]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
zfs: merge openzfs/zfs@4647353c8
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 #include "opt_cam.h"
31 #include "opt_nvme.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/buf.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/ioccom.h>
39 #include <sys/proc.h>
40 #include <sys/smp.h>
41 #include <sys/uio.h>
42 #include <sys/sbuf.h>
43 #include <sys/endian.h>
44 #include <machine/stdarg.h>
45 #include <vm/vm.h>
46
47 #include "nvme_private.h"
48
49 #define B4_CHK_RDY_DELAY_MS     2300            /* work around controller bug */
50
51 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
52                                                 struct nvme_async_event_request *aer);
53
54 static void
55 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags)
56 {
57         bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags);
58 }
59
60 static void
61 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
62 {
63         struct sbuf sb;
64         va_list ap;
65         int error;
66
67         if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
68                 return;
69         sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
70         va_start(ap, msg);
71         sbuf_vprintf(&sb, msg, ap);
72         va_end(ap);
73         error = sbuf_finish(&sb);
74         if (error == 0)
75                 printf("%s\n", sbuf_data(&sb));
76
77         sbuf_clear(&sb);
78         sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev));
79         va_start(ap, msg);
80         sbuf_vprintf(&sb, msg, ap);
81         va_end(ap);
82         sbuf_printf(&sb, "\"");
83         error = sbuf_finish(&sb);
84         if (error == 0)
85                 devctl_notify("nvme", "controller", type, sbuf_data(&sb));
86         sbuf_delete(&sb);
87 }
88
89 static int
90 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
91 {
92         struct nvme_qpair       *qpair;
93         uint32_t                num_entries;
94         int                     error;
95
96         qpair = &ctrlr->adminq;
97         qpair->id = 0;
98         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
99         qpair->domain = ctrlr->domain;
100
101         num_entries = NVME_ADMIN_ENTRIES;
102         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
103         /*
104          * If admin_entries was overridden to an invalid value, revert it
105          *  back to our default value.
106          */
107         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
108             num_entries > NVME_MAX_ADMIN_ENTRIES) {
109                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
110                     "specified\n", num_entries);
111                 num_entries = NVME_ADMIN_ENTRIES;
112         }
113
114         /*
115          * The admin queue's max xfer size is treated differently than the
116          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
117          */
118         error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
119              ctrlr);
120         return (error);
121 }
122
123 #define QP(ctrlr, c)    ((c) * (ctrlr)->num_io_queues / mp_ncpus)
124
125 static int
126 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
127 {
128         struct nvme_qpair       *qpair;
129         uint32_t                cap_lo;
130         uint16_t                mqes;
131         int                     c, error, i, n;
132         int                     num_entries, num_trackers, max_entries;
133
134         /*
135          * NVMe spec sets a hard limit of 64K max entries, but devices may
136          * specify a smaller limit, so we need to check the MQES field in the
137          * capabilities register. We have to cap the number of entries to the
138          * current stride allows for in BAR 0/1, otherwise the remainder entries
139          * are inaccessible. MQES should reflect this, and this is just a
140          * fail-safe.
141          */
142         max_entries =
143             (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
144             (1 << (ctrlr->dstrd + 1));
145         num_entries = NVME_IO_ENTRIES;
146         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
147         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
148         mqes = NVME_CAP_LO_MQES(cap_lo);
149         num_entries = min(num_entries, mqes + 1);
150         num_entries = min(num_entries, max_entries);
151
152         num_trackers = NVME_IO_TRACKERS;
153         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
154
155         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
156         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
157         /*
158          * No need to have more trackers than entries in the submit queue.  Note
159          * also that for a queue size of N, we can only have (N-1) commands
160          * outstanding, hence the "-1" here.
161          */
162         num_trackers = min(num_trackers, (num_entries-1));
163
164         /*
165          * Our best estimate for the maximum number of I/Os that we should
166          * normally have in flight at one time. This should be viewed as a hint,
167          * not a hard limit and will need to be revisited when the upper layers
168          * of the storage system grows multi-queue support.
169          */
170         ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
171
172         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
173             M_NVME, M_ZERO | M_WAITOK);
174
175         for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
176                 qpair = &ctrlr->ioq[i];
177
178                 /*
179                  * Admin queue has ID=0. IO queues start at ID=1 -
180                  *  hence the 'i+1' here.
181                  */
182                 qpair->id = i + 1;
183                 if (ctrlr->num_io_queues > 1) {
184                         /* Find number of CPUs served by this queue. */
185                         for (n = 1; QP(ctrlr, c + n) == i; n++)
186                                 ;
187                         /* Shuffle multiple NVMe devices between CPUs. */
188                         qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
189                         qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
190                 } else {
191                         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
192                         qpair->domain = ctrlr->domain;
193                 }
194
195                 /*
196                  * For I/O queues, use the controller-wide max_xfer_size
197                  *  calculated in nvme_attach().
198                  */
199                 error = nvme_qpair_construct(qpair, num_entries, num_trackers,
200                     ctrlr);
201                 if (error)
202                         return (error);
203
204                 /*
205                  * Do not bother binding interrupts if we only have one I/O
206                  *  interrupt thread for this controller.
207                  */
208                 if (ctrlr->num_io_queues > 1)
209                         bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
210         }
211
212         return (0);
213 }
214
215 static void
216 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
217 {
218         int i;
219
220         ctrlr->is_failed = true;
221         nvme_admin_qpair_disable(&ctrlr->adminq);
222         nvme_qpair_fail(&ctrlr->adminq);
223         if (ctrlr->ioq != NULL) {
224                 for (i = 0; i < ctrlr->num_io_queues; i++) {
225                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
226                         nvme_qpair_fail(&ctrlr->ioq[i]);
227                 }
228         }
229         nvme_notify_fail_consumers(ctrlr);
230 }
231
232 void
233 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
234     struct nvme_request *req)
235 {
236
237         mtx_lock(&ctrlr->lock);
238         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
239         mtx_unlock(&ctrlr->lock);
240         if (!ctrlr->is_dying)
241                 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
242 }
243
244 static void
245 nvme_ctrlr_fail_req_task(void *arg, int pending)
246 {
247         struct nvme_controller  *ctrlr = arg;
248         struct nvme_request     *req;
249
250         mtx_lock(&ctrlr->lock);
251         while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
252                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
253                 mtx_unlock(&ctrlr->lock);
254                 nvme_qpair_manual_complete_request(req->qpair, req,
255                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
256                 mtx_lock(&ctrlr->lock);
257         }
258         mtx_unlock(&ctrlr->lock);
259 }
260
261 /*
262  * Wait for RDY to change.
263  *
264  * Starts sleeping for 1us and geometrically increases it the longer we wait,
265  * capped at 1ms.
266  */
267 static int
268 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
269 {
270         int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms);
271         sbintime_t delta_t = SBT_1US;
272         uint32_t csts;
273
274         while (1) {
275                 csts = nvme_mmio_read_4(ctrlr, csts);
276                 if (csts == NVME_GONE)          /* Hot unplug. */
277                         return (ENXIO);
278                 if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK)
279                     == desired_val)
280                         break;
281                 if (timeout - ticks < 0) {
282                         nvme_printf(ctrlr, "controller ready did not become %d "
283                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
284                         return (ENXIO);
285                 }
286
287                 pause_sbt("nvmerdy", delta_t, 0, C_PREL(1));
288                 delta_t = min(SBT_1MS, delta_t * 3 / 2);
289         }
290
291         return (0);
292 }
293
294 static int
295 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
296 {
297         uint32_t cc;
298         uint32_t csts;
299         uint8_t  en, rdy;
300         int err;
301
302         cc = nvme_mmio_read_4(ctrlr, cc);
303         csts = nvme_mmio_read_4(ctrlr, csts);
304
305         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
306         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
307
308         /*
309          * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
310          * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
311          * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
312          * isn't the desired value. Short circuit if we're already disabled.
313          */
314         if (en == 0) {
315                 /* Wait for RDY == 0 or timeout & fail */
316                 if (rdy == 0)
317                         return (0);
318                 return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
319         }
320         if (rdy == 0) {
321                 /* EN == 1, wait for  RDY == 1 or timeout & fail */
322                 err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
323                 if (err != 0)
324                         return (err);
325         }
326
327         cc &= ~NVME_CC_REG_EN_MASK;
328         nvme_mmio_write_4(ctrlr, cc, cc);
329
330         /*
331          * A few drives have firmware bugs that freeze the drive if we access
332          * the mmio too soon after we disable.
333          */
334         if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
335                 pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS));
336         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
337 }
338
339 static int
340 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
341 {
342         uint32_t        cc;
343         uint32_t        csts;
344         uint32_t        aqa;
345         uint32_t        qsize;
346         uint8_t         en, rdy;
347         int             err;
348
349         cc = nvme_mmio_read_4(ctrlr, cc);
350         csts = nvme_mmio_read_4(ctrlr, csts);
351
352         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
353         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
354
355         /*
356          * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
357          */
358         if (en == 1) {
359                 if (rdy == 1)
360                         return (0);
361                 return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
362         }
363
364         /* EN == 0 already wait for RDY == 0 or timeout & fail */
365         err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
366         if (err != 0)
367                 return (err);
368
369         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
370         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
371
372         /* acqs and asqs are 0-based. */
373         qsize = ctrlr->adminq.num_entries - 1;
374
375         aqa = 0;
376         aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
377         aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
378         nvme_mmio_write_4(ctrlr, aqa, aqa);
379
380         /* Initialization values for CC */
381         cc = 0;
382         cc |= 1 << NVME_CC_REG_EN_SHIFT;
383         cc |= 0 << NVME_CC_REG_CSS_SHIFT;
384         cc |= 0 << NVME_CC_REG_AMS_SHIFT;
385         cc |= 0 << NVME_CC_REG_SHN_SHIFT;
386         cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
387         cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
388
389         /*
390          * Use the Memory Page Size selected during device initialization.  Note
391          * that value stored in mps is suitable to use here without adjusting by
392          * NVME_MPS_SHIFT.
393          */
394         cc |= ctrlr->mps << NVME_CC_REG_MPS_SHIFT;
395
396         nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE);
397         nvme_mmio_write_4(ctrlr, cc, cc);
398
399         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
400 }
401
402 static void
403 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
404 {
405         int i;
406
407         nvme_admin_qpair_disable(&ctrlr->adminq);
408         /*
409          * I/O queues are not allocated before the initial HW
410          *  reset, so do not try to disable them.  Use is_initialized
411          *  to determine if this is the initial HW reset.
412          */
413         if (ctrlr->is_initialized) {
414                 for (i = 0; i < ctrlr->num_io_queues; i++)
415                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
416         }
417 }
418
419 static void
420 nvme_pre_reset(struct nvme_controller *ctrlr)
421 {
422         /*
423          * Make sure that all the ISRs are done before proceeding with the reset
424          * (and also keep any stray interrupts that happen during this process
425          * from racing this process). For startup, this is a nop, since the
426          * hardware is in a good state. But for recovery, where we randomly
427          * reset the hardware, this ensure that we're not racing the ISRs.
428          */
429         mtx_lock(&ctrlr->adminq.recovery);
430         for (int i = 0; i < ctrlr->num_io_queues; i++) {
431                 mtx_lock(&ctrlr->ioq[i].recovery);
432         }
433 }
434
435 static void
436 nvme_post_reset(struct nvme_controller *ctrlr)
437 {
438         /*
439          * Reset complete, unblock ISRs
440          */
441         mtx_unlock(&ctrlr->adminq.recovery);
442         for (int i = 0; i < ctrlr->num_io_queues; i++) {
443                 mtx_unlock(&ctrlr->ioq[i].recovery);
444         }
445 }
446
447 static int
448 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
449 {
450         int err;
451
452         TSENTER();
453
454         nvme_ctrlr_disable_qpairs(ctrlr);
455
456         err = nvme_ctrlr_disable(ctrlr);
457         if (err != 0)
458                 goto out;
459
460         err = nvme_ctrlr_enable(ctrlr);
461 out:
462
463         TSEXIT();
464         return (err);
465 }
466
467 void
468 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
469 {
470         int cmpset;
471
472         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
473
474         if (cmpset == 0 || ctrlr->is_failed)
475                 /*
476                  * Controller is already resetting or has failed.  Return
477                  *  immediately since there is no need to kick off another
478                  *  reset in these cases.
479                  */
480                 return;
481
482         if (!ctrlr->is_dying)
483                 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
484 }
485
486 static int
487 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
488 {
489         struct nvme_completion_poll_status      status;
490
491         status.done = 0;
492         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
493             nvme_completion_poll_cb, &status);
494         nvme_completion_poll(&status);
495         if (nvme_completion_is_error(&status.cpl)) {
496                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
497                 return (ENXIO);
498         }
499
500         /* Convert data to host endian */
501         nvme_controller_data_swapbytes(&ctrlr->cdata);
502
503         /*
504          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
505          *  controller supports.
506          */
507         if (ctrlr->cdata.mdts > 0)
508                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
509                     1 << (ctrlr->cdata.mdts + NVME_MPS_SHIFT +
510                         NVME_CAP_HI_MPSMIN(ctrlr->cap_hi)));
511
512         return (0);
513 }
514
515 static int
516 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
517 {
518         struct nvme_completion_poll_status      status;
519         int                                     cq_allocated, sq_allocated;
520
521         status.done = 0;
522         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
523             nvme_completion_poll_cb, &status);
524         nvme_completion_poll(&status);
525         if (nvme_completion_is_error(&status.cpl)) {
526                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
527                 return (ENXIO);
528         }
529
530         /*
531          * Data in cdw0 is 0-based.
532          * Lower 16-bits indicate number of submission queues allocated.
533          * Upper 16-bits indicate number of completion queues allocated.
534          */
535         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
536         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
537
538         /*
539          * Controller may allocate more queues than we requested,
540          *  so use the minimum of the number requested and what was
541          *  actually allocated.
542          */
543         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
544         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
545         if (ctrlr->num_io_queues > vm_ndomains)
546                 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
547
548         return (0);
549 }
550
551 static int
552 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
553 {
554         struct nvme_completion_poll_status      status;
555         struct nvme_qpair                       *qpair;
556         int                                     i;
557
558         for (i = 0; i < ctrlr->num_io_queues; i++) {
559                 qpair = &ctrlr->ioq[i];
560
561                 status.done = 0;
562                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
563                     nvme_completion_poll_cb, &status);
564                 nvme_completion_poll(&status);
565                 if (nvme_completion_is_error(&status.cpl)) {
566                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
567                         return (ENXIO);
568                 }
569
570                 status.done = 0;
571                 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
572                     nvme_completion_poll_cb, &status);
573                 nvme_completion_poll(&status);
574                 if (nvme_completion_is_error(&status.cpl)) {
575                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
576                         return (ENXIO);
577                 }
578         }
579
580         return (0);
581 }
582
583 static int
584 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
585 {
586         struct nvme_completion_poll_status      status;
587         struct nvme_qpair                       *qpair;
588
589         for (int i = 0; i < ctrlr->num_io_queues; i++) {
590                 qpair = &ctrlr->ioq[i];
591
592                 status.done = 0;
593                 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
594                     nvme_completion_poll_cb, &status);
595                 nvme_completion_poll(&status);
596                 if (nvme_completion_is_error(&status.cpl)) {
597                         nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
598                         return (ENXIO);
599                 }
600
601                 status.done = 0;
602                 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
603                     nvme_completion_poll_cb, &status);
604                 nvme_completion_poll(&status);
605                 if (nvme_completion_is_error(&status.cpl)) {
606                         nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
607                         return (ENXIO);
608                 }
609         }
610
611         return (0);
612 }
613
614 static int
615 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
616 {
617         struct nvme_namespace   *ns;
618         uint32_t                i;
619
620         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
621                 ns = &ctrlr->ns[i];
622                 nvme_ns_construct(ns, i+1, ctrlr);
623         }
624
625         return (0);
626 }
627
628 static bool
629 is_log_page_id_valid(uint8_t page_id)
630 {
631
632         switch (page_id) {
633         case NVME_LOG_ERROR:
634         case NVME_LOG_HEALTH_INFORMATION:
635         case NVME_LOG_FIRMWARE_SLOT:
636         case NVME_LOG_CHANGED_NAMESPACE:
637         case NVME_LOG_COMMAND_EFFECT:
638         case NVME_LOG_RES_NOTIFICATION:
639         case NVME_LOG_SANITIZE_STATUS:
640                 return (true);
641         }
642
643         return (false);
644 }
645
646 static uint32_t
647 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
648 {
649         uint32_t        log_page_size;
650
651         switch (page_id) {
652         case NVME_LOG_ERROR:
653                 log_page_size = min(
654                     sizeof(struct nvme_error_information_entry) *
655                     (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
656                 break;
657         case NVME_LOG_HEALTH_INFORMATION:
658                 log_page_size = sizeof(struct nvme_health_information_page);
659                 break;
660         case NVME_LOG_FIRMWARE_SLOT:
661                 log_page_size = sizeof(struct nvme_firmware_page);
662                 break;
663         case NVME_LOG_CHANGED_NAMESPACE:
664                 log_page_size = sizeof(struct nvme_ns_list);
665                 break;
666         case NVME_LOG_COMMAND_EFFECT:
667                 log_page_size = sizeof(struct nvme_command_effects_page);
668                 break;
669         case NVME_LOG_RES_NOTIFICATION:
670                 log_page_size = sizeof(struct nvme_res_notification_page);
671                 break;
672         case NVME_LOG_SANITIZE_STATUS:
673                 log_page_size = sizeof(struct nvme_sanitize_status_page);
674                 break;
675         default:
676                 log_page_size = 0;
677                 break;
678         }
679
680         return (log_page_size);
681 }
682
683 static void
684 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
685     uint8_t state)
686 {
687
688         if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
689                 nvme_ctrlr_devctl_log(ctrlr, "critical",
690                     "available spare space below threshold");
691
692         if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
693                 nvme_ctrlr_devctl_log(ctrlr, "critical",
694                     "temperature above threshold");
695
696         if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
697                 nvme_ctrlr_devctl_log(ctrlr, "critical",
698                     "device reliability degraded");
699
700         if (state & NVME_CRIT_WARN_ST_READ_ONLY)
701                 nvme_ctrlr_devctl_log(ctrlr, "critical",
702                     "media placed in read only mode");
703
704         if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
705                 nvme_ctrlr_devctl_log(ctrlr, "critical",
706                     "volatile memory backup device failed");
707
708         if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
709                 nvme_ctrlr_devctl_log(ctrlr, "critical",
710                     "unknown critical warning(s): state = 0x%02x", state);
711 }
712
713 static void
714 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
715 {
716         struct nvme_async_event_request         *aer = arg;
717         struct nvme_health_information_page     *health_info;
718         struct nvme_ns_list                     *nsl;
719         struct nvme_error_information_entry     *err;
720         int i;
721
722         /*
723          * If the log page fetch for some reason completed with an error,
724          *  don't pass log page data to the consumers.  In practice, this case
725          *  should never happen.
726          */
727         if (nvme_completion_is_error(cpl))
728                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
729                     aer->log_page_id, NULL, 0);
730         else {
731                 /* Convert data to host endian */
732                 switch (aer->log_page_id) {
733                 case NVME_LOG_ERROR:
734                         err = (struct nvme_error_information_entry *)aer->log_page_buffer;
735                         for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
736                                 nvme_error_information_entry_swapbytes(err++);
737                         break;
738                 case NVME_LOG_HEALTH_INFORMATION:
739                         nvme_health_information_page_swapbytes(
740                             (struct nvme_health_information_page *)aer->log_page_buffer);
741                         break;
742                 case NVME_LOG_FIRMWARE_SLOT:
743                         nvme_firmware_page_swapbytes(
744                             (struct nvme_firmware_page *)aer->log_page_buffer);
745                         break;
746                 case NVME_LOG_CHANGED_NAMESPACE:
747                         nvme_ns_list_swapbytes(
748                             (struct nvme_ns_list *)aer->log_page_buffer);
749                         break;
750                 case NVME_LOG_COMMAND_EFFECT:
751                         nvme_command_effects_page_swapbytes(
752                             (struct nvme_command_effects_page *)aer->log_page_buffer);
753                         break;
754                 case NVME_LOG_RES_NOTIFICATION:
755                         nvme_res_notification_page_swapbytes(
756                             (struct nvme_res_notification_page *)aer->log_page_buffer);
757                         break;
758                 case NVME_LOG_SANITIZE_STATUS:
759                         nvme_sanitize_status_page_swapbytes(
760                             (struct nvme_sanitize_status_page *)aer->log_page_buffer);
761                         break;
762                 case INTEL_LOG_TEMP_STATS:
763                         intel_log_temp_stats_swapbytes(
764                             (struct intel_log_temp_stats *)aer->log_page_buffer);
765                         break;
766                 default:
767                         break;
768                 }
769
770                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
771                         health_info = (struct nvme_health_information_page *)
772                             aer->log_page_buffer;
773                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
774                             health_info->critical_warning);
775                         /*
776                          * Critical warnings reported through the
777                          *  SMART/health log page are persistent, so
778                          *  clear the associated bits in the async event
779                          *  config so that we do not receive repeated
780                          *  notifications for the same event.
781                          */
782                         aer->ctrlr->async_event_config &=
783                             ~health_info->critical_warning;
784                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
785                             aer->ctrlr->async_event_config, NULL, NULL);
786                 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
787                     !nvme_use_nvd) {
788                         nsl = (struct nvme_ns_list *)aer->log_page_buffer;
789                         for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
790                                 if (nsl->ns[i] > NVME_MAX_NAMESPACES)
791                                         break;
792                                 nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
793                         }
794                 }
795
796                 /*
797                  * Pass the cpl data from the original async event completion,
798                  *  not the log page fetch.
799                  */
800                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
801                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
802         }
803
804         /*
805          * Repost another asynchronous event request to replace the one
806          *  that just completed.
807          */
808         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
809 }
810
811 static void
812 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
813 {
814         struct nvme_async_event_request *aer = arg;
815
816         if (nvme_completion_is_error(cpl)) {
817                 /*
818                  *  Do not retry failed async event requests.  This avoids
819                  *  infinite loops where a new async event request is submitted
820                  *  to replace the one just failed, only to fail again and
821                  *  perpetuate the loop.
822                  */
823                 return;
824         }
825
826         /* Associated log page is in bits 23:16 of completion entry dw0. */
827         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
828
829         nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
830             " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8,
831             aer->log_page_id);
832
833         if (is_log_page_id_valid(aer->log_page_id)) {
834                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
835                     aer->log_page_id);
836                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
837                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
838                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
839                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
840                     aer);
841                 /* Wait to notify consumers until after log page is fetched. */
842         } else {
843                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
844                     NULL, 0);
845
846                 /*
847                  * Repost another asynchronous event request to replace the one
848                  *  that just completed.
849                  */
850                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
851         }
852 }
853
854 static void
855 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
856     struct nvme_async_event_request *aer)
857 {
858         struct nvme_request *req;
859
860         aer->ctrlr = ctrlr;
861         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
862         aer->req = req;
863
864         /*
865          * Disable timeout here, since asynchronous event requests should by
866          *  nature never be timed out.
867          */
868         req->timeout = false;
869         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
870         nvme_ctrlr_submit_admin_request(ctrlr, req);
871 }
872
873 static void
874 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
875 {
876         struct nvme_completion_poll_status      status;
877         struct nvme_async_event_request         *aer;
878         uint32_t                                i;
879
880         ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
881             NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
882             NVME_CRIT_WARN_ST_READ_ONLY |
883             NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
884         if (ctrlr->cdata.ver >= NVME_REV(1, 2))
885                 ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE |
886                     NVME_ASYNC_EVENT_FW_ACTIVATE;
887
888         status.done = 0;
889         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
890             0, NULL, 0, nvme_completion_poll_cb, &status);
891         nvme_completion_poll(&status);
892         if (nvme_completion_is_error(&status.cpl) ||
893             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
894             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
895                 nvme_printf(ctrlr, "temperature threshold not supported\n");
896         } else
897                 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
898
899         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
900             ctrlr->async_event_config, NULL, NULL);
901
902         /* aerl is a zero-based value, so we need to add 1 here. */
903         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
904
905         for (i = 0; i < ctrlr->num_aers; i++) {
906                 aer = &ctrlr->aer[i];
907                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
908         }
909 }
910
911 static void
912 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
913 {
914
915         ctrlr->int_coal_time = 0;
916         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
917             &ctrlr->int_coal_time);
918
919         ctrlr->int_coal_threshold = 0;
920         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
921             &ctrlr->int_coal_threshold);
922
923         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
924             ctrlr->int_coal_threshold, NULL, NULL);
925 }
926
927 static void
928 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
929 {
930         struct nvme_hmb_chunk *hmbc;
931         int i;
932
933         if (ctrlr->hmb_desc_paddr) {
934                 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
935                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
936                     ctrlr->hmb_desc_map);
937                 ctrlr->hmb_desc_paddr = 0;
938         }
939         if (ctrlr->hmb_desc_tag) {
940                 bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
941                 ctrlr->hmb_desc_tag = NULL;
942         }
943         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
944                 hmbc = &ctrlr->hmb_chunks[i];
945                 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
946                 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
947                     hmbc->hmbc_map);
948         }
949         ctrlr->hmb_nchunks = 0;
950         if (ctrlr->hmb_tag) {
951                 bus_dma_tag_destroy(ctrlr->hmb_tag);
952                 ctrlr->hmb_tag = NULL;
953         }
954         if (ctrlr->hmb_chunks) {
955                 free(ctrlr->hmb_chunks, M_NVME);
956                 ctrlr->hmb_chunks = NULL;
957         }
958 }
959
960 static void
961 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
962 {
963         struct nvme_hmb_chunk *hmbc;
964         size_t pref, min, minc, size;
965         int err, i;
966         uint64_t max;
967
968         /* Limit HMB to 5% of RAM size per device by default. */
969         max = (uint64_t)physmem * PAGE_SIZE / 20;
970         TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
971
972         /*
973          * Units of Host Memory Buffer in the Identify info are always in terms
974          * of 4k units.
975          */
976         min = (long long unsigned)ctrlr->cdata.hmmin * NVME_HMB_UNITS;
977         if (max == 0 || max < min)
978                 return;
979         pref = MIN((long long unsigned)ctrlr->cdata.hmpre * NVME_HMB_UNITS, max);
980         minc = MAX(ctrlr->cdata.hmminds * NVME_HMB_UNITS, ctrlr->page_size);
981         if (min > 0 && ctrlr->cdata.hmmaxd > 0)
982                 minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
983         ctrlr->hmb_chunk = pref;
984
985 again:
986         /*
987          * However, the chunk sizes, number of chunks, and alignment of chunks
988          * are all based on the current MPS (ctrlr->page_size).
989          */
990         ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, ctrlr->page_size);
991         ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
992         if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
993                 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
994         ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
995             ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
996         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
997             ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
998             ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
999         if (err != 0) {
1000                 nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
1001                 nvme_ctrlr_hmb_free(ctrlr);
1002                 return;
1003         }
1004
1005         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1006                 hmbc = &ctrlr->hmb_chunks[i];
1007                 if (bus_dmamem_alloc(ctrlr->hmb_tag,
1008                     (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
1009                     &hmbc->hmbc_map)) {
1010                         nvme_printf(ctrlr, "failed to alloc HMB\n");
1011                         break;
1012                 }
1013                 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
1014                     hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
1015                     &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
1016                         bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
1017                             hmbc->hmbc_map);
1018                         nvme_printf(ctrlr, "failed to load HMB\n");
1019                         break;
1020                 }
1021                 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
1022                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1023         }
1024
1025         if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
1026             ctrlr->hmb_chunk / 2 >= minc) {
1027                 ctrlr->hmb_nchunks = i;
1028                 nvme_ctrlr_hmb_free(ctrlr);
1029                 ctrlr->hmb_chunk /= 2;
1030                 goto again;
1031         }
1032         ctrlr->hmb_nchunks = i;
1033         if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
1034                 nvme_ctrlr_hmb_free(ctrlr);
1035                 return;
1036         }
1037
1038         size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
1039         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
1040             16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1041             size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
1042         if (err != 0) {
1043                 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
1044                 nvme_ctrlr_hmb_free(ctrlr);
1045                 return;
1046         }
1047         if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
1048             (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
1049             &ctrlr->hmb_desc_map)) {
1050                 nvme_printf(ctrlr, "failed to alloc HMB desc\n");
1051                 nvme_ctrlr_hmb_free(ctrlr);
1052                 return;
1053         }
1054         if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1055             ctrlr->hmb_desc_vaddr, size, nvme_single_map,
1056             &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1057                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1058                     ctrlr->hmb_desc_map);
1059                 nvme_printf(ctrlr, "failed to load HMB desc\n");
1060                 nvme_ctrlr_hmb_free(ctrlr);
1061                 return;
1062         }
1063
1064         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1065                 ctrlr->hmb_desc_vaddr[i].addr =
1066                     htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1067                 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / ctrlr->page_size);
1068         }
1069         bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1070             BUS_DMASYNC_PREWRITE);
1071
1072         nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1073             (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1074             / 1024 / 1024);
1075 }
1076
1077 static void
1078 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1079 {
1080         struct nvme_completion_poll_status      status;
1081         uint32_t cdw11;
1082
1083         cdw11 = 0;
1084         if (enable)
1085                 cdw11 |= 1;
1086         if (memret)
1087                 cdw11 |= 2;
1088         status.done = 0;
1089         nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1090             ctrlr->hmb_nchunks * ctrlr->hmb_chunk / ctrlr->page_size,
1091             ctrlr->hmb_desc_paddr, ctrlr->hmb_desc_paddr >> 32,
1092             ctrlr->hmb_nchunks, NULL, 0,
1093             nvme_completion_poll_cb, &status);
1094         nvme_completion_poll(&status);
1095         if (nvme_completion_is_error(&status.cpl))
1096                 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1097 }
1098
1099 static void
1100 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1101 {
1102         struct nvme_controller *ctrlr = ctrlr_arg;
1103         uint32_t old_num_io_queues;
1104         int i;
1105
1106         TSENTER();
1107
1108         /*
1109          * Only reset adminq here when we are restarting the
1110          *  controller after a reset.  During initialization,
1111          *  we have already submitted admin commands to get
1112          *  the number of I/O queues supported, so cannot reset
1113          *  the adminq again here.
1114          */
1115         if (resetting) {
1116                 nvme_qpair_reset(&ctrlr->adminq);
1117                 nvme_admin_qpair_enable(&ctrlr->adminq);
1118         }
1119
1120         if (ctrlr->ioq != NULL) {
1121                 for (i = 0; i < ctrlr->num_io_queues; i++)
1122                         nvme_qpair_reset(&ctrlr->ioq[i]);
1123         }
1124
1125         /*
1126          * If it was a reset on initialization command timeout, just
1127          * return here, letting initialization code fail gracefully.
1128          */
1129         if (resetting && !ctrlr->is_initialized)
1130                 return;
1131
1132         if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1133                 nvme_ctrlr_fail(ctrlr);
1134                 return;
1135         }
1136
1137         /*
1138          * The number of qpairs are determined during controller initialization,
1139          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1140          *  HW limit.  We call SET_FEATURES again here so that it gets called
1141          *  after any reset for controllers that depend on the driver to
1142          *  explicit specify how many queues it will use.  This value should
1143          *  never change between resets, so panic if somehow that does happen.
1144          */
1145         if (resetting) {
1146                 old_num_io_queues = ctrlr->num_io_queues;
1147                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1148                         nvme_ctrlr_fail(ctrlr);
1149                         return;
1150                 }
1151
1152                 if (old_num_io_queues != ctrlr->num_io_queues) {
1153                         panic("num_io_queues changed from %u to %u",
1154                               old_num_io_queues, ctrlr->num_io_queues);
1155                 }
1156         }
1157
1158         if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1159                 nvme_ctrlr_hmb_alloc(ctrlr);
1160                 if (ctrlr->hmb_nchunks > 0)
1161                         nvme_ctrlr_hmb_enable(ctrlr, true, false);
1162         } else if (ctrlr->hmb_nchunks > 0)
1163                 nvme_ctrlr_hmb_enable(ctrlr, true, true);
1164
1165         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1166                 nvme_ctrlr_fail(ctrlr);
1167                 return;
1168         }
1169
1170         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1171                 nvme_ctrlr_fail(ctrlr);
1172                 return;
1173         }
1174
1175         nvme_ctrlr_configure_aer(ctrlr);
1176         nvme_ctrlr_configure_int_coalescing(ctrlr);
1177
1178         for (i = 0; i < ctrlr->num_io_queues; i++)
1179                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
1180         TSEXIT();
1181 }
1182
1183 void
1184 nvme_ctrlr_start_config_hook(void *arg)
1185 {
1186         struct nvme_controller *ctrlr = arg;
1187
1188         TSENTER();
1189
1190         /*
1191          * Don't call pre/post reset here. We've not yet created the qpairs,
1192          * haven't setup the ISRs, so there's no need to 'drain' them or
1193          * 'exclude' them.
1194          */
1195         if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
1196 fail:
1197                 nvme_ctrlr_fail(ctrlr);
1198                 config_intrhook_disestablish(&ctrlr->config_hook);
1199                 return;
1200         }
1201
1202 #ifdef NVME_2X_RESET
1203         /*
1204          * Reset controller twice to ensure we do a transition from cc.en==1 to
1205          * cc.en==0.  This is because we don't really know what status the
1206          * controller was left in when boot handed off to OS.  Linux doesn't do
1207          * this, however, and when the controller is in state cc.en == 0, no
1208          * I/O can happen.
1209          */
1210         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1211                 goto fail;
1212 #endif
1213
1214         nvme_qpair_reset(&ctrlr->adminq);
1215         nvme_admin_qpair_enable(&ctrlr->adminq);
1216
1217         if (nvme_ctrlr_identify(ctrlr) == 0 &&
1218             nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1219             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1220                 nvme_ctrlr_start(ctrlr, false);
1221         else
1222                 goto fail;
1223
1224         nvme_sysctl_initialize_ctrlr(ctrlr);
1225         config_intrhook_disestablish(&ctrlr->config_hook);
1226
1227         ctrlr->is_initialized = 1;
1228         nvme_notify_new_controller(ctrlr);
1229         TSEXIT();
1230 }
1231
1232 static void
1233 nvme_ctrlr_reset_task(void *arg, int pending)
1234 {
1235         struct nvme_controller  *ctrlr = arg;
1236         int                     status;
1237
1238         nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller");
1239         nvme_pre_reset(ctrlr);
1240         status = nvme_ctrlr_hw_reset(ctrlr);
1241         nvme_post_reset(ctrlr);
1242         if (status == 0)
1243                 nvme_ctrlr_start(ctrlr, true);
1244         else
1245                 nvme_ctrlr_fail(ctrlr);
1246
1247         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1248 }
1249
1250 /*
1251  * Poll all the queues enabled on the device for completion.
1252  */
1253 void
1254 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1255 {
1256         int i;
1257
1258         nvme_qpair_process_completions(&ctrlr->adminq);
1259
1260         for (i = 0; i < ctrlr->num_io_queues; i++)
1261                 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1262                         nvme_qpair_process_completions(&ctrlr->ioq[i]);
1263 }
1264
1265 /*
1266  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1267  * there's only a single vector. While we're polling, we mask further
1268  * interrupts in the controller.
1269  */
1270 void
1271 nvme_ctrlr_shared_handler(void *arg)
1272 {
1273         struct nvme_controller *ctrlr = arg;
1274
1275         nvme_mmio_write_4(ctrlr, intms, 1);
1276         nvme_ctrlr_poll(ctrlr);
1277         nvme_mmio_write_4(ctrlr, intmc, 1);
1278 }
1279
1280 static void
1281 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1282 {
1283         struct nvme_pt_command *pt = arg;
1284         struct mtx *mtx = pt->driver_lock;
1285         uint16_t status;
1286
1287         bzero(&pt->cpl, sizeof(pt->cpl));
1288         pt->cpl.cdw0 = cpl->cdw0;
1289
1290         status = cpl->status;
1291         status &= ~NVME_STATUS_P_MASK;
1292         pt->cpl.status = status;
1293
1294         mtx_lock(mtx);
1295         pt->driver_lock = NULL;
1296         wakeup(pt);
1297         mtx_unlock(mtx);
1298 }
1299
1300 int
1301 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1302     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1303     int is_admin_cmd)
1304 {
1305         struct nvme_request     *req;
1306         struct mtx              *mtx;
1307         struct buf              *buf = NULL;
1308         int                     ret = 0;
1309
1310         if (pt->len > 0) {
1311                 if (pt->len > ctrlr->max_xfer_size) {
1312                         nvme_printf(ctrlr, "pt->len (%d) "
1313                             "exceeds max_xfer_size (%d)\n", pt->len,
1314                             ctrlr->max_xfer_size);
1315                         return EIO;
1316                 }
1317                 if (is_user_buffer) {
1318                         /*
1319                          * Ensure the user buffer is wired for the duration of
1320                          *  this pass-through command.
1321                          */
1322                         PHOLD(curproc);
1323                         buf = uma_zalloc(pbuf_zone, M_WAITOK);
1324                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1325                         if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1326                                 ret = EFAULT;
1327                                 goto err;
1328                         }
1329                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
1330                             nvme_pt_done, pt);
1331                 } else
1332                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1333                             nvme_pt_done, pt);
1334         } else
1335                 req = nvme_allocate_request_null(nvme_pt_done, pt);
1336
1337         /* Assume user space already converted to little-endian */
1338         req->cmd.opc = pt->cmd.opc;
1339         req->cmd.fuse = pt->cmd.fuse;
1340         req->cmd.rsvd2 = pt->cmd.rsvd2;
1341         req->cmd.rsvd3 = pt->cmd.rsvd3;
1342         req->cmd.cdw10 = pt->cmd.cdw10;
1343         req->cmd.cdw11 = pt->cmd.cdw11;
1344         req->cmd.cdw12 = pt->cmd.cdw12;
1345         req->cmd.cdw13 = pt->cmd.cdw13;
1346         req->cmd.cdw14 = pt->cmd.cdw14;
1347         req->cmd.cdw15 = pt->cmd.cdw15;
1348
1349         req->cmd.nsid = htole32(nsid);
1350
1351         mtx = mtx_pool_find(mtxpool_sleep, pt);
1352         pt->driver_lock = mtx;
1353
1354         if (is_admin_cmd)
1355                 nvme_ctrlr_submit_admin_request(ctrlr, req);
1356         else
1357                 nvme_ctrlr_submit_io_request(ctrlr, req);
1358
1359         mtx_lock(mtx);
1360         while (pt->driver_lock != NULL)
1361                 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1362         mtx_unlock(mtx);
1363
1364 err:
1365         if (buf != NULL) {
1366                 uma_zfree(pbuf_zone, buf);
1367                 PRELE(curproc);
1368         }
1369
1370         return (ret);
1371 }
1372
1373 static int
1374 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1375     struct thread *td)
1376 {
1377         struct nvme_controller                  *ctrlr;
1378         struct nvme_pt_command                  *pt;
1379
1380         ctrlr = cdev->si_drv1;
1381
1382         switch (cmd) {
1383         case NVME_RESET_CONTROLLER:
1384                 nvme_ctrlr_reset(ctrlr);
1385                 break;
1386         case NVME_PASSTHROUGH_CMD:
1387                 pt = (struct nvme_pt_command *)arg;
1388                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1389                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1390         case NVME_GET_NSID:
1391         {
1392                 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1393                 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1394                     sizeof(gnsid->cdev));
1395                 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
1396                 gnsid->nsid = 0;
1397                 break;
1398         }
1399         case NVME_GET_MAX_XFER_SIZE:
1400                 *(uint64_t *)arg = ctrlr->max_xfer_size;
1401                 break;
1402         default:
1403                 return (ENOTTY);
1404         }
1405
1406         return (0);
1407 }
1408
1409 static struct cdevsw nvme_ctrlr_cdevsw = {
1410         .d_version =    D_VERSION,
1411         .d_flags =      0,
1412         .d_ioctl =      nvme_ctrlr_ioctl
1413 };
1414
1415 int
1416 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1417 {
1418         struct make_dev_args    md_args;
1419         uint32_t        cap_lo;
1420         uint32_t        cap_hi;
1421         uint32_t        to, vs, pmrcap;
1422         int             status, timeout_period;
1423
1424         ctrlr->dev = dev;
1425
1426         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1427         if (bus_get_domain(dev, &ctrlr->domain) != 0)
1428                 ctrlr->domain = 0;
1429
1430         ctrlr->cap_lo = cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1431         if (bootverbose) {
1432                 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1433                     cap_lo, NVME_CAP_LO_MQES(cap_lo),
1434                     NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1435                     NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1436                     (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1437                     (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1438                     NVME_CAP_LO_TO(cap_lo));
1439         }
1440         ctrlr->cap_hi = cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1441         if (bootverbose) {
1442                 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1443                     "MPSMIN %u, MPSMAX %u%s%s\n", cap_hi,
1444                     NVME_CAP_HI_DSTRD(cap_hi),
1445                     NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1446                     NVME_CAP_HI_CSS(cap_hi),
1447                     NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1448                     NVME_CAP_HI_MPSMIN(cap_hi),
1449                     NVME_CAP_HI_MPSMAX(cap_hi),
1450                     NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1451                     NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "");
1452         }
1453         if (bootverbose) {
1454                 vs = nvme_mmio_read_4(ctrlr, vs);
1455                 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1456                     NVME_MAJOR(vs), NVME_MINOR(vs));
1457         }
1458         if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1459                 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1460                 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1461                     "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1462                     NVME_PMRCAP_BIR(pmrcap),
1463                     NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1464                     NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1465                     NVME_PMRCAP_PMRTU(pmrcap),
1466                     NVME_PMRCAP_PMRWBM(pmrcap),
1467                     NVME_PMRCAP_PMRTO(pmrcap),
1468                     NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1469         }
1470
1471         ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1472
1473         ctrlr->mps = NVME_CAP_HI_MPSMIN(cap_hi);
1474         ctrlr->page_size = 1 << (NVME_MPS_SHIFT + ctrlr->mps);
1475
1476         /* Get ready timeout value from controller, in units of 500ms. */
1477         to = NVME_CAP_LO_TO(cap_lo) + 1;
1478         ctrlr->ready_timeout_in_ms = to * 500;
1479
1480         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1481         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1482         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1483         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1484         ctrlr->timeout_period = timeout_period;
1485
1486         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1487         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1488
1489         ctrlr->enable_aborts = 0;
1490         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1491
1492         /* Cap transfers by the maximum addressable by page-sized PRP (4KB pages -> 2MB). */
1493         ctrlr->max_xfer_size = MIN(maxphys, (ctrlr->page_size / 8 * ctrlr->page_size));
1494         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1495                 return (ENXIO);
1496
1497         /*
1498          * Create 2 threads for the taskqueue. The reset thread will block when
1499          * it detects that the controller has failed until all I/O has been
1500          * failed up the stack. The fail_req task needs to be able to run in
1501          * this case to finish the request failure for some cases.
1502          *
1503          * We could partially solve this race by draining the failed requeust
1504          * queue before proceding to free the sim, though nothing would stop
1505          * new I/O from coming in after we do that drain, but before we reach
1506          * cam_sim_free, so this big hammer is used instead.
1507          */
1508         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1509             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1510         taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1511
1512         ctrlr->is_resetting = 0;
1513         ctrlr->is_initialized = 0;
1514         ctrlr->notification_sent = 0;
1515         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1516         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1517         STAILQ_INIT(&ctrlr->fail_req);
1518         ctrlr->is_failed = false;
1519
1520         make_dev_args_init(&md_args);
1521         md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1522         md_args.mda_uid = UID_ROOT;
1523         md_args.mda_gid = GID_WHEEL;
1524         md_args.mda_mode = 0600;
1525         md_args.mda_unit = device_get_unit(dev);
1526         md_args.mda_si_drv1 = (void *)ctrlr;
1527         status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1528             device_get_unit(dev));
1529         if (status != 0)
1530                 return (ENXIO);
1531
1532         return (0);
1533 }
1534
1535 void
1536 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1537 {
1538         int     gone, i;
1539
1540         ctrlr->is_dying = true;
1541
1542         if (ctrlr->resource == NULL)
1543                 goto nores;
1544         if (!mtx_initialized(&ctrlr->adminq.lock))
1545                 goto noadminq;
1546
1547         /*
1548          * Check whether it is a hot unplug or a clean driver detach.
1549          * If device is not there any more, skip any shutdown commands.
1550          */
1551         gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1552         if (gone)
1553                 nvme_ctrlr_fail(ctrlr);
1554         else
1555                 nvme_notify_fail_consumers(ctrlr);
1556
1557         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1558                 nvme_ns_destruct(&ctrlr->ns[i]);
1559
1560         if (ctrlr->cdev)
1561                 destroy_dev(ctrlr->cdev);
1562
1563         if (ctrlr->is_initialized) {
1564                 if (!gone) {
1565                         if (ctrlr->hmb_nchunks > 0)
1566                                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1567                         nvme_ctrlr_delete_qpairs(ctrlr);
1568                 }
1569                 nvme_ctrlr_hmb_free(ctrlr);
1570         }
1571         if (ctrlr->ioq != NULL) {
1572                 for (i = 0; i < ctrlr->num_io_queues; i++)
1573                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1574                 free(ctrlr->ioq, M_NVME);
1575         }
1576         nvme_admin_qpair_destroy(&ctrlr->adminq);
1577
1578         /*
1579          *  Notify the controller of a shutdown, even though this is due to
1580          *   a driver unload, not a system shutdown (this path is not invoked
1581          *   during shutdown).  This ensures the controller receives a
1582          *   shutdown notification in case the system is shutdown before
1583          *   reloading the driver.
1584          */
1585         if (!gone)
1586                 nvme_ctrlr_shutdown(ctrlr);
1587
1588         if (!gone)
1589                 nvme_ctrlr_disable(ctrlr);
1590
1591 noadminq:
1592         if (ctrlr->taskqueue)
1593                 taskqueue_free(ctrlr->taskqueue);
1594
1595         if (ctrlr->tag)
1596                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1597
1598         if (ctrlr->res)
1599                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1600                     rman_get_rid(ctrlr->res), ctrlr->res);
1601
1602         if (ctrlr->bar4_resource != NULL) {
1603                 bus_release_resource(dev, SYS_RES_MEMORY,
1604                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1605         }
1606
1607         bus_release_resource(dev, SYS_RES_MEMORY,
1608             ctrlr->resource_id, ctrlr->resource);
1609
1610 nores:
1611         mtx_destroy(&ctrlr->lock);
1612 }
1613
1614 void
1615 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1616 {
1617         uint32_t        cc;
1618         uint32_t        csts;
1619         int             timeout;
1620
1621         cc = nvme_mmio_read_4(ctrlr, cc);
1622         cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1623         cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1624         nvme_mmio_write_4(ctrlr, cc, cc);
1625
1626         timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1627             ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1628         while (1) {
1629                 csts = nvme_mmio_read_4(ctrlr, csts);
1630                 if (csts == NVME_GONE)          /* Hot unplug. */
1631                         break;
1632                 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1633                         break;
1634                 if (timeout - ticks < 0) {
1635                         nvme_printf(ctrlr, "shutdown timeout\n");
1636                         break;
1637                 }
1638                 pause("nvmeshut", 1);
1639         }
1640 }
1641
1642 void
1643 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1644     struct nvme_request *req)
1645 {
1646
1647         nvme_qpair_submit_request(&ctrlr->adminq, req);
1648 }
1649
1650 void
1651 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1652     struct nvme_request *req)
1653 {
1654         struct nvme_qpair       *qpair;
1655
1656         qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1657         nvme_qpair_submit_request(qpair, req);
1658 }
1659
1660 device_t
1661 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1662 {
1663
1664         return (ctrlr->dev);
1665 }
1666
1667 const struct nvme_controller_data *
1668 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1669 {
1670
1671         return (&ctrlr->cdata);
1672 }
1673
1674 int
1675 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1676 {
1677         int to = hz;
1678
1679         /*
1680          * Can't touch failed controllers, so it's already suspended.
1681          */
1682         if (ctrlr->is_failed)
1683                 return (0);
1684
1685         /*
1686          * We don't want the reset taskqueue running, since it does similar
1687          * things, so prevent it from running after we start. Wait for any reset
1688          * that may have been started to complete. The reset process we follow
1689          * will ensure that any new I/O will queue and be given to the hardware
1690          * after we resume (though there should be none).
1691          */
1692         while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1693                 pause("nvmesusp", 1);
1694         if (to <= 0) {
1695                 nvme_printf(ctrlr,
1696                     "Competing reset task didn't finish. Try again later.\n");
1697                 return (EWOULDBLOCK);
1698         }
1699
1700         if (ctrlr->hmb_nchunks > 0)
1701                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1702
1703         /*
1704          * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1705          * delete the hardware I/O queues, and then shutdown. This properly
1706          * flushes any metadata the drive may have stored so it can survive
1707          * having its power removed and prevents the unsafe shutdown count from
1708          * incriminating. Once we delete the qpairs, we have to disable them
1709          * before shutting down.
1710          */
1711         nvme_ctrlr_delete_qpairs(ctrlr);
1712         nvme_ctrlr_disable_qpairs(ctrlr);
1713         nvme_ctrlr_shutdown(ctrlr);
1714
1715         return (0);
1716 }
1717
1718 int
1719 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1720 {
1721
1722         /*
1723          * Can't touch failed controllers, so nothing to do to resume.
1724          */
1725         if (ctrlr->is_failed)
1726                 return (0);
1727
1728         nvme_pre_reset(ctrlr);
1729         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1730                 goto fail;
1731 #ifdef NVME_2X_RESET
1732         /*
1733          * Prior to FreeBSD 13.1, FreeBSD's nvme driver reset the hardware twice
1734          * to get it into a known good state. However, the hardware's state is
1735          * good and we don't need to do this for proper functioning.
1736          */
1737         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1738                 goto fail;
1739 #endif
1740         nvme_post_reset(ctrlr);
1741
1742         /*
1743          * Now that we've reset the hardware, we can restart the controller. Any
1744          * I/O that was pending is requeued. Any admin commands are aborted with
1745          * an error. Once we've restarted, take the controller out of reset.
1746          */
1747         nvme_ctrlr_start(ctrlr, true);
1748         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1749
1750         return (0);
1751 fail:
1752         /*
1753          * Since we can't bring the controller out of reset, announce and fail
1754          * the controller. However, we have to return success for the resume
1755          * itself, due to questionable APIs.
1756          */
1757         nvme_post_reset(ctrlr);
1758         nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1759         nvme_ctrlr_fail(ctrlr);
1760         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1761         return (0);
1762 }