controllers, so it's already suspended.
1526          */
1527         if (ctrlr->is_failed)
1528                 return (0);
1529
1530         /*
1531          * We don't want the reset taskqueue running, since it does similar
1532          * things, so prevent it from running after we start. Wait for any reset
1533          * that may have been started to complete. The reset process we follow
1534          * will ensure that any new I/O will queue and be given to the hardware
1535          * after we resume (though there should be none).
1536          */
1537         while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1538                 pause("nvmesusp", 1);
1539         if (to <= 0) {
1540                 nvme_printf(ctrlr,
1541                     "Competing reset task didn't finish. Try again later.\n");
1542                 return (EWOULDBLOCK);
1543         }
1544
1545         if (ctrlr->hmb_nchunks > 0)
1546                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1547
1548         /*
1549          * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1550          * delete the hardware I/O queues, and then shutdown. This properly
1551          * flushes any metadata the drive may have stored so it can survive
1552          * having its power removed and prevents the unsafe shutdown count from
1553          * incriminating. Once we delete the qpairs, we have to disable them
1554          * before shutting down. The delay is out of paranoia in
1555          * nvme_ctrlr_hw_reset, and is repeated here (though we should have no
1556          * pending I/O that the delay copes with).
1557          */
1558         nvme_ctrlr_delete_qpairs(ctrlr);
1559         nvme_ctrlr_disable_qpairs(ctrlr);
1560         DELAY(100*1000);
1561         nvme_ctrlr_shutdown(ctrlr);
1562
1563         return (0);
1564 }
1565
1566 int
1567 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1568 {
1569
1570         /*
1571          * Can't touch failed controllers, so nothing to do to resume.
1572          */
1573         if (ctrlr->is_failed)
1574                 return (0);
1575
1576         /*
1577          * Have to reset the hardware twice, just like we do on attach. See
1578          * nmve_attach() for why.
1579          */
1580         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1581                 goto fail;
1582         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1583                 goto fail;
1584
1585         /*
1586          * Now that we're reset the hardware, we can restart the controller. Any
1587          * I/O that was pending is requeued. Any admin commands are aborted with
1588          * an error. Once we've restarted, take the controller out of reset.
1589          */
1590         nvme_ctrlr_start(ctrlr, true);
1591         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1592
1593         return (0);
1594 fail:
1595         /*
1596          * Since we can't bring the controller out of reset, announce and fail
1597          * the controller. However, we have to return success for the resume
1598          * itself, due to questionable APIs.
1599          */
1600         nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1601         nvme_ctrlr_fail(ctrlr);
1602         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1603         return (0);
1604 }