]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
zfs: merge openzfs/zfs@57cfae4a2 (master)
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_cam.h"
33 #include "opt_nvme.h"
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/buf.h>
38 #include <sys/bus.h>
39 #include <sys/conf.h>
40 #include <sys/ioccom.h>
41 #include <sys/proc.h>
42 #include <sys/smp.h>
43 #include <sys/uio.h>
44 #include <sys/sbuf.h>
45 #include <sys/endian.h>
46 #include <machine/stdarg.h>
47 #include <vm/vm.h>
48
49 #include "nvme_private.h"
50
51 #define B4_CHK_RDY_DELAY_MS     2300            /* work around controller bug */
52
53 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
54                                                 struct nvme_async_event_request *aer);
55
56 static void
57 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags)
58 {
59         bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags);
60 }
61
62 static void
63 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
64 {
65         struct sbuf sb;
66         va_list ap;
67         int error;
68
69         if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
70                 return;
71         sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
72         va_start(ap, msg);
73         sbuf_vprintf(&sb, msg, ap);
74         va_end(ap);
75         error = sbuf_finish(&sb);
76         if (error == 0)
77                 printf("%s\n", sbuf_data(&sb));
78
79         sbuf_clear(&sb);
80         sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev));
81         va_start(ap, msg);
82         sbuf_vprintf(&sb, msg, ap);
83         va_end(ap);
84         sbuf_printf(&sb, "\"");
85         error = sbuf_finish(&sb);
86         if (error == 0)
87                 devctl_notify("nvme", "controller", type, sbuf_data(&sb));
88         sbuf_delete(&sb);
89 }
90
91 static int
92 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
93 {
94         struct nvme_qpair       *qpair;
95         uint32_t                num_entries;
96         int                     error;
97
98         qpair = &ctrlr->adminq;
99         qpair->id = 0;
100         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
101         qpair->domain = ctrlr->domain;
102
103         num_entries = NVME_ADMIN_ENTRIES;
104         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
105         /*
106          * If admin_entries was overridden to an invalid value, revert it
107          *  back to our default value.
108          */
109         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
110             num_entries > NVME_MAX_ADMIN_ENTRIES) {
111                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
112                     "specified\n", num_entries);
113                 num_entries = NVME_ADMIN_ENTRIES;
114         }
115
116         /*
117          * The admin queue's max xfer size is treated differently than the
118          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
119          */
120         error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
121              ctrlr);
122         return (error);
123 }
124
125 #define QP(ctrlr, c)    ((c) * (ctrlr)->num_io_queues / mp_ncpus)
126
127 static int
128 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
129 {
130         struct nvme_qpair       *qpair;
131         uint32_t                cap_lo;
132         uint16_t                mqes;
133         int                     c, error, i, n;
134         int                     num_entries, num_trackers, max_entries;
135
136         /*
137          * NVMe spec sets a hard limit of 64K max entries, but devices may
138          * specify a smaller limit, so we need to check the MQES field in the
139          * capabilities register. We have to cap the number of entries to the
140          * current stride allows for in BAR 0/1, otherwise the remainder entries
141          * are inaccessible. MQES should reflect this, and this is just a
142          * fail-safe.
143          */
144         max_entries =
145             (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
146             (1 << (ctrlr->dstrd + 1));
147         num_entries = NVME_IO_ENTRIES;
148         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
149         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
150         mqes = NVME_CAP_LO_MQES(cap_lo);
151         num_entries = min(num_entries, mqes + 1);
152         num_entries = min(num_entries, max_entries);
153
154         num_trackers = NVME_IO_TRACKERS;
155         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
156
157         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
158         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
159         /*
160          * No need to have more trackers than entries in the submit queue.  Note
161          * also that for a queue size of N, we can only have (N-1) commands
162          * outstanding, hence the "-1" here.
163          */
164         num_trackers = min(num_trackers, (num_entries-1));
165
166         /*
167          * Our best estimate for the maximum number of I/Os that we should
168          * normally have in flight at one time. This should be viewed as a hint,
169          * not a hard limit and will need to be revisited when the upper layers
170          * of the storage system grows multi-queue support.
171          */
172         ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
173
174         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
175             M_NVME, M_ZERO | M_WAITOK);
176
177         for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
178                 qpair = &ctrlr->ioq[i];
179
180                 /*
181                  * Admin queue has ID=0. IO queues start at ID=1 -
182                  *  hence the 'i+1' here.
183                  */
184                 qpair->id = i + 1;
185                 if (ctrlr->num_io_queues > 1) {
186                         /* Find number of CPUs served by this queue. */
187                         for (n = 1; QP(ctrlr, c + n) == i; n++)
188                                 ;
189                         /* Shuffle multiple NVMe devices between CPUs. */
190                         qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
191                         qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
192                 } else {
193                         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
194                         qpair->domain = ctrlr->domain;
195                 }
196
197                 /*
198                  * For I/O queues, use the controller-wide max_xfer_size
199                  *  calculated in nvme_attach().
200                  */
201                 error = nvme_qpair_construct(qpair, num_entries, num_trackers,
202                     ctrlr);
203                 if (error)
204                         return (error);
205
206                 /*
207                  * Do not bother binding interrupts if we only have one I/O
208                  *  interrupt thread for this controller.
209                  */
210                 if (ctrlr->num_io_queues > 1)
211                         bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
212         }
213
214         return (0);
215 }
216
217 static void
218 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
219 {
220         int i;
221
222         ctrlr->is_failed = true;
223         nvme_admin_qpair_disable(&ctrlr->adminq);
224         nvme_qpair_fail(&ctrlr->adminq);
225         if (ctrlr->ioq != NULL) {
226                 for (i = 0; i < ctrlr->num_io_queues; i++) {
227                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
228                         nvme_qpair_fail(&ctrlr->ioq[i]);
229                 }
230         }
231         nvme_notify_fail_consumers(ctrlr);
232 }
233
234 void
235 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
236     struct nvme_request *req)
237 {
238
239         mtx_lock(&ctrlr->lock);
240         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
241         mtx_unlock(&ctrlr->lock);
242         if (!ctrlr->is_dying)
243                 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
244 }
245
246 static void
247 nvme_ctrlr_fail_req_task(void *arg, int pending)
248 {
249         struct nvme_controller  *ctrlr = arg;
250         struct nvme_request     *req;
251
252         mtx_lock(&ctrlr->lock);
253         while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
254                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
255                 mtx_unlock(&ctrlr->lock);
256                 nvme_qpair_manual_complete_request(req->qpair, req,
257                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
258                 mtx_lock(&ctrlr->lock);
259         }
260         mtx_unlock(&ctrlr->lock);
261 }
262
263 /*
264  * Wait for RDY to change.
265  *
266  * Starts sleeping for 1us and geometrically increases it the longer we wait,
267  * capped at 1ms.
268  */
269 static int
270 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
271 {
272         int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms);
273         sbintime_t delta_t = SBT_1US;
274         uint32_t csts;
275
276         while (1) {
277                 csts = nvme_mmio_read_4(ctrlr, csts);
278                 if (csts == NVME_GONE)          /* Hot unplug. */
279                         return (ENXIO);
280                 if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK)
281                     == desired_val)
282                         break;
283                 if (timeout - ticks < 0) {
284                         nvme_printf(ctrlr, "controller ready did not become %d "
285                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
286                         return (ENXIO);
287                 }
288
289                 pause_sbt("nvmerdy", delta_t, 0, C_PREL(1));
290                 delta_t = min(SBT_1MS, delta_t * 3 / 2);
291         }
292
293         return (0);
294 }
295
296 static int
297 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
298 {
299         uint32_t cc;
300         uint32_t csts;
301         uint8_t  en, rdy;
302         int err;
303
304         cc = nvme_mmio_read_4(ctrlr, cc);
305         csts = nvme_mmio_read_4(ctrlr, csts);
306
307         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
308         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
309
310         /*
311          * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
312          * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
313          * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
314          * isn't the desired value. Short circuit if we're already disabled.
315          */
316         if (en == 0) {
317                 /* Wait for RDY == 0 or timeout & fail */
318                 if (rdy == 0)
319                         return (0);
320                 return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
321         }
322         if (rdy == 0) {
323                 /* EN == 1, wait for  RDY == 1 or timeout & fail */
324                 err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
325                 if (err != 0)
326                         return (err);
327         }
328
329         cc &= ~NVME_CC_REG_EN_MASK;
330         nvme_mmio_write_4(ctrlr, cc, cc);
331
332         /*
333          * A few drives have firmware bugs that freeze the drive if we access
334          * the mmio too soon after we disable.
335          */
336         if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
337                 pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS));
338         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
339 }
340
341 static int
342 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
343 {
344         uint32_t        cc;
345         uint32_t        csts;
346         uint32_t        aqa;
347         uint32_t        qsize;
348         uint8_t         en, rdy;
349         int             err;
350
351         cc = nvme_mmio_read_4(ctrlr, cc);
352         csts = nvme_mmio_read_4(ctrlr, csts);
353
354         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
355         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
356
357         /*
358          * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
359          */
360         if (en == 1) {
361                 if (rdy == 1)
362                         return (0);
363                 return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
364         }
365
366         /* EN == 0 already wait for RDY == 0 or timeout & fail */
367         err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
368         if (err != 0)
369                 return (err);
370
371         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
372         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
373
374         /* acqs and asqs are 0-based. */
375         qsize = ctrlr->adminq.num_entries - 1;
376
377         aqa = 0;
378         aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
379         aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
380         nvme_mmio_write_4(ctrlr, aqa, aqa);
381
382         /* Initialization values for CC */
383         cc = 0;
384         cc |= 1 << NVME_CC_REG_EN_SHIFT;
385         cc |= 0 << NVME_CC_REG_CSS_SHIFT;
386         cc |= 0 << NVME_CC_REG_AMS_SHIFT;
387         cc |= 0 << NVME_CC_REG_SHN_SHIFT;
388         cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
389         cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
390
391         /*
392          * Use the Memory Page Size selected during device initialization.  Note
393          * that value stored in mps is suitable to use here without adjusting by
394          * NVME_MPS_SHIFT.
395          */
396         cc |= ctrlr->mps << NVME_CC_REG_MPS_SHIFT;
397
398         nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE);
399         nvme_mmio_write_4(ctrlr, cc, cc);
400
401         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
402 }
403
404 static void
405 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
406 {
407         int i;
408
409         nvme_admin_qpair_disable(&ctrlr->adminq);
410         /*
411          * I/O queues are not allocated before the initial HW
412          *  reset, so do not try to disable them.  Use is_initialized
413          *  to determine if this is the initial HW reset.
414          */
415         if (ctrlr->is_initialized) {
416                 for (i = 0; i < ctrlr->num_io_queues; i++)
417                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
418         }
419 }
420
421 static int
422 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
423 {
424         int err;
425
426         TSENTER();
427
428         nvme_ctrlr_disable_qpairs(ctrlr);
429
430         err = nvme_ctrlr_disable(ctrlr);
431         if (err != 0)
432                 return err;
433
434         err = nvme_ctrlr_enable(ctrlr);
435         TSEXIT();
436         return (err);
437 }
438
439 void
440 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
441 {
442         int cmpset;
443
444         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
445
446         if (cmpset == 0 || ctrlr->is_failed)
447                 /*
448                  * Controller is already resetting or has failed.  Return
449                  *  immediately since there is no need to kick off another
450                  *  reset in these cases.
451                  */
452                 return;
453
454         if (!ctrlr->is_dying)
455                 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
456 }
457
458 static int
459 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
460 {
461         struct nvme_completion_poll_status      status;
462
463         status.done = 0;
464         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
465             nvme_completion_poll_cb, &status);
466         nvme_completion_poll(&status);
467         if (nvme_completion_is_error(&status.cpl)) {
468                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
469                 return (ENXIO);
470         }
471
472         /* Convert data to host endian */
473         nvme_controller_data_swapbytes(&ctrlr->cdata);
474
475         /*
476          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
477          *  controller supports.
478          */
479         if (ctrlr->cdata.mdts > 0)
480                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
481                     1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT +
482                         NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)));
483
484         return (0);
485 }
486
487 static int
488 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
489 {
490         struct nvme_completion_poll_status      status;
491         int                                     cq_allocated, sq_allocated;
492
493         status.done = 0;
494         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
495             nvme_completion_poll_cb, &status);
496         nvme_completion_poll(&status);
497         if (nvme_completion_is_error(&status.cpl)) {
498                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
499                 return (ENXIO);
500         }
501
502         /*
503          * Data in cdw0 is 0-based.
504          * Lower 16-bits indicate number of submission queues allocated.
505          * Upper 16-bits indicate number of completion queues allocated.
506          */
507         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
508         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
509
510         /*
511          * Controller may allocate more queues than we requested,
512          *  so use the minimum of the number requested and what was
513          *  actually allocated.
514          */
515         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
516         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
517         if (ctrlr->num_io_queues > vm_ndomains)
518                 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
519
520         return (0);
521 }
522
523 static int
524 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
525 {
526         struct nvme_completion_poll_status      status;
527         struct nvme_qpair                       *qpair;
528         int                                     i;
529
530         for (i = 0; i < ctrlr->num_io_queues; i++) {
531                 qpair = &ctrlr->ioq[i];
532
533                 status.done = 0;
534                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
535                     nvme_completion_poll_cb, &status);
536                 nvme_completion_poll(&status);
537                 if (nvme_completion_is_error(&status.cpl)) {
538                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
539                         return (ENXIO);
540                 }
541
542                 status.done = 0;
543                 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
544                     nvme_completion_poll_cb, &status);
545                 nvme_completion_poll(&status);
546                 if (nvme_completion_is_error(&status.cpl)) {
547                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
548                         return (ENXIO);
549                 }
550         }
551
552         return (0);
553 }
554
555 static int
556 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
557 {
558         struct nvme_completion_poll_status      status;
559         struct nvme_qpair                       *qpair;
560
561         for (int i = 0; i < ctrlr->num_io_queues; i++) {
562                 qpair = &ctrlr->ioq[i];
563
564                 status.done = 0;
565                 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
566                     nvme_completion_poll_cb, &status);
567                 nvme_completion_poll(&status);
568                 if (nvme_completion_is_error(&status.cpl)) {
569                         nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
570                         return (ENXIO);
571                 }
572
573                 status.done = 0;
574                 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
575                     nvme_completion_poll_cb, &status);
576                 nvme_completion_poll(&status);
577                 if (nvme_completion_is_error(&status.cpl)) {
578                         nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
579                         return (ENXIO);
580                 }
581         }
582
583         return (0);
584 }
585
586 static int
587 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
588 {
589         struct nvme_namespace   *ns;
590         uint32_t                i;
591
592         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
593                 ns = &ctrlr->ns[i];
594                 nvme_ns_construct(ns, i+1, ctrlr);
595         }
596
597         return (0);
598 }
599
600 static bool
601 is_log_page_id_valid(uint8_t page_id)
602 {
603
604         switch (page_id) {
605         case NVME_LOG_ERROR:
606         case NVME_LOG_HEALTH_INFORMATION:
607         case NVME_LOG_FIRMWARE_SLOT:
608         case NVME_LOG_CHANGED_NAMESPACE:
609         case NVME_LOG_COMMAND_EFFECT:
610         case NVME_LOG_RES_NOTIFICATION:
611         case NVME_LOG_SANITIZE_STATUS:
612                 return (true);
613         }
614
615         return (false);
616 }
617
618 static uint32_t
619 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
620 {
621         uint32_t        log_page_size;
622
623         switch (page_id) {
624         case NVME_LOG_ERROR:
625                 log_page_size = min(
626                     sizeof(struct nvme_error_information_entry) *
627                     (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
628                 break;
629         case NVME_LOG_HEALTH_INFORMATION:
630                 log_page_size = sizeof(struct nvme_health_information_page);
631                 break;
632         case NVME_LOG_FIRMWARE_SLOT:
633                 log_page_size = sizeof(struct nvme_firmware_page);
634                 break;
635         case NVME_LOG_CHANGED_NAMESPACE:
636                 log_page_size = sizeof(struct nvme_ns_list);
637                 break;
638         case NVME_LOG_COMMAND_EFFECT:
639                 log_page_size = sizeof(struct nvme_command_effects_page);
640                 break;
641         case NVME_LOG_RES_NOTIFICATION:
642                 log_page_size = sizeof(struct nvme_res_notification_page);
643                 break;
644         case NVME_LOG_SANITIZE_STATUS:
645                 log_page_size = sizeof(struct nvme_sanitize_status_page);
646                 break;
647         default:
648                 log_page_size = 0;
649                 break;
650         }
651
652         return (log_page_size);
653 }
654
655 static void
656 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
657     uint8_t state)
658 {
659
660         if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
661                 nvme_ctrlr_devctl_log(ctrlr, "critical",
662                     "available spare space below threshold");
663
664         if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
665                 nvme_ctrlr_devctl_log(ctrlr, "critical",
666                     "temperature above threshold");
667
668         if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
669                 nvme_ctrlr_devctl_log(ctrlr, "critical",
670                     "device reliability degraded");
671
672         if (state & NVME_CRIT_WARN_ST_READ_ONLY)
673                 nvme_ctrlr_devctl_log(ctrlr, "critical",
674                     "media placed in read only mode");
675
676         if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
677                 nvme_ctrlr_devctl_log(ctrlr, "critical",
678                     "volatile memory backup device failed");
679
680         if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
681                 nvme_ctrlr_devctl_log(ctrlr, "critical",
682                     "unknown critical warning(s): state = 0x%02x", state);
683 }
684
685 static void
686 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
687 {
688         struct nvme_async_event_request         *aer = arg;
689         struct nvme_health_information_page     *health_info;
690         struct nvme_ns_list                     *nsl;
691         struct nvme_error_information_entry     *err;
692         int i;
693
694         /*
695          * If the log page fetch for some reason completed with an error,
696          *  don't pass log page data to the consumers.  In practice, this case
697          *  should never happen.
698          */
699         if (nvme_completion_is_error(cpl))
700                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
701                     aer->log_page_id, NULL, 0);
702         else {
703                 /* Convert data to host endian */
704                 switch (aer->log_page_id) {
705                 case NVME_LOG_ERROR:
706                         err = (struct nvme_error_information_entry *)aer->log_page_buffer;
707                         for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
708                                 nvme_error_information_entry_swapbytes(err++);
709                         break;
710                 case NVME_LOG_HEALTH_INFORMATION:
711                         nvme_health_information_page_swapbytes(
712                             (struct nvme_health_information_page *)aer->log_page_buffer);
713                         break;
714                 case NVME_LOG_FIRMWARE_SLOT:
715                         nvme_firmware_page_swapbytes(
716                             (struct nvme_firmware_page *)aer->log_page_buffer);
717                         break;
718                 case NVME_LOG_CHANGED_NAMESPACE:
719                         nvme_ns_list_swapbytes(
720                             (struct nvme_ns_list *)aer->log_page_buffer);
721                         break;
722                 case NVME_LOG_COMMAND_EFFECT:
723                         nvme_command_effects_page_swapbytes(
724                             (struct nvme_command_effects_page *)aer->log_page_buffer);
725                         break;
726                 case NVME_LOG_RES_NOTIFICATION:
727                         nvme_res_notification_page_swapbytes(
728                             (struct nvme_res_notification_page *)aer->log_page_buffer);
729                         break;
730                 case NVME_LOG_SANITIZE_STATUS:
731                         nvme_sanitize_status_page_swapbytes(
732                             (struct nvme_sanitize_status_page *)aer->log_page_buffer);
733                         break;
734                 case INTEL_LOG_TEMP_STATS:
735                         intel_log_temp_stats_swapbytes(
736                             (struct intel_log_temp_stats *)aer->log_page_buffer);
737                         break;
738                 default:
739                         break;
740                 }
741
742                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
743                         health_info = (struct nvme_health_information_page *)
744                             aer->log_page_buffer;
745                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
746                             health_info->critical_warning);
747                         /*
748                          * Critical warnings reported through the
749                          *  SMART/health log page are persistent, so
750                          *  clear the associated bits in the async event
751                          *  config so that we do not receive repeated
752                          *  notifications for the same event.
753                          */
754                         aer->ctrlr->async_event_config &=
755                             ~health_info->critical_warning;
756                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
757                             aer->ctrlr->async_event_config, NULL, NULL);
758                 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
759                     !nvme_use_nvd) {
760                         nsl = (struct nvme_ns_list *)aer->log_page_buffer;
761                         for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
762                                 if (nsl->ns[i] > NVME_MAX_NAMESPACES)
763                                         break;
764                                 nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
765                         }
766                 }
767
768                 /*
769                  * Pass the cpl data from the original async event completion,
770                  *  not the log page fetch.
771                  */
772                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
773                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
774         }
775
776         /*
777          * Repost another asynchronous event request to replace the one
778          *  that just completed.
779          */
780         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
781 }
782
783 static void
784 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
785 {
786         struct nvme_async_event_request *aer = arg;
787
788         if (nvme_completion_is_error(cpl)) {
789                 /*
790                  *  Do not retry failed async event requests.  This avoids
791                  *  infinite loops where a new async event request is submitted
792                  *  to replace the one just failed, only to fail again and
793                  *  perpetuate the loop.
794                  */
795                 return;
796         }
797
798         /* Associated log page is in bits 23:16 of completion entry dw0. */
799         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
800
801         nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
802             " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8,
803             aer->log_page_id);
804
805         if (is_log_page_id_valid(aer->log_page_id)) {
806                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
807                     aer->log_page_id);
808                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
809                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
810                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
811                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
812                     aer);
813                 /* Wait to notify consumers until after log page is fetched. */
814         } else {
815                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
816                     NULL, 0);
817
818                 /*
819                  * Repost another asynchronous event request to replace the one
820                  *  that just completed.
821                  */
822                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
823         }
824 }
825
826 static void
827 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
828     struct nvme_async_event_request *aer)
829 {
830         struct nvme_request *req;
831
832         aer->ctrlr = ctrlr;
833         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
834         aer->req = req;
835
836         /*
837          * Disable timeout here, since asynchronous event requests should by
838          *  nature never be timed out.
839          */
840         req->timeout = false;
841         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
842         nvme_ctrlr_submit_admin_request(ctrlr, req);
843 }
844
845 static void
846 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
847 {
848         struct nvme_completion_poll_status      status;
849         struct nvme_async_event_request         *aer;
850         uint32_t                                i;
851
852         ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
853             NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
854             NVME_CRIT_WARN_ST_READ_ONLY |
855             NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
856         if (ctrlr->cdata.ver >= NVME_REV(1, 2))
857                 ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE |
858                     NVME_ASYNC_EVENT_FW_ACTIVATE;
859
860         status.done = 0;
861         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
862             0, NULL, 0, nvme_completion_poll_cb, &status);
863         nvme_completion_poll(&status);
864         if (nvme_completion_is_error(&status.cpl) ||
865             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
866             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
867                 nvme_printf(ctrlr, "temperature threshold not supported\n");
868         } else
869                 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
870
871         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
872             ctrlr->async_event_config, NULL, NULL);
873
874         /* aerl is a zero-based value, so we need to add 1 here. */
875         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
876
877         for (i = 0; i < ctrlr->num_aers; i++) {
878                 aer = &ctrlr->aer[i];
879                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
880         }
881 }
882
883 static void
884 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
885 {
886
887         ctrlr->int_coal_time = 0;
888         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
889             &ctrlr->int_coal_time);
890
891         ctrlr->int_coal_threshold = 0;
892         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
893             &ctrlr->int_coal_threshold);
894
895         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
896             ctrlr->int_coal_threshold, NULL, NULL);
897 }
898
899 static void
900 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
901 {
902         struct nvme_hmb_chunk *hmbc;
903         int i;
904
905         if (ctrlr->hmb_desc_paddr) {
906                 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
907                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
908                     ctrlr->hmb_desc_map);
909                 ctrlr->hmb_desc_paddr = 0;
910         }
911         if (ctrlr->hmb_desc_tag) {
912                 bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
913                 ctrlr->hmb_desc_tag = NULL;
914         }
915         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
916                 hmbc = &ctrlr->hmb_chunks[i];
917                 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
918                 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
919                     hmbc->hmbc_map);
920         }
921         ctrlr->hmb_nchunks = 0;
922         if (ctrlr->hmb_tag) {
923                 bus_dma_tag_destroy(ctrlr->hmb_tag);
924                 ctrlr->hmb_tag = NULL;
925         }
926         if (ctrlr->hmb_chunks) {
927                 free(ctrlr->hmb_chunks, M_NVME);
928                 ctrlr->hmb_chunks = NULL;
929         }
930 }
931
932 static void
933 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
934 {
935         struct nvme_hmb_chunk *hmbc;
936         size_t pref, min, minc, size;
937         int err, i;
938         uint64_t max;
939
940         /* Limit HMB to 5% of RAM size per device by default. */
941         max = (uint64_t)physmem * PAGE_SIZE / 20;
942         TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
943
944         /*
945          * Units of Host Memory Buffer in the Identify info are always in terms
946          * of 4k units.
947          */
948         min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS;
949         if (max == 0 || max < min)
950                 return;
951         pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max);
952         minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size);
953         if (min > 0 && ctrlr->cdata.hmmaxd > 0)
954                 minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
955         ctrlr->hmb_chunk = pref;
956
957 again:
958         /*
959          * However, the chunk sizes, number of chunks, and alignment of chunks
960          * are all based on the current MPS (ctrlr->page_size).
961          */
962         ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size);
963         ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
964         if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
965                 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
966         ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
967             ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
968         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
969             ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
970             ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
971         if (err != 0) {
972                 nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
973                 nvme_ctrlr_hmb_free(ctrlr);
974                 return;
975         }
976
977         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
978                 hmbc = &ctrlr->hmb_chunks[i];
979                 if (bus_dmamem_alloc(ctrlr->hmb_tag,
980                     (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
981                     &hmbc->hmbc_map)) {
982                         nvme_printf(ctrlr, "failed to alloc HMB\n");
983                         break;
984                 }
985                 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
986                     hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
987                     &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
988                         bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
989                             hmbc->hmbc_map);
990                         nvme_printf(ctrlr, "failed to load HMB\n");
991                         break;
992                 }
993                 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
994                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
995         }
996
997         if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
998             ctrlr->hmb_chunk / 2 >= minc) {
999                 ctrlr->hmb_nchunks = i;
1000                 nvme_ctrlr_hmb_free(ctrlr);
1001                 ctrlr->hmb_chunk /= 2;
1002                 goto again;
1003         }
1004         ctrlr->hmb_nchunks = i;
1005         if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
1006                 nvme_ctrlr_hmb_free(ctrlr);
1007                 return;
1008         }
1009
1010         size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
1011         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
1012             16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1013             size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
1014         if (err != 0) {
1015                 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
1016                 nvme_ctrlr_hmb_free(ctrlr);
1017                 return;
1018         }
1019         if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
1020             (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
1021             &ctrlr->hmb_desc_map)) {
1022                 nvme_printf(ctrlr, "failed to alloc HMB desc\n");
1023                 nvme_ctrlr_hmb_free(ctrlr);
1024                 return;
1025         }
1026         if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1027             ctrlr->hmb_desc_vaddr, size, nvme_single_map,
1028             &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1029                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1030                     ctrlr->hmb_desc_map);
1031                 nvme_printf(ctrlr, "failed to load HMB desc\n");
1032                 nvme_ctrlr_hmb_free(ctrlr);
1033                 return;
1034         }
1035
1036         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1037                 ctrlr->hmb_desc_vaddr[i].addr =
1038                     htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1039                 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size);
1040         }
1041         bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1042             BUS_DMASYNC_PREWRITE);
1043
1044         nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1045             (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1046             / 1024 / 1024);
1047 }
1048
1049 static void
1050 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1051 {
1052         struct nvme_completion_poll_status      status;
1053         uint32_t cdw11;
1054
1055         cdw11 = 0;
1056         if (enable)
1057                 cdw11 |= 1;
1058         if (memret)
1059                 cdw11 |= 2;
1060         status.done = 0;
1061         nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1062             ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size,
1063             ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32,
1064             ctrlr->hmb_nchunks, NULL, 0,
1065             nvme_completion_poll_cb, &status);
1066         nvme_completion_poll(&status);
1067         if (nvme_completion_is_error(&status.cpl))
1068                 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1069 }
1070
1071 static void
1072 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1073 {
1074         struct nvme_controller *ctrlr = ctrlr_arg;
1075         uint32_t old_num_io_queues;
1076         int i;
1077
1078         TSENTER();
1079
1080         /*
1081          * Only reset adminq here when we are restarting the
1082          *  controller after a reset.  During initialization,
1083          *  we have already submitted admin commands to get
1084          *  the number of I/O queues supported, so cannot reset
1085          *  the adminq again here.
1086          */
1087         if (resetting) {
1088                 nvme_qpair_reset(&ctrlr->adminq);
1089                 nvme_admin_qpair_enable(&ctrlr->adminq);
1090         }
1091
1092         if (ctrlr->ioq != NULL) {
1093                 for (i = 0; i < ctrlr->num_io_queues; i++)
1094                         nvme_qpair_reset(&ctrlr->ioq[i]);
1095         }
1096
1097         /*
1098          * If it was a reset on initialization command timeout, just
1099          * return here, letting initialization code fail gracefully.
1100          */
1101         if (resetting && !ctrlr->is_initialized)
1102                 return;
1103
1104         if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1105                 nvme_ctrlr_fail(ctrlr);
1106                 return;
1107         }
1108
1109         /*
1110          * The number of qpairs are determined during controller initialization,
1111          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1112          *  HW limit.  We call SET_FEATURES again here so that it gets called
1113          *  after any reset for controllers that depend on the driver to
1114          *  explicit specify how many queues it will use.  This value should
1115          *  never change between resets, so panic if somehow that does happen.
1116          */
1117         if (resetting) {
1118                 old_num_io_queues = ctrlr->num_io_queues;
1119                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1120                         nvme_ctrlr_fail(ctrlr);
1121                         return;
1122                 }
1123
1124                 if (old_num_io_queues != ctrlr->num_io_queues) {
1125                         panic("num_io_queues changed from %u to %u",
1126                               old_num_io_queues, ctrlr->num_io_queues);
1127                 }
1128         }
1129
1130         if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1131                 nvme_ctrlr_hmb_alloc(ctrlr);
1132                 if (ctrlr->hmb_nchunks > 0)
1133                         nvme_ctrlr_hmb_enable(ctrlr, true, false);
1134         } else if (ctrlr->hmb_nchunks > 0)
1135                 nvme_ctrlr_hmb_enable(ctrlr, true, true);
1136
1137         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1138                 nvme_ctrlr_fail(ctrlr);
1139                 return;
1140         }
1141
1142         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1143                 nvme_ctrlr_fail(ctrlr);
1144                 return;
1145         }
1146
1147         nvme_ctrlr_configure_aer(ctrlr);
1148         nvme_ctrlr_configure_int_coalescing(ctrlr);
1149
1150         for (i = 0; i < ctrlr->num_io_queues; i++)
1151                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
1152         TSEXIT();
1153 }
1154
1155 void
1156 nvme_ctrlr_start_config_hook(void *arg)
1157 {
1158         struct nvme_controller *ctrlr = arg;
1159
1160         TSENTER();
1161
1162         if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
1163 fail:
1164                 nvme_ctrlr_fail(ctrlr);
1165                 config_intrhook_disestablish(&ctrlr->config_hook);
1166                 return;
1167         }
1168
1169 #ifdef NVME_2X_RESET
1170         /*
1171          * Reset controller twice to ensure we do a transition from cc.en==1 to
1172          * cc.en==0.  This is because we don't really know what status the
1173          * controller was left in when boot handed off to OS.  Linux doesn't do
1174          * this, however, and when the controller is in state cc.en == 0, no
1175          * I/O can happen.
1176          */
1177         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1178                 goto fail;
1179 #endif
1180
1181         nvme_qpair_reset(&ctrlr->adminq);
1182         nvme_admin_qpair_enable(&ctrlr->adminq);
1183
1184         if (nvme_ctrlr_identify(ctrlr) == 0 &&
1185             nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1186             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1187                 nvme_ctrlr_start(ctrlr, false);
1188         else
1189                 goto fail;
1190
1191         nvme_sysctl_initialize_ctrlr(ctrlr);
1192         config_intrhook_disestablish(&ctrlr->config_hook);
1193
1194         ctrlr->is_initialized = 1;
1195         nvme_notify_new_controller(ctrlr);
1196         TSEXIT();
1197 }
1198
1199 static void
1200 nvme_ctrlr_reset_task(void *arg, int pending)
1201 {
1202         struct nvme_controller  *ctrlr = arg;
1203         int                     status;
1204
1205         nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller");
1206         status = nvme_ctrlr_hw_reset(ctrlr);
1207         /*
1208          * Use pause instead of DELAY, so that we yield to any nvme interrupt
1209          *  handlers on this CPU that were blocked on a qpair lock. We want
1210          *  all nvme interrupts completed before proceeding with restarting the
1211          *  controller.
1212          *
1213          * XXX - any way to guarantee the interrupt handlers have quiesced?
1214          */
1215         pause("nvmereset", hz / 10);
1216         if (status == 0)
1217                 nvme_ctrlr_start(ctrlr, true);
1218         else
1219                 nvme_ctrlr_fail(ctrlr);
1220
1221         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1222 }
1223
1224 /*
1225  * Poll all the queues enabled on the device for completion.
1226  */
1227 void
1228 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1229 {
1230         int i;
1231
1232         nvme_qpair_process_completions(&ctrlr->adminq);
1233
1234         for (i = 0; i < ctrlr->num_io_queues; i++)
1235                 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1236                         nvme_qpair_process_completions(&ctrlr->ioq[i]);
1237 }
1238
1239 /*
1240  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1241  * there's only a single vector. While we're polling, we mask further
1242  * interrupts in the controller.
1243  */
1244 void
1245 nvme_ctrlr_shared_handler(void *arg)
1246 {
1247         struct nvme_controller *ctrlr = arg;
1248
1249         nvme_mmio_write_4(ctrlr, intms, 1);
1250         nvme_ctrlr_poll(ctrlr);
1251         nvme_mmio_write_4(ctrlr, intmc, 1);
1252 }
1253
1254 static void
1255 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1256 {
1257         struct nvme_pt_command *pt = arg;
1258         struct mtx *mtx = pt->driver_lock;
1259         uint16_t status;
1260
1261         bzero(&pt->cpl, sizeof(pt->cpl));
1262         pt->cpl.cdw0 = cpl->cdw0;
1263
1264         status = cpl->status;
1265         status &= ~NVME_STATUS_P_MASK;
1266         pt->cpl.status = status;
1267
1268         mtx_lock(mtx);
1269         pt->driver_lock = NULL;
1270         wakeup(pt);
1271         mtx_unlock(mtx);
1272 }
1273
1274 int
1275 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1276     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1277     int is_admin_cmd)
1278 {
1279         struct nvme_request     *req;
1280         struct mtx              *mtx;
1281         struct buf              *buf = NULL;
1282         int                     ret = 0;
1283
1284         if (pt->len > 0) {
1285                 if (pt->len > ctrlr->max_xfer_size) {
1286                         nvme_printf(ctrlr, "pt->len (%d) "
1287                             "exceeds max_xfer_size (%d)\n", pt->len,
1288                             ctrlr->max_xfer_size);
1289                         return EIO;
1290                 }
1291                 if (is_user_buffer) {
1292                         /*
1293                          * Ensure the user buffer is wired for the duration of
1294                          *  this pass-through command.
1295                          */
1296                         PHOLD(curproc);
1297                         buf = uma_zalloc(pbuf_zone, M_WAITOK);
1298                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1299                         if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1300                                 ret = EFAULT;
1301                                 goto err;
1302                         }
1303                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
1304                             nvme_pt_done, pt);
1305                 } else
1306                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1307                             nvme_pt_done, pt);
1308         } else
1309                 req = nvme_allocate_request_null(nvme_pt_done, pt);
1310
1311         /* Assume user space already converted to little-endian */
1312         req->cmd.opc = pt->cmd.opc;
1313         req->cmd.fuse = pt->cmd.fuse;
1314         req->cmd.rsvd2 = pt->cmd.rsvd2;
1315         req->cmd.rsvd3 = pt->cmd.rsvd3;
1316         req->cmd.cdw10 = pt->cmd.cdw10;
1317         req->cmd.cdw11 = pt->cmd.cdw11;
1318         req->cmd.cdw12 = pt->cmd.cdw12;
1319         req->cmd.cdw13 = pt->cmd.cdw13;
1320         req->cmd.cdw14 = pt->cmd.cdw14;
1321         req->cmd.cdw15 = pt->cmd.cdw15;
1322
1323         req->cmd.nsid = htole32(nsid);
1324
1325         mtx = mtx_pool_find(mtxpool_sleep, pt);
1326         pt->driver_lock = mtx;
1327
1328         if (is_admin_cmd)
1329                 nvme_ctrlr_submit_admin_request(ctrlr, req);
1330         else
1331                 nvme_ctrlr_submit_io_request(ctrlr, req);
1332
1333         mtx_lock(mtx);
1334         while (pt->driver_lock != NULL)
1335                 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1336         mtx_unlock(mtx);
1337
1338 err:
1339         if (buf != NULL) {
1340                 uma_zfree(pbuf_zone, buf);
1341                 PRELE(curproc);
1342         }
1343
1344         return (ret);
1345 }
1346
1347 static int
1348 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1349     struct thread *td)
1350 {
1351         struct nvme_controller                  *ctrlr;
1352         struct nvme_pt_command                  *pt;
1353
1354         ctrlr = cdev->si_drv1;
1355
1356         switch (cmd) {
1357         case NVME_RESET_CONTROLLER:
1358                 nvme_ctrlr_reset(ctrlr);
1359                 break;
1360         case NVME_PASSTHROUGH_CMD:
1361                 pt = (struct nvme_pt_command *)arg;
1362                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1363                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1364         case NVME_GET_NSID:
1365         {
1366                 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1367                 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1368                     sizeof(gnsid->cdev));
1369                 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
1370                 gnsid->nsid = 0;
1371                 break;
1372         }
1373         case NVME_GET_MAX_XFER_SIZE:
1374                 *(uint64_t *)arg = ctrlr->max_xfer_size;
1375                 break;
1376         default:
1377                 return (ENOTTY);
1378         }
1379
1380         return (0);
1381 }
1382
1383 static struct cdevsw nvme_ctrlr_cdevsw = {
1384         .d_version =    D_VERSION,
1385         .d_flags =      0,
1386         .d_ioctl =      nvme_ctrlr_ioctl
1387 };
1388
1389 int
1390 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1391 {
1392         struct make_dev_args    md_args;
1393         uint32_t        cap_lo;
1394         uint32_t        cap_hi;
1395         uint32_t        to, vs, pmrcap;
1396         int             status, timeout_period;
1397
1398         ctrlr->dev = dev;
1399
1400         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1401         if (bus_get_domain(dev, &ctrlr->domain) != 0)
1402                 ctrlr->domain = 0;
1403
1404         ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1405         if (bootverbose) {
1406                 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1407                     cap_lo, NVME_CAP_LO_MQES(cap_lo),
1408                     NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1409                     NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1410                     (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1411                     (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1412                     NVME_CAP_LO_TO(cap_lo));
1413         }
1414         ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1415         if (bootverbose) {
1416                 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1417                     "MPSMIN %u, MPSMAX %u%s%s\n", cap_hi,
1418                     NVME_CAP_HI_DSTRD(cap_hi),
1419                     NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1420                     NVME_CAP_HI_CSS(cap_hi),
1421                     NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1422                     NVME_CAP_HI_MPSMIN(cap_hi),
1423                     NVME_CAP_HI_MPSMAX(cap_hi),
1424                     NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1425                     NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "");
1426         }
1427         if (bootverbose) {
1428                 vs = nvme_mmio_read_4(ctrlr, vs);
1429                 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1430                     NVME_MAJOR(vs), NVME_MINOR(vs));
1431         }
1432         if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1433                 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1434                 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1435                     "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1436                     NVME_PMRCAP_BIR(pmrcap),
1437                     NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1438                     NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1439                     NVME_PMRCAP_PMRTU(pmrcap),
1440                     NVME_PMRCAP_PMRWBM(pmrcap),
1441                     NVME_PMRCAP_PMRTO(pmrcap),
1442                     NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1443         }
1444
1445         ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1446
1447         ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi);
1448         ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps);
1449
1450         /* Get ready timeout value from controller, in units of 500ms. */
1451         to = NVME_CAP_LO_TO(cap_lo) + 1;
1452         ctrlr->ready_timeout_in_ms = to * 500;
1453
1454         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1455         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1456         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1457         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1458         ctrlr->timeout_period = timeout_period;
1459
1460         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1461         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1462
1463         ctrlr->enable_aborts = 0;
1464         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1465
1466         /* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */
1467         ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size));
1468         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1469                 return (ENXIO);
1470
1471         /*
1472          * Create 2 threads for the taskqueue. The reset thread will block when
1473          * it detects that the controller has failed until all I/O has been
1474          * failed up the stack. The fail_req task needs to be able to run in
1475          * this case to finish the request failure for some cases.
1476          *
1477          * We could partially solve this race by draining the failed requeust
1478          * queue before proceding to free the sim, though nothing would stop
1479          * new I/O from coming in after we do that drain, but before we reach
1480          * cam_sim_free, so this big hammer is used instead.
1481          */
1482         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1483             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1484         taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1485
1486         ctrlr->is_resetting = 0;
1487         ctrlr->is_initialized = 0;
1488         ctrlr->notification_sent = 0;
1489         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1490         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1491         STAILQ_INIT(&ctrlr->fail_req);
1492         ctrlr->is_failed = false;
1493
1494         make_dev_args_init(&md_args);
1495         md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1496         md_args.mda_uid = UID_ROOT;
1497         md_args.mda_gid = GID_WHEEL;
1498         md_args.mda_mode = 0600;
1499         md_args.mda_unit = device_get_unit(dev);
1500         md_args.mda_si_drv1 = (void *)ctrlr;
1501         status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1502             device_get_unit(dev));
1503         if (status != 0)
1504                 return (ENXIO);
1505
1506         return (0);
1507 }
1508
1509 void
1510 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1511 {
1512         int     gone, i;
1513
1514         ctrlr->is_dying = true;
1515
1516         if (ctrlr->resource == NULL)
1517                 goto nores;
1518         if (!mtx_initialized(&ctrlr->adminq.lock))
1519                 goto noadminq;
1520
1521         /*
1522          * Check whether it is a hot unplug or a clean driver detach.
1523          * If device is not there any more, skip any shutdown commands.
1524          */
1525         gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1526         if (gone)
1527                 nvme_ctrlr_fail(ctrlr);
1528         else
1529                 nvme_notify_fail_consumers(ctrlr);
1530
1531         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1532                 nvme_ns_destruct(&ctrlr->ns[i]);
1533
1534         if (ctrlr->cdev)
1535                 destroy_dev(ctrlr->cdev);
1536
1537         if (ctrlr->is_initialized) {
1538                 if (!gone) {
1539                         if (ctrlr->hmb_nchunks > 0)
1540                                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1541                         nvme_ctrlr_delete_qpairs(ctrlr);
1542                 }
1543                 nvme_ctrlr_hmb_free(ctrlr);
1544         }
1545         if (ctrlr->ioq != NULL) {
1546                 for (i = 0; i < ctrlr->num_io_queues; i++)
1547                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1548                 free(ctrlr->ioq, M_NVME);
1549         }
1550         nvme_admin_qpair_destroy(&ctrlr->adminq);
1551
1552         /*
1553          *  Notify the controller of a shutdown, even though this is due to
1554          *   a driver unload, not a system shutdown (this path is not invoked
1555          *   during shutdown).  This ensures the controller receives a
1556          *   shutdown notification in case the system is shutdown before
1557          *   reloading the driver.
1558          */
1559         if (!gone)
1560                 nvme_ctrlr_shutdown(ctrlr);
1561
1562         if (!gone)
1563                 nvme_ctrlr_disable(ctrlr);
1564
1565 noadminq:
1566         if (ctrlr->taskqueue)
1567                 taskqueue_free(ctrlr->taskqueue);
1568
1569         if (ctrlr->tag)
1570                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1571
1572         if (ctrlr->res)
1573                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1574                     rman_get_rid(ctrlr->res), ctrlr->res);
1575
1576         if (ctrlr->bar4_resource != NULL) {
1577                 bus_release_resource(dev, SYS_RES_MEMORY,
1578                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1579         }
1580
1581         bus_release_resource(dev, SYS_RES_MEMORY,
1582             ctrlr->resource_id, ctrlr->resource);
1583
1584 nores:
1585         mtx_destroy(&ctrlr->lock);
1586 }
1587
1588 void
1589 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1590 {
1591         uint32_t        cc;
1592         uint32_t        csts;
1593         int             timeout;
1594
1595         cc = nvme_mmio_read_4(ctrlr, cc);
1596         cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1597         cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1598         nvme_mmio_write_4(ctrlr, cc, cc);
1599
1600         timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1601             ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1602         while (1) {
1603                 csts = nvme_mmio_read_4(ctrlr, csts);
1604                 if (csts == NVME_GONE)          /* Hot unplug. */
1605                         break;
1606                 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1607                         break;
1608                 if (timeout - ticks < 0) {
1609                         nvme_printf(ctrlr, "shutdown timeout\n");
1610                         break;
1611                 }
1612                 pause("nvmeshut", 1);
1613         }
1614 }
1615
1616 void
1617 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1618     struct nvme_request *req)
1619 {
1620
1621         nvme_qpair_submit_request(&ctrlr->adminq, req);
1622 }
1623
1624 void
1625 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1626     struct nvme_request *req)
1627 {
1628         struct nvme_qpair       *qpair;
1629
1630         qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1631         nvme_qpair_submit_request(qpair, req);
1632 }
1633
1634 device_t
1635 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1636 {
1637
1638         return (ctrlr->dev);
1639 }
1640
1641 const struct nvme_controller_data *
1642 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1643 {
1644
1645         return (&ctrlr->cdata);
1646 }
1647
1648 int
1649 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1650 {
1651         int to = hz;
1652
1653         /*
1654          * Can't touch failed controllers, so it's already suspended.
1655          */
1656         if (ctrlr->is_failed)
1657                 return (0);
1658
1659         /*
1660          * We don't want the reset taskqueue running, since it does similar
1661          * things, so prevent it from running after we start. Wait for any reset
1662          * that may have been started to complete. The reset process we follow
1663          * will ensure that any new I/O will queue and be given to the hardware
1664          * after we resume (though there should be none).
1665          */
1666         while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1667                 pause("nvmesusp", 1);
1668         if (to <= 0) {
1669                 nvme_printf(ctrlr,
1670                     "Competing reset task didn't finish. Try again later.\n");
1671                 return (EWOULDBLOCK);
1672         }
1673
1674         if (ctrlr->hmb_nchunks > 0)
1675                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1676
1677         /*
1678          * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1679          * delete the hardware I/O queues, and then shutdown. This properly
1680          * flushes any metadata the drive may have stored so it can survive
1681          * having its power removed and prevents the unsafe shutdown count from
1682          * incriminating. Once we delete the qpairs, we have to disable them
1683          * before shutting down.
1684          */
1685         nvme_ctrlr_delete_qpairs(ctrlr);
1686         nvme_ctrlr_disable_qpairs(ctrlr);
1687         nvme_ctrlr_shutdown(ctrlr);
1688
1689         return (0);
1690 }
1691
1692 int
1693 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1694 {
1695
1696         /*
1697          * Can't touch failed controllers, so nothing to do to resume.
1698          */
1699         if (ctrlr->is_failed)
1700                 return (0);
1701
1702         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1703                 goto fail;
1704 #ifdef NVME_2X_RESET
1705         /*
1706          * Prior to FreeBSD 13.1, FreeBSD's nvme driver reset the hardware twice
1707          * to get it into a known good state. However, the hardware's state is
1708          * good and we don't need to do this for proper functioning.
1709          */
1710         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1711                 goto fail;
1712 #endif
1713
1714         /*
1715          * Now that we've reset the hardware, we can restart the controller. Any
1716          * I/O that was pending is requeued. Any admin commands are aborted with
1717          * an error. Once we've restarted, take the controller out of reset.
1718          */
1719         nvme_ctrlr_start(ctrlr, true);
1720         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1721
1722         return (0);
1723 fail:
1724         /*
1725          * Since we can't bring the controller out of reset, announce and fail
1726          * the controller. However, we have to return success for the resume
1727          * itself, due to questionable APIs.
1728          */
1729         nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1730         nvme_ctrlr_fail(ctrlr);
1731         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1732         return (0);
1733 }