]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/dev/nvme/nvme_ctrlr.c
MFV f83ac37f1e66: libbsdxml (expat) 2.4.3.
[FreeBSD/FreeBSD.git] / sys / dev / nvme / nvme_ctrlr.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2012-2016 Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_cam.h"
33 #include "opt_nvme.h"
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/buf.h>
38 #include <sys/bus.h>
39 #include <sys/conf.h>
40 #include <sys/ioccom.h>
41 #include <sys/proc.h>
42 #include <sys/smp.h>
43 #include <sys/uio.h>
44 #include <sys/sbuf.h>
45 #include <sys/endian.h>
46 #include <machine/stdarg.h>
47 #include <vm/vm.h>
48
49 #include "nvme_private.h"
50
51 #define B4_CHK_RDY_DELAY_MS     2300            /* work around controller bug */
52
53 static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
54                                                 struct nvme_async_event_request *aer);
55
56 static void
57 nvme_ctrlr_barrier(struct nvme_controller *ctrlr, int flags)
58 {
59         bus_barrier(ctrlr->resource, 0, rman_get_size(ctrlr->resource), flags);
60 }
61
62 static void
63 nvme_ctrlr_devctl_log(struct nvme_controller *ctrlr, const char *type, const char *msg, ...)
64 {
65         struct sbuf sb;
66         va_list ap;
67         int error;
68
69         if (sbuf_new(&sb, NULL, 0, SBUF_AUTOEXTEND | SBUF_NOWAIT) == NULL)
70                 return;
71         sbuf_printf(&sb, "%s: ", device_get_nameunit(ctrlr->dev));
72         va_start(ap, msg);
73         sbuf_vprintf(&sb, msg, ap);
74         va_end(ap);
75         error = sbuf_finish(&sb);
76         if (error == 0)
77                 printf("%s\n", sbuf_data(&sb));
78
79         sbuf_clear(&sb);
80         sbuf_printf(&sb, "name=\"%s\" reason=\"", device_get_nameunit(ctrlr->dev));
81         va_start(ap, msg);
82         sbuf_vprintf(&sb, msg, ap);
83         va_end(ap);
84         sbuf_printf(&sb, "\"");
85         error = sbuf_finish(&sb);
86         if (error == 0)
87                 devctl_notify("nvme", "controller", type, sbuf_data(&sb));
88         sbuf_delete(&sb);
89 }
90
91 static int
92 nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
93 {
94         struct nvme_qpair       *qpair;
95         uint32_t                num_entries;
96         int                     error;
97
98         qpair = &ctrlr->adminq;
99         qpair->id = 0;
100         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
101         qpair->domain = ctrlr->domain;
102
103         num_entries = NVME_ADMIN_ENTRIES;
104         TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
105         /*
106          * If admin_entries was overridden to an invalid value, revert it
107          *  back to our default value.
108          */
109         if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
110             num_entries > NVME_MAX_ADMIN_ENTRIES) {
111                 nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
112                     "specified\n", num_entries);
113                 num_entries = NVME_ADMIN_ENTRIES;
114         }
115
116         /*
117          * The admin queue's max xfer size is treated differently than the
118          *  max I/O xfer size.  16KB is sufficient here - maybe even less?
119          */
120         error = nvme_qpair_construct(qpair, num_entries, NVME_ADMIN_TRACKERS,
121              ctrlr);
122         return (error);
123 }
124
125 #define QP(ctrlr, c)    ((c) * (ctrlr)->num_io_queues / mp_ncpus)
126
127 static int
128 nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
129 {
130         struct nvme_qpair       *qpair;
131         uint32_t                cap_lo;
132         uint16_t                mqes;
133         int                     c, error, i, n;
134         int                     num_entries, num_trackers, max_entries;
135
136         /*
137          * NVMe spec sets a hard limit of 64K max entries, but devices may
138          * specify a smaller limit, so we need to check the MQES field in the
139          * capabilities register. We have to cap the number of entries to the
140          * current stride allows for in BAR 0/1, otherwise the remainder entries
141          * are inaccessable. MQES should reflect this, and this is just a
142          * fail-safe.
143          */
144         max_entries =
145             (rman_get_size(ctrlr->resource) - nvme_mmio_offsetof(doorbell[0])) /
146             (1 << (ctrlr->dstrd + 1));
147         num_entries = NVME_IO_ENTRIES;
148         TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
149         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
150         mqes = NVME_CAP_LO_MQES(cap_lo);
151         num_entries = min(num_entries, mqes + 1);
152         num_entries = min(num_entries, max_entries);
153
154         num_trackers = NVME_IO_TRACKERS;
155         TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
156
157         num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
158         num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
159         /*
160          * No need to have more trackers than entries in the submit queue.  Note
161          * also that for a queue size of N, we can only have (N-1) commands
162          * outstanding, hence the "-1" here.
163          */
164         num_trackers = min(num_trackers, (num_entries-1));
165
166         /*
167          * Our best estimate for the maximum number of I/Os that we should
168          * normally have in flight at one time. This should be viewed as a hint,
169          * not a hard limit and will need to be revisited when the upper layers
170          * of the storage system grows multi-queue support.
171          */
172         ctrlr->max_hw_pend_io = num_trackers * ctrlr->num_io_queues * 3 / 4;
173
174         ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
175             M_NVME, M_ZERO | M_WAITOK);
176
177         for (i = c = n = 0; i < ctrlr->num_io_queues; i++, c += n) {
178                 qpair = &ctrlr->ioq[i];
179
180                 /*
181                  * Admin queue has ID=0. IO queues start at ID=1 -
182                  *  hence the 'i+1' here.
183                  */
184                 qpair->id = i + 1;
185                 if (ctrlr->num_io_queues > 1) {
186                         /* Find number of CPUs served by this queue. */
187                         for (n = 1; QP(ctrlr, c + n) == i; n++)
188                                 ;
189                         /* Shuffle multiple NVMe devices between CPUs. */
190                         qpair->cpu = c + (device_get_unit(ctrlr->dev)+n/2) % n;
191                         qpair->domain = pcpu_find(qpair->cpu)->pc_domain;
192                 } else {
193                         qpair->cpu = CPU_FFS(&cpuset_domain[ctrlr->domain]) - 1;
194                         qpair->domain = ctrlr->domain;
195                 }
196
197                 /*
198                  * For I/O queues, use the controller-wide max_xfer_size
199                  *  calculated in nvme_attach().
200                  */
201                 error = nvme_qpair_construct(qpair, num_entries, num_trackers,
202                     ctrlr);
203                 if (error)
204                         return (error);
205
206                 /*
207                  * Do not bother binding interrupts if we only have one I/O
208                  *  interrupt thread for this controller.
209                  */
210                 if (ctrlr->num_io_queues > 1)
211                         bus_bind_intr(ctrlr->dev, qpair->res, qpair->cpu);
212         }
213
214         return (0);
215 }
216
217 static void
218 nvme_ctrlr_fail(struct nvme_controller *ctrlr)
219 {
220         int i;
221
222         ctrlr->is_failed = true;
223         nvme_admin_qpair_disable(&ctrlr->adminq);
224         nvme_qpair_fail(&ctrlr->adminq);
225         if (ctrlr->ioq != NULL) {
226                 for (i = 0; i < ctrlr->num_io_queues; i++) {
227                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
228                         nvme_qpair_fail(&ctrlr->ioq[i]);
229                 }
230         }
231         nvme_notify_fail_consumers(ctrlr);
232 }
233
234 void
235 nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
236     struct nvme_request *req)
237 {
238
239         mtx_lock(&ctrlr->lock);
240         STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
241         mtx_unlock(&ctrlr->lock);
242         if (!ctrlr->is_dying)
243                 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
244 }
245
246 static void
247 nvme_ctrlr_fail_req_task(void *arg, int pending)
248 {
249         struct nvme_controller  *ctrlr = arg;
250         struct nvme_request     *req;
251
252         mtx_lock(&ctrlr->lock);
253         while ((req = STAILQ_FIRST(&ctrlr->fail_req)) != NULL) {
254                 STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
255                 mtx_unlock(&ctrlr->lock);
256                 nvme_qpair_manual_complete_request(req->qpair, req,
257                     NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST);
258                 mtx_lock(&ctrlr->lock);
259         }
260         mtx_unlock(&ctrlr->lock);
261 }
262
263 /*
264  * Wait for RDY to change.
265  *
266  * Starts sleeping for 1us and geometrically increases it the longer we wait,
267  * capped at 1ms.
268  */
269 static int
270 nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
271 {
272         int timeout = ticks + MSEC_2_TICKS(ctrlr->ready_timeout_in_ms);
273         sbintime_t delta_t = SBT_1US;
274         uint32_t csts;
275
276         while (1) {
277                 csts = nvme_mmio_read_4(ctrlr, csts);
278                 if (csts == NVME_GONE)          /* Hot unplug. */
279                         return (ENXIO);
280                 if (((csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK)
281                     == desired_val)
282                         break;
283                 if (timeout - ticks < 0) {
284                         nvme_printf(ctrlr, "controller ready did not become %d "
285                             "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
286                         return (ENXIO);
287                 }
288
289                 pause_sbt("nvmerdy", delta_t, 0, C_PREL(1));
290                 delta_t = min(SBT_1MS, delta_t * 3 / 2);
291         }
292
293         return (0);
294 }
295
296 static int
297 nvme_ctrlr_disable(struct nvme_controller *ctrlr)
298 {
299         uint32_t cc;
300         uint32_t csts;
301         uint8_t  en, rdy;
302         int err;
303
304         cc = nvme_mmio_read_4(ctrlr, cc);
305         csts = nvme_mmio_read_4(ctrlr, csts);
306
307         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
308         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
309
310         /*
311          * Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
312          * when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
313          * CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
314          * isn't the desired value. Short circuit if we're already disabled.
315          */
316         if (en == 0) {
317                 /* Wait for RDY == 0 or timeout & fail */
318                 if (rdy == 0)
319                         return (0);
320                 return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
321         }
322         if (rdy == 0) {
323                 /* EN == 1, wait for  RDY == 1 or timeout & fail */
324                 err = nvme_ctrlr_wait_for_ready(ctrlr, 1);
325                 if (err != 0)
326                         return (err);
327         }
328
329         cc &= ~NVME_CC_REG_EN_MASK;
330         nvme_mmio_write_4(ctrlr, cc, cc);
331
332         /*
333          * A few drives have firmware bugs that freeze the drive if we access
334          * the mmio too soon after we disable.
335          */
336         if (ctrlr->quirks & QUIRK_DELAY_B4_CHK_RDY)
337                 pause("nvmeR", MSEC_2_TICKS(B4_CHK_RDY_DELAY_MS));
338         return (nvme_ctrlr_wait_for_ready(ctrlr, 0));
339 }
340
341 static int
342 nvme_ctrlr_enable(struct nvme_controller *ctrlr)
343 {
344         uint32_t        cc;
345         uint32_t        csts;
346         uint32_t        aqa;
347         uint32_t        qsize;
348         uint8_t         en, rdy;
349         int             err;
350
351         cc = nvme_mmio_read_4(ctrlr, cc);
352         csts = nvme_mmio_read_4(ctrlr, csts);
353
354         en = (cc >> NVME_CC_REG_EN_SHIFT) & NVME_CC_REG_EN_MASK;
355         rdy = (csts >> NVME_CSTS_REG_RDY_SHIFT) & NVME_CSTS_REG_RDY_MASK;
356
357         /*
358          * See note in nvme_ctrlr_disable. Short circuit if we're already enabled.
359          */
360         if (en == 1) {
361                 if (rdy == 1)
362                         return (0);
363                 return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
364         }
365
366         /* EN == 0 already wait for RDY == 0 or timeout & fail */
367         err = nvme_ctrlr_wait_for_ready(ctrlr, 0);
368         if (err != 0)
369                 return (err);
370
371         nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
372         nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
373
374         /* acqs and asqs are 0-based. */
375         qsize = ctrlr->adminq.num_entries - 1;
376
377         aqa = 0;
378         aqa = (qsize & NVME_AQA_REG_ACQS_MASK) << NVME_AQA_REG_ACQS_SHIFT;
379         aqa |= (qsize & NVME_AQA_REG_ASQS_MASK) << NVME_AQA_REG_ASQS_SHIFT;
380         nvme_mmio_write_4(ctrlr, aqa, aqa);
381
382         /* Initialization values for CC */
383         cc = 0;
384         cc |= 1 << NVME_CC_REG_EN_SHIFT;
385         cc |= 0 << NVME_CC_REG_CSS_SHIFT;
386         cc |= 0 << NVME_CC_REG_AMS_SHIFT;
387         cc |= 0 << NVME_CC_REG_SHN_SHIFT;
388         cc |= 6 << NVME_CC_REG_IOSQES_SHIFT; /* SQ entry size == 64 == 2^6 */
389         cc |= 4 << NVME_CC_REG_IOCQES_SHIFT; /* CQ entry size == 16 == 2^4 */
390
391         /* This evaluates to 0, which is according to spec. */
392         cc |= (PAGE_SIZE >> 13) << NVME_CC_REG_MPS_SHIFT;
393
394         nvme_ctrlr_barrier(ctrlr, BUS_SPACE_BARRIER_WRITE);
395         nvme_mmio_write_4(ctrlr, cc, cc);
396
397         return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
398 }
399
400 static void
401 nvme_ctrlr_disable_qpairs(struct nvme_controller *ctrlr)
402 {
403         int i;
404
405         nvme_admin_qpair_disable(&ctrlr->adminq);
406         /*
407          * I/O queues are not allocated before the initial HW
408          *  reset, so do not try to disable them.  Use is_initialized
409          *  to determine if this is the initial HW reset.
410          */
411         if (ctrlr->is_initialized) {
412                 for (i = 0; i < ctrlr->num_io_queues; i++)
413                         nvme_io_qpair_disable(&ctrlr->ioq[i]);
414         }
415 }
416
417 static int
418 nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
419 {
420         int err;
421
422         TSENTER();
423
424         nvme_ctrlr_disable_qpairs(ctrlr);
425
426         err = nvme_ctrlr_disable(ctrlr);
427         if (err != 0)
428                 return err;
429
430         err = nvme_ctrlr_enable(ctrlr);
431         TSEXIT();
432         return (err);
433 }
434
435 void
436 nvme_ctrlr_reset(struct nvme_controller *ctrlr)
437 {
438         int cmpset;
439
440         cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
441
442         if (cmpset == 0 || ctrlr->is_failed)
443                 /*
444                  * Controller is already resetting or has failed.  Return
445                  *  immediately since there is no need to kick off another
446                  *  reset in these cases.
447                  */
448                 return;
449
450         if (!ctrlr->is_dying)
451                 taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
452 }
453
454 static int
455 nvme_ctrlr_identify(struct nvme_controller *ctrlr)
456 {
457         struct nvme_completion_poll_status      status;
458
459         status.done = 0;
460         nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
461             nvme_completion_poll_cb, &status);
462         nvme_completion_poll(&status);
463         if (nvme_completion_is_error(&status.cpl)) {
464                 nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
465                 return (ENXIO);
466         }
467
468         /* Convert data to host endian */
469         nvme_controller_data_swapbytes(&ctrlr->cdata);
470
471         /*
472          * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
473          *  controller supports.
474          */
475         if (ctrlr->cdata.mdts > 0)
476                 ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
477                     ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
478
479         return (0);
480 }
481
482 static int
483 nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
484 {
485         struct nvme_completion_poll_status      status;
486         int                                     cq_allocated, sq_allocated;
487
488         status.done = 0;
489         nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
490             nvme_completion_poll_cb, &status);
491         nvme_completion_poll(&status);
492         if (nvme_completion_is_error(&status.cpl)) {
493                 nvme_printf(ctrlr, "nvme_ctrlr_set_num_qpairs failed!\n");
494                 return (ENXIO);
495         }
496
497         /*
498          * Data in cdw0 is 0-based.
499          * Lower 16-bits indicate number of submission queues allocated.
500          * Upper 16-bits indicate number of completion queues allocated.
501          */
502         sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
503         cq_allocated = (status.cpl.cdw0 >> 16) + 1;
504
505         /*
506          * Controller may allocate more queues than we requested,
507          *  so use the minimum of the number requested and what was
508          *  actually allocated.
509          */
510         ctrlr->num_io_queues = min(ctrlr->num_io_queues, sq_allocated);
511         ctrlr->num_io_queues = min(ctrlr->num_io_queues, cq_allocated);
512         if (ctrlr->num_io_queues > vm_ndomains)
513                 ctrlr->num_io_queues -= ctrlr->num_io_queues % vm_ndomains;
514
515         return (0);
516 }
517
518 static int
519 nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
520 {
521         struct nvme_completion_poll_status      status;
522         struct nvme_qpair                       *qpair;
523         int                                     i;
524
525         for (i = 0; i < ctrlr->num_io_queues; i++) {
526                 qpair = &ctrlr->ioq[i];
527
528                 status.done = 0;
529                 nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair,
530                     nvme_completion_poll_cb, &status);
531                 nvme_completion_poll(&status);
532                 if (nvme_completion_is_error(&status.cpl)) {
533                         nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
534                         return (ENXIO);
535                 }
536
537                 status.done = 0;
538                 nvme_ctrlr_cmd_create_io_sq(ctrlr, qpair,
539                     nvme_completion_poll_cb, &status);
540                 nvme_completion_poll(&status);
541                 if (nvme_completion_is_error(&status.cpl)) {
542                         nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
543                         return (ENXIO);
544                 }
545         }
546
547         return (0);
548 }
549
550 static int
551 nvme_ctrlr_delete_qpairs(struct nvme_controller *ctrlr)
552 {
553         struct nvme_completion_poll_status      status;
554         struct nvme_qpair                       *qpair;
555
556         for (int i = 0; i < ctrlr->num_io_queues; i++) {
557                 qpair = &ctrlr->ioq[i];
558
559                 status.done = 0;
560                 nvme_ctrlr_cmd_delete_io_sq(ctrlr, qpair,
561                     nvme_completion_poll_cb, &status);
562                 nvme_completion_poll(&status);
563                 if (nvme_completion_is_error(&status.cpl)) {
564                         nvme_printf(ctrlr, "nvme_destroy_io_sq failed!\n");
565                         return (ENXIO);
566                 }
567
568                 status.done = 0;
569                 nvme_ctrlr_cmd_delete_io_cq(ctrlr, qpair,
570                     nvme_completion_poll_cb, &status);
571                 nvme_completion_poll(&status);
572                 if (nvme_completion_is_error(&status.cpl)) {
573                         nvme_printf(ctrlr, "nvme_destroy_io_cq failed!\n");
574                         return (ENXIO);
575                 }
576         }
577
578         return (0);
579 }
580
581 static int
582 nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
583 {
584         struct nvme_namespace   *ns;
585         uint32_t                i;
586
587         for (i = 0; i < min(ctrlr->cdata.nn, NVME_MAX_NAMESPACES); i++) {
588                 ns = &ctrlr->ns[i];
589                 nvme_ns_construct(ns, i+1, ctrlr);
590         }
591
592         return (0);
593 }
594
595 static bool
596 is_log_page_id_valid(uint8_t page_id)
597 {
598
599         switch (page_id) {
600         case NVME_LOG_ERROR:
601         case NVME_LOG_HEALTH_INFORMATION:
602         case NVME_LOG_FIRMWARE_SLOT:
603         case NVME_LOG_CHANGED_NAMESPACE:
604         case NVME_LOG_COMMAND_EFFECT:
605         case NVME_LOG_RES_NOTIFICATION:
606         case NVME_LOG_SANITIZE_STATUS:
607                 return (true);
608         }
609
610         return (false);
611 }
612
613 static uint32_t
614 nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
615 {
616         uint32_t        log_page_size;
617
618         switch (page_id) {
619         case NVME_LOG_ERROR:
620                 log_page_size = min(
621                     sizeof(struct nvme_error_information_entry) *
622                     (ctrlr->cdata.elpe + 1), NVME_MAX_AER_LOG_SIZE);
623                 break;
624         case NVME_LOG_HEALTH_INFORMATION:
625                 log_page_size = sizeof(struct nvme_health_information_page);
626                 break;
627         case NVME_LOG_FIRMWARE_SLOT:
628                 log_page_size = sizeof(struct nvme_firmware_page);
629                 break;
630         case NVME_LOG_CHANGED_NAMESPACE:
631                 log_page_size = sizeof(struct nvme_ns_list);
632                 break;
633         case NVME_LOG_COMMAND_EFFECT:
634                 log_page_size = sizeof(struct nvme_command_effects_page);
635                 break;
636         case NVME_LOG_RES_NOTIFICATION:
637                 log_page_size = sizeof(struct nvme_res_notification_page);
638                 break;
639         case NVME_LOG_SANITIZE_STATUS:
640                 log_page_size = sizeof(struct nvme_sanitize_status_page);
641                 break;
642         default:
643                 log_page_size = 0;
644                 break;
645         }
646
647         return (log_page_size);
648 }
649
650 static void
651 nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
652     uint8_t state)
653 {
654
655         if (state & NVME_CRIT_WARN_ST_AVAILABLE_SPARE)
656                 nvme_ctrlr_devctl_log(ctrlr, "critical",
657                     "available spare space below threshold");
658
659         if (state & NVME_CRIT_WARN_ST_TEMPERATURE)
660                 nvme_ctrlr_devctl_log(ctrlr, "critical",
661                     "temperature above threshold");
662
663         if (state & NVME_CRIT_WARN_ST_DEVICE_RELIABILITY)
664                 nvme_ctrlr_devctl_log(ctrlr, "critical",
665                     "device reliability degraded");
666
667         if (state & NVME_CRIT_WARN_ST_READ_ONLY)
668                 nvme_ctrlr_devctl_log(ctrlr, "critical",
669                     "media placed in read only mode");
670
671         if (state & NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP)
672                 nvme_ctrlr_devctl_log(ctrlr, "critical",
673                     "volatile memory backup device failed");
674
675         if (state & NVME_CRIT_WARN_ST_RESERVED_MASK)
676                 nvme_ctrlr_devctl_log(ctrlr, "critical",
677                     "unknown critical warning(s): state = 0x%02x", state);
678 }
679
680 static void
681 nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
682 {
683         struct nvme_async_event_request         *aer = arg;
684         struct nvme_health_information_page     *health_info;
685         struct nvme_ns_list                     *nsl;
686         struct nvme_error_information_entry     *err;
687         int i;
688
689         /*
690          * If the log page fetch for some reason completed with an error,
691          *  don't pass log page data to the consumers.  In practice, this case
692          *  should never happen.
693          */
694         if (nvme_completion_is_error(cpl))
695                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
696                     aer->log_page_id, NULL, 0);
697         else {
698                 /* Convert data to host endian */
699                 switch (aer->log_page_id) {
700                 case NVME_LOG_ERROR:
701                         err = (struct nvme_error_information_entry *)aer->log_page_buffer;
702                         for (i = 0; i < (aer->ctrlr->cdata.elpe + 1); i++)
703                                 nvme_error_information_entry_swapbytes(err++);
704                         break;
705                 case NVME_LOG_HEALTH_INFORMATION:
706                         nvme_health_information_page_swapbytes(
707                             (struct nvme_health_information_page *)aer->log_page_buffer);
708                         break;
709                 case NVME_LOG_FIRMWARE_SLOT:
710                         nvme_firmware_page_swapbytes(
711                             (struct nvme_firmware_page *)aer->log_page_buffer);
712                         break;
713                 case NVME_LOG_CHANGED_NAMESPACE:
714                         nvme_ns_list_swapbytes(
715                             (struct nvme_ns_list *)aer->log_page_buffer);
716                         break;
717                 case NVME_LOG_COMMAND_EFFECT:
718                         nvme_command_effects_page_swapbytes(
719                             (struct nvme_command_effects_page *)aer->log_page_buffer);
720                         break;
721                 case NVME_LOG_RES_NOTIFICATION:
722                         nvme_res_notification_page_swapbytes(
723                             (struct nvme_res_notification_page *)aer->log_page_buffer);
724                         break;
725                 case NVME_LOG_SANITIZE_STATUS:
726                         nvme_sanitize_status_page_swapbytes(
727                             (struct nvme_sanitize_status_page *)aer->log_page_buffer);
728                         break;
729                 case INTEL_LOG_TEMP_STATS:
730                         intel_log_temp_stats_swapbytes(
731                             (struct intel_log_temp_stats *)aer->log_page_buffer);
732                         break;
733                 default:
734                         break;
735                 }
736
737                 if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
738                         health_info = (struct nvme_health_information_page *)
739                             aer->log_page_buffer;
740                         nvme_ctrlr_log_critical_warnings(aer->ctrlr,
741                             health_info->critical_warning);
742                         /*
743                          * Critical warnings reported through the
744                          *  SMART/health log page are persistent, so
745                          *  clear the associated bits in the async event
746                          *  config so that we do not receive repeated
747                          *  notifications for the same event.
748                          */
749                         aer->ctrlr->async_event_config &=
750                             ~health_info->critical_warning;
751                         nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
752                             aer->ctrlr->async_event_config, NULL, NULL);
753                 } else if (aer->log_page_id == NVME_LOG_CHANGED_NAMESPACE &&
754                     !nvme_use_nvd) {
755                         nsl = (struct nvme_ns_list *)aer->log_page_buffer;
756                         for (i = 0; i < nitems(nsl->ns) && nsl->ns[i] != 0; i++) {
757                                 if (nsl->ns[i] > NVME_MAX_NAMESPACES)
758                                         break;
759                                 nvme_notify_ns(aer->ctrlr, nsl->ns[i]);
760                         }
761                 }
762
763                 /*
764                  * Pass the cpl data from the original async event completion,
765                  *  not the log page fetch.
766                  */
767                 nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
768                     aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
769         }
770
771         /*
772          * Repost another asynchronous event request to replace the one
773          *  that just completed.
774          */
775         nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
776 }
777
778 static void
779 nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
780 {
781         struct nvme_async_event_request *aer = arg;
782
783         if (nvme_completion_is_error(cpl)) {
784                 /*
785                  *  Do not retry failed async event requests.  This avoids
786                  *  infinite loops where a new async event request is submitted
787                  *  to replace the one just failed, only to fail again and
788                  *  perpetuate the loop.
789                  */
790                 return;
791         }
792
793         /* Associated log page is in bits 23:16 of completion entry dw0. */
794         aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
795
796         nvme_printf(aer->ctrlr, "async event occurred (type 0x%x, info 0x%02x,"
797             " page 0x%02x)\n", (cpl->cdw0 & 0x07), (cpl->cdw0 & 0xFF00) >> 8,
798             aer->log_page_id);
799
800         if (is_log_page_id_valid(aer->log_page_id)) {
801                 aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
802                     aer->log_page_id);
803                 memcpy(&aer->cpl, cpl, sizeof(*cpl));
804                 nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
805                     NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
806                     aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
807                     aer);
808                 /* Wait to notify consumers until after log page is fetched. */
809         } else {
810                 nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
811                     NULL, 0);
812
813                 /*
814                  * Repost another asynchronous event request to replace the one
815                  *  that just completed.
816                  */
817                 nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
818         }
819 }
820
821 static void
822 nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
823     struct nvme_async_event_request *aer)
824 {
825         struct nvme_request *req;
826
827         aer->ctrlr = ctrlr;
828         req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
829         aer->req = req;
830
831         /*
832          * Disable timeout here, since asynchronous event requests should by
833          *  nature never be timed out.
834          */
835         req->timeout = false;
836         req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
837         nvme_ctrlr_submit_admin_request(ctrlr, req);
838 }
839
840 static void
841 nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
842 {
843         struct nvme_completion_poll_status      status;
844         struct nvme_async_event_request         *aer;
845         uint32_t                                i;
846
847         ctrlr->async_event_config = NVME_CRIT_WARN_ST_AVAILABLE_SPARE |
848             NVME_CRIT_WARN_ST_DEVICE_RELIABILITY |
849             NVME_CRIT_WARN_ST_READ_ONLY |
850             NVME_CRIT_WARN_ST_VOLATILE_MEMORY_BACKUP;
851         if (ctrlr->cdata.ver >= NVME_REV(1, 2))
852                 ctrlr->async_event_config |= NVME_ASYNC_EVENT_NS_ATTRIBUTE |
853                     NVME_ASYNC_EVENT_FW_ACTIVATE;
854
855         status.done = 0;
856         nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
857             0, NULL, 0, nvme_completion_poll_cb, &status);
858         nvme_completion_poll(&status);
859         if (nvme_completion_is_error(&status.cpl) ||
860             (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
861             (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
862                 nvme_printf(ctrlr, "temperature threshold not supported\n");
863         } else
864                 ctrlr->async_event_config |= NVME_CRIT_WARN_ST_TEMPERATURE;
865
866         nvme_ctrlr_cmd_set_async_event_config(ctrlr,
867             ctrlr->async_event_config, NULL, NULL);
868
869         /* aerl is a zero-based value, so we need to add 1 here. */
870         ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
871
872         for (i = 0; i < ctrlr->num_aers; i++) {
873                 aer = &ctrlr->aer[i];
874                 nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
875         }
876 }
877
878 static void
879 nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
880 {
881
882         ctrlr->int_coal_time = 0;
883         TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
884             &ctrlr->int_coal_time);
885
886         ctrlr->int_coal_threshold = 0;
887         TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
888             &ctrlr->int_coal_threshold);
889
890         nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
891             ctrlr->int_coal_threshold, NULL, NULL);
892 }
893
894 static void
895 nvme_ctrlr_hmb_free(struct nvme_controller *ctrlr)
896 {
897         struct nvme_hmb_chunk *hmbc;
898         int i;
899
900         if (ctrlr->hmb_desc_paddr) {
901                 bus_dmamap_unload(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map);
902                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
903                     ctrlr->hmb_desc_map);
904                 ctrlr->hmb_desc_paddr = 0;
905         }
906         if (ctrlr->hmb_desc_tag) {
907                 bus_dma_tag_destroy(ctrlr->hmb_desc_tag);
908                 ctrlr->hmb_desc_tag = NULL;
909         }
910         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
911                 hmbc = &ctrlr->hmb_chunks[i];
912                 bus_dmamap_unload(ctrlr->hmb_tag, hmbc->hmbc_map);
913                 bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
914                     hmbc->hmbc_map);
915         }
916         ctrlr->hmb_nchunks = 0;
917         if (ctrlr->hmb_tag) {
918                 bus_dma_tag_destroy(ctrlr->hmb_tag);
919                 ctrlr->hmb_tag = NULL;
920         }
921         if (ctrlr->hmb_chunks) {
922                 free(ctrlr->hmb_chunks, M_NVME);
923                 ctrlr->hmb_chunks = NULL;
924         }
925 }
926
927 static void
928 nvme_ctrlr_hmb_alloc(struct nvme_controller *ctrlr)
929 {
930         struct nvme_hmb_chunk *hmbc;
931         size_t pref, min, minc, size;
932         int err, i;
933         uint64_t max;
934
935         /* Limit HMB to 5% of RAM size per device by default. */
936         max = (uint64_t)physmem * PAGE_SIZE / 20;
937         TUNABLE_UINT64_FETCH("hw.nvme.hmb_max", &max);
938
939         min = (long long unsigned)ctrlr->cdata.hmmin * 4096;
940         if (max == 0 || max < min)
941                 return;
942         pref = MIN((long long unsigned)ctrlr->cdata.hmpre * 4096, max);
943         minc = MAX(ctrlr->cdata.hmminds * 4096, PAGE_SIZE);
944         if (min > 0 && ctrlr->cdata.hmmaxd > 0)
945                 minc = MAX(minc, min / ctrlr->cdata.hmmaxd);
946         ctrlr->hmb_chunk = pref;
947
948 again:
949         ctrlr->hmb_chunk = roundup2(ctrlr->hmb_chunk, PAGE_SIZE);
950         ctrlr->hmb_nchunks = howmany(pref, ctrlr->hmb_chunk);
951         if (ctrlr->cdata.hmmaxd > 0 && ctrlr->hmb_nchunks > ctrlr->cdata.hmmaxd)
952                 ctrlr->hmb_nchunks = ctrlr->cdata.hmmaxd;
953         ctrlr->hmb_chunks = malloc(sizeof(struct nvme_hmb_chunk) *
954             ctrlr->hmb_nchunks, M_NVME, M_WAITOK);
955         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
956             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
957             ctrlr->hmb_chunk, 1, ctrlr->hmb_chunk, 0, NULL, NULL, &ctrlr->hmb_tag);
958         if (err != 0) {
959                 nvme_printf(ctrlr, "HMB tag create failed %d\n", err);
960                 nvme_ctrlr_hmb_free(ctrlr);
961                 return;
962         }
963
964         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
965                 hmbc = &ctrlr->hmb_chunks[i];
966                 if (bus_dmamem_alloc(ctrlr->hmb_tag,
967                     (void **)&hmbc->hmbc_vaddr, BUS_DMA_NOWAIT,
968                     &hmbc->hmbc_map)) {
969                         nvme_printf(ctrlr, "failed to alloc HMB\n");
970                         break;
971                 }
972                 if (bus_dmamap_load(ctrlr->hmb_tag, hmbc->hmbc_map,
973                     hmbc->hmbc_vaddr, ctrlr->hmb_chunk, nvme_single_map,
974                     &hmbc->hmbc_paddr, BUS_DMA_NOWAIT) != 0) {
975                         bus_dmamem_free(ctrlr->hmb_tag, hmbc->hmbc_vaddr,
976                             hmbc->hmbc_map);
977                         nvme_printf(ctrlr, "failed to load HMB\n");
978                         break;
979                 }
980                 bus_dmamap_sync(ctrlr->hmb_tag, hmbc->hmbc_map,
981                     BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
982         }
983
984         if (i < ctrlr->hmb_nchunks && i * ctrlr->hmb_chunk < min &&
985             ctrlr->hmb_chunk / 2 >= minc) {
986                 ctrlr->hmb_nchunks = i;
987                 nvme_ctrlr_hmb_free(ctrlr);
988                 ctrlr->hmb_chunk /= 2;
989                 goto again;
990         }
991         ctrlr->hmb_nchunks = i;
992         if (ctrlr->hmb_nchunks * ctrlr->hmb_chunk < min) {
993                 nvme_ctrlr_hmb_free(ctrlr);
994                 return;
995         }
996
997         size = sizeof(struct nvme_hmb_desc) * ctrlr->hmb_nchunks;
998         err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
999             16, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1000             size, 1, size, 0, NULL, NULL, &ctrlr->hmb_desc_tag);
1001         if (err != 0) {
1002                 nvme_printf(ctrlr, "HMB desc tag create failed %d\n", err);
1003                 nvme_ctrlr_hmb_free(ctrlr);
1004                 return;
1005         }
1006         if (bus_dmamem_alloc(ctrlr->hmb_desc_tag,
1007             (void **)&ctrlr->hmb_desc_vaddr, BUS_DMA_WAITOK,
1008             &ctrlr->hmb_desc_map)) {
1009                 nvme_printf(ctrlr, "failed to alloc HMB desc\n");
1010                 nvme_ctrlr_hmb_free(ctrlr);
1011                 return;
1012         }
1013         if (bus_dmamap_load(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1014             ctrlr->hmb_desc_vaddr, size, nvme_single_map,
1015             &ctrlr->hmb_desc_paddr, BUS_DMA_NOWAIT) != 0) {
1016                 bus_dmamem_free(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_vaddr,
1017                     ctrlr->hmb_desc_map);
1018                 nvme_printf(ctrlr, "failed to load HMB desc\n");
1019                 nvme_ctrlr_hmb_free(ctrlr);
1020                 return;
1021         }
1022
1023         for (i = 0; i < ctrlr->hmb_nchunks; i++) {
1024                 ctrlr->hmb_desc_vaddr[i].addr =
1025                     htole64(ctrlr->hmb_chunks[i].hmbc_paddr);
1026                 ctrlr->hmb_desc_vaddr[i].size = htole32(ctrlr->hmb_chunk / 4096);
1027         }
1028         bus_dmamap_sync(ctrlr->hmb_desc_tag, ctrlr->hmb_desc_map,
1029             BUS_DMASYNC_PREWRITE);
1030
1031         nvme_printf(ctrlr, "Allocated %lluMB host memory buffer\n",
1032             (long long unsigned)ctrlr->hmb_nchunks * ctrlr->hmb_chunk
1033             / 1024 / 1024);
1034 }
1035
1036 static void
1037 nvme_ctrlr_hmb_enable(struct nvme_controller *ctrlr, bool enable, bool memret)
1038 {
1039         struct nvme_completion_poll_status      status;
1040         uint32_t cdw11;
1041
1042         cdw11 = 0;
1043         if (enable)
1044                 cdw11 |= 1;
1045         if (memret)
1046                 cdw11 |= 2;
1047         status.done = 0;
1048         nvme_ctrlr_cmd_set_feature(ctrlr, NVME_FEAT_HOST_MEMORY_BUFFER, cdw11,
1049             ctrlr->hmb_nchunks * ctrlr->hmb_chunk / 4096, ctrlr->hmb_desc_paddr,
1050             ctrlr->hmb_desc_paddr >> 32, ctrlr->hmb_nchunks, NULL, 0,
1051             nvme_completion_poll_cb, &status);
1052         nvme_completion_poll(&status);
1053         if (nvme_completion_is_error(&status.cpl))
1054                 nvme_printf(ctrlr, "nvme_ctrlr_hmb_enable failed!\n");
1055 }
1056
1057 static void
1058 nvme_ctrlr_start(void *ctrlr_arg, bool resetting)
1059 {
1060         struct nvme_controller *ctrlr = ctrlr_arg;
1061         uint32_t old_num_io_queues;
1062         int i;
1063
1064         TSENTER();
1065
1066         /*
1067          * Only reset adminq here when we are restarting the
1068          *  controller after a reset.  During initialization,
1069          *  we have already submitted admin commands to get
1070          *  the number of I/O queues supported, so cannot reset
1071          *  the adminq again here.
1072          */
1073         if (resetting) {
1074                 nvme_qpair_reset(&ctrlr->adminq);
1075                 nvme_admin_qpair_enable(&ctrlr->adminq);
1076         }
1077
1078         if (ctrlr->ioq != NULL) {
1079                 for (i = 0; i < ctrlr->num_io_queues; i++)
1080                         nvme_qpair_reset(&ctrlr->ioq[i]);
1081         }
1082
1083         /*
1084          * If it was a reset on initialization command timeout, just
1085          * return here, letting initialization code fail gracefully.
1086          */
1087         if (resetting && !ctrlr->is_initialized)
1088                 return;
1089
1090         if (resetting && nvme_ctrlr_identify(ctrlr) != 0) {
1091                 nvme_ctrlr_fail(ctrlr);
1092                 return;
1093         }
1094
1095         /*
1096          * The number of qpairs are determined during controller initialization,
1097          *  including using NVMe SET_FEATURES/NUMBER_OF_QUEUES to determine the
1098          *  HW limit.  We call SET_FEATURES again here so that it gets called
1099          *  after any reset for controllers that depend on the driver to
1100          *  explicit specify how many queues it will use.  This value should
1101          *  never change between resets, so panic if somehow that does happen.
1102          */
1103         if (resetting) {
1104                 old_num_io_queues = ctrlr->num_io_queues;
1105                 if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
1106                         nvme_ctrlr_fail(ctrlr);
1107                         return;
1108                 }
1109
1110                 if (old_num_io_queues != ctrlr->num_io_queues) {
1111                         panic("num_io_queues changed from %u to %u",
1112                               old_num_io_queues, ctrlr->num_io_queues);
1113                 }
1114         }
1115
1116         if (ctrlr->cdata.hmpre > 0 && ctrlr->hmb_nchunks == 0) {
1117                 nvme_ctrlr_hmb_alloc(ctrlr);
1118                 if (ctrlr->hmb_nchunks > 0)
1119                         nvme_ctrlr_hmb_enable(ctrlr, true, false);
1120         } else if (ctrlr->hmb_nchunks > 0)
1121                 nvme_ctrlr_hmb_enable(ctrlr, true, true);
1122
1123         if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
1124                 nvme_ctrlr_fail(ctrlr);
1125                 return;
1126         }
1127
1128         if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
1129                 nvme_ctrlr_fail(ctrlr);
1130                 return;
1131         }
1132
1133         nvme_ctrlr_configure_aer(ctrlr);
1134         nvme_ctrlr_configure_int_coalescing(ctrlr);
1135
1136         for (i = 0; i < ctrlr->num_io_queues; i++)
1137                 nvme_io_qpair_enable(&ctrlr->ioq[i]);
1138         TSEXIT();
1139 }
1140
1141 void
1142 nvme_ctrlr_start_config_hook(void *arg)
1143 {
1144         struct nvme_controller *ctrlr = arg;
1145
1146         TSENTER();
1147
1148         if (nvme_ctrlr_hw_reset(ctrlr) != 0) {
1149 fail:
1150                 nvme_ctrlr_fail(ctrlr);
1151                 config_intrhook_disestablish(&ctrlr->config_hook);
1152                 return;
1153         }
1154
1155 #ifdef NVME_2X_RESET
1156         /*
1157          * Reset controller twice to ensure we do a transition from cc.en==1 to
1158          * cc.en==0.  This is because we don't really know what status the
1159          * controller was left in when boot handed off to OS.  Linux doesn't do
1160          * this, however, and when the controller is in state cc.en == 0, no
1161          * I/O can happen.
1162          */
1163         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1164                 goto fail;
1165 #endif
1166
1167         nvme_qpair_reset(&ctrlr->adminq);
1168         nvme_admin_qpair_enable(&ctrlr->adminq);
1169
1170         if (nvme_ctrlr_identify(ctrlr) == 0 &&
1171             nvme_ctrlr_set_num_qpairs(ctrlr) == 0 &&
1172             nvme_ctrlr_construct_io_qpairs(ctrlr) == 0)
1173                 nvme_ctrlr_start(ctrlr, false);
1174         else
1175                 goto fail;
1176
1177         nvme_sysctl_initialize_ctrlr(ctrlr);
1178         config_intrhook_disestablish(&ctrlr->config_hook);
1179
1180         ctrlr->is_initialized = 1;
1181         nvme_notify_new_controller(ctrlr);
1182         TSEXIT();
1183 }
1184
1185 static void
1186 nvme_ctrlr_reset_task(void *arg, int pending)
1187 {
1188         struct nvme_controller  *ctrlr = arg;
1189         int                     status;
1190
1191         nvme_ctrlr_devctl_log(ctrlr, "RESET", "resetting controller");
1192         status = nvme_ctrlr_hw_reset(ctrlr);
1193         /*
1194          * Use pause instead of DELAY, so that we yield to any nvme interrupt
1195          *  handlers on this CPU that were blocked on a qpair lock. We want
1196          *  all nvme interrupts completed before proceeding with restarting the
1197          *  controller.
1198          *
1199          * XXX - any way to guarantee the interrupt handlers have quiesced?
1200          */
1201         pause("nvmereset", hz / 10);
1202         if (status == 0)
1203                 nvme_ctrlr_start(ctrlr, true);
1204         else
1205                 nvme_ctrlr_fail(ctrlr);
1206
1207         atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1208 }
1209
1210 /*
1211  * Poll all the queues enabled on the device for completion.
1212  */
1213 void
1214 nvme_ctrlr_poll(struct nvme_controller *ctrlr)
1215 {
1216         int i;
1217
1218         nvme_qpair_process_completions(&ctrlr->adminq);
1219
1220         for (i = 0; i < ctrlr->num_io_queues; i++)
1221                 if (ctrlr->ioq && ctrlr->ioq[i].cpl)
1222                         nvme_qpair_process_completions(&ctrlr->ioq[i]);
1223 }
1224
1225 /*
1226  * Poll the single-vector interrupt case: num_io_queues will be 1 and
1227  * there's only a single vector. While we're polling, we mask further
1228  * interrupts in the controller.
1229  */
1230 void
1231 nvme_ctrlr_shared_handler(void *arg)
1232 {
1233         struct nvme_controller *ctrlr = arg;
1234
1235         nvme_mmio_write_4(ctrlr, intms, 1);
1236         nvme_ctrlr_poll(ctrlr);
1237         nvme_mmio_write_4(ctrlr, intmc, 1);
1238 }
1239
1240 static void
1241 nvme_pt_done(void *arg, const struct nvme_completion *cpl)
1242 {
1243         struct nvme_pt_command *pt = arg;
1244         struct mtx *mtx = pt->driver_lock;
1245         uint16_t status;
1246
1247         bzero(&pt->cpl, sizeof(pt->cpl));
1248         pt->cpl.cdw0 = cpl->cdw0;
1249
1250         status = cpl->status;
1251         status &= ~NVME_STATUS_P_MASK;
1252         pt->cpl.status = status;
1253
1254         mtx_lock(mtx);
1255         pt->driver_lock = NULL;
1256         wakeup(pt);
1257         mtx_unlock(mtx);
1258 }
1259
1260 int
1261 nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
1262     struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
1263     int is_admin_cmd)
1264 {
1265         struct nvme_request     *req;
1266         struct mtx              *mtx;
1267         struct buf              *buf = NULL;
1268         int                     ret = 0;
1269
1270         if (pt->len > 0) {
1271                 if (pt->len > ctrlr->max_xfer_size) {
1272                         nvme_printf(ctrlr, "pt->len (%d) "
1273                             "exceeds max_xfer_size (%d)\n", pt->len,
1274                             ctrlr->max_xfer_size);
1275                         return EIO;
1276                 }
1277                 if (is_user_buffer) {
1278                         /*
1279                          * Ensure the user buffer is wired for the duration of
1280                          *  this pass-through command.
1281                          */
1282                         PHOLD(curproc);
1283                         buf = uma_zalloc(pbuf_zone, M_WAITOK);
1284                         buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
1285                         if (vmapbuf(buf, pt->buf, pt->len, 1) < 0) {
1286                                 ret = EFAULT;
1287                                 goto err;
1288                         }
1289                         req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
1290                             nvme_pt_done, pt);
1291                 } else
1292                         req = nvme_allocate_request_vaddr(pt->buf, pt->len,
1293                             nvme_pt_done, pt);
1294         } else
1295                 req = nvme_allocate_request_null(nvme_pt_done, pt);
1296
1297         /* Assume user space already converted to little-endian */
1298         req->cmd.opc = pt->cmd.opc;
1299         req->cmd.fuse = pt->cmd.fuse;
1300         req->cmd.rsvd2 = pt->cmd.rsvd2;
1301         req->cmd.rsvd3 = pt->cmd.rsvd3;
1302         req->cmd.cdw10 = pt->cmd.cdw10;
1303         req->cmd.cdw11 = pt->cmd.cdw11;
1304         req->cmd.cdw12 = pt->cmd.cdw12;
1305         req->cmd.cdw13 = pt->cmd.cdw13;
1306         req->cmd.cdw14 = pt->cmd.cdw14;
1307         req->cmd.cdw15 = pt->cmd.cdw15;
1308
1309         req->cmd.nsid = htole32(nsid);
1310
1311         mtx = mtx_pool_find(mtxpool_sleep, pt);
1312         pt->driver_lock = mtx;
1313
1314         if (is_admin_cmd)
1315                 nvme_ctrlr_submit_admin_request(ctrlr, req);
1316         else
1317                 nvme_ctrlr_submit_io_request(ctrlr, req);
1318
1319         mtx_lock(mtx);
1320         while (pt->driver_lock != NULL)
1321                 mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1322         mtx_unlock(mtx);
1323
1324 err:
1325         if (buf != NULL) {
1326                 uma_zfree(pbuf_zone, buf);
1327                 PRELE(curproc);
1328         }
1329
1330         return (ret);
1331 }
1332
1333 static int
1334 nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1335     struct thread *td)
1336 {
1337         struct nvme_controller                  *ctrlr;
1338         struct nvme_pt_command                  *pt;
1339
1340         ctrlr = cdev->si_drv1;
1341
1342         switch (cmd) {
1343         case NVME_RESET_CONTROLLER:
1344                 nvme_ctrlr_reset(ctrlr);
1345                 break;
1346         case NVME_PASSTHROUGH_CMD:
1347                 pt = (struct nvme_pt_command *)arg;
1348                 return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, le32toh(pt->cmd.nsid),
1349                     1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1350         case NVME_GET_NSID:
1351         {
1352                 struct nvme_get_nsid *gnsid = (struct nvme_get_nsid *)arg;
1353                 strncpy(gnsid->cdev, device_get_nameunit(ctrlr->dev),
1354                     sizeof(gnsid->cdev));
1355                 gnsid->cdev[sizeof(gnsid->cdev) - 1] = '\0';
1356                 gnsid->nsid = 0;
1357                 break;
1358         }
1359         case NVME_GET_MAX_XFER_SIZE:
1360                 *(uint64_t *)arg = ctrlr->max_xfer_size;
1361                 break;
1362         default:
1363                 return (ENOTTY);
1364         }
1365
1366         return (0);
1367 }
1368
1369 static struct cdevsw nvme_ctrlr_cdevsw = {
1370         .d_version =    D_VERSION,
1371         .d_flags =      0,
1372         .d_ioctl =      nvme_ctrlr_ioctl
1373 };
1374
1375 int
1376 nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1377 {
1378         struct make_dev_args    md_args;
1379         uint32_t        cap_lo;
1380         uint32_t        cap_hi;
1381         uint32_t        to, vs, pmrcap;
1382         uint8_t         mpsmin;
1383         int             status, timeout_period;
1384
1385         ctrlr->dev = dev;
1386
1387         mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1388         if (bus_get_domain(dev, &ctrlr->domain) != 0)
1389                 ctrlr->domain = 0;
1390
1391         cap_lo = nvme_mmio_read_4(ctrlr, cap_lo);
1392         if (bootverbose) {
1393                 device_printf(dev, "CapLo: 0x%08x: MQES %u%s%s%s%s, TO %u\n",
1394                     cap_lo, NVME_CAP_LO_MQES(cap_lo),
1395                     NVME_CAP_LO_CQR(cap_lo) ? ", CQR" : "",
1396                     NVME_CAP_LO_AMS(cap_lo) ? ", AMS" : "",
1397                     (NVME_CAP_LO_AMS(cap_lo) & 0x1) ? " WRRwUPC" : "",
1398                     (NVME_CAP_LO_AMS(cap_lo) & 0x2) ? " VS" : "",
1399                     NVME_CAP_LO_TO(cap_lo));
1400         }
1401         cap_hi = nvme_mmio_read_4(ctrlr, cap_hi);
1402         if (bootverbose) {
1403                 device_printf(dev, "CapHi: 0x%08x: DSTRD %u%s, CSS %x%s, "
1404                     "MPSMIN %u, MPSMAX %u%s%s\n", cap_hi,
1405                     NVME_CAP_HI_DSTRD(cap_hi),
1406                     NVME_CAP_HI_NSSRS(cap_hi) ? ", NSSRS" : "",
1407                     NVME_CAP_HI_CSS(cap_hi),
1408                     NVME_CAP_HI_BPS(cap_hi) ? ", BPS" : "",
1409                     NVME_CAP_HI_MPSMIN(cap_hi),
1410                     NVME_CAP_HI_MPSMAX(cap_hi),
1411                     NVME_CAP_HI_PMRS(cap_hi) ? ", PMRS" : "",
1412                     NVME_CAP_HI_CMBS(cap_hi) ? ", CMBS" : "");
1413         }
1414         if (bootverbose) {
1415                 vs = nvme_mmio_read_4(ctrlr, vs);
1416                 device_printf(dev, "Version: 0x%08x: %d.%d\n", vs,
1417                     NVME_MAJOR(vs), NVME_MINOR(vs));
1418         }
1419         if (bootverbose && NVME_CAP_HI_PMRS(cap_hi)) {
1420                 pmrcap = nvme_mmio_read_4(ctrlr, pmrcap);
1421                 device_printf(dev, "PMRCap: 0x%08x: BIR %u%s%s, PMRTU %u, "
1422                     "PMRWBM %x, PMRTO %u%s\n", pmrcap,
1423                     NVME_PMRCAP_BIR(pmrcap),
1424                     NVME_PMRCAP_RDS(pmrcap) ? ", RDS" : "",
1425                     NVME_PMRCAP_WDS(pmrcap) ? ", WDS" : "",
1426                     NVME_PMRCAP_PMRTU(pmrcap),
1427                     NVME_PMRCAP_PMRWBM(pmrcap),
1428                     NVME_PMRCAP_PMRTO(pmrcap),
1429                     NVME_PMRCAP_CMSS(pmrcap) ? ", CMSS" : "");
1430         }
1431
1432         ctrlr->dstrd = NVME_CAP_HI_DSTRD(cap_hi) + 2;
1433
1434         mpsmin = NVME_CAP_HI_MPSMIN(cap_hi);
1435         ctrlr->min_page_size = 1 << (12 + mpsmin);
1436
1437         /* Get ready timeout value from controller, in units of 500ms. */
1438         to = NVME_CAP_LO_TO(cap_lo) + 1;
1439         ctrlr->ready_timeout_in_ms = to * 500;
1440
1441         timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1442         TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1443         timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1444         timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1445         ctrlr->timeout_period = timeout_period;
1446
1447         nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1448         TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1449
1450         ctrlr->enable_aborts = 0;
1451         TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1452
1453         ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1454         if (nvme_ctrlr_construct_admin_qpair(ctrlr) != 0)
1455                 return (ENXIO);
1456
1457         /*
1458          * Create 2 threads for the taskqueue. The reset thread will block when
1459          * it detects that the controller has failed until all I/O has been
1460          * failed up the stack. The fail_req task needs to be able to run in
1461          * this case to finish the request failure for some cases.
1462          *
1463          * We could partially solve this race by draining the failed requeust
1464          * queue before proceding to free the sim, though nothing would stop
1465          * new I/O from coming in after we do that drain, but before we reach
1466          * cam_sim_free, so this big hammer is used instead.
1467          */
1468         ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1469             taskqueue_thread_enqueue, &ctrlr->taskqueue);
1470         taskqueue_start_threads(&ctrlr->taskqueue, 2, PI_DISK, "nvme taskq");
1471
1472         ctrlr->is_resetting = 0;
1473         ctrlr->is_initialized = 0;
1474         ctrlr->notification_sent = 0;
1475         TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1476         TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1477         STAILQ_INIT(&ctrlr->fail_req);
1478         ctrlr->is_failed = false;
1479
1480         make_dev_args_init(&md_args);
1481         md_args.mda_devsw = &nvme_ctrlr_cdevsw;
1482         md_args.mda_uid = UID_ROOT;
1483         md_args.mda_gid = GID_WHEEL;
1484         md_args.mda_mode = 0600;
1485         md_args.mda_unit = device_get_unit(dev);
1486         md_args.mda_si_drv1 = (void *)ctrlr;
1487         status = make_dev_s(&md_args, &ctrlr->cdev, "nvme%d",
1488             device_get_unit(dev));
1489         if (status != 0)
1490                 return (ENXIO);
1491
1492         return (0);
1493 }
1494
1495 void
1496 nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1497 {
1498         int     gone, i;
1499
1500         ctrlr->is_dying = true;
1501
1502         if (ctrlr->resource == NULL)
1503                 goto nores;
1504         if (!mtx_initialized(&ctrlr->adminq.lock))
1505                 goto noadminq;
1506
1507         /*
1508          * Check whether it is a hot unplug or a clean driver detach.
1509          * If device is not there any more, skip any shutdown commands.
1510          */
1511         gone = (nvme_mmio_read_4(ctrlr, csts) == NVME_GONE);
1512         if (gone)
1513                 nvme_ctrlr_fail(ctrlr);
1514         else
1515                 nvme_notify_fail_consumers(ctrlr);
1516
1517         for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1518                 nvme_ns_destruct(&ctrlr->ns[i]);
1519
1520         if (ctrlr->cdev)
1521                 destroy_dev(ctrlr->cdev);
1522
1523         if (ctrlr->is_initialized) {
1524                 if (!gone) {
1525                         if (ctrlr->hmb_nchunks > 0)
1526                                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1527                         nvme_ctrlr_delete_qpairs(ctrlr);
1528                 }
1529                 nvme_ctrlr_hmb_free(ctrlr);
1530         }
1531         if (ctrlr->ioq != NULL) {
1532                 for (i = 0; i < ctrlr->num_io_queues; i++)
1533                         nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1534                 free(ctrlr->ioq, M_NVME);
1535         }
1536         nvme_admin_qpair_destroy(&ctrlr->adminq);
1537
1538         /*
1539          *  Notify the controller of a shutdown, even though this is due to
1540          *   a driver unload, not a system shutdown (this path is not invoked
1541          *   during shutdown).  This ensures the controller receives a
1542          *   shutdown notification in case the system is shutdown before
1543          *   reloading the driver.
1544          */
1545         if (!gone)
1546                 nvme_ctrlr_shutdown(ctrlr);
1547
1548         if (!gone)
1549                 nvme_ctrlr_disable(ctrlr);
1550
1551 noadminq:
1552         if (ctrlr->taskqueue)
1553                 taskqueue_free(ctrlr->taskqueue);
1554
1555         if (ctrlr->tag)
1556                 bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1557
1558         if (ctrlr->res)
1559                 bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1560                     rman_get_rid(ctrlr->res), ctrlr->res);
1561
1562         if (ctrlr->bar4_resource != NULL) {
1563                 bus_release_resource(dev, SYS_RES_MEMORY,
1564                     ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1565         }
1566
1567         bus_release_resource(dev, SYS_RES_MEMORY,
1568             ctrlr->resource_id, ctrlr->resource);
1569
1570 nores:
1571         mtx_destroy(&ctrlr->lock);
1572 }
1573
1574 void
1575 nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1576 {
1577         uint32_t        cc;
1578         uint32_t        csts;
1579         int             timeout;
1580
1581         cc = nvme_mmio_read_4(ctrlr, cc);
1582         cc &= ~(NVME_CC_REG_SHN_MASK << NVME_CC_REG_SHN_SHIFT);
1583         cc |= NVME_SHN_NORMAL << NVME_CC_REG_SHN_SHIFT;
1584         nvme_mmio_write_4(ctrlr, cc, cc);
1585
1586         timeout = ticks + (ctrlr->cdata.rtd3e == 0 ? 5 * hz :
1587             ((uint64_t)ctrlr->cdata.rtd3e * hz + 999999) / 1000000);
1588         while (1) {
1589                 csts = nvme_mmio_read_4(ctrlr, csts);
1590                 if (csts == NVME_GONE)          /* Hot unplug. */
1591                         break;
1592                 if (NVME_CSTS_GET_SHST(csts) == NVME_SHST_COMPLETE)
1593                         break;
1594                 if (timeout - ticks < 0) {
1595                         nvme_printf(ctrlr, "shutdown timeout\n");
1596                         break;
1597                 }
1598                 pause("nvmeshut", 1);
1599         }
1600 }
1601
1602 void
1603 nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1604     struct nvme_request *req)
1605 {
1606
1607         nvme_qpair_submit_request(&ctrlr->adminq, req);
1608 }
1609
1610 void
1611 nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1612     struct nvme_request *req)
1613 {
1614         struct nvme_qpair       *qpair;
1615
1616         qpair = &ctrlr->ioq[QP(ctrlr, curcpu)];
1617         nvme_qpair_submit_request(qpair, req);
1618 }
1619
1620 device_t
1621 nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1622 {
1623
1624         return (ctrlr->dev);
1625 }
1626
1627 const struct nvme_controller_data *
1628 nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1629 {
1630
1631         return (&ctrlr->cdata);
1632 }
1633
1634 int
1635 nvme_ctrlr_suspend(struct nvme_controller *ctrlr)
1636 {
1637         int to = hz;
1638
1639         /*
1640          * Can't touch failed controllers, so it's already suspended.
1641          */
1642         if (ctrlr->is_failed)
1643                 return (0);
1644
1645         /*
1646          * We don't want the reset taskqueue running, since it does similar
1647          * things, so prevent it from running after we start. Wait for any reset
1648          * that may have been started to complete. The reset process we follow
1649          * will ensure that any new I/O will queue and be given to the hardware
1650          * after we resume (though there should be none).
1651          */
1652         while (atomic_cmpset_32(&ctrlr->is_resetting, 0, 1) == 0 && to-- > 0)
1653                 pause("nvmesusp", 1);
1654         if (to <= 0) {
1655                 nvme_printf(ctrlr,
1656                     "Competing reset task didn't finish. Try again later.\n");
1657                 return (EWOULDBLOCK);
1658         }
1659
1660         if (ctrlr->hmb_nchunks > 0)
1661                 nvme_ctrlr_hmb_enable(ctrlr, false, false);
1662
1663         /*
1664          * Per Section 7.6.2 of NVMe spec 1.4, to properly suspend, we need to
1665          * delete the hardware I/O queues, and then shutdown. This properly
1666          * flushes any metadata the drive may have stored so it can survive
1667          * having its power removed and prevents the unsafe shutdown count from
1668          * incriminating. Once we delete the qpairs, we have to disable them
1669          * before shutting down.
1670          */
1671         nvme_ctrlr_delete_qpairs(ctrlr);
1672         nvme_ctrlr_disable_qpairs(ctrlr);
1673         nvme_ctrlr_shutdown(ctrlr);
1674
1675         return (0);
1676 }
1677
1678 int
1679 nvme_ctrlr_resume(struct nvme_controller *ctrlr)
1680 {
1681
1682         /*
1683          * Can't touch failed controllers, so nothing to do to resume.
1684          */
1685         if (ctrlr->is_failed)
1686                 return (0);
1687
1688         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1689                 goto fail;
1690 #ifdef NVME_2X_RESET
1691         /*
1692          * Prior to FreeBSD 13.1, FreeBSD's nvme driver reset the hardware twice
1693          * to get it into a known good state. However, the hardware's state is
1694          * good and we don't need to do this for proper functioning.
1695          */
1696         if (nvme_ctrlr_hw_reset(ctrlr) != 0)
1697                 goto fail;
1698 #endif
1699
1700         /*
1701          * Now that we've reset the hardware, we can restart the controller. Any
1702          * I/O that was pending is requeued. Any admin commands are aborted with
1703          * an error. Once we've restarted, take the controller out of reset.
1704          */
1705         nvme_ctrlr_start(ctrlr, true);
1706         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1707
1708         return (0);
1709 fail:
1710         /*
1711          * Since we can't bring the controller out of reset, announce and fail
1712          * the controller. However, we have to return success for the resume
1713          * itself, due to questionable APIs.
1714          */
1715         nvme_printf(ctrlr, "Failed to reset on resume, failing.\n");
1716         nvme_ctrlr_fail(ctrlr);
1717         (void)atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
1718         return (0);
1719 }