]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
Merge ACPICA 20130517.
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * Copyright (C) 2012 Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/buf.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/ioccom.h>
36 #include <sys/proc.h>
37 #include <sys/smp.h>
38 #include <sys/uio.h>
39
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42
43 #include "nvme_private.h"
44
45 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
46                                                 struct nvme_async_event_request *aer);
47
48 static int
49 nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
50 {
51
52         /* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */
53         if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
54                 ctrlr->resource_id = PCIR_BAR(2);
55         else
56                 ctrlr->resource_id = PCIR_BAR(0);
57
58         ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
59             &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
60
61         if(ctrlr->resource == NULL) {
62                 nvme_printf(ctrlr, "unable to allocate pci resource\n");
63                 return (ENOMEM);
64         }
65
66         ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
67         ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
68         ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
69
70         /*
71          * The NVMe spec allows for the MSI-X table to be placed behind
72          *  BAR 4/5, separate from the control/doorbell registers.  Always
73          *  try to map this bar, because it must be mapped prior to calling
74          *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
75          *  bus_alloc_resource() will just return NULL which is OK.
76          */
77         ctrlr->bar4_resource_id = PCIR_BAR(4);
78         ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
79             &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
80
81         return (0);
82 }
83
84 #ifdef CHATHAM2
85 static int
86 nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr)
87 {
88
89         ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR);
90         ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev,
91             SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1,
92             RF_ACTIVE);
93
94         if(ctrlr->chatham_resource == NULL) {
95                 nvme_printf(ctrlr, "unable to alloc pci resource\n");
96                 return (ENOMEM);
97         }
98
99         ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource);
100         ctrlr->chatham_bus_handle =
101             rman_get_bushandle(ctrlr->chatham_resource);
102
103         return (0);
104 }
105
106 static void
107 nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr)
108 {
109         uint64_t reg1, reg2, reg3;
110         uint64_t temp1, temp2;
111         uint32_t temp3;
112         uint32_t use_flash_timings = 0;
113
114         DELAY(10000);
115
116         temp3 = chatham_read_4(ctrlr, 0x8080);
117
118         device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3);
119
120         ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110;
121         ctrlr->chatham_size = ctrlr->chatham_lbas * 512;
122
123         device_printf(ctrlr->dev, "Chatham size: %jd\n",
124             (intmax_t)ctrlr->chatham_size);
125
126         reg1 = reg2 = reg3 = ctrlr->chatham_size - 1;
127
128         TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings);
129         if (use_flash_timings) {
130                 device_printf(ctrlr->dev, "Chatham: using flash timings\n");
131                 temp1 = 0x00001b58000007d0LL;
132                 temp2 = 0x000000cb00000131LL;
133         } else {
134                 device_printf(ctrlr->dev, "Chatham: using DDR timings\n");
135                 temp1 = temp2 = 0x0LL;
136         }
137
138         chatham_write_8(ctrlr, 0x8000, reg1);
139         chatham_write_8(ctrlr, 0x8008, reg2);
140         chatham_write_8(ctrlr, 0x8010, reg3);
141
142         chatham_write_8(ctrlr, 0x8020, temp1);
143         temp3 = chatham_read_4(ctrlr, 0x8020);
144
145         chatham_write_8(ctrlr, 0x8028, temp2);
146         temp3 = chatham_read_4(ctrlr, 0x8028);
147
148         chatham_write_8(ctrlr, 0x8030, temp1);
149         chatham_write_8(ctrlr, 0x8038, temp2);
150         chatham_write_8(ctrlr, 0x8040, temp1);
151         chatham_write_8(ctrlr, 0x8048, temp2);
152         chatham_write_8(ctrlr, 0x8050, temp1);
153         chatham_write_8(ctrlr, 0x8058, temp2);
154
155         DELAY(10000);
156 }
157
158 static void
159 nvme_chatham_populate_cdata(struct nvme_controller *ctrlr)
160 {
161         struct nvme_controller_data *cdata;
162
163         cdata = &ctrlr->cdata;
164
165         cdata->vid = 0x8086;
166         cdata->ssvid = 0x2011;
167
168         /*
169          * Chatham2 puts garbage data in these fields when we
170          *  invoke IDENTIFY_CONTROLLER, so we need to re-zero
171          *  the fields before calling bcopy().
172          */
173         memset(cdata->sn, 0, sizeof(cdata->sn));
174         memcpy(cdata->sn, "2012", strlen("2012"));
175         memset(cdata->mn, 0, sizeof(cdata->mn));
176         memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2"));
177         memset(cdata->fr, 0, sizeof(cdata->fr));
178         memcpy(cdata->fr, "0", strlen("0"));
179         cdata->rab = 8;
180         cdata->aerl = 3;
181         cdata->lpa.ns_smart = 1;
182         cdata->sqes.min = 6;
183         cdata->sqes.max = 6;
184         cdata->sqes.min = 4;
185         cdata->sqes.max = 4;
186         cdata->nn = 1;
187
188         /* Chatham2 doesn't support DSM command */
189         cdata->oncs.dsm = 0;
190
191         cdata->vwc.present = 1;
192 }
193 #endif /* CHATHAM2 */
194
195 static void
196 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
197 {
198         struct nvme_qpair       *qpair;
199         uint32_t                num_entries;
200
201         qpair = &ctrlr->adminq;
202
203         num_entries = NVME_ADMIN_ENTRIES;
204         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
205         /*
206          * If admin_entries was overridden to an invalid value, revert it
207          *  back to our default value.
208          */
209         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
210             num_entries > NVME_MAX_ADMIN_ENTRIES) {
211                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
212                     "specified\n", num_entries);
213                 num_entries = NVME_ADMIN_ENTRIES;
214         }
215
216         /*
217          * The admin queue's max xfer size is treated differently than the
218          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
219          */
220         nvme_qpair_construct(qpair, 
221                              0, /* qpair ID */
222                              0, /* vector */
223                              num_entries,
224                              NVME_ADMIN_TRACKERS,
225                              16*1024, /* max xfer size */
226                              ctrlr);
227 }
228
229 static int
230 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
231 {
232         struct nvme_qpair       *qpair;
233         union cap_lo_register   cap_lo;
234         int                     i, num_entries, num_trackers;
235
236         num_entries = NVME_IO_ENTRIES;
237         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
238
239         /*
240          * NVMe spec sets a hard limit of 64K max entries, but
241          *  devices may specify a smaller limit, so we need to check
242          *  the MQES field in the capabilities register.
243          */
244         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
245         num_entries = min(num_entries, cap_lo.bits.mqes+1);
246
247         num_trackers = NVME_IO_TRACKERS;
248         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
249
250         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
251         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
252         /*
253          * No need to have more trackers than entries in the submit queue.
254          *  Note also that for a queue size of N, we can only have (N-1)
255          *  commands outstanding, hence the "-1" here.
256          */
257         num_trackers = min(num_trackers, (num_entries-1));
258
259         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
260         TUNABLE_INT_FETCH("hw.nvme.max_xfer_size", &ctrlr->max_xfer_size);
261         /*
262          * Check that tunable doesn't specify a size greater than what our
263          *  driver supports, and is an even PAGE_SIZE multiple.
264          */
265         if (ctrlr->max_xfer_size > NVME_MAX_XFER_SIZE ||
266             ctrlr->max_xfer_size % PAGE_SIZE)
267                 ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
268
269         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
270             M_NVME, M_ZERO | M_WAITOK);
271
272         for (i = 0; i < ctrlr->num_io_queues; i++) {
273                 qpair = &ctrlr->ioq[i];
274
275                 /*
276                  * Admin queue has ID=0. IO queues start at ID=1 -
277                  *  hence the 'i+1' here.
278                  *
279                  * For I/O queues, use the controller-wide max_xfer_size
280                  *  calculated in nvme_attach().
281                  */
282                 nvme_qpair_construct(qpair,
283                                      i+1, /* qpair ID */
284                                      ctrlr->msix_enabled ? i+1 : 0, /* vector */
285                                      num_entries,
286                                      num_trackers,
287                                      ctrlr->max_xfer_size,
288                                      ctrlr);
289
290                 if (ctrlr->per_cpu_io_queues)
291                         bus_bind_intr(ctrlr->dev, qpair->res, i);
292         }
293
294         return (0);
295 }
296
297 static void
298 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
299 {
300         int i;
301
302         ctrlr->is_failed = TRUE;
303         nvme_qpair_fail(&ctrlr->adminq);
304         for (i = 0; i < ctrlr->num_io_queues; i++)
305                 nvme_qpair_fail(&ctrlr->ioq[i]);
306         nvme_notify_fail_consumers(ctrlr);
307 }
308
309 void
310 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
311     struct nvme_request *req)
312 {
313
314         mtx_lock(&ctrlr->lock);
315         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
316         mtx_unlock(&ctrlr->lock);
317         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
318 }
319
320 static void
321 nvme_ctrlr_fail_req_task(void *arg, int pending)
322 {
323         struct nvme_controller  *ctrlr = arg;
324         struct nvme_request     *req;
325
326         mtx_lock(&ctrlr->lock);
327         while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
328                 req = STAILQ_FIRST(&ctrlr->fail_req);
329                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
330                 nvme_qpair_manual_complete_request(req->qpair, req,
331                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
332         }
333         mtx_unlock(&ctrlr->lock);
334 }
335
336 static int
337 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
338 {
339         int ms_waited;
340         union cc_register cc;
341         union csts_register csts;
342
343         cc.raw = nvme_mmio_read_4(ctrlr, cc);
344         csts.raw = nvme_mmio_read_4(ctrlr, csts);
345
346         if (!cc.bits.en) {
347                 nvme_printf(ctrlr, "%s called with cc.en = 0\n", __func__);
348                 return (ENXIO);
349         }
350
351         ms_waited = 0;
352
353         while (!csts.bits.rdy) {
354                 DELAY(1000);
355                 if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
356                         nvme_printf(ctrlr, "controller did not become ready "
357                             "within %d ms\n", ctrlr->ready_timeout_in_ms);
358                         return (ENXIO);
359                 }
360                 csts.raw = nvme_mmio_read_4(ctrlr, csts);
361         }
362
363         return (0);
364 }
365
366 static void
367 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
368 {
369         union cc_register cc;
370         union csts_register csts;
371
372         cc.raw = nvme_mmio_read_4(ctrlr, cc);
373         csts.raw = nvme_mmio_read_4(ctrlr, csts);
374
375         if (cc.bits.en == 1 && csts.bits.rdy == 0)
376                 nvme_ctrlr_wait_for_ready(ctrlr);
377
378         cc.bits.en = 0;
379         nvme_mmio_write_4(ctrlr, cc, cc.raw);
380         DELAY(5000);
381 }
382
383 static int
384 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
385 {
386         union cc_register       cc;
387         union csts_register     csts;
388         union aqa_register      aqa;
389
390         cc.raw = nvme_mmio_read_4(ctrlr, cc);
391         csts.raw = nvme_mmio_read_4(ctrlr, csts);
392
393         if (cc.bits.en == 1) {
394                 if (csts.bits.rdy == 1)
395                         return (0);
396                 else
397                         return (nvme_ctrlr_wait_for_ready(ctrlr));
398         }
399
400         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
401         DELAY(5000);
402         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
403         DELAY(5000);
404
405         aqa.raw = 0;
406         /* acqs and asqs are 0-based. */
407         aqa.bits.acqs = ctrlr->adminq.num_entries-1;
408         aqa.bits.asqs = ctrlr->adminq.num_entries-1;
409         nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
410         DELAY(5000);
411
412         cc.bits.en = 1;
413         cc.bits.css = 0;
414         cc.bits.ams = 0;
415         cc.bits.shn = 0;
416         cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
417         cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
418
419         /* This evaluates to 0, which is according to spec. */
420         cc.bits.mps = (PAGE_SIZE >> 13);
421
422         nvme_mmio_write_4(ctrlr, cc, cc.raw);
423         DELAY(5000);
424
425         return (nvme_ctrlr_wait_for_ready(ctrlr));
426 }
427
428 int
429 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
430 {
431         int i;
432
433         nvme_admin_qpair_disable(&ctrlr->adminq);
434         for (i = 0; i < ctrlr->num_io_queues; i++)
435                 nvme_io_qpair_disable(&ctrlr->ioq[i]);
436
437         DELAY(100*1000);
438
439         nvme_ctrlr_disable(ctrlr);
440         return (nvme_ctrlr_enable(ctrlr));
441 }
442
443 void
444 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
445 {
446         int cmpset;
447
448         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
449
450         if (cmpset == 0 || ctrlr->is_failed)
451                 /*
452                  * Controller is already resetting or has failed.  Return
453                  *  immediately since there is no need to kick off another
454                  *  reset in these cases.
455                  */
456                 return;
457
458         taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
459 }
460
461 static int
462 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
463 {
464         struct nvme_completion_poll_status      status;
465
466         status.done = FALSE;
467         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
468             nvme_completion_poll_cb, &status);
469         while (status.done == FALSE)
470                 DELAY(5);
471         if (nvme_completion_is_error(&status.cpl)) {
472                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
473                 return (ENXIO);
474         }
475
476 #ifdef CHATHAM2
477         if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
478                 nvme_chatham_populate_cdata(ctrlr);
479 #endif
480
481         /*
482          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
483          *  controller supports.
484          */
485         if (ctrlr->cdata.mdts > 0)
486                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
487                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
488
489         return (0);
490 }
491
492 static int
493 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
494 {
495         struct nvme_completion_poll_status      status;
496         int                                     cq_allocated, i, sq_allocated;
497
498         status.done = FALSE;
499         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
500             nvme_completion_poll_cb, &status);
501         while (status.done == FALSE)
502                 DELAY(5);
503         if (nvme_completion_is_error(&status.cpl)) {
504                 nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
505                 return (ENXIO);
506         }
507
508         /*
509          * Data in cdw0 is 0-based.
510          * Lower 16-bits indicate number of submission queues allocated.
511          * Upper 16-bits indicate number of completion queues allocated.
512          */
513         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
514         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
515
516         /*
517          * Check that the controller was able to allocate the number of
518          *  queues we requested.  If not, revert to one IO queue pair.
519          */
520         if (sq_allocated < ctrlr->num_io_queues ||
521             cq_allocated < ctrlr->num_io_queues) {
522
523                 /*
524                  * Destroy extra IO queue pairs that were created at
525                  *  controller construction time but are no longer
526                  *  needed.  This will only happen when a controller
527                  *  supports fewer queues than MSI-X vectors.  This
528                  *  is not the normal case, but does occur with the
529                  *  Chatham prototype board.
530                  */
531                 for (i = 1; i < ctrlr->num_io_queues; i++)
532                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
533
534                 ctrlr->num_io_queues = 1;
535                 ctrlr->per_cpu_io_queues = 0;
536         }
537
538         return (0);
539 }
540
541 static int
542 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
543 {
544         struct nvme_completion_poll_status      status;
545         struct nvme_qpair                       *qpair;
546         int                                     i;
547
548         for (i = 0; i < ctrlr->num_io_queues; i++) {
549                 qpair = &ctrlr->ioq[i];
550
551                 status.done = FALSE;
552                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
553                     nvme_completion_poll_cb, &status);
554                 while (status.done == FALSE)
555                         DELAY(5);
556                 if (nvme_completion_is_error(&status.cpl)) {
557                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
558                         return (ENXIO);
559                 }
560
561                 status.done = FALSE;
562                 nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
563                     nvme_completion_poll_cb, &status);
564                 while (status.done == FALSE)
565                         DELAY(5);
566                 if (nvme_completion_is_error(&status.cpl)) {
567                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
568                         return (ENXIO);
569                 }
570         }
571
572         return (0);
573 }
574
575 static int
576 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
577 {
578         struct nvme_namespace   *ns;
579         int                     i, status;
580
581         for (i = 0; i < ctrlr->cdata.nn; i++) {
582                 ns = &ctrlr->ns[i];
583                 status = nvme_ns_construct(ns, i+1, ctrlr);
584                 if (status != 0)
585                         return (status);
586         }
587
588         return (0);
589 }
590
591 static boolean_t
592 is_log_page_id_valid(uint8_t page_id)
593 {
594
595         switch (page_id) {
596         case NVME_LOG_ERROR:
597         case NVME_LOG_HEALTH_INFORMATION:
598         case NVME_LOG_FIRMWARE_SLOT:
599                 return (TRUE);
600         }
601
602         return (FALSE);
603 }
604
605 static uint32_t
606 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
607 {
608         uint32_t        log_page_size;
609
610         switch (page_id) {
611         case NVME_LOG_ERROR:
612                 log_page_size = min(
613                     sizeof(struct nvme_error_information_entry) *
614                     ctrlr->cdata.elpe,
615                     NVME_MAX_AER_LOG_SIZE);
616                 break;
617         case NVME_LOG_HEALTH_INFORMATION:
618                 log_page_size = sizeof(struct nvme_health_information_page);
619                 break;
620         case NVME_LOG_FIRMWARE_SLOT:
621                 log_page_size = sizeof(struct nvme_firmware_page);
622                 break;
623         default:
624                 log_page_size = 0;
625                 break;
626         }
627
628         return (log_page_size);
629 }
630
631 static void
632 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
633 {
634         struct nvme_async_event_request *aer = arg;
635
636         /*
637          * If the log page fetch for some reason completed with an error,
638          *  don't pass log page data to the consumers.  In practice, this case
639          *  should never happen.
640          */
641         if (nvme_completion_is_error(cpl))
642                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
643                     aer->log_page_id, NULL, 0);
644         else
645                 /*
646                  * Pass the cpl data from the original async event completion,
647                  *  not the log page fetch.
648                  */
649                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
650                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
651
652         /*
653          * Repost another asynchronous event request to replace the one
654          *  that just completed.
655          */
656         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
657 }
658
659 static void
660 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
661 {
662         struct nvme_async_event_request *aer = arg;
663
664         if (cpl->status.sc == NVME_SC_ABORTED_SQ_DELETION) {
665                 /*
666                  *  This is simulated when controller is being shut down, to
667                  *  effectively abort outstanding asynchronous event requests
668                  *  and make sure all memory is freed.  Do not repost the
669                  *  request in this case.
670                  */
671                 return;
672         }
673
674         /* Associated log page is in bits 23:16 of completion entry dw0. */
675         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
676
677         nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
678             aer->log_page_id);
679
680         if (is_log_page_id_valid(aer->log_page_id)) {
681                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
682                     aer->log_page_id);
683                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
684                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
685                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
686                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
687                     aer);
688                 /* Wait to notify consumers until after log page is fetched. */
689         } else {
690                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
691                     NULL, 0);
692
693                 /*
694                  * Repost another asynchronous event request to replace the one
695                  *  that just completed.
696                  */
697                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
698         }
699 }
700
701 static void
702 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
703     struct nvme_async_event_request *aer)
704 {
705         struct nvme_request *req;
706
707         aer->ctrlr = ctrlr;
708         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
709         aer->req = req;
710
711         /*
712          * Disable timeout here, since asynchronous event requests should by
713          *  nature never be timed out.
714          */
715         req->timeout = FALSE;
716         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
717         nvme_ctrlr_submit_admin_request(ctrlr, req);
718 }
719
720 static void
721 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
722 {
723         union nvme_critical_warning_state       state;
724         struct nvme_async_event_request         *aer;
725         uint32_t                                i;
726
727         state.raw = 0xFF;
728         state.bits.reserved = 0;
729         nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, NULL, NULL);
730
731         /* aerl is a zero-based value, so we need to add 1 here. */
732         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
733
734         /* Chatham doesn't support AERs. */
735         if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
736                 ctrlr->num_aers = 0;
737
738         for (i = 0; i < ctrlr->num_aers; i++) {
739                 aer = &ctrlr->aer[i];
740                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
741         }
742 }
743
744 static void
745 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
746 {
747
748         ctrlr->int_coal_time = 0;
749         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
750             &ctrlr->int_coal_time);
751
752         ctrlr->int_coal_threshold = 0;
753         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
754             &ctrlr->int_coal_threshold);
755
756         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
757             ctrlr->int_coal_threshold, NULL, NULL);
758 }
759
760 static void
761 nvme_ctrlr_start(void *ctrlr_arg)
762 {
763         struct nvme_controller *ctrlr = ctrlr_arg;
764         int i;
765
766         nvme_qpair_reset(&ctrlr->adminq);
767         for (i = 0; i < ctrlr->num_io_queues; i++)
768                 nvme_qpair_reset(&ctrlr->ioq[i]);
769
770         nvme_admin_qpair_enable(&ctrlr->adminq);
771
772         if (nvme_ctrlr_identify(ctrlr) != 0) {
773                 nvme_ctrlr_fail(ctrlr);
774                 return;
775         }
776
777         if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
778                 nvme_ctrlr_fail(ctrlr);
779                 return;
780         }
781
782         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
783                 nvme_ctrlr_fail(ctrlr);
784                 return;
785         }
786
787         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
788                 nvme_ctrlr_fail(ctrlr);
789                 return;
790         }
791
792         nvme_ctrlr_configure_aer(ctrlr);
793         nvme_ctrlr_configure_int_coalescing(ctrlr);
794
795         for (i = 0; i < ctrlr->num_io_queues; i++)
796                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
797
798         /*
799          * Clear software progress marker to 0, to indicate to pre-boot
800          *  software that OS driver load was successful.
801          *
802          * Chatham does not support this feature.
803          */
804         if (pci_get_devid(ctrlr->dev) != CHATHAM_PCI_ID)
805                 nvme_ctrlr_cmd_set_feature(ctrlr,
806                     NVME_FEAT_SOFTWARE_PROGRESS_MARKER, 0, NULL, 0, NULL, NULL);
807 }
808
809 void
810 nvme_ctrlr_start_config_hook(void *arg)
811 {
812         struct nvme_controller *ctrlr = arg;
813
814         nvme_ctrlr_start(ctrlr);
815         config_intrhook_disestablish(&ctrlr->config_hook);
816 }
817
818 static void
819 nvme_ctrlr_reset_task(void *arg, int pending)
820 {
821         struct nvme_controller  *ctrlr = arg;
822         int                     status;
823
824         nvme_printf(ctrlr, "resetting controller\n");
825         status = nvme_ctrlr_hw_reset(ctrlr);
826         /*
827          * Use pause instead of DELAY, so that we yield to any nvme interrupt
828          *  handlers on this CPU that were blocked on a qpair lock. We want
829          *  all nvme interrupts completed before proceeding with restarting the
830          *  controller.
831          *
832          * XXX - any way to guarantee the interrupt handlers have quiesced?
833          */
834         pause("nvmereset", hz / 10);
835         if (status == 0)
836                 nvme_ctrlr_start(ctrlr);
837         else
838                 nvme_ctrlr_fail(ctrlr);
839
840         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
841 }
842
843 static void
844 nvme_ctrlr_intx_handler(void *arg)
845 {
846         struct nvme_controller *ctrlr = arg;
847
848         nvme_mmio_write_4(ctrlr, intms, 1);
849
850         nvme_qpair_process_completions(&ctrlr->adminq);
851
852         if (ctrlr->ioq[0].cpl)
853                 nvme_qpair_process_completions(&ctrlr->ioq[0]);
854
855         nvme_mmio_write_4(ctrlr, intmc, 1);
856 }
857
858 static int
859 nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
860 {
861
862         ctrlr->num_io_queues = 1;
863         ctrlr->per_cpu_io_queues = 0;
864         ctrlr->rid = 0;
865         ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
866             &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
867
868         if (ctrlr->res == NULL) {
869                 nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
870                 return (ENOMEM);
871         }
872
873         bus_setup_intr(ctrlr->dev, ctrlr->res,
874             INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
875             ctrlr, &ctrlr->tag);
876
877         if (ctrlr->tag == NULL) {
878                 nvme_printf(ctrlr, "unable to setup intx handler\n");
879                 return (ENOMEM);
880         }
881
882         return (0);
883 }
884
885 static void
886 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
887 {
888         struct nvme_pt_command *pt = arg;
889
890         bzero(&pt->cpl, sizeof(pt->cpl));
891         pt->cpl.cdw0 = cpl->cdw0;
892         pt->cpl.status = cpl->status;
893         pt->cpl.status.p = 0;
894
895         mtx_lock(pt->driver_lock);
896         wakeup(pt);
897         mtx_unlock(pt->driver_lock);
898 }
899
900 int
901 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
902     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
903     int is_admin_cmd)
904 {
905         struct nvme_request     *req;
906         struct mtx              *mtx;
907         struct buf              *buf = NULL;
908         int                     ret = 0;
909
910         if (pt->len > 0)
911                 if (is_user_buffer) {
912                         /*
913                          * Ensure the user buffer is wired for the duration of
914                          *  this passthrough command.
915                          */
916                         PHOLD(curproc);
917                         buf = getpbuf(NULL);
918                         buf->b_saveaddr = buf->b_data;
919                         buf->b_data = pt->buf;
920                         buf->b_bufsize = pt->len;
921                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
922 #ifdef NVME_UNMAPPED_BIO_SUPPORT
923                         if (vmapbuf(buf, 1) < 0) {
924 #else
925                         if (vmapbuf(buf) < 0) {
926 #endif
927                                 ret = EFAULT;
928                                 goto err;
929                         }
930                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
931                             nvme_pt_done, pt);
932                 } else
933                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
934                             nvme_pt_done, pt);
935         else
936                 req = nvme_allocate_request_null(nvme_pt_done, pt);
937
938         req->cmd.opc    = pt->cmd.opc;
939         req->cmd.cdw10  = pt->cmd.cdw10;
940         req->cmd.cdw11  = pt->cmd.cdw11;
941         req->cmd.cdw12  = pt->cmd.cdw12;
942         req->cmd.cdw13  = pt->cmd.cdw13;
943         req->cmd.cdw14  = pt->cmd.cdw14;
944         req->cmd.cdw15  = pt->cmd.cdw15;
945
946         req->cmd.nsid = nsid;
947
948         if (is_admin_cmd)
949                 mtx = &ctrlr->lock;
950         else
951                 mtx = &ctrlr->ns[nsid-1].lock;
952
953         mtx_lock(mtx);
954         pt->driver_lock = mtx;
955
956         if (is_admin_cmd)
957                 nvme_ctrlr_submit_admin_request(ctrlr, req);
958         else
959                 nvme_ctrlr_submit_io_request(ctrlr, req);
960
961         mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
962         mtx_unlock(mtx);
963
964         pt->driver_lock = NULL;
965
966 err:
967         if (buf != NULL) {
968                 relpbuf(buf, NULL);
969                 PRELE(curproc);
970         }
971
972         return (ret);
973 }
974
975 static int
976 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
977     struct thread *td)
978 {
979         struct nvme_controller                  *ctrlr;
980         struct nvme_pt_command                  *pt;
981
982         ctrlr = cdev->si_drv1;
983
984         switch (cmd) {
985         case NVME_RESET_CONTROLLER:
986                 nvme_ctrlr_reset(ctrlr);
987                 break;
988         case NVME_PASSTHROUGH_CMD:
989                 pt = (struct nvme_pt_command *)arg;
990                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
991                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
992         default:
993                 return (ENOTTY);
994         }
995
996         return (0);
997 }
998
999 static struct cdevsw nvme_ctrlr_cdevsw = {
1000         .d_version =    D_VERSION,
1001         .d_flags =      0,
1002         .d_ioctl =      nvme_ctrlr_ioctl
1003 };
1004
1005 int
1006 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1007 {
1008         union cap_lo_register   cap_lo;
1009         union cap_hi_register   cap_hi;
1010         int                     num_vectors, per_cpu_io_queues, status = 0;
1011         int                     timeout_period;
1012
1013         ctrlr->dev = dev;
1014
1015         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1016
1017         status = nvme_ctrlr_allocate_bar(ctrlr);
1018
1019         if (status != 0)
1020                 return (status);
1021
1022 #ifdef CHATHAM2
1023         if (pci_get_devid(dev) == CHATHAM_PCI_ID) {
1024                 status = nvme_ctrlr_allocate_chatham_bar(ctrlr);
1025                 if (status != 0)
1026                         return (status);
1027                 nvme_ctrlr_setup_chatham(ctrlr);
1028         }
1029 #endif
1030
1031         /*
1032          * Software emulators may set the doorbell stride to something
1033          *  other than zero, but this driver is not set up to handle that.
1034          */
1035         cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1036         if (cap_hi.bits.dstrd != 0)
1037                 return (ENXIO);
1038
1039         ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1040
1041         /* Get ready timeout value from controller, in units of 500ms. */
1042         cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1043         ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1044
1045         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1046         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1047         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1048         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1049         ctrlr->timeout_period = timeout_period;
1050
1051         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1052         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1053
1054         per_cpu_io_queues = 1;
1055         TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1056         ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
1057
1058         if (ctrlr->per_cpu_io_queues)
1059                 ctrlr->num_io_queues = mp_ncpus;
1060         else
1061                 ctrlr->num_io_queues = 1;
1062
1063         ctrlr->force_intx = 0;
1064         TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1065
1066         ctrlr->enable_aborts = 0;
1067         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1068
1069         ctrlr->msix_enabled = 1;
1070
1071         if (ctrlr->force_intx) {
1072                 ctrlr->msix_enabled = 0;
1073                 goto intx;
1074         }
1075
1076         /* One vector per IO queue, plus one vector for admin queue. */
1077         num_vectors = ctrlr->num_io_queues + 1;
1078
1079         if (pci_msix_count(dev) < num_vectors) {
1080                 ctrlr->msix_enabled = 0;
1081                 goto intx;
1082         }
1083
1084         if (pci_alloc_msix(dev, &num_vectors) != 0)
1085                 ctrlr->msix_enabled = 0;
1086
1087 intx:
1088
1089         if (!ctrlr->msix_enabled)
1090                 nvme_ctrlr_configure_intx(ctrlr);
1091
1092         nvme_ctrlr_construct_admin_qpair(ctrlr);
1093
1094         status = nvme_ctrlr_construct_io_qpairs(ctrlr);
1095
1096         if (status != 0)
1097                 return (status);
1098
1099         ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
1100             "nvme%d", device_get_unit(dev));
1101
1102         if (ctrlr->cdev == NULL)
1103                 return (ENXIO);
1104
1105         ctrlr->cdev->si_drv1 = (void *)ctrlr;
1106
1107         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1108             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1109         taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1110
1111         ctrlr->is_resetting = 0;
1112         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1113
1114         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1115         STAILQ_INIT(&ctrlr->fail_req);
1116         ctrlr->is_failed = FALSE;
1117
1118         return (0);
1119 }
1120
1121 void
1122 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1123 {
1124         int                             i;
1125
1126         nvme_ctrlr_disable(ctrlr);
1127         taskqueue_free(ctrlr->taskqueue);
1128
1129         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1130                 nvme_ns_destruct(&ctrlr->ns[i]);
1131
1132         if (ctrlr->cdev)
1133                 destroy_dev(ctrlr->cdev);
1134
1135         for (i = 0; i < ctrlr->num_io_queues; i++) {
1136                 nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1137         }
1138
1139         free(ctrlr->ioq, M_NVME);
1140
1141         nvme_admin_qpair_destroy(&ctrlr->adminq);
1142
1143         if (ctrlr->resource != NULL) {
1144                 bus_release_resource(dev, SYS_RES_MEMORY,
1145                     ctrlr->resource_id, ctrlr->resource);
1146         }
1147
1148         if (ctrlr->bar4_resource != NULL) {
1149                 bus_release_resource(dev, SYS_RES_MEMORY,
1150                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1151         }
1152
1153 #ifdef CHATHAM2
1154         if (ctrlr->chatham_resource != NULL) {
1155                 bus_release_resource(dev, SYS_RES_MEMORY,
1156                     ctrlr->chatham_resource_id, ctrlr->chatham_resource);
1157         }
1158 #endif
1159
1160         if (ctrlr->tag)
1161                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1162
1163         if (ctrlr->res)
1164                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1165                     rman_get_rid(ctrlr->res), ctrlr->res);
1166
1167         if (ctrlr->msix_enabled)
1168                 pci_release_msi(dev);
1169 }
1170
1171 void
1172 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1173     struct nvme_request *req)
1174 {
1175
1176         nvme_qpair_submit_request(&ctrlr->adminq, req);
1177 }
1178
1179 void
1180 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1181     struct nvme_request *req)
1182 {
1183         struct nvme_qpair       *qpair;
1184
1185         if (ctrlr->per_cpu_io_queues)
1186                 qpair = &ctrlr->ioq[curcpu];
1187         else
1188                 qpair = &ctrlr->ioq[0];
1189
1190         nvme_qpair_submit_request(qpair, req);
1191 }
1192
1193 device_t
1194 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1195 {
1196
1197         return (ctrlr->dev);
1198 }
1199
1200 const struct nvme_controller_data *
1201 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1202 {
1203
1204         return (&ctrlr->cdata);
1205 }